利用相似三角形测高微练习

合集下载

4.6利用相似三角形测高练习

4.6利用相似三角形测高练习

4.6利用相似三角形测高练习12、如图,A、B两点被池塘隔开,在AB外取一点C,连接AC和BC,并在AC、BC上各取一点M、N,2题 3题 4题 5题3、如图,球从A处射出,经球台挡板CD反射,击中球B.已知AC=10cm,BD=15cm,CD=50cm,则点E应距点C为cm。

4、已知:如图,小明在打网球时,网高0.9m,击球点距离球网的水平距离是10m,要使球恰好能5、如图,AB是斜靠在墙上的长梯,梯脚B距墙脚1.2m,梯上点D距墙0.9m,BD长0.6m,则梯子6、如图,要测量河宽,可在两岸找到相对的两点A、B,先从B出发与AB成90°方向向前走50米,到C处立一标杆,然后方向不变继续朝前走10米到D处,在D处转90°,沿DE方向走到E 处,若A、C、E三点恰好在同一直线上,且DE=17米,你能根据题目提供的数据和图形求出河宽吗?7、如图,一圆柱形油桶,高1.5m,用一根2m长的木棒从桶盖小口斜插桶用另一端的小口处,抽出木棒后,量得上面没浸油的部分为1.2m,求桶内油面高度。

8、高明为了测量一大楼的高度,在地面上放一平面镜,镜子与楼的距离AE=27m,他与镜子的距离是2.1m时,∠BEF=∠DEF,刚好能从镜子中看到楼顶B,已知他的眼睛到地面的高度CD为1.6m,结果他很快计算出大楼的高度AB,你知道是多少吗?9、如图,一束光线从教室窗户射到教室,测得光线与地面所成的角,∠AMC=30°,窗户高在地面上的影长MN=2,窗户下檐到地面的距离BC=1米,点M、N、C在同一直线上,求窗户高AB。

10、如图,小明同学用自制的直角三角形纸板EFG测量树的高度AB,他调整自己的位置,设法使斜边EG保持水平,并且边EF与点A在同一直线上.已知纸板的两条直角边EF=60cm,FG=30cm,测得小刚与树的水平距离BD=8m,边EG离地面的高度DE=1.6m,则树的高度AB等于多少?11、如图,为了测量一棵树AB的高度,测量者在D点立一高CD=2m的标杆,现测量者从E处可以看到杆顶C与树顶A在同一条直线上,如果测得BD=20m,FD=4m,EF=1.8m,求树AB的高度。

北师大版九年级上册 4.6 利用相似三角形测高专题(包含答案)

北师大版九年级上册  4.6 利用相似三角形测高专题(包含答案)

2019-2020利用相似三角形测高专题(含答案)一、单选题1.如图,小雅同学在利用标杆BE 测量建筑物的高度时,测得标杆BE 高1.2m ,又知:1:8AB BC =,则建筑物CD 的高是( )A .9.6mB .10.8mC .12mD .14m2.兴趣小组的同学要测量树的高度.在阳光下,一名同学测得一根 长为 1 米的竹竿的影长为 0.4 米,同时另一名同学测量树的高度时, 发现树的影子不全落在地面上,有一部分落在教学楼的第一级台 阶水平面上,测得此影子长为 0.2 米,一级台阶高为 0.3 米,如图 所示,若此时落在地面上的影长为 4.4 米,则树高为( )A.11.8 米B.11.75 米C.12.3 米D.12.25 米3.《孙子算经》是我国古代重要的数学著作,其下卷有题如下:“今有竿不知长短,度其影得一丈五尺.别立一表,长一尺五寸,影得五寸.问竿长几何?”译文:“有一根竹竿不知道它的长短,量出它在太阳下的影子长一丈五尺.同时立一根一尺五寸的小标杆,它的影长是五寸,则这根竹竿的长度为多少尺?”可得这根竹竿的长度为( ) (提示:1丈10=尺,1尺10=寸)A.五丈B.四丈五尺C.五尺D.四尺五寸4.如图,为了测量校园水平地面上一棵不可攀的树的高度,学校数学兴趣小组根据光的反射定律,利用一面镜子和一根皮尺,设计如下图所示的测量方案:把一面很小的镜子水平放置在离树底B端8.4米的点E处,然后沿着直线BE后退到点D,这时恰好在镜子里看到树梢顶点A,再用皮尺量得DE=3.2米,观察者目高CD=1.6米,则树AB的高度约为()A.4.2米B.4.8米C.6.4米D.16.8米5.如图,小颖为测量学校旗杆AB的高度,她在E处放置一块镜子,然后退到C处站立,刚好从镜子中看到旗杆的顶部B.已知小颖的眼睛D离地面的高度CD=1.5m,她离镜子的水平距离CE=0.5m,镜子E离旗杆的底部A处的距离AE=2m,且A、C、E三点在同一水平直线上,则旗杆AB的高度为()A.4.5mB.4.8mC.5.5mD.6 m二、填空题6.某同学要测量某烟囱的高度,他将一面镜子放在他与烟囱之间的地面上某一位置,然后站到与镜子、烟囱成一条直线的地方,刚好从镜中看到烟囱的顶部,如果这名同学身高为1.65米,他到镜子的距离是2米,测得镜面到烟囱的距离为20米,烟囱的高度_____ 米.7.如图,小明想利用太阳光测量楼高,发现对面墙上有这栋楼的影子,小明边移动边观察,发现站到点E 处时,可以使自己落在墙上的影子与这栋楼落在墙上的影子重叠且高度恰好相同.此时测得墙上影子高CD =1.2m ,CE =0.6m ,CA =30m (点A 、E 、C 在同一直线上).已知小明身高EF 是1.6m ,则楼高AB 为______m .8.如图,在同一时刻两根木杆在太阳光下的影子如图所示,其中木杆2AB m =,它的影子1.6BC m =,木杆PQ 的影子有一部分落在了墙上, 1.2PM m =,0.8MN m =,则木杆PQ 的长度为______m .9.为了测量校园水平地面上一棵树的高度,学校数学兴趣小组做了如下的探索:根据光的反射定律,利用一面镜子和一根皮尺,设计如下图所示的测量方案:把一面很小的镜子放在离树底(B )8.4米的点E 处,然后沿着直线BE 后退到点D ,这时恰好在镜子里看到树梢顶点A ,再用皮尺量得DE=2.4米,观察者目高CD=1.6米,则树AB 的高度为 米.三、解答题10.如图,晚上小明由路灯AD走向路灯BC,当他行至点P处时,发现他在路灯BC下的影长为2m,且影子的顶端恰好在A点,接着他又走了6.5m至点Q处,此时他在路灯AD下的影子的顶端恰好在B点,已知小明的身高为1.8m,路灯BC的高度为9m.(1)计算小明站在点Q处时在路灯AD下影子的长度;(2)计算路灯AD的高度。

利用相似三角形测高基础训练含详细答案

利用相似三角形测高基础训练含详细答案

利用相似三角形测高基础训练一.选择题(共8小题)1.《孙子算经》是我国古代重要的数学著作,其有题译文如下:“有一根竹竿在太阳下的影子长15尺.同时立一根1.5尺的小标杆,它的影长是0.5尺.如图所示,则可求得这根竹竿的长度为()尺.A.50B.45C.5D.4.52.如图,小卓利用标杆EF测量旗杆AB的高度,测得小桌的身高CD=1.8米,标杆EF=2.4米,DF=1米,BF=11米,则旗杆AB的高度是()A.6.4米B.7.2米C.9米D.9.6米3.如图,小明为了测量大楼MN的高度,在离N点30米放了一个平面镜,小明沿NA方向后退1.5米到C点,此时从镜子中恰好看到楼顶的M点,已知小明的眼睛(点B)到地面的高度BC是1.6米,则大楼MN的高度是()A.32米B.米C.36米D.米4.如图所示,某校数学兴趣小组利用标杆BE测量建筑物的高度,已知标杆BE高1.5m,测得AB=1.2m,BC=12.8m,则建筑物CD的高是()A.17.5m B.17m C.16.5m D.18m5.如图,小明在打乒乓球时,为使球恰好能过网(设网高AB=15cm),且落在对方区域桌子底线C处,已知小明在自己桌子底线上方击球,则他击球点距离桌面的高度DE为()A.15cm B.20cm C.25cm D.30cm6.数学兴趣小组的同学们来到宝安区海淀广场,设计用手电来测量广场附近某大厦CD的高度,如图,点P处放一水平的平面镜.光线从点A出发经平面镜反射后刚好射到大厦CD的顶端C处,已知AB⊥BD,CD⊥BD,且测得AB=1米,BP=1.5米,PD=48米,那么该大厦的高度约为()A.32米B.28米C.24米D.16米7.据《九章算术》记载:“今有山居木西,不知其高.山去五十三里,木高九丈五尺,人立木东三里,望木末适与山峰斜平.人目高七尺.问山高几何?”译文如下:如图,今有山AB位于树的西面.山高AB为未知数,山与树相距53里,树高9丈5尺,人站在离树3里的地方,观察到树梢C恰好与山峰A处在同一斜线上,人眼离地7尺,则山AB 的高为(保留到整数,1丈=10尺)()A.162丈B.163丈C.164丈D.165丈8.如图,小颖为测量学校旗杆AB的高度,她在E处放置一块镜子,然后退到C处站立,刚好从镜子中看到旗杆的顶部B.已知小颖的眼睛D离地面的高度CD=1.5m,她离镜子的水平距离CE=0.5m,镜子E离旗杆的底部A处的距离AE=2m,且A、C、E三点在同一水平直线上,则旗杆AB的高度为()A.4.5m B.4.8m C.5.5m D.6 m二.填空题(共5小题)9.如图,利用镜子M的反射(入射角等于反射角),来测量旗杆CD的长度,在镜子上作一个标记,观测者AB看着镜子来回移动,直到看到旗杆顶端在镜子中的像与镜子上的标记相重合,若观测者AB的身高为1.6m,量得BM:DM=2:11,则旗杆的高度为m.10.如图,有一个广告牌OE,小明站在距广告牌OE10米远的A处观察广告牌顶端,眼睛距地面1.5米,他的前方5米处有一堵墙DC,若墙高DC=2米,则广告牌OE的高度为米.11.如图,利用标杆BE测量建筑物的高度.已知标杆BE高1.5m,测得AB=2m,BC=6m,则建筑物CD的高是m.12.如图,身高1.8米的小石从一盏路灯下B处向前走了8米到达点C处时,发现自己在地面上的影子CE长是2米,则路灯的高AB为米.13.小明用这样的方法来测量某建筑物的高度:如图,在地面上放一面镜子,调整位置,直至刚好能从镜子中看到建筑物的顶端.如果此时小明与镜子的距离是2m,镜子与建筑物的距离是20m.他的眼睛距地面1.5m,那么该建筑物的高是.三.解答题(共3小题)14.福建省会福州拥有“三山两塔一条江”,其中报恩定光多宝塔(别名白塔),位于山风景区,利用标杆可以估算白塔的高度.如图,标杆BE高1.5m,测得AB=0.9m,BC=39.1m,求白塔的高CD.15.如图是小明设计利用光线来测量某古城墙CD高度的示意图,如果镜子P与古城墙的距离PD=12米,镜子P与小明的距离BP=1.5米,小明刚好从镜子中看到古城墙顶端点C,小明眼睛距地面的高度AB=1.2米,那么该古城墙的高度是?16.《铁血红安》在中央一台热播后,吸引了众多游客前往影视基地游玩.某天小明站在地面上给站在城楼上的小亮照相时发现:他的眼睛、凉亭顶端、小亮头顶三点恰好在一条直线上(如图).已知小明的眼睛离地面1.65米,凉亭顶端离地面2米,小明到凉亭的距离为2米,凉亭离城楼底部的距离为40米,小亮身高1.7米.请根据以上数据求出城楼的高度.利用相似三角形测高基础训练参考答案与试题解析一.选择题(共8小题)1.《孙子算经》是我国古代重要的数学著作,其有题译文如下:“有一根竹竿在太阳下的影子长15尺.同时立一根1.5尺的小标杆,它的影长是0.5尺.如图所示,则可求得这根竹竿的长度为()尺.A.50B.45C.5D.4.5【答案】B【解答】解:设竹竿的长度为x尺,由题意得:=,解得:x=45,答:竹竿的长度为45尺,故选:B.2.如图,小卓利用标杆EF测量旗杆AB的高度,测得小桌的身高CD=1.8米,标杆EF=2.4米,DF=1米,BF=11米,则旗杆AB的高度是()A.6.4米B.7.2米C.9米D.9.6米【答案】C【解答】解:CG的延长线交AB于H,如图,易得GF=BH=CD=1.8m,CG=DF=1m,GH=BF=11m,∴EG=EF﹣GF=2.4m﹣1.8m=0.6m,∵EG∥AH,∴△CGE∽△CHA,∴=,即=,∴AH=7.2,∴AB=AH+BH=7.2+1.8=9(m),即旗杆AB的高度是9m.故选:C.3.如图,小明为了测量大楼MN的高度,在离N点30米放了一个平面镜,小明沿NA方向后退1.5米到C点,此时从镜子中恰好看到楼顶的M点,已知小明的眼睛(点B)到地面的高度BC是1.6米,则大楼MN的高度是()A.32米B.米C.36米D.米【答案】A【解答】解:∵BC⊥CA,MN⊥AN,∴∠C=∠MNA=90°,∵∠BAC=∠MAN,∴△BCA∽△MNA.∴=,即=,∴MN=32(m),答:楼房MN的高度为32m.故选:A.4.如图所示,某校数学兴趣小组利用标杆BE测量建筑物的高度,已知标杆BE高1.5m,测得AB=1.2m,BC=12.8m,则建筑物CD的高是()A.17.5m B.17m C.16.5m D.18m【答案】A【解答】解:∵EB⊥AC,DC⊥AC,∴EB∥DC,∴△ABE∽△ACD,∴,∵BE=1.5m,AB=1.2m,BC=12.8m,∴AC=AB+BC=14m,∴,解得,DC=17.5,即建筑物CD的高是17.5m,故选:A.5.如图,小明在打乒乓球时,为使球恰好能过网(设网高AB=15cm),且落在对方区域桌子底线C处,已知小明在自己桌子底线上方击球,则他击球点距离桌面的高度DE为()A.15cm B.20cm C.25cm D.30cm【答案】D【解答】解:∵AB∥DE,∴△CAB∽△CDE,∴=,而BC=BE,∴DE=2AB=2×15=30(cm).故选:D.6.数学兴趣小组的同学们来到宝安区海淀广场,设计用手电来测量广场附近某大厦CD的高度,如图,点P处放一水平的平面镜.光线从点A出发经平面镜反射后刚好射到大厦CD的顶端C处,已知AB⊥BD,CD⊥BD,且测得AB=1米,BP=1.5米,PD=48米,那么该大厦的高度约为()A.32米B.28米C.24米D.16米【答案】A【解答】解:根据题意,易得到△ABP∽△PDC.即=故CD=×AB=×1=32米;那么该大厦的高度是32米.故选:A.7.据《九章算术》记载:“今有山居木西,不知其高.山去五十三里,木高九丈五尺,人立木东三里,望木末适与山峰斜平.人目高七尺.问山高几何?”译文如下:如图,今有山AB位于树的西面.山高AB为未知数,山与树相距53里,树高9丈5尺,人站在离树3里的地方,观察到树梢C恰好与山峰A处在同一斜线上,人眼离地7尺,则山AB 的高为(保留到整数,1丈=10尺)()A.162丈B.163丈C.164丈D.165丈【答案】D【解答】解:由题意得,BD=53里CD=95尺,EF=7尺,DF=3里,过E作EG⊥AB于G,交CD于H,则BG=DH=EF=7尺,GH=BD=53里,HE=DF=3里,∵CD∥AB,∴△ECH∽△EAG,∴=,∴=,∴AG≈164.2丈,AB=AG+0.7=164.9≈165丈.答:山AB的高为165丈.故选:D.8.如图,小颖为测量学校旗杆AB的高度,她在E处放置一块镜子,然后退到C处站立,刚好从镜子中看到旗杆的顶部B.已知小颖的眼睛D离地面的高度CD=1.5m,她离镜子的水平距离CE=0.5m,镜子E离旗杆的底部A处的距离AE=2m,且A、C、E三点在同一水平直线上,则旗杆AB的高度为()A.4.5m B.4.8m C.5.5m D.6 m【答案】D【解答】解:由题意可得:AE=2m,CE=0.5m,DC=1.5m,∵△ABE∽△EDC,∴=,即=,解得:AB=6,故选:D.二.填空题(共5小题)9.如图,利用镜子M的反射(入射角等于反射角),来测量旗杆CD的长度,在镜子上作一个标记,观测者AB看着镜子来回移动,直到看到旗杆顶端在镜子中的像与镜子上的标记相重合,若观测者AB的身高为1.6m,量得BM:DM=2:11,则旗杆的高度为8.8 m.【答案】见试题解答内容【解答】解:根据题意得:△ABM∽△CDM,∴AB:CD=BM:DM,∵AB=1.6m,BM:DM=2:11,∴1.6:CD=2:11,解得:CD=8.8m,故答案为:8.8.10.如图,有一个广告牌OE,小明站在距广告牌OE10米远的A处观察广告牌顶端,眼睛距地面1.5米,他的前方5米处有一堵墙DC,若墙高DC=2米,则广告牌OE的高度为2.5米.【答案】见试题解答内容【解答】解:作BF⊥OE于点F交CD于点G,根据题意得:AB=CG=OF=1.5米,BF=10米,BG=5米,DG=CD﹣CG=2﹣1.5=0.5米,∵DG∥EF,∴,∴,解得:EF=1,∴EO=EF+OF=1+1.5=2.5(米),故答案为:2.5.11.如图,利用标杆BE测量建筑物的高度.已知标杆BE高1.5m,测得AB=2m,BC=6m,则建筑物CD的高是6m.【答案】6.【解答】解:由题意可得:BE∥DC,则△ABE∽△ACD,故=,∵标杆BE高1.5m,AB=2m,BC=6m,∴=,解得:DC=6.故答案为:6.12.如图,身高1.8米的小石从一盏路灯下B处向前走了8米到达点C处时,发现自己在地面上的影子CE长是2米,则路灯的高AB为9米.【答案】见试题解答内容【解答】解:由题意知,CE=2米,CD=1.8米,BC=8米,CD∥AB,则BE=BC+CE=10米,∵CD∥AB,∴△ECD∽△EBA∴=,即=,解得AB=9(米),即路灯的高AB为9米;故答案为:9.13.小明用这样的方法来测量某建筑物的高度:如图,在地面上放一面镜子,调整位置,直至刚好能从镜子中看到建筑物的顶端.如果此时小明与镜子的距离是2m,镜子与建筑物的距离是20m.他的眼睛距地面1.5m,那么该建筑物的高是15m.【答案】见试题解答内容【解答】解:∵∠APB=∠CPD,∠ABP=∠CDP,∴△ABP∽△CDP∴=,即:,解得:CD=15(米).故答案为:15.三.解答题(共3小题)14.福建省会福州拥有“三山两塔一条江”,其中报恩定光多宝塔(别名白塔),位于山风景区,利用标杆可以估算白塔的高度.如图,标杆BE高1.5m,测得AB=0.9m,BC=39.1m,求白塔的高CD.【答案】见试题解答内容【解答】解:∵EB⊥AC,DC⊥AC,∴EB∥DC,∴△ABE∽△ACD,∴=,∵BE=1.5,AB=0.9,BC=39.1,∴AC=16,∴=,∴CD=.∴白塔的高CD为米.15.如图是小明设计利用光线来测量某古城墙CD高度的示意图,如果镜子P与古城墙的距离PD=12米,镜子P与小明的距离BP=1.5米,小明刚好从镜子中看到古城墙顶端点C,小明眼睛距地面的高度AB=1.2米,那么该古城墙的高度是?【答案】见试题解答内容【解答】解:∵∠APB=∠CPD,∠ABP=∠CDP,∴△ABP∽△CDP∴=,即:=,解得:PD=9.6(米).答:该古城墙的高度是9.6m.16.《铁血红安》在中央一台热播后,吸引了众多游客前往影视基地游玩.某天小明站在地面上给站在城楼上的小亮照相时发现:他的眼睛、凉亭顶端、小亮头顶三点恰好在一条直线上(如图).已知小明的眼睛离地面1.65米,凉亭顶端离地面2米,小明到凉亭的距离为2米,凉亭离城楼底部的距离为40米,小亮身高1.7米.请根据以上数据求出城楼的高度.【答案】见试题解答内容【解答】解:过点A作AM⊥EF于点M,交CD于点N,由题意可得:AN=2m,CN=2﹣1.65=0.35(m),MN=40m,∵CN∥EM,∴△ACN∽△AEM,∴=,∴=,解得:EM=7.35,∵AB=MF=1.65m,故城楼的高度为:7.35+1.65﹣1.7=7.3(米),答:城楼的高度为7.3m.。

利用相似三角形测高能力提升1含详细答案

利用相似三角形测高能力提升1含详细答案

利用相似三角形测高能力提升1一.选择题(共30小题)1.如图,某人拿着一把分度值为厘米的刻度尺,站在距电线杆25m的地方,手臂向前伸直,将刻度尺竖直,看到刻度尺上14cm的长度恰好遮住电线杆.已知臂长为70cm,则电线杆的高是()A.5m B.6m C.125m D.4m2.如图是用卡钳测量容器内径的示意图,现量得卡钳上A,D两个端点之间的距离为10cm,,则容器的内径是()A.5cm B.10cm C.15cm D.20cm3.如图,小明同学用自制的直角三角形纸板DEF测量树的高度AB,他调整自己的位置,设法使斜边DF保持水平,并且边DE与点B在同一直线上.已知纸板的两条直角边DE =40cm,EF=20cm,测得边DF离地面的高度AC=1.5m,CD=8m,则树高AB是()A.4米B.4.5米C.5米D.5.5米4.在小孔成像问题中,如图所示,若为O到AB的距离是18cm,O到CD的距离是6cm,则像CD的长是物体AB长的()A.B.C.2倍D.3倍5.如图,铁道口的栏杆短臂长1m,长臂长16m.当短臂端点下降0.5m时,长臂端点升高()A.5m B.6m C.7m D.8m6.如图,在某一时刻测得1米长的竹竿竖直放置时影长1.2米,在同一时刻旗杆AB的影长不全落在水平地面上,有一部分落在楼房的墙上,他测得落在地面上影长为BD=9.6米,留在墙上的影长CD=2米,则旗杆的高度()A.9米B.9.6米C.10米D.10.2米7.如图,阳光通过窗口照到室内,在地上留下3m宽的亮区,已知亮区一边到窗下的墙角的距离CE=7m,窗口高AB=1.8m,那么窗口底边离地面的高BC等于()A.2m B.2.4m C.2.8m D.3m8.如图所示的梯形梯子,AA′∥EE′,AB=BC=CD=DE,A′B′=B′C′=C′D′=D′E′,AA′=60cm,EE′=80cm.则BB′的长为()A.0.65m B.0.675m C.0.725m D.0.75m9.如图,一油桶高0.8m,桶内有油,一根木棒长1m,从桶盖小口斜插入桶内,一端到桶底,另一端到小口,抽出木棒,量得棒上浸油部分长0.8m,则桶内油的高度为()A.0.28m B.0.64m C.0.58m D.0.32m10.如图,路边有一根电线杆AB和一块正方形广告牌(不用考虑牌子的厚度).有一天,小明突然发现,在太阳光照射下,电线杆顶端A的影子刚好落在正方形广告牌的上边中点G处,而正方形广告牌的影子刚好落在地面上E点,已知BC=5米,正方形边长为2米,DE=4米.则此时电线杆的高度是()米.A.8B.7C.6D.511.如图所示,王华晚上由路灯A下的B处走到C处时,测得影子CD的长为1米,继续往前走3米到达E处时,测得影子EF的长为2米,已知王华的身高是1.5米,那么路灯A的高度AB等于()A.4.5米B.6米C.7.5米D.8米12.如图,某同学拿着一把12cm长的尺子,站在距电线杆30m的位置,把手臂向前伸直,将尺子竖直,看到尺子恰好遮住电线杆,已知臂长60cm,则电线杆的高度是()A.2.4m B.24m C.0.6m D.6m13.如图,A、B两地之间有一池塘,要测量A、B两地之间的距离.选择一点O,连接AO 并延长到点C,使OC=AO,连接BO并延长到点D,使OD=BO.测得C、D间距离为30米,则A、B两地之间的距离为()A.30米B.45米C.60米D.90米14.如图,放映幻灯片时,通过光源,把幻灯片上的图形放大到屏幕上.若光源到幻灯片的距离为30cm,到屏幕的距离为90cm,且幻灯片中的图形的高度为7cm,则屏幕上图形的高度为()A.6cm B.12cm C.21cm D.24cm15.如图,是小孔成像原理的示意图,根据图所标注的尺寸,这支蜡烛在暗盒中所成的像CD的长是()A.B.C.D.1 cm16.如图是小华利用含30°角的三角板测量楼房高度的示意图,已知桌子高AB为1米,地面上B和D之间的距离为100米,则楼高CD约为()A.51米B.59米C.88米D.174米17.如图,某校数学兴趣小组利用自制的直角三角形硬纸板DEF来测量操场旗杆AB的高度,他们通过调整测量位置,使斜边DF与地面保持平行,并使边DE与旗杆顶点A在同一直线上,已知DE=0.5米,EF=0.25米,目测点D到地面的距离DG=1.5米,到旗杆的水平距离DC=20米,则旗杆的高度为()A.10米B.(10+1.5)米C.11.5米D.10米18.如图,小明同学用自制的直角三角形纸板DEF测量树的高度AB,他调整自己的位置,设法使斜边DF保持水平,并且边DE与点B在同一直线上,已知纸板的两条直角边DE =50cm,EF=25cm,测得边DF离地面的高度AC=1.6m,CD=10m,则树高AB=()m.A.4 m B.5m C.6.6m D.7.7m19.如图,数学兴趣小组的小颖想测量教学楼前的一棵树的树高,下午课外活动时她测得一根长为1m的竹竿的影长是0.8m,但当她马上测量树高时,发现树的影子不全落在地面上,有一部分影子落在教学楼的墙壁上(如图),他先测得留在墙壁上的影高为1.2m,又测得地面的影长为2.6m,请你帮她算一下,树高是()A.3.25m B.4.25m C.4.45m D.4.75m20.如图,用一个交叉卡钳(两条尺长AC和BD相等,OC=OD)量零件的内孔直径AB.若OC:OA=1:2,量得CD=10,则零件的内孔直径AB长为()A.30B.20C.10D.521.王大伯要做一张如图所示的梯子,梯子共有7级互相平行的踏板,每相邻两级踏板之间的距离都相等.已知梯子最上面一级踏板的长度A1B1=0.5m,最下面一级踏板的长度A7B7=0.8m.则A3B3踏板的长度为()A.0.6m B.0.65m C.0.7m D.0.75m22.如图,为了测量油桶内油面的高度,将一根细木棒自油桶小孔,插入桶内测得木棒插入部分AB的长为100cm,木棒上沾油部分DB的长为60cm,桶高AC为80cm,那么桶内油面CE的高度是多少cm()A.60B.32C.50D.4823.如图,铁道口的栏杆短臂长1米,长臂长16米,当短臂端点下降0.5米时,长臂端点升高()A.11.25米B.6.6米C.8米D.10.5米24.如图,丁轩同学在晚上由路灯AC走向路灯BD,当他走到点P时,发现身后他影子的顶部刚好接触到路灯AC的底部,当他向前再步行20m到达Q点时,发现身前他影子的顶部刚好接触到路灯BD的底部,已知丁轩同学的身高是1.5m,两个路灯的高度都是9m,则两路灯之间的距离是()A.24m B.25m C.28m D.30m25.已知:如图,小华在打羽毛球时,扣球要使球恰好能打过网,而且落在离网前4米的位置处,则球拍击球的高度h应为()A.1.55m B.3.1m C.3.55m D.4m26.兴趣小组的同学要测量树的高度.在阳光下,一名同学测得一根长为1米的竹竿的影长为0.4米,同时另一名同学测量树的高度时,发现树的影子不全落在地面上,有一部分落在教学楼的第一级台阶上,测得此影子长为0.2米,一级台阶高为0.3米,如图所示,若此时落在地面上的影长为4.4米,则树高为()A.11.5米B.11.75米C.11.8米D.12.25米27.红星中学高二(2)班在布置“五.四”青年节联欢会会场时,需要将直角三角形彩纸裁成长度不等的矩形纸条.如图所示:在Rt△ACB中,AC=30cm,BC=40cm.依此裁下宽度为1cm的纸条,若使裁得的纸条的长都不小于5cm,则能裁得的纸条的张数()A.24B.25C.26D.2728.如图,路灯距地面8米,身高1.6米的小明从距离灯的底部(点O)20米的点A处,沿OA所在的直线行走14米到点B时,人影的长度()A.增大1.5米B.减小1.5米C.增大3.5米D.减小3.5米29.某班在布置新年联欢会会场时,需要将直角三角形彩纸裁成长度不等的矩形彩条.如图,在Rt△ABC中,∠C=90°,AC=30cm,AB=50cm,依次裁下宽为1cm的矩形纸条a1,a2,…,a n.若使裁得的矩形纸条的长不小于5cm,则每张直角三角形彩纸能裁成的矩形纸条的总数为()A.24B.25C.26D.2730.阳光通过窗口照到室内,在地上留下2.7m宽的亮区(如图),已知亮区一边到窗下的墙角的距离CE=8.7m,窗口高AB=1.8m,那么窗口底边离地面的高BC等于()A.2m B.4m C.6m D.1m利用相似三角形测高能力提升1参考答案与试题解析一.选择题(共30小题)1.如图,某人拿着一把分度值为厘米的刻度尺,站在距电线杆25m的地方,手臂向前伸直,将刻度尺竖直,看到刻度尺上14cm的长度恰好遮住电线杆.已知臂长为70cm,则电线杆的高是()A.5m B.6m C.125m D.4m【答案】A【解答】解:作AN⊥EF于N,交BC于M,∵BC∥EF,∴AM⊥BC于M,∴△ABC∽△AEF,∴=,∵AM=0.7m,AN=25m,BC=0.14m,∴EF===5(m).故选:A.2.如图是用卡钳测量容器内径的示意图,现量得卡钳上A,D两个端点之间的距离为10cm,,则容器的内径是()A.5cm B.10cm C.15cm D.20cm【答案】C【解答】解:连接AD、BC,∵,∠AOD=∠BOC,∴△AOD∽△BOC,∴==,∵A,D两个端点之间的距离为10cm,∴BC=15cm,故选:C.3.如图,小明同学用自制的直角三角形纸板DEF测量树的高度AB,他调整自己的位置,设法使斜边DF保持水平,并且边DE与点B在同一直线上.已知纸板的两条直角边DE =40cm,EF=20cm,测得边DF离地面的高度AC=1.5m,CD=8m,则树高AB是()A.4米B.4.5米C.5米D.5.5米【答案】D【解答】解:在△DEF和△DBC中,,∴△DEF∽△DBC,∴=,即=,解得:BC=4,∵AC=1.5m,∴AB=AC+BC=1.5+4=5.5m,即树高5.5m.故选:D.4.在小孔成像问题中,如图所示,若为O到AB的距离是18cm,O到CD的距离是6cm,则像CD的长是物体AB长的()A.B.C.2倍D.3倍【答案】A【解答】解:如图,作OE⊥AB于E,EO的延长线交CD于F.∵AB∥CD,∴FO⊥CD,△AOB∽△DOC,∴===(相似三角形的对应高的比等于相似比),∴CD=AB,故选:A.5.如图,铁道口的栏杆短臂长1m,长臂长16m.当短臂端点下降0.5m时,长臂端点升高()A.5m B.6m C.7m D.8m【答案】D【解答】解:设长臂端点升高x米,则,∴x=8.故选:D.6.如图,在某一时刻测得1米长的竹竿竖直放置时影长1.2米,在同一时刻旗杆AB的影长不全落在水平地面上,有一部分落在楼房的墙上,他测得落在地面上影长为BD=9.6米,留在墙上的影长CD=2米,则旗杆的高度()A.9米B.9.6米C.10米D.10.2米【答案】C【解答】解:作CE⊥AB于E点,如图,则四边形BDCE为矩形,BD=CE=9.6,BE=CD=2,根据题意得=,即=,解得AE=8,所以AB=AE+BE=8+2=10(m).答:旗杆的高度为10m.故选:C.7.如图,阳光通过窗口照到室内,在地上留下3m宽的亮区,已知亮区一边到窗下的墙角的距离CE=7m,窗口高AB=1.8m,那么窗口底边离地面的高BC等于()A.2m B.2.4m C.2.8m D.3m【答案】B【解答】解:∵BD∥AE,∴△CBD∽△CAE,∴=,即=,∴BC=2.4,即窗口底边离地面的高BC等于2.4m.故选:B.8.如图所示的梯形梯子,AA′∥EE′,AB=BC=CD=DE,A′B′=B′C′=C′D′=D′E′,AA′=60cm,EE′=80cm.则BB′的长为()A.0.65m B.0.675m C.0.725m D.0.75m【答案】A【解答】解:如图,过点A作AE″∥A′E′与BB′相交于点B″,与EE′相交于E″,∵AB=BC=CD=DE,A′B′=B′C′=C′D′=D′E′,∴AA′∥BB′∥CC′∥DD′∥EE′,∴四边形AE″E′A′是平行四边形,∴E′E″=AA′=60cm,∴EE″=80﹣60=20cm,∵BB′∥EE′,∴△ABB″∽△AEE″,∴==,∴BB″=20×=5cm,∴BB′=BB″+B″B′=5+60=65cm=0.65m.故选:A.9.如图,一油桶高0.8m,桶内有油,一根木棒长1m,从桶盖小口斜插入桶内,一端到桶底,另一端到小口,抽出木棒,量得棒上浸油部分长0.8m,则桶内油的高度为()A.0.28m B.0.64m C.0.58m D.0.32m【答案】B【解答】解:如图:AB表示木棒长,BC表示油桶高,DE表示油面高度,AD表示棒上浸油部分长,∴DE∥BC∴△ADE∽△ABC∴AD:AB=DE:BC∵AD=0.8m,AB=1m,BC=0.8m∴DE=0.64m∴桶内油面的高度为0.64m.故选:B.10.如图,路边有一根电线杆AB和一块正方形广告牌(不用考虑牌子的厚度).有一天,小明突然发现,在太阳光照射下,电线杆顶端A的影子刚好落在正方形广告牌的上边中点G处,而正方形广告牌的影子刚好落在地面上E点,已知BC=5米,正方形边长为2米,DE=4米.则此时电线杆的高度是()米.A.8B.7C.6D.5【答案】D【解答】解:过点G作GH∥BC,GM⊥BE,根据题意,四边形BMGH是矩形,∴BH=GM=2米,△AHG∽△FDE,∴=,∴AH=3,∴AB=2+3=5米.故选:D.11.如图所示,王华晚上由路灯A下的B处走到C处时,测得影子CD的长为1米,继续往前走3米到达E处时,测得影子EF的长为2米,已知王华的身高是1.5米,那么路灯A的高度AB等于()A.4.5米B.6米C.7.5米D.8米【答案】B【解答】解:∵,当王华在CG处时,Rt△DCG∽Rt△DBA,即=,当王华在EH处时,Rt△FEH∽Rt△FBA,即==,∴=,∵CG=EH=1.5米,CD=1米,CE=3米,EF=2米,设AB=x,BC=y,∴=,解得y=3,则=,解得,x=6米.即路灯A的高度AB=6米.故选:B.12.如图,某同学拿着一把12cm长的尺子,站在距电线杆30m的位置,把手臂向前伸直,将尺子竖直,看到尺子恰好遮住电线杆,已知臂长60cm,则电线杆的高度是()A.2.4m B.24m C.0.6m D.6m【答案】D【解答】解:作AN⊥EF于N,交BC于M,∵BC∥EF,∴AM⊥BC于M,∴△ABC∽△AEF,∴=,∵AM=0.6,AN=30,BC=0.12,∴EF===6(m).故选:D.13.如图,A、B两地之间有一池塘,要测量A、B两地之间的距离.选择一点O,连接AO 并延长到点C,使OC=AO,连接BO并延长到点D,使OD=BO.测得C、D间距离为30米,则A、B两地之间的距离为()A.30米B.45米C.60米D.90米【答案】C【解答】解:∵△ABO和△COD中,==,且∠AOB=∠COD,∴△AOB∽△COD,∴=2,又∵CD=30m,∴AB=60m.故选:C.14.如图,放映幻灯片时,通过光源,把幻灯片上的图形放大到屏幕上.若光源到幻灯片的距离为30cm,到屏幕的距离为90cm,且幻灯片中的图形的高度为7cm,则屏幕上图形的高度为()A.6cm B.12cm C.21cm D.24cm【答案】C【解答】解:如图所示:∵DE∥BC,∴△AED∽△ABC∴,设屏幕上的图形高是x,则,解得:x=21.故选:C.15.如图,是小孔成像原理的示意图,根据图所标注的尺寸,这支蜡烛在暗盒中所成的像CD的长是()A.B.C.D.1 cm【答案】D【解答】解:如图过O作直线OE⊥AB,交CD于F,依题意AB∥CD∴OF⊥CD∴OE=12,OF=2而AB∥CD可以得△AOB∽△COD∵OE,OF分别是它们的高∴,∵AB=6,∴CD=1,故选:D.16.如图是小华利用含30°角的三角板测量楼房高度的示意图,已知桌子高AB为1米,地面上B和D之间的距离为100米,则楼高CD约为()A.51米B.59米C.88米D.174米【答案】B【解答】解:过点A作AE⊥CD,垂足为E,∵AB⊥BD,DE⊥BD,AE∥BD,∴四边形ABDE是矩形,∵BD=100m,AB=1m,∴AE=BD=100m,DE=AB=1m,在Rt△ACE中,∵∠CAE=30°,AE=100m,∴CE=AD•tan30°=100×=m,∴CD=CE+DE=+1≈59(m).答:楼高CD约为59m,故选:B.17.如图,某校数学兴趣小组利用自制的直角三角形硬纸板DEF来测量操场旗杆AB的高度,他们通过调整测量位置,使斜边DF与地面保持平行,并使边DE与旗杆顶点A在同一直线上,已知DE=0.5米,EF=0.25米,目测点D到地面的距离DG=1.5米,到旗杆的水平距离DC=20米,则旗杆的高度为()A.10米B.(10+1.5)米C.11.5米D.10米【答案】C【解答】解:∵∠FDE=∠ADC=30°,∠DEF=∠DCA=90°,∴△DEF∽△DAC,∴=,即=,解得AC=10,∵DF与地面保持平行,目测点D到地面的距离DG=1.5米,∴BC=DG=1.5米,∴旗杆的高度=AC+BC=10+1.5=11.5米.故选:C.18.如图,小明同学用自制的直角三角形纸板DEF测量树的高度AB,他调整自己的位置,设法使斜边DF保持水平,并且边DE与点B在同一直线上,已知纸板的两条直角边DE =50cm,EF=25cm,测得边DF离地面的高度AC=1.6m,CD=10m,则树高AB=()m.A.4 m B.5m C.6.6m D.7.7m【答案】C【解答】解:∵∠DEF=∠BCD=90°∠D=∠D∴△DEF∽△DCB∴=,∵DE=50cm=0.5m,EF=25cm=0.25m,AC=1.6m,CD=10m,∴=,∴BC=5米,∴AB=AC+BC=1.6+5=6.6米.故选:C.19.如图,数学兴趣小组的小颖想测量教学楼前的一棵树的树高,下午课外活动时她测得一根长为1m的竹竿的影长是0.8m,但当她马上测量树高时,发现树的影子不全落在地面上,有一部分影子落在教学楼的墙壁上(如图),他先测得留在墙壁上的影高为1.2m,又测得地面的影长为2.6m,请你帮她算一下,树高是()A.3.25m B.4.25m C.4.45m D.4.75m【答案】C【解答】解:如图,设BD是BC在地面的影子,树高为x,根据竹竿的高与其影子的比值和树高与其影子的比值相同得而CB=1.2,∴BD=0.96,∴树在地面的实际影子长是0.96+2.6=3.56,再竹竿的高与其影子的比值和树高与其影子的比值相同得,∴x=4.45,∴树高是4.45m.故选:C.20.如图,用一个交叉卡钳(两条尺长AC和BD相等,OC=OD)量零件的内孔直径AB.若OC:OA=1:2,量得CD=10,则零件的内孔直径AB长为()A.30B.20C.10D.5【答案】B【解答】解:∵两条尺长AC和BD相等,OC=OD∴OA=OB∵OC:OA=1:2∴OD:OB=OC:OA=1:2∵∠COD=∠AOB∴△AOB∽△COD∴CD:AB=OC:OA=1:2∵CD=10∴AB=20故选:B.21.王大伯要做一张如图所示的梯子,梯子共有7级互相平行的踏板,每相邻两级踏板之间的距离都相等.已知梯子最上面一级踏板的长度A1B1=0.5m,最下面一级踏板的长度A7B7=0.8m.则A3B3踏板的长度为()A.0.6m B.0.65m C.0.7m D.0.75m【答案】A【解答】解:因为每相邻两级踏板之间的距离都相等,所以A4B4为梯形A1A7B7B1的中位线,根据梯形中位线定理,A4B4=(A1B1+A7B7)=(0.5+0.8)=0.65m.作A1C∥B1B4,则DB3=CB4=A1B1=0.5m,A4C=0.65m﹣0.50m=0.15m,于是=,=,解得A3D=0.10m.A3B3=0.10m+0.50m=0.60m.22.如图,为了测量油桶内油面的高度,将一根细木棒自油桶小孔,插入桶内测得木棒插入部分AB的长为100cm,木棒上沾油部分DB的长为60cm,桶高AC为80cm,那么桶内油面CE的高度是多少cm()A.60B.32C.50D.48【答案】D【解答】解:∵DE⊥AC,AC⊥BC,∴DE∥BC,∴△ADE∽△ABC,∴=,=,解得EC=48.故选:D.23.如图,铁道口的栏杆短臂长1米,长臂长16米,当短臂端点下降0.5米时,长臂端点升高()A.11.25米B.6.6米C.8米D.10.5米【答案】C【解答】解:设长臂端点升高x米,则,∴x=8.故选:C.24.如图,丁轩同学在晚上由路灯AC走向路灯BD,当他走到点P时,发现身后他影子的顶部刚好接触到路灯AC的底部,当他向前再步行20m到达Q点时,发现身前他影子的顶部刚好接触到路灯BD的底部,已知丁轩同学的身高是1.5m,两个路灯的高度都是9m,则两路灯之间的距离是()A.24m B.25m C.28m D.30m【答案】D【解答】解:由题意得出:EP∥BD,∴△AEP∽△ADB,∴=,∵EP=1.5,BD=9,∴=解得:AP=5(m)∵AP=BQ,PQ=20m.∴AB=AP+BQ+PQ=5+5+20=30(m).故选:D.25.已知:如图,小华在打羽毛球时,扣球要使球恰好能打过网,而且落在离网前4米的位置处,则球拍击球的高度h应为()A.1.55m B.3.1m C.3.55m D.4m【答案】B【解答】解:∵DE∥BC,∴△ADE∽△ACB,即,则,∴h=3.1m.故选:B.26.兴趣小组的同学要测量树的高度.在阳光下,一名同学测得一根长为1米的竹竿的影长为0.4米,同时另一名同学测量树的高度时,发现树的影子不全落在地面上,有一部分落在教学楼的第一级台阶上,测得此影子长为0.2米,一级台阶高为0.3米,如图所示,若此时落在地面上的影长为4.4米,则树高为()A.11.5米B.11.75米C.11.8米D.12.25米【答案】C【解答】解:设树在第一级台阶上面的部分高x米,则,解得x=11.5,∴树高是11.5+0.3=11.8米.故选:C.27.红星中学高二(2)班在布置“五.四”青年节联欢会会场时,需要将直角三角形彩纸裁成长度不等的矩形纸条.如图所示:在Rt△ACB中,AC=30cm,BC=40cm.依此裁下宽度为1cm的纸条,若使裁得的纸条的长都不小于5cm,则能裁得的纸条的张数()A.24B.25C.26D.27【答案】C【解答】解:如图,设EF=5cm,∵裁出的是矩形纸条,∴EF∥BC,∴△AEF∽△ACB,∴=,即=,解得AE=3.75cm,∴CE=AC﹣AE=30﹣3.75=26.25cm,∵裁得的纸条的长都不小于5cm,∴CE≤26.25cm,∵纸条宽度为1cm,∴CE最大是26cm,∴最多可以裁得的纸条的张数为26.故选:C.28.如图,路灯距地面8米,身高1.6米的小明从距离灯的底部(点O)20米的点A处,沿OA所在的直线行走14米到点B时,人影的长度()A.增大1.5米B.减小1.5米C.增大3.5米D.减小3.5米【答案】D【解答】解:设小明在A处时影长为x,B处时影长为y.∵AC∥OP,BD∥OP,∴△ACM∽△OPM,△BDN∽△OPN,∴,,则,∴x=5,,∴y=1.5,∴x﹣y=3.5,减少了3.5米.故选:D.29.某班在布置新年联欢会会场时,需要将直角三角形彩纸裁成长度不等的矩形彩条.如图,在Rt△ABC中,∠C=90°,AC=30cm,AB=50cm,依次裁下宽为1cm的矩形纸条a1,a2,…,a n.若使裁得的矩形纸条的长不小于5cm,则每张直角三角形彩纸能裁成的矩形纸条的总数为()A.24B.25C.26D.27【答案】C【解答】解:设所求的矩形有x张,其中最小的矩形的长为ycm,则∴y=40﹣,又∵y≥5,∴40﹣≥5,∴x≤26,∴最多能裁26张.故选:C.30.阳光通过窗口照到室内,在地上留下2.7m宽的亮区(如图),已知亮区一边到窗下的墙角的距离CE=8.7m,窗口高AB=1.8m,那么窗口底边离地面的高BC等于()A.2m B.4m C.6m D.1m【答案】B【解答】解:∵AE∥BD,∴,CD=CE﹣ED=8.7﹣2.7=6,∴CB ===4m,∴BC=4m.故选:B.第1页(共1页)。

利用三角形相似测高能力提升3含详细答案

利用三角形相似测高能力提升3含详细答案

利用三角形相似测高能力提升3一.解答题(共15小题)1.如图,小超想要测量窗外的路灯PH的高度.星期天晚上,他发现灯光透过窗户照射在房间的地板上,窗户的最高点C落在地板B处、窗户的最低点落在地板是A处,小超测得窗户距地面的高度QD=1m,窗高CD=1.5m,并测得AQ=1m,AB=2m.请根据以上测量数据,求窗外的路灯PH的高度.2.如图所示,AD、BC为两路灯,身高相同的小明、小亮站在两路灯杆之间,两人相距6.5m,小明站在P处,小亮站在Q处,小明在路灯C下的影长为2m,已知小明身高1.8m,路灯BC高9m.①计算小亮在路灯D下的影长;②计算建筑物AD的高.3.如图,在甲、乙两座楼正中间有一堵院墙,小明站在甲楼某层窗口前,同时小光站在乙楼某层窗口前观察这堵墙,小明视线所及位置如图所示,小光视线恰好落在甲楼底部.已知墙的高度为5米,两栋楼的间距为100米,小明视线所及位置到墙的距离为10米.(1)请根据题意画出平面图形,并标上相应字母.(2)求甲、乙两人的观测点到地面高度的距离差.4.如图,为了测量一栋楼的高度OE,小明同学先在操场上A处放一面镜子,向后退到B 处,恰好在镜子中看到楼的顶部E;再将镜子放到C处,然后后退到D处,恰好再次在镜子中看到楼的顶部E(O,A,B,C,D在同一条直线上),测得AC=2m,BD=2.1m,如果小明眼睛距地面髙度BF,DG为1.6m,试确定楼的高度OE.5.如图,学校平房的窗外有一路灯AB,路灯光能通过窗户CD照到平房内EF处;经过测量得:窗户距地面高OD=1.5m,窗户高度DC=0.8m,OE=1m,OF=3m;求路灯AB 的高.6.阳光通过窗口照射到室内,在地面上留下2.7m宽的亮区(如图所示),已知亮区到窗口下的墙脚距离EC=8.7m,窗口高AB=1.8m,求窗口底边离地面的高BC.7.如图,花丛中一根灯杆AB上有一盏路灯A,灯光下,小明在D点处的影长DE=3米,沿BD方向走到点G,DG=5米,这时小明的影长GH=4米,如果小明的身高为1.7米,求路灯A离地面的高度.8.如图,小明家窗外有一堵围墙AB,由于围墙的遮挡,清晨太阳光恰好从窗户的最高点C 射进房间的地板F处,中午太阳光恰好能从窗户的最低点D射进房间的地板E处,小明测得窗子距地面的高度OD=0.9m,窗高CD=1.1m,并测得OE=0.9m,OF=3m,求围墙AB的高度.9.如图,在高5m的房顶A处观望一幢楼的底部D,视线经过小树的顶端E,又从房底部B 处观望楼顶C,视线也正好经过小树的顶端E,测得小树的高度EF为4m,求楼的高度CD.10.如图,学校旗杆附近有一斜坡,小明准备测量旗杆AB的高度,他发现当斜坡正对着太阳时,旗杆AB的影子恰好落在水平地面和斜坡的坡面上,此时小明测得水平地面上的影子长BC=20米,斜坡坡面上的影子CD=8米,太阳光AD与水平地面BC成30°角,斜坡CD与水平地面BC成45°的角,求旗杆AB的高度.(=1.732,=1.414,=2.449,精确到1米).11.如图,一个油漆桶高75cm,桶内还有剩余的油漆,一根木棒长1m,小明将木棒从桶盖小口斜插入桶内,一端触到桶底边缘时,量得木棒露在桶外的部分长10cm.抽出小棒,又量得木棒上沾了油漆的部分长36cm,请计算桶内油漆的高度.12.将一盒足量的牛奶按如图1所示倒入一个水平放置的长方体容器中,当容器中的牛奶刚好接触到点P时停止倒入.图2是它的平面示意图,AP=6cm,请根据图中的信息,求出容器中牛奶的高度.13.为了测量路灯(OS)的高度,把一根长1.5米的竹竿(AB)竖直立在水平地面上,测得竹竿的影子(BC)长为1米,然后拿竹竿向远离路灯方向走了4米(BB′),再把竹竿竖立在地面上,测得竹竿的影长(B′C′)为1.8米,求路灯离地面的高度.14.如图,一圆柱形油桶,高1.5m,用一根2m长的木棒从桶盖小口斜插桶用另一端的小口处,抽出木棒后,量得上面没浸油的部分为1.2m,求桶内油面高度.15.如图,路灯(O点)距地面6米,身高1.5米的小明从距离路灯的底部(A点)18米的C点,沿AC所在的直线行走12米到B点时,身影的长度是变长了还是变短了?变长或变短了多少米?利用三角形相似测高能力提升3参考答案与试题解析一.解答题(共15小题)1.如图,小超想要测量窗外的路灯PH的高度.星期天晚上,他发现灯光透过窗户照射在房间的地板上,窗户的最高点C落在地板B处、窗户的最低点落在地板是A处,小超测得窗户距地面的高度QD=1m,窗高CD=1.5m,并测得AQ=1m,AB=2m.请根据以上测量数据,求窗外的路灯PH的高度.【答案】见试题解答内容【解答】解:∵DQ⊥BP,∴∠CQB=90°,∵QD=1m,QA=1m,∴∠QAD=45°,∵PH⊥PB,∴∠HAP=45°,∴PH=P A,设PH=P A=xm,∵PH⊥PB,CQ⊥PB,∴PH∥CQ,∴△PBH∽△QBC,∴解得:x=10,经检验:x=10是原方程的解.答:窗外的路灯PH的高度是10m.2.如图所示,AD、BC为两路灯,身高相同的小明、小亮站在两路灯杆之间,两人相距6.5m,小明站在P处,小亮站在Q处,小明在路灯C下的影长为2m,已知小明身高1.8m,路灯BC高9m.①计算小亮在路灯D下的影长;②计算建筑物AD的高.【答案】见试题解答内容【解答】解:①∵EP⊥AB,CB⊥AB,∴∠EP A=∠CBA=90°∵∠EAP=∠CAB,∴△EAP∽△CAB∴∴∴AB=10BQ=10﹣2﹣6.5=1.5;②∵FQ⊥AB,DA⊥AB,∴∠FQB=∠DAB=90°∵∠FBQ=∠DBA,∴△BFQ∽△BDA∴=∴∴DA=12.3.如图,在甲、乙两座楼正中间有一堵院墙,小明站在甲楼某层窗口前,同时小光站在乙楼某层窗口前观察这堵墙,小明视线所及位置如图所示,小光视线恰好落在甲楼底部.已知墙的高度为5米,两栋楼的间距为100米,小明视线所及位置到墙的距离为10米.(1)请根据题意画出平面图形,并标上相应字母.(2)求甲、乙两人的观测点到地面高度的距离差.【答案】见试题解答内容【解答】解:(1)如图2所示;(2)由题意可知∠ABG=∠CDG=90°.又∵∠AGD为公共角,∴△ABG∽△CDG.∴=.∵DF=100米,点B是DF的中点,∴BD=BF=50米,∵AB=5米,BG=10米,∴=,∴CD=30(米).又∵∠ABD=∠EFD=90°,∠EDF为公共角,∴△ADB∽△EDF,∴==,∴EF=2AB=10(米)∴CD﹣EF=20(米)答:甲、乙两人的观测点到地面的距离之差为20米.4.如图,为了测量一栋楼的高度OE,小明同学先在操场上A处放一面镜子,向后退到B 处,恰好在镜子中看到楼的顶部E;再将镜子放到C处,然后后退到D处,恰好再次在镜子中看到楼的顶部E(O,A,B,C,D在同一条直线上),测得AC=2m,BD=2.1m,如果小明眼睛距地面髙度BF,DG为1.6m,试确定楼的高度OE.【答案】见试题解答内容【解答】解:令OE=a,AO=b,CB=x,则由△GDC∽△EOC得,即,整理得:3.2+1.6b=2.1a﹣ax①,由△FBA∽△EOA得,即,整理得:1.6b=2a﹣ax②,将②代入①得:3.2+2a﹣ax=2.1a﹣ax,∴a=32,即OE=32,答:楼的高度OE为32米.5.如图,学校平房的窗外有一路灯AB,路灯光能通过窗户CD照到平房内EF处;经过测量得:窗户距地面高OD=1.5m,窗户高度DC=0.8m,OE=1m,OF=3m;求路灯AB的高.【答案】见试题解答内容【解答】解:连接DC,设:路灯AB高为x米,BO的长度为y米,由中心投影可知△ABE∽△DOE,∴,∵△ABF∽△COF,∴∴,解得答:路灯AB的高度为米.6.阳光通过窗口照射到室内,在地面上留下2.7m宽的亮区(如图所示),已知亮区到窗口下的墙脚距离EC=8.7m,窗口高AB=1.8m,求窗口底边离地面的高BC.【答案】见试题解答内容【解答】解:∵AE∥BD,∴△ECA∽△DCB,∴=.∵EC=8.7m,ED=2.7m,∴CD=6m.∵AB=1.8m,∴AC=BC+1.8m,∴=,解得:BC=4,即窗口底边离地面的高为4m.7.如图,花丛中一根灯杆AB上有一盏路灯A,灯光下,小明在D点处的影长DE=3米,沿BD方向走到点G,DG=5米,这时小明的影长GH=4米,如果小明的身高为1.7米,求路灯A离地面的高度.【答案】见试题解答内容【解答】解:∵CD∥AB,∴△EAB∽△ECD,∴=,即=①,∵FG∥AB,∴△HFG∽△HAB,∴=,即=②,由①②得=,解得BD=15,∴=,解得AB=10.2.答:路灯A离地面的高度为10.2m.8.如图,小明家窗外有一堵围墙AB,由于围墙的遮挡,清晨太阳光恰好从窗户的最高点C 射进房间的地板F处,中午太阳光恰好能从窗户的最低点D射进房间的地板E处,小明测得窗子距地面的高度OD=0.9m,窗高CD=1.1m,并测得OE=0.9m,OF=3m,求围墙AB的高度.【答案】见试题解答内容【解答】解:连接DC,可得C,D,O在一条直线上,∵DO⊥BF,∴∠DOE=90°,∵OD=0.9m,OE=0.9m,∴∠DEB=45°,∵AB⊥BF,∴∠BAE=45°,∴AB=BE,设AB=EB=xm,∵AB⊥BF,CO⊥BF,∴AB∥CO,∴△ABF∽△COF,∴=,=,解得:x=4.2.经检验:x=4.2是原方程的解.答:围墙AB的高度是4.2m.9.如图,在高5m的房顶A处观望一幢楼的底部D,视线经过小树的顶端E,又从房底部B 处观望楼顶C,视线也正好经过小树的顶端E,测得小树的高度EF为4m,求楼的高度CD.【答案】见试题解答内容【解答】解:∵EF∥AB,∴△DEF∽△DAB,∴==①,∵EF∥CD,∴△BEF∽△BCD,∴==②,①+②得+=+,∴+=1,∴CD=20(m).答:楼高CD为20m.10.如图,学校旗杆附近有一斜坡,小明准备测量旗杆AB的高度,他发现当斜坡正对着太阳时,旗杆AB的影子恰好落在水平地面和斜坡的坡面上,此时小明测得水平地面上的影子长BC=20米,斜坡坡面上的影子CD=8米,太阳光AD与水平地面BC成30°角,斜坡CD与水平地面BC成45°的角,求旗杆AB的高度.(=1.732,=1.414,=2.449,精确到1米).【答案】见试题解答内容【解答】解:延长AD交BC于E点,则∠AEB=30°,作DQ⊥BC于Q,在Rt△DCQ中,∠DCQ=45°,DC=8,∴DQ=QC=8sin45°=8×=4,在Rt△DQE中,QE=≈9.8(米)∴BE=BC+CQ+QE≈35.5(米)在Rt△ABE中,AB=BE tan30°≈20(米)答:旗杆的高度约为20米.11.如图,一个油漆桶高75cm,桶内还有剩余的油漆,一根木棒长1m,小明将木棒从桶盖小口斜插入桶内,一端触到桶底边缘时,量得木棒露在桶外的部分长10cm.抽出小棒,又量得木棒上沾了油漆的部分长36cm,请计算桶内油漆的高度.【答案】见试题解答内容【解答】解:∵AC⊥BC,∴DE∥BC,∴△ADE∽△ABC,∴=,∴=,解得:CE=30∴桶内油漆的高度为30cm.12.将一盒足量的牛奶按如图1所示倒入一个水平放置的长方体容器中,当容器中的牛奶刚好接触到点P时停止倒入.图2是它的平面示意图,AP=6cm,请根据图中的信息,求出容器中牛奶的高度.【答案】见试题解答内容【解答】解:过点P作PN⊥AB于点N,由题意可得:AP=6cm,AB=10cm,则BP==8cm,∴NP×AB=AP×BP,∴NP===4.8(cm),∴12﹣4.8=7.2(cm).答:容器中牛奶的高度为:7.2cm.13.为了测量路灯(OS)的高度,把一根长1.5米的竹竿(AB)竖直立在水平地面上,测得竹竿的影子(BC)长为1米,然后拿竹竿向远离路灯方向走了4米(BB′),再把竹竿竖立在地面上,测得竹竿的影长(B′C′)为1.8米,求路灯离地面的高度.【答案】见试题解答内容【解答】解:∵AB⊥OC′,OS⊥OC′,∴SO∥AB,∴△ABC∽△SOC,∴=,即=,解得OB=h﹣1①,同理,∵A′B′⊥OC′,∴△A′B′C′∽△SOC′,∴=,=②,把①代入②得,=,解得h=9(米).答:路灯离地面的高度是9米.14.如图,一圆柱形油桶,高1.5m,用一根2m长的木棒从桶盖小口斜插桶用另一端的小口处,抽出木棒后,量得上面没浸油的部分为1.2m,求桶内油面高度.【答案】见试题解答内容【解答】解:∵DE∥BC,∴△ADE∽△ABC,∴=,即=,解得AE=0.9m,∴EC=1.5﹣0.9=0.6m.故答案为:0.6m.15.如图,路灯(O点)距地面6米,身高1.5米的小明从距离路灯的底部(A点)18米的C点,沿AC所在的直线行走12米到B点时,身影的长度是变长了还是变短了?变长或变短了多少米?【答案】见试题解答内容【解答】解:∵OA⊥AM,DC⊥AM,∴OA∥DC,∴=,即=,解得CM=6m;同理可得,△BEN∽△AON,∴=,即==,解得BN=2m,∵6m>2m,∴CM>BN,∴身影变短了,变短了6m﹣2m=4m.答:身影变短了,变短了4米.。

用相似三角形解决测高问题

用相似三角形解决测高问题

1用相似三角形解决测高问题各地中考中出现具有实际生活背景的测高问题,除运用解直角三角形的方法外,运用相似三角形性质是解测高问题的又一重要方法。

在测高问题中,建立两三角形相似的数学模型,运用对应边成比例这一性质,能有效地找到一条解决测量高度问题的方法。

一、直接相似例1、如图1,身高为1.6米的某学生想测学校旗杆的高度,当他站在C 处时,他头顶端的影子重合,并测得AC =2.0米,BC =8.0米,则旗杆的高度是( )A 、6.4米B 、7.0米C 、8.0米D 、9.0米分析:显然人和旗杆都垂直于地面,则人和旗杆所在的直线平行,这就建立了一个两三角形相似的数学模型。

解:因DC ∥EB ,则△ACD ∽△ABE ,所以BE CD AB AC =,BE6.10.80.20.2=+,BE=8.0(米),故选C 。

例2、如图,小明站在C 处看甲乙两楼楼顶上的点A 和点E 。

C 、E 、A 三点在同一条直线上,点B 、D 分别在点E ,A 的正下方且D 、B 、C 三点在同一条直线上。

B 、C 相距20米,D 、C 相距40米,乙楼高BE 为15米,甲楼高AD 为( )米(小明身高忽略不计)。

A 、40B 、20C 、15D 、30 分析:例1是用光线将人和旗杆联系在一起,而这一题是用视线将甲,乙两楼联系在一起,从而构成两三角形相似。

解:因△CBE ∽△CDA ,所以DA BE CD CB =,DA 154020=,DA=30,故选D 。

二、两次相似例3、如图3,王华晚上由路灯A 下的B 处走到C处时,测得影子CD 的长为1米,继续往前走3米到达E处时,测得影子EF 的长为2米,已知王华的身高是1.5米,那么路灯A 的高度AB 等于( ) A.4.5米 B.6米 C.7.2米 D.8米分析:根据图可知,有两对三角形相似, △DCM ∽△DBA , △FEN ∽△FBA ,可根据它们的对应边成比例,求得AB 的长。

利用相似三角形测高训练题

利用相似三角形测高训练题

利用相似三角形测高训练题1.XXX用自制的直角三角形纸板DEF测量树的高度AB。

他调整自己的位置,使斜边DF保持水平,边DE与点B在同一直线上。

已知纸板的两条直角边DE=40cm,EF=20cm,测得边DF离地面的高度AC=1.5m,CD=8m。

求树高AB。

2.在同一时刻,两根木竿在太阳光下的影子如图所示。

其中木竿AB=2米,它的影子BC=1.6米。

木竿PQ的影子有一部分落在墙上,PM=1.2米,MN=0.8米。

求木竿PQ的长度。

3.某校数学兴趣小组利用自制的直角三角形小硬纸板DEF 来测量操场旗杆AB的高度。

他们通过调整测量位置,使斜边DF与地面保持平行,并使边DE与旗杆顶点A在同一直线上。

已知DE=0.5米,EF=0.25米,目测点D到地面的距离DG=1.5米,到旗杆的水平距离DC=20米。

求旗杆的高度为多少米?4.数学兴趣小组的同学们想利用树影测量树高。

课外活动时他们在阳光下测得一根长为1米的竹竿的影子是0.9米,但当他们马上测量树高时,发现树的影子不落在地面上,有一部分影子落在教学楼的台阶上,且影子的末端刚好落在最后一级台阶的上端C处。

同学们认为继续量也可以求出树高,他们测得落在地面的影长为1.1米,台阶总的高度为1.0米,台阶水平总宽度为1.6米(每级台阶的宽度相同)。

请你和他们一起算一下,树高为多少。

(假设两次测量时太阳光线是平行的)5.如图,是一个照相机成像的示意图,像高MN,景物高度AB、CD为水平视线。

根据物体成像原理知:XXX,CD⊥XXX。

1)如果像高MN是35mm,焦距CL是50mm,拍摄的景物高度AB是4.9m,拍摄点离景物的距离LD是多少?2)如果要完整的拍摄高度是2m的景物,拍摄点离景物有4m,像高不变,则相机的焦距应调整为多少毫米?6.如图,Rt△ABC中,∠ACB=90°,AC=6cm,BC=8cm。

动点P从点B出发,在BA边上以每秒5cm的速度向点A匀速运动,同时动点Q从点C出发,在CB边上以每秒4cm的速度向点B匀速运动,运动时间为t秒(<t<2),连接PQ。

利用相似三角形测高练习题

利用相似三角形测高练习题

利用相似三角形测高练习题
一、基础训练
1、高4米的旗杆在水平地面上的影子长为6米,此时测得附近一个建筑物的影长为24米,则该建筑物的高度是______________米.
2、如图是小明设计用手电筒测量某建筑物高度的示意图,点P 处放一水平的平面镜,光线从点A 出发经平面镜反射后刚好射到该建筑物CD 的顶端C 处,已知AB ⊥BD ,CD ⊥BD ,且测得AB=1.2米,BP=1.8米,PD=12米,那么该建筑物的高度是()
A 6米
B 8米
C 18米
D 24米
3、如图,利用标杆BE 测量建筑物DC 的高度,
如果标杆BE 的长为1.2米,测得AB=1.6米, BC=8.4米,则楼高CD=___________米. 二、、提高训练:
4、如图所示,从点A (0,2)发出的一束光,经x 轴反射,过点B (4,3),则这束光从点A 到点B 所经过路径的长为 。

5、如图,某测量工作人员与标杆顶端F 、电视塔顶端在同一直线上,已知此人眼睛距地面
1.5米,标杆为3米,且BC=1米,CD=6米,求电视塔的高ED 。

A B
6、如图,AB表示一个窗户的高,AM和BN表示射入室内的光线,窗户的下端到地面的距离BC=1米,已知某一时刻BC在地面的影长CN=1.5米,AC在地面的影长CM=4.5米,求窗户的高度.
7、一位同学想利用树影测量树高AB,他在某一时刻测得小树高为1米,树影长0.9
米,但当他马上测量树影时,因树靠近建筑物,影子不全落在地上,有一部分落在
墙上,如图,他先测得地面部分的影子长2.7米,又测得墙上的影高CD为1.2米,
试问树有多高?。

人教版九年级数学上《利用相似三角形测高》同步练习(含解析)

人教版九年级数学上《利用相似三角形测高》同步练习(含解析)

北师大版数学九年级上册第三章第6节利用相似三角形测高同步检测一、选择题1、如图,铁道口的栏杆短臂OA长1m,长臂OB长8m.当短臂外端A下降0.5m时,长臂外端B升高()A、2mB、4mC、4.5mD、8m2、如图,AB是斜靠在墙上的一个梯子,梯脚B距墙1.4m,梯上点D距墙DE=1.2m,BD长0.5m,且△ADE∽△ABC,则梯子的长为()A、3.5mB、3.85mC、4mD、4.2m3、某一时刻,身髙1.6m的小明在阳光下的影长是0.4m,同一时刻同一地点测得某旗杆的影长是5m,则该旗杆的高度是()A、1.25mB、10mC、20mD、8m4、小明在测量楼高时,先测出楼房落在地面上的影长BA为15米(如图),然后在A处树立一根高2米的标杆,测得标杆的影长AC为3米,则楼高为()A、10米B、12米C、15米D、22.5米5、如图,小东用长为3.2m的竹竿做测量工具测量学校旗杆的高度,移动竹竿,使竹竿、旗杆顶端的影子恰好落在地面的同一点.此时,竹竿与这一点相距8m,与旗杆相距22m,则旗杆的高为()A、12mB、10mC、8mD、7m6、如图是小明设计用手电来测量某古城墙高度的示意图.点P处放一水平的平面镜,光线从点A出发经平面镜反射后刚好射到古城墙CD的顶端C处,已知AB⊥BD,CD⊥BD,且测得AB=1.2米,BP=1.8米,PD=12米,那么该古城墙的高度是()A、6米B、8米C、18米D、24米7、一个油桶高0.8m,桶内有油,一根长lm的木棒从桶盖小口插入桶内,一端到达桶底,另一端恰好在小口处,抽出木棒量得浸油部分长0.8m,则油桶内的油的高度是()A、0.8mB、0.64mC、1mD、0.7m8、小明在一次军事夏令营活动中,进行打靶训练,在用枪瞄准目标点B时,要使眼睛O,准星A,目标B在同一条直线上,如图所示,在射击时,小明有轻微的抖动,致使准星A偏离到,若OA=0.2米,OB=40米,=0.0015米,则小明射击到的点B′偏离目标点B的长度BB′为()A、3米B、0.3米C、0.03米D、0.2米9、如图,测量小玻璃管口径的量具ABC,AB的长为12cm,AC被分为60等份.如果小玻璃管口DE正好对着量具上20等份处(DE∥AB),那么小玻璃管口径DE是()A、8cmB、10cmC、20cmD、60cm10、已知如图,小明在打网球时,要使球恰好能打过网,而且落在离网5m的位置上,则球拍击球的高度h应为()A、2.7mB、1.8mC、0.9mD、2.5m11、如图所示,某同学拿着一把有刻度的尺子,站在距电线杆30m的位置,把手臂向前伸直,将尺子竖直,看到尺子遮住电线杆时尺子的刻度为12cm,已知臂长60cm,则电线杆的高度为()A、2.4mB、24mC、0.6mD、6m12、如图所示的测量旗杆的方法,已知AB是标杆,BC表示AB在太阳光下的影子,叙述错误的是()A、可以利用在同一时刻,不同物体与其影长的比相等来计算旗杆的高B、只需测量出标杆和旗杆的影长就可计算出旗杆的高C、可以利用△ABC∽△EDB,来计算旗杆的高D、需要测量出A B、BC和DB的长,才能计算出旗杆的高13、如图,在针孔成像问题中,根据图形尺寸可知像的长是物AB长的()A、3倍B、不知AB的长度,无法计算C、D、14、如图所示,某校宣传栏后面2米处种了一排树,每隔2米一棵,共种了6棵,小勇站在距宣传栏中间位置的垂直距离3米处,正好看到两端的树干,其余的4棵均被挡住,那么宣传栏的长为()米.(不计宣传栏的厚度)A、4B、5C、6D、815、数学兴趣小组的小明想测量教学楼前的一棵树的高度.下午课外活动时他测得一根长为1m的竹竿的影长是0.8m.但当他马上测量树高时,发现树的影子不全落在地面上,有一部分影子落在教学楼的墙壁上(如图).他先测得留在墙壁上的树影高为1.2m,又测得地面的影长为2.6m,请你帮他算一下,下列哪个数字最接近树高()m.A、3.04B、4.45C、4.75D、3.8二、填空题16、为测量池塘边两点A,B之间的距离,小明设计了如下的方案:在地面取一点O,使A C、BD交于点O,且CD∥AB.若测得OB:OD=3:2,CD=40米,则A,B两点之间的距离为________米.17、如图,三角尺在灯泡O的照射下在墙上形成影子,现测得OA=20cm,=50cm,则这个三角尺的面积与它在墙上所形成影子图形的面积之比是________。

46 利用相似三角形测高

46 利用相似三角形测高

C N
D
∴ 2 0.6 27 24 , ∴CN=3.6(m), ∴CDC=N3.6+1.6=257.2(m).
故树的高度为5.2m.
测高方法二:
测量不能到达顶部的物体的高度,也可 以用“利用标杆测量高度”的原理解决.
例3:为了测量一棵大树的高度,某同学利用手边的工具(镜子、皮尺)设计了 如下测量方案:如图,
例2:如图,小明为了测量一棵树CD的高度,他在距树24m处立了一根高为2m 的标杆EF,然后小明前后调整自己的位置,当他与树相距27m的时候,他的眼 睛、标杆的顶端和树的顶端在同一条直线上.已知小明的眼高1.6m,求树的高度.
E A
C N
B
F
D
解析:人、树、标杆是相互平行的,添加辅助线,过点A作
AN∥BD交ID于N,交EF于M,则可得△AEM∽△ACN.
讲授新课
一 运用相似三角形解决高度(长度)测量问题
胡夫金字塔是埃及现存规模最大的金字塔,被誉为“世界古代八 大奇迹之一”,古希腊数学家,天文学家泰勒斯曾经利用相似三角形 的原理测量金字塔的高度,你能根据图示说出他测量金字塔的原理吗?
我们来试着用学过的知识解决前面提出的问题. 例1:如下图,如果木杆EF长2 m,它的影长FD为3 m, 测得OA为201 m,求金字塔的高度BO.
解:∵ QR∥ST
∴△PQR∽△PST
PQ QR PS ST
PQ 60 PQ 45 90
PQ=90m.
60 45 m m 90
m
归纳总结 利用三角形相似解决实际问题的一般步骤:
(1)根据题意画出__示__意__图_____; (2)将题目中的已知量或已知关系转化为示意图中的
__已__知__线__段__、__已__知__角_____; (3)利用相似三角形建立线段之间的关系,求出__未__知__量____; (4)写出____答__案_____.

4.6-利用相似三角形测高(共18张)

4.6-利用相似三角形测高(共18张)

长风破浪会有时,直挂云帆济沧海。努力,终会有所收获,功夫不负有心人。以铜为镜,可以正衣冠;以古为镜,可以知兴替;以人为镜,可以明得失。前进的路上 照自己的不足,学习更多东西,更进一步。穷则独善其身,达则兼济天下。现代社会,有很多人,钻进钱眼,不惜违法乱纪;做人,穷,也要穷的有骨气!古之立大 之才,亦必有坚忍不拔之志。想干成大事,除了勤于修炼才华和能力,更重要的是要能坚持下来。士不可以不弘毅,任重而道远。仁以为己任,不亦重乎?死而后已, 理想,脚下的路再远,也不会迷失方向。太上有立德,其次有立功,其次有立言,虽久不废,此谓不朽。任何事业,学业的基础,都要以自身品德的修炼为根基。饭 而枕之,乐亦在其中矣。不义而富且贵,于我如浮云。财富如浮云,生不带来,死不带去,真正留下的,是我们对这个世界的贡献。英雄者,胸怀大志,腹有良策, 吞吐天地之志者也英雄气概,威压八万里,体恤弱小,善德加身。老当益壮,宁移白首之心;穷且益坚,不坠青云之志老去的只是身体,心灵可以永远保持丰盛。乐 其乐;忧民之忧者,民亦忧其忧。做领导,要能体恤下属,一味打压,尽失民心。勿以恶小而为之,勿以善小而不为。越是微小的事情,越见品质。学而不知道,与 行,与不知同。知行合一,方可成就事业。以家为家,以乡为乡,以国为国,以天下为天下。若是天下人都能互相体谅,纷扰世事可以停歇。志不强者智不达,言不 越高,所需要的能力越强,相应的,逼迫自己所学的,也就越多。臣心一片磁针石,不指南方不肯休。忠心,也是很多现代人缺乏的精神。吾日三省乎吾身。为人谋 交而不信乎?传不习乎?若人人皆每日反省自身,世间又会多出多少君子。人人好公,则天下太平;人人营私,则天下大乱。给世界和身边人,多一点宽容,多一份担 为生民立命,为往圣继绝学,为万世开太平。立千古大志,乃是圣人也。丹青不知老将至,贫贱于我如浮云。淡看世间事,心情如浮云天行健,君子以自强不息。地 载物。君子,生在世间,当靠自己拼搏奋斗。博学之,审问之,慎思之,明辨之,笃行之。进学之道,一步步逼近真相,逼近更高。百学须先立志。天下大事,不立 川,有容乃大;壁立千仞,无欲则刚做人,心胸要宽广。其身正,不令而行;其身不正,虽令不从。身心端正,方可知行合一。子曰:“知者不惑,仁者不忧,勇者不惧 者,不会把时间耗费在负性情绪上。好学近乎知,力行近乎仁,知耻近乎勇。力行善事,有羞耻之心,方可成君子。操千曲尔后晓声,观千剑尔后识器做学问和学技 的练习。第一个青春是上帝给的;第二个的青春是靠自己努力当眼泪流尽的时候,留下的应该是坚强。人总是珍惜未得到的,而遗忘了所拥有的。谁伤害过你,谁击 重要的是谁让你重现笑容。幸运并非没有恐惧和烦恼;厄运并非没有安慰与希望。你不要一直不满人家,你应该一直检讨自己才对。不满人家,是苦了你自己。最深 一个人,而是心里没有了任何期望。要铭记在心;每一天都是一年中最完美的日子。只因幸福只是一个过往,沉溺在幸福中的人;一直不知道幸福却很短暂。一个人 贡献什么,而不应当看他取得什么。做个明媚的女子。不倾国,不倾城,只倾其所有过的生活。生活就是生下来,活下去。人生最美的是过程,最难的是相知,最苦 的是真爱,最后悔的是错过。两个人在一起能过就好好过!不能过就麻利点分开。当一个人真正觉悟的一刻,他放下追寻外在世界的财富,而开始追寻他内心世界的 弱就是自己最大的敌人。日出东海落西山,愁也一天,喜也一天。遇事不转牛角尖,人也舒坦,心也舒坦。乌云总会被驱散的,即使它笼罩了整个地球。心态便是黑 可以照亮整个世界。生活不是单行线,一条路走不通,你可以转弯。给我一场车祸。要么失忆。要么死。有些人说:我爱你、又不是说我只爱你一个。生命太过短暂 不一定能得到。删掉了关于你的一切,唯独删不掉关于你的回忆。任何事都是有可能的。所以别放弃,相信自己,你可以做到的。、相信自己,坚信自己的目标,去 的磨难与挫折,不断去努力、去奋斗,成功最终就会是你的!既然爱,为什么不说出口,有些东西失去了,就在也回不来了!对于人来说,问心无愧是最舒服的枕头 他人的成功,被人嫉妒,表明自己成功。在人之上,要把人当人;在人之下,要把自己当人。人不怕卑微,就怕失去希望,期待明天,期待阳光,人就会从卑微中站 想去拥抱蓝天。成功需要成本,时间也是一种成本,对时间的珍惜就是对成本的节约。人只要不失去方向,就不会失去自己。过去的习惯,决定今天的你,所以,过 今天的一败涂地。让我记起容易,但让我忘记我怕我是做不到。不要跟一个人和他议论同一个圈子里的人,不管你认为他有多可靠。想象困难做出的反应,不是逃避 面对它们,同它们打交道,以一种进取的和明智的方式同它们奋斗。他不爱你,你为他挡一百颗子弹也没用。坐在电脑前,不知道做什么,却又不想关掉它。做不了 间帮你决定。如果还是无法决定,做了再说。宁愿犯错,不留遗憾。发现者,尤其是一个初出茅庐的年轻发现者,需要勇气才能无视他人的冷漠和怀疑,才能坚持自 把研究继续下去。我的本质不是我的意志的结果,相反,我的意志是我的本质的结果,因为我先有存在,后有意志,存在可以没有意志,但是没有存在就没有意志。 的福利,可以使可憎的工作变为可贵,只有开明人士才能知道克服困难所需要的热忱。立志用功如种树然,方其根芽,犹未有干;及其有干,尚未有枝;枝而后叶, 出现不是对愿望的否定,而是把愿望合并和提升到一个更高的意识无论是美女的歌声,还是鬓狗的狂吠,无论是鳄鱼的眼泪,还是恶狼的嚎叫,都不会使我动摇。即 难,已经开始了的事情决不放弃。最可怕的敌人,就是没有坚强的信念。既然我已经踏上这条道路,那么,任何东西都不应妨碍我沿着这条路走下去。意志若是屈从 它都帮助了暴力。有了坚定的意志,就等于给双脚添了一对翅膀。意志坚强,只有刚强的人,才有神圣的意志,凡是战斗的人,才能取得胜利。卓越的人的一大优点 的遭遇里百折不挠。疼痛的强度,同自然赋于人类的意志和刚度成正比。能够岿然不动,坚持正见,度过难关的人是不多的。钢是在烈火和急剧冷却里锻炼出来的, 么也不怕。我们的一代也是这样的在斗争中和可怕的考验中锻炼出来的,学习了不在生活面前屈服。只要持续地努力,不懈地奋斗,就没有征服不了的东西。

九年级数学上册4.6利用相似三角形测高练习北师大版

九年级数学上册4.6利用相似三角形测高练习北师大版

4.6 利用相似三角形测高基础题知识点1 利用阳光下的影子测量高度1.要测量出一棵树的高度,除了测量出人高与人的影长外,还需要测出( )A.仰角 B.树的影长C.标杆的影长 D.都不需要2.小玲和爸爸正在散步,爸爸身高1.8 m,他在地面上的影长为2.1 m,若小玲比爸爸矮0.3 m,则她的影长为( ) A.1.3 m B.1.65 mC.1.75 m D.1.8 m3.如图,夏季的一天,身高为1.6 m的小玲想测量一下屋前大树的高度,她沿着树影BA由B到A走去,当走到C 点时,她的影子顶端正好与树的影子顶端重合,测得BC=3.2 m,CA=0.8 m,于是得出树的高度为( )A.8 mB.6.4 mC.4.8 mD.10 m4.(北京中考)在某一时刻,测得一根高为1.8 m的竹竿的影长为3 m,同时测得一根旗杆的影长为25 m,那么这根旗杆的高度为________m.5.已知,如图,AB和DE是直立在地面上的两根立柱.AB=5 m,某一时刻AB在阳光下的投影BC=3 m.(1)请你在图中画出此时DE在阳光下的投影;(2)在测量AB的投影时,同时测量出DE在阳光下的投影长为6 m,请你计算DE的长.知识点2 利用标杆测量高度6.(娄底中考)如图,小明用长为3 m的竹竿CD做测量工具,测量学校旗杆AB的高度,移动竹竿,使竹竿与旗杆的距离DB=12 m,则旗杆AB的高为________m.7.如图,一天早上,小张正向着教学楼AB走去,他发现教学楼后面有一水塔DC,可过了一会抬头一看:“怎么看不到水塔了”心里很是纳闷.经过了解,教学楼、水塔的高分别为20 m和30 m,它们之间的距离为30 m,小张身高为1.6 m.小张要想看到水塔,他与教学楼的距离至少应有多少米?知识点3 利用镜子的反射测量高度8.(天水中考)如图是一位学生设计的用手电筒来测量某古城墙高度的示意图.点P处放一水平的平面镜,光线从点A发出经平面镜反射后刚好到古城墙CD的顶端C处,已知AB⊥BD,测得AB=2米,BP=3米,PD=12米,那么该古城墙的高度CD是________米.9.如图,球从A处射出,经球台边挡板CD反射到B,已知AC=10 cm,BD=15 cm,CD=50 cm,则点E到点C的距离是________cm.中档题10.小刚身高1.7 m,测得他站立在阳光下的影子长为0.85 m,紧接着他把手臂竖直举起,测得影子长为1.1 m,那么小刚举起的手臂超出头顶( )A.0.5 m B.0.55 mC.0.6 m D.2.2 m11.(巴中中考)如图,小明在打网球时,使球恰好能打过网,而且落在离网4米的位置上,则球拍击球的高度h为________米.12.(陕西中考)晚饭后,小聪和小军在社区广场散步.小聪问小军:“你有多高?”小军一时语塞.小聪思考片刻,提议用广场照明灯下的影长及地砖长来测量小军的身高.于是,两人在灯下沿直线NQ移动,如图,当小聪正好站在广场的A点(距N点5块地砖长)时,其影长AD恰好为1块地砖长;当小军正好站在广场的B点(距N点9块地砖长)时,其影长BF恰好为2块地砖长.已知广场地面由边长为0.8米的正方形地砖铺成,小聪的身高AC为1.6米,MN⊥NQ,AC⊥NQ,BE⊥NQ.请你根据以上信息,求出小军身高BE的长.(结果精确到0.01米)综合题13.为了测量一棵大树的高度,准备了如下测量工具:①镜子,②皮尺,③长为2 m 的标杆,④高为1.5 m 的测角仪.请根据你所设计的测量方案,回答下列问题:(1)在你设计的方案中.选用的测量工具是________;(用工具序号填写) (2)画出测量方案示意图;(3)你需要测量示意图中哪些数据,并用a 、b 、c 、α、β等字母表示测得的数据;(4)写出求树高的算式:AB =________m .(用a 、b 、c 、α、β等字母表示)参考答案 1.B 2.C 3.A 4.15 5.(1)略.(2)设DE 的长为x ,依题意,AB BC =DE x ,即53=x6.解得x =10,即DE 的长为10 m . 6.97.如图所示,AH =18.4,DG =28.4,HG =30,由△EAH∽△EDG,得EH EG =AH DG ,代入数据,得EH EH +30=18.428.4.解得EH =55.2.答:他与教学楼的距离至少应有55.2米. 8.8 9.20 10.A 11.1.5 12.由题意得∠CAD=∠MND=90°,∠CDA =∠MDN.∴△C AD∽△MND.∴CA MN =AD ND .∴1.6MN =1×0.8(5+1)×0.8.∴MN =9.6.又∵∠EBF=∠MNF=90°,∠EFB =∠MFN,∴△EBF ∽△MNF.∴EB MN =BF NF .∴EB 9.6=2×0.8(2+9)×0.8.∴EB ≈1.75.∴小军的身高约为1.75米. 13.方法一:(1)①②.(2)测量示意图如图1所示.(3)MB(镜子离树的距离)=a.MD(人与镜子的距离)=b ,CD(眼睛与地面的距离)=c(单位:m).(4)acb.方法二:(1)②③④.(2)测量示意图如图2所示.(3)DF(标杆与测角仪的距离)=a ,BD(标杆到树底面的距离)=b(单位:m).(4)(b2a+2).。

25.6 第1课时 利用相似三角形测高度.docx

25.6   第1课时   利用相似三角形测高度.docx

25.6第1课时利用相似三角形测高度1.《孙子算经》是中国古代重要的数学著作,成书于约一千五百年前,其中有首歌谣:今有竿不知其长,量得影长一丈五尺,立一标杆,长一尺五寸,影长五寸,问竿长几何?意为有一根竹竿不知道有多长,量出它在阳光下的影子长为一丈五尺,同时立一根一尺五寸的小标杆,它的影长五寸(提示:1丈=10尺,1尺=10寸),则竹竿的长为() A.五丈B.四丈五尺C.一丈D.五尺2.如图,跷跷板AB的支柱OD经过它的中点O,且垂直于地面BC,垂足为D,OD=50 cm.当它的一端B着地时,另一端A离地面的高度AC为()A.25 cm B.50 cmC.75 cm D.100 cm3.如图.利用标杆BE测量建筑物的高度.已知标杆BE高1.2 m,测得AB=1.6 m,BC =12.4 m,则建筑物CD的高是()A.9.3 m B.10.5 mC.12.4 m D.14 m4.如图,小明为了测量一凉亭的高度AB(顶端A到水平地面BD的距离),在凉亭的旁边放置一个与凉亭台阶BC等高的台阶DE(DE=BC=0.5米,A,B,C三点共线),把一面镜子水平放置在平台上的点G处.测得CG=15米,然后沿直线CG后退到点E处,这时恰好在镜子里看到凉亭的顶端A,测得EG=3米,小明身高1.6米,则凉亭的高度AB约为() A.8.5米B.9米C.9.5米D.10米5 如图,在小孔成像问题中,若点O到AB的距离是18 cm,点O到CD的距离是6 cm,像CD的长是5 cm,则物体AB的长是()A.9 cm B.10 cm C.12 cm D.15 cm6.数学兴趣小组的小颖想测量教学楼前的一棵树的高度,下午课外活动时她测得一根长为1 m的竹竿的影长是0.8 m,当她马上测量树高时,发现树的影子不全落在地面上,有一部分影子落在教学楼的墙壁上(如图7),她先测得留在墙壁上的影高为1.2 m,又测得地面上的影长为2.6 m,则树高为()A.3.25 m B.4.25 mC.4.45 m D.4.75 m7.如图所示,小明同学用自制的直角三角形纸板DEF测量树的高度AB,他调整自己的位置,设法使斜边DF保持水平,并且边DE与点B在同一直线上.已知纸板的两条直角边DE=40 cm,EF=20 cm,测得边DF离地面的高度AC=1.5 m,CD=8 m,则树高AB=________m.8.如图,阳光通过窗口AB照射到室内,在地面上留下4米宽的亮区DE,且点D到窗口下的墙角点C处的距离为9米,若窗口高AB=2米,则窗口底边离地面的高BC=________米.9.如图,九年级(1)班课外活动小组利用标杆测量学校旗杆AB的高度.已知标杆的高度CD=3 m,标杆与旗杆的水平距离BD=15 m,人的眼睛与地面的高度EF=1.6 m,人与标杆CD的水平距离DF=2 m,此时,旗杆顶端A、标杆的顶端C、人眼E恰好在一条直线上.求旗杆AB的高度.10.如图,为测量学校围墙外直立电线杆AB的高度,小亮在操场上的点C处直立高3 m 的竹竿CD,然后退到点E处,此时恰好看到竹竿顶端D与电线杆顶端B重合;小亮又在点C1处直立高3 m的竹竿C1D1,然后退到点E1处,此时恰好看到竹竿顶端D1与电线杆顶端B 重合.小亮的眼睛离地面的高度EF=1.5 m,量得CE=2 m,EC1=6 m,C1E1=3 m.(1)△FDM∽△______,△F1D1N∽△______;(2)求电线杆AB的高度.11.如图10,小明想用镜子测量一棵松树的高度,但树旁有一条河,不能测量镜子与树之间的距离,于是小明两次利用镜子进行测量,第一次他把镜子放在点C处,人在点F处恰好可以在镜子中看见树尖A;第二次把镜子放在点D处,人在点H处恰好可以在镜子中看到树尖A.已知小明的眼睛距离地面的距离EF=1.68米,量得CD=10米,CF=1.2米,DH=3.6米,请利用这些数据求出这棵松树的高度.(提示:∠ACB=∠ECF,∠ADB=∠GDH)图1012.如图11所示,某超市在一楼至二楼之间安装有电梯,天花板与地面平行.张强扛着箱子(人与箱子的总高度约为2.2 m)乘电梯刚好安全通过,请你根据图中的数据计算两层楼之间的高度.图11。

【最新】九年级数学-4.6 利用相似三角形测高--精选练习

【最新】九年级数学-4.6  利用相似三角形测高--精选练习

4.6 利用相似三角形测高1. 如图,慢慢将电线杆竖起,如果所用力F 的方向始终竖直向上,则电线杆竖起过程中所用力的大小将( )A .变大B 。

变小C 。

不变D 。

无法判断2.小华做小孔成像实验(如图所示),已知蜡烛与成像板之间的距离为15cm ,则蜡烛 与成像板之间的小孔纸板应放在离蜡烛__________cm 的地方时,蜡烛焰AB 是像''B A 的一半。

3.如图,铁道口的栏杆短臂长1米,长臂长16米,当短臂的端点下降0。

5米时,长臂端点应升高_________.4.有点光源S 在平面镜上方,若在P 点初看到点光源的反射光线,并测得AB=10cm ,BC=20cm.PC ⊥AC,且PC=24cm,试求点光源S 到平面镜的距离即SA 的长度。

5.冬至时是一年中太阳相对于地球位置最低的时刻,只要此时能采到阳光,一年四季就均能受到阳光照射。

此时竖一根a 米长的竹杆,其影长为b 米,某单位计划想建m 米高的南北两幢宿舍楼(如图所示)。

试问两幢楼相距多少米时,后楼的采光一年四季不受影响(用m,a,b表示)6.一位同学想利用树影测出树高,他在某时刻测得直立的标杆高1米,影长是0.9米,但他去测树影时,发现树影的上半部分落在墙CD上,(如图所示)他测得BC=2.7米,CD=1.2米。

你能帮他求出树高为多少米吗?7.我侦察员在距敌方200米的地方发现敌人的一座建筑物,但不知其高度又不能靠近建筑物测量,机灵的侦察员食指竖直举在右眼前,闭上左眼,并将食指前后移动,使食指恰好将该建筑物遮住。

若此时眼睛到食指的距离约为40cm,食指的长约为8cm,你能根据上述条件计算出敌方建筑物的高度吗?请说出你的思路。

8.如图,阳光透过窗口照到室内,在地面上留下2.7米宽的亮区,已知亮区一边到窗下的墙脚距离CE=8.7米,窗口高AB=1.8 米,试求窗口下底与地面之间的距离B C的大小。

答案:1.C 2.5 3.8 4.由.12,201024cm SA SA BC AB PC SA ===故知 5.由米故abm ,==BC BC AB b a 。

初中数学利用相似三角形测高专题

初中数学利用相似三角形测高专题

2016 年初中数学利用相像三角形测高专题一.选择题(共 5 小题)1.( 2016?深圳模拟)如图,在同一时辰,身高米的小丽在阳光下的影长为米,一棵大树的影长为 5 米,则这棵树的高度为()A .米B.米C.米D.米2.( 2016?崇明县一模)如下图,一张等腰三角形纸片,底边长18cm,底边上的高长18cm,现沿底边挨次向下往上裁剪宽度均为3cm 的矩形纸条,已知剪得的纸条中有一张是正方形,则这张正方形纸条是()A .第 4 张B .第 5 张C.第 6 张 D .第 7 张3.( 2015?聊城模拟)如图,数学兴趣小组的小颖想丈量教课楼前的一棵树的树高,下午课外活动时她测得一根长为 1m 的竹竿的影长是,但当她立刻丈量树高时,发现树的影子不全落在地面上,有一部分影子落在教课楼的墙壁上(如图),他先测得留在墙壁上的影高为,又测得地面的影长为,请你帮她算一下,树高是()A .B .C .D .4.( 2015?张家口二模)如图,铁路道口的栏杆短臂长1m,长臂长16m.当短臂端点降落时,长臂端点高升(杆的宽度忽视不计)()A . 4m B. 6m C. 8m D. 12m5.( 2015?保亭县模拟)如图,利用标杆BE 丈量建筑物DC 的高度,假如标杆测得 AB=2 米, BC=8 米,且点 A 、 E、D 在一条直线上,则楼高CD 是(BE)长为米,A .米B. 9 米C. 8 米D.米二.填空题(共 4 小题)6.(2014?北京)在某一时辰,测得一根高为的竹竿的影长为为 25m,那么这根旗杆的高度为m.3m,同时测得一根旗杆的影长7.( 2016?浦东新区一模)如图是小明在建筑物AB 上用激光仪丈量另一建筑物CD 高度的表示图,在地面点P 处水平搁置一平面镜,一束激光从点 A 射出经平面镜上的点P 反射后恰巧射到建筑物CD 的顶端 C 处,已知 AB ⊥ BD ,CD ⊥ BD ,且测得 AB=15 米, BP=20 米,PD=32 米, B、 P、 D 在一条直线上,那么建筑物CD 的高度是米.8.( 2014?青海)如图,为了丈量一水塔的高度,小强用 2 米的竹竿做丈量工具,挪动竹竿,使竹竿、水塔的顶端的影子恰巧落在地面的同一点.此时,竹竿与这一点相距8 米,与水塔相距 32 米,则水塔的高度为米.9.( 2015?天水)如图是一位同学设计的用手电筒来丈量某古城墙高度的表示图.点一水平的平面镜,光芒从点 A 出发经平面镜反射后恰巧到古城墙CD 的顶端 C AB ⊥ BD , CD⊥ BD,测得 AB=2 米, BP=3 米, PD=12 米,那么该古城墙的高度P 处放处,已知CD 是米.三.解答题(共 1 小题)10.( 2015?陕西)晚餐后,小聪和小军在社区广场漫步,小聪问小军:“你有多高?”小军一时语塞.小聪思虑片晌,建议用广场照明灯下的影长及地砖长来丈量小军的身高.于是,两人在灯下沿直线 NQ 挪动,如图,当小聪正好站在广场的 A 点(距 N 点 5 块地砖长)时,其影长 AD 恰巧为1 块地砖长;当小军正好站在广场的 B 点(距 N 点 9 块地砖长)时,其影长 BF 恰巧为 2 块地砖长.已知广场所面由边长为米的正方形地砖铺成,小聪的身高 AC 为米, MN ⊥ NQ,AC ⊥NQ ,BE⊥ NQ.请你依据以上信息,求出小军身高 BE 的长.(结果精准到米)2016 年初中数学利用相像三角形测高专题参照答案与试题分析一.选择题(共 5 小题)1.( 2016?深圳模拟)如图,在同一时辰,身高米的小丽在阳光下的影长为米,一棵大树的影长为 5 米,则这棵树的高度为()A .米B.米C.米D.米【考点】相像三角形的应用.【剖析】在同一时辰物高和影长成正比,即在同一时辰的两个物体,影子,经过物体顶部的太阳光芒三者组成的两个直角三角形相像.【解答】解:∵同一时辰的两个物体,影子,经过物体顶部的太阳光芒三者组成的两个直角三角形相像,∴=,∴=,∴B C= ×5=米.应选: C.【评论】本题考察了相像三角形在丈量高度时的应用,解题时重点是找出相像的三角形,然后依据对应边成比率列出方程,成立适合的数学模型来解决问题.2.( 2016?崇明县一模)如下图,一张等腰三角形纸片,底边长18cm,底边上的高长18cm,现沿底边挨次向下往上裁剪宽度均为3cm 的矩形纸条,已知剪得的纸条中有一张是正方形,则这张正方形纸条是()A .第 4 张B .第 5 张C.第 6 张 D .第 7 张【考点】相像三角形的应用.【剖析】依据相像三角形的相像比求得极点到这个正方形的长,再依据矩形的宽求得是第几张.【解答】解:已知剪得的纸条中有一张是正方形,则正方形中平行于底边的边是3,所以依据相像三角形的性质可设从极点到这个正方形的线段为x,则,解得x=3,所以另一段长为18﹣ 3=15,由于 15÷3=5,所以是第 5 张.应选: B.由相像三角形【评论】本题主要考察了相像三角形的性质及等腰三角形的性质的综合运用;的性质得出比率式是解决问题的重点.3.( 2015?聊城模拟)如图,数学兴趣小组的小颖想丈量教课楼前的一棵树的树高,下午课外活动时她测得一根长为1m 的竹竿的影长是,但当她立刻丈量树高时,发现树的影子不全落在地面上,有一部分影子落在教课楼的墙壁上(如图),他先测得留在墙壁上的影高为,又测得地面的影长为,请你帮她算一下,树高是()A .B .C .D .【考点】相像三角形的应用.所以竹竿的高【剖析】本题第一要知道在同一时辰任何物体的高与其影子的比值是同样的,与其影子的比值和树高与其影子的比值同样,利用这个结论能够求出树高.【解答】解:如图,设BD 是 BC 在地面的影子,树高为x,依据竹竿的高与其影子的比值和树高与其影子的比值同样得而 CB= ,∴BD= ,∴树在地面的实质影子长是+=,再竹竿的高与其影子的比值和树高与其影子的比值同样得,∴x= ,∴树高是.应选 C.【评论】解题的重点要知道竹竿的高与其影子的比值和树高与其影子的比值同样.4.( 2015?张家口二模)如图,铁路道口的栏杆短臂长1m,长臂长16m.当短臂端点降落时,长臂端点高升(杆的宽度忽视不计)()A . 4m B. 6m C. 8m D. 12m【考点】相像三角形的应用.【剖析】栏杆长短臂在起落过程中,将形成两个相像三角形,利用对应变为比率解题.【解答】解:设长臂端点高升x 米,则= ,∴解得: x=8.应选; C.【评论】本题考察了相像三角形在实质生活中的运用,得出比率关系式是解题重点.5.( 2015?保亭县模拟)如图,利用标杆BE 丈量建筑物DC 的高度,假如标杆测得 AB=2 米, BC=8 米,且点 A 、 E、D 在一条直线上,则楼高CD 是(BE)长为米,A .米B. 9 米C. 8 米D.米【考点】相像三角形的应用.【剖析】依据题意,可利用平行线分线段成比率求解线段的长度.【解答】解:由题意可得,BE ∥ CD,所以=,即=,解得 CD= (米),应选: D.【评论】本题主要考察了相像三角形的应用,娴熟掌握平行线分线段成比率的性质是解题重点.二.填空题(共 4 小题)6.(2014?北京)在某一时辰,测得一根高为的竹竿的影长为为 25m,那么这根旗杆的高度为15 m.【考点】相像三角形的应用.【剖析】依据同时同地物高与影长成正比列式计算即可得解.【解答】解:设旗杆高度为x 米,3m,同时测得一根旗杆的影长由题意得,=,解得 x=15 .故答案为: 15.【评论】本题考察了相像三角形的应用,主要利用了同时同地物高与影长成正比,需熟记.7.( 2016?浦东新区一模)如图是小明在建筑物AB 上用激光仪丈量另一建筑物CD 高度的表示图,在地面点P 处水平搁置一平面镜,一束激光从点 A 射出经平面镜上的点P 反射后恰巧射到建筑物 CD 的顶端 C 处,已知 AB ⊥ BD ,CD ⊥ BD ,且测得 AB=15 米, BP=20 米,PD=32 米, B、 P、 D 在一条直线上,那么建筑物 CD 的高度是 24 米.【考点】相像三角形的应用.【剖析】由已知得△ABP ∽ △ CDP,则依据相像形的性质可得=,解答即可.【解答】解:由题意知:光芒 AP 与光芒 PC,∠APB= ∠ CPD,则Rt△ ABP ∽Rt△ CDP,故=,解得: CD==24 (米).故答案为: 24.【评论】本题考察了平面镜反射和相像三角形的应用,依据题意得出△ ABP ∽ △CDP 是解题重点.8.( 2014?青海)如图,为了丈量一水塔的高度,小强用 2 米的竹竿做丈量工具,挪动竹竿,使竹竿、水塔的顶端的影子恰巧落在地面的同一点.此时,竹竿与这一点相距8 米,与水塔相距 32 米,则水塔的高度为10米.【考点】相像三角形的应用.【剖析】由已知可得 BC∥ DE ,所以△ ABC ∽△ ADE ,利用相像三角形的性质可求得水塔的高度.【解答】解:∵ BC ⊥ AD , ED⊥ AD ,∴BC ∥ DE ,∴△ ABC ∽ △ ADE ,∴,即,∴DE=10 ,即水塔的高度是10 米.故答案为: 10.解题的重点是能利用比率式求解线段【评论】本题考察了考察了相像三角形的判断和性质,长.9.( 2015?天水)如图是一位同学设计的用手电筒来丈量某古城墙高度的表示图.点P 处放一水平的平面镜,光芒从点 A 出发经平面镜反射后恰巧到古城墙CD 的顶端 C 处,已知AB ⊥ BD , CD⊥ BD,测得 AB=2 米, BP=3 米, PD=12 米,那么该古城墙的高度CD 是8米.【考点】相像三角形的应用.【剖析】第一证明△ABP ∽ △ CDP,可得=,再代入相应数据可得答案.【解答】解:由题意可得:∠APE=∠ CPE,∴∠ APB= ∠ CPD,∵AB ⊥ BD , CD ⊥BD ,∴∠ ABP= ∠ CDP=90 °,∴△ ABP ∽△ CDP,∴= ,∵A B=2 米, BP=3 米, PD=12 米,∴ = ,CD=8 米,故答案为: 8.【评论】本题主要考察了相像三角形的应用,重点是掌握相像三角形对应边成比率.三.解答题(共 1 小题)10.( 2015?陕西)晚餐后,小聪和小军在社区广场漫步,小聪问小军:“你有多高?”小军一时语塞.小聪思虑片晌,建议用广场照明灯下的影长及地砖长来丈量小军的身高.于是,两人在灯下沿直线NQ 挪动,如图,当小聪正好站在广场的 A 点(距 N 点 5 块地砖长)时,其影长 AD 恰巧为 1 块地砖长;当小军正好站在广场的 B 点(距 N 点 9 块地砖长)时,其影长 BF恰巧为 2 块地砖长.已知广场所面由边长为米的正方形地砖铺成,小聪的身高 AC 为米, MN ⊥ NQ,AC ⊥NQ ,BE⊥ NQ.请你依据以上信息,求出小军身高 BE 的长.(结果精准到米)【考点】相像三角形的应用.【剖析】先证明△ CAD ~△MND,利用相像三角形的性质求得MN= ,再证明△ EFB ~△MFN ,即可解答.【解答】解:由题意得:∠ CAD=∠ MND=90°,∠ CDA=∠ MDN,∴△ CAD ~△ MND ,∴,∴,∴MN= ,又∵∠ EBF=∠ MNF=90 °,∠EFB= ∠ MFN ,∴△ EFB ~△ MFN ,∴,∴∴EB ≈,∴小军身高约为米.【评论】本题考察的是相像三角形的判断及性质,解答本题的重点是相像三角形的判断.。

利用相似三角形测高能力提升2含详细答案

利用相似三角形测高能力提升2含详细答案

利用相似三角形测高能力提升2一.填空题(共30小题)1.如图是用杠杆撬石头的示意图,C是支点,当用力压杠杆的A端时,杠杆绕C点转动,另一端B向上翘起,石头就被撬动.现有一块石头,要使其滚动,杠杆的B端必须向上翘起10cm,已知杠杆的动力臂AC与阻力臂BC之比为6:1,要使这块石头滚动,至少要将杠杆的A端向下压cm.2.《九章算术》中记载了一种测量井深的方法.如图所示,在井口B处立一根垂直于井口的木杆BD,从木杆的顶端D观察井水水岸C,视线DC与井口的直径AB交于点E,如果测得AB=1.6米,BD=1米,BE=0.2米,那么AC为米.3.如图,一位同学通过调整自己的位置,设法使三角板DEF的斜边DF保持水平,并且边DE与点B在同一直线上,已知两条边DE=0.4m,EF=0.2m,测得边DF离地面的高度AC=1.5m,CD=8m,则树高AB为m.4.如图,有一个广告牌OE,小明站在距广告牌OE10米远的A处观察广告牌顶端,眼睛距地面1.5米,他的前方5米处有一堵墙DC,若墙高DC=2米,则广告牌OE的高度为米.5.我军侦察员在距敌方120m的地方发现敌方的一座建筑物,但不知其高度又不能靠近建筑物测量,机灵的侦察员将自己的食指竖直举在右眼前,闭上左眼,并将食指前后移动,使食指恰好将该建筑物遮住,如图所示.若此时眼睛到食指的距离约为40cm,食指的长约为8cm,则敌方建筑物的高度约是m.6.如图,是用卡钳测量容器内径的示意图.量得卡钳上A,D两端点的距离为4cm,,则容器的内径BC的长为cm.7.如图,小华同学用自制的直角三角形纸板DEF测量树的高度AB,他调整自己的位置,使斜边DF与地面保持水平,并且边DE与点B在同一直线上.已知纸板的两条直角边DE=30cm,EF=15cm,测得边DF离地面的高度AC=120cm,CD=600cm,则树AB 的高度为cm.8.太原市某学校门口的栏杆如图所示,栏杆从水平位置AB绕定点O旋转到DC位置,已知栏杆AB的长为3.5m,OA的长为3m,C点到AB的距离为0.3m.支柱OE的高为0.5m,则栏杆D端离地面的距离为.9.如图是小孔成像原理的示意图,点O与物体AB的距离为45厘米,与像CD的距离是30厘米,AB∥CD.若物体AB的高度为27厘米,那么像CD的高度是厘米.10.如图,小颖利用有一个锐角是30°的三角板测量一棵树的高度,已知她与树之间的水平距离BE为5m,AB为1.5m(即小颖的眼睛距地面的距离),那么这棵树高是m.11.为测量学校旗杆的高度,小明的测量方法如下:如图,将直角三角形硬纸板DEF的斜边DF与地面保持平行,并使边DE与旗杆顶点A在同一直线上.测得DE=0.5米,EF =0.25米,目测点D到地面的距离DG=1.5米,到旗杆的水平距离DC=20米.按此方法,请计算旗杆的高度为米.12.如图,身高为1.7m的小明AB站在小河的一岸,利用树的倒影去测量河对岸一棵树CD 的高度,CD在水中的倒影为C′D,A、E、C′在一条线上.如果小河BD的宽度为12m,BE=3m,那么这棵树CD的高为m.13.如图,某水平地面上建筑物的高度为AB,在点D和点F处分别竖立高是2米的标杆CD和EF,两标杆相隔52米,并且建筑物AB、标杆CD和EF在同一竖直平面内.从标杆CD后退2米到点G处,在G处测得建筑物项端A标杆顶端C在同一条直线上;从标杆FE后退4米到点H处,在H处测得建筑物顶端A和标杆顶端E在同一直线上,则建筑物的高是米.14.如图,在A时测得旗杆的影长是4米,B时测得旗杆的影长是16米,若两次的日照光线恰好垂直,则旗杆的高度是米.15.如图所示为某种型号的台灯的横截面图,已知台灯灯柱AB长30cm,且与水平桌面垂直,灯臂AC长为10cm,灯头的横截面△CEF为直角三角形,当灯臂AC与灯柱AB垂直时,沿CE边射出的光线刚好射到底座B点.若不考虑其它因素,则该台灯在桌面可照亮的宽度BD的长为cm.16.如图,小明在A时测得直立于地面的某树的影长为3米,B时又测得该树的影长为12米,若两次日照的光线互相垂直,则树的高度为米.17.如图是用杠杆撬石头的示意图,C是支点,当用力压杠杆的A端时,杠杆绕C点转动,另一端B向上翘起,石头就被撬动.现有一块石头,要使其滚动,杠杆的B端必须向上翘起10cm,已知AC与BC之比为5:1,要使这块石头滚动,至少要将杠杆的A端向下压cm.18.如图,比例规是一种画图工具,它由长度相等的两脚AD和BC交叉构成.利用它可以把线段按一定的比例伸长或缩短,如果把比例规的两脚合上,使螺丝钉固定在刻度3的地方(即同时使OA=3OD,OB=3OC),然后张开两脚,这时CD=2,则AB=.19.如图,测量试管口径的量具ABC,AB的长为4.5cm,AC被分为60等份.如果试管口DE正好对着量具上20等份处(DE∥AB),那么试管口径DE是cm.20.如图,阳光通过窗口AB照到室内,在地面上留下一个亮区ED,已知亮区一边到窗下的墙脚距离CE=2.7m,窗高AB=0.8m,窗口底边离地面的高度BC=1m,则亮区宽度ED=m.21.如图,阳光通过窗口AB照射到室内,在地面上留下4米宽的亮区DE,且点D到窗口下的墙角点C处的距离为9米,若窗口高AB=2米,那么窗口底边离地面的高BC=米.22.兴趣小组的同学要测量树的高度.在阳光下,一名同学测得一根长为1米的竹竿的影长为0.4米,同时另一名同学测量树的高度时,发现树的影子不全落在地面上,有一部分落在教学楼的第一级台阶上,测得此影子长为0.2米,一级台阶高为0.3米,如图所示,若此时落在地面上的影长为4.4米,则树高为.23.甲、乙两同学测量一棵树的高度,在阳光下,甲同学测得一根1米长的竹竿的影长为0.8米,同时,乙同学测量时,发现树的影子不全落在地面上,如图,有一部分影子落在教学楼的墙壁上,其影长CD=1.2米,落在地面上的影长BC=2.4米,则树高AB的长是米.24.如图,某水平地面上建筑物的高度为AB,在点D和点F处分别竖立高是2米的标杆CD和EF,两标杆相隔52米,并且建筑物AB、标杆CD和EF在同一竖直平面内,从标杆CD后退2米到点G处,在G处测得建筑物顶端A和标杆顶端C在同一条直线上;从标杆FE后退4米到点H处,在H处测得建筑物顶端A和标杆顶端E在同一条直线上,则建筑物的高是米.25.如图,矩形台球桌ABCD的尺寸为2.7m×1.6m,位于AB中点处的台球E沿直线向BC 边上的点F运动,经BC边反弹后恰好落入点D处的袋子中,则BF的长度为m.26.如图是一束平行的光线从教室窗户射入教室的平面示意图,测得光线与地面所成的角∠AMC=30°,窗户的高在教室地面上的影长MN=米,窗户的下檐到教室地面的距离BC=1米(点M、N、C在同一直线上),则窗户的高AB为米.27.如图,测量小玻璃管口径的量具ABC,AB的长为30cm,AC被分为60等份.如果小玻璃管口DE正好对着量具上20等份处(DE∥AB),那么小玻璃管口径DE是cm.28.如图,一束光线从y轴上的点A(0,1)出发,经过x轴上的点C反射后经过点B(6,2),则光线从A点到B点经过的路线长度为.29.小芳在院子里的树下“跳橡皮筋”,如图所示,橡皮筋AB长为1.3米,AD=0.9米,BC =0.4米,小芳想将橡皮筋踩在地面上CD的P处,使两段橡皮筋的夹角为90°,那么PC=米.(橡皮筋可拉长)30.如图,路灯距地面8米,身高1.6米的小明从距离灯的底部(点O)20米的点A处,沿OA所在的直线行走14米到点B时,人影长度在A处为米,在B处为米.利用相似三角形测高能力提升2参考答案与试题解析一.填空题(共30小题)1.如图是用杠杆撬石头的示意图,C是支点,当用力压杠杆的A端时,杠杆绕C点转动,另一端B向上翘起,石头就被撬动.现有一块石头,要使其滚动,杠杆的B端必须向上翘起10cm,已知杠杆的动力臂AC与阻力臂BC之比为6:1,要使这块石头滚动,至少要将杠杆的A端向下压60cm.【答案】60.【解答】解:如图;AM、BN都与水平线的垂直,M,N是垂足,则AM∥BN;∵AM∥BN,∴△ACM∽△BCN;∴,∵AC与BC之比为6:1,∴,即AM=6BN,∴当BN≥10cm时,AM≥60cm,故要使这块石头滚动,至少要将杠杆的端点A向下压60cm.故答案为:60.2.《九章算术》中记载了一种测量井深的方法.如图所示,在井口B处立一根垂直于井口的木杆BD,从木杆的顶端D观察井水水岸C,视线DC与井口的直径AB交于点E,如果测得AB=1.6米,BD=1米,BE=0.2米,那么AC为7米.【答案】见试题解答内容【解答】解:∵BD⊥AB,AC⊥AB,∴BD∥AC,∴△ACE∽△BDE,∴,∴=,∴AC=7(米),故答案为:7.3.如图,一位同学通过调整自己的位置,设法使三角板DEF的斜边DF保持水平,并且边DE与点B在同一直线上,已知两条边DE=0.4m,EF=0.2m,测得边DF离地面的高度AC=1.5m,CD=8m,则树高AB为 5.5m.【答案】见试题解答内容【解答】解:∵∠DEF=∠DCB=90°,∠D=∠D,∴△DEF∽△DCB∴,∵DE=0.4m,EF=0.2m,CD=8m,∴,∴CB=4(m),∴AB=AC+BC=1.5+4=5.5(米).故答案为:5.5.4.如图,有一个广告牌OE,小明站在距广告牌OE10米远的A处观察广告牌顶端,眼睛距地面1.5米,他的前方5米处有一堵墙DC,若墙高DC=2米,则广告牌OE的高度为 2.5米.【答案】见试题解答内容【解答】解:作BF⊥OE于点F交CD于点G,根据题意得:AB=CG=OF=1.5米,BF=10米,BG=5米,DG=CD﹣CG=2﹣1.5=0.5米,∵DG∥EF,∴,∴,解得:EF=1,∴EO=EF+OF=1+1.5=2.5(米),故答案为:2.5.5.我军侦察员在距敌方120m的地方发现敌方的一座建筑物,但不知其高度又不能靠近建筑物测量,机灵的侦察员将自己的食指竖直举在右眼前,闭上左眼,并将食指前后移动,使食指恰好将该建筑物遮住,如图所示.若此时眼睛到食指的距离约为40cm,食指的长约为8cm,则敌方建筑物的高度约是24m.【答案】见试题解答内容【解答】解:∵40cm=0.4m,8cm=0.08m∵BC∥DE,AG⊥BC,AF⊥DE.∴△ABC∽△ADE,∴BC:DE=AG:AF,∴0.08:DE=0.4:120,∴DE=24m.故答案为:24.6.如图,是用卡钳测量容器内径的示意图.量得卡钳上A,D两端点的距离为4cm,,则容器的内径BC的长为10cm.【答案】见试题解答内容【解答】解:如图,连接AD,BC,∵,∠AOD=∠BOC,∴△AOD∽△BOC,∴==,又AD=4cm,∴BC=AD=10cm.故答案是:10cm.7.如图,小华同学用自制的直角三角形纸板DEF测量树的高度AB,他调整自己的位置,使斜边DF与地面保持水平,并且边DE与点B在同一直线上.已知纸板的两条直角边DE=30cm,EF=15cm,测得边DF离地面的高度AC=120cm,CD=600cm,则树AB 的高度为420cm.【答案】见试题解答内容【解答】解:∵∠DEF=∠BCD=90°,∠D=∠D,∴△DEF∽△DCB,∴BC:EF=DC:DE,∵DE=30cm,EF=15cm,AC=120cm,CD=600cm,∴,∴BC=300cm,∴AB=AC+BC=120+300=420cm,故答案为:420.8.太原市某学校门口的栏杆如图所示,栏杆从水平位置AB绕定点O旋转到DC位置,已知栏杆AB的长为3.5m,OA的长为3m,C点到AB的距离为0.3m.支柱OE的高为0.5m,则栏杆D端离地面的距离为 2.3m.【答案】见试题解答内容【解答】解:过D作DG⊥AB于G,过C作CH⊥AB于H,则DG∥CH,∴△ODG∽△OCH,∴=,∵栏杆从水平位置AB绕固定点O旋转到位置DC,∴CD=AB=3.5m,OD=OA=3m,CH=0.3m,∴OC=0.5m,∴=,∴DG=1.8m,∵OE=0.5m,∴栏杆D端离地面的距离为1.8+0.5=2.3m.故答案是:2.3m.9.如图是小孔成像原理的示意图,点O与物体AB的距离为45厘米,与像CD的距离是30厘米,AB∥CD.若物体AB的高度为27厘米,那么像CD的高度是18厘米.【答案】见试题解答内容【解答】解:∵AB∥CD∴△ABO∽△CDO∴=又∵AB=27∴CD=18.故答案为:18.10.如图,小颖利用有一个锐角是30°的三角板测量一棵树的高度,已知她与树之间的水平距离BE为5m,AB为1.5m(即小颖的眼睛距地面的距离),那么这棵树高是m.【答案】见试题解答内容【解答】解:过A作AD⊥CE于D,∵AB⊥BE,DE⊥BE,AD⊥CE,∴四边形ABED是矩形,∵BE=5m,AB=1.5m,∴AD=BE=5m,DE=AB=1.5m.在Rt△ACD中,∵∠CAD=30°,AD=5m,∴CD=AD•tan30°=5×=,∴CE=CD+DE=+1.5=(+)m.答:这棵树高是(+)m.故答案为:+.11.为测量学校旗杆的高度,小明的测量方法如下:如图,将直角三角形硬纸板DEF的斜边DF与地面保持平行,并使边DE与旗杆顶点A在同一直线上.测得DE=0.5米,EF =0.25米,目测点D到地面的距离DG=1.5米,到旗杆的水平距离DC=20米.按此方法,请计算旗杆的高度为11.5米.【答案】见试题解答内容【解答】解:由题意得:∠DEF=∠DCA=90°,∠EDF=∠CDA,∴△DEF∽△DCA,则=,即=,解得:AC=10,故AB=AC+BC=10+1.5=11.5(米),即旗杆的高度为11.5米;故答案为:11.5.12.如图,身高为1.7m的小明AB站在小河的一岸,利用树的倒影去测量河对岸一棵树CD 的高度,CD在水中的倒影为C′D,A、E、C′在一条线上.如果小河BD的宽度为12m,BE=3m,那么这棵树CD的高为 5.1m.【答案】见试题解答内容【解答】解:∵AB,CD均垂直于地面,所以AB∥CD,∴△ABE∽△C′DE,∵CD在水中的倒影为C′D,∴△ABE∽△C′DE,∴=,又∵AB=1.7,BE=3,BD=12,∴=,∴CD=5.1,故答案为:5.1.13.如图,某水平地面上建筑物的高度为AB,在点D和点F处分别竖立高是2米的标杆CD和EF,两标杆相隔52米,并且建筑物AB、标杆CD和EF在同一竖直平面内.从标杆CD后退2米到点G处,在G处测得建筑物项端A标杆顶端C在同一条直线上;从标杆FE后退4米到点H处,在H处测得建筑物顶端A和标杆顶端E在同一直线上,则建筑物的高是54米.【答案】见试题解答内容【解答】解:∵AB⊥BH,CD⊥BH,EF⊥BH,∴AB∥CD∥EF,∴△CDG∽△ABG,△EFH∽△ABH,∴=,=,∵CD=DG=EF=2m,DF=52m,FH=4m,∴=,=,∴=,解得:BD=52,∴=,解得:AB=54,即建筑物的高是54m.故答案为:54.14.如图,在A时测得旗杆的影长是4米,B时测得旗杆的影长是16米,若两次的日照光线恰好垂直,则旗杆的高度是8米.【答案】见试题解答内容【解答】解:如图,∠CPD=90°,QC=4m,QD=16m,∵PQ⊥CD,∴∠PQC=90°,∴∠C+∠QPC=90°,而∠C+∠D=90°,∴∠QPC=∠D,∴Rt△PCQ∽Rt△DPQ,∴,即,∴PQ=8,即旗杆的高度为8m.故答案为:8.15.如图所示为某种型号的台灯的横截面图,已知台灯灯柱AB长30cm,且与水平桌面垂直,灯臂AC长为10cm,灯头的横截面△CEF为直角三角形,当灯臂AC与灯柱AB垂直时,沿CE边射出的光线刚好射到底座B点.若不考虑其它因素,则该台灯在桌面可照亮的宽度BD的长为100cm.【答案】见试题解答内容【解答】解:∵AB⊥BD,AC⊥AB,∴AC∥BD.∴∠ACB=∠DBC.∵∠A=∠BCD=90°,∴△ABC∽△CDB.∴=,∴BC2=AC•BD,在Rt△ABC中,BC2=AC2+AB2=102+302=1000,∴10BD=1000.∴BD=100(cm).故答案为100.16.如图,小明在A时测得直立于地面的某树的影长为3米,B时又测得该树的影长为12米,若两次日照的光线互相垂直,则树的高度为6米.【答案】见试题解答内容【解答】解:根据题意,作△DFC,树高为CE,且∠DCF=90°,ED=3,FE=12,易得:Rt△DEC∽Rt△CEF,有=,即EC2=ED•EF,代入数据可得EC2=3×12=36,EC=6,答:树的高度为6米.故答案为:6.17.如图是用杠杆撬石头的示意图,C是支点,当用力压杠杆的A端时,杠杆绕C点转动,另一端B向上翘起,石头就被撬动.现有一块石头,要使其滚动,杠杆的B端必须向上翘起10cm,已知AC与BC之比为5:1,要使这块石头滚动,至少要将杠杆的A端向下压50cm.【答案】见试题解答内容【解答】解:如图;AM、BN都与水平线垂直,即AM∥BN;易知:△ACM∽△BCN;∴=,∵AC与BC之比为5:1,∴=,即AM=5BN;∴当BN≥10cm时,AM≥50cm;故要使这块石头滚动,至少要将杠杆的端点A向下压50cm.故答案为:50.18.如图,比例规是一种画图工具,它由长度相等的两脚AD和BC交叉构成.利用它可以把线段按一定的比例伸长或缩短,如果把比例规的两脚合上,使螺丝钉固定在刻度3的地方(即同时使OA=3OD,OB=3OC),然后张开两脚,这时CD=2,则AB=6.【答案】见试题解答内容【解答】解:∵OA=3OD,OB=3CO,∴OA:OD=BO:CO=3:1,∠AOB=∠DOC,∴△AOB∽△DOC,∴=,∴AB=3CD,∵CD=2,∴AB=6,故答案为6.19.如图,测量试管口径的量具ABC,AB的长为4.5cm,AC被分为60等份.如果试管口DE正好对着量具上20等份处(DE∥AB),那么试管口径DE是3cm.【答案】见试题解答内容【解答】解:由题意得:ED∥BA,∴△ECD∽△BCA,∴CD:CA=ED:AB,即:40:60=ED:4.5,解得:ED=3,故答案为:3.20.如图,阳光通过窗口AB照到室内,在地面上留下一个亮区ED,已知亮区一边到窗下的墙脚距离CE=2.7m,窗高AB=0.8m,窗口底边离地面的高度BC=1m,则亮区宽度ED= 1.2m.【答案】见试题解答内容【解答】解:根据题意,易得△DCB∽△ACE,∴=,又因为AB=0.8米,CE=2.7米,BC=1米,所以=,解得ED=1.2米.故答案为:1.2.21.如图,阳光通过窗口AB照射到室内,在地面上留下4米宽的亮区DE,且点D到窗口下的墙角点C处的距离为9米,若窗口高AB=2米,那么窗口底边离地面的高BC= 2.5米.【答案】见试题解答内容【解答】解:∵光是沿直线传播的,∴AD∥BE,∴△CBE∽△CAD,∴=,即=,解得:BC=2.5.故答案为:2.5.22.兴趣小组的同学要测量树的高度.在阳光下,一名同学测得一根长为1米的竹竿的影长为0.4米,同时另一名同学测量树的高度时,发现树的影子不全落在地面上,有一部分落在教学楼的第一级台阶上,测得此影子长为0.2米,一级台阶高为0.3米,如图所示,若此时落在地面上的影长为4.4米,则树高为11.8米.【答案】见试题解答内容【解答】解:根据题意可构造相似三角形模型如图,其中AB为树高,EF为树影在第一级台阶上的影长,BD为树影在地上部分的长,ED的长为台阶高,并且由光沿直线传播的性质可知BC即为树影在地上的全长;延长FE交AB于G,则Rt△ABC∽Rt△AGF,∴AG:GF=AB:BC=物高:影长=1:0.4∴GF=0.4AG又∵GF=GE+EF,BD=GE,GE=4.4m,EF=0.2m,∴GF=4.6∴AG=11.5∴AB=AG+GB=11.8,即树高为11.8米.23.甲、乙两同学测量一棵树的高度,在阳光下,甲同学测得一根1米长的竹竿的影长为0.8米,同时,乙同学测量时,发现树的影子不全落在地面上,如图,有一部分影子落在教学楼的墙壁上,其影长CD=1.2米,落在地面上的影长BC=2.4米,则树高AB的长是 4.2米.【答案】见试题解答内容【解答】解:设从墙上的影子的顶端到树的顶端的垂直高度是x米.则有=,解得x=3.树高是3+1.2=4.2(米).故树高为4.2米.故答案是:4.2.24.如图,某水平地面上建筑物的高度为AB,在点D和点F处分别竖立高是2米的标杆CD和EF,两标杆相隔52米,并且建筑物AB、标杆CD和EF在同一竖直平面内,从标杆CD后退2米到点G处,在G处测得建筑物顶端A和标杆顶端C在同一条直线上;从标杆FE后退4米到点H处,在H处测得建筑物顶端A和标杆顶端E在同一条直线上,则建筑物的高是54米.【答案】见试题解答内容【解答】解:法一:∵AB⊥BH,CD⊥BH,EF⊥BH,∴AB∥CD∥EF,∴△CDG∽△ABG,△EFH∽△ABH,∴=,=,∵CD=DG=EF=2m,DF=52m,FH=4m,∴=,=,∴=,解得BD=52m,∴=,解得AB=54m.法二:设AB=x.则BH=2x,BG=x,则有2x﹣x=54,解得x=54,故答案为:54.25.如图,矩形台球桌ABCD的尺寸为2.7m×1.6m,位于AB中点处的台球E沿直线向BC 边上的点F运动,经BC边反弹后恰好落入点D处的袋子中,则BF的长度为0.9m.【答案】见试题解答内容【解答】解:由题意可得出:∠DFC=∠EFB,∠EBF=∠FCD,∴△EBF∽△DCF,∴=,∴=,解得:BF=0.9.故答案为:0.9.26.如图是一束平行的光线从教室窗户射入教室的平面示意图,测得光线与地面所成的角∠AMC=30°,窗户的高在教室地面上的影长MN=米,窗户的下檐到教室地面的距离BC=1米(点M、N、C在同一直线上),则窗户的高AB为2米.【答案】见试题解答内容【解答】解:∵BN∥AM∴Rt△CBN∽Rt△CAM即=tan30°=﹣﹣﹣(1)∵AM∥NB∴=tan30°=即NC=代入(1)得=即AB=2m.27.如图,测量小玻璃管口径的量具ABC,AB的长为30cm,AC被分为60等份.如果小玻璃管口DE正好对着量具上20等份处(DE∥AB),那么小玻璃管口径DE是20cm.【答案】见试题解答内容【解答】解:∵DE∥AB,∴CD:AC=DE:AB,∴40:60=DE:30,∴DE=20cm,故答案为:20.28.如图,一束光线从y轴上的点A(0,1)出发,经过x轴上的点C反射后经过点B(6,2),则光线从A点到B点经过的路线长度为3.【答案】见试题解答内容【解答】解:A关于x轴的对称点A'坐标是(0,﹣1)连接A′B,交x轴于点C,作DB∥A'A,A'D∥OC,交DB于D,故光线从点A到点B所经过的路程A'B===3.故答案为:3.29.小芳在院子里的树下“跳橡皮筋”,如图所示,橡皮筋AB长为1.3米,AD=0.9米,BC =0.4米,小芳想将橡皮筋踩在地面上CD的P处,使两段橡皮筋的夹角为90°,那么PC=0.6米.(橡皮筋可拉长)【答案】见试题解答内容【解答】解:作BE⊥AD于点E,则BE=CD,AE=AD﹣ED=AD﹣BC=0.9﹣0.4=0.5米,在Rt△AEB中,BE==1.2米,∵∠APB=90°,∴∠BPC+∠APD=90°,∵∠DAP+∠APD=90°,∴∠BPC=∠P AD∴△ADP∽△PCB,∴设PC=x米,则DP=(1.2﹣x)米,∴解得:x=0.6故答案为:0.6.30.如图,路灯距地面8米,身高1.6米的小明从距离灯的底部(点O)20米的点A处,沿OA所在的直线行走14米到点B时,人影长度在A处为5米,在B处为 1.5米.【答案】见试题解答内容【解答】解:由题意AC∥OP,BD∥OP,∴△ACM∽△OPM,∴,设AM=x,AC=1.6,OP=8,OM=OA+AM=20+x,∴,∴x=5,又∵BD∥OP,∴△BDN∽△OPN,∴,∵OP=8,BD=1.6,OB=OA﹣AB=20﹣14=6,设BN=y,ON=OB+y=6+y∴,∴y=1.5∴人影在A处长5米,在B处1.5米.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

B E C
D
A
编外侦探
才能显示
• 一盗窃犯于夜深人静之时潜入某单位作案, 该单位的自动摄像系统摄下了他作案的全过 程.请你为警方设计一个方案,估计该盗窃犯 的大致身高.
x=12.
答:树高12m.
1
2
18m
D 2.1m E
B
聪明才智
办法总比困难多
• 如图,A、B两点分别位于一个池塘的两端,小 芳想用绳子测量A、B两点之间的距离,但绳子 的长度不够,一位同学帮她想了一个主意,先在 地上取一个可以直接到达A、B点的点C,找到 AC、BC的中点D、E,并且DE的长为5m,则A、
跟踪训练
1. 如图,在距离AB 18m的地面上平放着一面镜子E,人退
后到距镜子2.1m的D处,在镜子里恰看见树顶,若人眼距
地面1.4m,求树高. 解:设树高xm. 由题意知△ABE∽△CDE, 所以
AB BE , CD DE
A
C
1.4m
x 18 , 1.4 2.1
相关文档
最新文档