第一部分-其他材料成形技术

合集下载

工程材料与成形技术基础总结

工程材料与成形技术基础总结

工程材料与成形技术基础主要内容1、工程材料的分类工程材料一般可分为金属材料、高分子材料、陶瓷材料和复合材料等几大类。

2、金属材料的主要性能(1)力学性能是金属材料重要的使用性能,主要有:弹性、塑性、刚度、强度、硬度、冲击韧性、疲劳强度、断裂韧性等,要求掌握各种性能的定义。

(2) 常用的力学性能指标有:弹性极限(σe )、屈服强度(σs ,σ0.2 )、抗拉强度(σb )、延伸率(δ)、断面收缩率(φ)、冲击韧性(αk )、硬度(HB ,HRC ,HV )和疲劳强度(σ-1)等。

3、掌握金属材料的物理性能、化学性能和工艺性能的概念。

4、名词解释:(1)、合金(2)组元(3)固溶体(4)相图(5)金属化合物(6)结晶(7)晶体(8)晶格(9)晶面(10)晶胞(11)固溶强化(12)金属热处理(13)退火(14)正火(15)淬火(16)回火(17)调质处理5、铁碳合金的基本组织:铁素体、奥氏体、渗碳体、珠光体和莱氏体。

6、掌握铁碳合金相图中的特性点和特性线的含义,要求默画铁碳合金相图。

7、了解铁碳合金中典型合金的结晶过程分析。

8、掌握铁碳合金的成分、组织和性能的变化规律。

9、掌握金属热处理的定义及作用。

10、重点掌握常用的金属热处理工艺方法的定义、目的、特点及应用。

常用热处理工艺包括退火、正火、淬火、回火及表面热处理和表面化学热处理。

11、了解钢在加热和冷却时的转变过程。

12、掌握常用金属材料的分类。

重点掌握碳钢的分类(按质量、用途、含碳量)、铸铁的分类(两种分类法)和合金钢的分类。

13、掌握碳钢、铸铁、合金钢的编号方法、成分、性能和应用。

能正确选用螺栓、齿轮、轴、床身、箱体、弹簧、模具、刀具等典型零件的相关材料(名称和编号)。

14、了解机械零件选材的一般原则。

第二部分材料成形工艺基础一、铸造1、了解合金的铸造性能及相关影响因素。

2、了解常见铸件缺陷及产生的主要原因。

3、掌握砂型铸造的工艺过程及应用范围。

1-材料成形理论基础

1-材料成形理论基础

材料成形工艺基础1第一章 材料成形理论基础液态成形--铸造 固态成形--锻造 固态连接--焊接21第一节 液态成形基础1、液态金属的结构液态金属在结构上更象固态而不是汽态,原子之间 仍然具有很高的结合能。

液态金属的结构特征 液态金属内存在近程有序的原子集团。

这种原子集团是不稳定 的,瞬时出现又瞬时消失。

所以,液态金属结构具有如下特 点: l)液态金属是由游动的原子团构成。

2)液态金属中的原子热运动强烈,原子所具有的能量各不相 同,且瞬息万变,这种原子间能量的不均匀性,称为能量起 伏。

3)由于液态原子处于能量起伏之中,原子团是时聚时散,时 大时小,此起彼伏的,称为结构起伏。

3第一节 液态成形基础1、液态金属的性质液态金属是有粘性的流体。

粘度的物理本质是原子间作 相对运动时产生的阻力。

表面张力:在液体表面内产生的平行于液体表面、且各 向均等的张力421.2铸件的凝固组织合金从液态转变成固态的过程,称为一次结晶 或凝固。

当液态金属冷却至熔点以下,经过一定时间的孕 育,就会涌现一批小晶核,随后这些晶核按原子规则 排列的各自取向长大,与此同时又有另一批小晶核生 成和长大,直至液体全部耗尽为止。

51.2铸件的凝固组织合金从液态转变成固态的过程,称为一次结晶 或凝固。

一次结晶从物理化学观点出发,研究液态金属的 生核Formation of stable nuclei 、长大Growth of crystals、结晶组织的形成规律。

凝固从传热学观点出发,研究铸件和铸型的传热过 程、铸件断面上凝固区域的变化规律、凝固方式与 铸件质量的关系、凝固缺陷形成机制等。

631.2铸件的凝固组织凝固组织分宏观和微观。

宏观组织:铸态晶粒的形态、大小、取向、分布 微观组织:晶粒内部的亚结构的形状/大小/相 对分布/缺陷等 晶粒越细小均匀,金属材料的强度和硬度越高,塑 性和韧性越好。

71.3铸件的凝固方式和控制铸件的工艺原则铸件的凝固方式逐层凝固方式(skin-forming solidification) 糊状凝固方式(mushy solidification) 中间凝固方式(middle solidification)。

材料成型技术基础课后答案

材料成型技术基础课后答案

第一章金属液态成形‎1.①液态合金的充‎型能力是指熔‎融合金充满型‎腔,获得轮廓清晰‎、形状完整的优‎质铸件的能力‎。

②流动性好,熔融合金充填‎铸型的能力强‎,易于获得尺寸‎准确、外形完整的铸‎件。

流动性不好,则充型能力差‎,铸件容易产生‎冷隔、气孔等缺陷。

③成分不同的合‎金具有不同的‎结晶特性,共晶成分合金‎的流动性最好‎,纯金属次之,最后是固溶体‎合金。

④相比于铸钢,铸铁更接近更‎接近共晶成分‎,结晶温度区间‎较小,因而流动性较‎好。

2.浇铸温度过高‎会使合金的收‎缩量增加,吸气增多,氧化严重,反而是铸件容‎易产生缩孔、缩松、粘砂、夹杂等缺陷。

3.缩孔和缩松的‎存在会减小铸‎件的有效承载‎面积,并会引起应力‎集中,导致铸件的力‎学性能下降。

缩孔大而集中‎,更容易被发现‎,可以通过一定‎的工艺将其移‎出铸件体外,缩松小而分散‎,在铸件中或多‎或少都存在着‎,对于一般铸件‎来说,往往不把它作‎为一种缺陷来‎看,只有要求铸件‎的气密性高的‎时候才会防止‎。

4 液态合金充满‎型腔后,在冷却凝固过‎程中,若液态收缩和‎凝固收缩缩减‎的体积得不到‎补足,便会在铸件的‎最后凝固部位‎形成一些空洞‎,大而集中的空‎洞成为缩孔,小而分散的空‎洞称为缩松。

浇不足是沙型‎没有全部充满‎。

冷隔是铸造后‎的工件稍受一‎定力后就出现‎裂纹或断裂,在断口出现氧‎化夹杂物,或者没有融合‎到一起。

出气口目的是‎在浇铸的过程‎中使型腔内的‎气体排出,防止铸件产生‎气孔,也便于观察浇‎铸情况。

而冒口是为避‎免铸件出现缺‎陷而附加在铸‎件上方或侧面‎的补充部分。

逐层凝固过程‎中其断面上固‎相和液相由一‎条界线清楚地‎分开。

定向凝固中熔‎融合金沿着与‎热流相反的方‎向按照要求的‎结晶取向进行‎凝固。

5.定向凝固原则‎是在铸件可能‎出现缩孔的厚‎大部位安放冒‎口,并同时采用其‎他工艺措施,使铸件上远离‎冒口的部位到‎冒口之间建立‎一个逐渐递增‎的温度梯度,从而实现由远‎离冒口的部位‎像冒口方向顺‎序地凝固。

《材料成型原理》课程介绍

《材料成型原理》课程介绍

《材料成型原理》课程介绍
《材料成形原理》是为“材料科学与工程”专业和“材料成形与控制工程”专业开设的一门主干课,也是这两个专业的学科基础课。

该课程2004年列为南京理工大学校建精品课程,2008年评为南京理工大学二类校级精品课程。

《材料成形原理》多媒体课件获得2006年“天空教室”杯江苏省高校第三届多媒体教学课件竞赛二等奖,南京理工大学多媒体教学课件竞赛一等奖。

现主讲团队成员是王经涛(教授)、余进(副教授)、张新平(副教授)、尹德良(讲师)、朱荣(讲师)、刘瑛(讲师)。

图1 课程层次
本课程将材料成形理论与工艺融为一体,综合介绍各种材料成形技术的基本原理、工艺方法和技术要点,适当反映当代科技在材料成形领域的新成就。

本课程可分为四个层次,第一层次:绪论部分,对整个课程内容和知识体系进行概括介绍;第二层次:材料成形的理论,包括:凝固理论、成形热过程基础、塑性变形力学与物理基础;第三层次:材料成形的技术,重点介绍铸造、焊接、压力加工、表面技术
及粉末冶金技术等传统加工成形技术;第四层次:先进加工技术,介绍铸锻焊各领域的最新发展,包括新材料的成形与加工、现代数字技术及机器人在材料加工中的应用以及激光成形等。

如图所示。

本课程运用现代教学手段和方法,用材料加工领域的最新成果丰富教学内容,生动教学形式,使学生掌握各类材料在各种加工过程中的物理冶金、化学冶金和力学冶金的现象与基本概念、基本原理和基本计算方法,并结合材料加工的各种综合实验,了解材料加工成形的基本过程,加深理论认识,掌握实验技能,提高分析问题和解决问题的能力。

为学习后续课程,从事工程技术工作和科学研究工作打下坚实的基础。

材料成型工艺基础

材料成型工艺基础

材料成型工艺基础材料成形:所有利用物理、化学、冶金原理使材料成形的方法,称之为材料成形加工工艺。

一、材料与材料科学材料是用来制作有用器件的物质,是人类生产和生活所必须的物质基础。

历史学家把人类社会的进展按其使用的材料类型划分为石器时代、青铜时代、铁器时代,而今正处于人工合成材料的新时代。

材料科学的研究内容材料科学是研究各种固体材料的成分、组织、性能和应用之间关系及其变化规律的科学,它包括四个差不多要素:材料的合成与制备,成分与组织结构,材料性能和使用性能。

材料的分类按化学成分:金属材料:钢、铸铁、铜、铝等高分子材料:塑料、橡胶、胶粘剂、纤维材料等陶瓷材料复合材料金属材料是如何得到的呢?冶炼---- 把金属从矿石中提炼出来,那个过程就叫金属的冶炼。

材料新技术芯片光纤超导材料二、材料成形技术1、课程性质材料成形基础是一门研究常用工程材料坯件及机器零件成型工艺原理的综合性技术基础学科。

2、材料成形加工在国民经济中的地位材料成形加工在工业生产的各个部门和行业都有应用,专门关于制造业来说更是具有举足轻重的作用。

制造业是指所有生产和装配制成品的企业群体的总称,包括机械制造、运输工具制造、电气设备、仪器外表、食品工业、服装、家具、化工、建材、冶金等,它在整个国民经济中占有专门大的比重。

统计资料显示,在我国,近年来制造业占国民生产总值GDP的比例已超过35%。

同时,制造业的产品还广泛地应用于国民经济的诸多其他行业,对这些行业的运行产生着不可忽视的阻碍。

因此,作为制造业的一项基础的和要紧的生产技术,材料成形加工在国民经济中占有十分重要的地位,同时在一定程度上代表着一个国家的工业和科技进展水平。

通过下面列举的数据,能够关心我们真切、具体地了解到成形加工对制造业和国民经济的阻碍。

据统计,占全世界总产量将近一半的钢材是通过焊接制成构件或产品后投入使用的;在机床和通用机械中铸件质量占70~80%,农业机械中铸件质量占40~70%;汽车中铸件质量占约20%,锻压件质量约占70%;飞机上的锻压件质量约占85%;发电设备中的要紧零件如主轴、叶轮、转子等均为锻件制成;家用电器和通信产品中60~80%的零部件是冲压件和塑料成形件。

材料成型(1)

材料成型(1)

分类:
1)按应力存在的时间分
① 临时应力:产生应力原因消除,应力就消除; ② 残余应力:产生应力原因消除后,仍然存在的应力。
② 化学处理方法:向金属液中加入少量的化学元素,促进形核或阻 止生长,使晶粒细化。 如孕育处理(影响形核过程)和变质处理 (影响生长过程)。
③ 微区成分扰动生核处理方法:向金属液中加入与金属液溶质含 量不同的同类金属,造成一定的成分起伏,降低形核所需能量,提 高形核率。
④ 动力学细化和物理处理方法:机械力或电磁力搅拌和震动。
1)等轴晶的获得与细化
形成条件:凝固界面前沿的液相中有①晶核来源,在液相中存在晶核 形成和长大所需的②过冷度。
细化原则: ①提高形核率②降低生长率
获得细小等轴晶的方法: ① 浇注过程和传热条件的控制:缓慢浇注,提供大量后续晶核; 减低浇注温度,控制浇注过热度,细化晶粒;提高冷却速度,增加 过冷度。
我国明朝科学家宋应星所著《天工开物》一书中,记载了冶铁、炼铜、 铸钟、锻铁、焊接、淬火等多种金属成形和改性方法及生产经验,是世 界上有关金属加工工艺最早的科学著作之一。
我国古代在材料加工工艺方面的科学技术曾在世界上长期居于领先地 位,但在封建社会的后期,社会和技术发展出现了停滞。
☆近现代:塑料制品,现代陶瓷制品的成形、复合材料成形 。
4. 铸件的收缩
1) 铸件的受阻收缩
自由收缩:仅考虑合金成分、温度等自身因素对收缩的影响,没 考虑收缩过程受到的阻碍。
受阻收缩:铸件在铸型中由于收到各种阻碍而使收缩不能自由进 行,这时产生的收缩为受阻收缩。
同一合金,受阻收缩率总小于自由收缩率。
如铝的自由收缩率为1.85-1.96%,当受阻时,收缩率为1.53%。
等轴晶: 优点: ①晶界夹杂缺陷分散,宏观偏析和热裂倾向小 ②成分均匀 ③强度、塑性和韧性较高 缺点:枝晶分枝发达,显微缩松较多,组织不够致密。 可通过晶粒细化得到改善。

材料成形技术基础答案_第2版_施江澜_赵占西主编-推荐下载

材料成形技术基础答案_第2版_施江澜_赵占西主编-推荐下载

第一章金属液态成形1.什么是液态合金的充型能力?它与合金的流动性有何关系?不同化学成分的合金为何流动性不同?为什么铸钢的充型能力比铸铁差?1 液态合金的充型能力是指熔融合金充满型腔,获得轮廓清晰、形状完整的优质铸件的能力。

2 流动性好,熔融合金充填铸型的能力强,易于获得尺寸准确、外形完整的铸件。

流动性不好,则充型能力差,铸件容易产生冷隔、气孔等缺陷。

3 成分不同的合金具有不同的结晶特性,共晶成分合金的流动性最好,纯金属次之,最后是固溶体合金。

4 相比于铸钢,铸铁更接近更接近共晶成分,结晶温度区间较小,因而流动性较好。

2. 既然提高浇注温度可提高液态合金的充型能力,但为什么又要防止浇注温度过高?浇铸温度过高会使合金的收缩量增加,吸气增多,氧化严重,反而是铸件容易产生缩孔、缩松、粘砂、夹杂等缺陷。

3. 缩孔和缩松的存在会减小铸件的有效承载面积,并会引起应力集中,导致铸件的力学性能下降。

缩孔大而集中,更容易被发现,可以通过一定的工艺将其移出铸件体外,缩松小而分散,在铸件中或多或少都存在着,对于一般铸件来说,往往不把它作为一种缺陷来看,只有要求铸件的气密性高的时候才会防止。

4 液态合金充满型腔后,在冷却凝固过程中,若液态收缩和凝固收缩缩减的体积得不到补足,便会在铸件的最后凝固部位形成一些空洞,大而集中的空洞成为缩孔,小而分散的空洞称为缩松。

浇不足是沙型没有全部充满。

冷隔是铸造后的工件稍受一定力后就出现裂纹或断裂,在断口出现氧化夹杂物,或者没有融合到一起。

出气口目的是在浇铸的过程中使型腔内的气体排出,防止铸件产生气孔,也便于观察浇铸情况。

而冒口是为避免铸件出现缺陷而附加在铸件上方或侧面的补充部分。

逐层凝固过程中其断面上固相和液相由一条界线清楚地分开。

定向凝固中熔融合金沿着与热流相反的方向按照要求的结晶取向进行凝固。

5. 定向凝固原则是在铸件可能出现缩孔的厚大部位安放冒口,并同时采用其他工艺措施,使铸件上远离冒口的部位到冒口之间建立一个逐渐递增的温度梯度,从而实现由远离冒口的部位像冒口方向顺序地凝固。

成形工艺过程

成形工艺过程

成形工艺过程
成形工艺过程涉及将材料塑造成所需形状和尺寸的技术和方法。

这个过程可以包括多个步骤,具体取决于所使用的材料和所需的最终产品。

以下是一些常见的成形工艺过程:
注塑成形:塑料颗粒被加热至熔化状态,然后注入模具中,冷却后形成所需形状。

铸造:液态金属被倒入模具中,冷却后形成金属零件。

冲压成形:通过压力和模具将金属板材或板材冲压成所需形状。

锻造:金属在加热状态下被锤打或压制,以形成所需形状和尺寸。

挤压成形:通过挤压机将材料推入模具中,形成所需形状。

这些工艺过程的选择取决于材料的类型、所需的形状和尺寸、生产量以及其他因素。

每种工艺都有其优点和局限性,因此需要根据具体情况进行选择。

材料成形技术金属材料成形基本原理

材料成形技术金属材料成形基本原理

图2-13 收缩应力的形成
图2-14 同时凝固原则
4)设法改善铸型、型芯的退让性,合理设置浇冒口。 5 )对铸件进行时效处理。自然时效、人工时效(去应力 退火)和共振时效。
1.1.3.3 铸件的变形与裂纹
1.铸件的变形 残留铸造应力超过铸件材料的屈服极限时产生的翘曲 变形。如图2-15所示的框架铸件,图2-16的T形梁,当刚度 不够时,将产生如图所示的变形。再如图 2-17所示的车床 床身的变形。
铸造:将液态金属浇注到与零件形状、尺寸相适应的铸 型型腔中,待其冷却凝固后,获得一定形状的毛坯或零 件的方法。铸造是生产机器零件毛坯的主要方法之一, 其实质是液态金属逐步冷却凝固成形。
铸造的优点:
1)可以铸出内腔、外形很复杂的毛坯; 2)工艺灵活性大。几乎各种合金,各种尺寸、形状、 重量和数量的铸件都能生产; 3)成本较低。原材料来源广泛,价格低廉。
热阻碍:铸件各部分由于冷却速度不同,收缩量 不同而引起的阻碍,由其引起的应力称热应力。
机械阻碍:铸型、型芯对铸件收缩的阻碍 , 由其 引起的应力称机械应力(收缩应力)。
1.热应力 由热阻碍引起,落砂后热应力仍存在于铸件内,是一 种残留铸造应力,以框架铸件为例,说明残留热应力的形 成过程,如图2-12所示,其热应力形成过程分三阶段。 第 一 阶 段, 两 者 都塑性 变形,无热应力; 第 二 阶 段, 一 塑 性, 一 弹性,仍无热应力; 第 三 阶 段, 两 者 均弹性 变 形, 冷却 慢 的 受拉 , 快的受压。残留热应力 和 合 金 的弹 性 模 量、 线 收 缩 系 数、 铸 件 各部分 壁 厚 差 别及 温 度 差成正 比。
图2-4铅锡合金的流动性与相图的关系
图2-5 结晶特性对流动性的影响 a)恒温下 b)一定温度范围

材料成形技术基础知识点总结

材料成形技术基础知识点总结

铸造:将熔融的液体浇注到与零件的形状相适应的铸型型腔中,冷却后获得逐渐的工艺方法。

1、铸造的实质利用了液体的流动形成。

2、铸造的特点A 适应性大(铸件分量、合金种类、零件形状都不受限制);B 成本低C 工序多,质量不稳定,废品率高D 力学性能较同样材料的锻件差。

力学性能差的原因是:铸造毛胚的晶粒粗大,组织疏松, 成份不均匀3、铸造的应用铸造毛胚主要用于受力较小,形状复杂(特别是腔内复杂)或者简单、分量较大的零件毛胚。

1、铸件的凝固(1)铸造合金的结晶结晶过程是由液态到固态晶体的转变过程.它由晶核的形成和长大两部份组成。

通常情况下,铸件的结晶有如下特点:A 以非均质形核为主B 以枝状晶方式生长为主.结晶过程中,晶核数目的多少是影响晶粒度大小的重要因素,因此可通过增加晶核数目来细化晶粒. 晶体生长方式决定了最终的晶体形貌,不同晶体生长方式可得到枝状晶、柱状晶、等轴晶或者混合组织等.(2)铸件的凝固方式逐渐的凝固方式有三种类型:A 逐层凝固B 糊状凝固C 中间凝固2、合金的铸造性能(1)流动性合金的流动性即为液态合金的充型能力,是合金本身的性能。

它反映了液态金属的充型能力,但液态金属的充型能力除与流动性有关,还与外界条件如铸型性质、浇注条件和铸件结构等因素有关,是各种因素的综合反映。

生产上改善合金的充型能力可以从一下各方面着手:A 选择挨近共晶成份的趋于逐层凝固的合金,它们的流动性好;B 提高浇注温度,延长金属流动时间;C 提高充填能力D 设置出气冒口,减少型内气体,降低金属液流动时阻力。

(2)收缩性A 缩孔、缩松形成与铸件的液态收缩和凝固收缩的过程中.对于逐层凝固的合金由于固液两相共存区很小甚至没有,液固界面泾渭分明,已凝固区域的收缩就能顺利得到相邻液相的补充,如果最后凝固出的金属得不到液态金属的补充,就会在该处形成一个集中的缩孔。

适当控制凝固顺序,让铸件按远离冒口部份最先凝固,然后朝冒口方向凝固, 最后才是冒口本身的凝固(即顺序凝固方式) ,就把缩孔转移到最后凝固的部位—- 冒口中去,而去除冒口后的铸件则是所要的致密铸件。

材料成形技术1-1.铸造工艺基础

材料成形技术1-1.铸造工艺基础
2020/12/10
同时凝固
2020/12/10
3、铸件的变形与裂纹
铸造应力大于屈服强度 铸造应力大于抗拉强度
变形 裂纹
2020/12/10
(1)铸件的变形
2020/12/10
防止变形方法
• 设计铸件时壁厚均匀,形状对称。 • 工艺上采取同时凝固。 • 模型制成与铸件变形相反的形状,抵消
铸件变形。 • 时效。
(1)(2)体收缩:从液态到常温体积改 变量。 (3)线收缩:固态合金由高温到常温的 尺寸改变量。 各种合金收缩率及其计算见5、6页。
影响收缩的因素
1)化学成分 碳钢:含碳量增加,凝固收缩增加,固态收
缩略减; 灰铸铁:碳、硅增加,收缩率减小;
硫阻碍石墨化,增加收缩率。 2)浇注温度 3)铸件结构和铸型条件
(1)合金的流动性 ——液态合金的流动能力。
2020/12/10
2020/12/10
决定合金流动性的因素
1)合金的种类 熔点:高熔点合金凝固快,流动性差。 导热率 液体粘度
2020/12/10
2)合金的成分
2020/12/10
3)杂质与含气量
2020/12/10
(2)浇注条件
• 浇注温度 灰铸铁:1200℃~1380℃ 铸钢:1520℃~1620℃ 铝合金:680℃~780℃
合金的液态收缩和凝固收缩越大(铸钢 、白口铁、铝青铜),越容易形成缩孔 。
浇注温度高,液态收缩大,容易形成缩 孔。
结晶温度范围宽的合金,倾向于糊状凝 固,易形成缩松。纯金属和共晶合金倾 向于逐层凝固,易形成集中缩孔。
2020/12/10
(2)缩孔和缩松的防止
2020/12/10
2020/12/10

工程材料及成形技术基础课课后习题参考答案

工程材料及成形技术基础课课后习题参考答案

工程材料及成‎形技术基础课‎课后习题参考‎答案第一章:1-1 机械零件在工‎作条件下可能‎承受哪些负荷‎?这些负荷对零‎件产生什么作‎用?答:机械零件在工‎作条件下可能‎承受到力学负‎荷、热负荷或环境‎介质的作用(单负荷或复合‎负荷的作用)。

力学负荷可使‎零件产生变形‎或断裂;热负荷可使零‎件产生尺寸和‎体积的改变,产生热应力,热疲劳,高温蠕变,随温度升高强‎度降低(塑性、韧性升高),承载能力下降‎;环境介质可使‎金属零件产生‎腐蚀和摩擦磨‎损两个方面、对高分子材料‎产生老化作用‎。

1-3 σs、σ0.2和σb含义‎是什么?什么叫比强度‎?什么叫比刚度‎?答:σs-P s∕F0,屈服强度,用于塑性材料‎。

σ0.2-P0.2∕F0,产生0.2%残余塑性变形‎时的条件屈服‎强度,用于无明显屈‎服现象的材料‎。

σb-P b∕F0,抗拉强度,材料抵抗均匀‎塑性变形的最‎大应力值。

比强度-材料的强度与‎其密度之比。

比刚度-材料的弹性模‎量与其密度之‎比。

思考1-1、1-2.2-3 晶体的缺陷有‎哪些?可导致哪些强‎化?答:晶体的缺陷有‎:⑴点缺陷——空位、间隙原子和置‎换原子,是导致固溶强‎化的主要原因‎。

⑵线缺陷——位错,是导致加工硬‎化的主要原因‎。

⑶面缺陷——晶界,是细晶强化的‎主要原因。

2-5 控制液体结晶‎时晶粒大小的‎方法有哪些?答:见P101.3.4.2液态金属结‎晶时的细晶方‎法。

⑴增加过冷度;⑵加入形核剂(变质处理);⑶机械方法(搅拌、振动等)。

2-8 在铁-碳合金中主要‎的相是哪几个‎?可能产生的平‎衡组织有哪几‎种?它们的性能有‎什么特点?答:在铁-碳合金中固态‎下主要的相有‎奥氏体、铁素体和渗碳‎体。

可能产生的室‎温平衡组织有‎铁素体加少量‎的三次渗碳体‎(工业纯铁),强度低塑性好‎;铁素体加珠光‎体(亚共析钢),珠光体(共析钢),珠光体加二次‎渗碳体(过共析钢),综合性能好;莱氏体加珠光‎体加二次渗碳‎体(亚共晶白口铸‎铁),莱氏体(共晶白口铸铁‎),莱氏体加一次‎渗碳体(过共晶白口铸‎铁),硬度高脆性大‎。

材料成形过程技术综合概述

材料成形过程技术综合概述
❖ 一般将焊接方法分为熔焊、压焊和钎焊三 大类。
1.2.3.1 焊接成形的基本问题
➢ (冶金)原理: 焊接热过程;物化冶金过 程;应力应变过程。
➢ 工艺及质量控制: 焊接方法的工艺特点; 工艺参数,焊接缺陷及检测。
➢ 设备与控制: 焊接电源;控制系统;配套 设备。
1.2.3.2 焊接技术的发展
真空状态)等; ⑶ 直接产生于加工材料中的质量力
实现机械基本过程的能源主要是电能源和化学能
二、 能 量 流 程 (续)
基本过程为热过程的能量流程
热基本过程所需热量通常由电能、化学能或机械能 转化而得。
热量可在加工材料内部直接产生(直接加热); 也可在加工材料外部产生,然后再通过传导、对流、 辐射等传递给加工材料(间接加热)。
1.2.1 凝固成形
凝固成形: 熔炼化学成分合格的金属,并 将熔融液态金属浇注、压射或吸入预制的型 腔中,凝固成为一定形状和性能的毛坯和零 件。凝固成形工艺有铸造、液态冲压和液态 模锻等。
铸造成形工艺的特征是质量不变过程, 它包括液态金属充填型腔和冷却凝固两个基 本过程。充填主要是机械过程,而凝固是热 过程。
1.2.2 塑 性 成 形
塑性成形:利用金属在外力作用下所产生的塑性 变形,来获得具有一定形状、尺寸和机械性能的 原材料、毛坯或零件的工艺方法。称为塑性成形, 亦称压力加工。
常见方法:轧制、挤压、拉拔、体积成形和板料 冲压等。
塑性成形属直通过程,主要基本过程是塑性 变形;能量类型主要是电能和化学能。形状信息 是由含有一定形状信息量的工模具和工模具与被 加工材料的相对运动共同产生,性能信息来自材 料自身性质和成形过程中的转变特性。
发散流程 对应于质量减少过程,其特点是零件最终的几 何形状局限在材料的初始几何形状内。也就是说,材料改变 是通过去除一部分材料形成的。相应的加工方法有传统的切 削加工,电火花加工、电解加工、热切割和冲裁等。发散流 程的材料只能是固态。

(完整版)工程材料及材料成型技术基础

(完整版)工程材料及材料成型技术基础
17
§1-1 材料原子(或分子)的相互作用
1、离子键 当正电性金属原子与负电性非金属
原子形成化合物时,通过外层电子的重 新分布和正、负离子间的静电作用而相 互结合,故称这种结合键为离子键。
离子晶体硬度高,强度大,脆性大。 如氯化钠,陶瓷。
18
2、共价键 当两个相同的原子或性质相差不大的
原子相互接近时,它们的原子间不会有电 子转移。此时原子间借共用电子对所产生 的力而结合,这种结合方式称为共价键。
14
3.陶瓷材料 ① 普通陶瓷—主要为硅、铝氧化物的硅酸盐材料. ② 特种陶瓷—高熔点的氧化物、碳化物、氮化物
等烧结材料。 ③ 金属陶瓷—用生产陶瓷的工艺来制取的金属与
碳化物或其它化合物的粉末制品。 4.复合材料 是由两种或两种以上的材料组合而成的材料。 ①按基体相种类分:聚合物基、金属基、 陶瓷基、 石墨基等。 ②按用途分:结构、功能、智能复合材料。
15
本部分重点
1)工程材料的概念
– 制造工程结构和机器零件使用的材料
2)工程材料的分类
• 金属材料
钢铁材料 有色金属及其合金
• 有机高分子材料
塑料 橡胶等
• 陶瓷材料 • 复合材料
16
第一章 工程材料的结构与性能
§1-1 材料原子(或分子)的相互作用
当大量原子(或分子)处于聚集状态时, 它们之间以键合方式相互作用。由于组成 不同物质的原子结构各不相同,原子间的 结合键性质和状态存在很大区别。
8
绪论
一、材料的发展史
材料(metals) 是人类用来制作各种产品的物质,是 先于人类存在的,是人类生活和生产的物质基础。 反映人类社会文明的水平。
1 . 石器时代 :古猿到原始人的漫长进化过程。原料: 燧石和石英石。 2. 新石器时代:原始社会末期开始用火烧制陶器。 3. 青铜器时代:夏(公元前2140年始)以前就开始了 4. 铁器时代:春秋战国时期(公元前770~221年)开始 大量使用铁器
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三、金属基复合材料的成型
1. 金属基复合材料的分类 • 整体复合材料
• 表面复合材料
2.整体复合材料的成型
1)粉末冶金法 颗粒增强铁基复合材料多采用成熟的粉 末冶金法来制备,即将增强体与基体合金 粉末混合后冷压或热压烧结,也可以用热 等静压的工艺。
2.整体复合材料的成型
2)外加增强体颗粒法 外加增强体颗粒法是用铸造法制备金属 基复合材料的一种简单常用的方法,即将 固态的增强体颗粒逐步加入并混合于液态 金属中制得金属基复合材料。 采用粉料供给器均匀加入增强相材料或 采用超声波、机械搅拌或半固态铸造法等 。
固态成形技术
塑性成形技术 粉末冶金技术
连接成形技术
– – 焊接成形技术
绪论
4.本课程的目的
材料研究――材料制备――材料成型(产
品)――终目的。
– 常用工程材料成型工艺的知识,
– 工艺分析的能力,
– 了解现代材料成型的先进工艺、技术和发展趋
势。
第一篇 其他材料的成形
概述
其他材料是除金属材料以外的总称,主 要包括:有机高分子材料、无机非金属材 料和复合材料。 为什么要研究其他材料的成型:非金属 材料最突出得到特点是:密度小、重量轻 、抗腐蚀性能优良且电绝缘性好;成形工 艺简单,生产成本较低,应用前景广泛。
3. 压塑成形
• 当塑料预热,因流动性好,可降低成型压 力; • 模压温度:指成型时的模具温度。提高模 温可缩短成型周期,但塑料是热不良导体 ,太高的模温会使内部的塑料得不到应有 的固化。 • 模具温度在一定范围提高,也可以降低成 型压力,但应防止模具温度过高导致塑料 固化而失去降低成型压力的可能性。
1)压塑成形:
压制成型分为:模压法和层压:是将粉状、 粒状的塑料原料或片状的塑料坯料(层压法)放 入模具中,经加热和加压而成形为塑料制品的方 法。 材料:热固性塑料如酚醛树脂等 设备:压机 产品:电器开关、插座、汽车方向盘等。
3. 压塑成形
模压 层压
3. 压塑成形
产品:
3. 压塑成形
2) 成形过程:
3. 压塑成形
5)部分热固性塑料成型压力和温度
第二章 复合材料的成型加工
复合材料是由有机高分子、无机非金属或金 属等几类不同材料人工复合而成的新型材料。它 既保留原组分材料的主要特性,又通过复合效应 获得原组分所不具备的优越的综合性能。 组成复合材料有两类物质:
– 一类是基体材料――形成几何形状并起粘结作用,如树 脂、陶瓷、金属等; – 另一类是增强材料,起提高强度或韧化作用,如纤维 、颗粒等。
2. 挤塑成形
4)挤出工艺参数:
• 挤出机料筒温度:温度由低到高:加料段、压缩 段、均化段。防止加料段温度过高,否则导致塑 料在这段螺杆与料筒之间熔融,无法有效输送到 螺杆前端。 • 挤出模具温度:略高于料筒均化段温度,较高的 口模温度有利于降低离模膨胀,容易得到表面光 洁的制品;但过高的温度会引起塑料降解,甚至 烧焦。
三、塑料制件的成形方法
塑料成形: – 原材料种类 – 加工设备 – 最终产品的结构特征
1. 注塑成型
1)注塑成型又称注射成型, 将热塑性塑料或某些热固性塑料加工成 零件的加工方法。 采用注射机注射成型
1. 注塑成型
可制造重量大到数公斤,小到数克的各 种形状复杂的注塑件。
1. 注塑成型
2)流程: 将粉状的塑料原料经料斗装入料桶,并 在其内加热至熔融状态,在注射机柱塞或 螺杆作用下注入模具,冷却后脱模即得所 需形状的塑料制品。
1. 注塑成型
5)注塑常出现的问题
2. 挤塑成形
1)挤塑成形也称挤出成形 是将粉料或颗粒的塑料原料加入挤压机 的料桶中,加热软化,在螺旋螺杆的作用 下,使塑料受挤压前移通过口模,冷却后 制成等截面连续制品的方法。生产板、管 、型、棒、丝材等。
2. 挤塑成形
– 热固及热塑性塑料 – 挤出机
2. 挤塑成形
1. 注塑成型
– 时间: 一个生产周期:完成一次注射所需时间。 包括: 充模时间 3~5秒 注射时间 保压时间 20~120秒 闭模冷却时间 30~120秒
1. 注塑成型
4)成形前准备
– 原材料的预处理 颗粒的基本情况 干燥--方法和温度 – 料筒的处理 清理料筒,专用料筒 – 嵌件的处理 预热处理--防止对母体造成伤害
1. 注塑成型
1. 注塑成型
3)注射形成工艺的主要因素:
– 注射温度:提高温度-充模易,零件表面光洁 ,但高的熔体温度使塑料降解,力学性能急剧 下降; – 模具温度:影响充型、模塑成型周期、制品的 内应力等-低模温:充型困难;高模温:冷却 时间长――生产周期长,分子链松弛等。
1. 注塑成型
– 注射压力:影响充模能力; 包括:塑化压力和注射压力。 塑化压力:背压,是指螺杆顶部熔料在螺杆转 动时所受到的压力:提高背压使剪切力提高,温 度也会提高,塑化率下降,小于2.0MPa; 注射压力:以拄塞或螺杆顶部对塑料施加的压 力,克服塑料流动阻力, 提高冲模速度,对熔料 进行压实。
材料成形技术
四川大学 杨屹主讲
绪论
1. 科学与技术
科学 ? 技术 ?
基础 资源 应用 财富
绪论
2.材料成形技术 材料成形技术是以各种工艺方法将材料 制备成具有一定结构形式和形状工件的技 术。 简单而言: 工件的制备方法!
绪论
3. 材料成形的工艺方法 液态成形技术
– – – – 金属的液态成形 塑料的液态成形
一、塑料的组成和分类
– 热固性塑料:以缩聚反应合成的树脂为基础, 加入多种添加剂组成的塑料。不可反复加热重塑 ,固化后,分子为网状的体型结构,呈不溶不熔 的特性。常用:酚醛塑料、有机硅塑料等。
塑料的特性决定了其成形方法: 热塑性:通过温度的降低成形 热固性:合成反应成形
二、工程塑料的工艺性能
1. 流动性:充型的基础 – 直接影响成型产品的质量 – 塑料材料的特点所决定――温度:A. 分解,B.聚 合, 方法:润滑剂如:烃类,酯类等,增塑剂 。 2. 结晶性: – 表现出晶体的性质――控制条件可改善产品性 能。
二、工程塑料的工艺性能
3 . 吸湿性 – 极性基团――吸水――气孔(泡) 4. 收缩性: 5. 热敏性: – 对热的敏感程度。
三、塑料制件的成形方法
塑料工业主要是由塑料生产和塑料制品 生产两大部分构成。
– 塑料生产是指树脂及塑料原材料的生产,通常 是由石化厂完成。 – 塑料制品生产(即塑料的成形加工)是采用各 种成形加工手段将粉状、粒状、溶液、糊状等 各种形态的塑料原料制成所需形状的制品或坯 件的过程。
3. 压塑成形
3)主要设备: 液压机 主要压制模具:与注射模具相似。有型腔 、合模导向机构、抽芯机构、排气结构、 加热冷却系统等,但没有浇注系统,只有 加料室。
3. 压塑成形
3. 压塑成形
4)主要控制因素:成型压力、模压温度和加 料量。 • 高的成型压力:用于压塑率高的塑料,为 使成型压力降低,可将松散的色料原料预 压成块状; 预压:将松散粉或纤维塑料,先用冷压法 ,压成质量一定,形状规整的密实体的作 业。
2. 挤塑成形
3)生产装置: 挤出机、挤出模具、冷却定型装置、 牵引装置、切割或卷取装置及控制系统组 成。其中:挤出机是关键装置。 挤出机: 挤压系统、传动系统、加热冷却系统 组成。关键部件是:螺杆。
2. 挤塑成形
2. 挤塑成形
螺杆:加料段、压缩段、均化段三个阶段
加料段:4~8D 传送至压缩段, 受热; 压缩段:受热, 前移,连续体, 排除气体; 均化段:6~10D,均匀塑化,稳定的挤出压力
将合成树脂、固化剂、固化促进剂、填料、 润滑剂、色料等按一定配比混合并定量加入高温 的压塑模具型腔和加料室中,然后将模具闭合。
– 热固性塑料:在热作用下,固转熔融状态,在压力下 充型,交联反应,转固态; – 热塑性塑料:在热作用下,固转熔融状态,在压力下 充型,冷却,固化脱模;
比较两种塑料的成形过程!!!
2.整体复合材料的成型
成形方法: • 以铸造成形工艺为基础; • 核心是进行增强相颗粒的合成反应 • 关键是合成过程控制:
– 控制反应速度 – 控制颗粒大小和数量
2.整体复合材料的成型
(2)自蔓延高温合成(SHS) 燃烧合成(Combustion Synthesis, 缩写 CS ) , 也 称 为 自 蔓 延 高 温 合 成 ( Selfpropagating High-temperature Synthesis , 缩 写 SHS),是在一定的气氛中点燃粉末压坯, 产生化学反应,其放出的生成热使邻近的 物料温度骤然升高而引发新的化学反应, 以燃烧波的形式蔓延通过整个反应物,同 时反应物转变为生成物(产品)。
2.整体复合材料的成型
问题: • 分布:增强相往往会因与基体比重不同而 产生凝聚、上浮或下沉,难以均匀分布; • 界面:润湿性问题,表面要求高 • 粘度:粘度随增强项含量的提高,粘度提 高,成形性恶化; • 缺陷:制件中容易形成气孔、夹杂;
2.整体复合材料的成型
3)原位反应复合法
原位反应复合法是一种新型的金属基复合材料的制 备方法,由Koczak等人首先于1989年提出,但实际上最早 出现于1967年前苏联Merzhanov用自蔓延高温合成法(SHS )合成TiB2/Cu功能梯度材料的研究中。 与以上两种复合工艺相比,原位反应复合法的增强体 颗粒尺寸比较细小,且表面无污染,与基体的结合为冶金 结合,避免了与基体浸润不良的问题,因而结合良好;具 有工艺简单,成本低的特点。
2. 挤塑成形
挤出速度和牵引速度:与生产效率有关。但 过高的挤出速度容易引起塑料熔体表面破碎;而 牵引速度的提高会形成塑料熔体的拉伸,适合的 拉伸比(口模与芯棒所形成的空间的截面积与制 品截面积之比)可缓解熔体破裂的产生。 小结: 材料:热固与热塑 设备:挤出机:螺杆 产品:材(型)
相关文档
最新文档