MAX2015EUA中文资料
MAX13085EESA-T中文资料
General DescriptionThe MAX13080E–MAX13089E +5.0V, ±15kV ESD-protect-ed, RS-485/RS-422 transceivers feature one driver and one receiver. These devices include fail-safe circuitry,guaranteeing a logic-high receiver output when receiver inputs are open or shorted. The receiver outputs a logic-high if all transmitters on a terminated bus are disabled (high impedance). The MAX13080E–MAX13089E include a hot-swap capability to eliminate false transitions on the bus during power-up or hot insertion.The MAX13080E/MAX13081E/MAX13082E feature reduced slew-rate drivers that minimize EMI and reduce reflections caused by improperly terminated cables, allowing error-free data transmission up to 250kbps. The MAX13083E/MAX13084E/MAX13085E also feature slew-rate-limited drivers but allow transmit speeds up to 500kbps. The MAX13086E/MAX13087E/MAX13088E driver slew rates are not limited, making transmit speeds up to 16Mbps possible. The MAX13089E slew rate is pin selectable for 250kbps,500kbps, and 16Mbps.The MAX13082E/MAX13085E/MAX13088E are intended for half-duplex communications, and the MAX13080E/MAX13081E/MAX13083E/MAX13084E/MAX13086E/MAX13087E are intended for full-duplex communica-tions. The MAX13089E is selectable for half-duplex or full-duplex operation. It also features independently programmable receiver and transmitter output phase through separate pins.The MAX13080E–MAX13089E transceivers draw 1.2mA of supply current when unloaded or when fully loaded with the drivers disabled. All devices have a 1/8-unit load receiver input impedance, allowing up to 256transceivers on the bus.The MAX13080E/MAX13083E/MAX13086E/MAX13089E are available in 14-pin PDIP and 14-pin SO packages.The MAX13081E/MAX13082E/MAX13084E/MAX13085E/MAX13087E/MAX13088E are available in 8-pin PDIP and 8-pin SO packages. The devices operate over the com-mercial, extended, and automotive temperature ranges.ApplicationsUtility Meters Lighting Systems Industrial Control Telecom Security Systems Instrumentation ProfibusFeatures♦+5.0V Operation♦Extended ESD Protection for RS-485/RS-422 I/O Pins±15kV Human Body Model ♦True Fail-Safe Receiver While Maintaining EIA/TIA-485 Compatibility ♦Hot-Swap Input Structures on DE and RE ♦Enhanced Slew-Rate Limiting Facilitates Error-Free Data Transmission(MAX13080E–MAX13085E/MAX13089E)♦Low-Current Shutdown Mode (Except MAX13081E/MAX13084E/MAX13087E)♦Pin-Selectable Full-/Half-Duplex Operation (MAX13089E)♦Phase Controls to Correct for Twisted-Pair Reversal (MAX13089E)♦Allow Up to 256 Transceivers on the Bus ♦Available in Industry-Standard 8-Pin SO PackageMAX13080E–MAX13089E+5.0V , ±15kV ESD-Protected, Fail-Safe, Hot-Swap, RS-485/RS-422 Transceivers________________________________________________________________Maxim Integrated Products 1Ordering Information19-3590; Rev 1; 4/05For pricing, delivery, and ordering information,please contact Maxim/Dallas Direct!at 1-888-629-4642, or visit Maxim’s website at .Selector Guide, Pin Configurations, and Typical Operating Circuits appear at end of data sheet.Ordering Information continued at end of data sheet.M A X 13080E –M A X 13089E+5.0V , ±15kV ESD-Protected, Fail-Safe, Hot-Swap, RS-485/RS-422 Transceivers 2_______________________________________________________________________________________ABSOLUTE MAXIMUM RATINGSDC ELECTRICAL CHARACTERISTICS(V CC = +5.0V ±10%, T A = T MIN to T MAX , unless otherwise noted. Typical values are at V CC = +5.0V and T A = +25°C.) (Note 1)Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.(All Voltages Referenced to GND)Supply Voltage (V CC ).............................................................+6V Control Input Voltage (RE , DE, SLR,H/F , TXP, RXP)......................................................-0.3V to +6V Driver Input Voltage (DI)...........................................-0.3V to +6V Driver Output Voltage (Z, Y, A, B).............................-8V to +13V Receiver Input Voltage (A, B)....................................-8V to +13V Receiver Input VoltageFull Duplex (A, B)..................................................-8V to +13V Receiver Output Voltage (RO)....................-0.3V to (V CC + 0.3V)Driver Output Current.....................................................±250mAContinuous Power Dissipation (T A = +70°C)8-Pin SO (derate 5.88mW/°C above +70°C).................471mW 8-Pin Plastic DIP (derate 9.09mW/°C above +70°C).....727mW 14-Pin SO (derate 8.33mW/°C above +70°C)...............667mW 14-Pin Plastic DIP (derate 10.0mW/°C above +70°C)...800mW Operating Temperature RangesMAX1308_EC_ _.................................................0°C to +75°C MAX1308_EE_ _..............................................-40°C to +85°C MAX1308_EA_ _............................................-40°C to +125°C Junction Temperature......................................................+150°C Storage Temperature Range.............................-65°C to +150°C Lead Temperature (soldering, 10s).................................+300°CMAX13080E–MAX13089E+5.0V , ±15kV ESD-Protected, Fail-Safe, Hot-Swap, RS-485/RS-422 Transceivers_______________________________________________________________________________________3DC ELECTRICAL CHARACTERISTICS (continued)(V CC = +5.0V ±10%, T A = T MIN to T MAX , unless otherwise noted. Typical values are at V CC = +5.0V and T A = +25°C.) (Note 1)M A X 13080E –M A X 13089E+5.0V , ±15kV ESD-Protected, Fail-Safe, Hot-Swap, RS-485/RS-422 Transceivers 4_______________________________________________________________________________________DRIVER SWITCHING CHARACTERISTICSMAX13080E/MAX13081E/MAX13082E/MAX13089E WITH SRL = UNCONNECTED (250kbps)(V CC = +5.0V ±10%, T A = T MIN to T MAX , unless otherwise noted. Typical values are at V CC = +5.0V and T A = +25°C.)RECEIVER SWITCHING CHARACTERISTICSMAX13080E/MAX13081E/MAX13082E/MAX13089E WITH SRL = UNCONNECTED (250kbps)(V CC = +5.0V ±10%, T A = T MIN to T MAX , unless otherwise noted. Typical values are at V CC = +5.0V and T A = +25°C.)MAX13080E–MAX13089E+5.0V , ±15kV ESD-Protected, Fail-Safe, Hot-Swap, RS-485/RS-422 Transceivers_______________________________________________________________________________________5DRIVER SWITCHING CHARACTERISTICSMAX13083E/MAX13084E/MAX13085E/MAX13089E WITH SRL = V CC (500kbps)(V CC = +5.0V ±10%, T A = T MIN to T MAX , unless otherwise noted. Typical values are at V CC = +5.0V and T A = +25°C.)RECEIVER SWITCHING CHARACTERISTICSMAX13083E/MAX13084E/MAX13085E/MAX13089E WITH SRL = V CC (500kbps)(V CC = +5.0V ±10%, T A = T MIN to T MAX , unless otherwise noted. Typical values are at V CC = +5.0V and T A = +25°C.)M A X 13080E –M A X 13089E+5.0V , ±15kV ESD-Protected, Fail-Safe, Hot-Swap, RS-485/RS-422 Transceivers 6_______________________________________________________________________________________DRIVER SWITCHING CHARACTERISTICSMAX13086E/MAX13087E/MAX13088E/MAX13089E WITH SRL = GND (16Mbps)(V CC = +5.0V ±10%, T A = T MIN to T MAX , unless otherwise noted. Typical values are at V CC = +5.0V and T A = +25°C.)RECEIVER SWITCHING CHARACTERISTICSMAX13086E/MAX13087E/MAX13088E/MAX13089E WITH SRL = GND (16Mbps)(V CC = +5.0V ±10%, T A = T MIN to T MAX , unless otherwise noted. Typical values are at V CC = +5.0V and T A = +25°C.)Note 2:∆V OD and ∆V OC are the changes in V OD and V OC , respectively, when the DI input changes state.Note 3:The short-circuit output current applies to peak current just prior to foldback current limiting. The short-circuit foldback outputcurrent applies during current limiting to allow a recovery from bus contention.MAX13080E–MAX13089E+5.0V , ±15kV ESD-Protected, Fail-Safe, Hot-Swap, RS-485/RS-422 Transceivers_______________________________________________________________________________________70.800.901.501.101.001.201.301.401.60-40-10520-253550958011065125SUPPLY CURRENT vs. TEMPERATURETEMPERATURE (°C)S U P P L Y C U R R E N T (m A )0201040305060021345OUTPUT CURRENTvs. RECEIVER OUTPUT-HIGH VOLTAGEM A X 13080E -89E t o c 02OUTPUT HIGH VOLTAGE (V)O U T P U T C U R R E N T (m A )20104030605070021345OUTPUT CURRENTvs. RECEIVER OUTPUT-LOW VOLTAGEM A X 13080E -89E t o c 03OUTPUT LOW VOLTAGE (V)O U T P U T C U R R E N T (m A )4.04.44.24.84.65.25.05.4RECEIVER OUTPUT-HIGH VOLTAGEvs. TEMPERATURETEMPERATURE (°C)O U T P U T H I G H V O L T A G E (V )-40-10520-2535509580110651250.10.70.30.20.40.50.60.8RECEIVER OUTPUT-LOW VOLTAGEvs. TEMPERATURETEMPERATURE (°C)O U T P U T L O W V O L T A G E (V )-40-10520-25355095801106512502040608010012014016012345DRIVER DIFFERENTIAL OUTPUT CURRENT vs. DIFFERENTIAL OUTPUT VOLTAGEDIFFERENTIAL OUTPUT VOLTAGE (V)D I F FE R E N T I A L O U T P U T C U R R E N T (m A )2.02.82.43.63.24.44.04.8DRIVER DIFFERENTIAL OUTPUT VOLTAGE vs. TEMPERATURED I F FE R E N T I A L O U T P U T V O L T A G E (V )-40-10520-253550958011065125TEMPERATURE (°C)40201008060120140180160200-7-5-4-6-3-2-1012354OUTPUT CURRENT vs. TRANSMITTEROUTPUT-HIGH VOLTAGEOUTPUT HIGH VOLTAGE (V)O U T P U T C U R R E N T (m A )60402080100120140160180200042681012OUTPUT CURRENT vs. TRANSMITTEROUTPUT-LOW VOLTAGEOUTPUT-LOW VOLTAGE (V)O U T P U T C U R R E N T (m A )Typical Operating Characteristics(V CC = +5.0V, T A = +25°C, unless otherwise noted.)M A X 13080E –M A X 13089E+5.0V , ±15kV ESD-Protected, Fail-Safe, Hot-Swap, RS-485/RS-422 Transceivers 8_______________________________________________________________________________________21543679810SHUTDOWN CURRENT vs. TEMPERATUREM A X 13080E -89E t o c 10S H U T D O W N C U R R E N T (µA )-40-10520-253550958011065125TEMPERATURE (°C)600800700100090011001200DRIVER PROPAGATION DELAY vs. TEMPERATURE (250kbps)D R I VE R P R O P A G A T I O N D E L A Y (n s )-40-10520-253550958011065125TEMPERATURE (°C)300400350500450550600DRIVER PROPAGATION DELAY vs. TEMPERATURE (500kbps)D R I VE R P R O P A G A T I O N D E L A Y (n s )-40-10520-253550958011065125TEMPERATURE (°C)1070302040506080DRIVER PROPAGATION DELAY vs. TEMPERATURE (16Mbps)D R I VE R P R O P A G A T I O N D E L A Y (n s )-40-10520-253550958011065125TEMPERATURE (°C)40201008060120140160180RECEIVER PROPAGATION DELAYvs. TEMPERATURE (250kpbs AND 500kbps)R E C E I V E R P R O P A G A T I O N D E L A Y (n s )-40-10520-253550958011065125TEMPERATURE (°C)40201008060120140160180RECEIVER PROPAGATION DELAYvs. TEMPERATURE (16Mbps)R EC E I V E R P R O P A G AT I O N D E L A Y (n s )-40-10520-253550958011065125TEMPERATURE (°C)2µs/div DRIVER PROPAGATION DELAY (250kbps)DI 2V/divV Y - V Z 5V/divR L = 100Ω200ns/divRECEIVER PROPAGATION DELAY(250kbps AND 500kbps)V A - V B 5V/divRO 2V/divTypical Operating Characteristics (continued)(V CC = +5.0V, T A = +25°C, unless otherwise noted.)MAX13080E–MAX13089E+5.0V , ±15kV ESD-Protected, Fail-Safe, Hot-Swap, RS-485/RS-422 Transceivers_______________________________________________________________________________________9Test Circuits and Waveforms400ns/divDRIVER PROPAGATION DELAY (500kbps)DI 2V/divR L = 100ΩV Y - V Z 5V/div10ns/div DRIVER PROPAGATION DELAY (16Mbps)DI 2V/divR L = 100ΩV Y 2V/divV Z 2V/div40ns/divRECEIVER PROPAGATION DELAY (16Mbps)V B 2V/divR L = 100ΩRO 2V/divV A 2V/divTypical Operating Characteristics (continued)(V CC = +5.0V, T A = +25°C, unless otherwise noted.)Figure 2. Driver Timing Test CircuitM A X 13080E –M A X 13089E+5.0V , ±15kV ESD-Protected, Fail-Safe, Hot-Swap, RS-485/RS-422 Transceivers 10______________________________________________________________________________________Test Circuits and Waveforms (continued)Figure 4. Driver Enable and Disable Times (t DHZ , t DZH , t DZH(SHDN))DZL DLZ DLZ(SHDN)MAX13080E–MAX13089E+5.0V , ±15kV ESD-Protected, Fail-Safe, Hot-Swap, RS-485/RS-422 TransceiversTest Circuits and Waveforms (continued)Figure 6. Receiver Propagation Delay Test CircuitM A X 13080E –M A X 13089E+5.0V , ±15kV ESD-Protected, Fail-Safe, Hot-Swap, RS-485/RS-422 TransceiversMAX13080E–MAX13089E+5.0V , ±15kV ESD-Protected, Fail-Safe, Hot-Swap, RS-485/RS-422 TransceiversMAX13080E/MAX13083E/MAX13086EMAX13081E/MAX13084E/MAX13086E/MAX13087EFunction TablesM A X 13080E –M A X 13089E+5.0V , ±15kV ESD-Protected, Fail-Safe, Hot-Swap, RS-485/RS-422 Transceivers MAX13082E/MAX13085E/MAX13088EFunction Tables (continued)MAX13089EDetailed Description The MAX13080E–MAX13089E high-speed transceivers for RS-485/RS-422 communication contain one driver and one receiver. These devices feature fail-safe circuit-ry, which guarantees a logic-high receiver output when the receiver inputs are open or shorted, or when they are connected to a terminated transmission line with all dri-vers disabled (see the Fail-Safe section). The MAX13080E/MAX13082E/MAX13083E/MAX13085E/ MAX13086E/MAX13088E/MAX13089E also feature a hot-swap capability allowing line insertion without erroneous data transfer (see the Hot Swap Capability section). The MAX13080E/MAX13081E/MAX13082E feature reduced slew-rate drivers that minimize EMI and reduce reflec-tions caused by improperly terminated cables, allowing error-free data transmission up to 250kbps. The MAX13083E/MAX13084E/MAX13085E also offer slew-rate limits allowing transmit speeds up to 500kbps. The MAX13086E/MAX13087E/MAX13088Es’ driver slew rates are not limited, making transmit speeds up to 16Mbps possible. The MAX13089E’s slew rate is selectable between 250kbps, 500kbps, and 16Mbps by driving a selector pin with a three-state driver.The MAX13082E/MAX13085E/MAX13088E are half-duplex transceivers, while the MAX13080E/MAX13081E/ MAX13083E/MAX13084E/MAX13086E/MAX13087E are full-duplex transceivers. The MAX13089E is selectable between half- and full-duplex communication by driving a selector pin (H/F) high or low, respectively.All devices operate from a single +5.0V supply. Drivers are output short-circuit current limited. Thermal-shutdown circuitry protects drivers against excessive power dissi-pation. When activated, the thermal-shutdown circuitry places the driver outputs into a high-impedance state.Receiver Input Filtering The receivers of the MAX13080E–MAX13085E, and the MAX13089E when operating in 250kbps or 500kbps mode, incorporate input filtering in addition to input hysteresis. This filtering enhances noise immunity with differential signals that have very slow rise and fall times. Receiver propagation delay increases by 25% due to this filtering.Fail-Safe The MAX13080E family guarantees a logic-high receiver output when the receiver inputs are shorted or open, or when they are connected to a terminated transmission line with all drivers disabled. This is done by setting the receiver input threshold between -50mV and -200mV. If the differential receiver input voltage (A - B) is greater than or equal to -50mV, RO is logic-high. If (A - B) is less than or equal to -200mV, RO is logic-low. In the case of a terminated bus with all transmitters disabled, the receiv-er’s differential input voltage is pulled to 0V by the termi-nation. With the receiver thresholds of the MAX13080E family, this results in a logic-high with a 50mV minimumnoise margin. Unlike previous fail-safe devices, the-50mV to -200mV threshold complies with the ±200mVEIA/TIA-485 standard.Hot-Swap Capability (Except MAX13081E/MAX13084E/MAX13087E)Hot-Swap InputsWhen circuit boards are inserted into a hot or powered backplane, differential disturbances to the data buscan lead to data errors. Upon initial circuit board inser-tion, the data communication processor undergoes itsown power-up sequence. During this period, the processor’s logic-output drivers are high impedanceand are unable to drive the DE and RE inputs of these devices to a defined logic level. Leakage currents up to±10µA from the high-impedance state of the proces-sor’s logic drivers could cause standard CMOS enableinputs of a transceiver to drift to an incorrect logic level. Additionally, parasitic circuit board capacitance couldcause coupling of V CC or GND to the enable inputs. Without the hot-swap capability, these factors could improperly enable the transceiver’s driver or receiver.When V CC rises, an internal pulldown circuit holds DElow and RE high. After the initial power-up sequence,the pulldown circuit becomes transparent, resetting thehot-swap tolerable input.Hot-Swap Input CircuitryThe enable inputs feature hot-swap capability. At theinput there are two NMOS devices, M1 and M2 (Figure 9). When V CC ramps from zero, an internal 7µstimer turns on M2 and sets the SR latch, which alsoturns on M1. Transistors M2, a 1.5mA current sink, andM1, a 500µA current sink, pull DE to GND through a5kΩresistor. M2 is designed to pull DE to the disabledstate against an external parasitic capacitance up to100pF that can drive DE high. After 7µs, the timer deactivates M2 while M1 remains on, holding DE low against three-state leakages that can drive DE high. M1 remains on until an external source overcomes the required input current. At this time, the SR latch resetsand M1 turns off. When M1 turns off, DE reverts to a standard, high-impedance CMOS input. Whenever V CCdrops below 1V, the hot-swap input is reset.For RE there is a complementary circuit employing two PMOS devices pulling RE to V CC. MAX13080E–MAX13089E+5.0V, ±15kV ESD-Protected, Fail-Safe, Hot-Swap, RS-485/RS-422 TransceiversM A X 13080E –M A X 13089EMAX13089E ProgrammingThe MAX13089E has several programmable operating modes. Transmitter rise and fall times are programma-ble, resulting in maximum data rates of 250kbps,500kbps, and 16Mbps. To select the desired data rate,drive SRL to one of three possible states by using a three-state driver: V CC , GND, or unconnected. F or 250kbps operation, set the three-state device in high-impedance mode or leave SRL unconnected. F or 500kbps operation, drive SRL high or connect it to V CC .F or 16Mbps operation, drive SRL low or connect it to GND. SRL can be changed during operation without interrupting data communications.Occasionally, twisted-pair lines are connected backward from normal orientation. The MAX13089E has two pins that invert the phase of the driver and the receiver to cor-rect this problem. F or normal operation, drive TXP and RXP low, connect them to ground, or leave them uncon-nected (internal pulldown). To invert the driver phase,drive TXP high or connect it to V CC . To invert the receiver phase, drive RXP high or connect it to V CC . Note that the receiver threshold is positive when RXP is high.The MAX13089E can operate in full- or half-duplex mode. Drive H/F low, leave it unconnected (internal pulldown), or connect it to GND for full-duplex opera-tion. Drive H/F high for half-duplex operation. In full-duplex mode, the pin configuration of the driver and receiver is the same as that of a MAX13080E. In half-duplex mode, the receiver inputs are internally connect-ed to the driver outputs through a resistor-divider. This effectively changes the function of the device’s outputs.Y becomes the noninverting driver output and receiver input, Z becomes the inverting driver output and receiver input. In half-duplex mode, A and B are still connected to ground through an internal resistor-divider but they are not internally connected to the receiver.±15kV ESD ProtectionAs with all Maxim devices, ESD-protection structures are incorporated on all pins to protect against electro-static discharges encountered during handling and assembly. The driver outputs and receiver inputs of the MAX13080E family of devices have extra protection against static electricity. Maxim’s engineers have devel-oped state-of-the-art structures to protect these pins against ESD of ±15kV without damage. The ESD struc-tures withstand high ESD in all states: normal operation,shutdown, and powered down. After an ESD event, the MAX13080E–MAX13089E keep working without latchup or damage.ESD protection can be tested in various ways. The transmitter outputs and receiver inputs of the MAX13080E–MAX13089E are characterized for protec-tion to the following limits:•±15kV using the Human Body Model•±6kV using the Contact Discharge method specified in IEC 61000-4-2ESD Test ConditionsESD performance depends on a variety of conditions.Contact Maxim for a reliability report that documents test setup, test methodology, and test results.Human Body ModelFigure 10a shows the Human Body Model, and Figure 10b shows the current waveform it generates when dis-charged into a low impedance. This model consists of a 100pF capacitor charged to the ESD voltage of interest,which is then discharged into the test device through a 1.5k Ωresistor.IEC 61000-4-2The IEC 61000-4-2 standard covers ESD testing and performance of finished equipment. However, it does not specifically refer to integrated circuits. The MAX13080E family of devices helps you design equip-ment to meet IEC 61000-4-2, without the need for addi-tional ESD-protection components.+5.0V , ±15kV ESD-Protected, Fail-Safe, Hot-Swap, RS-485/RS-422 TransceiversThe major difference between tests done using the Human Body Model and IEC 61000-4-2 is higher peak current in IEC 61000-4-2 because series resistance is lower in the IEC 61000-4-2 model. Hence, the ESD with-stand voltage measured to IEC 61000-4-2 is generally lower than that measured using the Human Body Model. Figure 10c shows the IEC 61000-4-2 model, and Figure 10d shows the current waveform for IEC 61000-4-2 ESD Contact Discharge test.Machine Model The machine model for ESD tests all pins using a 200pF storage capacitor and zero discharge resis-tance. The objective is to emulate the stress caused when I/O pins are contacted by handling equipment during test and assembly. Of course, all pins require this protection, not just RS-485 inputs and outputs.Applications Information256 Transceivers on the BusThe standard RS-485 receiver input impedance is 12kΩ(1-unit load), and the standard driver can drive up to 32-unit loads. The MAX13080E family of transceivers has a1/8-unit load receiver input impedance (96kΩ), allowingup to 256 transceivers to be connected in parallel on one communication line. Any combination of these devices,as well as other RS-485 transceivers with a total of 32-unit loads or fewer, can be connected to the line.Reduced EMI and ReflectionsThe MAX13080E/MAX13081E/MAX13082E feature reduced slew-rate drivers that minimize EMI and reduce reflections caused by improperly terminated cables, allowing error-free data transmission up to250kbps. The MAX13083E/MAX13084E/MAX13085Eoffer higher driver output slew-rate limits, allowing transmit speeds up to 500kbps. The MAX13089E withSRL = V CC or unconnected are slew-rate limited. WithSRL unconnected, the MAX13089E error-free data transmission is up to 250kbps. With SRL connected toV CC,the data transmit speeds up to 500kbps. MAX13080E–MAX13089E+5.0V, ±15kV ESD-Protected, Fail-Safe, Hot-Swap, RS-485/RS-422 TransceiversM A X 13080E –M A X 13089ELow-Power Shutdown Mode (Except MAX13081E/MAX13084E/MAX13087E)Low-power shutdown mode is initiated by bringing both RE high and DE low. In shutdown, the devices typically draw only 2.8µA of supply current.RE and DE can be driven simultaneously; the devices are guaranteed not to enter shutdown if RE is high and DE is low for less than 50ns. If the inputs are in this state for at least 700ns, the devices are guaranteed to enter shutdown.Enable times t ZH and t ZL (see the Switching Characteristics section) assume the devices were not in a low-power shutdown state. Enable times t ZH(SHDN)and t ZL(SHDN)assume the devices were in shutdown state. It takes drivers and receivers longer to become enabled from low-power shutdown mode (t ZH(SHDN), t ZL(SHDN))than from driver/receiver-disable mode (t ZH , t ZL ).Driver Output ProtectionTwo mechanisms prevent excessive output current and power dissipation caused by faults or by bus contention.The first, a foldback current limit on the output stage,provides immediate protection against short circuits over the whole common-mode voltage range (see the Typical Operating Characteristics ). The second, a thermal-shut-down circuit, forces the driver outputs into a high-imped-ance state if the die temperature exceeds +175°C (typ).Line LengthThe RS-485/RS-422 standard covers line lengths up to 4000ft. F or line lengths greater than 4000ft, use the repeater application shown in Figure 11.Typical ApplicationsThe MAX13082E/MAX13085E/MAX13088E/MAX13089E transceivers are designed for bidirectional data commu-nications on multipoint bus transmission lines. F igures 12 and 13 show typical network applications circuits. To minimize reflections, terminate the line at both ends in its characteristic impedance, and keep stub lengths off the main line as short as possible. The slew-rate-lim-ited MAX13082E/MAX13085E and the two modes of the MAX13089E are more tolerant of imperfect termination.Chip InformationTRANSISTOR COUNT: 1228PROCESS: BiCMOS+5.0V , ±15kV ESD-Protected, Fail-Safe, Hot-Swap, RS-485/RS-422 TransceiversFigure 11. Line Repeater for MAX13080E/MAX13081E/MAX13083E/MAX13084E/MAX13086E/MAX13087E/MAX13089E in Full-Duplex Mode+5.0V, ±15kV ESD-Protected, Fail-Safe, Hot-Swap, RS-485/RS-422 TransceiversMAX13080E–MAX13089EM A X 13080E –M A X 13089E+5.0V , ±15kV ESD-Protected, Fail-Safe, Hot-Swap, RS-485/RS-422 TransceiversPin Configurations and Typical Operating CircuitsMAX13080E–MAX13089E+5.0V , ±15kV ESD-Protected, Fail-Safe, Hot-Swap, RS-485/RS-422 Transceivers______________________________________________________________________________________21Pin Configurations and Typical Operating Circuits (continued)M A X 13080E –M A X 13089E+5.0V , ±15kV ESD-Protected, Fail-Safe, Hot-Swap, RS-485/RS-422 Transceivers 22______________________________________________________________________________________Ordering Information (continued)MAX13080E–MAX13089E+5.0V , ±15kV ESD-Protected, Fail-Safe, Hot-Swap, RS-485/RS-422 Transceivers______________________________________________________________________________________23Package Information (continued)(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,go to /packages .)。
MAX5402EUA中文资料
General Description The MAX5402 µPoT™digital potentiometer is a 256-tap variable resistor with 10kΩtotal resistance in a tiny 8-pin µMAX package. This device functions as a mechan-ical potentiometer, consisting of a fixed resistor string with a digitally controlled wiper contact. It operates from +2.7V to +5.5V single-supply voltages and uses an ultra-low 0.1µA supply current. This device also pro-vides glitchless switching between resistor taps, as well as a convenient power-on reset (POR) that sets the wiper to the midscale position at power-up. A low 5ppm/°C ratiometric temperature coefficient makes it ideal for applications requiring low drift.The MAX5402 serves well in applications requiring digi-tally controlled resistors, including adjustable voltage references and programmable gain amplifiers (PGAs).A nominal end-to-end resistor temperature coefficient of 35ppm/°C makes this part suitable for use as a variable resistor in applications such as low-tempco adjustable gain and other circuit configurations. This device is guaranteed over the extended industrial temperature range (-40°C to +85°C).________________________Applications Mechanical Potentiometer ReplacementLow-Drift PGAsAdjustable Voltage ReferencesFeatures o Small Footprint, 8-Pin µMAX Packageo Ultra-Low 100nA Supply Currento+2.7V to +5.5V Single-Supply Operationo256 Tap Positionso Low Ratiometric Temperature Coefficient5ppm/°Co Low End-to-End Resistor Temperature Coefficient35ppm/°Co Power-On Reset: Wiper Goes to Midscale(Position 128)o Glitchless Switching Between the Resistor Tapso3-Wire SPI™-Interface Compatibleo10kΩResistor ValueMAX5402 256-Tap, µPoT, Low-Drift, Digital PotentiometerPin Configuration19-1896; Rev 0; 1/01Ordering InformationµPoT is a trademark of Maxim Integrated Products.SPI is a trademark of Motorola, Inc.Maxim Integrated Products1 For price, delivery, and to place orders,please contact Maxim Distribution at 1-888-629-4642, or visit Maxim’s website at .Functional DiagramM A X 5402256-Tap, µPoT, Low-Drift,Digital PotentiometerABSOLUTE MAXIMUM RATINGSELECTRICAL CHARACTERISTICS(V DD = +5V, V H = V DD , V L = 0, T A = T MIN to T MAX . Typical values are at V DD = +5V, T A = +25°C, unless otherwise noted.)Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.V DD to GND..............................................................-0.3V to +6V DIN, SCLK, CS to GND ............................................-0.3V to +6V H, L, W to GND.............................................-0.3V to (V DD + 0.3)Maximum Continuous Current into Pins H, L, and W ...........1mA Continuous Power Dissipation (T A = +70°C)8-Pin µMAX (derate 4.1mW/°C above +70°C)............330mWOperating Temperature Range ...........................-40°C to +85°C Junction Temperature......................................................+150°C Storage Temperature Range.............................-65°C to +150°C Lead Temperature (soldering, 10s).................................+300°CMAX5402256-Tap, µPoT, Low-Drift,Digital Potentiometer________________________________________________________________________________________3Note 2:The DNL and INL are measured with the potentiometer configured as a voltage-divider with H = V DD and L = 0. The wiperterminal is unloaded and measured with an ideal voltmeter.Note 3:The DNL and INL are measured with the potentiometer configured as a variable resistor. H is unconnected and L = 0. Thewiper terminal is driven with a source current of 200µA at V DD = +3V and 400µA at V DD = +5V.Note 4:The wiper resistance is the worst value measured, injecting a current, I W = V DD /R HL into terminal W.Note 5:Digital timing is guaranteed by design.ELECTRICAL CHARACTERISTICS (continued)(V DD = +5V, V H = V DD , V L = 0, T A = T MIN to T MAX . Typical values are at V DD = +5V, T A = +25°C, unless otherwise noted.)M A X 5402256-Tap, µPoT, Low-Drift,Digital Potentiometer 4_______________________________________________________________________________________Typical Operating Characteristics(T A = +25°C, unless otherwise noted.)100125150175200225250275300012345WIPER RESISTANCE vs. WIPER VOLTAGEWIPER VOLTAGE (V)W I P E R R E S I S T A N C E (Ω)-0.20-0.10-0.150.00-0.050.050.10-40-30-20-100102030405060708090END-TO-END RESISTANCE % CHANGEvs. TEMPERATUREM A X 5402 T o c 02TEMPERATURE (°C)E N D -T O -E N D R E S I S T A N C E % C H A N G E0214365798100649632128160192224256RESISTANCE vs. INPUT CODEM A X 5402 T o c 03INPUT CODE (DECIMAL)W -T O -L R E S I S T A N C E (k Ω)-0.20-0.10-0.150.050.00-0.050.200.150.100.25961283264160192224256VARIABLE RESISTOR DNLvs. INPUT CODEM A X 5402 T o c 04INPUT CODE (DECIMAL)R D N L (L S B )-0.4-0.3-0.1-0.20.10.20.00.30649632128160192224256VARIABLE RESISTOR INLvs. INPUT CODEM A X 5402 T o c 05INPUT CODE (DECIMAL)R I N L (L S B )-0.08-0.04-0.060.00-0.020.020.040.060.08649632128160192224256VOLTAGE-DIVIDER DNL vs. INPUT CODEM A X 5402 T o c 06INPUT CODE (DECIMAL)D N L (L S B )Typical Operating Characteristics (continued)(T A = +25°C, unless otherwise noted.)MAX5402256-Tap, µPoT, Low-Drift,Digital Potentiometer________________________________________________________________________________________5-0.20-0.10-0.150.00-0.050.050.100.150.20649632128160192224256VOLTAGE-DIVIDER INL vs. INPUT CODEM A X 5402 T o c 07INPUT CODE (DECIMAL)I N L (L S B )0.00.40.20.80.61.01.2-40-30-20-1001020304050607080SUPPLY CURRENT vs. TEMPERATURETEMPERATURE (°C)S U P P L Y C U R R E N T (µA )200ns/div (CODE 127 TO 128)TAP-TO-TAP SWITCHING TRANSIENT V W-L+2.49V+2.51V+5VMAX5402 toc09CS1001234510.10.010.0010.0001INPUT LOGIC VOLTAGEDIGITAL INPUT VOLTAGE (V)S U P P L Y C U R R E N T (m A )M A X 5402256-Tap, µPoT, Low-Drift,Digital Potentiometer 6_______________________________________________________________________________________Detailed DescriptionThe MAX5402 consists of 255 fixed resistors in series between pins H and L. The potentiometer wiper (pin W)can be programmed to access any one of the 256 dif-ferent tap points on the resistor string. The MAX5402has an SPI-compatible 3-wire serial data interface to control the wiper tap position. This write-only interface contains three inputs: Chip Select (CS ), Data In (DIN),and Data Clock (SCLK ). When CS is taken low, data from the DIN pin is synchronously loaded into the 8-bit serial shift register on the rising edge of each SCLK pulse (Figure 1). The MSB is shifted in first, as shown in Figure 3. Note that if CS is not kept low during the entire data stream, the data will be corrupted and the devicewill need to be reloaded. After all 8 data bits have been loaded into the shift register, they are latched into the decoder once CS is taken high. The decoder switches the potentiometer wiper to the tap position that corre-sponds to the 8-bit input data. Each resistor cell is 10k Ω/255 or 39.2Ωfor the MAX5402.The MAX5402 features POR circuitry. This sets the wiper to the midscale position at power-up by loading a binary value of 128 into the 8-bit latch. The MAX5402can be used as a variable resistor by connecting pin W to either pin H or L.Figure 1. Serial Interface Timing DiagramFigure 2. Detailed Serial Interface Timing DiagramMAX5402256-Tap, µPoT, Low-Drift,Digital Potentiometer________________________________________________________________________________________7Applications InformationThe MAX5402 is intended for a variety of circuits where accurate, fine-tuned adjustable resistance is required,such as in adjustable voltage or adjustable gain circuit configurations. The MAX5402 is used in either a poten-tiometer divider or a variable resistor configuration.Adjustable Current to Voltage ConverterFigure 4 shows the MAX5402 used with a MAX4250low-noise op amp to precisely tune a current-to-voltage converter. Pins H and W of the MAX5402 are connect-ed to the node between R3 and R2, and pin L is con-nected to ground.Adjustable Gain AmplifierThe MAX5402 is used again with the MAX4250 to make a digitally adjustable gain circuit as shown in Figure 5.The normal feedback resistor is replaced with the MAX5402 in a variable resistor configuration, so that the gain of the circuit can be digitally controlled.Adjustable Voltage ReferenceIn Figure 6, the MAX5402 is shown with the MAX6160to make an adjustable voltage reference. In this circuit,the H pin of the MAX5402 is connected to the OUT pin of the MAX6160, the L pin of the MAX5402 is connect-ed to GND, and the W pin of the MAX5402 is connect-ed to the ADJ pin of the MAX6160. The MAX5402allows precise tuning of the voltage reference output. A low 5ppm/°C ratiometric tempco allows a very stable adjustable voltage overtemperature.Figure 4. I to V ConverterFigure 5. Noninverting AmplifierFigure 3. Serial Data FormatM A X 5402256-Tap, µPoT, Low-Drift,Digital Potentiometer 8_______________________________________________________________________________________Chip InformationTRANSISTOR COUNT: 3475 PROCESS: BiCMOSFigure 6. Adjustable Voltage Reference256-Tap, µPoT, Low-Drift,Digital PotentiometerMAX5402Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embod ied in a Maxim prod uct. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 _____________________9©2001 Maxim Integrated Products Printed USAis a registered trademark of Maxim Integrated Products.。
MAX13085EASA+中文资料
General DescriptionThe MAX13080E–MAX13089E +5.0V, ±15kV ESD-protect-ed, RS-485/RS-422 transceivers feature one driver and one receiver. These devices include fail-safe circuitry,guaranteeing a logic-high receiver output when receiver inputs are open or shorted. The receiver outputs a logic-high if all transmitters on a terminated bus are disabled (high impedance). The MAX13080E–MAX13089E include a hot-swap capability to eliminate false transitions on the bus during power-up or hot insertion.The MAX13080E/MAX13081E/MAX13082E feature reduced slew-rate drivers that minimize EMI and reduce reflections caused by improperly terminated cables, allowing error-free data transmission up to 250kbps. The MAX13083E/MAX13084E/MAX13085E also feature slew-rate-limited drivers but allow transmit speeds up to 500kbps. The MAX13086E/MAX13087E/MAX13088E driver slew rates are not limited, making transmit speeds up to 16Mbps possible. The MAX13089E slew rate is pin selectable for 250kbps,500kbps, and 16Mbps.The MAX13082E/MAX13085E/MAX13088E are intended for half-duplex communications, and the MAX13080E/MAX13081E/MAX13083E/MAX13084E/MAX13086E/MAX13087E are intended for full-duplex communica-tions. The MAX13089E is selectable for half-duplex or full-duplex operation. It also features independently programmable receiver and transmitter output phase through separate pins.The MAX13080E–MAX13089E transceivers draw 1.2mA of supply current when unloaded or when fully loaded with the drivers disabled. All devices have a 1/8-unit load receiver input impedance, allowing up to 256transceivers on the bus.The MAX13080E/MAX13083E/MAX13086E/MAX13089E are available in 14-pin PDIP and 14-pin SO packages.The MAX13081E/MAX13082E/MAX13084E/MAX13085E/MAX13087E/MAX13088E are available in 8-pin PDIP and 8-pin SO packages. The devices operate over the com-mercial, extended, and automotive temperature ranges.ApplicationsUtility Meters Lighting Systems Industrial Control Telecom Security Systems Instrumentation ProfibusFeatures♦+5.0V Operation♦Extended ESD Protection for RS-485/RS-422 I/O Pins±15kV Human Body Model ♦True Fail-Safe Receiver While Maintaining EIA/TIA-485 Compatibility ♦Hot-Swap Input Structures on DE and RE ♦Enhanced Slew-Rate Limiting Facilitates Error-Free Data Transmission(MAX13080E–MAX13085E/MAX13089E)♦Low-Current Shutdown Mode (Except MAX13081E/MAX13084E/MAX13087E)♦Pin-Selectable Full-/Half-Duplex Operation (MAX13089E)♦Phase Controls to Correct for Twisted-Pair Reversal (MAX13089E)♦Allow Up to 256 Transceivers on the Bus ♦Available in Industry-Standard 8-Pin SO PackageMAX13080E–MAX13089E+5.0V , ±15kV ESD-Protected, Fail-Safe, Hot-Swap, RS-485/RS-422 Transceivers________________________________________________________________Maxim Integrated Products 1Ordering Information19-3590; Rev 1; 4/05For pricing, delivery, and ordering information,please contact Maxim/Dallas Direct!at 1-888-629-4642, or visit Maxim’s website at .Selector Guide, Pin Configurations, and Typical Operating Circuits appear at end of data sheet.Ordering Information continued at end of data sheet.M A X 13080E –M A X 13089E+5.0V , ±15kV ESD-Protected, Fail-Safe, Hot-Swap, RS-485/RS-422 Transceivers 2_______________________________________________________________________________________ABSOLUTE MAXIMUM RATINGSDC ELECTRICAL CHARACTERISTICS(V CC = +5.0V ±10%, T A = T MIN to T MAX , unless otherwise noted. Typical values are at V CC = +5.0V and T A = +25°C.) (Note 1)Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.(All Voltages Referenced to GND)Supply Voltage (V CC ).............................................................+6V Control Input Voltage (RE , DE, SLR,H/F , TXP, RXP)......................................................-0.3V to +6V Driver Input Voltage (DI)...........................................-0.3V to +6V Driver Output Voltage (Z, Y, A, B).............................-8V to +13V Receiver Input Voltage (A, B)....................................-8V to +13V Receiver Input VoltageFull Duplex (A, B)..................................................-8V to +13V Receiver Output Voltage (RO)....................-0.3V to (V CC + 0.3V)Driver Output Current.....................................................±250mAContinuous Power Dissipation (T A = +70°C)8-Pin SO (derate 5.88mW/°C above +70°C).................471mW 8-Pin Plastic DIP (derate 9.09mW/°C above +70°C).....727mW 14-Pin SO (derate 8.33mW/°C above +70°C)...............667mW 14-Pin Plastic DIP (derate 10.0mW/°C above +70°C)...800mW Operating Temperature RangesMAX1308_EC_ _.................................................0°C to +75°C MAX1308_EE_ _..............................................-40°C to +85°C MAX1308_EA_ _............................................-40°C to +125°C Junction Temperature......................................................+150°C Storage Temperature Range.............................-65°C to +150°C Lead Temperature (soldering, 10s).................................+300°CMAX13080E–MAX13089E+5.0V , ±15kV ESD-Protected, Fail-Safe, Hot-Swap, RS-485/RS-422 Transceivers_______________________________________________________________________________________3DC ELECTRICAL CHARACTERISTICS (continued)(V CC = +5.0V ±10%, T A = T MIN to T MAX , unless otherwise noted. Typical values are at V CC = +5.0V and T A = +25°C.) (Note 1)M A X 13080E –M A X 13089E+5.0V , ±15kV ESD-Protected, Fail-Safe, Hot-Swap, RS-485/RS-422 Transceivers 4_______________________________________________________________________________________DRIVER SWITCHING CHARACTERISTICSMAX13080E/MAX13081E/MAX13082E/MAX13089E WITH SRL = UNCONNECTED (250kbps)(V CC = +5.0V ±10%, T A = T MIN to T MAX , unless otherwise noted. Typical values are at V CC = +5.0V and T A = +25°C.)RECEIVER SWITCHING CHARACTERISTICSMAX13080E/MAX13081E/MAX13082E/MAX13089E WITH SRL = UNCONNECTED (250kbps)(V CC = +5.0V ±10%, T A = T MIN to T MAX , unless otherwise noted. Typical values are at V CC = +5.0V and T A = +25°C.)MAX13080E–MAX13089E+5.0V , ±15kV ESD-Protected, Fail-Safe, Hot-Swap, RS-485/RS-422 Transceivers_______________________________________________________________________________________5DRIVER SWITCHING CHARACTERISTICSMAX13083E/MAX13084E/MAX13085E/MAX13089E WITH SRL = V CC (500kbps)(V CC = +5.0V ±10%, T A = T MIN to T MAX , unless otherwise noted. Typical values are at V CC = +5.0V and T A = +25°C.)RECEIVER SWITCHING CHARACTERISTICSMAX13083E/MAX13084E/MAX13085E/MAX13089E WITH SRL = V CC (500kbps)(V CC = +5.0V ±10%, T A = T MIN to T MAX , unless otherwise noted. Typical values are at V CC = +5.0V and T A = +25°C.)M A X 13080E –M A X 13089E+5.0V , ±15kV ESD-Protected, Fail-Safe, Hot-Swap, RS-485/RS-422 Transceivers 6_______________________________________________________________________________________DRIVER SWITCHING CHARACTERISTICSMAX13086E/MAX13087E/MAX13088E/MAX13089E WITH SRL = GND (16Mbps)(V CC = +5.0V ±10%, T A = T MIN to T MAX , unless otherwise noted. Typical values are at V CC = +5.0V and T A = +25°C.)RECEIVER SWITCHING CHARACTERISTICSMAX13086E/MAX13087E/MAX13088E/MAX13089E WITH SRL = GND (16Mbps)(V CC = +5.0V ±10%, T A = T MIN to T MAX , unless otherwise noted. Typical values are at V CC = +5.0V and T A = +25°C.)Note 2:∆V OD and ∆V OC are the changes in V OD and V OC , respectively, when the DI input changes state.Note 3:The short-circuit output current applies to peak current just prior to foldback current limiting. The short-circuit foldback outputcurrent applies during current limiting to allow a recovery from bus contention.MAX13080E–MAX13089E+5.0V , ±15kV ESD-Protected, Fail-Safe, Hot-Swap, RS-485/RS-422 Transceivers_______________________________________________________________________________________70.800.901.501.101.001.201.301.401.60-40-10520-253550958011065125SUPPLY CURRENT vs. TEMPERATURETEMPERATURE (°C)S U P P L Y C U R R E N T (m A )0201040305060021345OUTPUT CURRENTvs. RECEIVER OUTPUT-HIGH VOLTAGEM A X 13080E -89E t o c 02OUTPUT HIGH VOLTAGE (V)O U T P U T C U R R E N T (m A )20104030605070021345OUTPUT CURRENTvs. RECEIVER OUTPUT-LOW VOLTAGEM A X 13080E -89E t o c 03OUTPUT LOW VOLTAGE (V)O U T P U T C U R R E N T (m A )4.04.44.24.84.65.25.05.4RECEIVER OUTPUT-HIGH VOLTAGEvs. TEMPERATURETEMPERATURE (°C)O U T P U T H I G H V O L T A G E (V )-40-10520-2535509580110651250.10.70.30.20.40.50.60.8RECEIVER OUTPUT-LOW VOLTAGEvs. TEMPERATURETEMPERATURE (°C)O U T P U T L O W V O L T A G E (V )-40-10520-25355095801106512502040608010012014016012345DRIVER DIFFERENTIAL OUTPUT CURRENT vs. DIFFERENTIAL OUTPUT VOLTAGEDIFFERENTIAL OUTPUT VOLTAGE (V)D I F FE R E N T I A L O U T P U T C U R R E N T (m A )2.02.82.43.63.24.44.04.8DRIVER DIFFERENTIAL OUTPUT VOLTAGE vs. TEMPERATURED I F FE R E N T I A L O U T P U T V O L T A G E (V )-40-10520-253550958011065125TEMPERATURE (°C)40201008060120140180160200-7-5-4-6-3-2-1012354OUTPUT CURRENT vs. TRANSMITTEROUTPUT-HIGH VOLTAGEOUTPUT HIGH VOLTAGE (V)O U T P U T C U R R E N T (m A )60402080100120140160180200042681012OUTPUT CURRENT vs. TRANSMITTEROUTPUT-LOW VOLTAGEOUTPUT-LOW VOLTAGE (V)O U T P U T C U R R E N T (m A )Typical Operating Characteristics(V CC = +5.0V, T A = +25°C, unless otherwise noted.)M A X 13080E –M A X 13089E+5.0V , ±15kV ESD-Protected, Fail-Safe, Hot-Swap, RS-485/RS-422 Transceivers 8_______________________________________________________________________________________21543679810SHUTDOWN CURRENT vs. TEMPERATUREM A X 13080E -89E t o c 10S H U T D O W N C U R R E N T (µA )-40-10520-253550958011065125TEMPERATURE (°C)600800700100090011001200DRIVER PROPAGATION DELAY vs. TEMPERATURE (250kbps)D R I VE R P R O P A G A T I O N D E L A Y (n s )-40-10520-253550958011065125TEMPERATURE (°C)300400350500450550600DRIVER PROPAGATION DELAY vs. TEMPERATURE (500kbps)D R I VE R P R O P A G A T I O N D E L A Y (n s )-40-10520-253550958011065125TEMPERATURE (°C)1070302040506080DRIVER PROPAGATION DELAY vs. TEMPERATURE (16Mbps)D R I VE R P R O P A G A T I O N D E L A Y (n s )-40-10520-253550958011065125TEMPERATURE (°C)40201008060120140160180RECEIVER PROPAGATION DELAYvs. TEMPERATURE (250kpbs AND 500kbps)R E C E I V E R P R O P A G A T I O N D E L A Y (n s )-40-10520-253550958011065125TEMPERATURE (°C)40201008060120140160180RECEIVER PROPAGATION DELAYvs. TEMPERATURE (16Mbps)R EC E I V E R P R O P A G AT I O N D E L A Y (n s )-40-10520-253550958011065125TEMPERATURE (°C)2µs/div DRIVER PROPAGATION DELAY (250kbps)DI 2V/divV Y - V Z 5V/divR L = 100Ω200ns/divRECEIVER PROPAGATION DELAY(250kbps AND 500kbps)V A - V B 5V/divRO 2V/divTypical Operating Characteristics (continued)(V CC = +5.0V, T A = +25°C, unless otherwise noted.)MAX13080E–MAX13089E+5.0V , ±15kV ESD-Protected, Fail-Safe, Hot-Swap, RS-485/RS-422 Transceivers_______________________________________________________________________________________9Test Circuits and Waveforms400ns/divDRIVER PROPAGATION DELAY (500kbps)DI 2V/divR L = 100ΩV Y - V Z 5V/div10ns/div DRIVER PROPAGATION DELAY (16Mbps)DI 2V/divR L = 100ΩV Y 2V/divV Z 2V/div40ns/divRECEIVER PROPAGATION DELAY (16Mbps)V B 2V/divR L = 100ΩRO 2V/divV A 2V/divTypical Operating Characteristics (continued)(V CC = +5.0V, T A = +25°C, unless otherwise noted.)Figure 2. Driver Timing Test CircuitM A X 13080E –M A X 13089E+5.0V , ±15kV ESD-Protected, Fail-Safe, Hot-Swap, RS-485/RS-422 Transceivers 10______________________________________________________________________________________Test Circuits and Waveforms (continued)Figure 4. Driver Enable and Disable Times (t DHZ , t DZH , t DZH(SHDN))DZL DLZ DLZ(SHDN)MAX13080E–MAX13089E+5.0V , ±15kV ESD-Protected, Fail-Safe, Hot-Swap, RS-485/RS-422 TransceiversTest Circuits and Waveforms (continued)Figure 6. Receiver Propagation Delay Test CircuitM A X 13080E –M A X 13089E+5.0V , ±15kV ESD-Protected, Fail-Safe, Hot-Swap, RS-485/RS-422 TransceiversMAX13080E–MAX13089E+5.0V , ±15kV ESD-Protected, Fail-Safe, Hot-Swap, RS-485/RS-422 TransceiversMAX13080E/MAX13083E/MAX13086EMAX13081E/MAX13084E/MAX13086E/MAX13087EFunction TablesM A X 13080E –M A X 13089E+5.0V , ±15kV ESD-Protected, Fail-Safe, Hot-Swap, RS-485/RS-422 Transceivers MAX13082E/MAX13085E/MAX13088EFunction Tables (continued)MAX13089EDetailed Description The MAX13080E–MAX13089E high-speed transceivers for RS-485/RS-422 communication contain one driver and one receiver. These devices feature fail-safe circuit-ry, which guarantees a logic-high receiver output when the receiver inputs are open or shorted, or when they are connected to a terminated transmission line with all dri-vers disabled (see the Fail-Safe section). The MAX13080E/MAX13082E/MAX13083E/MAX13085E/ MAX13086E/MAX13088E/MAX13089E also feature a hot-swap capability allowing line insertion without erroneous data transfer (see the Hot Swap Capability section). The MAX13080E/MAX13081E/MAX13082E feature reduced slew-rate drivers that minimize EMI and reduce reflec-tions caused by improperly terminated cables, allowing error-free data transmission up to 250kbps. The MAX13083E/MAX13084E/MAX13085E also offer slew-rate limits allowing transmit speeds up to 500kbps. The MAX13086E/MAX13087E/MAX13088Es’ driver slew rates are not limited, making transmit speeds up to 16Mbps possible. The MAX13089E’s slew rate is selectable between 250kbps, 500kbps, and 16Mbps by driving a selector pin with a three-state driver.The MAX13082E/MAX13085E/MAX13088E are half-duplex transceivers, while the MAX13080E/MAX13081E/ MAX13083E/MAX13084E/MAX13086E/MAX13087E are full-duplex transceivers. The MAX13089E is selectable between half- and full-duplex communication by driving a selector pin (H/F) high or low, respectively.All devices operate from a single +5.0V supply. Drivers are output short-circuit current limited. Thermal-shutdown circuitry protects drivers against excessive power dissi-pation. When activated, the thermal-shutdown circuitry places the driver outputs into a high-impedance state.Receiver Input Filtering The receivers of the MAX13080E–MAX13085E, and the MAX13089E when operating in 250kbps or 500kbps mode, incorporate input filtering in addition to input hysteresis. This filtering enhances noise immunity with differential signals that have very slow rise and fall times. Receiver propagation delay increases by 25% due to this filtering.Fail-Safe The MAX13080E family guarantees a logic-high receiver output when the receiver inputs are shorted or open, or when they are connected to a terminated transmission line with all drivers disabled. This is done by setting the receiver input threshold between -50mV and -200mV. If the differential receiver input voltage (A - B) is greater than or equal to -50mV, RO is logic-high. If (A - B) is less than or equal to -200mV, RO is logic-low. In the case of a terminated bus with all transmitters disabled, the receiv-er’s differential input voltage is pulled to 0V by the termi-nation. With the receiver thresholds of the MAX13080E family, this results in a logic-high with a 50mV minimumnoise margin. Unlike previous fail-safe devices, the-50mV to -200mV threshold complies with the ±200mVEIA/TIA-485 standard.Hot-Swap Capability (Except MAX13081E/MAX13084E/MAX13087E)Hot-Swap InputsWhen circuit boards are inserted into a hot or powered backplane, differential disturbances to the data buscan lead to data errors. Upon initial circuit board inser-tion, the data communication processor undergoes itsown power-up sequence. During this period, the processor’s logic-output drivers are high impedanceand are unable to drive the DE and RE inputs of these devices to a defined logic level. Leakage currents up to±10µA from the high-impedance state of the proces-sor’s logic drivers could cause standard CMOS enableinputs of a transceiver to drift to an incorrect logic level. Additionally, parasitic circuit board capacitance couldcause coupling of V CC or GND to the enable inputs. Without the hot-swap capability, these factors could improperly enable the transceiver’s driver or receiver.When V CC rises, an internal pulldown circuit holds DElow and RE high. After the initial power-up sequence,the pulldown circuit becomes transparent, resetting thehot-swap tolerable input.Hot-Swap Input CircuitryThe enable inputs feature hot-swap capability. At theinput there are two NMOS devices, M1 and M2 (Figure 9). When V CC ramps from zero, an internal 7µstimer turns on M2 and sets the SR latch, which alsoturns on M1. Transistors M2, a 1.5mA current sink, andM1, a 500µA current sink, pull DE to GND through a5kΩresistor. M2 is designed to pull DE to the disabledstate against an external parasitic capacitance up to100pF that can drive DE high. After 7µs, the timer deactivates M2 while M1 remains on, holding DE low against three-state leakages that can drive DE high. M1 remains on until an external source overcomes the required input current. At this time, the SR latch resetsand M1 turns off. When M1 turns off, DE reverts to a standard, high-impedance CMOS input. Whenever V CCdrops below 1V, the hot-swap input is reset.For RE there is a complementary circuit employing two PMOS devices pulling RE to V CC. MAX13080E–MAX13089E+5.0V, ±15kV ESD-Protected, Fail-Safe, Hot-Swap, RS-485/RS-422 TransceiversM A X 13080E –M A X 13089EMAX13089E ProgrammingThe MAX13089E has several programmable operating modes. Transmitter rise and fall times are programma-ble, resulting in maximum data rates of 250kbps,500kbps, and 16Mbps. To select the desired data rate,drive SRL to one of three possible states by using a three-state driver: V CC , GND, or unconnected. F or 250kbps operation, set the three-state device in high-impedance mode or leave SRL unconnected. F or 500kbps operation, drive SRL high or connect it to V CC .F or 16Mbps operation, drive SRL low or connect it to GND. SRL can be changed during operation without interrupting data communications.Occasionally, twisted-pair lines are connected backward from normal orientation. The MAX13089E has two pins that invert the phase of the driver and the receiver to cor-rect this problem. F or normal operation, drive TXP and RXP low, connect them to ground, or leave them uncon-nected (internal pulldown). To invert the driver phase,drive TXP high or connect it to V CC . To invert the receiver phase, drive RXP high or connect it to V CC . Note that the receiver threshold is positive when RXP is high.The MAX13089E can operate in full- or half-duplex mode. Drive H/F low, leave it unconnected (internal pulldown), or connect it to GND for full-duplex opera-tion. Drive H/F high for half-duplex operation. In full-duplex mode, the pin configuration of the driver and receiver is the same as that of a MAX13080E. In half-duplex mode, the receiver inputs are internally connect-ed to the driver outputs through a resistor-divider. This effectively changes the function of the device’s outputs.Y becomes the noninverting driver output and receiver input, Z becomes the inverting driver output and receiver input. In half-duplex mode, A and B are still connected to ground through an internal resistor-divider but they are not internally connected to the receiver.±15kV ESD ProtectionAs with all Maxim devices, ESD-protection structures are incorporated on all pins to protect against electro-static discharges encountered during handling and assembly. The driver outputs and receiver inputs of the MAX13080E family of devices have extra protection against static electricity. Maxim’s engineers have devel-oped state-of-the-art structures to protect these pins against ESD of ±15kV without damage. The ESD struc-tures withstand high ESD in all states: normal operation,shutdown, and powered down. After an ESD event, the MAX13080E–MAX13089E keep working without latchup or damage.ESD protection can be tested in various ways. The transmitter outputs and receiver inputs of the MAX13080E–MAX13089E are characterized for protec-tion to the following limits:•±15kV using the Human Body Model•±6kV using the Contact Discharge method specified in IEC 61000-4-2ESD Test ConditionsESD performance depends on a variety of conditions.Contact Maxim for a reliability report that documents test setup, test methodology, and test results.Human Body ModelFigure 10a shows the Human Body Model, and Figure 10b shows the current waveform it generates when dis-charged into a low impedance. This model consists of a 100pF capacitor charged to the ESD voltage of interest,which is then discharged into the test device through a 1.5k Ωresistor.IEC 61000-4-2The IEC 61000-4-2 standard covers ESD testing and performance of finished equipment. However, it does not specifically refer to integrated circuits. The MAX13080E family of devices helps you design equip-ment to meet IEC 61000-4-2, without the need for addi-tional ESD-protection components.+5.0V , ±15kV ESD-Protected, Fail-Safe, Hot-Swap, RS-485/RS-422 TransceiversThe major difference between tests done using the Human Body Model and IEC 61000-4-2 is higher peak current in IEC 61000-4-2 because series resistance is lower in the IEC 61000-4-2 model. Hence, the ESD with-stand voltage measured to IEC 61000-4-2 is generally lower than that measured using the Human Body Model. Figure 10c shows the IEC 61000-4-2 model, and Figure 10d shows the current waveform for IEC 61000-4-2 ESD Contact Discharge test.Machine Model The machine model for ESD tests all pins using a 200pF storage capacitor and zero discharge resis-tance. The objective is to emulate the stress caused when I/O pins are contacted by handling equipment during test and assembly. Of course, all pins require this protection, not just RS-485 inputs and outputs.Applications Information256 Transceivers on the BusThe standard RS-485 receiver input impedance is 12kΩ(1-unit load), and the standard driver can drive up to 32-unit loads. The MAX13080E family of transceivers has a1/8-unit load receiver input impedance (96kΩ), allowingup to 256 transceivers to be connected in parallel on one communication line. Any combination of these devices,as well as other RS-485 transceivers with a total of 32-unit loads or fewer, can be connected to the line.Reduced EMI and ReflectionsThe MAX13080E/MAX13081E/MAX13082E feature reduced slew-rate drivers that minimize EMI and reduce reflections caused by improperly terminated cables, allowing error-free data transmission up to250kbps. The MAX13083E/MAX13084E/MAX13085Eoffer higher driver output slew-rate limits, allowing transmit speeds up to 500kbps. The MAX13089E withSRL = V CC or unconnected are slew-rate limited. WithSRL unconnected, the MAX13089E error-free data transmission is up to 250kbps. With SRL connected toV CC,the data transmit speeds up to 500kbps. MAX13080E–MAX13089E+5.0V, ±15kV ESD-Protected, Fail-Safe, Hot-Swap, RS-485/RS-422 TransceiversM A X 13080E –M A X 13089ELow-Power Shutdown Mode (Except MAX13081E/MAX13084E/MAX13087E)Low-power shutdown mode is initiated by bringing both RE high and DE low. In shutdown, the devices typically draw only 2.8µA of supply current.RE and DE can be driven simultaneously; the devices are guaranteed not to enter shutdown if RE is high and DE is low for less than 50ns. If the inputs are in this state for at least 700ns, the devices are guaranteed to enter shutdown.Enable times t ZH and t ZL (see the Switching Characteristics section) assume the devices were not in a low-power shutdown state. Enable times t ZH(SHDN)and t ZL(SHDN)assume the devices were in shutdown state. It takes drivers and receivers longer to become enabled from low-power shutdown mode (t ZH(SHDN), t ZL(SHDN))than from driver/receiver-disable mode (t ZH , t ZL ).Driver Output ProtectionTwo mechanisms prevent excessive output current and power dissipation caused by faults or by bus contention.The first, a foldback current limit on the output stage,provides immediate protection against short circuits over the whole common-mode voltage range (see the Typical Operating Characteristics ). The second, a thermal-shut-down circuit, forces the driver outputs into a high-imped-ance state if the die temperature exceeds +175°C (typ).Line LengthThe RS-485/RS-422 standard covers line lengths up to 4000ft. F or line lengths greater than 4000ft, use the repeater application shown in Figure 11.Typical ApplicationsThe MAX13082E/MAX13085E/MAX13088E/MAX13089E transceivers are designed for bidirectional data commu-nications on multipoint bus transmission lines. F igures 12 and 13 show typical network applications circuits. To minimize reflections, terminate the line at both ends in its characteristic impedance, and keep stub lengths off the main line as short as possible. The slew-rate-lim-ited MAX13082E/MAX13085E and the two modes of the MAX13089E are more tolerant of imperfect termination.Chip InformationTRANSISTOR COUNT: 1228PROCESS: BiCMOS+5.0V , ±15kV ESD-Protected, Fail-Safe, Hot-Swap, RS-485/RS-422 TransceiversFigure 11. Line Repeater for MAX13080E/MAX13081E/MAX13083E/MAX13084E/MAX13086E/MAX13087E/MAX13089E in Full-Duplex Mode+5.0V, ±15kV ESD-Protected, Fail-Safe, Hot-Swap, RS-485/RS-422 TransceiversMAX13080E–MAX13089EM A X 13080E –M A X 13089E+5.0V , ±15kV ESD-Protected, Fail-Safe, Hot-Swap, RS-485/RS-422 TransceiversPin Configurations and Typical Operating CircuitsMAX13080E–MAX13089E+5.0V , ±15kV ESD-Protected, Fail-Safe, Hot-Swap, RS-485/RS-422 Transceivers______________________________________________________________________________________21Pin Configurations and Typical Operating Circuits (continued)M A X 13080E –M A X 13089E+5.0V , ±15kV ESD-Protected, Fail-Safe, Hot-Swap, RS-485/RS-422 Transceivers 22______________________________________________________________________________________Ordering Information (continued)MAX13080E–MAX13089E+5.0V , ±15kV ESD-Protected, Fail-Safe, Hot-Swap, RS-485/RS-422 Transceivers______________________________________________________________________________________23Package Information (continued)(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,go to /packages .)。
3Dmax2015安装激活流程 (1)
3Dmax2015安装激活流程1、第一步:安装3dsmax2015 64位中/英文版,解压MAX文件首先双击打开MAX2015安装流程,然后会弹出解压路径,这里尽量选择空间较大的盘,然后就开始解压。
2、第二步:正式安装Max。
3、第三步:接受安装许可证这里选择国家区域为“China”,然后选择我接受许可协议。
4、第四步:安装产品信息。
选择许可类型为单机,然后将序列号:066-66666666和产品密钥128G1写入产品信息内,点击下一步。
5、第五步:安装配置,也就是安装路径的设置。
一般类似MAX2015这样比较大的软件都不安装到系统盘,我这里选择的是D盘安装,选择好盘符之后点击安装。
6、第六步:MAX2015安装进度MAX2015的安装大概需要几分钟时间,请耐心等待。
7、第七步:MAX2015 64位中/英文版安装完成。
这里MAX2015 64位中/英文版就安装完成,点击安装完成。
8、第八步:启动MAX2015 64位中/英文版。
双击打开桌面上MAX2015 64位中/英文版快捷方式,运行MAX2015 64位中/英文版。
9、第九步:勾选“我同意使用在autodesk隐私声明中所描述的个人信息。
勾选“我同意使用在autodesk隐私声明中所描述的个人信息”,然后点击我同意(I Agree)。
10、第十步:激活MAX2015 64位中/英文版。
这时提示我们要激活MAX2015 64位中/英文版,点击激活(Activate)。
11、第一十一步:点击关闭(close)我们发现这里跟我们之前版本的MAX激活界面不一样,所以有两种激活方法,一种是断网激活,另外一种就是本教程要讲述的:我们先点击关闭,关闭这次激活,然后返回到之前的激活界面,再重新点击激活,这时我们会发现自动跳转到输入激活码界面。
12、第一十二步:注册尚未完成,你确定要取消吗?这段话的是意思是:注册尚未完成,你确定要取消吗? 我们选择"确定"。
3ds Max中英文对照表
3ds Max菜单中英文对照表不要给自己找任何借口使用中文版,您懂的!目录-字母检索索引A 2B 7C 10D 19E 25F 28 F 33H 35I 37J 40K 41L 42M 46N 51O 53P 55Q 58R 59S 63T 76U 80V 83W 84X 85Y 86Z 87数字打头88如何检索?方法一:将鼠标放在需要检索的字母处,按住Ctrl键并单击,即可跳转到字母的页码。
方法二:按Ctrl+F组合键,打开“查找和替换”对话框,输入相关的查找信息。
方法三:根据索引目录中的英文单词首字母所在的页码,进行查找。
AAbsolute Mode Transform Type-in绝对坐标方式变换输入Absolute/Relative Snap Toggle Mode绝对/相对捕捉开关模式ACIS Options ACIS选项Activate活动;激活Activate All Maps激活所有贴图Activate Grid激活栅格;激活网格Activate Grid Object激活网格对象;激活网格物体Activate Home Grid激活主栅格;激活主网格ActiveShade实时渲染视图;着色;自动着色ActiveShade(Scanline)着色(扫描线)ActiveShade Floater自动着色面板;交互渲染浮动窗口ActiveShade Viewport自动着色视图Adaptive适配;自动适配;自适应Adaptive Cubic立方适配Adaptive Degradation自动降级Adaptive Degradation Toggle降级显示开关Adaptive Linear线性适配Adaptive Path自适应路径Adaptive Path Steps适配路径步幅;路径步幅自动适配Adaptive Perspective Grid Toggle适配透视网格开关Add as Proxy加为替身Add Cross Section增加交叉选择Adopt the File's Unit Scale采用文件单位尺度Advanced Surface Approx高级表面近似;高级表面精度控制Advanced Surface Approximation高级表面近似;高级表面精度控制Adv. Lighting高级照明Affect Diffuse Toggle影响漫反射开关Affect Neighbors影响相邻Affect Region影响区域Affect Region Modifier影响区域编辑器;影响区域修改器Affect Specular Toggle影响镜面反射开关AI Export输出Adobe Illustrator(*.AI)文件AI Import输入Adobe Illustrator(*.AI)文件Align对齐Align Camera对齐摄像机Align Grid to View对齐网格到视图Align Normals对齐法线Align Orientation对齐方向Align Position对齐位置(相对当前坐标系)Align Selection对齐选择Align to Cursor对齐到指针Allow Dual Plane Support允许双面支持All Class ID全部类别All Commands所有命令All Edge Midpoints全部边界中点;所有边界中心All Face Centers全部三角面中心;所有面中心All Faces所有面All Keys全部关键帧All Tangents全部切线All Transform Keys全部变换关键帧Along Edges沿边缘Along Vertex Normals沿顶点法线Along Visible Edges沿可见的边Alphabetical按字母顺序Always总是Ambient阴影色;环境反射光Ambient Only只是环境光;阴影区Ambient Only Toggle只是环境光标记American Elm美国榆树Amount数量Amplitude振幅;幅度Analyze World分析世界Anchor锚Angle角度;角度值Angle Snap Toggle角度捕捉开关Animate动画Animated动画Animated Camera/Light Settings摄像机/灯光动画设置Animated Mesh动画网格Animated Object动画物体Animated Objects运动物体;动画物体;动画对象Animated Tracks动画轨迹Animated Tracks Only仅动画轨迹Animation动画Animation Mode Toggle动画模式开关Animation Offset动画偏移Animation Offset Keying动画偏移关键帧Animation Tools动画工具Appearance Preferences外观选项Apply Atmospherics指定大气Apply-Ease Curve指定减缓曲线Apply Inverse Kinematics指定反向运动Apply Mapping指定贴图坐标Apply-Multiplier Curve指定增强曲线Apply To指定到;应用到Apply to All Duplicates指定到全部复本Arc弧;圆弧Arc Rotate弧形旋转;旋转视图;圆形旋转Arc Rotate Selected弧形旋转于所有物体;圆形旋转选择物;选择对象的中心旋转视图Arc Rotate SubObject弧形旋转于次物体;选择次对象的中心旋转视图Arc ShapeArc Subdivision弧细分;圆弧细分Archive文件归档Area区域Array阵列Array Dimensions阵列尺寸;阵列维数Array Transformation阵列变换ASCII Export输出ASCII文件Aspect Ratio纵横比Asset Browser资源浏览器Assign指定Assign Controller分配控制器Assign Float Controller分配浮动控制器Assign Position Controller赋予控制器Assign Random Colors随机指定颜色Assigned Controllers指定控制器At All Vertices在所有的顶点上At Distinct Points在特殊的点上At Face Centers 在面的中心At Point在点上Atmosphere氛围;大气层;大气,空气;环境Atmospheres氛围Attach连接;结合;附加Attach Modifier结合修改器Attach Multiple多项结合控制;多重连接Attach To连接到Attach To RigidBody Modifier连接到刚性体编辑器Attachment连接;附件Attachment Constraint连接约束Attenuation衰减AudioClip音频剪切板AudioFloat浮动音频Audio Position Controller音频位置控制器AudioPosition音频位置Audio Rotation Controller音频旋转控制器AudioRotation音频旋转Audio Scale Controller音频缩放控制器AudioScale音频缩放;声音缩放Auto自动Auto Align Curve Starts自动对齐曲线起始节点Auto Arrange自动排列Auto Arrange Graph Nodes自动排列节点Auto Expand自动扩展Auto Expand Base Objects自动扩展基本物体Auto Expand Children自动扩展子级Auto Expand Materials自动扩展材质Auto Expand Modifiers自动扩展修改器Auto Expand Selected Only自动扩展仅选择的Auto Expand Transforms自动扩展变换Auto Expand XYZ Components自动扩展坐标组成Auto Key自动关键帧Auto-Rename Merged Material自动重命名合并材质Auto Scroll自动滚屏Auto Select自动选择Auto Select Animated自动选择动画Auto Select Position自动选择位置Auto Select Rotation自动选择旋转Auto Select Scale自动选择缩放Auto Select XYZ Components自动选择坐标组成Auto-Smooth自动光滑AutoGrid自动网格;自动栅格AutoKey Mode Toggle自动关键帧模式开关Automatic自动Automatic Coarseness自动粗糙Automatic Intensity Calculation自动亮度计算Automatic Reinitialization自动重新载入Automatic Reparam.自动重新参数化Automatic Reparamerization自动重新参数化Automatic Update自动更新Axis轴;轴向;坐标轴Axis Constraints轴向约束Axis Scaling轴向比率BBack后视图Back Length后面长度Back Segs后面片段数Back View背视图Back Width后面宽度Backface Cull背面忽略显示;背面除去;背景拣出Backface Cull Toggle背景拣出开关Background背景Background Display Toggle背景显示开关Background Image背景图像Background Lock Toggle背景锁定开关Background Texture Size背景纹理尺寸;背景纹理大小Backgrounds背景Backside ID内表面材质号Backup Time One Unit每单位备份时间Banking倾斜Banyan榕树Banyan tree榕树Base基本;基部;基点;基本色;基色Base/Apex基点/顶点Base Color基准颜色;基本颜色Base Colors基准颜色Base Curve基本曲线Base Elev基准海拔;基本海拔Base Objects导入基于对象的参数,例如半径、高度和线段的数目;基本物体Base Scale基本比率Base Surface基本表面;基础表面Base To Pivot中心点在底部Bevel Profile轮廓倒角Bevel Profile Modifier轮廓倒角编辑器;轮廓倒角修改器Bezier贝塞尔曲线Bezier Color贝塞尔颜色Bezier-Corner拐角贝兹点Bezier Float贝塞尔浮动Bezier Lines贝塞尔曲线Bezier or Euler Controller贝塞尔或离合控制器Bezier Position贝塞尔位置Bezier Position Controller贝塞尔位置控制器Bezier Scale贝塞尔比例;贝兹缩放Bezier Scale Controller贝塞尔缩放控制器Bezier-Smooth光滑贝兹点Billboard广告牌Biped步迹;两足Birth诞生;生产Birth Rate再生速度Blast爆炸Blend混合;混合材质;混合度;融合;颜色混合;调配Blend Curve融合曲线Blend Surface融合曲面Blend to Color Above融合到颜色上层;与上面的颜色混合Blizzard暴风雪Blizzard Particle System暴风雪粒子系统Blowup渲染指定区域(必须保持当前视图的长宽比);区域放大Blue Spruce蓝色云杉Blur模糊Body主体;身体;壶身Body Horizontal身体水平Body Rotation身体旋转Body Vertical身体垂直Bomb爆炸Bomb Space Warp爆炸空间变形Bone骨骼Bone Object骨骼物体;骨骼对象Bone Objects骨骼物体;骨骼对象Bone Options骨骼选项Bone Tools骨骼工具Bones骨骼Bones/Biped骨骼/步迹Bones IK Chain骨骼IK链Bones Objects骨骼物体Boolean布尔运算Boolean Compound Object布尔合成物体Boolean Controller布尔运算控制器Both二者;全部Bottom底;底部;底部绑定物;底视图Bottom View底视图Bounce弹力;反弹;反弹力Bound to Object Pivots绑定到物体轴心Bounding Box边界盒Box方体Box Emitter立方体发射器Box Gizmo方体线框Box Gizmo(Atmospheres)方体线框(氛围)Box Mode Selected被选择的物体模式Box Mode Selected Toggle被选择的物体模式开关Box Selected按选择对象的边界盒渲染;物体长宽比BoxGizmo立方体框;方体线框Break Both行列打断Break Col列打断Break Row行打断Bridge过渡Bright亮度Brightness亮度Bring Selection In加入选择;加入选择集Bubble膨胀;改变截面曲线的形状;气泡;浮起Bubble Motion泡沫运动;气泡运动Bubbles气泡;泡沫;改变截面曲线的形状;膨胀Build Only At Render Time仅在渲染时建立By Material Within Layer按层中的材质CCalc Intervals Per Frame计算间隔帧;计算每帧间隔Camera摄像机视图;镜头点;摄像机;相Camera Point摄像机配合点Camera Point Object摄像机配合点物体CamPoint相机配合点Cancel Align取消对齐Cap封盖;封顶;盖子Cap Closed Entities封闭实体Cap End封底Cap Height顶面高度;顶盖高度Cap Holes封闭孔洞Cap Holes ModifierCap Segments端面片段数Cap Start始端加盖;封闭起端Cap Surface封盖曲面Capping顶盖Capsule囊体;胶囊;胶囊体Capsule Object胶囊体;囊体Case Sensitive区分大小写Cast Shadows投射阴影Center Point Cycle中心点循环Center&Sides中心和边Centered,Specify Spacing居中,指定间距Centimeters厘米C-Ext C型物体;C型延伸体;C型墙C-Extrusion Object C型物体;C型延伸体;C型墙Chamfer倒角;切角Chamfer Curve曲线倒角;切角曲线Chamfer Cylinder倒角圆柱体Chamfer Cylinder Object倒角圆柱体Chamfer Edge倒角边缘Chamfer Vertex倒角顶点ChamferBox倒角长方体;倒角方体;倒角立方体ChamferBox Object倒角长方体;倒角方体;倒角立方体ChamferCyl倒角圆柱体;倒角柱体Change改变Change Graphics Mode改变图形模式Change Leg StateChange Light Color改变灯光颜色Change to Back Viewport改变到后视图Change to Bottom Viewport改变到底视图Change to Camera Viewport改变到摄像机视图Change to Front View改变到前视图Change to Grid View改变到栅格视图Change to Isometric User View改变到用户轴测视图Change to Left View改变到左视图Change to Perspective User View改变到用户透视视图Change to Right View改变到右视图Change to Shape Viewport改变到二维视图Change to Spot/Directional Light View改变到目标聚光灯/平行光视图Change to Top View改变到顶视图Change to Track View改变到轨迹视图Channel通道Chaos混乱;混乱度Character角色Character Structures角色结构Child孩子Children子级Chop切除;切劈Chord Length弦长;弦长度Circle圆;圆形;圆形区域Circle Shape圆形Circular Region圆形区域Circular Selection Region圆形选择区域Clear清除Clear All清除全部;清除所有的捕捉设置Clear All Smoothing Groups清除全部光滑组Clear Selection清除选择Clear Set Key Mode BufferClear Surface Level清除表面级Click and drag to begin creation process单击并拖动,开始创作Clone复制;克隆Clone Method克隆方式;复制方法Close Cols.闭合列Close Loft闭合放样Close Rows闭合行Cloth布;布料Cloth Collection采集布料Cloth Modifier布料编辑器;布料修改器Cloud云Col列Collapse坍塌;塌陷Collapse All全部坍塌;全部折叠Collapse Controller坍塌控制器Collapse Stack坍塌堆栈Collapse To坍塌到;折叠到Color颜色Color by Elevation根据海拔指定颜色;以标高分色Color RGB颜色RGBColor Zone色带Combine合并;联合Combos复合;过滤器组合Combustion燃烧;合并Comet彗星Command Panel命令面板Common Hose Parameters软管共同参数Compare比较Compass指南针;指针Compass Object指针物体Completely replace current scene完全替换当前场景Component组成Composite合成;复合材质;合成贴图;复合Compound Object合成物体Compound Objects合成物体Cone锥体Cone Angle锥体角度Cone Object锥体Configure设置;配置Configure Driver设置驱动Configure OpenGL配置OpenGL显示驱动Configure Paths设置路径Conform包裹Conform Compound Object包裹合成物体Conform Space Warp包裹空间扭曲Connect连接Connect Compound Object连接包裹合成物体Connect Edge连接边界Connect Vertex连接顶点Constant晶体;定常;连续的;连续性;恒定;常量;圆片Constant Cross-Section截面恒定Constant Key Reduction Filtering减少过滤时关键帧不变Constant Velocity匀速Constrain to X约束到X轴Constrain to XY约束到XY轴Constrain to Y约束到Y轴Constrain to Z约束到Z轴Constrained Motion约束运动Constraint约束Constraints约束Context前后关系;关联菜单Contour轮廓Contours轮廓Contrast对比度Controller控制器;选择用于控制链接对象的关联复制类型Controller Defaults默认控制器Controller Defaults Dialog默认控制器对话框Controller Output控制器输出Controller Properties控制器属性Controller Range控制器范围Controller Range Editor控制器范围编辑器Controller Types控制器类型Controllers控制器Convert blocks to groups转化块为群组Convert Curve转换曲线Convert Curve On Surface在曲面上转换曲线Convert Groups To转化群组到Convert Instances to Blocks转化关联属性为块Convert Selected转换选择;转换当前选择Convert Surface转换曲面Convert To转换到Convert to Edge转换到边Convert to Editable Mesh转换到可编辑网格Convert to Editable Patch转换到可编辑面片Convert to Editable Polygon转换到可编辑多边形Convert to Editable Spline转换到可编辑曲线Convert to Face转换到面Convert to NURBS Surface转换到NURBS曲面Convert To Patch Modifier转换到面片修改器Convert to single objects转化到单一物体Convert to Toolbar转化到工具行;转换为工具条Convert to Vertex转换到顶点Convert units转换单位Cookie Cutter切割;饼切Copies复制数目Copy复制Copy Envelope复制封皮Copy Normal复制法线Corner拐角点Count数量Crawl Time爬行时间;蠕动时间;变动时间Create a Character创建角色Create a Key for all Transforms为所有变换创建关键帧Create a Multicurve Trimmed Surface创建多重修剪表面;创建多重修剪曲面Create a Multisided Blend Surface创建多边的融合表面;创建多边的融合曲面Create a Position Key创建位置关键帧Create a Position Key on X创建X轴位置关键帧Create a Position Key on Y创建Y轴位置关键帧Create a Position Key on Z创建Z轴位置关键帧Create a Rotation Key创建旋转关键帧Create a Rotation Key on X创建X轴的旋转关键帧Create a Rotation Key on Y创建Y轴的旋转关键帧Create a Rotation Key on Z创建Z轴的旋转关键帧Create a Scale Key创建放缩关键帧Create a Scale Key on X创建X轴的放缩关键帧Create a Scale Key on Y创建Y轴的放缩关键帧Create a Scale Key on Z创建Z轴的放缩关键帧Create Blend Curve创建融合曲线Create Blend Surface创建融合表面;创建融合曲面Create Bones System创建骨骼系统Create Cap Surface创建加顶表面;创建加顶曲面Create Chamfer Curve创建倒直角曲线Create Combination创建组合Create Command Mode创建命令模式Create Curves创建曲线Create Curve-Curve创建曲线-曲线Create Curve Point创建曲线点Create CV Curve创建可控曲线;创建控制点曲线Create CV Curve on Surface创建表面CV曲线;创建表面可控曲线Create CV Surface创建CV表面;创建可控曲面Create Defaults创建默认;创建默认值Create Edge创建边Create Explicit Key Position X创建X轴的位置直接关键帧Create Explicit Key Position Y创建Y轴的位置直接关键帧Create Explicit Key Position Z创建Z轴的位置直接关键帧Create Explicit Key Rotation X创建X轴的旋转直接关键帧Create Explicit Key Rotation Y创建Y轴的旋转直接关键帧Create Explicit Key Rotation Z创建Z轴的旋转直接关键帧Create Explicit Key Scale X创建X轴的放缩直接关键帧Create Explicit Key Scale Y创建Y轴的放缩直接关键帧Create Explicit Key Scale Z创建Z轴的放缩直接关键帧Create Exposure Control创建曝光控制Create Extrude Surface创建拉伸表面;创建拉伸曲面Create Faces(Mesh)创建面数(网格)Create Fillet Curve创建倒圆角曲线Create Fillet Surface创建倒圆角表面;创建倒圆角曲面Create Fit Curve创建拟合曲线Create Key创建关键帧Create Lathe Surface创建旋转表面;创建旋转曲面Create Line创建线Create Mirror Curve创建镜像曲线Create Mirror Surface创建镜像表面;创建镜像曲面Create Mode创建方式Create Morph Key创建变形关键帧Create New Set创建新集合Create Normal Projected Curve创建法线投影曲线Create Offset Curve创建偏移曲线Create Offset Point创建偏移点Create Offset Surface创建偏移表面;创建偏移曲面Create Out of Range Keys创建范围外帧Create Parameters创建参数Create Point创建轴点Create Points创建点Create Point Curve创建点曲线Create Point Curve on Surface创建表面点曲线Create Point Surface创建点表面;创建点曲面Create Polygon创建多边形Create Polygons创建多边形Create Position Lock Key创建位置锁定时间Create Primitives创建几何体Create Rotation Lock Key创建旋转锁定时间Create Ruled Surface创建规则表面;创建规则曲面Create Shape创建截面Create Shape from Edges由边创建图形Create Surfaces创建曲面Create Surface-Curve Point创建表面-曲线点Create Surface Edge Curve创建表面边界曲线Create Surface Offset Curve创建表面偏移曲线Create Surface-Surface Intersection Curve创建表面与表面的相交曲线Create Surf Point创建面点Create Transform Curve创建变形曲线Create Transform Surface创建变换表面;创建变换曲面Create U Iso Curve创建U Iso曲线Create U Loft Surface创建U放样表面;创建U放样曲面Create UV Loft Surface创建UV放样表面;创建UV放样曲面Create Vertex创建顶点Create Vertices创建顶点数Create Vector Projected Curve创建矢量投影曲线Create V Iso Curve创建V Iso曲线Create 1-Rail Sweep创建1-围栏Create 2-Rail Sweep创建2-围栏Creation Method创建方式Creation Time创建时间Crop切割区域;渲染指定的区域,图像大小为指定区域的大小Crop Selected切割选择;按选择对象的边界盒定义的区域渲染,图像大小为指定区域的大小Cross相交Cross Section交叉断面;截面;相交截面;截面参数Crossing横跨Crossing Selection横跨选择CrossSection交差截面;截面CrossSection Modifier交差截面修改器Crowd群体;群集Cube正方体;立方体Cube/Octa立方体/八面体Cubic立方Current当前;当前的Current Class ID Filter当前过滤类别Current Combinations当前组合Current Nodes当前节点Current Object当前物体Current Objects当前物体Current Targets当前目标Current Time当前时间Current Transform当前变换Curvature曲率Curve曲率;曲线;当前Curve Approximation曲线精度控制;曲线近似;曲线逼近Curve Common普通曲线Curve-Curve曲线对曲线Curve-Curve Intersection Point曲线对曲线求交点Curve Editor动画曲线编辑器;运动曲线编辑器Curve Editor(Open)运动曲线编辑器(打开)Curve Fit曲线适配Curve Point曲线点;曲线对点Curve Properties曲线属性Curves曲线Curves Selected被选择的曲线Custom自定义Custom Attributes自定义属性;定制属性Custom Bounding Box自定义绑定物体;自定义边界盒Custom Colors定制颜色Custom Icons自定义图标Customize自定义Customize Toolbars自定义工具条Customize User Interface自定义用户界面Cut剪切Cut Edge剪切边Cut Faces剪切面数Cut Polygons剪切多边形CV Curve可控曲线CV Curve on Surface曲面上创建可控曲线;曲面上的可控曲线CV on Surf曲面CVCV Surf可控曲面CV Surface可控曲面CV Surface Object可控曲面物体CVs Selected被选择的可控节点Cycle循环Cycle Selection Method循环选择方法Cycle Subobject Level循环子物体级别Cycle Through Scale Modes通过放缩方式循环Cycle Vertices循环节点Cycles周期;圈;圈数Cyclic Growth循环增长;循环生长;周期增长CylGizmo柱体线框;柱体框Cylinder圆柱体Cylinder Emitter柱体发射器Cylinder Gizmo柱体线框Cylinder Object圆柱体DDamper减振器;阻尼器Damper Dynamics Objects阻尼器动力学物体Dashpot SystemDay日Daylight日光Deactivate All Maps关闭全部贴图;取消激活所有视图Decay衰减Decimals位数Default缺省;缺省值;默认;默认值Default Lighting Toggle默认照明开关Default Projection Distance默认的投影距离Default Viewport QuadDefine定义Define Stroke定义笔触Deflector导向板Deflector Space Warp导向板空间变形Deflectors导向板Deform变形Deformation变形Deformations变形Deforming Mesh CollectionDeg度Degradation退化,降[减]低,减少,降格[级],老[软]化degree角度;度数degrees度;角度Delaunay德劳内类型Delegate代表Delete删除Delete a Position Key on X在X轴删除位置关键帧Delete a Position Key on Y在Y轴删除位置关键帧Delete a Position Key on Z在Z轴删除位置关键帧Delete a Rotation Key on X在X轴删除旋转关键帧Delete a Rotation Key on Y在Y轴删除旋转关键帧Delete a Rotation Key on Z在Z轴删除旋转关键帧Delete a Scale Key on X在X轴删除放缩关键帧Delete a Scale Key on Y在Y轴删除放缩关键帧Delete a Scale Key on Z在Z轴删除放缩关键帧Delete All全部删除Delete All Position Keys删除全部位置关键帧Delete All Rotation Keys删除全部旋转关键帧Delete All Scale Keys删除全部放缩关键帧Delete Both删除行列Delete Button删除按钮Delete Col.删除列Delete Curve删除曲线Delete Key删除关键帧Delete Mesh Modifier删除网格修改器Delete Morph Target删除变形目标Delete Objects删除物体Delete Old删除旧材质;删除当前场景中的对象,合并新来的对象Delete Operand删除操作物体;删除操作对象Delete Original Loft Curves删除原放样曲线Delete Patch删除面片Delete Patch Edge删除面片边界Delete Patch Element删除面片元素Delete Patch Modifier删除面片修改器Delete Patch Vertex删除面片节点Delete Row删除行Delete Schematic View删除图解视图Delete Segment删除线段Delete Shape删除图形Delete Spline删除曲线Delete Spline Modifier删除曲线修改器Delete Tab删除面板Delete Tag删除标记Delete the Pop-up NoteDelete Toolbar删除工具条Delete Track View删除轨迹视图Delete Vertex删除节点Delete Zone删除区域;删除色带Dens密度Density密度;强度;浓度DependenciesDependent Curves从属曲线Dependent Points从属点Dependent Surfaces从属曲面Dependents从属格线;关联Depth深度Depth of Field视野;景深Depth Segs深度片段数Derive From Layers来自层Derive From Materials来自材质Derive From Material Within Layer来自层中的材质Derive Layers By导入层依据Derive Objects By导入物体方式;导入物体依据Derive Objects From导入物体依据Destination目的;显示出在当前场景中被选择对象的名字;目标位置Destination Time目标时间Destory CharacterDetach分离;从对象组中分离对象Detach Element分离元素Detach Segment分离线段Detach Spline分离曲线Details细节Deviation背离;偏差Dialog对话框Diameter直径Die After Collision碰撞后消亡Diffuse漫反射;漫反射光;表面色;过渡区Diffuse(reflective&translucent)过渡色(反射与半透明)Direction方向Direction Chaos方向混乱Direction of Travel/Mblur运动方向/运动模糊Direction Vector矢量方向;方向向量Directional方向;方向型Directional Light平行光Disable无效Disable Scene Redraw ToggleDisable View显示失效;视图无效Disable Viewport非活动视图Disable Viewport Toggle视图切换失效DisassembleDisassemble ObjectsDiscard New Operand Material丢弃新材质Discard Original Material丢弃原材质Disintigrate裂解Disp Approx位移近似Disp Approx Modifier位移近似修改器Displace置换;位移;位移编辑修改器Displace Modifier位移修改器Displace Space Warp位移转换空间变形Displaced Surface贴图置换表面;置换贴图表面;位移表面;位移曲面Display显示;当Display处于打开时,在绘图时会出现捕捉导线。
3ds max中文版笔记[进贤方正电脑学校]
3D教学大纲(针对室内设计)一、介绍:1、3ds max8.0是由Autodesk公司开发的三维设计软件二、应用范围1、制作效果图(室内、室外)2、片头广告(脑白金)3、影视特效(火烧效果,爆炸)4、角色动画(卡通片:花木兰、人猿泰山)5、虚拟现实(在电脑中模拟真实世界中各种场景)三、室内室外效果图制作流程第一步:Auto CAD(图纸、施工图)第二步:3DS max(建模、材质、灯光、相机、渲染)第三步:PS(后期处理)四、界面一、菜单:文件(File) 编辑(Edit)工具(Tools) 群组(Group)视图(Views) 创建(Create)修改(Modifiers) 角色(Character)动画(Animation) 反应器(reactor)图形编辑器(Graph editors)渲染(Rendering)自定义(Customize)MAX脚本Help:帮助二、主工具栏:ALT+6三、绘图区Top :顶视图(T)Front:前视图(F)Left:左视图(L)perspective:透视图(P)视图切换可用“V”字母键四、命令面板、时间轴、状态栏、运动轨迹栏、播放区、视图区等五、快捷键:G网格显示ALT+W:最大化当前视图CTRL+X:专家模式按鼠标中键拖动:平移视窗按Alt+鼠标中键:旋转视图一、讲解主工具栏:1、撤消:(Ctrl+Z)2、重做:(Ctrl+Y)3、选择并链接:将一个物体链接到另一个物体,两个物体将同时操作。
4、选择并断开:将链接好的物体断开。
5、绑定到空间扭曲体:将物体制作扭曲效果。
6、选择实体(Q):7、通过名称选物体(H):8、选择并移动(W):移动对象A)、坐标系统显示切换:XB)、放大/缩小坐标:+/-C)、锁定坐标轴:F5(X轴) F6(Y轴) F7(Z轴) F8(xy、yz、xz平面间切换)D)、显示/隐藏坐标:E)、移动并复制:shift+移动①、复制②、实例/关联③、参考复制9、选择并旋转(E):旋转对象Shift+旋转=复制10、选择并缩放(R):缩放对象11、窗口/交叉选择:12、选择并微调:只针对球体直接有作用。
max2器件中文手册
MAX15000中文资料
ELECTRICAL CHARACTERISTICS
(VIN = +12V (for MAX15000, bring VIN up to 23.6V for startup), 10nF bypass capacitors at IN and VCC, R12 = 15kΩ (MAX1500_A), R12 = 7.5kΩ (MAX1500_B), R15 = 1kΩ, C6 = 100nF (see the Typical Application Circuit), NDRV = open, VUVLO/EN = +1.4V, VFB = +1.0V, COMP = open, VCS = 0V, TA = -40°C to +85°C, unless otherwise noted. Typical values are at TA = +25°C.) (Note 1)
Pin Configuration
TOP VIห้องสมุดไป่ตู้W
UVLO/EN 1 UFLG FB COMP CS 2 3 4 5 10 IN 9 VCC NDRV GND RT
MAX15000 MAX15001
8 7 6
µMAX 1
________________________________________________________________ Maxim Integrated Products
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at 1-888-629-4642, or visit Maxim’s website at .
MAX4002EUA+中文资料
General DescriptionThe MAX4000/MAX4001/MAX4002 low-cost, low-power logarithmic amplifiers are designed to control RF power amplifiers (PA) operating in the 0.1GHz to 2.5GHz fre-quency range. A typical dynamic range of 45dB makes this family of log amps useful in a variety of wireless appli-cations including cellular handset PA control, transmitter power measurement, and RSSI for terminal devices.Logarithmic amplifiers provide much wider measurement range and superior accuracy to controllers based on diode detectors. Excellent temperature stability is achieved over the full operating range of -40°C to +85°C. The choice of three different input voltage ranges elimi-nates the need for external attenuators, thus simplifying PA control-loop design. The logarithmic amplifier is a volt-age-measuring device with a typical signal range of -58dBV to -13dBV for the MAX4000, -48dBV to -3dBV for the MAX4001, and -43dBV to +2dBV for the MAX4002.The input signal for the MAX4000 is internally AC-coupled using an on-chip 5pF capacitor in series with a 2k Ωinput resistance. This highpass coupling, with a corner at 16MHz, sets the lowest operating frequency and allows the input signal source to be DC grounded. The MAX4001/MAX4002 require an external coupling capaci-tor in series with the RF input port. These PA controllers feature a power-on delay when coming out of shutdown,holding OUT low for approximately 5µs to ensure glitch-free controller output.The MAX4000/MAX4001/MAX4002 family is available in an 8-pin µMAX ®package and an 8-bump chip-scale package (UCSP™). The device consumes 5.9mA with a 5.5V supply, and when powered down the typical shut-down current is 13µA.ApplicationsTransmitter Power Measurement and Control TSSI for Wireless Terminal DevicesCellular Handsets (TDMA, CDMA, GPRS, GSM)RSSI for Fiber ModulesµMAX is a registered trademark of Maxim Integrated Products, Inc.UCSP is a trademark of Maxim Integrated Products, Inc.Features♦Complete RF-Detecting PA Controllers♦Variety of Input RangesMAX4000: -58dBV to -13dBV (-45dBm to 0dBm in 50Ω)MAX4001: -48dBV to -3dBV (-35dBm to +10dBm in 50Ω)MAX4002: -43dBV to +2dBV (-30dBm to +15dBm in 50Ω)♦Frequency Range from 100MHz to 2.5GHz ♦Temperature Stable Linear-in-dB Response ♦Fast Response: 70ns 10dB Step ♦10mA Output Sourcing Capability ♦Low Power: 17mW at 3V (typ)♦Shutdown Current 30µA (max)♦Available in an 8-Bump UCSP and a Small 8-Pin µMAX PackageMAX4000/MAX4001/MAX40022.5GHz 45dB RF-Detecting Controllers________________________________________________________________Maxim Integrated Products 119-2288; Rev 2; 12/07For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642,or visit Maxim’s website at .Pin Configurations appear at end of data sheet.M A X 4000/M A X 4001/M A X 40022.5GHz 45dB RF-Detecting Controllers 2_______________________________________________________________________________________ABSOLUTE MAXIMUM RATINGSStresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.ELECTRICAL CHARACTERISTICS(Voltages Referenced to GND)V CC ...........................................................................-0.3V to +6V OUT, SET, SHDN , CLPF.............................-0.3V to (V CC + 0.3V)RFINMAX4000......................................................................+6dBm MAX4001....................................................................+16dBm MAX4002....................................................................+19dBm Equivalent VoltageMAX4000..................................................................0.45V RMS MAX4001....................................................................1.4V RMS MAX4002....................................................................2.0V RMSOUT Short Circuit to GND..........................................Continuous Continuous Power Dissipation (TA = +70°C)8-Bump UCSP (derate 4.7mW/°C above +70°C).........379mW 8-Pin µMAX (derate 4.5mW/°C above +70°C).............362mW Operating Temperature Range ...........................-40°C to +85°C Storage Temperature Range.............................-65°C to +150°C Lead Temperature (soldering , 10s)................................+300°CMAX4000/MAX4001/MAX40022.5GHz 45dB RF-Detecting Controllers_______________________________________________________________________________________3Note 1:All devices are 100% production tested at T A = +25°C and are guaranteed by design for T A = -40°C to +85°C as specified.All production AC testing is done at 100MHz.Note 2:Typical value only, set-point input voltage range determined by logarithmic slope and logarithmic intercept.Note 3:Set-point slew rate is the rate at which the reference level voltage, applied to the inverting input of the g m stage, responds toa voltage step at the SET pin (see Figure 1).Note 4:Typical min/max range for detector.Note 5:MAX4000 internally AC-coupled.Note 6:MAX4001/MAX4002 are internally resistive-coupled to V CC .ELECTRICAL CHARACTERISTICS(V= 3V, SHDN = 1.8V, f = 100MHz to 2.5GHz , T = -40°C to +85°C, unless otherwise noted. Typical values are at T = +25°C.)M A X 4000/M A X 4001/M A X 40022.5GHz 45dB RF-Detecting Controllers 4_______________________________________________________________________________________Typical Operating Characteristics(V CC = 3V, SHDN = V CC , T A = +25°C, unless otherwise specified. All log conformance plots are normalized to their respective tem-peratures.)MAX4001 LOG CONFORMANCE vs. INPUT POWER (μMAX)INPUT POWER (dBm)E R R O R (d B )10-30-20-10-3-2-101234-4-4020MAX4002 LOG CONFORMANCE vs. INPUT POWER (μMAX)INPUT POWER (dBm)E R R O R (d B )155-25-15-5-3-2-101234-4-3525MAX4000 LOG CONFORMANCE vs. INPUT POWER (μMAX)INPUT POWER (dBm)E R R O R (d B )-10-40-30-20-3-2-101234-4-5010MAX4002SET vs. INPUT POWER (UCSP)INPUT POWER (dBm)S E T (V )2010-100-20-300.20.40.60.81.01.21.41.61.8-4030MAX4001SET vs. INPUT POWER (UCSP)INPUT POWER (dBm)S E T (V )100-20-10-30-400.20.40.60.81.01.21.41.61.80-5020MAX4000SET vs. INPUT POWER (UCSP)INPUT POWER (dBm)S E T (V )-10-30-20-40-500.20.40.60.81.01.21.41.61.80-6010MAX4002SET vs. INPUT POWER (μMAX)INPUT POWER (dBm)S E T (V )2010-30-20-1000.40.60.81.01.21.41.61.80.2-4030MAX4001SET vs. INPUT POWER (μMAX)INPUT POWER (dBm)S E T (V )100-40-30-20-100.40.60.81.01.21.41.61.80.2-5020MAX4000SET vs. INPUT POWER (μMAX)INPUT POWER (dBm)S E T (V )-10-50-40-30-200.40.60.81.01.21.41.61.80.2-6010MAX4000/MAX4001/MAX40022.5GHz 45dB RF-Detecting Controllers_______________________________________________________________________________________5Typical Operating Characteristics (continued)(V CC = 3V, SHDN = V CC , T A = +25°C, unless otherwise specified. All log conformance plots are normalized to their respective tem-peratures.)MAX4002 SET AND LOG CONFORMANCE vs. INPUT POWER AT 0.1GHz (UCSP)INPUT POWER (dBm)S E T (V )155-25-15-50.40.60.81.01.21.41.61.80.2-3-2-101234-4-3525E R R O R (d B)MAX4001 SET AND LOG CONFORMANCE vs. INPUT POWER AT 0.1GHz (UCSP)INPUT POWER (dBm)S E T (V )10-30-20-100.40.60.81.01.21.41.61.80.2-3-2-101234-4-4020E R R O R (d B )MAX4000 SET AND LOG CONFORMANCE vs. INPUT POWER AT 0.1GHz (UCSP)INPUT POWER (dBm)S E T (V )0-10-40-30-200.40.60.81.01.21.41.61.80.2-3-2-101234-4-5010E R R O R (d B)MAX4002 SET AND LOG CONFORMANCE vs. INPUT POWER AT 0.1GHz (μMAX)INPUT POWER (dBm)S E T (V )E R R O R (d B )155-25-15-50.40.60.81.01.21.41.61.80.2-3-2-101234-4-3525MAX4001 SET AND LOG CONFORMANCE vs. INPUT POWER AT 0.1GHz (μMAX)INPUT POWER (dBm)S E T (V )10-30-20-100.40.60.81.01.21.41.61.80.2-3-2-101234-4-4020E R R O R (d B )MAX4000 SET AND LOG CONFORMANCE vs. INPUT POWER AT 0.1GHz (μMAX)INPUT POWER (dBm)S E T (V )0-10-40-30-200.40.60.81.01.21.41.61.80.2-3-2-101234-4-5010E R R O R (d B )MAX4002 LOG CONFORMANCE vs. INPUT POWER (UCSP)INPUT POWER (dBm)E R R O R (d B )155-25-15-5-3-2-101234-4-3525MAX4001 LOG CONFORMANCE vs. INPUT POWER (UCSP)INPUT POWER (dBm)E R R O R (d B )100-30-20-10-3-2-101234-4-4020MAX4000 LOG CONFORMANCE vs. INPUT POWER (UCSP)INPUT POWER (dBm)E R R O R (d B )-10-40-30-20-3-2-101234-4-5010M A X 4000/M A X 4001/M A X 40022.5GHz 45dB RF-Detecting Controllers 6_______________________________________________________________________________________Typical Operating Characteristics (continued)(V CC = 3V, SHDN = V CC , T A = +25°C, unless otherwise specified. All log conformance plots are normalized to their respective tem-peratures.)MAX4002 SET AND LOG CONFORMANCE vs. INPUT POWER AT 1.9GHz (μMAX)INPUT POWER (dBm)S E T (V )E R R O R (d B )155-25-15-50.40.60.81.01.21.41.61.80.2-3-2-101234-4-3525MAX4001 SET AND LOG CONFORMANCE vs. INPUT POWER AT 1.9GHz (μMAX)INPUT POWER (dBm)S E T (V )E R R O R (d B )10-30-20-100.40.60.81.01.21.41.61.80.2-3-2-101234-4-4020MAX4000 SET AND LOG CONFORMANCE vs. INPUT POWER AT 1.9GHz (μMAX)INPUT POWER (dBm)S E T (V )E R R O R (d B )0-10-40-30-200.40.60.81.01.21.41.61.80.2-3-2-101234-4-5010MAX4002 SET AND LOG CONFORMANCE vs. INPUT POWER AT 0.9GHz (UCSP)INPUT POWER (dBm)S E T (V )155-25-15-50.40.60.81.01.21.41.61.80.2-3-2-101234-4-3525E R R O R (d B )MAX4001 SET AND LOG CONFORMANCE vs. INPUT POWER AT 0.9GHz (UCSP)INPUT POWER (dBm)S E T (V )10-30-20-100.40.60.81.01.21.41.61.80.2-3-2-101234-4-4020E R R O R (d B )MAX4000 SET AND LOG CONFORMANCE vs. INPUT POWER AT 0.9GHz (UCSP)INPUT POWER (dBm)S E T (V )0-10-40-30-200.40.60.81.01.21.41.61.80.2-3-2-101234-4-5010E R R O R (d B )MAX4002 SET AND LOG CONFORMANCE vs. INPUT POWER AT 0.9GHz (μMAX)INPUT POWER (dBm)S E T (V )E R R O R (d B )155-25-15-50.40.60.81.01.21.41.61.80.2-3-2-101234-4-3525MAX4001 SET AND LOG CONFORMANCE vs. INPUT POWER AT 0.9GHz (μMAX)INPUT POWER (dBm)S E T (V )E R R O R (d B )10-30-20-100.40.60.81.01.21.41.61.80.2-3-2-101234-4-4020MAX4000 SET AND LOG CONFORMANCE vs. INPUT POWER AT 0.9GHz (μMAX)INPUT POWER (dBm)S E T (V )E R R O R (d B )0-10-40-30-200.40.60.81.01.21.41.61.80.2-3-2-101234-4-5010MAX4000/MAX4001/MAX40022.5GHz 45dB RF-Detecting Controllers_______________________________________________________________________________________7Typical Operating Characteristics (continued)(V CC = 3V, SHDN = V CC , T A = +25°C, unless otherwise specified. All log conformance plots are normalized to their respective tem-peratures.)MAX4001 SET AND LOG CONFORMANCE vs. INPUT POWER AT 2.5GHz (UCSP)INPUT POWER (dBm)S E T (V )E R R O R (d B )10-30-20-100.40.60.81.01.21.41.61.80.2-3-2-101234-4-4020MAX4000 SET AND LOG CONFORMANCE vs. INPUT POWER AT 2.5GHz (UCSP)INPUT POWER (dBm)S E T (V )E R R O R (d B )0-10-40-30-200.40.60.81.01.21.41.61.80.2-3-2-101234-4-5010MAX4002 SET AND LOG CONFORMANCE vs. INPUT POWER AT 2.5GHz (μMAX)INPUT POWER (dBm)S E T (V )E R R O R (d B )155-25-15-50.40.60.81.01.21.41.61.80.2-3-2-101234-4-3525MAX4001 SET AND LOG CONFORMANCE vs. INPUT POWER AT 2.5GHz (μMAX)INPUT POWER (dBm)S E T (V )E R R O R (d B )10-30-20-100.40.60.81.01.21.41.61.80.2-3-2-101234-4-4020MAX4000 SET AND LOG CONFORMANCE vs. INPUT POWER AT 2.5GHz (μMAX)INPUT POWER (dBm)S E T (V )E R R O R (d B )-10-40-30-200.40.60.81.01.21.41.61.80.2-3-2-101234-4-5010MAX4002 SET AND LOG CONFORMANCE vs. INPUT POWER AT 1.9GHz (UCSP)INPUT POWER (dBm)S E T (V )E R R O R (d B )155-25-15-50.40.60.81.01.21.41.61.80.2-3-2-101234-4-3525MAX4001 SET AND LOG CONFORMANCE vs. INPUT POWER AT 1.9GHz (UCSP)INPUT POWER (dBm)S E T (V )E R R O R (d B )10-30-20-100.40.60.81.01.21.41.61.80.2-3-2-101234-4-4020MAX4000 SET AND LOG CONFORMANCE vs. INPUT POWER AT 1.9GHz (UCSP)INPUT POWER (dBm)S E T (V )E R R O R (d B )0-10-40-30-200.40.60.81.01.21.41.61.80.2-3-2-101234-4-5010MAX4002 SET AND LOG CONFORMANCE vs. INPUT POWER AT 2.5GHz (UCSP)INPUT POWER (dBm)S E T (V )E R R O R (d B )155-25-15-50.40.60.81.01.21.41.61.80.2-3-2-101234-4-3525M A X 4000/M A X 4001/M A X 40022.5GHz 45dB RF-Detecting Controllers 8_______________________________________________________________________________________Typical Operating Characteristics (continued)(V CC = 3V, SHDN = V CC , T A = +25°C, unless otherwise specified. All log conformance plots are normalized to their respective tem-peratures.)MAX4002LOG SLOPE vs. V CC (μMAX)V CC (V)L O G S L O P E (m V /d B )5.04.54.03.53.025262728293031323334242.55.5MAX4001LOG SLOPE vs. V CC(μMAX)V CC (V)L O G S L O P E (m V /d B )5.04.53.03.54.02526272829303132242.55.5MAX4000LOG SLOPE vs. V CC (μMAX)V CC (V)L O G S L O P E (m V /d B )5.04.53.03.54.02526272829303132242.55.5FREQUENCY (GHz)L O G S L O P E (m V /d B )252627282930313224MAX4002LOG SLOPE vs. FREQUENCY (UCSP)2.01.51.00.50 2.5MAX4001LOG SLOPE vs. FREQUENCY (UCSP)FREQUENCY (GHz)L O G S L O P E (m V /d B )25262728293031322324 2.01.51.00.50 2.5MAX4000LOG SLOPE vs. FREQUENCY (UCSP)FREQUENCY (GHz)L O G S L O P E (m V /d B )2.01.51.00.525262728293031242.5MAX4002LOG SLOPE vs. FREQUENCY (μMAX)FREQUENCY (GHz)L O G S L O P E (m V /d B )2.01.51.00.5252627282930313233242.5MAX4001LOG SLOPE vs. FREQUENCY (μMAX)FREQUENCY (GHz)L O G S L O P E (m V /d B )2.01.51.00.5242526272829303132230 2.5MAX4000LOG SLOPE vs. FREQUENCY (μMAX)FREQUENCY (GHz)L O G S L O P E (m V /d B )2.01.51.00.525262728293031242.5MAX4000/MAX4001/MAX40022.5GHz 45dB RF-Detecting Controllers_______________________________________________________________________________________9Typical Operating Characteristics (continued)(V CC = 3V, SHDN = V CC , T A = +25°C, unless otherwise specified. All log conformance plots are normalized to their respective tem-peratures.)2.01.51.00.502.5-44-42-40-38-36-34-32-46L O G I N T E R C E P T (d B )MAX4002LOG INTERCEPT vs. FREQUENCY (UCSP)FREQUENCY (GHz)-50-48-46-44-42-40-522.01.51.00.50 2.5FREQUENCY (GHz)L O G I N T E R C E P T (d B m )MAX4001LOG INTERCEPT vs. FREQUENCY (UCSP)L O G I N T E R C E P T (d B m )-60-59-58-57-56-55-61MAX4000LOG INTERCEPT vs. FREQUENCY (UCSP)2.01.51.00.52.5FREQUENCY (GHz)MAX4002LOG INTERCEPT vs. FREQUENCY (μMAX)FREQUENCY (GHz)L O G I N T E R C E P T (d B m )2.01.51.00.5-44-42-40-38-36-34-32-460 2.5MAX4001LOG INTERCEPT vs. FREQUENCY (μMAX)FREQUENCY (GHz)L O G I N T E R C E P T (d B m )2.01.51.00.5-48-47-46-45-44-43-42-41-40-39-492.5MAX4000LOG INTERCEPT vs. FREQUENCY (μMAX)FREQUENCY (GHz)L O G I N T E R C E P T (d B m )2.01.51.00.5-58-57-56-55-54-53-52-51-50-592.5L O G S L O P E (m V /d B )5.04.54.03.53.02.55.5252729313323MAX4002LOG SLOPE vs. V CC (UCSP)V CC (V)L O G S L O P E (m V /d B )2527293133235.04.54.03.53.02.55.5MAX4001LOG SLOPE vs. V CC (UCSP)V CC(V)L O G S L O P E (m V /d B )MAX4000LOG SLOPE vs. V CC (UCSP)5.04.54.03.53.02.55.5252627282930313224V CC (V)M A X 4000/M A X 4001/M A X 40022.5GHz 45dB RF-Detecting Controllers 10______________________________________________________________________________________Typical Operating Characteristics (continued)(V CC = 3V, SHDN = V CC , T A = +25°C, unless otherwise specified. All log conformance plots are normalized to their respective tem-peratures.)MAX4002 INPUT IMPEDANCE vs. FREQUENCY (μMAX)FREQUENCY (GHz)R E S I S T A N C E (Ω)R E A C T A N C E (Ω)2.01.51.00.550010001500200025000-400-300-200-1000 -500 -600-700 -8002.5MAX4001 INPUT IMPEDANCE vs. FREQUENCY (μMAX)FREQUENCY (GHz)R E S I S T A N C E (Ω)R E A C T A N C E (Ω)2.01.51.00.550010001500200025000-400-300-200-1000 -500 -600-700 -8002.5MAX4000 INPUT IMPEDANCE vs. FREQUENCY (μMAX)FREQUENCY (GHz)R E S I S T A N C E (Ω)R E A C T A N C E (Ω)2.01.51.00.550010001500200025000-400-300-200-1000 -500 -600-700 -8002.55.04.54.03.53.0-44-42-40-38-36-34-462.5 5.5V CC (V)L O G I N T E R C E P T (d B m )MAX4002LOG INTERCEPT vs. V CC(UCSP)5.04.54.03.53.02.55.5-50-48-46-44-42-40-52V CC (V)L O G I N T E R C E P T (d B m )MAX4001LOG INTERCEPT vs. V CC (UCSP)5.04.54.03.53.02.55.5-60-59-58-57-56-55-61V CC (V)L O G I N T E R C E P T (d B m )MAX4000LOG INTERCEPT vs. V CC (UCSP)MAX4002LOG INTERCEPT vs. V CC (μMAX)V CC (V)L O G I N T E R C E P T (d B m )5.04.54.03.53.0-45-43-41-39-37-35-33-472.5 5.5MAX4001LOG INTERCEPT vs. V CC (μMAX)V CC (V)L O G I N T E R C E P T (d B m )5.04.54.03.53.0-48-46-44-42-40-38-36-502.55.5MAX4000LOG INTERCEPT vs. V CC (μMAX)V CC (V)L O G I N T E R C E P T (d B m )5.04.54.03.53.0-59-58-57-56-55-54-53-52-51-50-49-602.55.5MAX4000/MAX4001/MAX4002______________________________________________________________________________________11Typical Operating Characteristics (continued)(V CC = 3V, SHDN = V CC , T A = +25°C, unless otherwise specified. All log conformance plots are normalized to their respective tem-peratures.)SUPPLY CURRENT vs. SHDN VOLTAGESHDN (V)S U P P L Y C U R R E N T (m A )1.81.60.20.40.6 1.0 1.20.8 1.401234567-12.0SHDN POWER-ON DELAY RESPONSE TIME2μs/div OUT 500mV/div 1.5V/divSHDN5μsSHDN RESPONSE TIMEM A X 4000 t o c 692μs/divOUT 500mV/div1.5V/divSHDN MAX4002 INPUT IMPEDANCE vs. FREQUENCY (UCSP)FREQUENCY (GHz)R E S I S T A N C E (Ω)R E A C T A N C E (Ω)2.01.51.00.55001000150020002500002.5-400-300-200-1000-500-600-700-800-900-1000MAX4000 INPUT IMPEDANCE vs. FREQUENCY (UCSP)FREQUENCY (GHz)R E S I S T A N C E (Ω)R E A C T A N C E (Ω)2.01.51.00.550010001500200025000-400-300-200-1000 -500-600 -700-80002.5MAX4001 INPUT IMPEDANCE vs. FREQUENCY (UCSP)FREQUENCY (GHz)R E S I S T A N C E (Ω)R E A C T A N C E (Ω)2.01.51.00.550010001500200025000-400-300-200-1000-500-600-700-800-900-10002.5M A X 4000/M A X 4001/M A X 4002Pin DescriptionMAXIMUM OUT VOLTAGEvs. V CC BY LOAD CURRENTV CC (V)O U T V O L T A G E (V )5.04.54.03.53.02.53.03.54.04.55.05.52.02.55.5MAIN OUTPUT NOISE SPECTRAL DENSITY FREQUENCY (Hz)N O I S E S P E C T R A L D E N S I T Y (n V /H Z )1k10k100k1M10110010M98765432Typical Operating Characteristics (continued)(V CC = 3V, SHDN = V CC , T A = +25°C, unless otherwise specified. All log conformance plots are normalized to their respective tem-peratures.)Block DiagramDetailed Description The MAX4000/MAX4001/MAX4002 family of logarithmic amplifiers (log amps) is comprised of four main amplifi-er/limiter stages each with a small-signal gain of 10dB. The output stage of each amplifier is applied to a full-wave rectifier (detector). A detector stage also pre-cedes the first gain stage. In total, five detectors each separated by 10dB, comprise the log amp strip. Figure1 shows the functional diagram of the log amps.A portion of the PA output power is coupled to RFIN of the log amp controller, and is applied to the log amp strip. Each detector cell outputs a rectified current and all cell currents are summed and form a logarithmic output. The detected output is applied to a high-gain g m stage, which is buffered and then applied to OUT. OUT is applied to the gain-control pin of the PA to close the control loop. The voltage applied to SET determines the output power of the PA in the control loop. The volt-age applied to SET relates to an input power level determined by the log amp detector characteristics. Extrapolating a straight-line fit of the graph of SET vs. RFIN provides the logarithmic intercept. Logarithmic slope, the amount SET changes for each dB change of RF input, is generally independent of waveform or ter-mination impedance. The MAX4000/MAX4001/ MAX4002 slope at low frequencies is about 25mV/dB. Variance in temperature and supply voltage does not alter the slope significantly as shown in the Typical Operating Characteristics.The MAX4000/MAX4001/MAX4002 are specifically des-igned for use in PA control applications. In a control loop, the output starts at approximately 2.9V (with sup-ply voltage of 3V) for the minimum input signal and falls to a value close to ground at the maximum input. With a portion of the PA output power coupled to RFIN, apply a voltage to SET and connect OUT to the gain-control pin of the PA to control its output power. An external capacitor from the CLPF pin to ground sets the band-width of the PA control loop.Transfer Function Logarithmic slope and intercept determine the transfer function of the MAX4000/MAX4001/MAX4002 family of log amps. The change in SET voltage per dB change in RF input defines the logarithmic slope. Therefore, a 250mV change at SET results in a 10dB change at RFIN. The Log-Conformance plots (see Typica l Oper-a ting Cha ra cteristics) show the dynamic range of the log amp family. Dynamic range is the range for which the error remains within a band of ±1dB.The intercept is defined as the point where the linear response, when extrapolated, intersects the y-axis of the Log-Conformance plot. Using these parameters, the input power can be calculated at any SET voltage level within the specified input range with the followingwhere SET is the set-point voltage, SLOPE is the loga-rithmic slope (V/dB), RFIN is in either dBm or dBV and IP is the logarithmic intercept point utilizing the same units as RFIN.Applications InformationController Mode Figure 2 provides a circuit example of the MAX4000/ MAX4001/MAX4002 configured as a controller. The MAX4000/MAX4001/MAX4002 require a 2.7V to 5.5V supply voltage. Place a 0.1µF low-ESR, surface-mount ceramic capacitor close to V CC to decouple the supply. Electrically isolate the RF input from other pins (espe-cially SET) to maximize performance at high frequencies (especially at the high-power levels of the MAX4002). The MAX4000 has an internal input-coupling capacitorMAX4000/MAX4001/MAX4002 ______________________________________________________________________________________13M A X 4000/M A X 4001/M A X 400214______________________________________________________________________________________and does not require external AC-coupling. Achieve 50Ωinput matching by connecting a 50Ωresistor between RFIN and ground. See the Typica l Opera ting Characteristics section for a plot of Input Impedance vs.Frequency. See the Additiona l Input Coupling section for other coupling methods.The MAX4000/MAX4001/MAX4002 log amps function as both the detector and controller in power-control loops. Use a directional coupler to couple a portion of the PA’s output power to the log amp’s RF input. In applications requiring dual-mode operation where there are two PAs and two directional couplers, passively combine the outputs of the directional couplers before applying to the log amp. Apply a set-point voltage to SET from a controlling source (usually a DAC). OUT,which drives the automatic gain-control pin of the PA,corrects any inequality between the RF input level and the corresponding set-point level. This is valid assum-ing the gain control of the variable gain element is posi-tive, such that increasing OUT voltage increases gain.OUT voltage can range from 150mV to within 250mV of the supply rail while sourcing 10mA. Use a suitable load resistor between OUT and GND for PA control inputs that source current. The Typica l Opera ting Characteristics section has a plot of the sourcing capa-bilities and output swing of OUT.SHDN and Power-OnThe MAX4000/MAX4001/MAX4002 can be placed in shutdown by pulling SHDN to ground. SHDN reduces supply current to typically 13µA. A graph of SHDN Response is included in the Typica l Opera ting Characteristics section. Connect SHDN and V CC together for continuous on-operation.Power ConventionExpressing power in dBm, decibels above 1mW, is the most common convention in RF systems. Log amp input levels specified in terms of power are a result of following common convention. Note that input power does not refer to power, but rather to input voltage rela-tive to a 50Ωimpedance. Use of dBV, decibels with respect to a 1V RMS sine wave, yields a less ambiguous result. The dBV convention has its own pitfalls in that log amp response is also dependent on waveform. A complex input such as CDMA does not have the exact same output response as the sinusoidal signal. The MAX4000/MAX4001/MAX4002 performance specifica-tions are in both dBV and dBm, with equivalent dBm levels for a 50Ωenvironment. To convert dBV values into dBm in a 50Ωnetwork, add 13dB.Filter Capacitor and Transient ResponseIn general, the choice of filter capacitor only partially determines the time-domain response of a PA control loop. However, some simple conventions can be applied to affect transient response. A large filter capacitor, C F , dominates time-domain response, but the loop bandwidth remains a factor of the PA gain-control range. The bandwidth is maximized at power outputs near the center of the PA’s range, and mini-mized at the low and high power levels, where the slope of the gain-control curve is lowest.A smaller valued C F results in an increased loop band-width inversely proportional to the capacitor value.Inherent phase lag in the PA’s control path, usually caused by parasitics at the OUT pin, ultimately results in the addition of complex poles in the AC loop equa-tion. To avoid this secondary effect, experimentally determine the lowest usable C F for the power amplifier of interest. This requires full consideration to the intrica-cies of the PA control function. The worst-case condi-tion, where the PA output is smallest (gain function is steepest), should be used because the PA control function is typically nonlinear. An additional zero can be added to improve loop dynamics by placing a resis-tor in series with C F . See Figure 3 for the gain and phase response for different C F values.Additional Input CouplingThere are three common methods for input coupling:broadband resistive, narrowband reactive, and series attenuation. A broadband resistive match is implemented by connecting a resistor to ground at RFIN as shown in Figure 4a. A 50Ωresistor (use other values for different input impedances) in this configuration in parallel with the input impedance of the MAX4000 presents an input。
MAX1796EUA中文资料
________________________Applications
Portable Digital Audio Players PDAs/Palmtops Wireless Handsets Portable Terminals
True-Shutdown is a trademark of Maxim Integrated Products.
2
_______________________________________________________________________________________
元器件交易网
Low Supply Current, Step-Up DC-DC Converters with True-Shutdown
元器件交易网
Low Supply Current, Step-Up DC-DC Converters with True-Shutdown MAX1795/MAX1796/MAX1797
ABSOLUTE MAXIMUM RATINGS
OUT, LX, SHDN, LBI, LBO, BATT to GND................-0.3V to +6V FB .............................................................-0.3V to (VOUT + 0.3V) ILX, IOUT ..............................................................................±1.5A Output Short-Circuit Duration ...................................................5s Continuous Power Dissipation 8-Pin µMAX (derate 4.1mW/°C above +70°C) .............330mW Operating Temperature Range ...........................-40°C to +85°C Junction Temperature ......................................................+150°C Storage Temperature Range .............................-65°C to +150°C Lead Temperature (soldering, 10s) .................................+300°C
3dmax2015(3dsmax2015)中文英文版官方(64位)图文安装、注册教程
3dmax2015(3dsmax2015)中⽂英⽂版官⽅(64位)图⽂安装、注册教程安装前的准备:请先点击下载同时提供⼀个:1第⼀步:安装3dsmax2015 64位中/英⽂版,解压MAX⽂件(图⼀)⾸先双击打开MAX2015安装程序,然后会弹出解压路径,这⾥尽量选择空间较⼤的盘符,然后就开始解压如图⼀。
2第⼆步:正式安装MAX2015(图⼆)正式安装MAX2015,点击安装按钮。
如图⼆。
3第三步:接受安装许可协议(图三)这⾥选择国家或地区为"china",然后选择我接受许可协议,再点下⼀步如图三。
4第四步:安装产品信息(图四)选择许可类型为单机,然后将序列号:066-66666666和产品密钥128G1写⼊产品信息内,点击下⼀步。
如图四。
5第五步:安装配置,也就是安装路径的设置(图五)⼀般类似MAX2015这样⽐较⼤的软件都不安装到系统盘,我这⾥选择的是D盘安装,选择好盘符之后点击安装如图五。
6第六步:MAX2015安装进度(图六)MAX2015的安装⼤概需要⼏分钟时间,请耐⼼等待。
如图六。
7第七步:MAX2015 64位中/英⽂版安装完成(图七)这⾥MAX2015 64位中/英⽂版就安装完成,点击安装完成。
如图七。
8第⼋步:启动MAX2015 64位中/英⽂版(图⼋)双击打开桌⾯上MAX2015 64位中/英⽂版快捷⽅式,运⾏MAX2015 64位中/英⽂版。
如图⼋。
9第九步:勾选“我同意使⽤在autodesk隐私声明中所描述的个⼈信息”(图九)勾选“我同意使⽤在autodesk隐私声明中所描述的个⼈信息”,然后点击我同意(I Agree) 如图九。
10第⼗步:激活MAX2015 64位中/英⽂版(图⼗)这时提⽰我们要激活MAX2015 64位中/英⽂版,点击激活(Activate)。
如图⼗。
11第⼗⼀步:点击关闭(close)(图⼗⼀)我们发现这⾥跟我们之前版本的MAX激活界⾯不⼀样,所以有两种激活⽅法,⼀种是断⽹激活,另外⼀种就是本教程要讲述的:我们先点击关闭,关闭这次激活,然后返回到之前的激活界⾯,再重新点击激活,这时我们会发现⾃动跳转到输⼊激活码界⾯。
第1章 3ds Max 2015设计概述
1.2 明确3ds Max 2015的设计流程
5.渲染并存结果
1.1 了解3ds Max 2015
1.1.2 范例解析──制作“公园一角”
1. 初次渲染场景
1.1 了解3ds Max 2015
2.观察场景的组成 3.对场景的变换操作
移动树
1.1 了解3ds Max 2015
删除草
1.2 明确3ds Max 2015的设计流程
1.2.1 基础知识──深入学习3ds Max 2015的设计要领
1.2 明确3ds Max 2015的设计流程
1.2.2 范例解析──制作“阅兵场景”
1.2 明确3ds Max 2015的设计流程
1.创建地面
1.2 明确3ds Max 2015的设计流程
2.导入坦克模型
1.2 明确3ds Max 2015的设计流程
3.变换并克隆坦克模型
1.2 明确3ds Max 2015的设计流程
一、配置视口 (1)默认视口布局 顶视口:从正上方向下观察对象的视口。 前视口:从正前方向后观察对象的视口。 左视口:从正左方向右观察对象的视口。 透视视口:从与上方、前方和左方均成 相同角度的侧面观察对象的视口。 (2)更改视口类型 (3)配置视口布局 (4)调整视口大小
1.2 明确3ds Max 2015的设计流程
第1章 3ds Max 2015设计概述
1.1 了解3ds Max 2015
1.1.1 基础知识──初步认识三维动画 一、 3ds Max应用简介 (1)工业造型与仿真 (2)建筑效果展示 (3)影视广告特效 (4)游戏开发
1.1 了解3ds Max 2015
二、3ds Max 2015设计环境简介
SI-TEX ColorMax 15电子图形系统说明书
SI-‐TEX C olorMax 15 E LECTRONIC C HARTING S YSTEM-‐ S pecifications Power Requirement 10 -‐35V D C, 30W Power Consumption2.5A@12V Display S creen 15" (diagonal) a ctive m atrix c olor L CD, 500 n it b rightness Display Resolution1024 x 768 p ixels KeypadSilicon r ubber, b acklighted CartographyHigh d efinition, d ual s lots f or C -‐MAP M AX/NT+ C -‐Card c artridges MemoryNon-‐volatile Waypoints/Marks5000 Routes50 r outes o f u p t o 50 w aypoints p er r oute Track P lots 5000 (5 t racks o f u p t o 1000 p oints p er t rack u sing u p t o 8 c olors) Type o f U ser Points16 Plotting I ntervals Distance: 0.01, 0.05, 0.1, 0.5, 1, 2, 5, 10 N M Time: 1, 5, 10, 30 s ec., 1 m in. Depth U nit f or Depth L ine MT, F T o r F M Operating Temperature32º t o 131º F PagesMap, N avigation, 3D n avigation (rolling r oad), D epth G raph, T ides & c urrents, GPS s tatus, w ind g raph, u ser p oints, r outes, i nfo, R adar, F ishfinder, N MEA i n data: 1, 2, 4, 8 w indows u ser c ustomizable AlarmsGuardian A larm, E xternal A larm, A rrival, X TE, A nchor, D epth, P osition f ix FeaturesMOB, G OTO (Waypoint, M OB, C ursor, R oute, M ark), F ishfinder, R adar (automatic s creen s ynchronization b etween r adar a nd c hart, r adar o verlay), AIS, A utopilot, C -‐Com (Modem G SM)/ C -‐Meteo, V HF D SC i nterface, m irror cards, e lectronic c ompass, X TE g raph, f uel c onsumption, a uto z oom, f ix correction, r ange & b earing, B RG a nd D ST t o w aypoint, B RG a nd D ST t o cursor, t ide p redictions Find O bjectsPorts, P ort s ervices, t ide, w reck, o bstruction, L at/Lon, u ser p oints Map R otation North-‐up, t rack-‐up Coordinate Systems ddd m m s s, d dd m m.mm, d dd m m, m mm, U TM, O SGB, T D Navigation FeaturesTTG, D ST, E TA Navigation D ataPosition, X TE, S OG, C OG, V MG Celestial P age Tide d ata, T ide i nfo, M oon p hase, s unrise/sunset Position Functions WAAS, F is (manual, a utomatic), p osition f ilter, s peed f ilter, f ix d atum, compass c alibration, t rue/magnetic a ngles, s tatic n avigationExternal A larmAudible b eeper w ith e xternal a larm o utput UnitsSpeeed: M PH, K TS, K PH. D istance: K m, N m, S m. D epth: F t. F M, Mt. D ate/time: L ocale, U TC SimulationSpeed, B RG, d ate/time, c ursor c ontrol Special F unctionsC-‐SMS ™ C -‐STAFF, G uardian ™ T echnology , A .I.S. PC I nterfaceBy u sing C -‐MAP P C P lanner Back-‐up S ystem User c ard Input/Output FormatNMEA-‐0183 V er 2.0 Case D imensions13.6"W x 15.3"H x 3.9"D Weight 9.9 l bs. GPS/WAAS RECEIVERReceiverL1, C /A C ode Accuracy B etter t han 3m, 95% o f t he t ime Max. S olution Update R ate 10/sec Cold S tart (Average) <44 s ecs Warm S tart (Average) <37 s ecs Hot S tart (Average)<11 s ecs AntennaExternal Cable L ength 33 f t. IMPORTANTNOTICE:SI-‐TEX E lectronics C harting S ystems a nd C -‐MAP M AX/NT+ N avigation C harts a re n ot d esigned t o replace standard g overnment c harts. A ny e lectronic n avigation d evice s hould b e o perated a long w ith t he prudent u se o f r eliable m anualbackup m aterial.Note: A ccuracy i s s ubject t o c hange i n a ccordance w ith D OD c ivil G PS u ser p olicy.*Guardian™ f eature s hould b e u sed a s a t ool i n c onjunction w ith o ther n avigation s uch a s D epth Sounders, C harts a nd V isual S ighting, a nd s hould n ot b e r elied u pon a s t he s ole m eans o f navigation.Specifications s ubjectt o c hange w ithout n otice.。
3Dmax中英文详细翻译对照
3Dmax中英文对照参考软件:3Dmax8中文版+vray1.5中文版和3Dmax8英文版+vray1.5英文由于任务繁重,有些相同的内容只写一遍,还望谅解。
如有重复纯属糊涂and巧了。
一、右击菜单(由于有些右击菜单中在修改卷栏中也有在这就不复述)(右击菜单左侧)(右击菜单右侧)反转样条线: Reverse Line 孤立当前选择: Isolate selection设为首顶点: make first 全部解冻: unfreeze all拆分: divide 冻结当前选择: freeze selection绑定: bind 按名称取消隐藏: unhide by name取消绑定: Unbind 全部取消隐藏: unhide all 工具 1: tools 1 隐藏未选定对象: hide unselection 工具 2: tools 2 隐藏当前选择: hide selection 创建线: create line 保存场景状态: save scene state 附加: attach 管理场景状态: mange scene states 分离线段: detach segment 显示: display连接: connect 变换: transform 细化: refine 移动: move细化连接: connect refine 旋转: rotate循环顶点: cycle vertices 缩放: scale断开顶点: break vertices 选择: select焊接顶点: weld vertices 克隆: clone融合顶点: fuse vertices 属性: propertiesBezier角点: Bezier corner 曲线编辑器: curve editorBezier : bezier 摄影表: dope sheet角点: corner 关联参数: wire parameters平滑: smooth 转换为: convert to重置切线: reset tangents (展开)可编辑样条线: convert to editorspline样条线: spline 可编辑网络: convert to editormesh线段: segment 可编辑多边形: convert to editor poly顶点: vertex 可编辑片面: convert to editorpatch顶层级: top-level 转换为 NURBS: convert to NURBS线: line VRAY 属性: VRAY porperties曲线: curve VRAY场景转换器: VRAY scene converterVRAY网格导出: VRAY mesh export VRAY VFB : VRAY VFB二、修改器:mordifiers选择: selectionFFD 选择:fFFD select网格选择:mesh select面片选择:patch select多边形选择:poly select按通道选择:select by channel样条线选择:spline select体积选择:volume select面片/样条线编辑:patch/spline editing横截面:cross section删除面片:delete patch删除样条线:delete spline编辑面片:edit patch编辑样条线:edit spline圆角/切角:fillet/chamfer车削:lathe规格化样条线:normalize spline可渲染样条线修改器:renderable spline modifier曲面:surface扫描:sweep修剪/延伸:trim/extend网格编辑: mesh补洞:cap holes删除网格:delete mesh编辑网格:edit mesh编辑法线:edit normals编辑多边形:edit poly挤出:extrude面挤出:face extrudemultires:multires法线修改器:normal modifier优化:optimize平滑:smoothSTL检查:STL check对称:symmetry细化:fessellate顶点绘制:vertex paint顶点焊接:vertex weld动画:animation属性承载器:attribute holder 柔体:flex链接变换:linked xform融化:melt变形器:morpher面片变形:patch deform面片变形(WSM):patch deform(WSM)路径变形:path deform路径变形(WSM):patch deform(WSM)蒙皮:skin蒙皮变形:skin morph蒙皮包裹:skin wrap蒙皮包裹面片:skin wrap patch样条线 IK 控制:spline IK control曲面变形:surf deform曲面变形(WSM):surf deform(WSM)UV坐标:UV coordinates摄影机贴图:camera map摄影机贴图(WSM):camera map(WSM)贴图缩放器(SWM):map scaler(WSM)投影:projection展开UVW:unwrap UVWUVW贴图:UVW mapUVW贴图添加:UVW mapping AddUVW贴图清楚:UVW mapping clearUVW贴图变换:UVW mapping XForm缓存工具:cache tools点缓存:point cache点缓存(WSM):point cache(WSM)细分曲面:subdivision surfacesHSDS修改器:HSDSmordifier网络平滑:网格平滑:mesh smooth涡轮平滑:turbo smooth自由形式变形器:free form deformersFFD长方体:FFDBOXFFD圆柱体:FFD cylinder参数变形器:parametric deformers影响区域:affect region弯曲:bend置换:displace晶格:lattice镜像:mirror噪波:noisePhysique:physique推力:push保留:preserve松弛:relax涟漪:ripple壳:shell切片:slice拉伸:stretch球形化:spherify挤压:squeeze扭曲:twist推化:taper替换:XForm波浪:wave曲面:surface置换近似:disp approx置换网格:displace mesh材质:material按元素分配材质:material by elementNURBS编辑:NURBS editing置换近似:disp approx曲面变形:surf deform曲面选择:surface select光能传递:radiosity细分:subdivide细分(WSM):sudiosity(WSM)三、可编辑样条线修改器菜单渲染:rendering在渲染中启用:enable in renderer在视口中启用:enable in viewport生成贴图坐标:senerat mapping coords真实世界贴图大小:real-world map size视口:viewport径向:radial厚度:thichness边:sides角度:angle纵横比:aspect自动平滑:auto smooth阈值:threshold插值:interpolation步数:steps自适度:adaptive名称选择:named selections复制:copy粘贴:paste锁定控制柄:lock handles相似:alike区域选择:area selection线段端点:segment end选择方式:select by。
MAX15301数据手册中文版
MAX15301是一个全功能,高效,数字化的点负载(POL)控制器与先进的电源管理和遥测功能与PID 为基础的数字电源稳压器,MAX15301采用Maxim拥有专利的Intune的™自动补偿,状态空间控制算法。
Intune 的控制律是有效的小信号和大信号响应,占占空比饱和度的影响。
这消除了需要用户以确定和设置的阈值从线性转换到非线性模式。
这些能力在快速环路的瞬态响应,并减少输出电容器的数量相比,竞争的模拟和数字控制器。
MAX15301包含多种功能,以优化效率。
内部开关BabyBuck的稳压器可产生栅极驱动器和内部偏置电源,低功耗的控制器。
一种先进的,高效率的MOSFET的栅极驱动器,具有自适应非重叠定时,而连续调整的高侧和低侧的定时和驱动电压的全范围内的电压,电流和温度,以尽量减少开关损耗。
MAX15301设计最终客户的设计环境的初衷。
上的PMBus™兼容的串行总线接口进行通信的监控器监控和故障管理。
全套的电源管理功能,无需复杂和昂贵的测序和监控IC。
基本的DC-DC转换操作,可设置通过引脚搭接,并不需要用户配置固件。
这使得电源子系统的快速发展前完成板级系统的工程。
Maxim提供支持的硬件和软件配置MAX15301 ,MAX15301可在32引线,5mm×5mm TQFN封装,工作在-40°C至+85°C的温度范围内。
特征:1.Intune的自动补偿功能可以确保稳定,同时优化瞬态性能2.在快速瞬态响应减少输出电容的非线性补偿结果3.差分远端电压传感允许±1%V OUT精度在整个温度范围内(-40°C至+85°C)4.PMBus接口用于配置,控制和监测5.支持电压定位6.提高效率(自适应非重叠时序驱动器)7.4.5V至14V的宽输入电压范围8.高效片上BabyBuck稳压器的自偏置9.输出电压范围从0.5V到5.25V10.进入预偏置输出启动11.可配置的软启动和软停止时间12.固定工作频率同步(300kHz至1MHz)13.灵活的排序和故障管理14.引脚手动跳线配置(输出电压,从机地址,开关频率,电流限制)15.可以快速原型图表典型工作电路详细描述MAX15301是一种创新的,兼容PMBus命令,混合信号的电源管理芯片,对数字负载点来说这种芯片内置一种高性能数字PWM控制器。
3dsmax2015和2019功能对比
3dsmax2015和2019功能对比
上传几张在3dsmax官方网站截图,是3dsmax2015和2018的对比,有勾选的即为版本具有的功能。
没有对比2019,如果想了解2019新特性,在2018栏也没有勾选的,就是2019新特性官方网站没有找到更早版本对比,最低只到2015版本,2015到2018有3个版本跨度,了解一下这个跨度增加的新特性,有多少是3dsmax初中级学习需要的。
更高版本的新功能的确提供了某些方便,但会不会用到,因人而异了。
但有同行使用的3dsmax2009,目前为止系统没崩溃过。
这是官网对比链接:/products/3ds-max/compare
昨天有人留言,就2个字“鄙视”,管理员拉黑处理了,类似的事情发生过几次,处理的比较简单,拉黑!这里只是想表明一个态度,
平等交流是必需的。
管理员想保持平等交流原则,在这里真心感谢和平台有过交流的朋友,包括:点赞、浏览发布、发消息、发留言、打赏、置顶公众号、技术交流、有不同思路并提供教程、点击了底部广告、购买过教程等。
约束_Autodesk 3ds Max 2015标准教材I_[共2页]
图10.022
MassFX中的约束可限制刚体在移动和旋转时的速度与角度。
例如,设置攻城动画时,城门在受到圆木的撞击时只会沿着z轴转动,如图10.023所示。
实际上,MassFX约束都是同一类型的辅助对象,虽然在工具栏中可以为刚体建立不同种类的约束,包括[刚体约束]、[转枢约束]、[扭曲约束]、[球和套管约束]等,但是它们只是为了满足不同的需要而设置了不同的默认值,而所有的参数类型都是一致的,可以相互转换。
图10.023
约束辅助对象可以把两个刚体连接在一起,也可以将单个刚体固定在世界空间中的某个位置上,从而形成了一个链接层次,子对象要沿着父对象进行移动和旋转,子对象必须是动力学刚体,而父对象可以是动力学或运动学刚体。
父对象也可以为空,当父对象为空时,子对象固定到世界空间的某一位置上。
1. 创建约束
在创建约束时,可以选择一个或两个刚体对象,当选择两个刚体对象时,第一个选择的为父对象,第二个选择的是子对象。
如果选择了一个刚体对象,那么该对象为约束的子对象。
如果选择的。
光能传递_Autodesk 3ds Max 2015标准教材I_[共4页]
图6.020 图6.021 图6.022
6.2.2 光能传递
单击[渲染设置]窗口的[高级照明]选项卡,在[选择高级照明]卷展栏的下拉列表中选择[光能传递]选项,即可将当前的渲染引擎更改为[光能传递]方式。
6.2.2.1 光能传递技术原理
光能传递技术的前身,来源于热量工程学。
早在20世纪60年代初期,工程师们开发了一种计算热辐射在对象表面间传递的方法,来确定对象表面的形状,这种方法主要用于高炉和发动机的内部设计。
到了20世纪80年代中期,计算机图形学的开发者们开始研究这项技术在模拟光能传播中的应用,即现在的光能传递(Radiosity)技术,如图6.023所示。
光能传递的工作原理:先将对象的原表面分为细小的网格表面,称为网格元素(Elements),然后从一个网格元素到另一个网格元素计算光的分布数量,并将最终的光能传递值记录在每个网格元素当中,这一过程不断重复下去,直到两次迭代间的场景照明差异低于指定的质量级别,如图6.024所示。
光线由光源射到表面,反射为多条漫反射光线。
将表面进行细分可以提高求解精度。
图6.023 图6.024
[光能传递]是一种能够真实模拟光线在环境中相互作用的全局照明渲染技术,它能够重建自然光在场景对象表面上的反弹,从而实现更为真实、精确的照明结果。
与其他渲染技术相比,[光能传递]具有以下几项特点。
一旦完成光能传递解算,就可以从任意视角观察场景,解算结果保存在MAX文件中。
可以自定义对象的光能传递解算质量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
INHI
Σ
7dB
Σ
7dB
Σ
7dB 20kΩ
8 7
OUTBiblioteka SETPWDN5OFFSET AND COMMONMODE AMP
20kΩ
MAX2015
6 GND
Pin Configuration appears at end of data sheet. ________________________________________________________________ Maxim Integrated Products 1
元器件交易网
19-2998; Rev 2; 2/07
KIT ATION EVALU E L B A AVAIL
0.1GHz to 3GHz, 75dB Logarithmic Detector/Controller
Features
♦ Complete RF Detector/Controller ♦ 0.1GHz to 3GHz Frequency Range ♦ Exceptional Accuracy Over Temperature ♦ High Dynamic Range ♦ 2.7V to 5.25V Supply Voltage Range* ♦ Scaling Stable Over Supply and Temperature Variations ♦ Controller Mode with Error Output ♦ Shutdown Mode with Typically 1µ A of Supply Current ♦ Available in 8-Pin µ MAX® and TDFN Packages
DC ELECTRICAL CHARACTERISTICS
(MAX2015 typical application circuit (Figure 1), VS = +3.3V, fRF = 100MHz to 3000MHz, R1 = 0Ω, R4 = 0Ω, RL = 10kΩ, TA = -40°C to +85°C, unless otherwise noted. Typical values are at TA = +25°C, unless otherwise noted.) (Note 1)
2
_______________________________________________________________________________________
元器件交易网
0.1GHz to 3GHz, 75dB Logarithmic Detector/Controller
0.1GHz to 3GHz, 75dB Logarithmic Detector/Controller MAX2015
ABSOLUTE MAXIMUM RATINGS
VCC (Pins, 1, 4) to GND.......................................-0.3V to +5.25V SET, PWDN to GND....................................-0.3V to (VCC + 0.3V) Input Power Differential INHI, INLO................................+23dBm Input Power Single Ended (INHI or INLO grounded).....+19dBm Continuous Power Dissipation (TA = +70°C) 8-Pin µMAX (derate 4.5mW/°C above +70°C) .............362mW 8-Pin TDFN (derate 18.5mW/°C above +70°C) .........1480mW Operating Temperature Range ...........................-40°C to +85°C Junction Temperature ......................................................+150°C Storage Temperature Range .............................-65°C to +150°C Lead Temperature (soldering, 10s) .................................+300°C
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at 1-888-629-4642, or visit Maxim’s website at .
元器件交易网
AGC Measurement and Control RF Transmitter Power Measurement RSSI Measurements Cellular Base Station, WLAN, Microwave Link, Radar, and other Military Applications
MAX2015
Ordering Information
PART MAX2015EUA MAX2015EUA-T TEMP RANGE -40°C to +85°C -40°C to +85°C PINPACKAGE 8 µMAX 8 µMAX PKG CODE U8-1 U8-1
Applications
PARAMETER POWER SUPPLY Supply Voltage VS R4 = 75Ω ±1%, PWDN must be connected to GND R4 = 0Ω Supply Current Supply Current Variation with Temp Shutdown Current CONTROLLER REFERENCE (SET) SET Input Voltage Range SET Input Impedance DETECTOR OUTPUT (OUT) Source Current Sink Current Minimum Output Voltage Maximum Output Voltage VOUT(MIN) VOUT(MAX) 4 450 0.5 1.8 mA µA V V 0.5 to 1.8 40 V kΩ ICC ICC ICC TA = +25°C, VS = 5.25V, R4 = 75Ω TA = +25°C TA = -40°C to +85°C VPWDN = VCC 4.75 2.7 17.3 17.3 0.05 1 20.5 mA/°C µA 5.25 3.6 mA V SYMBOL CONDITIONS MIN TYP MAX UNITS
*See Power-Supply Connections section. µMAX is a registered trademark of Maxim Integrated Products, Inc.
General Description
The MAX2015 complete multistage logarithmic amplifier is designed to accurately convert radio-frequency (RF) signal power in the 0.1GHz to 3GHz frequency range to an equivalent DC voltage. The outstanding dynamic range and precision over temperature of this log amplifier make it particularly useful for a variety of base station and other wireless applications, including automatic gain control (AGC), transmitter power measurements, and received signal strength indication (RSSI) for terminal devices. The MAX2015 can also be operated in a controller mode where it measures, compares, and controls the output power of a variable-gain amplifier as part of a fully integrated AGC loop. This logarithmic amplifier provides much wider measurement range and superior accuracy compared to controllers based on diode detectors, while achieving excellent temperature stability over the full -40°C to +85°C operating range.
AC ELECTRICAL CHARACTERISTICS
(MAX2015 typical application circuit (Figure 1), VS = +3.3V, fRF = 100MHz to 3000MHz, R1 = 0Ω, R4 = 0Ω, RL = 10kΩ, TA = -40°C to +85°C, unless otherwise noted. Typical values are at TA = +25°C, unless otherwise noted.) (Note 1)