2012中考数学经典应用题专题训练及答案
【史上最全】2012年全国中考数学试题分类解析汇编(160套60专题)专题10-分式方程
【史上最全】2012年全国中考数学试题分类解析汇编(160套60专题)专题10:分式方程一、选择题1。
(2012海南省3分)分式方程12x +2x 1x+1=-的解是【 】 A .1 B .-1 C .3 D .无解【答案】C 。
【考点】解分式方程。
【分析】首先去掉分母,观察可得最简公分母是(x+1)(x ﹣1),方程两边乘最简公分母,可以把分式方程转化为整式方程求解,然后解一元一次方程,最后检验即可求解: ()()()12x +2x+1+2x x 12x+1x 1x 3x 1x+1=⇒-=-⇒=-. ∵x 3=时,(x+1)(x ﹣1)≠0,∴x 3=是原方程的解.故选C 。
2。
(2012浙江丽水、金华3分)把分式方程21=x+4x 转化为一元一次方程时,方程两边需同乘以【 】A .xB .2xC .x +4D .x (x +4)【答案】D 。
【考点】解分式方程。
【分析】根据各分母寻找公分母x (x +4),方程两边乘最简公分母,可以把分式方程转化为整式方程.故选D 。
3。
(2012福建三明4分)分式方程52=x+3x的解是【 】 A .x=2 B .x=1 C .x=12D .x=-2 【答案】A 。
【考点】解分式方程。
【分析】首先去掉分母,观察可得最简公分母是x (x +3),方程两边乘最简公分母,可以把分式方程转化为整式方程求解,然后解一元一次方程,最后检验即可求解:去分母,得5x=2(x +3),解得x=1。
检验,合适。
故选A 。
4。
(2012湖北随州4分)分式方程10060=20+v 20v-的解是【 】 A 。
v=-20 B. v =5 C. v =-5 D. v =20【答案】B 。
【考点】解分式方程.【分析】观察可得最简公分母是(20+v)(20—v ),方程两边乘最简公分母,可以把分式方程转化为整式方程求解:方程的两边同乘(20+v )(20-v ),得100(20-v )=60(20+v ),解得:v=5.检验:把v=5代入(20+v )(20—v)=375≠0,即v=5是原分式方程的解.故选B 。
2012年中考数学复习考点跟踪训练08 列方程(组)解应用题
考点跟踪训练8 列方程(组)解应用题一、选择题1.(2010·曲靖)练习本比水性笔的单价少2元,小刚买了5本练习本和3支水性笔正好用去14元.如果设水性笔的单价为x 元,那么下面所列方程正确的是( )A .5(x -2)+3x =14B .5(x +2)+3x =14C .5x +3(x +2)=14D .5x +3(x -2)=14答案 A解析 水性笔的单价为x 元,则练习本的单价为(x -2)元,5本练习本和3支水性笔的总价为5(x -2)+3x 元,故选A.2.(2010·恩施)某品牌商品,按标价九折出售,仍可获得20%的利润.若该商品标价为28元,则商品的进价为( )A. 21元B. 19.8元 C .22.4元 D .25.2元答案 A解析 设该商品的进价为x 元,28×0.9-x =20%x,1.2x =28×0.9,x =21.3.(2011·泰安)某班为奖励在校运会上取得较好成绩的运动员,花了400元钱购买甲、乙两种奖品共30件,其中甲种奖品每件16元,乙种奖品每件12元,求甲、乙两种各买了多少件?该问题中,若设购买甲种奖品x 件,乙种奖品y 件,则列方程正确的是( )A.⎩⎪⎨⎪⎧ x +y =30,12x +16y =400B.⎩⎪⎨⎪⎧ x +y =30,16x +12y =400 C.⎩⎪⎨⎪⎧ 16x +12y =30,x +y =400 D.⎩⎪⎨⎪⎧12x +16y =30,x +y =400 答案 B解析 甲种奖品每件16元、x 件需16x 元,乙种奖品每件12元、y 件需12y 元,合计16x +12y =400,故选B.4.(2010·绵阳)有大小两种船,1艘大船与4艘小船一次可以载乘客46名,2艘大船与3艘小船一次可以载乘客57人.绵阳市仙海湖某船家有3艘大船与6艘小船,一次可以载游客的人数为( )A .129B .120C .108D .96答案 D解析 设1艘大船一次载客x 人,1艘小船一次载客y 人,⎩⎪⎨⎪⎧x +4y =46,2x +3y =57,解之,得⎩⎪⎨⎪⎧x =18,y =7,∴3x +6y =3×18+6×7=54+42=96. 5.(2011·凉山)某品牌服装原价173元,连续两次降价x %后售价为127元,下面所列方程中正确的是( )A .173()1+x %2=127B .173()1-2x %=127C .173()1-x %2=127D .127()1+x %2=173答案 C解析 该品牌服装降价一次后为173-173×x %=173(1-x %)元,降价两次后为173(1-x %)-173(1-x )×x %=173(1-x %)2元,故选C.二、填空题6.(2011·湘潭)湘潭历史悠久,因盛产湘莲,被誉为“莲城”.李红买了8个莲蓬,付50元,找回38元,设每个莲蓬的价格为x 元,根据题意,列出方程为________.答案 50-8x =38解析 每个莲蓬的单价为x 元,8个莲蓬合计8x 元,找回(50-8x )元,所以50-8x =38.7.(2011·浙江)如图,母亲节那天,很多同学给妈妈准备了鲜花和礼盒.从图中信息可知,则买5束鲜花和5个礼盒的总价为 ________元.答案 440 解析 设一束鲜花的价格为x 元,一个礼盒的价格为y 元,则⎩⎪⎨⎪⎧x +2y =143,①2x +y =121,②由①+②得3x +3y =264.∴x +y =88.∴5x +5y =88×5=440.8.(2011·潼南)某地居民生活用电基本价格为0.50元/度.规定每月基本用电量为a 度,超过部分电量的每度电价比基本用电量的每度电价增加20%收费.某用户在5月份用电100度,共交电费56元,则a =________度.答案 40解析 0.50×100<56,可知该用户超量用电.0.50a +0.50(1+20%)(100-a )=56,0.5a +60-0.6a =56,-0.1a =-4,a =40.9.(2011·上海)某小区2010年屋顶绿化面积为2000平方米,计划2012年屋顶绿化面积要达到2880平方米.如果每年屋顶绿化面积的增长率相同,那么这个增长率是________.答案 20%解析 设每年屋顶绿化面积的增长率为x .2000(1+x )2=2880.(1+x )2=1.44.1+x =±1.2.所以x 1=0.2,x 2=-2.2(舍去).故x =0.2=20%.10.(2011·宿迁)如图,邻边不等..的矩形花圃ABCD ,它的一边AD 利用已有的围墙,另外三边所围的栅栏的总长度是6m.若矩形的面积为4m 2,则AB 的长度是______m(可利用的围墙长度超过6m).答案 1解析 设AB 长为x m ,则BC =(6-2x )m.∴x (6-2x )=4,x 2-3x +2=0.x 1=2,x 2=1.当x =2时,AB =2,BC =2,不合题意,舍去,所以x =1.三、解答题11.(2011·安徽)江南生态食品加工厂收购了一批质量为10000千克的某种山货,根据市场需求对其进行粗加工和精加工处理,已知精加工的该种山货质量比粗加工的质量3倍还多2000千克.求粗加工的该种山货质量.解 设粗加工的该种山货质量为x 千克,根据题意,得x +(3x +2000)=10000.解得 x =2000.答:粗加工的该种山货质量为2000千克.12.(2011·扬州)古运河是扬州的母亲河,为打造古运河风光带,现有一段长为180米的河道整治任务由A 、B 两个工程队先后接力完成.A 工程队每天整治12米,B 工程队每天整治8米,共用时20天.(1)根据题意,甲、乙两个同学分别列出了尚不完整的方程组如下: 甲:⎩⎪⎨⎪⎧ x +y =12x +8y = 乙:⎩⎨⎧ x +y = x 12+y 8=根据甲、乙两名同学所列的方程组,请你分别指出未知数x ,y 表示的意义,然后在方框中补全甲、乙两名同学所列的方程组:甲:x 表示____________________,y 表示 __________________;乙:x 表示 ____________________,y 表示 __________________;(2)求A 、B 两工程队分别整治河道多少米?(写出完整的解答过程)解 (1) 甲:⎩⎪⎨⎪⎧ x +y =20,12x +8y =180; 乙:⎩⎪⎨⎪⎧x +y =180,x 12+y 8=20. 甲:x 表示A 工程队工作的天数,y 表示B 工程队工作的天数;乙:x 表示A 工程队整治的河道长度,y 表示B 工程队整治的河道长度;(2)若解甲的方程组 ⎩⎪⎨⎪⎧ x +y =20, ①12x +8y =180, ② ①×8,得:8x +8y =160, ③③-②,得:4x =20,∴x =5.把x =5代入①得:y =15,∴ 12x =60,8y =120.若解乙的方程组⎩⎪⎨⎪⎧x +y =180, ①x 12+y 8=20, ② ②×12,得:x +1.5y =240, ③③-①,得:0.5y =60.∴y =120.把y =120代入①,得,x =60.答:A 、B 两工程队分别整治河道60米和120米.13.(2011·益阳)某地为了鼓励居民节约用水,决定实行两级收费制,即每月用水量不超过14吨(含14吨)时,每吨按政府补贴优惠价收费;每月超过14吨时,超过部分每吨按市场调节价收费.小英家1月份用水20吨,交水费29元;2月份用水18吨,交水费24元.(1)求每吨水的政府补贴优惠价和市场调节价分别是多少?(2)设每月用水量为x 吨,应交水费为y 元,写出y 与x 之间的函数关系式;(3)小英家3月份用水24吨,她家应交水费多少元?解 设每吨水的政府补贴优惠价为x 元,市场调节价为y 元.⎩⎨⎧ 14x +()20-14y =29,14x +()18-14y =24,解得:⎩⎪⎨⎪⎧x =1,y =2.5. 答:每吨水的政府补贴优惠价为1元,市场调节价为2.5元.(2)当0≤x ≤14时,y =x ;当x >14时,y =14×1+()x -14×2.5=2.5x -21,所求函数关系式为:y =⎩⎨⎧x ()0≤x ≤14,2.5x -21()x >14. (3)∵x =24>14,∴把x =24代入y =2.5x -21,得:y =2.5×24-21=39.答:小英家3月份应交水费39元.14.(2011·烟台)去冬今春,我国西南地区遭遇历史上罕见的旱灾,解放军某部接到了限期打30口水井的作业任务.部队官兵到达灾区后,目睹灾情心急如焚,他们增派机械车辆,争分夺秒,每天比原计划多打3口井,结果提前5天完成任务,求原计划每天打多少口井?解 设原计划每天打x 口井,由题意可列方程30x -30x +3=5, 去分母得,30(x +3)-30x =5x (x +3),整理得,x 2+3x -18=0,解得x 1=3,x 2=-6(不合题意,舍去).经检验,x 2=3是方程的根,∴x =3.答:原计划每天打3口井.15.(2011·衢州)某花圃用花盆培育某种花苗,经过实验发现每盆的盈利与每盆的株数构成一定的关系.每盆植入3株时,平均单株盈利3元;以同样的栽培条件,若每盆每增加1株,平均单株盈利就减少0.5元.要使每盆的盈利达到10元,每盆应该植多少株?小明的解法如下:解 设每盆花苗增加x 株,则每盆花苗有()x +3株,平均单株盈利为()3-0.5x 元,由题意,得()x +3()3-0.5x =10.化简,整理得x 2-3x +2=0.解这个方程,得x 1=1,x 2=2,∴x +3=4或5.答:要使得每盆的盈利达到10元,每盆应该植入4株或5株.本题涉及的主要数量有每盆花苗株数,平均单株盈利,每盆花苗的盈利等,请写出两个不同的等量关系:________________________________________________.请用一种与小明不相同的方法求解上述问题.解 (1)平均单株盈利×株数=每盆盈利;平均单株盈利=3-0.5×每盆增加的株数;每盆的株数=3+每盆增加的株数.(2)解法解法2(图象法):如图,纵轴表示平均单株盈利,横坐标表示株数,则相应长方形面积表示每一盆盈利.从图象可知,每盆植入4株或5株时,相应长方形面积都是10.答:要使每盆的盈利达到10元,每盆应该植入4株或5株.解法3(列分式方程):设每盆花苗增加x 株时,每盆盈利10元,根据题意,得10x +3=3-0.5x . 解这个方程,得x 1=1,x 2=2.经验证,x1=1,x2=2是所列方程的解.∴x+3=4或5.答:要使每盆的盈利达到10元,每盆应该植入4株或5株.四、选做题16.(2011·义乌)商场某种商品平均每天可销售30件,每件盈利50元.为了尽快减少库存,商场决定采取适当的降价措施.经调查发现,每件商品每降价1元,商场平均每天可多售出2件.设每件商品降价x元.据此规律,请回答:(1)商场日销售量增加______件,每件商品盈利______元(用含x的代数式表示);(2)在上述条件不变、销售正常情况下,每件商品降价多少元时,商场日盈利可达到2100元?解(1)2x,50-x.(2)由题意得:(50-x)(30+2x)=2100,化简得:x2-35x+300=0,解得:x1=15, x2=20,∵该商场为了尽快减少库存,则x=15不合题意,舍去. ∴x=20.答:每件商品降价20元,商场日盈利可达2100元.。
2012年中考数学试题分类汇编:应用题
中考数学应用题复习1、某工厂计划为震区生产A B ,两种型号的学生桌椅500套,以解决1250名学生的学习问题,一套A 型桌椅(一桌两椅)需木料30.5m ,一套B 型桌椅(一桌三椅)需木料30.7m ,工厂现有库存木料3302m .(1)有多少种生产方案?(2)现要把生产的全部桌椅运往震区,已知每套A 型桌椅的生产成本为100元,运费2元;每套B 型桌椅的生产成本为120元,运费4元,求总费用y (元)与生产A 型桌椅x (套)之间的关系式,并确定总费用最少的方案和最少的总费用.(总费用=生产成本+运费)(3)按(2)的方案计算,有没有剩余木料?如果有,请直接写出用剩余木料再生产以上两种型号的桌椅,最多还可以为多少名学生提供桌椅;如果没有,请说明理由.2、某公司有A 型产品40件,B 型产品60件,分配给下属甲、乙两个商店销售,其中70件给甲店,30件给乙店,且都能卖完.两商店销售这两种产品每件的利润(元)如下表:A 型利润B 型利润甲店 200 170 乙店160150(1)设分配给甲店A 型产品x 件,这家公司卖出这100件产品的总利润为W (元),求W 关于x 的函数关系式,并求出x 的取值范围;(2)若公司要求总利润不低于17560元,说明有多少种不同分配方案,并将各种方案设计出来;(3)为了促销,公司决定仅对甲店A 型产品让利销售,每件让利a 元,但让利后A 型产品的每件利润仍高于甲店B 型产品的每件利润.甲店的B 型产品以及乙店的A B ,型产品的每件利润不变,问该公司又如何设计分配方案,使总利润达到最大?3、我市花石镇组织10辆汽车装运完A 、B 、C 三种不同品质的湘莲共100吨到外地销售,按计划10辆汽车都要装满,且每辆汽车只能装同一种湘莲,根据下表提供的信息,解答以下问题:(1)设装运A 种湘莲的车辆数为x ,装运B 种湘莲的车辆数为y ,求y 与x 之间的函数关系式; (2)如果装运每种湘莲的车辆数都不少于2辆,那么车辆的安排方案有几种?并写出每种安排方案; (3)若要使此次销售获利最大,应采用哪种安排方案?并求出最大利润的值.最 值 应 用4、我国实施“限塑令”,开始有偿使用环保购物袋.为了满足市场需求,某厂家生产A B ,两种款式的布质环保购物袋,每天共生产4500个,两种购物袋的成本和售价如下表,设每天生产A 种购物袋x 个,每天共获利y 元.成本(元/个) 售价(元/个)A2 2.3 B33.5(1)求出y 与x 的函数关系式;(2)如果该厂每天最多投入成本10000元,那么每天最多获利多少元?湘 莲 品 种 A B C 每辆汽车运载量(吨) 12 10 8 每吨湘莲获利(万元)3425、“5·12”汶川大地震后,某药业生产厂家为支援灾区人民,准备捐赠320箱某种急需药品,该厂家备有多辆甲、乙两种型号的货车,如果单独用甲型号车若干辆,则装满每车后还余20箱未装;如果单独用同样辆数的乙型号车装,则装完后还可以再装30箱,已知装满时,每辆甲型号车比乙型号车少装10箱. (1)求甲、乙两型号车每辆车装满时,各能装多少箱药品?(2)已知将这批药品从厂家运到灾区,甲、乙两型号车的运输成本分别为320元/辆和350元/辆.设派出甲型号车u 辆,乙型号车v 辆时,运输的总成本为z 元,请你提出一个派车方案,保证320箱药品装完,且运输总成本z 最低,并求出这个最低运输成本为多少元?6、某校八年级举行英语演讲比赛,拍了两位老师去学校附近的超市购买笔记本作为奖品.经过了解得知,该超市的A 、B 两种笔记本的价格分别是12元和8元,他们准备购买者两种笔记本共30本. (1) 如果他们计划用300元购买奖品,那么能卖这两种笔记本各多少本?(2) 两位老师根据演讲比赛的设奖情况,决定所购买的A 种笔记本的数量要少于B 种笔记本数量的32,但又不少于B 种笔记本数量的31,如果设他们买A 种笔记本n 本,买这两种笔记本共花费w 元. ① 请写出w (元)关于n (本)的函数关系式,并求出自变量n 的取值范围;② 请你帮助他们计算,购买这两种笔记本各多少时,花费最少,此时的花费是多少元?二次函数应用7、四川汶川大地震发生后,我市某工厂A车间接到生产一批帐篷的紧急任务,要求必须在12天(含12天)内完成.已知每顶帐篷的成本价为800元,该车间平时每天能生产帐篷20顶.为了加快进度,车间采取工人分批日夜加班,机器满负荷运转的生产方式,生产效率得到了提高.这样,第一天生产了22顶,以后每天生产的帐篷都比前一天多2顶.由于机器损耗等原因,当每天生产的帐篷数达到30顶后,每增加1顶帐篷,当天生产的所有帐篷,平均每顶的成本就增加20元.设生产这批帐篷的时间为x天,每天生产的帐篷为y顶.(1)直接写出y与x之间的函数关系式,并写出自变量x的取值范围.(2)若这批帐篷的订购价格为每顶1200元,该车间决定把获得最高利润的那一天的全部利润捐献给灾区.设该车间每天的利润为W元,试求出W与x之间的函数关系式,并求出该车间捐款给灾区多少钱?8、某宾馆有客房90间,当每间客房的定价为每天140元时,客房会全部住满.当每间客房每天的定价每涨10元时,就会有5间客房空闲.如果旅客居住客房,宾馆需对每间客房每天支出60元的各种费用.(1)请写出该宾馆每天的利润y(元)与每间客房涨价x(元)之间的函数关系式;(2)设某天的利润为8000元,8000元的利润是否为该天的最大利润?如果是,请说明理由;如果不是,请求出最大利润,并指出此时客房定价应为多少元?(3)请回答客房定价在什么范围内宾馆就可获得利润?。
2012年中考数学试题(含答案)
2012年中考数学试题A 卷(共100分)第1卷(选择题.共30分)一、选择题(本大题共l0个小题,每小题3分,共30分.每小题均有四个选项,其中只有一项符合题目要求)1.3-的绝对值是( )A .3B .3-C .13 D .13- 2.函数12y x =- 中,自变量x 的取值范围是( ) A .2x > B . 2x < C .2x ≠ D . 2x ≠- 3.如图所示的几何体是由4个相同的小正方体组成.其主视图为( )A .B .C .D .4.下列计算正确的是( )A .223a a a +=B .235a a a ⋅=C .33a a ÷= D .33()a a -= 5.成都地铁二号线工程即将竣工,通车后与地铁一号线呈“十”字交叉,城市交通通行和转换能力将成倍增长.该工程投资预算约为930 000万元,这一数据用科学记数法表示为( )A . 59.310⨯ 万元B . 69.310⨯万元C .49310⨯万元D . 60.9310⨯万元6.如图,在平面直角坐标系xOy 中,点P(3-,5)关于y 轴的对称点的坐标为( )A .( 3-,5-)B .(3,5)C .(3.5-)D .(5,3-)7.已知两圆外切,圆心距为5cm ,若其中一个圆的半径是3cm ,则另一个圆的半径是( )A . 8cmB .5cmC .3cmD .2cm8.分式方程3121x x =- 的解为( ) A .1x = B . 2x = C . 3x = D . 4x = 9.如图.在菱形ABCD 中,对角线AC ,BD 交于点O ,下列说法错误..的是( ) A .AB ∥DC B .AC=BD C .AC ⊥BD D .OA=OCB10.一件商品的原价是100元,经过两次提价后的价格为121元,如果每次提价的百分率都 是x ,根据题意,下面列出的方程正确的是( )A .100(1)121x +=B . 100(1)121x -=C . 2100(1)121x +=D . 2100(1)121x -=第Ⅱ卷(非选择题,共70分)二、填空题(本大题共4个小题,每小题4分,共16分) 1l .分解因式:25x x - =________.12.如图,将ABCD 的一边BC 延长至E ,若∠A=110°,则∠1=________.13件衬衫,其领口尺寸统计如下表:则这ll 件衬衫领口尺寸的众数是________cm ,中位数是________cm .14.如图,AB 是⊙O 的弦,OC ⊥AB 于C .若AB=,0C=1,则半径OB 的长为________.三、解答题(本大题共6个小题,共54分)15.(本小题满分12分,每题6分)(1)计算:024cos458((1)π-++-(2)解不等式组:202113x x -<⎧⎪+⎨≥⎪⎩16.(本小题满分6分)化简: 22(1)b a a b a b-÷+-17.(本小题满分8分)如图,在一次测量活动中,小华站在离旗杆底部(B 处)6米的D 处,仰望旗杆顶端A ,测得仰角为60°,眼睛离地面的距离ED 为1.5米.试帮助小华求出旗杆AB 的高度.(结果精确到0.1 1.732≈ )18.(本小题满分8分)如图,一次函数2y x b =-+(b 为常数)的图象与反比例函数k y x=(k 为常数,且k ≠0)的图象交于A,B两点,且点A的坐标为(1,4).(1)分别求出反比例函数及一次函数的表达式;(2)求点B的坐标.19.(本小题满分10分)某校将举办“心怀感恩·孝敬父母”的活动,为此,校学生会就全校1 000名同学暑假期间平均每天做家务活的时间,随机抽取部分同学进行调查,并绘制成如下条形统计图.(1)本次调查抽取的人数为_______,估计全校同学在暑假期间平均每天做家务活的时间在40分钟以上(含40分钟)的人数为_______;(2)校学生会拟在表现突出的甲、乙、丙、丁四名同学中,随机抽取两名同学向全校汇报.请用树状图或列表法表示出所有可能的结果,并求恰好抽到甲、乙两名同学的概率.20.(本小题满分10分)如图,△ABC和△DEF是两个全等的等腰直角三角形,∠BAC=∠EDF=90°,△DEF的顶点E与△ABC的斜边BC的中点重合.将△DEF绕点E旋转,旋转过程中,线段DE与线段AB相交于点P,线段EF与射线CA相交于点Q.(1)如图①,当点Q在线段AC上,且AP=AQ时,求证:△BPE≌△CQE;(2)如图②,当点Q在线段CA的延长线上时,求证:△BPE∽△CEQ;并求当BP=a,CQ=92a时,P、Q两点间的距离 (用含a的代数式表示).B 卷(共50分)一、填空题(本大题共5个小题,每小题4分,共20分)21.已知当1x =时,22ax bx +的值为3,则当2x =时,2ax bx +的值为________.22.一个几何体由圆锥和圆柱组成,其尺寸如图所示,则该几何体的全面积(即表面积)为________ (结果保留π)23.有七张正面分别标有数字3-,2-,1-,0,l ,2,3的卡片,它们除数字不同外其余全部相同.现将它们背面朝上,洗匀后从中随机抽取一张,记卡片上的数字为a ,则使关于x 的一元二次方程22(1)(3)0x a x a a --+-= 有两个不相等的实数根,且以x 为自变量的二次函数22(1)2y x a x a =-+-+ 的图象不经过...点(1,O)的概率是________. 24.如图,在平面直角坐标系xOy 中,直线AB 与x 轴、y 轴分别交于点A ,B ,与反比例函数k y x=(k 为常数,且0k >)在第一象限的图象交于点E ,F .过点E 作EM ⊥y 轴于M ,过点F 作FN ⊥x 轴于N ,直线EM 与FN 交于点C .若BE 1BF m =(m 为大于l 的常数).记△CEF 的面积为1S ,△OEF 的面积为2S ,则12S S =________. (用含m 的代数式表示)25.如图,长方形纸片ABCD中,AB=8cm,AD=6cm,按下列步骤进行裁剪和拼图:第一步:如图①,在线段AD上任意取一点E,沿EB,EC剪下一个三角形纸片EBC(余下部分不再使用);第二步:如图②,沿三角形EBC的中位线GH将纸片剪成两部分,并在线段GH上任意取一点M,线段BC上任意取一点N,沿MN将梯形纸片GBCH剪成两部分;第三步:如图③,将MN左侧纸片绕G点按顺时针方向旋转180°,使线段GB与GE重合,将MN右侧纸片绕H点按逆时针方向旋转180°,使线段HC与HE重合,拼成一个与三角形纸片EBC面积相等的四边形纸片.(注:裁剪和拼图过程均无缝且不重叠)则拼成的这个四边形纸片的周长的最小值为________cm,最大值为________cm.二、解答题(本大题共3个小题,共30分)26.(本小题满分8分)“城市发展交通先行”,成都市今年在中心城区启动了缓堵保畅的二环路高架桥快速通道建设工程,建成后将大大提升二环路的通行能力.研究表明,某种情况下,高架桥上的车流速度V(单位:千米/时)是车流密度x(单位:辆/千米)的函数,且当0<x≤28时,V=80;当28<x≤188时,V是x的一次函数. 函数关系如图所示.(1)求当28<x≤188时,V关于x的函数表达式;(2)若车流速度V不低于50千米/时,求当车流密度x为多少时,车流量P(单位:辆/时)达到最大,并求出这一最大值.(注:车流量是单位时间内通过观测点的车辆数,计算公式为:车流量=车流速度×车流密度)。
中考数学应用题专题含答案26题专项
2012年中考数学应用题专题复习(26题)专项1、整顿药品市场、降低药品价格是国家的惠民政策之一.根据国家《药品政府定价办法》,某省有关部门规定:市场流通药品的零售价格不得超过进价的15%15%.根据相关信息解决下列.根据相关信息解决下列问题:(1)降价前,降价前,甲乙两种药品每盒的出厂价格之和为甲乙两种药品每盒的出厂价格之和为6.6元.经过若干中间环节,经过若干中间环节,甲种药品甲种药品每盒的零售价格比出厂价格的5倍少2.2元,乙种药品每盒的零售价格是出厂价格的6倍,两种药品每盒的零售价格之和为33.8元.那么降价前甲、乙两种药品每盒的零售价格分别是多少元?(2)降价后,某药品经销商将上述的甲、乙两种药品分别以每盒8元和5元的价格销售给医院,医院根据实际情况决定:对甲种药品每盒加价15%15%、对乙种药品每盒加价、对乙种药品每盒加价10%10%后零售后零售给患者.实际进药时,这两种药品均以每10盒为1箱进行包装.近期该医院准备从经销商处购进甲乙两种药品共100箱,其中乙种药品不少于40箱,销售这批药品的总利润不低于900元.请问购进时有哪几种搭配方案?2、由于受金融危机的影响,某店经销的甲型号手机今年的售价比去年每台降价500元.如果卖出相同数量的手机,那么去年销售额为8万元,今年销售额只有6万元.(1)今年甲型号手机每台售价为多少元?(2)为了提高利润,该店计划购进乙型号手机销售,已知甲型号手机每台进价为1000元,乙型号手机每台进价为800元,预计用不多于1.84万元且不少于1.76万元的资金购进这两种手机共20台,请问有几种进货方案?(3)若乙型号手机的售价为1400元,为了促销,公司决定每售出一台乙型号手机,元,为了促销,公司决定每售出一台乙型号手机,返还顾返还顾客现金a 元,而甲型号手机仍按今年的售价销售,要使(元,而甲型号手机仍按今年的售价销售,要使(22)中所有方案获利相同,)中所有方案获利相同,a a 应取何值?3、为创建“国家卫生城市”,进一步优化市中心城区的环境,德州市政府拟对部分路段的人行道地砖、花池、排水管道等公用设施全面更新改造,根据市政建设的需要,须在60天内完成工程.现在甲、乙两个工程队有能力承包这个工程.经调查知道:乙队单独完成此项工程的时间比甲队单独完成多用25天,甲、乙两队合作完成工程需要30天,甲队每天的工程费用2500元,乙队每天的工程费用2000元.(1)甲、乙两个工程队单独完成各需多少天?(2)请你设计一种符合要求的施工方案,并求出所需的工程费用.4、某渔场计划购买甲、乙两种鱼苗共6000尾,甲种鱼苗每尾0.5元,乙种鱼苗每尾0.8元.相关资料表明:甲、乙两种鱼苗的成活率分别为90%90%和和95%95%..(1)若购买这批鱼苗共用了3600元,求甲、乙两种鱼苗各购买了多少尾?(2)若购买这批鱼苗的钱不超过4200元,应如何选购鱼苗?(3)若要使这批鱼苗的成活率不低于93%93%,且购买鱼苗的总费用最低,应如何选购鱼苗?,且购买鱼苗的总费用最低,应如何选购鱼苗?5、我国西南五省市的部分地区发生严重旱灾,为鼓励节约用水,某市自来水公司采取分段收费标准,右图反映的是每月收取水费y (元)与用水量x (吨)之间的函数关系(吨)之间的函数关系. . (1)小明家五月份用水8吨,应交水费吨,应交水费__________________元;元;(2)按上述分段收费标准,小明家三、四月份分别交水费26元和18元,问四月份比三月份节约用水多少吨?份节约用水多少吨?6、甲、乙两位同学住在同一小区,在同一中学读书,一天恰好在同一时间骑自行车沿同一线路上学,小区离学校有9km 9km,甲以匀速行驶,花了,甲以匀速行驶,花了30min 到校,乙的行程信息如图中折线O O ––A A ––B -C 所示,分别用1y ,2y 表示甲、乙在时间x (min min)时的行程,请回答下列问)时的行程,请回答下列问题:题:⑴分别用含x 的解析式表示1y ,2y (标明x 的范围),并在图中画出函数1y 的图象;的图象; ⑵甲、乙两人在途中有几次相遇?分别是出发后的多长时间相遇?⑵甲、乙两人在途中有几次相遇?分别是出发后的多长时间相遇?7、某商品的进价为每件40元,如果售价为每件50元,每个月可卖出210件;如果售价超过50元但不超过80元,每件商品的售价每上涨1元,则每月少卖1件;如果售价超过80元后,若再涨价,则每涨1元每月少卖3件,设每件商品的售价为x 元,每月的销售量为y 件.(1)求y 与x 的函数关系式并写出自变量x 的取值范围;的取值范围;(2)(2)设每月的销售利润为设每月的销售利润为W ,请写出W 与x 的函数关系式;的函数关系式;(3)每件商品的售价定为多少元时,每个月可获得最大利润?最大的月利润是多少元?8、有一种螃蟹,从海上捕获后不放养,最多只能存活两天.如果放养在塘内,可以延长存活时间,但每天也有一定数量的蟹死去.但每天也有一定数量的蟹死去.假设放养期内蟹的个体质量基本保持不变,假设放养期内蟹的个体质量基本保持不变,假设放养期内蟹的个体质量基本保持不变,现有一现有一经销商,按市场价收购这种活蟹1000 kg 放养在塘内,此时市场价为每千克30元,据测算,此后每千克活蟹的市场价每天可上升1元,但是,放养一天需支出各种费用为400元,且平均每天还有10 kg 蟹死去,假定死蟹均于当天全部销售出,售价都是每千克20元.元.(1)(1)设设x 天后每千克活蟹的市场价为p 元,写出p 关于x 的函数关系式;的函数关系式;(2)(2)如果放养如果放养x 天后将活蟹一次性出售,并记1000 kg 蟹的销售总额为Q 元,写出Q 关于x O y x 205010 20 第5题 (吨)(元)的函数关系式.的函数关系式.(3)(3)该经销商将这批蟹放养多少天后出售,可获最大利润该经销商将这批蟹放养多少天后出售,可获最大利润该经销商将这批蟹放养多少天后出售,可获最大利润((利润利润=Q =Q =Q-收购总额-收购总额-收购总额))?1、为打造“书香校园”,某学校计划用不超过1900本科技类书籍和1620本人文类书籍,组建中、小型两类图书角共30个.已知组建一个中型图书角需科技类书籍80本,人文类书籍50本;组建一个小型图书角需科技类书籍30本,人文类书籍60本.本.(1)问符合题意的组建方案有几种?请你帮学校设计出来;)问符合题意的组建方案有几种?请你帮学校设计出来; (2)若组建一个中型图书角的费用是860元,组建一个小型图书角的费用是570元,试说明在(明在(11)中哪种方案费用最低?最低费用是多少元?)中哪种方案费用最低?最低费用是多少元?2、 “保护环境,人人有责”为了更好的治理巴河,巴中市污水处理厂决定购买A 、B 两型污水处理设备,共10台,其信息如下表:台,其信息如下表:单价单价((万元万元//台) 每台处理污水量每台处理污水量((吨/月) A 型12 240 B 型 10 200(1)(1)设购买设购买A 型设备x 台,所需资金共为W 万元,每月处理污水总量为y 吨,试写出W 与x ,y 与x 的函数关系式.的函数关系式.(2)(2)经预算,市污水处理厂购买设备的资金不超过经预算,市污水处理厂购买设备的资金不超过106万元,月处理污水量不低于2040吨,请你列举出所有购买方案,并指出哪种方案最省钱,需要多少资金请你列举出所有购买方案,并指出哪种方案最省钱,需要多少资金? ?3、某学校组织340名师生进行长途考察活动,带有行李170件,计划租用甲、乙两种型号的汽车共10辆.经了解,甲车每辆最多能载40人和16件行李,乙车每辆最多能载30人和20件行李.件行李.⑴请你帮助学校设计所有可行的租车方案;⑴请你帮助学校设计所有可行的租车方案;⑵如果甲车的租金为每辆2000元,乙车的租金为每辆1800元,问哪种可行方案使租车费用最省?最省?4、莱芜盛产生姜,去年某生产合作社共收获生姜200吨,计划采用批发和零售两种方式销售.经市场调查,批发平均每天售出6吨.吨.(1)(1)受天气、受天气、场地等各种因素的影响,需要提前完成销售任务需要提前完成销售任务..在平均每天批发量不变的情况下,实际平均每天的零售量比原计划增加了2吨,结果提前5天完成销售任务天完成销售任务..那么原计划零售平均每天售出多少吨?零售平均每天售出多少吨?(2)(2)在(在(在(11)条件下,若批发每吨获得的利润为2000元,零售每吨获得的利润为2200元,计算实际获得的总利润.算实际获得的总利润.5、某商场计划购进一批甲、乙两种玩具,已知一件甲种玩具的进价与一件乙种玩具的进价的和为40元,用90元购进甲种玩具的件数与用150元购进乙种玩具的件数相同.元购进乙种玩具的件数相同.(1)求每件甲种、乙种玩具的进价分别是多少元?)求每件甲种、乙种玩具的进价分别是多少元?(2)商场计划购进甲、乙两种玩具共48件,其中甲种玩具的件数少于乙种玩具的件数.件,其中甲种玩具的件数少于乙种玩具的件数.商商场决定此次进货的总资金不超过1000元,求商场共有几种进货方案?元,求商场共有几种进货方案?6、为了增强居民的节约用水的意识,某市制定了新的水费标准:每户每月用水量不超过5吨的部分,吨的部分,自来水公司按每吨自来水公司按每吨2元收费;元收费;超过超过5吨的部分,按每吨2.6元收费。
2012年北京市中考数学及答案解析
2012年北京市高级中等学校招生考试数学1A(满分:120分时间:120分钟)第Ⅰ卷(选择题,共32分)一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个..是符合题意的.1.-9的相反数是()A.-19B.19C.-9D.92.首届中国(北京)国际服务贸易交易会(京交会)于2012年6月1日闭幕,本届京交会期间签订的项目成交总金额达60110000000美元.将60110000000用科学记数法表示应为()A.6.011×109B.60.11×109C.6.011×1010D.0.6011×10113.正十边形的每个外角等于()A.18°B.36°C.45°D.60°4.如图是某个几何体的三视图,该几何体是()A.长方体B.正方体C.圆柱D.三棱柱5.班主任王老师将6份奖品分别放在6个完全相同的不透明礼盒中,准备将它们奖给小英等6位获“爱集体标兵”称号的同学.这些奖品中3份是学习文具,2份是科普读物,1份是科技馆通票.小英同学从中随机取一份奖品,恰好取到科普读物的概率是()A.16B.13C.12D.236.如图,直线AB,CD交于点O,射线OM平分∠AOC,若∠BOD=76°,则∠BOM等于()A.38°B.104°C.142°D.144°7.某课外小组的同学们在社会实践活动中调查了20户家庭某月的用电量,如下表所示:用电量(度)120140160180200户数23672则这20户家庭该月用电量的众数和中位数分别是()A.180,160B.160,180C.160,160D.180,1808.小翔在如图1所示的场地上匀速跑步,他从点A出发,沿箭头所示方向经过点B跑到点C,共用时30秒.他的教练选择了一个固定的位置观察小翔的跑步过程.设小翔跑步的时间为t(单位:秒),他与教练的距离为y(单位:米),表示y与t的函数关系的图象大致如图2所示,则这个固定位置可能是图1中的()A.点MB.点NC.点PD.点Q第Ⅱ卷(非选择题,共88分)二、填空题(本题共16分,每小题4分)9.分解因式:mn2+6mn+9m=.10.若关于x 的方程x 2-2x-m=0有两个相等的实数根,则m 的值是 .11.如图,小明同学用自制的直角三角形纸板DEF 测量树的高度AB,他调整自己的位置,设法使斜边DF 保持水平,并且边DE 与点B 在同一直线上.已知纸板的两条直角边DE=40 cm,EF=20 cm,测得边DF 离地面的高度AC=1.5 m,CD=8 m,则树高AB= m.12.在平面直角坐标系xOy 中,我们把横、纵坐标都是整数的点叫做整点.已知点A(0,4),点B 是x 轴正半轴上的整点,记△AOB 内部(不包括边界)的整点个数为m.当m=3时,点B 的横坐标的所有可能值是 ;当点B 的横坐标为4n(n 为正整数)时,m= (用含n 的代数式表示).三、解答题(本大题共13小题,共72分)13.(5分)计算:(π-3)0+√18-2sin 45°-(18)-1.14.(5分)解不等式组:{4x -3>x,x +4<2x -1.15.(5分)已知a 2=b3≠0,求代数式5a -2ba 2-4b 2·(a-2b)的值.16.(5分)已知:如图,点E,A,C 在同一直线上,AB ∥CD,AB=CE,AC=CD. 求证:BC=ED.(x>0)的图象与一次函数y=kx-k的图象的交17.(5分)如图,在平面直角坐标系xOy中,函数y=4x点为A(m,2).(1)求一次函数的解析式;(2)设一次函数y=kx-k的图象与y轴交于点B,若P是x轴上一点,且满足△PAB的面积是4,直接写出点P的坐标.18.(5分)列方程或方程组解应用题:据林业专家分析,树叶在光合作用后产生的分泌物能够吸附空气中的一些悬浮颗粒物,具有滞尘净化空气的作用.已知一片银杏树叶一年的平均滞尘量比一片国槐树叶一年的平均滞尘量的2倍少4毫克,若一年滞尘1000毫克所需的银杏树叶的片数与一年滞尘550毫克所需的国槐树叶的片数相同,求一片国槐树叶一年的平均滞尘量.19.(5分)如图,在四边形ABCD中,对角线AC,BD交于点E,∠BAC=90°,∠CED=45°,∠DCE=30°,DE=√2,BE=2√2.求CD的长和四边形ABCD的面积.20.(5分)已知:如图,AB是☉O的直径,C是☉O上一点,OD⊥BC于点D,过点C作☉O的切线,交OD的延长线于点E,连结BE.(1)求证:BE与☉O相切;,求BF的长.(2)连结AD并延长交BE于点F,若OB=9,sin∠ABC=231B21.(5分)近年来,北京市大力发展轨道交通,轨道运营里程大幅增加,2011年北京市又调整修订了2010至2020年轨道交通线网的发展规划.以下是根据北京市轨道交通指挥中心发布的有关数据制作的统计图表的一部分.北京市2007至2011年轨道交通运营总里程统计图截至2020年北京市轨道交通运营总里程分阶段规划统计图(2011年规划方案)北京市轨道交通已开通线路相关数据统计表(截至2010年底)开通时间开通线路运营里程(千米) 19711号线31 19842号线23200313号线41八通线19 20075号线2820088号线5 10号线25机场线2820094号线282010房山线22大兴线22亦庄线23昌平线2115号线20请根据以上信息解答下列问题:(1)补全条形统计图并在图中标明相应数据;(2)按照2011年规划方案,预计2020年北京市轨道交通运营总里程将达到多少千米?(3)要按时完成截至2015年的轨道交通规划任务,从2011到2015年这4年中,平均每年需新增运营里程多少千米?22.(5分)操作与探究:(1)对数轴上的点P进行如下操作:先把点P表示的数乘以1,再把所得数对应的点向右平移13个单位,得到点P的对应点P'.点A,B在数轴上,对线段AB上的每个点进行上述操作后得到线段A'B',其中点A,B的对应点分别为A',B'.如图1,若点A表示的数是-3,则点A'表示的数是;若点B'表示的数是2,则点B表示的数是;已知线段AB上的点E经过上述操作后得到的对应点E'与点E 重合,则点E表示的数是;图1(2)如图2,在平面直角坐标系xOy中,对正方形ABCD及其内部的每个点进行如下操作:把每个点的横、纵坐标都乘以同一个实数a,将得到的点先向右平移m个单位,再向上平移n个单位(m>0,n>0),得到正方形A'B'C'D'及其内部的点,其中点A,B的对应点分别为A',B'.已知正方形ABCD内部的一个点F经过上述操作后得到的对应点F'与点F重合,求点F的坐标.图2在x=0和x=2时的函数值相等.23.(7分)已知二次函数y=(t+1)x2+2(t+2)x+32(1)求二次函数的解析式;(2)若一次函数y=kx+6的图象与二次函数的图象都经过点A(-3,m),求m和k的值;(3)设二次函数的图象与x轴交于点B,C(点B在点C的左侧),将二次函数的图象在点B,C间的部分(含点B和点C)向左平移n(n>0)个单位后得到的图象记为G,同时将(2)中得到的直线y=kx+6向上平移n个单位.请结合图象回答:当平移后的直线与图象G有公共点时,n的取值范围.24.(7分)在△ABC中,BA=BC,∠BAC=α,M是AC的中点,P是线段BM上的动点,将线段PA 绕点P顺时针旋转2α得到线段PQ.(1)若α=60°且点P与点M重合(如图1),线段CQ的延长线交射线BM于点D,请补全图形,并写出∠CDB的度数;(2)在图2中,点P不与点B,M重合,线段CQ的延长线与射线BM交于点D,猜想∠CDB的大小(用含α的代数式表示),并加以证明;(3)对于适当大小的α,当点P在线段BM上运动到某一位置(不与点B,M重合)时,能使得线段CQ的延长线与射线BM交于点D,且PQ=QD,请直接写出α的范围.25.(8分)在平面直角坐标系xOy中,对于任意两点P1(x1,y1)与P2(x2,y2)的“非常距离”,给出如下定义:若|x1-x2|≥|y1-y2|,则点P1与点P2的“非常距离”为|x1-x2|;若|x1-x2|<|y1-y2|,则点P1与点P2的“非常距离”为|y1-y2|.例如:点P1(1,2),点P2(3,5),因为|1-3|<|2-5|,所以点P1与点P2的“非常距离”为|2-5|=3,也就是图1中线段P1Q与线段P2Q长度的较大值(点Q为垂直于y轴的直线P1Q与垂直于x轴的直线P2Q的交点).(1)已知点A(-12,0),B为y轴上的一个动点,①若点A与点B的“非常距离”为2,写出一个满足条件的点B的坐标;②直接写出点A与点B的“非常距离”的最小值;(2)已知C是直线y=34x+3上的一个动点,①如图2,点D的坐标是(0,1),求点C与点D的“非常距离”的最小值及相应的点C的坐标;②如图3,E是以原点O为圆心,1为半径的圆上的一个动点,求点C与点E的“非常距离”的最小值及相应的点E和点C的坐标.2012年北京市高级中等学校招生考试一、选择题1.D-9的相反数是9.2.C60110000000用科学记数法表示为6.011×1010.3.B多边形的外角和为360°,正十边形有十个相等的外角,每个外角为360°10=36°.4.D主视图和左视图均为长方形,且俯视图为三角形的几何体是三棱柱.5.B6份奖品中科普读物占2份,故恰好取到科普读物的概率是26=1 3 .6.C∠AOM=12∠AOC=12∠BOD=12×76°=38°,∠BOM=180°-∠AOM=180°-38°=142°.7.A在20户家庭该月的用电量中,数据180出现次数最多(7次),故众数为180.将20个用电量数据从小到大排列,第10个和第11个数据的平均数为这组数据的中位数,故中位数为160.8.D若教练在点M(半圆AB的圆心),小翔从A跑到B的过程中与点M距离相等,此部分函数图象应平行于t轴,与题中图2不符,排除选项A.若教练在点N,由于半圆AB的对称轴PM 和线段BC的对称轴相交于点N,函数图象应由各自成轴对称的两部分组成,与题中图2不符,排除选项B.若教练在点P,函数图象应由成轴对称的一部分和y随t增大而减小的一部分组成,与题中图2不符,排除选项C.题中图2与教练在点Q时y随t的变化趋势相符,故选D.评析解决本题的关键是根据问题情境分析函数随自变量变化的趋势,定性分析,确定答案.属中档题.二、填空题9.答案 m(n+3)2解析 mn 2+6mn+9m=m(n 2+6n+9)=m(n+3)2. 10.答案 -1解析 方程有两个相等的实数根,故Δ=4+4m=0,故m=-1. 11.答案 5.5解析 由已知得△DEF ∽△DCB,∴EF BC =ED CD ,∵DE=40 cm=0.4 m,EF=20 cm=0.2 m,∴0.2BC =0.48, ∴BC=4 m,∴AB=4+1.5=5.5 m. 12.答案 3,4;6n-3解析 如图,当B 点的横坐标分别是3、4时,△AOB 内部(不包括边界)的整点个数均为3;分别取n 等于1、2、3、4、…,则4n 等于4、8、12、16、…,画图可得m 分别等于3、9、15、21、…,故m=6n-3.评析 读懂题意、根据题意画图是解决本题的关键.本题属中档题.三、解答题13.解析 (π-3)0+√18-2sin 45°-(18)-1=1+3√2-2×√22-8 =2√2-7.14.解析{4x -3>x, ①x +4<2x -1.②解不等式①,得x>1. 解不等式②,得x>5.∴不等式组的解集为x>5. 15.解析5a -2b a 2-4b2·(a-2b)=5a -2b(a+2b)(a -2b)·(a-2b) =5a -2b a+2b. ∵a 2=b3≠0, ∴3a=2b.∴原式=5a -3a a+3a =2a 4a =12. 16.证明 ∵AB ∥CD,∴∠BAC=∠ECD.在△ABC 和△CED 中,{AB =CE,∠BAC =∠ECD,AC =CD,∴△ABC ≌△CED.∴BC=ED.17.解析 (1)∵点A(m,2)在函数y=4x (x>0)的图象上, ∴2m=4.解得m=2.∴点A 的坐标为(2,2).∵点A(2,2)在一次函数y=kx-k 的图象上,∴2k-k=2.解得k=2.∴一次函数的解析式为y=2x-2.(2)点P 的坐标为(3,0)或(-1,0).18.解析 设一片国槐树叶一年的平均滞尘量为x 毫克.由题意,得1 0002x -4=550x. 解得x=22.经检验,x=22是原方程的解,且符合题意.答:一片国槐树叶一年的平均滞尘量是22毫克.19.解析 过点D 作DF ⊥AC 于点F.在Rt △DEF 中,∠DFE=90°,∠DEF=45°,DE=√2,∴DF=EF=1.在Rt △CFD 中,∠CFD=90°,∠DCF=30°,∴CD=2DF=2.∴FC=√3.在Rt △ABE 中,∠BAE=90°,∠AEB=∠CED=45°,BE=2√2,∴AB=AE=2.∴AC=AE+EF+FC=3+√3.∴S 四边形ABCD =S △ACD +S △ABC=1 2AC·DF+12AC·AB=1 2×(3+√3)×1+12×(3+√3)×2=9 2+32√3.∴四边形ABCD的面积是92+32√3.20.解析(1)证明:连结OC.∵EC与☉O相切,C为切点,∴∠ECO=90°.∵OB=OC,∴∠OCB=∠OBC.∵OD⊥BC,∴DB=DC.∴直线OE是线段BC的垂直平分线.∴EB=EC.∴∠ECB=∠EBC.∴∠ECO=∠EBO.∴∠EBO=90°.∵AB是☉O的直径,∴BE与☉O相切.(2)过点D作DM⊥AB于点M,则DM∥FB.在Rt△ODB中,∵∠ODB=90°,OB=9,sin∠ABC=23,∴OD=OB·sin∠ABC=6.由勾股定理得BD=√OB2-OD2=3√5.在Rt△DMB中,同理得DM=BD·sin∠ABC=2√5.BM=√BD2-DM2=5.∵O是AB的中点,∴AB=18.∴AM=AB-BM=13.∵DM∥FB,∴△AMD∽△ABF.∴MDBF =AM AB.∴BF=MD·ABAM =36√513.21.解析(1)补全统计图如图,所补数据为228.北京市2007至2011年轨道交通运营总里程统计图(2)预计2020年运营总里程将达到336÷33.6%=1 000(千米).(3)2010到2015年新增运营里程为1 000×36.7%=367(千米),其中2010到2011年新增运营里程为372-336=36(千米),2011到2015年平均每年新增运营里程为367-364=82.75(千米). 评析 本题阅读量大,三个图表中信息交错,较往年的统计题难度有所增加.22.解析 (1)点A'表示的数是 0 ;点B 表示的数是 3 ;点E 表示的数是 32. (2)∵点A(-3,0),B(3,0)的对应点分别为A'(-1,2),B'(2,2),∴{-3a +m =-1,3a +m =2.解得{a =12,m =12. 由题意可得n=2.设点F 的坐标为(x,y).∴{12x +12=x,12y +2=y.解得{x =1,y =4. ∴点F 的坐标为(1,4).23.解析 (1)由题意得(t+1)·22+2(t+2)·2+32=32. 解得t=-32. ∴二次函数的解析式为y=-12x 2+x+32. (2)∵点A(-3,m)在二次函数y=-12x 2+x+32的图象上, ∴m=-12×(-3)2+(-3)+32=-6. ∴点A 的坐标为(-3,-6).∵点A 在一次函数y=kx+6的图象上,∴k=4.(3)由题意,可得点B,C 的坐标分别为(-1,0),(3,0).平移后,点B,C 的对应点分别为B'(-1-n,0),C'(3-n,0).将直线y=4x+6平移后得到直线y=4x+6+n.如图1,当直线y=4x+6+n 经过点B'(-1-n,0)时,图象G(点B'除外)在该直线右侧,可得n=23.图1如图2,当直线y=4x+6+n经过点C'(3-n,0)时,图象G(点C'除外)在该直线左侧,可得n=6.∴由图象可知,符合题意的n的取值范围是23≤n≤6.图2评析本题图象G(部分抛物线)向左平移n个单位,直线向上平移n个单位(相当于向左平移14n个单位),求它们有公共点时n的取值范围,具有一定难度.24.解析(1)补全图形,如图1;∠CDB=30°.图1(2)猜想:∠CDB=90°-α.证明:如图2,连结AD,PC.∵BA=BC,M是AC的中点,∴BM⊥AC.图2∵点D,P在直线BM上,∴PA=PC,DA=DC.又∵DP为公共边,∴△ADP≌△CDP.∴∠DAP=∠DCP,∠ADP=∠CDP.又∵PA=PQ,∴PQ=PC.∴∠DCP=∠PQC.∴∠DAP=∠PQC.∵∠PQC+∠DQP=180°,∴∠DAP+∠DQP=180°.∴在四边形APQD中,∠ADQ+∠APQ=180°.∵∠APQ=2α,∴∠ADQ=180°-2α.∴∠CDB=12∠ADQ=90°-α.(3)α的范围是45°<α<60°.25.解析(1)①点B的坐标是(0,2)或(0,-2).(写出一个答案即可)②点A 与点B 的“非常距离”的最小值是12. (2)①过点C 作x 轴的垂线,过点D 作y 轴的垂线,两条垂线交于点M,连结CD.如图1,当点C 在点D 的左上方且使△CMD 是等腰直角三角形时,点C 与点D 的“非常距离”最小.理由如下:记此时点C 所在位置的坐标为(x 0,34x 0+3). 当点C 的横坐标大于x 0时,线段CM 的长度变大,由于点C 与点D 的“非常距离”是线段CM 与线段MD 长度的较大值,所以点C 与点D 的“非常距离”变大;当点C 的横坐标小于x 0时,线段MD 的长度变大,点C 与点D 的“非常距离”变大.所以当点C 的横坐标等于x 0时,点C 与点D 的“非常距离”最小.图1∵CM=34x 0+3-1,MD=-x 0,CM=MD,∴34x 0+3-1=-x 0. 解得x 0=-87. ∴点C 的坐标是(-87,157). ∴CM=MD=87. ∴当点C 的坐标是(-87,157)时,点C 与点D 的“非常距离”最小,最小值是87. ②如图2,对于☉O 上的每一个给定的点E,过点E 作y 轴的垂线,过点C 作x 轴的垂线,两条垂线交于点N,连结CE.由①可知,当点C 运动到点E 的左上方且使△CNE 是等腰直角三角形时,点C 与点E 的“非常距离”最小.当点E 在☉O 上运动时,求这些最小“非常距离”中的最小值,只需使CE 的长度最小.因此,将直线y=34x+3沿图中所示由点C 到点E 的方向平移到第一次与☉O 有公共点,即与☉O 在第二象限内相切的位置时,切点即为所求点E.作EP ⊥x 轴于点P.设直线y=34x+3与x 轴,y 轴分别交于点H,G. 可求得HO=4,GO=3,GH=5.可证△OEP ∽△GHO.∴OP GO =EP HO =OE GH. ∴OP 3=EP 4=15. ∴OP=35,EP=45. ∴点E 的坐标是(-35,45).设点C的坐标为(x C,34x C+3).∵CN=34x C+3-45,NE=-35-x C,∴34x C+3-45=-35-x C.解得x C=-85.∴点C的坐标是(-85,9 5 ).∴CN=NE=1.∴当点C的坐标是(-85,95),点E的坐标是(-35,45)时,点C与点E的“非常距离”最小,最小值是1.图2评析本题定义了平面内两点之间的“非常距离”(两点水平距离与竖直距离之中较大者),求定点A与动点B之间“非常距离”的最小值,进而利用获得最小“非常距离”的方法,求圆上的动点E与直线上的动点C之间“非常距离”最小时相应点的坐标.全面考查学生的综合能力,难度较大.。
2012广州中考数学试题及答案
2012广州中考数学试题及答案考生注意:请在答题卡上作答,本试卷共20题,满分120分,考试时间为120分钟。
一、选择题(每题3分,共30分)1. 下列哪个数是正整数?A. -3B. 0C. 1D. -12. 如果一个直角三角形的两条直角边分别为3和4,那么斜边的长度是?A. 5B. 6C. 7D. 83. 一个圆的直径是14厘米,那么这个圆的半径是多少厘米?A. 7B. 14C. 28D. 214. 一个数的平方根是4,那么这个数是?A. 16B. 8C. 4D. 25. 下列哪个是二次方程?A. x + 4 = 0B. x^2 + 4x + 4 = 0C. x^3 - 8 = 0D. 2x - 5 = 06. 如果一个数的绝对值是5,那么这个数可能是?A. 5B. -5C. 5或-5D. 07. 一个长方体的长、宽、高分别是2米、3米和4米,那么这个长方体的体积是多少立方米?A. 24B. 12C. 8D. 68. 一个数的倒数是1/3,那么这个数是?A. 3B. 1/3C. 1/9D. 99. 一个数的立方是-27,那么这个数是?A. 3B. -3C. 9D. -910. 下列哪个是不等式?A. 3x + 5 > 0B. 3x + 5 = 0C. 3x + 5 < 0D. 3x + 5二、填空题(每题4分,共20分)11. 一个数的平方是25,这个数是________。
12. 一个直角三角形的斜边长是13,一条直角边长是5,另一条直角边长是________。
13. 一个数的立方根是2,这个数是________。
14. 如果一个数的1/4等于10,那么这个数是________。
15. 一个数的1/5加上2等于这个数本身,这个数是________。
三、计算题(每题5分,共10分)16. 计算下列表达式的值:(3x^2 - 2x + 1) / (x - 1),其中x = 2。
17. 解下列方程:2x + 5 = 11。
2012年全国中考数学试题分类解析汇编(159套63专题)专题22_二次函数的应用(几何问题)(附答案)
2012年全国中考数学试题分类解析汇编(159套63专题)专题22:二次函数的应用(几何问题)一、选择题1.(2012甘肃兰州4分)二次函数y =ax 2+bx +c(a≠0)的图象如图所示,若|ax 2+bx +c|=k(k≠0)有两个不相等的实数根,则k 的取值范围是【 】A .k <-3B .k >-3C .k <3D .k >3 二、填空题 三、解答题1. (2012天津市10分)已知抛物线y=ax 2+bx+c (0<2a <b )的顶点为P (x 0,y 0),点A (1,y A )、B (0,y B )、C (-1,y C )在该抛物线上.(Ⅰ)当a=1,b=4,c=10时,①求顶点P 的坐标;②求AB Cy y y -的值;(Ⅱ)当y 0≥0恒成立时,求AB Cy y y -的最小值.2. (2012上海市12分)如图,在平面直角坐标系中,二次函数y=ax 2+6x+c 的图象经过点A (4,0)、B (﹣1,0),与y 轴交于点C ,点D 在线段OC 上,OD=t ,点E 在第二象限,∠ADE=90°,tan∠DAE=12,EF⊥OD,垂足为F .(1)求这个二次函数的解析式;(2)求线段EF 、OF 的长(用含t 的代数式表示); (3)当∠ECA=∠OAC 时,求t 的值.3. (2012广东广州14分)如图,抛物线233y=x x+384--与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C . (1)求点A 、B 的坐标;(2)设D 为已知抛物线的对称轴上的任意一点,当△ACD 的面积等于△ACB 的面积时,求点D 的坐标; (3)若直线l 过点E (4,0),M 为直线l 上的动点,当以A 、B 、M 为顶点所作的直角三角形有且只有三个时,求直线l 的解析式.4. (2012广东肇庆10分)已知二次函数2y mx nx p =++图象的顶点横坐标是2,与x 轴交于A (x 1,0)、B (x 2,0),x 1﹤0﹤x 2,与y 轴交于点C ,O 为坐标原点,tan tan CA BO 1O C ∠-∠=. (1)求证: n 4m 0+=; (2)求m 、n 的值;(3)当p ﹥0且二次函数图象与直线y x 3=+仅有一个交点时,求二次函数的最大值.5. (2012广东珠海7分)如图,二次函数y=(x ﹣2)2+m 的图象与y 轴交于点C ,点B 是点C 关于该二次函数图象的对称轴对称的点.已知一次函数y=kx+b 的图象经过该二次函数图象上点A (1,0)及点B . (1)求二次函数与一次函数的解析式;(2)根据图象,写出满足kx+b≥(x ﹣2)2+m 的x 的取值范围.6. (2012浙江杭州12分)在平面直角坐标系内,反比例函数和二次函数y=k (x 2+x ﹣1)的图象交于点A (1,k )和点B (﹣1,﹣k ).(1)当k=﹣2时,求反比例函数的解析式;(2)要使反比例函数和二次函数都是y 随着x 的增大而增大,求k 应满足的条件以及x 的取值范围; (3)设二次函数的图象的顶点为Q ,当△ABQ 是以AB 为斜边的直角三角形时,求k 的值.7. (2012浙江宁波12分)如图,二次函数y=ax 2+bx+c 的图象交x 轴于A (﹣1,0),B (2,0),交y 轴于C (0,﹣2),过A ,C 画直线. (1)求二次函数的解析式;(2)点P 在x 轴正半轴上,且PA=PC ,求OP 的长;(3)点M 在二次函数图象上,以M 为圆心的圆与直线AC 相切,切点为H . ①若M 在y 轴右侧,且△CHM∽△AOC(点C 与点A 对应),求点M 的坐标;②若⊙M M 的坐标.8. (2012浙江温州14分)如图,经过原点的抛物线2y x 2mx(m 0)=-+>与x 轴的另一个交点为A.过点P(1,m)作直线PM x ⊥轴于点M ,交抛物线于点B.记点B 关于抛物线对称轴的对称点为C (B 、C 不重合).连结CB,CP 。
2012年辽宁锦州中考数学试题(附答案)
一、选择题(下列各题的备选答案中,只有一个是正确的,将正确答案的序号填入题后的括号内,本题共8个题,每题3分,共24分)1.(辽宁锦州)用一个垂直于长方体底面的平面去截如图的长方体,截面应为( B )2. (辽宁锦州)下列计算正确的是( C )A.(-x)2005=x 2005B.(2x)3=6x 3C.2x 2+3x 2=5x 2D.x 6÷x 2=x 33. (辽宁锦州)小明调查了本班同学最喜欢的球类运动情况,并作出了统计图,下面说法正确的是( D )A.从图中可以直接看出全班总人数B.从图中可以直接看出喜欢足球运动的人数最多C.从图中可以直接看出喜欢各种球类运动的具体人数D.从图中可以直接看出喜欢各种球类运动的人数的百分比 4. (辽宁锦州)一张正方形纸片经过两次对折,并在如图位置上剪去一个小正方形,打开后是( B )5. (辽宁锦州)已知力F 所作的功是15焦,则力F 与物体在力的方向通过的距离S 之间关系的图象大致是( C )6. (辽宁锦州)下列函数关系中,是二次函数的是(D ) A.在弹性限度内,弹簧的长度y 与所挂物体质量x 之间的关系 B.当距离一定时,火车行驶的时间t 与速度v 之间的关系 C.等边三角形的周长C 与边长a 之间的关系D.圆心角为120°的扇形面积S与半径R之间的关系7. (辽宁锦州)以下说法正确的是(A)A.在同一年出生的400人中至少有两人的生日相同B.一个游戏的中奖率是1%,买100张奖券,一定会中奖C.一副扑克牌中,随意抽取一张是红桃K,这是必然事件D.一个袋中装有3个红球、5个白球,任意摸出一个球是红球的概率是8. (辽宁锦州)如图,小颖同学在手工制作中,把一个边长为12cm的等边三角形纸片贴到一个圆形的纸片上,若三角形的三个顶点恰好都在这个圆上,则该圆的半径为(D)A.3cmB.3cmC.4cmD.4cm二、填空题(本题共8个题,每题3分,共24分)9(辽宁锦州).2004年12月26日,印度洋海域发生强烈地震并引发海啸,锦州市中小学师生纷纷捐款捐物,为灾区早日重建家园奉献爱心.全市中小学师生共捐款202655.74元,这一数据用科学记数法表示为_ 2.027×105___元(结果保留四个有效数字).10. (辽宁锦州)甲、乙、丙三台机床生产直径为60mm的螺丝,为了检验产品质量,从三台机床生产的螺丝中各抽查了20个测量其直径,进行数据处理后,发现这三组数据的平均数都是60mm,它们的方差依次为S2甲=0.162,S2乙=0.058,S2丙=0.149.根据以上提供的信息,你认为生产螺丝质量最好的是_乙___机床.11. (辽宁锦州)如图,边长为a、b的矩形,它的周长为14,面积为10,则a2b+ab2的值为__ 70__.12. (辽宁锦州)观察下面的几个算式:1+2+1=4,1+2+3+2+1=9,1+2+3+4+3+2+1=16,1+2+3+4+5+4+3+2+1=25,…根据你所发现的规律,请你直接写出下面式子的结果:1+2+3+…+99+100+99+…+3+2+1=_ 10000或1002___.13. (辽宁锦州)如图,以Rt△ABC的三边为边向外作正方形,其面积分别为S1、S2、S3,且S1=4,S2=8,则AB的长为_ ___.14. (辽宁锦州)在某数学小组的活动中,组长为大家出了一道函数题:这是一个反比例函数,并且y随x的增大而减小.请你写山一个符合条件的函数表达式_答案不惟一,例如,写出的关系式只要满足x·y值为正数即可___.15. (辽宁锦州)某市为治理污水,需要铺设一段全长为3000米的污水排放管道,为了尽量减少施工对城市交通所造成的影响,实际施工时,每天的工效比原计划增加25%,结果提前20天完成这一任务,原计划每天铺设多长管道?设原计划每天铺设x米管道,根据题意得_ ___.16. (辽宁锦州)如图是一个俱乐部的徽章.徽章的图案是一个金色的圆圈,中间是一个矩形,矩形中间又有一个蓝色的菱形,徽章的直径为2cm,则徽章内的菱形的边长为_ 1___cm.三、解答题(本题共2个题,每题5分,共10分)17.下面(1)、(2)两个小题中,请任选一题作答,若两个小题都解答,只以第(1)题评分. (辽宁锦州)(1)解:;(辽宁锦州). (2)解:18. (辽宁锦州)九年三班学生到阅览室读书,班长问老师要分成几个小组,老师风趣地说:解:设有x 个小组,根据题意得解这个不等式组,得根据题意,x为正整数,∴x=5.因此班长应将学生分为5组.四、解答题(本题共3个题,每题6分,共18分)19. (辽宁锦州)如图,己知四边形ABCD段的比为1:2.(不写作法,但保留作图痕迹)此题可有若干种作法,只作一种即可.不写作法,但保留作图痕迹.可按位似图形放大,且位似中心的位置可在图形顶点处、图形边上、图形内部、图形外部,注:(1)若新图形不标字母,不写结论,不扣分;(2)作图思路正确但不规范,可酌情扣分;(3)若新图形与原图形相似,但相似比错误,扣320. (辽宁锦州)某市有A、B、C、D四个大型超市,两侧,如图所示,请建立适当的直角坐标系,并写出四个超市相应的坐标.(1)直角坐标系建立正确得2分(包括原点、单位长度和正方向);(单位长度可自己规定,也可默认一个网格的边长为单位1)(2)A,B,C,D的坐标正确各得1分,合计6分.注:将坐标写在网络中,只要正确不扣分.21. (辽宁锦州)2004年,锦州市被国家评为无偿献血先进城市,医疗临床用血实现了100%来自公民白愿献血,无偿献血总量5.5吨,居全省第三位.现有三个自愿献血者,两人血型为O型,一人血型为A型.若在三人中随意挑选一人献血,两年以后又从此三人中随意挑选一人献血,试求两次所抽血的血型均为O型的概率.(要求:用列表或画树状图的方法解答)解:列表如下:所以两次所抽血型为O型的概率为.树状图如下:所以两次所抽血型为O型的概率为.五、解答题(本题共2个题,每题7分,共14分)22. 某校为了推动信息技术的发展,举行了电脑设计作品比赛,各班派学生代表参加,现将所有比赛成绩(得分取整数,满分为100分)进行处理然后分成五组,并绘制了频数分布直方图,请结合图中提供的信息,解答下列问题:(1)参加比赛学生的总人数是多少?(2)80.5~90.5这一分数段的频数、频率是多少?(3)这次比赛成绩的中位数落在哪个分数段内?(4)根据统计图,请你也提出一个问题,并做出回答.(1)参赛学生总人数为4+12+20+10+6=52(人);(2)80.5-90.5这一分数段的频数为10,频率是;(3)这次比赛成绩的中位数落在70.5-80.5这一分数段内;(4)答案不惟一,请评卷教师认真阅读,只要合理,就可给分.提问题举例:①这次竞赛成绩的众数落在哪一个分数段内?答:众数落在70.5-80.5这一分数段内;②90.5-100.5分数段内的学生与50.5-60.5分数段内的学生哪一个多?答:在90.5-100.5分数段内的学生多;③若规定90分以上(不含90分)为优秀,则此次考试的优秀率为多少?答:.23. 温度与我们的生活息息相关,你仔细观察过温度计吗?如图是一个温度计实物示意图,左边的刻度是摄氏温度(℃),右边的刻度是华氏温度(°F),设摄氏温度为x(℃),华氏温度为y(°F),则y是x的一次函数.(1)仔细观察图中数据,试求出y与x之间的函数表达式;(2)当摄氏温度为零下15℃时,求华氏温度为多少?(1)设一次函数表达式为y=kx+b,由温度计的示数得x=0,y=32;x=20时,y=68.将其代入y=kx+b,得(任选其它两对对应值也可)解得∴.(2)当摄氏温度为零下15℃时,即x=-15,将其代入,得所以当摄氏温度为零下15℃时,华氏温度为5°F.六、解答题(本题共8分)24. 如图,一条渔船某时刻在位置A观测灯塔B、C(灯塔B距离A处较近),两个灯塔恰好在北偏东65°45′的方向上,渔船向正东方向航行l小时45分钟之后到达D点,观测到灯塔B恰好在正北方向上,已知两个灯塔之间的距离是12海里,渔船的速度是16海里/时,又知在灯塔C周围18.6海里内有暗礁,问这条渔船按原来的方向继续航行,有没有触礁的危险?解:1小时45分=小时.在Rt△ABD中,(海里),∠BAD=90°-65°45′=24°15′.∵cos24°15′=,∴(海里).AC=AB+BC=30.71+12=42.71(海里).在Rt△ACE中,sin24°15′=,∴CE=AC·sin24°15′=42.71×0.4107=17.54(海里).∵17.54<18.6,∴这条船不改变方向会有触礁危险.七、解答题(本题共10分)25. (辽宁锦州)如图a,△ABC和△CEF是两个大小不等的等边三角形,且有一个公共顶点C,连接AF和BE.(1)线段AF和BE有怎样的大小关系?请证明你的结论;(2)将图a中的△CEF绕点C旋转一定的角度,得到图b,(1)中的结论还成立吗?作出判断并说明理由;(3)若将图a中的△ABC绕点C旋转一定的角度,请你画山一个变换后的图形c(草图即可),(1)中的结论还成立吗?作出判断不必说明理由;(4)根据以上证明、说理、画图,归纳你的发现.(1)AF=BE. ……1分证明:在△AFC和△BEC中,∵△ABC和△CEF是等边三角形,∴AC=BC,CF=CE,∠ACF=∠BCE=60°.∴△AFC≌△BEC. ∴AF=BE.(2)成立.理由:在△AFC和△BEC中,∵△ABC和△CEF是等边三角形,∴AC=BC,CF=CE,∠ACB=∠FCE=60°.∴∠ACB-∠FCB=∠FCE-∠FCB.即∠ACF=∠BCE. ∴△AFC≌△BEC. ∴AF=BE.(3)评价要求:此处图形不惟一,仅举几例,只要正确,即可得分.如图,(1)中的结论仍成立.(4)根据以上证明、说明、画图,归纳如下:如图a,大小不等的等边三角形ABC和等边三角形CEF有且仅有一个公共顶点C,则以点C为旋转中心,任意旋转其中一个三角形,八、解答题(本题共12分)26. (辽宁锦州)如图,在平面直角坐标系中有一直角梯形OABC,∠AOC=90°,AB∥OC,OC在x轴上,过A、B、C三点的抛物线表达式为.(1)求A、B、C三点的坐标;(2)如果在梯形OABC内有一矩形MNPO,使M在y轴上,N在BC边上,P在OC 边上,当MN为多少时,矩形MNPO的面积最大?最大面积是多少?(3)若用一条直线将梯形OABC分为面积相等的两部分,试说明你的分法.注:基总结出一般规律得满分,若用特例说明,有四种正确得满分.(1)由图形得,点A横坐标为0,将x=0代入,得y=10,∴A(0,10) ……1分∵AB∥OC,∴B点纵坐标为10,将y=10代入得,,∴x1=0, x2=8.∵B点在第一象限,∴B点坐标为(8,10)……2分∵C点在x轴上,∴C点纵坐标为0,将y=0代入得,解得∴x1=-10,x2=18.∵C在原点的右侧,∴C点坐标为(18,0).……4分(2)过B作BQ⊥OC,交MN于H,交OC于Q,则Rt△BNH∽Rt△BCQ,∴.…设MN=x,NP=y,则有.∴y=18-x.∴S=xy=x(18-x)=-x2+18x=-(x-9)2+81.矩形MNOP∴当x=9时,有最大值81.即MN=9时,矩形MNPO的面积最大,最大值为81.(3)评价要求:此处体现分类思想,但分类方法不惟一,给出的答案仅供参考.①对于任意一条直线,将直线从直角梯形的一侧向另一侧平移的过程中,总有一个位置使得直线将该梯形面积分割成相等的两部分.……4分②过上、下底作一条直线交AB于E,交OC于F,且满足于梯形AEFO或梯形BEFC 的上底与下底的和为13即可.……4分③构造一个三角形,使其面积等于整个梯形面积的一半,因此有:,;,;,;,;……不要求写出P点的坐标.④平行于两底的直线,一定会有其中的一条将原梯形分成面积相等的两部分;……1分。
2012年中考数学试题(解析版)-2
湖北省潜江市、仙桃市、天门市、江汉油田2012年中考数学试题(解析版)一、选择题(共10个小题,每小题3分,满分30分)在下列各小题中,均给出四个答案,其中有且只有一个正确答案,请将正确答案的字母代号在答题卡上涂黑,涂错或不涂均为零分1.2012的绝对值是()A.2012 B.﹣2012 C.D.﹣考点:绝对值。
专题:计算题。
分析:根据绝对值的性质直接解答即可.解答:解:∵2012是正数,∴|2012|=2012,故选A.点评:本题考查了绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.某种零件模型如图所示,该几何体(空心圆柱)的俯视图是()A.B.C.D.考点:简单组合体的三视图。
分析:找到从上面看所得到的图形即可.解答:解:空心圆柱由上向下看,看到的是一个圆环.故选C.点评:本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.解答此题时要有一定的生活经验.3.吸烟有害健康.据中央电视台2012年5月30日报道,全世界每因吸烟引起的疾病致死的人数A.0.6×107B.6×106C.60×105D.6×105考点:科学记数法—表示较大的数。
分析:首先把600万化为6000000,再用科学记数法表示,科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:600万=6000000=6×106,故选:B.点评:此题主要考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.不等式组的解集在数轴上表示正确的是()A.B.C.D.考点:在数轴上表示不等式的解集;解一元一次不等式组。
2012年全国中考数学试题分类解析汇编
2012年全国中考数学试题分类解析汇编专题11:方程(组)的应用一、选择题1. (2012宁夏区3分)小颖家离学校1200米3千米/时,下坡路的平均速度是5千米/时.若设小颖上坡用了x分钟,下坡用了y分钟,根据题意可列方程组为【】A.3x5y1200x y16+=⎧⎨+=⎩B.35x y 1.26060x y16⎧+=⎪⎨⎪+=⎩C.3x5y 1.2x y16+=⎧⎨+=⎩D.35x y12006060x y16⎧+=⎪⎨⎪+=⎩【答案】B。
【考点】由实际问题抽象出二元一次方程组。
【分析】要列方程,首先要根据题意找出存在的等量关系。
本题等量关系为:上坡用的时间×上坡的速度+下坡用的时间×下坡速度=1200,上坡用的时间+下坡用的时间=16。
把相关数值代入(注意单位的通一),得35x y 1.26060x y16⎧+=⎪⎨⎪+=⎩。
故选B。
2. (2012宁夏区3分)运动会上,初二(3)班啦啦队,买了两种价格的雪糕,其中甲种雪糕共花费40元,乙种雪糕共花费30元,甲种雪糕比乙种雪糕多20根.乙种雪糕价格是甲种雪糕价格的1.5倍,若设甲种雪糕的价格为x元,根据题意可列方程为【】.A.4030201.5x x-=B.403020x 1.5x-=C.304020x 1.5x-=D.3040201.5x x-=【答案】B。
【考点】由实际问题抽象出分式方程。
【分析】要列方程,首先要根据题意找出存在的等量关系。
本题等量关系为:甲种雪糕数量比乙种雪糕数量多20根。
而甲种雪糕数量为40x,乙种雪糕数量为301.5x。
(数量=金额÷价格)从而得方程:403020x 1.5x-=。
故选B。
3. (2012广东湛江4分)湛江市2009年平均房价为每平方米4000元.连续两年增长后,2011年平均房价达到每平方米5500元,设这两年平均房价年平均增长率为x,根据题意,下面所列方程正确的是【】A.5500(1+x)2=4000 B.5500(1﹣x)2=4000 C.4000(1﹣x)2=5500 D.4000(1+x)2=5500【答案】D。
2012年中考数学试题及解答
2012年中考数学试题及解答一、选择题(本题共32分,每小题4分)(四个选项,其中只有一个是符合题意的)1、9的算术平方根是()A、9 B、-3 C、3 D、±32、如下书写的四个汉字,其中为轴对称图形的是3、一副扑克牌,去掉大小王,从中任抽一张,恰好抽到的牌是8的概率是()A、B、C、D、4、把代数式分解因式,下列结果中正确的是()A、B、a(b+3)(b-3)C、D、5、函数y=kx-k与在同一坐标系中的图象可能是()6、如图,AE∥BD,∠1=120°,∠2=40°,则∠C的度数是()A、10° B 、20°C、30°D、40°7、若=2-a,则a的取值范围是()A、B、C、D、8、右图中是左面正方体的展开图的是()二、填空题(本题共16分,每小题4分)9、函数中,自变量x的取值范围是10、甲、乙两个旅游点今年5月上旬每天接待游客的人数如图所示,甲、乙两景点日接待游客人数的方差大小关系为11、若把代数式+5x+7化为的形式,其中m,k为常数,则k-m=12、正方形,,,…按如图所示的方式放置。
,…和点…分别在直线y=kx+b(k>0)和x轴上,已知点(1,1),(3,2),则点的坐标是______,点的坐标是______三、解答题13、计算:14、解方程15、已知:+x-2=0,求代数式的值16、已知:如图,在△ABC中,AC=BC,∠ACB=90°,MN是过点C的一条直线,AM⊥MN于M,BM⊥MN于N求证:AM=CN17、列方程或方程组解应用题某企业向四川雅安地震灾区捐助价值17.6万元的甲、乙两种帐篷共200顶,已知甲种帐篷每顶800元,乙种帐篷每顶1000元,问甲、乙两种帐篷个多少顶18、如图,在平面直角坐标xOy系,一次函数y=-2x+2的图象与x轴相交于点B,与y轴相交于点C,与反比例函数图象相交于点A,且AB=2BC,(1)求反比例函数的解析式;(2)若点P在x轴上,且△APC的面积等于12,直接写出点P的坐标19、已知:如图,四边形ABCD中,对角线AC、BD相较于点E,∠ABC=∠ACD=90°,AB=BC=6 ,tan∠CDE= ,求对角线BD的长和△ABD的面积20、已知:如图,⊙O是Rt△ABC的外接圆,∠ABC=90°,点P是⊙O外一点,PA切⊙O于点A,且PA=PB(1)求证:PB是⊙O的切线;(2)已知PA= ,BC=2,求⊙O的半径21、甲、乙两学校都派相同人数的学生参加综合素质测试,测试结束后,发现每名参赛学生的成绩都是70分、80分、90分、100分这四种成绩中的一种,并且甲、乙两学校的学生获得100分的人数相等。
史上最全2012年全国中考数学试题分类解析汇编160套60专题专题2实数的运算
【史上最全】2012年全国中考数学试题分类解析汇编(160套60专题)专题2:实数的运算一、选择题1. (2012山西省2分)计算:﹣2﹣5的结果是【 】 A . ﹣7B .﹣3 C . 3 D .7【答案】A 。
【考点】有理数的加法。
【分析】根据有理数的加法运算法则计算即可:﹣2﹣5=﹣(2+5)=﹣7。
故选A 。
2. (2012广东佛山3分)与2÷3÷4运算结果相同的是【 】A .4÷2÷3B .2÷(3×4)C .2÷(4÷2)D .3÷2÷4【答案】B 。
【考点】有理数的乘除运算。
【分析】根据连除的性质可得:2÷3÷4=2÷(3×4)。
故选B 。
3. (2012广东梅州3分)012⎛⎫-- ⎪⎝⎭=【 】A .﹣2B .2C .1D .﹣1 【答案】D 。
【考点】零指数幂。
【分析】根据任何非0数的0次幂等于1解答即可:01=12⎛⎫--- ⎪⎝⎭。
故选D 。
4. (2012广东肇庆3分)计算2-的结果是【】3+A.1 B.1-C.5 D.5-【答案】B。
【考点】有理数的加法。
【分析】根据有理数的加法运算法则计算即可得解:-3+2=-(3-2)=-1。
故选B。
5. (2012浙江杭州3分)计算(2﹣3)+(﹣1)的结果是【】A.﹣2 B.0 C.1 D.2【答案】A。
【考点】有理数的加减混合运算。
【分析】根据有理数的加减混合运算的法则进行计算即可得解:(2﹣3)+(﹣1)=﹣1+(﹣1)=﹣2。
故选A。
6. (2012浙江嘉兴、舟山4分)(﹣2)0等于【】A. 1 B. 2 C.0 D.﹣2【答案】A。
【考点】零指数幂。
【分析】根据不等于0的数的零次幂为0的定义,直接得出结果:(﹣2)0=1。
故选A。
7. (2012浙江宁波3分)(﹣2)0的值为【】A.﹣2 B.0 C.1 D.2【答案】C。
2012年中考数学试题(含答案)
2012年中考数学试题一、选择题:1.若x 5=,则x 的值是【 】A .5B .-5C .5±D .51 2.下列运算正确的是【 】A .5510a a a +=B .339a a a ⋅=C .()3393a 9a = D .1239a a a ÷=3.函数y x 2=-中自变量x 的取值范围是【 】A .x 2>B .x 2≥C .x 2≤D .x 2<4.某种微粒子,测得它的质量为0.00006746克,这个质量用科学记数法表示(保留三个有效数字应为【 】 A .56.7510⨯- 克 B .56.7410-⨯ 克 C .66.7410-⨯ 克 D . 66.7510-⨯克 5.若关于x 的一元二次方程2x 2x m 0-+=有两个不相等的实数根,则m 的取值范围是【 】 A .m 1< B .m 1<- C .m 1> D . m 1>- 6.下列命题中,真命题是【 】A .有两条对角线相等的四边形是等腰梯形B .两条对角线互相垂直且平分的四边形是正方形C .等边三角形既是轴对称图形又是中心对称图形D .有一个角是60°的等腰三角形是等边三角形7.如图,在△ABC 中,∠ACB =90°,∠A =20°,若将△ABC 沿CD 折叠,使B 点落在AC 边上的E 处,则∠ADE 的度数是【 】A .30°B .40°C .50°D .55°8.一组数据为2、3、5、7、3、4,对于这组数据,下列说法错误的是【 】A .平均数是4B .极差是5C .众数是3D . 中位数是6 9.若m 、n 是一元二次方程2x 5x 20--=的两个实数根,则m n mn +-的值是【 】 A .-7 B .7 C .3 D . -310.圆锥底面圆的半径为1㎝,母线长为6㎝,则圆锥侧面展开图的圆心角是【 】 A .30° B .60° C .90° D . 120°第Ⅱ卷(非选择题)二、填空题:11.因式分解:2ax 2ax a -+= ▲ .12.如图,□ABCD 中,AB =5,AD =3,AE 平分∠DAB 交BC 的延长线于F 点,则CF = ▲ .13.已知:P A 、PB 与⊙O 相切于A 点、B 点,OA =1,P A =3,则图中阴影部分的面积是 ▲ (结果保留π).14.某学校有80名学生,参加音乐、美术、体育三个课外小组(每人只参加一项),这80人中若有40%的人参加优育小组,35%的人参加美术小组,则参加音乐小组的有 ▲ 人. 15.直线y (3a)x b 2=-+-在直角坐标系中的图象如图所示, 化简:2b a a 6a 92b ---+--= ▲ .16.在△ABC 中,AB =5,AC =3,AD 是BC 边上的中线,则AD 的取值范围是 ▲ .第14题 第15题 第17题 三、计算题:本大题共2个小题,每小题6分,共12分.17.计算:)2014cos301212-⎛⎫+-⎪⎝⎭18.解方程:11x 3x 22x -+=-- 解不等式组()2x 13x 22x 4⎧--⎪⎨-⎪⎩≥<19.如图,图中的小方格都是边长为1的正方形,△ABC的顶点坐标分别为A(-3 ,0),B(-1 ,-2),C(-2 ,2).(1)请在图中画出△ABC绕B点顺时针旋转90°后的图形;(2)请直接写出以A、B、C为顶点的平行四边形的第四个顶点D的坐标.20.如图,在与河对岸平行的南岸边有A、B、D三点,A、B、D三点在同一直线上,在A点处测得河对岸C点在北偏东60°方向;从A点沿河边前进200米到达B点,这时测得C点在北偏东30°方向,求河宽CD.21.有质地均匀的A.B.C.D四张卡片,上面对应的图形分别是圆、正方形、正三角形、平行四边形,将这四张卡片放入不透明的盒子中摇匀,从中随机抽出一张(不放回),再随机抽出第二张.(1)如果要求抽出的两张卡片上的图形,既有圆又有三角形,请你用列表或画树状图的方法,求出出现这种情况的概率;(2)因为四张卡片上有两张上的图形,既是中心对称图形,又是轴对称图形,所以小明和小东约定做一个游戏,规则是:如果抽出的两个图形,既是中心对称图形又是轴对称图形,则小明赢;否则,小东赢。
2012年北京市中考数学试卷-含答案详解
北京市2012年高级中等学校招生考试一、选择题(本大题共8小题,共32.0分。
在每小题列出的选项中,选出符合题目的一项)1.−9的相反数是( )A. B. C. −9 D. 92.首届中国(北京)国际服务贸易交易会(京交会)于2012年6月1日闭幕,本届京交会期间签订的项目成交总金额达60110000000美元,将60110000000用科学记数法表示应为( )A. 6.011×109B. 60.11×109C. 6.011×1010D. 0.6011×10113.正十边形的每个外角等于( )A. 18°B. 36°C. 45°D. 60°4.下图是某个几何体的三视图,该几何体是( )A. 长方体B. 正方体C. 圆柱D. 三棱柱5.班主任王老师将6份奖品分别放在6个完全相同的不透明礼盒中,准备将它们奖给小英等6位获“爱集体标兵”称号的同学.这些奖品中3份是学习文具,2份是科普读物,1份是科技馆通票.小英同学从中随机取一份奖品,恰好取到科普读物的概率是( )A. B. C. D.6.如图,直线AB,CD交于点O,射线OM平分∠AOC,若∠BOD=76°,则∠BOM等于( )A. 38°B. 104°C. 142°D. 144°7.某课外小组的同学们在社会实践活动中调查了20户家庭某月的用电量,如下表所示:用电量(度)120140160180200户数23672则这20户家庭该月用电量的众数和中位数分别是( )A. 180,160B. 160,180C. 160,160D. 180,1808.小翔在如图1所示的场地上匀速跑步,他从点A出发,沿箭头所示方向经过点B跑到点C,共用时30秒.他的教练选择了一个固定的位置观察小翔的跑步过程.设小翔跑步的时间为t(单位:秒),他与教练的距离为y(单位:米),表示y与t的函数关系的图象大致如图2所示,则这个固定位置可能是图1中的( )A. 点MB. 点NC. 点PD. 点Q二、填空题(本大题共4小题,共16.0分)9.分解因式:mn 2+6mn+9m=__________.10.若关于x的方程x2−2x−m=0有两个相等的实数根,则m的值是__________.11.如图,小明同学用自制的直角三角形纸板DEF测量树的高度AB,他调整自己的位置,设法使斜边DF保持水平,并且边DE与点B在同一直线上.已知纸板的两条直角边DE=40cm,EF=20cm,测得边DF离地面的高度AC=1.5m,CD=8m,则树高AB=________m.12.在平面直角坐标系xO y中,我们把横、纵坐标都是整数的点叫做整点.已知点A(0,4),点B是x轴正半轴上的整点,记△AOB内部(不包括边界)的整点个数为m.当m=3时,点B的横坐标的所有可能值是;当点B的横坐标为4n(n为正整数)时,m=________(用含n的代数式表示.)三、计算题(本大题共2小题,共10.0分)13.计算:14.解不等式组:四、解答题(本大题共11小题,共62.0分。
2012中考数学试题及答案
2012中考数学试题及答案一、选择题(每题2分,共20分)1. 下列哪个数是最小的正整数?A. 0B. -1C. 1D. 2答案:C2. 一个圆的半径是5厘米,它的面积是多少平方厘米?A. 25πB. 50πC. 75πD. 100π答案:B3. 如果一个等腰三角形的底边长为6厘米,腰长为5厘米,那么它的周长是多少厘米?A. 16B. 21C. 22D. 26答案:B4. 下列哪个分数是最简分数?A. 4/8B. 5/10C. 3/4D. 6/12答案:C5. 一个数的平方根是4,这个数是?A. 16B. 8C. 4D. 2答案:A6. 一个长方体的长、宽、高分别是2米、3米和4米,它的体积是多少立方米?A. 24B. 12C. 8D. 6答案:B7. 一个数的倒数是1/5,这个数是?A. 5B. 1/5C. 1/4D. 4/5答案:A8. 一个直角三角形的两条直角边分别是3和4,斜边长是多少?A. 5B. 6C. 7D. 8答案:A9. 一个分数的分子是8,分母是它的4倍,这个分数是多少?A. 1/4B. 1/3C. 1/2D. 2/3答案:A10. 一个数的立方是27,这个数是?A. 3B. 9C. 27D. 81答案:A二、填空题(每题2分,共20分)11. 一个数的绝对值是5,这个数可以是______或______。
答案:5或-512. 如果一个数的平方是25,那么这个数是______或______。
答案:5或-513. 一个数的立方是-8,这个数是______。
答案:-214. 一个数的平方根和立方根相等,这个数是______。
答案:0或115. 如果一个数的对数是2,那么这个数是______。
答案:10016. 一个数的平方是36,那么这个数是______或______。
答案:6或-617. 一个数的倒数是2/3,这个数是______。
答案:3/218. 如果一个数的立方是-27,那么这个数是______。
史上最全2012年全国中考数学试题分类解析汇编160套60专题专题9一元二次方程
【史上最全】2012年全国中考数学试题分类解析汇编(160套60专题)专题9:一元二次方程一、选择题1. (2012天津市3分)若关于x的一元二次方程(x-2)(x -3)有实数根x12,且x1≠x2,有下列结论:①x1=2,x2=3;②1>-;m4③二次函数(x-x1)(x-x2)+m的图象与x轴交点的坐标为(2,0)和(3,0).其中,正确结论的个数是【】(A)0 (B)1 (C)2 (D)3【答案】C。
【考点】抛物线与x轴的交点,一元二次方程的解,一元二次方程根的判别式和根与系数的关系。
【分析】①∵一元二次方程实数根分别为x1、x2,∴x1=2,x2=3,只有在0时才能成立,故结论①错误。
②一元二次方程(x-2)(x-3)化为一般形式得:x2-5x+6-0,∵方程有两个不相等的实数根x1、x2,∴△2-4ac=(-5)2-4(6-m)=4m+1>0,解得:1>-。
故结论②正确。
m4③∵一元二次方程x2-5x+6-0实数根分别为x1、x2,∴x1+x2=5,x1x2=6-m。
∴二次函数(x -x 1)(x -x 2)2-(x 1+x 2)x +x 1x 2+2-5x +(6-m )+m2-5x +6=(x -2)(x -3)。
令0,即(x -2)(x -3)=0,解得:2或3。
∴抛物线与x 轴的交点为(2,0)或(3,0),故结论③正确。
综上所述,正确的结论有2个:②③。
故选C 。
2. (2012广东佛山3分)用配方法解一元二次方程x 2-2x -3=0时,方程变形正确的是【 】A .(x -1)2=2B .(x -1)2=4C .(x -1)2=1D .(x -1)2=7【答案】B 。
【考点】用配方法解一元二次方程。
【分析】由x 2-2x -3=0移项得:x 2-23,两边都加上1得:x 2-2x +1=3+1,即(x -1)2=4。
则用配方法解一元二次方程x 2-2x -3=0时,方程变形正确的是(x -1)2=4。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(一) 方程与不等式类1(绵阳).李大爷一年前买入了相同数量的A 、B 两种种兔,目前,他所养的这两种种兔数量仍然相同,且A 种种兔的数量比买入时增加了20只,B 种种兔比买入时的2倍少10只.(1)求一年前李大爷共买了多少只种兔?(2)李大爷目前准备卖出30只种兔,已知卖A 种种兔可获利15元/只,卖B 种种兔可获利6元/只.如果要求卖出的A 种种兔少于B 种种兔,且总共获利不低于280元,那么他有哪几种卖兔方案?哪种方案获利最大?请求出最大获利.2(临沂)在全市中学运动会800m 比赛中,甲乙两名运动员同时起跑,刚跑出200m 后,甲不慎摔倒,他又迅速地爬起来继续投入比赛,并取得了优异的成绩.图中分别表示甲、乙两名运动员所跑的路程y (m )与比赛时间x (s )之间的关系,根据图像解答下列问题: (1)甲摔倒前,________的速度快(填甲或乙); (2)甲再次投入比赛后,在距离终点多远处追上乙?3(青岛)某水产品养殖企业为指导该企业某种水产品的养殖和销售,对历年市场行情和水产品养殖情况进行了调查.调查发现这种水产品的每千克售价1y (元)与销售月份x (月)满足关系式3368y x =-+,而其每千克成本2y (元)与销售月份x (月)满足的函数关系如图所示.(1)试确定b c 、的值;(2)求出这种水产品每千克的利润y (元)与销售月份x (月)之间的函数关系式;(第2题图)(3)“五·一”之前,几月份出售这种水产品每千克的利润最大?最大利润是多少?4(凉山)我国沪深股市交易中,如果买、卖一次股票均需付交易金额的0.5%作费用.张先生以每股5元的价格买入“西昌电力”股票1000股,若他期望获利不低于1000元,问他至少要等到该股票涨到每股多少元时才能卖出?(精确到0.01元)5(新疆)有一批图形计算器,原售价为每台800元,在甲、乙两家公司销售.甲公司用如下方法促销:买一台单价为780元,买两台每台都为760元.依此类推,即每多买一台则所买各台单价均再减20元,但最低不能低于每台440元;乙公司一律按原售价的75%促销.某单位需购买一批图形计算器:(1)若此单位需购买6台图形计算器,应去哪家公司购买花费较少?(2)若此单位恰好花费7 500元,在同一家公司购买了一定数量的图形计算器,请问是在哪家公司购买的,数量是多少?6(重庆)某商场在销售旺季临近时 ,某品牌的童装销售价格呈上升趋势,假如这种童装开始时的售价为每件20元,并且每周(7天)涨价2元,从第6周开始,保持每件30元的稳定价格销售,直到11周结束,该童装不再销售。
(1)请建立销售价格y (元)与周次x 之间的函数关系;(2)若该品牌童装于进货当周售完,且这种童装每件进价z (元)与周次x 之间的关系为12)8(812+--=x z , 1≤ x ≤11,且x 为整数,那么该品牌童装在第几周售出后,每件获得利润最大?并求最大利润为多少?y 2概率与统计类1(青岛).在“六·一”儿童节来临之际,某妇女儿童用品商场为吸引顾客,设立了一个可以自由转动的转盘(如图,转盘被平均分成20份),并规定:顾客每购物满100元,就能获得一次转动转盘的机会.如果转盘停止后,指针正好对准红色、黄色、绿色区域,那么顾客就可以分别获得80元、50元、20元的购物券,凭购物券可以在该商场继续购物.如果顾客不愿意转转盘,那么可直接获得15元的购物券.转转盘和直接获得购物券,你认为哪种方式对顾客更合算?请说明理由.2(眉山).将正面分别标有数字1、2、3、4、6,背面花色相同的五张卡片沅匀后,背面朝上放在桌面上,从中随机抽取两张。
⑴写出所有机会均等的结果,并求抽出的两张卡片上的数字之和为偶数的概率; ⑵记抽得的两张卡片的数字为(a ,)b ,求点P (a ,)b 在直线2y x =-上的概率;3(泸州)有A 、B 两个黑布袋,A 布袋中有四个除标号外完全相同的小球,小球上分别标有数字0,1,2,3, B 布袋中有三个除标号外完全相同的小球,小球上分别标有数字0,1,2.小明先从A布袋中随机取出—个小球,用m 表示取出的球上标有的数字,再从B 布袋中随机取出一个小球,用n 表示取出的球上标有的数字.(1)若用(m ,n)表示小明取球时m 与n 的对应值,请画出树状图并写出(m ,n)的所有取值;(2)求关于x 的一元二次方程0212=+-n mx x 有实数根的概率.(二)测量类1(青岛).在一次数学活动课上,老师带领同学们去测量一座古塔CD 的高度.他们首先从A 处安置测倾器,测得塔顶C 的仰角21CFE ∠=°,然后往塔的方向前进50米到达B 处,此时测得仰角37CGE ∠=°,已知测倾器高1.5米,请你根据以上数据计算出古塔CD 的高度.(参考数据:3sin 375°≈,3tan 374°≈,9sin 2125°≈,3tan 218°≈)第1题图 CGEF2(太原)如图,从热气球C 上测得两建筑物A 、B 底部的俯角分别为30°和60°.如果这时气球的高度CD 为90米.且点A 、D 、B 在同一直线上,求建筑物A 、B 间的距离.3(泸州)在某段限速公路BC 上(公路视为直线),交通管理部门规定汽车的最高行驶速度不能超过60千米/时(即350米/秒),并在离该公路100米处设置了一个监测点A .在如图8所示的直角坐标系中,点A位于y 轴上,测速路段BC 在x 轴上,点B 在A 的北偏西60°方向上,点C 在A 的北偏东45°方向上,另外一条高等级公路在y 轴上,AO 为其中的一段.(1)求点B 和点C 的坐标;(2)一辆汽车从点B 匀速行驶到点C 所用的时间是15秒,通过计算,判断该汽车在这段限速路上是否超速?(参考数据:7.13 )(3)若一辆大货车在限速路上由C 处向西行驶,一辆小汽车在高等级公路上由A 处向北行驶,设两车同时开出且小汽车的速度是大货车速度的2倍,求两车在匀速行驶过程中的最近距离是多少?参考答案1(1)设李大爷一年前买A 、B 两种种兔各x 只,则由题意可列方程为x + 20 = 2x -10,解得 x = 30. 即一年前李大爷共买了60只种兔. (2)设李大爷卖A 种兔x 只,则卖B 种兔30-x 只,则由题意得 x <30-x , ① x +(30-x )×6≥280, ② 解 ①,得 x <15; 解 ②,得x ≥9100, 即 9100≤x <15. ∵ x 是整数,9100≈11.11, ∴ x = 12,13,14. 即李大爷有三种卖兔方案:方案一 卖A 种种兔12只,B 种种兔18只;可获利 12×15 + 18×6 = 288(元); 方案二 卖A 种种兔13只,B 种种兔17只;可获利 13×15 + 17×6 = 297(元); 方案三 卖A 种种兔14只,B 种种兔16只;可获利 14×15 + 16×6 = 306(元). 显然,方案三获利最大,最大利润为306元.2. 解:(1)甲. ············································································································· (3分) (2)设线段OD 的解析式为1y k x =.把(125800),代入1y k x =,得1325k =. ∴线段OD 的解析式为325y x =(0125x ≤≤). ··················································· (5分) 设线段BC 的解析式为2y k x b =+.把(40200),,(120800),分别代入2y k x b =+. 得2220040800120k b k b =+⎧⎨=+⎩,. 解得2152100k b .⎧=⎪⎨⎪=-⎩, ∴线段BC 的解析式为151002y x =-(40120x ≤≤). ········································ (7分) 解方程组325151002y x,y x .⎧=⎪⎪⎨⎪=-⎪⎩得100011640011x y .⎧=⎪⎪⎨⎪=⎪⎩, ····································································· (9分)640024008001111-=. 答:甲再次投入比赛后,在距离终点2400m 11处追上了乙. 3解:(1)由题意:22125338124448b c b c ⎧=⨯++⎪⎪⎨⎪=⨯++⎪⎩解得7181292b c ⎧=-⎪⎪⎨⎪=⎪⎩ ························································································································ 4分(2)12y y y =- 23115136298882x x x ⎛⎫=-+--+ ⎪⎝⎭21316822x x =-++; ································································································ 6分 (3)21316822y x x =-++2111(1236)46822x x =--+++21(6)118x =--+ ∵108a =-<,∴抛物线开口向下.在对称轴6x =左侧y 随x 的增大而增大.由题意5x <,所以在4月份出售这种水产品每千克的利润最大. ···································· 9分 最大利润211(46)111082=--+=(元). 4. 解:设至少涨到每股x 元时才能卖出. ············································································ 1分 根据题意得1000(50001000)0.5%50001000x x -+⨯+≥ ·············································· 4分 解这个不等式得1205199x ≥,即 6.06x ≥. ········································································ 6分 答:至少涨到每股6.06元时才能卖出. ··············································································· 7分 5解:(1)在甲公司购买6台图形计算器需要用6(800206)4080⨯-⨯=(元);在乙公司购买需要用75%80063600⨯⨯=(元)4080<(元).应去乙公司购买; ··················· 3分 (2)设该单位买x 台,若在甲公司购买则需要花费(80020)x x -元;若在乙公司购买则需要花费75%800600x x ⨯=元;①若该单位是在甲公司花费7 500元购买的图形计算器, 则有(80020)x x -7500=,解之得1525x x ==,.当15x =时,每台单价为8002015500440-⨯=>,符合题意,当25x =时,每台单价为8002025300440-⨯=<,不符合题意,舍去. ················· 10分 ②若该单位是在乙公司花费7 500元购买的图形计算器,则有6007500x =,解之得12.5x =,不符合题意,舍去.故该单位是在甲公司购买的图形计算器,买了15台. 6解:(1)202(1)218(16)()......(2)30 (611)() (4)x x x x y x x +-=+≤<⎧=⎨≤≤⎩为整数分为整数分(2)设利润为w222211202(1)(8)1214(16)()......881130(8)12(8)18(611)()......88y z x x x x x w y z x x x x ⎧-=+-+--=+≤<⎪⎪=⎨⎪-=+--=-+≤≤⎪⎩为整数(6分)为整数(8分)21114 5 1788w x x w =+=最大当时,=(元)....(9分)2111(8)18 11 91819888w x x w =-+=⨯+最大当时,==(元)....(10分)综上知:在第11周进货并售出后,所获利润最大且为每件1198元 (10)二概率与统计1解:135********.5202020⨯+⨯+⨯=(元), ······························································· 4分 ∵16.55>元元∴选择转转盘对顾客更合算.2. 解:(1)任取两张卡片共有10种取法,它们是:(1、2),(1、3),(1、4),(1、6),(2、3),(2、4),(2、6),(3、4),(3、6),(4、6);和为偶数的共有四种情况.……(2分)故所求概率为142105P ==;……(4分) (2)抽得的两个数字分别作为点P 横、纵坐标共有20种机会均等的结果,在直线y =x -2上的只有(3、1),(4、2),(6、4)三种情况,故所求概率1320P =…(7分)(三)测量类1解:由题意知CD AD ⊥,EF AD ∥, ∴90CEF ∠=°,设CE x =, 在Rt CEF △中,tan CE CFE EF ∠=,则8tan tan 213CE x EF x CFE ===∠°; 在Rt CEG △中,tan CECGE GE ∠=, 则4tan tan 373CE x GE x CGE ===∠°; ······················ 4分∵EF FG EG =+, ∴845033x x =+. 37.5x =,∴37.5 1.539CD CE ED =+=+=(米). 答:古塔的高度约是39米.2解:由已知,得306090ECA FCB CD ∠=∠==°,°,, EF AB CD AB ⊥∥,于点D .3060A ECA B FCB ∴∠=∠=∠=∠=°,°. ·····················································2分在Rt ACD △中,90tan CDCDA A AD∠=°,=,90tan CD AD A ∴==== ··························································· 4分 在Rt BCD △中,90tan CDCDB B BD∠=°,=,tan CD DB B ∴=== ············································································· 6分AB AD BD ∴=+==.答:建筑物A B 、间的距离为CGEDB AF 第19题图。