9.3 一元一次不等式组 检测题2
9.3(1) 一元一次不等式组
x 1 x 2
数轴表示
解集(即公共部分)
-1
0
1
2
3
1 x 2
x 1 x 2
-1
0
1
2
3
x 2
x 1 x 2
-1
0
1
2
3
x 1
无解
x 2 x 1
-1
0
1
2
3
你会了吗?试试看 例1:解下列不等式组
x2 x2
(一)概念
1. 由几个一元一次不等式所组成的不等式组叫做一 元一次不等式组
2. 几个一元一次不等式的解集的公共部分,叫做由它们 所组成的一元一次不等式组的解集. 3. 求不等式组的解集的过程,叫做解不等式组.
(二)解简单一元一次不等式组的方法:
(1) 求出不等式组中各个不等式的解集 (2) 利用数轴找出这几个不等式解集的公共部分 即求出了不等式组的解集 (找不到公共部分则不等式组无解)
请举一些既满足不等式①又满足不等式② 的x的取值.
你能确定所有x的取值吗?
3 x5
探索与观察
3 x5
① ②
中x的取值范围与组成它的不等式① 、 ②的解集有什么联系?
x 3 运用数轴,探索不等式组 x 5
动手操作: 在同一数轴上分别表示出不等式① 、②的解集。
-2
-1
0
1
2
3
2 x 1 x 1 ⑴ x 8 4x 1
解: 解不等式①,得, 解不等式②,得, ① ②
x2 x3
2 x 3 x 11 ⑵ 2x 5 1 2 x 3
解: 解不等式①,得,x 解不等式②,得,
(必考题)初中数学八年级数学下册第二单元《一元一次不等式和一元一次不等式组》检测题(有答案解析)2
一、选择题1.已知正比例函数()0y kx k =≠的图象如图所示,则在下列选项中k 的值可能是( )A .5B .4C .3D .22.如果a b >,则下列各式中不成立的是( )A .33a b +>+B .55a b ->-C .33a b ->-D .2323a b +>+3.某次足球赛中,32支足球队将分为8个小组进行单循环比赛,小组比赛规则如下:胜一场得3分,平一场得1分,负一场得0分,若小组赛中某队的积分为5分,则该队必是( ). A .两胜一负B .一胜两平C .五平一负D .一胜一平一负4.如果m n >,则下列各式不成立的是( ) A .22m n +>+B .22m n ->-C .22m n > D .22m n -<-5.直线11:l y k x b =+与直线22:l y k x =在同一平面直角坐标系中的图象如图所示,关于x 的不等式21k x k x b >+的解集为( )A .-1x >B .1x <-C .2x <-D .无法确定6.已知a<b ,则下列四个不等式中,不正确的是( ) A .a+2<b+2B .22ac bc <C .1122a b < D .-2a-1-2b-1>7.运行程序如图所示,规定:从“输入一个值x ”到“结果是否26>”为一次程序操作,如果程序操作进行了1次后就停止,则x 最小整数值取多少( )A .7B .8C .9D .10 8.关于x 的方程3a x -=的解是非负数,那么a 满足的条件是( )A .3a >B .3a ≤C .3a <D .3a ≥9.如图,有理数a 在数轴上的位置如图所示,下列各数中,大小一定在0至1之间的是( )A .aB.1a +C .1-aD .1a-10.某储运站现有甲种货物1530吨,乙种货物1150吨,安排用一列货车将这批货物运往青岛,这列货车可挂,A B 两种不同规格的货厢50节.已知甲种货物35吨和乙种货物15吨可装满一节A 型货厢,甲种货物25吨和乙种货物35吨可装满一节B 型货厢,按此要求安排,A B 两种货厢的节数,有几种运输方案( ) A .1种B .2种C .3种D .4种11.如果不等式组5x x m<⎧⎨>⎩有解,那么m 的取值范围是( ) A .m >5B .m≥5C .m <5D .m≤812.P Q R S ,,,四个小朋友玩跷跷板,结果如图所示,则他们的体重大小关系为( )A .R<Q P SB .Q<R S PC .Q<R P SD .Q<P R S二、填空题13.不等式组3241112x x x x ≤-⎧⎪⎨--<+⎪⎩的整数解是_________.14.不等式组2173112x x x -<⎧⎪⎨+-≥⎪⎩的解集是____.15.一次函数1y ax b 与2y mx n =+的部分自变量和对应函数值如下表:x ⋅⋅⋅ 0 1 2 3⋅⋅⋅ 1y⋅⋅⋅ 232112⋅⋅⋅ x ⋅⋅⋅ 0 1 2 3 ⋅⋅⋅ 2y⋅⋅⋅-3-113⋅⋅⋅x 16.把方程组2123x y mx y +=+⎧⎨+=⎩中,若未知数x y 、满足0x y +>,则m 的取值范围是_________.17.定义一种法则“⊗”如下:()()a a b a b b a b >⎧⊗=⎨≤⎩,如:122⊗=,若(25)33m -⊗=,则m 的取值范围是_______. 18.若关于x 的不等式组0521x m x -<⎧⎨-≤⎩的整数解有且只有4个,则m 的取值范围是:__________.19.如图,已知一次函数y=kx+b 的图象与正比例函数y=mx 的图象相交于点P (﹣3,2),则关于x 的不等式mx ﹣b≥kx 的解集为_____.20.关于x 的方程231x k +=的解是非负数,则k 的取值范围是___________.三、解答题21.居家学习期间,小明坚持每天做运动.已知某两组运动都由波比跳和深蹲组成,每个波比跳耗时5秒,每个深蹲也耗时5秒.运动软件显示,完成第一组运动,小明花了5分钟,其中做了20个波比跳,共消耗热量132大卡;完成第二组运动,小明花了7分钟30秒,其中也做了20个波比跳,共消耗热量156大卡.每个动作之间的衔接时间忽略不计. (1)小明在第一组运动中,做了 个深蹲;小明在第二组运动中,做了 个深蹲.(2)每个波比跳和每个深蹲各消耗热量多少大卡?(3)若小明想只做波比跳和深蹲两个动作,花10分钟,消耗至少200大卡,小明至少要做多少个波比跳?22.在平面直角坐标系中,一次函数y kx b =+(k ,b 是常数,且0k ≠)的图象经过点(2,1)和(1,7)-.(1)求该函数的表达式;(2)若点(5,3)P a a -在该函数的图象上,求点P 的坐标; (3)当311y -<<时,求x 的取值范围.23.在同一平面直角坐标系内画出一次函数14y x =-+和225y x =-的图象,根据图象回答下列问题: (1)求出方程组425y x y x =-+⎧⎨=-⎩的解;(2)当x 取何值时,12y y >?当x 取何值时,10y >且20y <?24.请你用学习“一次函数”时积累的经验和方法研究函数y =|x|的图像和性质,并解决问题:(1)完成下列步骤,画出函数y =|x|的图像; ①列表、填空: x … ﹣2 ﹣1 0 1 2 … y…12…③连线(2)观察函数图像,写出该函数图像的一条性质 .(3)结合图像,写出不等式13x+43>|x|的解集为.25.某水果店购买某种水果的进价为18元/千克,在销售过程中有10%的水果损耗,该水果店以a元/千克的标价出售该种水果.(1)为避免亏本,求a的最小值.(2)若该水果店以标价销售了70%的该种水果,在扣除10%损耗后,剩下的20%水果按10元/千克的价格售完.为确保销售该种水果所得的利润率不低于20%,求a的最小值.26.2020年新冠肺炎疫情在全球蔓延,全球疫情大考面前,中国始终同各国安危与共、风雨同舟,时至5月,中国已经向150多个国家和国际组织提供医疗物资援助.某次援助,我国组织20架飞机装运口罩、消毒剂、防护服三种医疗物资共120吨,按计划20架飞机都要装运,每架飞机只能装运同一种医疗物资,且必须装满.根据如下表提供的信息,解答以下问题:(2)若此次物资运费为W元,求W与x之间的函数关系式;(3)如果装运每种医疗物资的飞机都不少于4架,那么怎样安排运送物资,方能使此次物资运费最少,最少运费为多少元?【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】根据图象,找到当x=2与x=3时,对应的函数值与图像关系,列出不等式求出k的取值范围,再结合选项解答.【详解】解:根据图象,得2k<6,3k>5,解得k<3,k>53,所以53<k <3. 只有2符合. 故选:D . 【点睛】利用数形结合法,根据图象列出不等式求k 的取值范围是解题的关键.2.C解析:C 【分析】根据不等式的基本性质分别进行判断,即可得出结论. 【详解】解:A 、当a b >时,由不等式基本性质1得33a b +>+,故此选项不符合题意; B 、当a b >时,由不等式基本性质1得55a b ->-,故此选项不符合题意; C 、当a b >时,由不等式基本性质3得33a b -<-,故此选项符合题意; D 、当a b >时,由不等式基本性质2得33a b >,再由不等式基本性质1得2323a b +>+,故此选项不符合题意. 故选:C . 【点睛】本题考查了不等式的性质,熟练掌握不等式的基本性质是解题的关键.3.B解析:B 【分析】根据题意,每个小组有4支球队,每支球队都要进行三场比赛,设该球队胜场数为x ,平局数为y (x ,y 均是非负整数),则有y =5-3x ,且0≤y ≤3,由此即可求得x 、y 的值. 【详解】由已知易得:每个小组有4支球队,每支球队都要进行三场比赛, 设该球队胜场数为x ,平局数为y , ∵该球队小组赛共积5分, ∴y =5-3x , 又∵0≤y ≤3, ∴0≤5-3x ≤3, ∵x 、y 都是非负整数,∴x =1,y =2,即该队在小组赛胜一场,平二场, 故选:B . 【点睛】读懂题意,设该队在小组赛中胜x 场,平y 场,知道每支球队在小组赛要进行三场比赛,并由题意得到y=5-3x 及0≤y≤3是解答本题的关键.4.B解析:B【分析】根据不等式的性质解答. 【详解】A 、在不等式m >n 的两边同时加上2,不等式仍成立,即m+2>n+2,故本选项不符合题意.B 、在不等式m >n 的两边同时乘以-1然后再加上2,不等式号方向改变,即2-m <2-n ,故本选项符合题意.C 、在不等式m >n 的两边同时除以2,不等式仍成立,即22m n>,故本选项不符合题意. D 、在不等式m >n 的两边同时乘以-2,不等式号方向改变,即-2m <-2n ,故本选项不符合题意. 故选:B . 【点睛】本题主要考查了不等式的性质,在不等式两边同乘以(或除以)同一个数时,不仅要考虑这个数不等于0,而且必须先确定这个数是正数还是负数,如果是负数,不等号的方向必须改变.5.B解析:B 【分析】由图象可知,当1x =-时,两个函数的函数值是相等的,再根据函数的增减性可以判断出不等式21k x k x b >+解集. 【详解】两条直线的交点坐标为(-1,3),且当 x<−1 时,直线2l 在直线1l 的上方, ∴不等式21k x k x b >+的解集为: x<−1 故选:B. 【点睛】本题考察借助一次函数的图象解一元一次不等式,两个图象的“交点”是两个函数值大小关系的“分界点”,在“分界点”处函数值的大小发生了改变.6.B解析:B 【分析】根据不等式的性质逐项排除即可. 【详解】 解:∵a<b∴a+2<b+2成立,则A 选项不符合题意; 当c=0时,22ac bc =,则B 选项符合题意;1122a b <成立,则C 选项不符合题意;-2a-1-2b-1>成立,则D选项不符合题意.故答案为B.【点睛】本题考查了不等式的性质,掌握①不等式左右两边同时加(减)一个数(式)不等式符号不变;②给不等式左右两边同时乘(除)一个不为零的数(式),当该数(式)大于零时不等式符号不变,反之改变.7.D解析:D【分析】根据程序操作进行了1次后就停止,即可得出关于x的一元一次不等式,解之即可得出x 的取值范围,再取其中最小的整数值即可得出结论.【详解】x->,依题意,得:3126x>.解得:9∵x为整数,∴x的最小值为10.故选:D.【点睛】本题考查了一元一次不等式的应用,找准等量关系,正确列出一元一次不等式是解题的关键.8.D解析:D【分析】求出方程的解,根据已知得出a-3≥0,求出即可.【详解】解:解方程a-x=3得:x=a-3,∵方程的解是非负数,∴a-3≥0,解得:a≥3,故选:D.【点睛】本题考查了一元一次方程的解,解一元一次不等式,解一元一次方程的应用,关键是得出一个关于a的不等式.9.D解析:D【分析】由已知可得a<-1或a<-2,由此可以判断每个选项是正确还是错误.【详解】解:由绝对值的意义及已知条件可知|a|>1,∴A错误;∵a<-1,∴a+1<0,∴B 错误;∵a<-2有可能成立,此时|a|>2,|a|-1>1,∴C 错误; 由a<-1可知-a>1,因此101a<-<,∴D 正确. 故选D . 【点睛】本题考查有理数的应用,熟练掌握有理数在数轴上的表示、绝对值、倒数及不等式的性质是解题关键.10.C解析:C 【分析】设用A 型货厢x 节,B 型货厢()50x -节,根据题意列不等式组求解,求出x 的范围,看有几种方案. 【详解】解:设用A 型货厢x 节,B 型货厢()50x -节,根据题意列式:()()35255015301535501150x x x x ⎧+-≥⎪⎨+-≥⎪⎩,解得2830x ≤≤,因为x 只能取整数,所以x 可以取28,29,30,对应的()50x -是22,21,20,有三种方案. 故选:C . 【点睛】本题考查一元一次不等式组的应用,解题的关键是根据题意列出不等式组求解,需要注意结果要符合实际情况.11.C解析:C 【解析】 ∵不等式组有解,∴m <5. 故选C .【方法点睛】本题主要考查的是不等式的解集,依据口诀列出不等式是解题的关键.12.C解析:C 【分析】观察图中的三个跷跷板,哪个重则往哪边下沉,可得出一元一次不等式组,解之即可得出结论. 【详解】解:依题意,哪个重则往哪边下沉可得:(1)(2)(3)S P P R P R S Q >⎧⎪>⎨⎪+>+⎩,由(1)(2)得:R P<S , 由(3)得:Q R , 故:Q R P S <<<, 故选:C . 【点睛】本题考查了一元一次不等式组的应用,根据各数量之间的关系,正确列出一元一次不等式组是解题的关键.二、填空题13.【分析】先求出每个不等式的解集然后得到不等式组的解集再求出整数解即可【详解】解:解不等式①得;解不等式②得;∴不等式组的解集为:;∴不等式组的整数解是;故答案为:【点睛】本题考查了解一元一次不等式组 解析:4x =-【分析】先求出每个不等式的解集,然后得到不等式组的解集,再求出整数解即可. 【详解】解:3241112x x x x ≤-⎧⎪⎨--<+⎪⎩①②,解不等式①,得4x ≤-; 解不等式②,得5x >-;∴不等式组的解集为:54x -<≤-; ∴不等式组的整数解是4x =-; 故答案为:4x =-. 【点睛】本题考查了解一元一次不等式组,解题的关键是熟练掌握解一元一次不等式组的方法进行解题.14.1≤x <4【分析】分别求出每一个不等式的解集再找到公共部分即可得【详解】解:解不等式①得x <4解不等式②得x≥1所以不等式组的解集为:1≤x <4故答案为:1≤x <4【点睛】此题主要考查了求一元一次不解析:1≤x <4. 【分析】分别求出每一个不等式的解集,再找到公共部分即可得. 【详解】解:217? 311?2x x x -<⎧⎪⎨+-≥⎪⎩①② 解不等式①得,x <4,解不等式②得,x≥1,所以,不等式组的解集为:1≤x <4.故答案为:1≤x <4.【点睛】此题主要考查了求一元一次不等式组的解集,正确求出每一个不等式解集是解答此题的关键.15.【分析】根据统计表确定两个函数的增减性以及函数的交点然后根据增减性判断【详解】根据表可得y1=kx+b 中y 随x 的增大而减小;y2=mx+n 中y 随x 的增大而增大且两个函数的交点坐标是(21)则当x <2解析:2x <【分析】根据统计表确定两个函数的增减性以及函数的交点,然后根据增减性判断.【详解】根据表可得y 1=kx+b 中y 随x 的增大而减小;y 2=mx+n 中y 随x 的增大而增大.且两个函数的交点坐标是(2,1).则当x <2时,kx+b >mx+n ,故答案为:x <2.【点睛】本题考查了一次函数与一元一次不等式,函数的性质,正确确定增减性以及交点坐标是关键.16.【分析】先将方程组中的两个方程相加化简得出的值再根据可得关于m 的一元一次不等式然后解不等式即可得【详解】由①②得:即解得故答案为:【点睛】本题考查了二元一次方程组的解解一元一次不等式根据二元一次方程 解析:4m >-【分析】先将方程组中的两个方程相加化简得出x y +的值,再根据0x y +>可得关于m 的一元一次不等式,然后解不等式即可得.【详解】2123x y m x y +=+⎧⎨+=⎩①②, 由①+②得:334x y m +=+, 即43m x y ++=,0x y +>,403m +∴>, 解得4m >-,故答案为:4m >-.【点睛】本题考查了二元一次方程组的解、解一元一次不等式,根据二元一次方程组得出x y +的值是解题关键.17.【分析】根据题意可得2m ﹣5≤3然后求解不等式即可【详解】根据题意可得∵(2m -5)⊕3=3∴2m ﹣5≤3解得:m≤4故答案为【点睛】本题主要考查解一元一次不等式解此题的关键在于准确理解题中新定义法解析:4m ≤【分析】根据题意可得2m ﹣5≤3,然后求解不等式即可.【详解】根据题意可得,∵(2m -5)⊕3=3,∴2m ﹣5≤3,解得:m≤4故答案为4m ≤.【点睛】本题主要考查解一元一次不等式,解此题的关键在于准确理解题中新定义法则的运算规律,得到一元一次不等式.18.【分析】先解不等式组得到解集为:<此时的整数解有且只有4个结合数轴分析可得到的取值范围【详解】解:由①得:<由②得:所以不等式组的解集为:<不等式组的整数解有且只有4个如图不等式组的整数解为<故答案 解析:56m <≤【分析】先解不等式组,得到解集为:2x ≤<m ,此时的整数解有且只有4个,结合数轴分析可得到m 的取值范围.【详解】解:0521x m x -<⎧⎨-≤⎩①② 由①得:x <m ,由②得:24,x -≤-2,x ∴≥所以不等式组的解集为:2x ≤<m ,不等式组的整数解有且只有4个,如图,不等式组的整数解为2,3,4,5,5∴< 6.m ≤故答案为:56m <≤.【点睛】本题考查的是不等式组的整数解问题,掌握利用数轴分析得出不等式组中字母的取值范围是解题的关键.19.x≥﹣3【分析】根据图象得出P 点横坐标为﹣3观察函数图象得在P 点右侧y=mx 的函数在y=kx+b 的函数图象上方由此得到不等式mx ﹣b≥kx 的解集为x≥﹣3【详解】由图象可知:P 点横坐标为﹣3当x≥﹣解析:x≥﹣3【分析】根据图象得出P 点横坐标为﹣3,观察函数图象得在P 点右侧,y=mx 的函数在y=kx+b 的函数图象上方,由此得到不等式mx ﹣b≥kx 的解集为x≥﹣3.【详解】由图象可知:P 点横坐标为﹣3,当x≥﹣3时,y=mx 的函数在y=kx+b 的函数图象上方,即mx ﹣b≥kx ,所以关于x 的不等式mx ﹣b≥kx 的解集是x≥﹣3.故答案为:x≥﹣3【点睛】本题主要考查对一次函数与一元一次不等式的理解和掌握,能根据图象得出当x≥﹣3时mx ﹣b≥kx 是解此题的关键.20.【分析】解方程用字母k 表示方程的解由解为非负数则构造关于k 的不等式问题可解【详解】解:解方程得∵方程的解是非负数∴解得故答案为【点睛】本题综合考查了一元一次方程和不等式解答关键是解出含有字母系数的一 解析:13k ≤ 【分析】解方程用字母k 表示方程的解,由解为非负数,则构造关于k 的不等式问题可解.【详解】解:解方程231x k +=得132k x -= ∵方程的解是非负数∴1302k -≥ 解得 13k ≤ 故答案为13k ≤【点睛】本题综合考查了一元一次方程和不等式,解答关键是解出含有字母系数的一元一次方程,按要求列出不等式. 三、解答题21.(1)40;70;(2)每个波比跳消耗热量5大卡,每个深蹲消耗热量0.8大卡;(3)25个【分析】(1)根据做深蹲的数量=(每组运动的时间﹣做波比跳需要的时间)÷5,即可求出结论; (2)设每个波比跳消耗热量x 大卡,每个深蹲消耗热量y 大卡,根据“完成第一组运动,共消耗热量132大卡;完成第二组运动,共消耗热量156大卡”,即可得出关于x ,y 的二元一次方程组,解之即可得出结论;(3)设小明要做m 个波比跳,则要做(120﹣m )个深蹲,根据至少要消耗200大卡热量,即可得出关于m 的一元一次不等式,解之取其中的最小整数值即可得出结论.【详解】解:(1)(60×5﹣5×20)÷5=40(个),(60×7+30﹣5×20)÷5=70(个).故答案为:40;70.(2)设每个波比跳消耗热量x 大卡,每个深蹲消耗热量y 大卡,依题意,得:20401322070156x y x y +=⎧⎨+=⎩, 解得:50.8x y =⎧⎨=⎩. 答:每个波比跳消耗热量5大卡,每个深蹲消耗热量0.8大卡.(3)设小明要做m 个波比跳,则要做601055m ⨯-=(120﹣m )个深蹲, 依题意,得:5m +0.8(120﹣m )≥200, 解得:m≥241621. 又∵m 为正整数,∴m 可取的最小值为25.答:小明至少要做25个波比跳.【点睛】本题考查了二元一次方程组,不等式及其整数解,熟练构造方程组和不等式是解题的关键.22.(1)25y x =-+;(2)(2,9)P -;(3)34x -<<.【分析】(1)利用待定系数即可求得函数的表达式;(2)将(5,3)P a a -代入函数解析式,求得a 的值后即可求得P 的坐标;(3)根据y 的取值范围,可得x 的不等式,求解即可.【详解】解:(1)一次函数y kx b =+过(2,1)和(-1,7),∴127k b k b =+⎧⎨=-+⎩, 解得:25k b =-⎧⎨=⎩, ∴25y x =-+;(2)由(1)可知:25y x =-+,将(5,3)P a a -代入25y x =-+,∴32(5)5a a =--+,解得3a =,即39,52a a =-=-,∴(2,9)P -;(3)∵25y x =-+,当311y -<<时,则32511x -<-+<,解得:34x -<<,∴x 的取值范围:34x -<<.【点睛】本题考查待定系数法求一次函数解析式,一次函数与一元一次不等式.解题时注意:直线上任意一点的坐标都满足函数关系式y=kx+b .23.(1)31x y =⎧⎨=⎩;(2)当3x <时,12y y >,当 2.5x <时,10y >且20y < 【分析】(1)根据题意画出一次函数y 1=-x+4和y 2=2x-5的图象,根据两图象的交点即可得出方程组425y x y x =-+⎧⎨=-⎩的解; (2)根据函数图象可直接得出结论.【详解】解:(1)如图所示:一次函数14y x =-+和225y x =-的图象相交于点(3,1)∴方程组425y x y x =-+⎧⎨=-⎩的解为31x y =⎧⎨=⎩; (2)由图可知,当3x <时,12y y >当 2.5x <时,10y >且20y <;【点睛】本题考查的是一次函数与一元一次方程组,一次函数与一元一次不等式,能根据题意画出函数图象,利用数形结合求解是解答此题的关键.24.(1)2,1,图像见解析;(2)图像关于y 轴对称(答案不唯一,只要合理即可);(3)-1<x <2.【分析】(1)根据绝对值的意义计算,填表即可;(2)从函数图像的分布,对称性,增减性等角度回答即可;(3)画出函数图像,确定函数交点的横坐标,结合图像就可以确定满足题意的不等式的解集.【详解】(1)①∵|-2|=2,|1|=1,∴应该填2,1,故答案为:2,1;②描点,③连线如图所示:(2)图像关于y 轴对称;当x >0时,y 随x 的增大而增大;(3)在同一个坐标系中,画出直线y=13x+43的图像,如图所示, 图像交点的横坐标分别是-1, 2,∴不等式13x+43>|x|的解集为-1<x <2.【点睛】本题考查了函数图像的画法,交点坐标的意义,函数的对称性,增减性,熟练掌握图像的画法,交点的意义,会用数形结合的思想确定不等式的解集是解题的关键.25.(1)a 的最小值为20;(2)28a ≥.【分析】(1)根据只能售出所进商品的110%-,且销售额大于等于进价即可列出不等式,求解即可;(2)根据70%按照标价a 元/千克出售,20%水果按10元/千克出售,且销售额应该大于等于(120%)18+⨯列出不等式求解即可.【详解】解:(1)由题意得:(110%)18a -≥,解得20a ≥,即a 的最小值为20;(2)由题意得:70%20%10(120%)18a ⋅+⨯≥+⨯,解得28a ≥.【点睛】本题考查一元一次不等式的应用.熟记商品销售时所用的常用公式是解题关键.注意本题与销售了多少千克无关.26.(1)404(020)y x x =-<<且x 为正整数;(2)220044000W x =-+(020)x <<且x 为正整数;(3)9架飞机装运口罩,4架飞机装运消毒剂,7架飞机装运防护服,方能使此次物资运费最少,最少运费为24200元.【分析】(1)分别计算每种飞机所运载的重量,根据总重量120吨列出函数关系式,注意x 的实际意义;(2)根据表格信息,分别计算每种飞机所承担的运费,再相加可得总运费,注意x 的实际意义;(3)由每种医疗物资的飞机都不少于4架,列出一元一次不等式组,解得x 的取值范围,即可解得最少运费.【详解】(1)根据题意得,设有x 架飞机装运口罩,有y 架飞机装运消毒剂,则有(20)x y --架飞机装运防护服, 854(20)120x y x y ++--=解得:404(020)y x x =-<<;y ∴与x 之间的函数关系式:404(020)y x x =-<<且x 为正整数;(2)120016001000(20)W x y x y =++--20060020000x y =++200600(404)20000x x =+⨯-+220044000x =-+(020)x <<且x 为正整数;(3)由题意得:44204x y x y ≥⎧⎪≥⎨⎪--≥⎩4404420(404)4x x x x ≥⎧⎪∴-≥⎨⎪---≥⎩解得:89x ≤≤且x 为正整数,8x ∴=或9x =, W 220044000x =-+22000k =-<W ∴随x 的增大而减小,∴当9x =时,W 最小,220044000220094400024200W x =-+=-⨯+=(元)4044,207x x y ∴-=--=答:9架飞机装运口罩,4架飞机装运消毒剂,7架飞机装运防护服,方能使此次物资运费最少,最少运费为24200元.【点睛】本题考查一次函数的实际应用、解一元一次不等式组、一次函数的增减性等知识,是重要考点,难度较易,掌握相关知识是解题关键.。
2020-2021学年人教版七年级下册数学 9.3一元一次不等式组(应用题)(含答案)
9.3一元一次不等式组(应用题篇)一、单选题1.把一些笔记本分给几个学生,如果每人分3本,那么余8本;如果前面的每个学生分5本,那么最后一人能分到笔记本但数量不足3本,则共有学生( )A .4人B .5人C .6人D .5人或6人 2.如图,天平右盘中的每个砝码的质量都是1g ,则物体A 的质量m(g)的取值范围,在数轴上可表示为( )A .B .C .D . 3.在平面直角坐标系中,若点 ,(2P m m +)在第二象限,且m 为负整数,则点P 坐标为( ) A .()1,3- B .()1,1- C .()1,1- D .()2,0- 4.生物小组要在温箱里培养A 、B 两种菌苗,A 种菌苗的生长温度()x C ︒的范围是3538x ≤≤,B 种菌苗的生长温度()y C ︒的范围是3436x ≤≤,那么温箱里的温度()T C ︒应该设定的范围是( )A .3538T ≤≤B .3536T ≤≤C .3436T ≤≤D .3638T ≤≤ 5.用若干量载重量为6吨的火车运一批货物,若每辆货车只装4吨,则剩下18吨货物;若每辆货车装6吨,则最后一辆车装的货物不足5吨,若设有x 辆货车,则x 应满足的不等式组是( )A .()()6418064185x x x x ⎧-+⎪⎨-+≤⎪⎩>B .()()()()418610418615x x x x >⎧+--⎪⎨+--≤⎪⎩C .()()()()614180614185x x x x ⎧--+⎪⎨--+⎪⎩><D .()()()()418610418615x x x x ⎧+--⎪⎨+--⎪⎩>< 6.2015年4月份的尼泊尔强震曾经导致珠峰雪崩,在珠峰抢险时,需8组登山队员步行运送物资,要求每组分配的人数相同,若按每组人数比预定人数多分配1人,则总数会超过100人;若按每组人数比预定人数少分配1人,则总数不够90人,那么预定每组分配的人数是()A.10B.11C.12D.137.如图是某月的月历表,从表的竖列任取三个数相加,不可能得到的是()A.33B.42C.55D.548.某储运站现有甲种货物1530吨,乙种货物1150吨,安排用一列货车将这批货物运往青岛,这列货车可挂,A B两种不同规格的货厢50节.已知甲种货物35吨和乙种货物15吨可装满一节A型货厢,甲种货物25吨和乙种货物35吨可装满一节B型货厢,按此要求安排,A B两种货厢的节数,有几种运输方案()A.1种B.2种C.3种D.4种9.某种出租车的收费标准是:起步价7元(即行驶距离不超过3千米都收7元车费),超过3千米以后,超过部分每增加1千米,加收2.4元(不足1千米按1千米计).某人乘这种出租车从甲地到乙地共支付19元,设此人从甲地到乙地经过的路程是x千米,那么x的取值范围是( )A.1<x≤11B.7<x≤8C.8<x≤9D.7<x<810.如图,这是王彬同学设计的一个计算机程序,规定从“输入一个值x”到判断“结果是否≥13”为一次运行过程.如果程序运行两次就停止,那么x的取值范围是()A.x≥4B.4≤x<7C.4<x≤7D.x≤7二、填空题11.某校计划组织七年级师生外出研学,若学校租用30座的客车x辆,则有15人无法乘坐;若租用45座的客车则可少租用2辆,且最后一辆车还没坐满.那么乘坐最后一辆45座客车的师生人数是_______人(用含x 的代数式表示),师生总人数可能为_________.12.某宾馆一楼房间比二楼房间少5间,一旅游团有48人,若全部安排在一楼,每间住4人,房间不够,每间住5人,有房间没住满.若全部安排在二楼,每间住3人,房间不够,每间住4人,则有房间没住满.问宾馆一楼的房间有_______间.13.我校为组织八年级的234名同学去看电影,租用了某公交公司的几辆公共汽车.如果每辆车坐30人,则最后一辆车不空也不满.他们共租了___辆公共汽车.14.如图,用如图①中的a 张长方形和b 张正方形纸板作侧面和底面,做成如图①的竖式和横式两种无盖纸盒.若295305a b <+<,用完这些纸板做竖式纸盒比横式纸盒多30个,则a =_____,b =_____.15.在“新冠肺炎”这场没有硝烟的战争中,各行各业都涌现出了一批“最美逆行者”,其中抗疫最前沿的就是护士.某医院护安排护士若干名负责护理新冠病人,每名护士护理4名新冠病人,有20名新冠病人没人护理,如果每名护士护理8名新冠病人,有一名护士护理的新冠病人多于1人不足8人,这个医院安排了________名护士护理新冠病人.三、解答题16.2020年春节新冠肺炎疫情期间,小明妈妈手工制作了一些抗疫英雄的人偶,待小明开学后送给同班同学.如果每组分10个,那么余5个;如果前面的组每个组分13个,那么最后一个组虽然分有人偶,但不足4个.小明所在班级有多少个组?小明妈妈一共做了多少个人偶?17.安庆外国语为创建书香校园,去年购进一批图书,经了解,科普书的单价比文学书的单价多4元,用12000元购进的科普书与用8000元购进的文学书本数相等.(1)文学书和科普书的单价各多少钱?(2)今年文学书和科普书的单价和去年相比保持不变,该校打算用10000元再购进一批文学书和科普书,问购进文学书550本后至多还能购进多少本科普书?18.列方程组或不等式解决实际问题某汽车专卖店销售A ,B 两种型号的新能源汽车,上周和本周的销售情况如下表:(1)每辆A型车和B型车的售价各为多少万元?(2)甲公司拟向该店购买A,B两种型号的新能源汽车共7辆,且A型号车不少于2辆,购车费不少于154万元,则有哪几种购车方案?参考答案1.C2.A3.B4.B5.D6.C7.C8.C9.B10.B11.-15x+150 255人或285人12.1013.814.225,75.15.616.小明所在班级有5个组,小明妈妈一共做了人偶55个.17.(1)文学书的单价为8元,科普书的单价为12元;(2)至多还能购进466本科普书18.(1)每辆A型车的售价为18万元,B型车的售价为26万元;(2)有两种购车方案:购进A 型车2辆,则购进B型车5辆;购进A型车3辆,则购进B型车4辆。
9.3一元一次不等式组课时2-2022-2023学年七年级数学下册同步精品随堂教学课件(人教版)
解不等式①,得 x≥3.
解不等式②,得 x≤5.
∴ 不等式组的解集为 3≤x≤5.
∴ x 可取的整数值是 3,4,5.
课堂小结
1.求一元一次不等式组的特殊解的方法:
先求出不等式组的解集,然后在不等式组的解集中找出符
合条件的特殊解(如非负整数解、最小整数解等),还可以借
助数轴直观地找特殊解.
第九章
不等式与不等式组
9.3 一元一次不等式组(课时2)
人教版七年级◑下册
主讲:XXX
温故知新
一元一次不等式组的解集有四种情况:
不等式组
(a>b>0)
各不等式组
的解集在数
轴上的表示
不等式组的
解集
巧记口诀
0 b a
0 b a
0 b a
0 b a
x>a
x<b
无解
b<x<a
同大取大 同小取小
大大小小 大小小大
都成立?
5 + 2 > 3( − 1),
1
2
−1≤7−
3
.
2
求不等式组解集中
的整数值
新知探究
知识点1:一元一次不等式组的应用
解:解不等式组
5 + 2 > 3( − 1), ①
1
2
−1≤7−
x>
3
, ②
2
5
2
解不等式①,得
.
解不等式②,得 x≤4.
5
所以不等式组的解集是− <x≤4,
中间找
无处找
解不等式组:
8 − 4 < 0, ①
一元一次不等式组(2)全面版
务;如果每个小组每天比原先多生产1件产品,就能
提前完成任务.每个小组原先每天生产多少件产品?
解:设每个小组原先每天生产x件产品,
根据题意,得 310x500 ①
310(x1)500 ②
由不等式①得 x 16 2
3
由不等式②得 x 15 2
3
因此,不等式组的解集为
152 x162
归 纳:课本140页
(1)对于具有多种不等关系的问题,可 通过不等式组解决。 (2)解一元一次不等式组时,一般先求 出其中各个不等式的解集,再求出这些 解集的公共部分。 (3)利用数轴可以直观地表示不等式组 的解集,再结合实际问题求出符合实际 问题的解。
三、巩固训练,熟练技能
1、在方程组2xxyym6中, 已知x 0, y 0,求m的取值范.围
– 解不等式3≤2x-1≤5,你觉得该
怎样思考这个问题,你有解决的
办法吗?
• •
求出不等式组 3x 7 2 的解集中的正整数3x。 7 8
课本140页练习1
2、某工厂工人经过第一次改进工作
方法,每人每天平均加工的零件比原来多 10个,因而,每人在8天内加工的零件超 过200个,第二次又改进工作方法,每人 每天平均又比第一次改进方法后多做27个 零件,这样只做了4天,所做的件数就超 过前8天所做的数量。试问每个工人原来 每人平均做几个零件?
思考: 你觉得列一元一次不等式组解
应用题与列二元一次方程组解应用 题的步骤一样吗?
设
列 解(结果) 答
一元一次 不等式组
二元一次 方程组
一个未知 数
两个未知 数
找 一个范围 不等关系
找
一组数
等量关系
根据题意 写出答案
9-3 一元一次不等式组 课后练习题
9.3 一元一次不等式组 课后练习题一、单选题1.若关于x 的不等式组()32224x x a x x ⎧--≤⎪⎨+>⎪⎩恰有三个整数解,则实数a 的取值范围是( ) A .45a <≤ B .810a <≤ C .810a ≤< D .8a ≤或10a > 2.若关于x 的不等式()21m x ->的解集是12x m <-,则m 的取值范围是( ) A .m>2 B .2m < C .2m ≠ D .2m <且0m ≠3.若关于x 的一元一次方程172ax -=有正整数解,且使关于x 的不等式组202323x a x x -≥⎧⎪-+⎨<⎪⎩至少有4个整数解,则满足所有条件的整数a 的个数为( )A .5B .4C .3D .24.若不等式组3x a x >⎧⎨≥-⎩的解集为x a >,则a 的取值范围是( ) A .3a < B .3a ≤ C .3a >- D .3a ≥- 5.为有效开展“阳光体育”活动,某校计划购买篮球和足球共50个,购买资金不超过3200元,且购买篮球的数量不少于足球数量的一半,若每个篮球80元,每个足球50元.求共有几种购买方案?设购买篮球x 个,可列不等式组( )A .()2508050503200x x x x ≥-⎧⎨+-<⎩B .()()15028050503200x x x x ⎧≥-⎪⎨⎪+-<⎩C .()()15028050503200x x x x ⎧≥-⎪⎨⎪+-≤⎩D .()()15025080503200x x x x ⎧≥-⎪⎨⎪+-<⎩6.把一些笔记本分给几个学生,如果每人分3本,那么余8本;如果前面的每个学生分5本,那么最后一人能分到笔记本但数量不足4本,则共有学生( )人.A .4人B .5人C .6人D .5人或6人7.关于x 的不等式组1132x a x -⎧≤⎪⎨⎪-<⎩恰好只有四个整数解,则a 的取值范围是( )A .23a ≤<B .23a ≤≤C .3a <D .23a <<8.把不等式组133x x -<⎧⎨≥⎩的解集表示在数轴上,下列选项正确的是( ) A . B .C .D .9.若干辆载重为5t 的卡车来运载货物,若每辆卡车只装3t ,则剩下16t 货物;若每辆卡车装5t ,则最后一辆汽车不满也不空,问:可能有( )辆汽车.A .6B .7C .8D .910.某班数学兴趣小组对不等式组3x x a>⎧⎨≤⎩讨论得到以下结论: ①若a =6,则不等式组的解集为3<x ≤6;①若a =2,则不等式组无解;①若不等式组无解,则a 的取值范围为a <3;①若不等式组只有两个整数解,则a 的值可以为5.2.其中,正确的结论的序号是( )A .①①①B .①①①C .①①①D .①①①①二、填空题11.不等式组25010x x -≤⎧⎨->⎩的解集是______________. 12.对于一个各数位数字均不为零的四位自然数m ,若千位与百位数字之和等于十位与个数位数字之和,则称 m 为“一致数”.设一个“一致数”m abcd =满足8a ≤且1d =,将m 的千位与十位数字对调,百位与个位数字对调得到新数m ',并记()101m m F m '+=;一个两位数102N a b =+,将N 的各个数位数字之和记为()G N ;当2()()43F m G N a k --=+(k 为整数)时,则所有满足条件的“一致数”m 中,满足()G N 为偶数时,k 的值为______,m 的值为______.13.不等式组213240x x -<⎧⎨--≤⎩的整数解的和为___________. 14.若关于x 的一元一次不等式组2330x x a -<⎧⎨-<⎩的解集为3x <,则a 的取值范围是_____. 15.已知:不等式组123x a x b -≤⎧⎨-≥⎩的解集是52x -≤≤,则a b +=______.三、解答题16.(1)化简:224x x --+;(2)若24513a a a +-+-的值是一个定值,求a 的取值范围,并且求出定值.17.已知:关于x y ,的方程组2743x y m x y m -=+⎧⎨+=-⎩①②的解为负数,求m 的取值范围. 18.解不等式组()413232132x x x x ⎧-<-⎪⎨++-≤⎪⎩①②,并将其解集在数轴上表示出来.19.已知关于 x y , 的二元一次方程 3x y a -= 和 34x y a +=-.(1)如果 51x y =⎧⎨=-⎩是方程 3x y a -= 的一个解,求 a 的值; (2)当 1a = 时,求两方程的公共解;(3)若 00x x y y =⎧⎨=⎩是已知两方程的公共解,当 01x ≤ 时,求 0y 的取值范围. 20.某校学生志愿服务小组在“学雷锋”活动中购买了一批牛奶到敬老院慰问老人.如果分给每位老人4盒牛奶,那么剩下28盒牛奶;如果分给每位老人5盒牛奶,那么最后一位老人分得的牛奶不足4盒,但至少1盒.问该敬老院的老人至少有多少人?。
数学人教版七年级下册9.3.2一元一次不等式组第二课时同步测试题
9.3.2一元一次不等式组的运用同步测试题一、选择题1、若不等式组的解集为,则的取值范围为()A. B. C. D.2、若关于的不等式组有3个整数解,则的值可以是()A.-2B.-1C.0 D.13、不等式的解集是,则m的取值范围是()A.m≤2 B.m≥2 C.m≤l D.m>l4、某商品的进价为120元,现打8折出售,为了不亏损,该商品的标价至少应为()A.96元;B.130元;C.150元;D.160元.5、某商品原价800元,出售时,标价为1200元,要保持利润率不低于5%,则至多可打()A.6折B.7折C.8折D.9折6、小明和爸爸妈妈三人玩跷跷板,爸爸坐在跷跷板的一端,小明和妈妈一同坐在跷跷板的另一端,他们都不用力时,爸爸那端着地,已知爸爸的体重为70千克,妈妈的体重为50千克,那么小明的体重可能是()A.18千克B.22千克C.28千克D.30千克7、某旅行社某天有空房10间,当天接待了一个旅游团,当每个房间只住3人时,有一个房间住宿情况是不满也不空,若旅游团的人数为偶数,求旅游团共有多少人()A. 27B. 28C.29D.308、一家服装商场,以1 000元/件的价格进了一批高档服装,出售时标价为1 500元/件,后来由于换季,需要清仓处理,因此商场准备打折出售,但仍希望保持利润率不低于5%,那么该商场至多可以打________折.A.9B.8C.7D.69. 小华拿24元钱购买火腿肠和方便面,已知一盒方便面3元,一根火腿肠2元,他买了4盒方便面,x根火腿肠,则关于x的不等式表示正确的是()A. 3×4+2x<4 B.3×4+2x≤24 C.3x+2×4≤24 D.3x+2×4≥2410. 小颖准备用21元钱买笔和笔记本,已知每支笔3元,每个笔记本2元,她买了4个笔记本,则她最多还可以买几支笔()A.1 B.2 C.3 D.411. 某种商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折出售,但要保持利润率不低于5%,则至多可打()A.六折B.七折C.八折D.九折12 现用甲、乙两种运输车将46吨抗震物资运往灾区,甲种运输车载重5吨,乙种运输车载重4吨,安排车辆不超过10辆,则甲种运输车至少应安排()A.4辆B.5辆C.6辆D.7辆二、填空题13、如果不等式组的解集是,那么的值为.14、若不等式组无解.则m的取值范围是______.15、已知关于x的不等式3x-a>x+1的解集如图所示,则 a的值为_________.16、某次数学测验中共有16道题目,评分办法:答对一道得6分,答错一道扣2分,不答得0分.某学生有一道题未答,那么这个同学至少要答对___12___道题,成绩才能在60分以上.17、若干名学生分宿舍,每间4人余20人,每间8人,其中一间不空也不满,则宿舍有间。
人教版七年级下册数学同步练习9.1----9.3基础检测题有答案)
9.1《不等式》一、选择题(每道题目只有一个正确选项,请把正确答案填到括号内)1. 当x=3时,下列不等式成立的是()A.x+3>5B.x+3>6C.x+3>7D.x+3>82. 在数学表达式:−3<03x+5>0x2−6x=−2y≠0x≥50中,不等式的个数是()A.2个B.3个C.4个D.5个3. 下列不等式一定成立的是()A.2x<6B.−x<OC.x2+1<OD.x2+1>04. 下列不等式中,变形不正确的是()A.若a>b,则b<aB.若a>b,则a+c>b+cC.若ac2>bc2,则a>bD.若−x>a,则x>−a5. 下列不等关系一定正确的是()A.|a|>0B.−x2<0C.(x+1)2≥0D.a2>06. 已知1张桌子配4把椅子,1立方米木料可做5把椅子或1张桌子,现用90立方米木料制作桌子和椅子,要使桌子和椅子刚好配套.设用x立方米的木料做桌子,则依题意可列方程为()A.4x=5(90−x)B.5x=4(90−x)C.x=4(90−x)×5D.4x×5=90−x二、填空题7. 用“<”或“>”填空:当a>0,b________0时,ab>0;当a>0,b________0时,ab<0;当a<0,b________0时,ab>0;当a<0,b________0时,ab<0.8. y与x的3倍的和是非负数,用不等式表示为________.9. 用不等式表示“a的2倍与3的差是非负数”________.10. 一瓶饮料净重340g,瓶上标有“蛋白质含量≥0.5%”,设该瓶饮料中蛋白质的含量为xg,则x________g.三、解答题11. 将下列不等式的解集分别表示在数轴上:x≤0;x>−2.5;x<2;3x≥4.12. 在数轴上表示出下列不等式的解集;x<3;x≥−1;−2<x≤3.归纳总结:(1)用数轴表示不等式的解集通常分成三步进行,即“画数轴、定界点、走方向”;(2)数轴上的实心点与空心点的区别在于:________;(3)走方向的原则:“大于向________走,小于向________走”.13. 某种饮料重约300g,罐上注有“蛋白质含量≥0.5%”,其中蛋白质的含量为多少克?14. 用适当的符号表示下列关系:与x的2倍的和是非正数;(1)x的13__________________________________________________(2)一枚炮弹的杀伤半径不小于300米;__________________________________________________(3)三件上衣与四条长裤的总价钱不高于268元;__________________________________________________(4)明天下雨的可能性不小于70%;__________________________________________________(5)小明的身体不比小刚轻.__________________________________________________15. 用不等式表示下列数量之间的不等关系:(1)去年某农场某种粮食亩产量是480kg,今年该粮食作物亩产量为xkg,较去年有所增加;(2)如图,天平左盘放有三个乒乓球,右盘放有5g砝码,天平倾斜,设每个乒乓球的质量为x(g).参考答案1.A2.C3.D4.D5.C6.A7.><<>8.y+3x≥09.2a−3≥010.x≥1.711.解:如图所示:如图所示:如图所示:如图所示:12.实心含等,空心不含等右,左13.解:∵ 某种饮料重约300g,罐上注有“蛋白质含量≥0.5%”,∵ 蛋白质含量的最小值=300×0.5%=1.5克,∵ 蛋白质的含量不少于1.5克.x+2x≤0;14.解:(1)13(2)设炮弹的杀伤半径为r,则应有r≥300;(3)设每件上衣为a元,每条长裤是b元,应有3a+4b≤268;(4)用P表示明天下雨的可能性,则有P≥70%;(5)设小明的体重为a千克,小刚的体重为b千克,则应有a≥b.15.(1)根据题意可知,今年该粮食作物亩产量为xkg,较去年有所增加,则x>480(2)观察图可知,三个乒乓球的质量大于5克的砝码,则3x>59.2一元一次不等式一.选择题1.某闹市区新建一个小吃城,设计一个进口和一个出口,内设n个摊位,预估进口和出口的客流量都是每分钟10人,每人消费25元,摊位的毛利润为40%,若平均每个摊位一天(按10个小时计)的毛利润不低于1000元,则n的最大值为()A.30B.40C.50D.602.不等式3x+2≥5的解集是()A.x≥1B.C.x≤1D.x≥﹣1 3.如果关于x的不等式3x﹣a≤﹣1的解集如图所示,则a的值是()A.a≤﹣1B.a≤﹣2C.a=﹣1D.a=﹣2 4.某商店为了促销一种定价为5元的商品,采取下列方式优惠销售:若一次性购买不超过4件,则按原价付款;若一次性购买4件以上,则超过部分按原价的八折付款.如果小莹有42元钱,那么她最多可以购买该商品()A.9件B.11件C.10件D.12件5.某电子商城销售一批电视,第一个月以5500元/台的价格售出60台,第二个月以5000元/台的价格将剩下的全部售出,销售金额超过55万元,这批电视至少()台A.103B.104C.105D.1066.不等式2x﹣1≤3的解集在数轴上表示正确的是()A.B.C.D.7.妈妈将某服饰店的促销活动内容告诉爸爸后,爸爸假设某一商品的定价为x元,并列出关系式为0.7(2x﹣100)<1500,则下列哪一项可能是妈妈告诉爸爸的内容()A.买两件等值的商品可减100元,再打3折,最后不到1500元B.买两件等值的商品可减100元,再打7折,最后不到1500元C.买两件等值的商品可打3折,再减100元,最后不到1500元D.买两件等值的商品可打7折,再减100元,最后不到1500元8.不等式x﹣1<0的解集在数轴上表示正确的是()A.B.C.D.9.为了治理环境,九年级部分同学去植树,若每人平均植树7棵,还剩9棵;若每人平均植树9棵.则有1名同学植树的棵树小于8棵.若设同学人数为x人,下列各项能准确的求出同学人数与种植的树木的数量的是()A.7x+9﹣9(x﹣1)>0B.7x+9﹣9(x﹣1)<8C.D.10.不等式6x+1≤2x﹣3的解集在数轴上表示正确的是()A.B.C.D.二.填空题11.用不等式表示“x与5的差不大于1”:.12.如果不等式(2a﹣1)x>1的解集是x<,那么a的取值范围是.13.已知关于x,y的二元一次方程组的解满足x+y>1,则满足条件的k 的最小整数是.14.苹果的进价是19元/千克,销售中估计有5%的苹果正常损耗,为了避免亏本,售价至少应定为元/千克.15.已知关于x,y的二元一次方程组的解满足x+y<3,则m的取值范围为.三.解答题16.甲、乙两商场以同样的价格出售同样的商品,并且又各自推出不同的优惠方案:在甲商场累计购物超过100元后,超出100元的部分按90%收费;在乙商场累计购物超过50元后,超出50元的部分按95%收费.设顾客累计购物x元(x>100),请根据x的值,确定顾客到哪家商场购物花费少?17.解不等式6x+1≥2(x+1)+7,并把它的解集在数轴上表示出来.18.某商品进价是6000元,标价是9000元,需按标价打折出售,商店要求利润率不低于20%,至多可以打多少折?19.某药店销售每只进价分别为1.2元、1.7元的A、B两种型号的口罩,下表是近两天的销售情况:销售时段销售数量销售额A种型号B种型号第一天300只500只2100元第二天400只1000只3800元(1)求A、B两种型号口罩的销售单价;(2)该药店准备再次采购这两种型号的口罩共15000只.如果全部售出后的利润不少于16000元,那么最多采购A种型号的口罩多少只?(进价、售价均保持不变,利润=销售总额﹣进货成本)参考答案与试题解析一.选择题1.【解答】解:依题意,得:n≤10×60×10×25,解得:n≤60.故选:D.2.【解答】解:∵3x+2≥5,∴3x≥3,则x≥1,故选:A.3.【解答】解:∵3x﹣a≤﹣1,∴3x≤a﹣1,则x≤,由数轴知x≤﹣1,则=﹣1,解得a=﹣2,故选:D.4.【解答】解:设小莹可以购买x件,依题意,得:5×4+5×0.8(x﹣4)≤42,解得:x≤9.又∵x为整数,∴x的最大值为9.故选:A.5.【解答】解:设这批电视共x台,则第二个月售出(x﹣60)台,依题意,得:5500×60+5000(x﹣60)>550000,解得:x>104.∵x为整数,∴x的最小值为105.故选:C.6.【解答】解:∵2x﹣1≤3,∴2x≤3+1,2x≤4,x≤2,故选:B.7.【解答】解:由题意可得,0.7(2x﹣100)<1500表示买两件等值的商品可减100元,再打7折,最后不到1500元,故选:B.8.【解答】解:x﹣1<0,x<1,故选:D.9.【解答】解:设同学人数为x人,则种植的树木的数量为(7x+9)棵,由题意得:,故选:C.10.【解答】解:6x+1≤2x﹣3,6x﹣2x≤﹣3﹣1,4x≤﹣4,x≤﹣1,故选:D.二.填空题(共5小题)11.【解答】解:用不等式表示“x与5的差不大于1”为x﹣5≤1,故答案为:x﹣5≤1.12.【解答】解:∵(2a﹣1)x>1的解集为x<,∴2a﹣1<0,解得:a<,故答案为:a<.13.【解答】解:,①+②,得:3x+3y=3k﹣3,则x+y=k﹣1,∵x+y>1,∴k﹣1>1,解得:k>2,则满足条件的k的最小整数为3,故答案为:3.14.【解答】解:设商家把售价应该定为每千克x元,根据题意得:x(1﹣5%)≥19,解得:x≥20,故为避免亏本,商家把售价应该至少定为每千克20元.故答案为:20.15.【解答】解:,①+②,得:3x+3y=12m﹣3,∴x+y=4m﹣1,∵x+y<3,∴4m﹣1<3,解得m<1,故答案为:m<1.三.解答题(共4小题)16.【解答】解:甲商场购物花费为[100+0.9(x﹣100)]元,乙商场购物花费为[50+0.95(x﹣50)]元①若到甲商场购物花费少,则100+0.9(x﹣100)<50+0.95(x﹣50),解得:x>150,②若到乙商场购物花费少,则100+0.9(x﹣100)>50+0.95(x﹣50),解得:x<150,③若到甲,乙商场购物花费一样多,则100+0.9(x﹣100)=50+0.95(x﹣50),解得:x=150,答:当100<x<150时,到乙商场购物花费少,当x=150时,到甲,乙商场购物花费一样多,当x>150时,到甲商场购物花费少.17.【解答】解:去括号得,6x+1≥2x+2+7移项得,6x﹣2x≥2+7﹣1,合并同类项得,4x≥8系数化为1,得x≥2,把解集表示在数轴上为:.18.【解答】解:设打x折销售,依题意,得:9000×﹣6000≥6000×20%,解得:x≥8.答:至多可以打8折.19.【解答】解:(1)设A型号口罩的销售单价为x元/只,B型号口罩的销售单价为y 元/只,根据题意,得.解得.答:A型号口罩的销售单价为2元/只,B型号口罩的销售单价为3元/只;(2)设采购A种型号的口罩m只,则采购B种型号的口罩(15000﹣m)只,依题意得:(2﹣1.2)m+(3﹣1.7)(15000﹣m)≥16000.解得m≤7000.所以m最大值是7000.答:最多采购A种型号的口罩7000只.9.3一元一次不等式组一.选择题1.不等式组的最小整数解为()A.﹣1B.0C.1D.22.不等式组的所有整数解的和为()A.1B.0C.﹣2D.﹣33.不等式组恒有解,下列a满足条件的是()A.﹣4≤a≤﹣2B.﹣3≤a≤﹣1C.﹣2≤a≤0D.﹣1≤a≤1 4.不等式组的解集为()A.6≤x<8B.6<x≤8C.2≤x<4D.2<x≤8 5.已知关于x的方程的解不大于1,且关于x的不等式组有且只有3个整数解,则符合条件的所有整数m的和为()A.2B.3C.5D.66.如果关于x的不等式组只有3个整数解,那么a的取值范围是()A.3≤a<4B.3<a≤4C.2≤a<3D.2<a≤37.如图,这是王彬同学设计的一个计算机程序,规定从“输入一个值x”到判断“结果是否≥13”为一次运行过程.如果程序运行两次就停止,那么x的取值范围是()A.x≥4B.4≤x<7C.4<x≤7D.x≤78.不等式组的解集在数轴上表示正确的是()A.B.C.D.9.已知关于x的不等式组的整数解只有三个,则a的取值范围是()A.a>3或a<2B.2<a<C.3<a≤D.3≤a<10.使得关于x的不等式组至少有3个整数解,且关于y的方程2﹣(a+y)=2(y﹣3)有非负整数解的所有的整数a的个数是()A.0个B.1个C.2个D.3个二.填空题11.不等式组的解集为.12.已知不等式组,x是非负整数,则x的值为.13.不等式组的解集为.14.金秋十月,丹桂飘香,重庆双福育才中学迎来了首届行知创新科技大赛,初二年级某班共有18人报名参加航海组,航空组和无人机组三个项目组的比赛(每人限参加一项),其中航海组的同学比无人机组的同学的两倍少3人,航空组的同学不少于3人但不超过9人,班级决定为航海组的每位同学购买2个航海模型,为航空组的每位同学购买3个航空模型,为无人机组的每位同学购买若干个无人机模型,已知航海模型75元每个,航空模型98元每个,无人机模型165元每个,若购买这三种模型共需花费6114元,则其中购买无人机模型的费用是.15.新定义:对非负数x“四舍五入”到个位的值记为(x).即当n为非负整数时,若n﹣≤x<n+,则(x)=n.如(0.46)=0,(3.67)=4.给出下列关于(x)的结论:①(1.493)=1;②(2x)=2(x);③若(﹣1)=4,则x的取值范围是9≤x<11;④当x≥0,m为非负整数时,有(m+2013x)=m+(2013x);其中正确的结论有(填写所有正确的序号).三.解答题16.解不等式(组):(1);(2).17.解下列不等式(或不等式组),并把解集表示在数轴上:(1)﹣≤1;(2).18.(1)解方程组:;(2)解不等式组,并把解集表示在数轴上.19.为应对新冠肺炎疫情,某服装厂决定转型生产口罩,根据现有厂房大小决定购买10条口罩生产线,现有甲、乙两种型号的口罩生产线可供选择.经调查:购买3台甲型口罩生产线比购买2台乙型口罩生产线多花14万元,购买4条甲型口罩生产线与购买5条乙型口罩生产线所需款数相同.(1)求甲、乙两种型号口罩生产线的单价;(2)已知甲型口罩生产线每天可生产口罩9万只,乙型口罩生产线每天可生产口罩7万只,若每天要求产量不低于75万只,预算购买口罩生产线的资金不超过90万元,该厂有哪几种购买方案?哪种方案最省钱?最少费用是多少?参考答案与试题解析一.选择题1.【解答】解:,由不等式①,得x≤2,由不等式②,得x>﹣1,故原不等式组的解集是﹣1<x≤2,故不等式组的最小整数解为0,故选:B.2.【解答】解:,由不等式①,得x>﹣3,由不等式②,得x≤2,故原不等式组的解集是﹣3<x≤2,故不等式组的所有整数解的和为:(﹣2)+(﹣1)+0+1+2=0,故选:B.3.【解答】解:,由①得,x>﹣a2﹣a﹣6,由②得,x<3a﹣2,∵不等式组恒有解,∴﹣a2﹣a﹣6<3a﹣2,∴(a+2)2>0,∴a≠﹣2.即a≠﹣2的所有实数满足条件.∵A,B,C选项中均有a=﹣2,∴﹣1≤a≤1满足题意.故选:D.4.【解答】解:,由①得:x>6,由②得:x≤8,不等式组的解集为:6<x≤8,故选:B.5.【解答】解:解方程得x=6﹣5m,∵方程的解不大于1,∴6﹣5m≤1,解得m≥1;解不等式3x﹣6≤0,得:x≤2,解不等式﹣m+4x>﹣3,得:x>,则不等式组的解集为<x≤2,∵不等式组只有3个整数解,∴其整数解为2、1、0,∴﹣1≤<0,解得﹣1≤m<3,综上,1≤m<3,所以符合条件的所有整数m的和为1+2=3,故选:B.6.【解答】解:∵关于x的不等式组只有3个整数解,∴3个整数解是0,1,2,∴2≤a<3,故选:C.7.【解答】解:依题意,得,解得:4≤x<7.故选:B.8.【解答】解:,由①得x≤1;由②得x>﹣1;故不等式组的解集为﹣1<x≤1,在数轴上表示出来为:.故选:C.9.【解答】解:解不等式3x+5a>4(x+1)+3a,得:x<2a﹣4,解不等式>﹣,得:x>﹣,∵不等式组的整数解只有三个,∴这三个整数解为0、1、2,∴2<2a﹣4≤3,解得3<a≤,故选:C.10.【解答】解:解不等式(2x+5)>x+1,得:x<2,解不等式(x+3)≤x+a,得:x≥3﹣2a,∵不等式组至少有3个整数解,∴3﹣2a≤﹣1,解得a≥2,解关于y的方程2﹣(a+y)=2(y﹣3)得y=,∵方程有非负整数解,∴≥0,则a≤8,所以2≤a≤8,其中能使为非负整数的有2,5、8,这3个,故选:D.二.填空题(共5小题)11.【解答】解:,解①可得:x>2,解②可得:x<3,所以不等式组的解集为:2<x<3,故答案为:2<x<3.12.【解答】解:不等式组整理得:,解得:1<x<,由x为非负整数,得到x=2,则x的值为2.故答案为:2.13.【解答】解:,解①得:x>﹣6,解②得:x≤13,不等式组的解集为:﹣6<x≤13,故答案为:﹣6<x≤13.14.【解答】解:设参加无人机组有x人,则参加航海组有(2x﹣3)人,参加航空组有18﹣x﹣(2x﹣3)=(21﹣3x)人,依题意有3≤21﹣3x≤9,解得4≤x≤6,∵x为正整数,∴x=4或x=5或x=6,当x=4时,2x﹣3=5,21﹣3x=9;当x=5时,2x﹣3=7,21﹣3x=6;当x=6时,2x﹣3=9,21﹣3x=3;设为无人机组的每位同学购买y个无人机模型,当x=4时,75×2×5+98×9×3+165×4y=6114,解得y=4(不合题意舍去);当x=5时,75×7×2+98×6×3+165×5y=6114,解得y=4;当x=6时,75×9×2+98×3×3+165×6y=6114,解得y=3(不合题意舍去),165×5×4=3300(元).答:购买无人机模型的费用是3300元.故答案为:3300元.15.【解答】解:①(1.493)=1,故①符合题意;②(2x)≠2(x),例如当x=0.3时,(2x)=1,2(x)=0,故②不符合题意;③若(x﹣1)=4,则4﹣≤x﹣1<4+,解得:9≤x<11,故③符合题意;④m为非负整数,故(m+2013x)=m+(2013x),故④符合题意;综上可得①③④正确.故答案为:①③④.三.解答题(共4小题)16.【解答】解:(1)去分母得,3(x+1)<2(x﹣2)﹣6x,去括号得,3x+3<2x﹣4﹣6x,移项得,3x﹣2x+6x<﹣4﹣3,合并同类项得,7x<﹣7,把x的系数化为1得,x<﹣1.(2),由①得,x≤4,由②得,x>0,故不等式组的解集为:0<x≤4.17.【解答】解:(1)去分母得,2(2x﹣1)﹣3(5x+1)≤6,去括号得,4x﹣2﹣15x﹣3≤6,移项得,4x﹣15x≤6+2+3,合并同类项得,﹣11x≤11,把x的系数化为1得,x≥﹣1.在数轴上表示为:;(2),由①得,x≤4,由②得,x>0,故不等式组的解集为:0<x≤4.在数轴上表示为:.18.【解答】解:(1),①+②×2得:7x=21,解得:x=3,把x=3代入①得:3+2y=3,解得:y=0,所以原方程组的解为;(2),解不等式①得:x<2,解不等式②得:x≥﹣4,∴不等式组的解集为﹣4≤x<2,在数轴上表示不等式组的解集为:.19.【解答】解:(1)设甲型号口罩生产线的单价为x万元,乙型号口罩生产线的单价为y万元,由题意得:,解得:,答:甲型号口罩生产线的单价为10万元,乙型号口罩生产线的单价为8万元.(2)设购买甲型号口罩生产线m条,则购买乙型号口罩生产线(10﹣m)条,由题意得:,解得:2.5≤m≤5,又∵m为整数,∴m=3,或m=4,或m=5,因此有三种购买方案:①购买甲型3条,乙型7条;②购买甲型4条,乙型6条;③购买甲型5条,乙型5条.当m=3时,购买资金为:10×3+8×7=86(万元),当m=4时,购买资金为:10×4+8×6=88(万元),当m=5时,购买资金为:10×5+8×5=90(万元),∵86<88<90,∴最省钱的购买方案为:选购甲型3条,乙型7条,最少费用为86万元.试卷第31页,总31页。
9.3一元一次不等式组(课时2)课件(新人教版七年级数学下)
巩固复习 解一元一次不等式组的步骤: (1)分别解两个一元一次不等式; (2)将两个一元一次不等式的解集表示 在同一个数轴上; (3)通过数轴确定两个一元一次不等式 解集的公共部分; (4)写出一元一次不等式组的解集.
9.3 一元一次不等式 组
1 x 2 x 2
x 2 1 x 3
x 5 x 3
x 1 x 4
2、解下列不等式组
2 x 3 9 x 2 x 5 10 3x
2.问题探究
例1 x取哪些整数值时,不等式 5x 2 3 (x 1 )
1 3 与 x 1 7 x都成立? 2 2
【分析】求出这两个不等式组成的不等式组的解集,解集中的整数就x可取 的整数值. 解:解不等式组
5 x 2 3( x 1) 1 3 x 1 7 x 2 2
得
5 x4 2
所以x可取的整数值是-2,-1,0,1,2,3,4.
问题探究
例2 x取哪些整数值时,1 2x 5 7 成立?
这个式子是 什么含义?
例题
例3. 3个小组计划在10天内生产500件产品(每 天产量相同),按原先的生产速度,不能完成 任务;如果每个小组每天比原先多生产1件产品, 就能提前完成任务.每个小组原先每天生产多少 件产品?
解:设每个小组原先每天生产x件产品,依题意,得 由(1)得x< 16 2 3 10 x 500 ① 3 3 10( x 1) 500 ② 由(2)得x> 15 2 5 不等式的解集为
2 2 15 x 16 . 3 3
因为产品的数量是整数,所以 x=16. 答:每个小组原先每天生产16件产品.
第9章 一元一次不等式(不等式组)测试题 2022--2023学年人教版七年级数学下册
一元一次不等式(不等式组)测试题一、选择题(共30分,每题3分)1.若关于x 的不等式2﹣m ﹣x >0的正整数解共有3个,则m 的取值范围是( ) A .﹣1≤m <0B .﹣1<m ≤0C .﹣2≤m <﹣1D .﹣2<m ≤﹣12.已知关于x ,y 的方程组343x y ax y a +=-⎧⎨-=⎩,其中﹣3≤a ≤1,下列结论:①当a =﹣2时,x ,y的值互为相反数;②51x y =⎧⎨=-⎩是方程组的解;③当a =﹣1时,方程组的解也是方程x +y =1的解;④若1≤y ≤4,则﹣3≤a ≤0.其中正确的个数是( ) A .1个B .2个C .3个D .4个3.在4,3,2,1,0,32-,103-中,能使不等式3x ﹣2>2x 成立的数有( ) A .1个 B .2个C .3个D .4个4.若m <n ,则下列不等式错误的是( )A .m ﹣6<n ﹣6B .6m <6nC .66m n> D .﹣6m >﹣6n5.已知a <b ,那么下列正确的是( ) A .ac 2<bc 2B .﹣a <﹣bC .2﹣a >2﹣bD .5a <2b6.下列式子是一元一次不等式的是( )A .x +y <0B .x 2>0C .32xx >+ D .10x< 7.x 是不大于5的数,则下列表示正确的是( ) A .x >5B .x ≥5C .x <5D .x ≤58.已知m >n ,则下列不等式中一定成立的是( ) A .m >n +1B .﹣4m >﹣4nC .m +1>n +2D .m ﹣1>n ﹣2A.a-2>b+2B.85a b< C.ac<bc D.-a+3<-b+3 9.若a<0,下列式子不成立的是 ( )A.-a+2<3-aB.a+2<a+3C.-2a <-3aD.2a>3a 10.不等式2+x <6的正整数解有( )A .1个B .2个C .3 个D .4个二、填空题(共30分,每题3分)11.若关于x 的不等式2x +1<x +a 的最大整数解为1,则a 的取值范围是 .12.用不等式表示:“x 的2倍与1的差小于3”是 .13.若不等式组213x ax >⎧⎨+<⎩的解集中共有3个整数解,则a 的取值范围是 .14.“x 的2倍与y 的和不大于2”用不等式可表示为 .15.若x 是非正数,则x 0.(填不等号)16.若关于x 、y 的二元一次方程组22x y mx y -=⎧⎨+=-⎩的解满足x ﹣y ≤0,则m 的取值范围是 .17.若关于x 的不等式x ﹣m <0有三个正整数解,则m 的取值范围是 .18.关于x 的不等式组0321x a x ->⎧⎨->-⎩整数解有2个,则a 的取值范围是 .19.关于x 的方程3x+2m=x-5的解为正数,则m 的取值范围是 . 20.关于x 的方程kx+15=6x+13的解为负数,则k 的取值范围是 . 三、解答题1.解列不等式,并把解集在数轴上表示出来。
最新 同步练习9.3一元一次不等式组 练习卷 2021-2022学年人教版数学七年级下册
9.3 一元一次不等式组(练习卷)-2022年人教新版数学七年级下册一.选择题(共12小题)1.已知关于x的不等式组只有四个整数解,则实数a的取值范围()A.﹣3≤a<﹣2B.﹣3≤a≤﹣2C.﹣3<a≤﹣2D.﹣3<a<﹣22.不等式组的整数解有()A.0个B.1个C.2个D.3个3.若关于x的一元一次不等式组的解集为,且关于y的方程的解为非负整数,则符合条件的所有整数m的和为()A.2B.7C.11D.104.如果关于x的方程ax﹣3(x+1)=1﹣x有整数解,且关于y的不等式组有解,那么符合条件的所有整数a的个数为()A.3B.4C.5D.65.把不等式组的解集表示在数轴上,下列符合题意的是()A.B.C.D.6.平面直角坐标系中,点A(2x﹣6,x+1)在第二象限,x的取值范围在数轴上表示为()A.B.C.D.7.已知一种新运算定义为:a⊙b=a•b﹣|a﹣2|,则不等式组的非正整数解有()A.1个B.2个C.3个D.4个8.不等式组的最大整数解是()A.﹣3B.﹣2C.﹣1D.09.对于任意的实数m和n,定义一种运算m※n=mn﹣m﹣n+2,例如:2※3=2×3﹣2﹣3+2=3.根据上述定义,不等式组的解集在数轴上表示为()A.B.C.D.10.从﹣3,﹣1,,1,2这五个数中随机抽取一个数,记为a,若数a使关于x的不等式组无解,且使关于x的一元一次方程ax+3=5﹣x有整数解,那么这5个数中所有满足条件的a的值之和是()A.﹣2B.﹣C.﹣3D.11.某班数学兴趣小组对不等式组讨论得到以下结论:①若a=5,则不等式组的解集为2<x≤5;②若a=1,则不等式组无解;③若不等式组无解,则a的取值范围为a<2;④若不等式组有且只有两个整数解,则a的值可以为5.1,以上四个结论,正确的序号是()A.①②③B.①③④C.①②④D.①②③④12.若不等式组的最小整数解是a,最大整数解是b,则a+b=()A.2B.1C.4D.0二.填空题(共5小题)13.如果关于x的不等式组的整数解只有1,2,3,那么a的取值范围是,b的取值范围是.14.满足﹣<x<的所有整数x的和是.15.不等式组的解集是.16.如图是一个运行程序,从“输入整数x”到“结果是否>19”为一次操作程序,若输入x后程序操作仅进行了二次就停止,则输入整数x的值可能是.A.7B.9C.11D.1317.已知不等式组的解集为x>﹣1,则k的取值范围是.三.解答题(共3小题)18.(1)解方程组;(2)解不等式(组).19.对x,y定义一种新运算F(x,y)=(ax+by)(x+3y)(其中a,b均为非零常数).例如:F(1,1)=4a+4b;已知F(3,1)=0,F(0,1)=﹣9.(1)求a,b的值;(F(3t+1,t)≥k;(2)若关于F的不等式组恰好只有1个整数解,求k的取值范围.20.对x,y定义一种新运算T,规定:T(x,y)=ax+2by﹣1(其中a,b均为非零常数),这里等式右边是通常的四则运算,例如:T(0,1)=a•0+2b•1﹣1=2b﹣1.(1)已知T(1,1)=4,T(4,﹣2)=7.①求a、b的值;②若关于m的不等式组恰好有4个整数解,求实数p的取值范围;(2)若T(x,y)=T(y,x)对任意实数x、y都成立(这里T(x,y)和T(y,x)均有意义),则a、b应满足怎样的关系式?10.2直方图-课堂练习学校:___________姓名:___________班级:___________考号:___________一、单选题1.已知一组数据8,6,10,10,13,11,8,10,12,12,9,8,7,12,9,11,9,10,11,10.那么频率是0.2的一组数据的范围是() A .68x ≤<B .810x ≤<C .1012x ≤<D .1214x ≤<2.已知一组数据有40个,把它分成六组,第一组到第四组的频数分别是10,5,•7,6,第五组的频率是0.2,故第六组的频率是() A .0.2B .0.1C .0.3D .0.43.某校为了了解七年级学生的体能情况,随机抽查了其中的30名学生,测试了1分钟仰卧起座的次数,并绘制成如图所示的频数分布直方图,请根据图示计算,仰卧起座次数在15-20次之间的频率是(). A .0.4B .0.33C .0.17D .0.14.在频数分布表中,所有频数之和() A .是1B .等于所有数据的个数C .与所有数据的个数无关D .小于所有数据的个数5.有40个数据,其中最大值为35,最小值为15,若取组距为4,则应该分的组数是(). A .4B .5C .6D .76.如图是若干只电灯泡的使用寿命进行检测的频数分布折线图,由图可知检测的频数为() A .20B .14C .12D .10二、填空题7.在对某班的一次数学测验成绩进行统计分析中,各分数段的人数如图所示.由图可知: (1)该班有________名学生;(2)69.5~79.5这一组的频数是________,频率是________.8.对某班同学的身高进行统计(单位:厘米),频数分布表中,这一组学生人数是12,频率是0.24,则该班共有________名学生;这一组学生人数是8,频率是________.9.在频率分布直方图中,小长方形的面积等于_______,各小长方形的面积和等于_______. 10.一个样本容量为80的样本最大值是123,最小值是50,取10为组距,则可分为_____组11.某校为了了解学生双休日参加社会实践活动的情况,随机抽取了100名学生进行调查,并绘成如图所示的频数分布直方图.已知该校共有1000名学生,据此估计,该校双休日参加社会实践活动时间在2~2.5小时之间的学生数大约是全体学生数的________(填百分数). 三、解答题12.为了调查居民的生活水平,有关部门对某个地区5个街道的50户居民的家庭存款额进行了调查,数据(单位:万元)如下:1.6 3.52.3 6.5 2.2 1.9 6.8 4.8 5.0 4.7 2.31.5 3.1 5.6 3.72.23.3 5.84.3 3.6 3.8 3.05.1 7.0 3.1 2.9 4.4 5.8 3.8 3.7 3.3 5.2 4.14.2 4.8 3.0 4.0 4.6 6.0 2.4 3.3 6.15.0 4.93.0 3.1 7.2 1.8 5.0 1.9将数据适当分组,并绘制相应的频数直方图.13.一个面粉批发商统计了前48个星期的销售量(单位:t):24.4 19.1 22.7 20.4 21.0 21.6 22.8 20.9 21.8 18.624.3 20.5 19.7 23.5 21.6 19.8 20.3 22.4 20.2 22.321.9 22.3 21.4 19.2 23.5 20.5 22.1 22.7 23.2 21.721.1 23.1 23.4 23.3 21.0 24.1 18.5 21.5 24.4 22.621.0 20.0 20.7 21.5 19.8 19.1 19.1 22.4请将数据适当分组,列出频数分布表,画出频数分布直方图,并分析这个面粉批发商每星期进面粉多少吨比较合适.14.为了改进银行的服务质量,随机抽随机抽查了30名顾客,统计了顾客在窗口办理业务所用的时间(单位:分钟)下图是这次调查得到的统计图。
9.3一元一次不等式组2
⎩⎨⎧>+>-.8 2,1213x x x9.3一元一次不等式组(2)教学目标:1.会解一元一次不等式组 2.不等式组的实际应用 教学重难点:不等式组的实际应用 教学过程: 一. 复习:解下列不等式组:1.553(1)131722x x x x --⎧⎪⎨--⎪⎩ (2)二.新课例:3个小组计划在10 天内生产500件产品(每天生产量相同),按原计划的生产速度,不能完成生产任务;如果每个小组比原先多生产1件产品,就能提前完成任务。
每个小组原先每天生产多少件?分析:“不能完成任务”的意思是:按原先的生产速度,10天的产品数量_ _500; “提前完成任务”的意思是:提高速度后,10天的产品的数量 500. 你能找到不等关系列出不等式组吗?练习:1.一本英语书共98页,张力读了一周(7天)还没读完,而李永不到一周就已读完。
李永平均每天比张力多读3页,张力平均每天读多少页?2、在一次绿色环保知识竞赛中,共有20道题,对于每一道题,答对了得10分,答错或不答扣5分。
已知小明得分在60到80分之间,那么小明答对了几道题?3、幼儿园给小朋友分苹果,如果每人分4个,则剩下9个;每人分6个,则最后一个小朋友分到了苹果但不足3个,问:一共有几个小朋友?共有几个苹果?达标训练:1、某校为学生安排住宿,如果每间宿舍住5人,那么有12人安排不下;如果每间住8人,那么有一间房还余一些床位,问该校可能有几间住房可以安排学生住宿?住宿的学生可能有多少人?2、一玩具厂生产甲、乙两种玩具,已知造一个甲种玩具需用金属80克,塑料140克,造一个乙种玩具需用金属100克,塑料120克。
若工厂有金属4600克,塑料6440克,计划用两种材料生产甲、乙两种玩具共50件,求甲种玩具件数的取值范围。
3.某商品的售价是150元,商家售出一件这种商品可获利润是进价的10%-20%,进价的范围是什么?(精确到1元)4.用每分钟时间可抽1.1吨水A型抽水机来抽池水,半小时可以抽完;如果用B型抽水机,估计20分到22分可以抽完。
一元一次不等式组练习题(含答案)
∴不等式组的解集是:–a<x<b,
∵不等式组 的解集为2<x<3,
∴–a=2,b=3,即a=–2,
故选A.
13.【答案】C
【解析】把方程组 的两式相加,得3x+3y=2+2m,
两边同时除以3,得x+y= ,所以 <0,即m<–1.故选C.
14.【答案】0
【解析】–1< ≤2,
清理捕鱼网箱人数/人
总支出/元
A
15
9
57000
B
10
16
68000
(1)若两村清理同类渔具的人均支出费用一样,求清理养鱼网箱和捕鱼网箱的人均支出费用各是多少元;
(2)在人均支出费用不变的情况下,为节约开支,两村准备抽调40人共同清理养鱼网箱和捕鱼网箱,要使总支出不超过102000元,且清理养鱼网箱人数小于清理捕鱼网箱人数,则有哪几种分配清理人员方案?
所以整数解为0,1,2共3个.
故选C.
22.【解析】由①,得3x–2x<3–1,∴x<2.
由②,得4x>3x–1,∴x>–1.
∴不等式组的解集为–1<x<2.
23.【解析】解①得:x≤4,
解②得:x>2,
故不等式组的解为:2<x≤4,
在数轴上表示如下:
.
24.【解析】(1)设清理养鱼网箱的人均费用为x元,清理捕鱼网箱的人均费用为y元,
第九章不等式与不等式组
9.3一元一次不等式组
1.不等式组 的解集为
A. B.
C. 或 D.
2.在下列各选项中,属于一元一次不等式组的是
A. B.
C. D.
9.3 一元一次不等式组 人教版数学七年级下册同步练习(含解析)
第九章 不等式与不等式组9.3 一元一次不等式组基础过关全练知识点1 一元一次不等式组及其解法1.(2022山东潍坊中考)不等式组x+1≥0,x―1<0的解集在数轴上表示正确的是( )A B C D2.(2021广西贵港中考)不等式1<2x-3<x+1的解集是( )A.1<x<2B.2<x<3C.2<x<4D.4<x<53.(2020四川广元中考)关于x的不等式组x―m>0,7―2x>1的整数解只有4个,则m的取值范围是( )A.-2<m≤-1B.-2≤m≤-1C.-2≤m<-1D.-3<m≤-24.如图所示,点C位于点A、B之间(点C不与A、B重合),点C表示1-2x,则x的取值范围是 .5.(2022天津中考)解不等式组2x≥x―1,①x+1≤3.②请结合题意填空,完成本题的解答.(1)解不等式①,得 ;(2)解不等式②,得 ;(3)把不等式①和②的解集在数轴上表示出来:(4)原不等式组的解集为 .6.(2020山东聊城中考)<7―32x,≥x3+x―44,并写出它的所有整数解.7.(2019湖北黄石中考)若点P,2x―9,其中x满足不―10≥2(x+1),x―1≤7―32x,求点P所在的象限.知识点2 列一元一次不等式组解决实际问题8.李华爸爸计划以60 km/h的平均速度行驶4 h从家去往某地开会,因路上堵车,实际行驶2 h时只行驶了100 km,但是前方路段限速80 km/h.为了按时参会,他在后面的行程中的平均速度为v km/h,则v的取值范围是 .9.【新独家原创】已知某商店某品牌水杯的售价是156元/个,商家出售一个该品牌水杯可获利20%~30%.设该品牌水杯的进价为x元/个,则x的取值范围是 .10.【教材变式·P130T6变式】为了落实精准扶贫政策,某单位针对某山区贫困村的实际情况,特向该村提供优质羊若干只.在准备发放的过程中发现:公羊刚好每户1只,若每户发放母羊5只,则多出17只母羊,若每户发放母羊7只,则有一户可分得母羊但不足3只.求这批优质羊共多少只.11.(2020河北石家庄二中期末)王老师为了准备奖品,购买了笔记本和钢笔共16件,笔记本一本5元,钢笔一支8元,一共110元.(1)笔记本、钢笔各多少件?(2)王老师计划再购买笔记本和钢笔共8件(钢笔和笔记本每样至少一件),但是两次总花费不得超过160元,有多少种购买方案?请将购买方案一一写出.能力提升全练12.(2022湖南邵阳中考,10,★★☆)关于x的不等式组13x>23―x,x―1<12(a―2)有且只有三个整数解,则a的最大值是( )A.3B.4C.5D.613.(2021广西北部湾经济区中考,12,★★☆)定义一种运算:a*b= a,a≥b,b,a<b,则不等式(2x+1)*(2-x)>3的解集是( )A.x>1或x<13B.―1<x<13C.x>1或x<-1D.x>13或x<-114.(2022福建漳州期中,12,★☆☆)甲种蔬菜保鲜的适宜温度t(单位:℃)的范围是1≤t≤5,乙种蔬菜保鲜的适宜温度t的范围是3≤t≤8,将这两种蔬菜放在一起同时保鲜,则保鲜的适宜温度t的范围是 .15.(2022青海中考,12,★★☆)不等式组2x+4≥0,6―x>3的所有整数解的和为 .16.(2021黑龙江龙东地区中考,15,★★☆)关于x的一元一次不等式组2x―a>0,3x―4<5无解,则a的取值范围是 .17.(2022四川遂宁中考,19,★★☆)某中学为落实教育部办公厅印发的《关于进一步加强中小学生体质管理的通知》文件要求,决定增设篮球、足球两门选修课程,需要购进一批篮球和足球.已知购买2个篮球和3个足球共需费用510元;购买3个篮球和5个足球共需费用810元.(1)求篮球和足球的单价分别是多少元;(2)学校计划采购篮球、足球共50个,并要求篮球不少于30个,且总费用不超过5 500元,有哪几种购买方案?素养探究全练18.【运算能力】某计算程序如图所示,若开始输入的x的值为正整数.规定:程序运行到“判断结果是否大于10”为一次运算,当x=2时,输出结果为 .若经过2次运算输出结果,求x可以取的所有值. 19.【运算能力】(2022吉林省第二实验学校期中)如果一元一次方程的解也是一元一次不等式组的解,则称该一元一次方程为该不等式组的关联方程.例如:方程2x-6=0的解为x=3,不等式组x―1>0,x<4的解集为1<x<4,则方程2x-6=0是不等式组x―1>0,x<4的关联方程.(1)在方程①3x-3=0;②23x+1=0;③x-(3x+1)=-9中,不等式组2x―9<0,―x+8<x+1的关联方程是 .(填序号)(2)若不等式组3x+6>x+1,x>3(x+1)的一个关联方程的解是整数,且这个关联方程是x+m=0,则常数m= .(3)①解两个方程:x+32=1和x+22+1=x+73.②是否存在整数m,使得方程x+32=1和x+22+1=x+73都是关于x的不等式组x+m>2,2x+3m≤2的关联方程?若存在,直接写出所有符合条件的整数m的值;若不存在,请说明理由.答案全解全析基础过关全练1.B x+1≥0①,x―1<0②,由①得x≥-1,由②得x<1,∴不等式组的解集为-1≤x<1,表示在数轴上如图所示:故选B.2.C 不等式可化为1<2x―3,①2x―3<x+1,②由不等式①,得x>2,由不等式②,得x<4,故原不等式的解集是2<x<4,故选C.3.C 由题意得,不等式组的解集为m<x<3,由不等式组的整数解只有4个,得到整数解为2,1,0,-1,∴-2≤m<-1.4.答案-12<x<0解析 根据题意得1<1-2x<2,解得-12<x<0,∴x的取值范围是-12<x<0.5.解析 (1)解不等式①,得x≥-1.(2)解不等式②,得x≤2.(3)把不等式①和②的解集在数轴上表示出来:(4)原不等式组的解集为-1≤x≤2.6.解析<7―32x,①≥x3+x―44,②解不等式①,得x<3,解不等式②,得x≥-45,∴不等式组的解集为-45≤x<3,它的所有整数解为0,1,2.7.解析―10≥2(x+1),①x―1≤7―32x,②解不等式①得x≥4,解不等式②得x≤4,则不等式组的解集是x=4,∴x―13=1,2x-9=-1,∴点P的坐标为(1,-1),∴点P在第四象限.8.答案70≤v≤80解析 由题意可得,(4―2)v+100≥60×4,v≤80,解得70≤v≤80.9.答案120≤x≤130解析 可列不等式:1561+30%≤x≤1561+20%,解得120≤x≤130.10.解析 设该村共有x户,则母羊共有(5x+17)只.由题意,得5x+17―7(x―1)>0,5x+17―7(x―1)<3,解得212<x<12.∵x为整数,∴x=11,∴这批优质羊共11+5×11+17=83(只).答:这批优质羊共83只.11.解析 (1)设笔记本有x本,钢笔有y支,依题意,得x+y=16,5x+8y=110,解得x=6,y=10.答:笔记本有6本,钢笔有10支.(2)设购买笔记本m本,则购买钢笔(8-m)支,依题意,得5m+8(8―m)+110≤160, 8―m>0,解得423≤m<8.又∵m为正整数,∴m可以为5,6,7,∴共有3种购买方案,方案1:购买笔记本5本,钢笔3支;方案2:购买笔记本6本,钢笔2支;方案3:购买笔记本7本,钢笔1支.能力提升全练12.C13x>23―x①,x―1<12(a―2)②,由①得x>1,由②得x<a,∴1<x<a,∵不等式组有且仅有三个整数解,即2,3,4,∴4<a≤5,∴a的最大值是5,故选C.13.C 由题意得2x+1≥2―x,2x+1>3或2x+1<2―x, 2―x>3,解得x>1或x<-1,故选C.14.答案3≤t≤5解析 根据题意可知1≤t≤5, 3≤t≤8,解得3≤t≤5.故答案为3≤t≤5.15.答案0解析 2x+4≥0①,6―x>3②,由①得x≥-2,由②得x<3,∴-2≤x<3,x可取的整数有-2,-1,0,1,2,∴所有整数解的和为-2-1+0+1+2=0,故答案为0.16.答案a≥6解析 2x―a>0,①3x―4<5,②解不等式①得x>12a,解不等式②得x<3,∵不等式组无解,∴12a≥3,∴a≥6,故答案为a≥6.17.解析 (1)设篮球的单价为a元,足球的单价为b元,由题意可得2a+3b=510, 3a+5b=810,解得a=120, b=90.答:篮球的单价为120元,足球的单价为90元. (2)设采购篮球x个,则采购足球(50-x)个,∵要求篮球不少于30个,且总费用不超过5 500元,∴x≥30,120x+90(50―x)≤5 500,解得30≤x≤3313,∵x为整数,∴x的值可以为30,31,32,33,∴共有四种购买方案,方案一:采购篮球30个,采购足球20个;方案二:采购篮球31个,采购足球19个;方案三:采购篮球32个,采购足球18个;方案四:采购篮球33个,采购足球17个.素养探究全练18.解析 当x =2时,第1次运算结果为2×2+1=5,第2次运算结果为5×2+1=11,∴当x =2时,输出结果为11.若经过2次运算输出结果,则有(2x +1)×2+1>10,2x +1≤10,解得1.75<x ≤4.5.∵x 为正整数,∴x 可以取的所有值是2、3、4.19.解析 (1)①3x -3=0,3x =3,x =1;②23x +1=0,23x =-1,x =-32;③x -(3x +1)=-9,x -3x -1=-9,-2x =-8,x =4,解不等式组2x ―9<0,―x +8<x +1,得3.5<x <4.5,所以不等式组2x ―9<0,―x +8<x +1的关联方程是③,故答案为③.(2)解不等式组3x +6>x +1,x >3(x +1),得-2.5<x <-1.5,所以不等式组的整数解是x =-2,∵不等式组3x +6>x +1,x >3(x +1)的一个关联方程的解是整数,且这个关联方程是x +m =0,∴把x =-2代入方程x +m =0,得-2+m =0,解得m =2,故答案为2.(3)①x +32=1,x +3=2,x =-1.x +22+1=x +73,3(x +2)+6=2(x +7),3x +6+6=2x +14,3x -2x =14-6-6,x =2.②不存在整数m,使得方程x+32=1和x+22+1=x+73都是关于x的不等式组x+m>2,2x+3m≤2的关联方程,理由:解不等式组x+m>2,2x+3m≤2,得2―m<x≤2―3m2,假如方程x+32=1和x+22+1=x+73都是关于x的不等式组x+m>2,2x+3m≤2的关联方程,则2-m<-1且2―3m2≥2,<―1,≥2,得不等式组无解,所以不存在整数m,使得方程x+32=1和x+22+1=x+73都是关于x 的不等式组x+m>2,2x+3m≤2的关联方程.。
最新 同步练习9.3 一元一次不等式组 -期末复习训练2021-2022学年人教版数学七年级下册
专题05 : 2022年人教新版七年级(下)9.3 一元一次不等式组- 期末复习专题训练一、选择题(共10小题)1.不等式组中,不等式①和②的解集在数轴上表示正确的是()A.B.C.D.2.如图,这是李强同学设计的一个计算机程序,规定从“输入一个值x”到判断“结果是否≥15”为一次运行过程.如果程序运行两次就停止,那么x的取值范围是()A.x≥3B.3≤x<7C.3<x≤7D.x≤73.已知不等式组的解集如图所示,则不等式组的整数解个数为()A.2个B.3个C.4个D.5个4.使不等式x﹣2≥﹣3与2x+3<5同时成立的x的整数值是()A.﹣2,﹣1,0B.0,1C.﹣1,0D.不存在5.已知不等式组的解集是x≥2,则实数a的取值范围是()A.a>2B.a≥2C.a<2D.a≤26.已知不等式组无解,则a的取值范围是()A.a≥3B.a≥﹣3C.a≤3D.a≤﹣37.不等式组的解集在数轴上用阴影表示正确的是()A.B.C.D.8.关于x的不等式组有解,那么m的取值范围为()A.m≤﹣1B.m<﹣1C.m≥﹣1D.m>﹣19.若关于x的不等式组恰有两个整数解,求实数a的取值范围是()A.﹣4<a<﹣3B.﹣4≤a<﹣3C.﹣4<a≤﹣3D.﹣4≤a≤﹣310.不等式组的整数解的个数是()A.2B.3C.4D.5二、填空题(共5小题)11.不等式组的解集是.12.关于x的不等式组有2个整数解,则a的取值范围为.13.数学何老师网购了一本《魔法数学》,同学们想知道书的价格,何老师让他们猜.甲说:“至少15元.”乙说:“至多25元.”丙说:“至多20元.”何老师说:“你们三个人中只有一人说对了”.则这本书的价格x(元)所在的范围为.14.不等式组的解集是.15.已知关于x的不等式组恰好有2个整数解,则整数a的值是.三、解答题(共5小题)16.解不等式组.17.解不等式组:,并写出它的所有整数解.18.列方程组或不等式解决实际问题:某汽车专卖店销售A,B两种型号的新能源汽车,上周售出1辆A型车和2辆B型车,销售额为70万元;本周已售出3辆A型车和1辆B型车,销售额为80万元.(1)每辆A型车和B型车的售价各为多少万元?(2)甲公司拟向该店购买A,B两种型号的新能源汽车共7辆,且A型号车不少于2辆,购车费不少于154万元,则有哪几种购车方案?19.求不等式组的整数解.20.解不等式组:,并将解集在数轴上表示.专题05 : 2022年人教新版七年级(下)9.3 一元一次不等式组- 期末复习专题训练参考答案与试题解析一、选择题(共10小题)1.不等式组中,不等式①和②的解集在数轴上表示正确的是()A.B.C.D.【解答】解:解不等式①,得:x<1,解不等式②,得:x≥﹣3,则不等式组的解集为﹣3≤x<1,将两不等式解集表示在数轴上如下:故选:C.2.如图,这是李强同学设计的一个计算机程序,规定从“输入一个值x”到判断“结果是否≥15”为一次运行过程.如果程序运行两次就停止,那么x的取值范围是()A.x≥3B.3≤x<7C.3<x≤7D.x≤7【解答】解:依题意,得:,解得:3≤x<7.故选:B.3.已知不等式组的解集如图所示,则不等式组的整数解个数为()A.2个B.3个C.4个D.5个【解答】解:由数轴知,不等式组的整数解为﹣1、0、1、2,故选:C.4.使不等式x﹣2≥﹣3与2x+3<5同时成立的x的整数值是()A.﹣2,﹣1,0B.0,1C.﹣1,0D.不存在【解答】解:解不等式x﹣2≥﹣3得x≥﹣1,解2x+3<5得x<1.则公共部分是:﹣1≤x<1.则整数值是﹣1,0.故选:C.5.已知不等式组的解集是x≥2,则实数a的取值范围是()A.a>2B.a≥2C.a<2D.a≤2【解答】解:,∵解不等式①得:x≥2,解不等式②得:x>a,又∵不等式组的解集是x≥2,∴a<2故选:C.6.已知不等式组无解,则a的取值范围是()A.a≥3B.a≥﹣3C.a≤3D.a≤﹣3【解答】解:∵不等式组无解,∴2a﹣5≥3a﹣2,解得:a≤﹣3,故选:D.7.不等式组的解集在数轴上用阴影表示正确的是()A.B.C.D.【解答】解:,由①得x≤2,由②得x>﹣2,故此不等式组的解集为:故选:C.8.关于x的不等式组有解,那么m的取值范围为()A.m≤﹣1B.m<﹣1C.m≥﹣1D.m>﹣1【解答】解:,解不等式x﹣m<0,得:x<m,解不等式3x﹣1>2(x﹣1),得:x>﹣1,∵不等式组有解,∴m>﹣1.故选:D.9.若关于x的不等式组恰有两个整数解,求实数a的取值范围是()A.﹣4<a<﹣3B.﹣4≤a<﹣3C.﹣4<a≤﹣3D.﹣4≤a≤﹣3【解答】解:解不等式1+5x>3(x﹣1),得:x>﹣2,解不等式≤8﹣+2a,得:x≤4+a,则不等式组的解集为﹣2<x≤4+a,∵不等式组恰有两个整数解,∴不等式组的整数解为﹣1、0,则0≤4+a<1,解得﹣4≤a<﹣3,故选:B.10.不等式组的整数解的个数是()A.2B.3C.4D.5【解答】解:解不等式x+5>3,得:x>﹣2,解不等式x+6>4x﹣3,得:x<3,则不等式组的解集为﹣2<x<3,所以不等式组的整数解为﹣1、0、1、2这4个,故选:C.二、填空题(共5小题)11.不等式组的解集是≤x<2.【解答】解:,解①得:x<2,解②得:x≥,则不等式组的解集是:≤x<2.故答案是:≤x<2.12.关于x的不等式组有2个整数解,则a的取值范围为0≤a<1.【解答】解:解不等式8+2x>0,得:x>﹣4,解不等式x﹣a≤﹣2,得:x≤a﹣2,∵不等式组有两个整数解,∴不等式组的整数解为﹣3、﹣2,∴﹣2≤a﹣2<﹣1,解得0≤a<1,故答案为:0≤a<1.13.数学何老师网购了一本《魔法数学》,同学们想知道书的价格,何老师让他们猜.甲说:“至少15元.”乙说:“至多25元.”丙说:“至多20元.”何老师说:“你们三个人中只有一人说对了”.则这本书的价格x(元)所在的范围为x>25.【解答】解:根据题意可得:,如图:∵三个人中只有一人说对了,∴这本书的价格x(元)所在的范围为x>25.故答案为:x>25.14.不等式组的解集是x≤3.【解答】解:由①得,x≤3,由②得,x<4,故原不等式组的解集为:x≤3.故答案为x≤3.15.已知关于x的不等式组恰好有2个整数解,则整数a的值是﹣2,﹣1.【解答】解:不等式组,由①得:x≥,由②得:x<2,又∵关于x的不等式组恰好有2个整数解,∴不等式组的解集是≤x<2,即整数解为1,0,∴﹣1<≤0,解得:﹣3<a≤﹣1,则整数a的值为﹣2,﹣1,故答案为:﹣2,﹣1.三、解答题(共5小题)16.解不等式组.【解答】解:,解①得x<2,解②得x≥﹣1,所以不等式组的解集为﹣1≤x<2.17.解不等式组:,并写出它的所有整数解.【解答】解:,解不等式①得:x≤1,解不等式②得:x>﹣1,∴不等式组的解集为﹣1<x≤1,∴不等式组的所有整数解为0,1.18.列方程组或不等式解决实际问题:某汽车专卖店销售A,B两种型号的新能源汽车,上周售出1辆A型车和2辆B型车,销售额为70万元;本周已售出3辆A型车和1辆B型车,销售额为80万元.(1)每辆A型车和B型车的售价各为多少万元?(2)甲公司拟向该店购买A,B两种型号的新能源汽车共7辆,且A型号车不少于2辆,购车费不少于154万元,则有哪几种购车方案?【解答】解:(1)设每辆车A型车的售价为x万元,每辆车B型车的售价为y万元,依题意,得:,解得:,答:每辆车A型车的售价为18万元,每辆车B型车的售价为26万元.(2)设购进A型车m辆,则购进B型车(7﹣m)辆,依题意,得:,解得:3.5≥m≥2.∵m为整数,∴m=2或3,答:有2种购车方案:购进A型车2辆,购B型5辆;购进A型车3辆,购B型4辆.19.求不等式组的整数解.【解答】解:,解不等式①得:x>﹣1,解不等式②得:x≤1,∴原不等式组的解集为:﹣1<x≤1,∴它的整数解是0、1.20.解不等式组:,并将解集在数轴上表示.【解答】解:由①得,x≤2,由②得,x>﹣1,故不等式组的解集为:﹣1<x≤2.在数轴上表示为:用坐标表示地理位置练习题一、选择题1..海事救灾船前去救援某海域失火货轮,需要确定()A.方位B.距离C.方位和距离D.失火轮船的国籍2.如图所示是某动物园的平面示意图,若以猴山为原点,向右的水平方向为x轴正方向,向上的竖直方向为y 轴正方向建立平面直角坐标系,则熊猫馆所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限3.如图,若以解放公园为原点建立平面直角坐标系,则博物馆的坐标为()A.(2,3)B.(0,3)C.(3,2)D.(2,2)4.点A可用(2,3)表示,如果小惠不想因走到地雷上而结束游戏的话,下列选项中,她应该走()A.(7,2)B.(2,6)C.(7,6)D.(4,5)5.如图,是做课间操时,李明,李刚和李红三人的相对位置,如果用(4,5)表示李明的位置,(2,4)表示李刚的位置,则李红的位置可表示为()A.(0,0)B.(0,1)C.(1,0)D.(1,2)6.如图所示是雷达屏幕在一次探测中发现的多个目标,其中对目标A的位置表述正确的是()A.在南偏东75°方向上B.在5km处C.在南偏东15°方向5km处D.在南偏东75°方向5km处二、填空题7.如图,用坐标原点O表示学校的位置,用x轴正方向表示正东方向,用y轴正方向表示正北方向.若李威家在王聪家的正西方向、张颜家的正北方向,则李威家的位置用坐标表示是____距离学校最近的是____家. 8.观察中国象棋的棋盘,其中红方“马”的位置可以用一个数对(3,5)来表示,红“马”走完“马3进四”后到达B点,则表示B点位置的数对是____.9.如图是轰炸机机群的一个飞行队形,如果最后两架轰炸机的平面坐标分别是A(-2,1)和B(-2,-3),那么第一架轰炸机C的平面坐标是____.10.如图是利用网格画出的太原市地铁1,2,3号线路部分规划示意图,若建立适当的平面直角坐标系,表示双塔西街点的坐标为(0,-1),表示桃园路的点的坐标为(-1,0),则表示太原火车站的点(正好在网格点上)的坐标是____.三、解答题11.常用的确定物体位置的方法有两种.如图10,在4×4的边长为1的小正方形组成的网格中,标有A,B两点(点A,B之间的距离为m).请你用两种不同的方法表述点B相对于点A的位置.12.如图为某废墟示意图,由于雨水冲蚀,残缺不全,依稀可见钟楼坐标为A(5,-2),街口坐标为B(5,2),•资料记载阿明先生的祖居的坐标为(2,1),你能帮助阿明先生找到他家的老屋吗?13.回答下列问题:如图②,已知过点O的所有射线等分圆周且相邻两射线的夹角为15°.(1)点A的极坐标是____;点D的极坐标是__.(2)请在图②中标出点B(5,45°),点E(2,-90°).(3)怎样从点B运动到点C?小明设计的一条路线为:点B→(4,45°)→(3,45°)→(3,30°)→点C.请你设计与小明不同的一条路线,也可以从点B运动到点C.14.国家实施西部大开发,大力进行电网建设,某电厂决定给A,B,C,D四个村庄架设输电线路,已知电厂O及A,B,C,D四个村的位置如图所示.若点A表示为(2,3),那么点O,B,C,D怎样表示?。
一元一次不等式组 重难点专项练习【八大题型】-2022-2023学年七年级数学下册同步精品课堂
9.3《一元一次不等式组》重难点题型专项练习考查题型一 一元一次不等式组的定义(2021春·四川绵阳·七年级校考期中)1. 下列不等式组是一元一次不等式组的是( )A. ()2012x x x ->⎧⎨-≤⎩B. 1010x y +>⎧⎨-<⎩C. 203x x ->⎧⎨<-⎩D. 30110x x>⎧⎪⎨+<⎪⎩(2020春·四川巴中·七年级统考期末)2. 下列不等式组中,是一元一次不等式组的是( )A. 203x x ->⎧⎨<-⎩B. 1010x y +>⎧⎨-<⎩C. ()()320230x x x ->⎧⎨-+>⎩ D. 30110x x>⎧⎪⎨+>⎪⎩(2020春·浙江台州·七年级台州市书生中学校考期中)3. 下列不等式组是一元一次不等式组的是( )A. 00x y x y ->⎧⎨+<⎩B. 1132341x x x x ⎧+>⎪⎨⎪≠-⎩C. 320(2)(3)0x x x ->⎧⎨-+>⎩D. 320x y x y +=⎧⎨>-⎩(2022春·全国·七年级假期作业)4. 下列不等式组:①23x x >-⎧⎨<⎩,②024x x >⎧⎨+>⎩,③22124x x x ⎧+<⎨+>⎩,④307x x +>⎧⎨<-⎩,⑤1010x y +>⎧⎨-<⎩.其中一元一次不等组的个数是( )A. 2个 B. 3个 C. 4个 D. 5个考查题型二 求不等式组的解集(2022春·山西晋城·七年级统考期末)5. 不等式组211238x x ->⎧⎨-<⎩的解集是( ).A. 1x >B. 2<<1x -C. 2x >-D. 无解(2022春·海南海口·七年级琼山中学校考阶段练习)6. 不等式组21390x x >-⎧⎨-+≥⎩的解集是( )A. 3x ≤- B. 12x >- C. 132x -<≤ D. 132x ≤<(2022春·福建厦门·七年级统考期末)7. 将不等式组23x x >⎧⎨≥⎩的解集表示在数轴上,正确的是( )A. B. C.D.(2022春·宁夏吴忠·七年级校考期末)8. 不等式组13x x -≤-⎧⎨<⎩的解集在数轴上可以表示为( )A. B. C.D.考查题型三 求一元一次不等式组的整数解(2022春·陕西商洛·七年级校考期末)9. 不等式组2313252x x x +>⎧⎨≤-⎩的非负整数解的个数是( )A. 6个B. 5个C. 4个D. 3个(2022春·四川眉山·七年级统考期末)10. 已知56m <≤,则关于x 的不等式组01112m x x x ->⎧⎪⎨-≤-⎪⎩的整数解共有()A. 6个B. 5个C. 4个D. 3个(2022春·四川乐山·七年级统考期末)11. 已知关于x 的不等式组0320x a x ->⎧⎨->⎩的整数解共有3个,则a 的取值范围是( )A. 21a -<<-B. 21a -<-C. 21a -<-D. 21a - (2022春·安徽合肥·七年级统考期末)12. 一元一次不等式组3620x x x -<⎧⎨+≥⎩的解集中,最大的整数解是( )A. 2 B. 3 C. 2- D. 1-考查题型四 由一元一次不等式组的解集求参数(2022秋·重庆北碚·七年级统考期末)13. 若关于x 的不等式组51222x x x x a+⎧<-⎪⎨⎪+<+⎩只有4个整数解,则a 的取值范围是( )A. 13a ≥B. 1314a <<C. 1314a ≤<D. 1314a <≤(2023春·安徽六安·七年级校考阶段练习)14. 不等式组2x x a ≥⎧⎨<⎩无解,则a 的取值范围是( )A. 2a < B. 2a > C. 2a ≤ D. 2a ≥(2022春·江苏扬州·七年级校考阶段练习)15. 如果不等式组212x m x m >+⎧⎨>+⎩的解集是x >-1,那么m 的值是( )A. 1 B. 3 C. -1 D. -3(2022春·河南驻马店·七年级校考期中)16. 如果不等式组262x x x m x-+<-⎧⎨>-⎩的解集是x >4,那么m 的取值范围是( )A. m ≥4 B. m ≤4 C. m <4 D. m =4考查题型五 不等式组和方程组结合问题(2022春·河南南阳·七年级统考期中)17. 关于x 的方程3﹣2x =3(k ﹣2)的解为非负整数,且关于x 的不等式组()21323x x k x x ⎧--≥⎪⎨+≤⎪⎩无解,则符合条件的整数k 的值的和为( )A. 5 B. 2 C. 4 D. 6(2022春·重庆忠县·七年级校考期中)18. 若关于x ,y 的二元一次方程组128x y a x y +=+⎧⎨+=⎩的解为正数,则满足条件的所有整数a 的和为( )A. 14B. 15C. 16D. 17(2022春·内蒙古呼伦贝尔·七年级校考期末)19. 如果关于x 、y 的方程组322x y x y a +=⎧⎨-=-⎩的解为正数,则a 的取值范围是( )A. 45a -<<B. 54a -<<C. 4a <-D. 5a >(2021春·福建南平·七年级统考期末)20. 已知2321x y k x y k +=⎧⎨+=+⎩,且01x y <-<,则k 的取值范围为( )A. 112k << B. 102k <<C. 01k << D. 112k -<<-考查题型六 列一元一次不等式组(2021春·辽宁抚顺·七年级期末)21. 七年级下册数学课本有如下6章:《相交线与平行线》、《实数》、《平面直角坐标系》、《二元一次方程组》、《不等式与不等式组》、《数据的收集、整理与描述》.期末试卷编题要求,每章至少有3个题,全卷总题数不超过26题,若本次期末试卷的全卷总题数为x ,则x 的取值范围是______.(2020春·黑龙江佳木斯·七年级统考期末)22. 若干名学生住宿舍,每间住4人,2人无处住;每间住 6人,空一间还有一间不空也不满,问多少学生多少宿舍?设有x 间宿舍,则可列不等式组为____(2020春·江西南昌·七年级校联考期末)23. 运行程序如图所示,从“输入实数x”到“结果是否>18”为一次程序操作,若输入x后程序操作进行了两次停止,则x的取值范围是______.(2020春·广西崇左·七年级统考期中)24. 方程组431,65x y kx y-=+⎧⎨+=⎩的解x、y满足条件0<3x-7y<1,则k的取值范围______.考查题型七用一元一次不等式组解决销售利润问题(2020·湖南湘潭·中考真题)25. 习近平总书记说:“读书可以让人保持思想活力,让人得到智慧启发,让人滋养浩然之气”.某校为提高学生的阅读品味,现决定购买获得第十届矛盾文学奖的《北上》(徐则臣著)和《牵风记》(徐怀中著)两种书共50本.已知购买2本《北上》和1本《牵风记》需100元;购买6本《北上》与购买7本《牵风记》的价格相同.(1)求这两种书的单价;(2)若购买《北上》的数量不少于所购买《牵风记》数量的一半,且购买两种书的总价不超过1600元.请问有哪几种购买方案?哪种购买方案的费用最低?最低费用为多少元?(2019·四川泸州·统考中考真题)26. 某出租汽车公司计划购买A型和B型两种节能汽车,若购买A型汽车4辆,B 型汽车7辆,共需310万元;若购买A型汽车10辆,B型汽车15辆,共需700万元.(1)A型和B型汽车每辆的价格分别是多少万元?(2)该公司计划购买A型和B型两种汽车共10辆,费用不超过285万元,且A型汽车的数量少于B型汽车的数量,请你给出费用最省的方案,并求出该方案所需费用.(2020·湖南邵阳·中考真题)27. 2020年5月,全国“两会”召开以后,应势复苏的“地摊经济”带来了市场新活力,小丹准备购进A、B两种类型的便携式风扇到地摊一条街出售.已知2台A 型风扇和5台B型风扇进价共100元,3台A型风扇和2台B型风扇进价共62元.(1)求A型风扇、B型风扇进货的单价各是多少元?(2)小丹准备购进这两种风扇共100台,根据市场调查发现,A型风扇销售情况比B型风扇好,小丹准备多购进A型风扇,但数量不超过B型风扇数量的3倍,购进A、B两种风扇的总金额不超过1170元.根据以上信息,小丹共有哪些进货方案?(2023·广东深圳·二模)28. 某初三某班计划购买定制钢笔和纪念卡册两种毕业纪念礼物,已知购买1支定制钢笔和4本纪念卡册共需130元,购买3支定制钢笔和2本纪念卡册共需140元.(1)求每支定制钢笔和每本纪念卡册的价格分别为多少元?(2)该班计划购买定制钢笔和纪念卡册共60件,总费用不超过1600元,且纪念卡册本数小于定制钢笔数量的3倍,那么有几种购买方案,请写出设计方案?考查题型八用一元一次不等式组解决方案选择问题(2022·四川遂宁·统考中考真题)29. 某中学为落实《教育部办公厅关于进一步加强中小学生体质管理的通知》文件要求,决定增设篮球、足球两门选修课程,需要购进一批篮球和足球.已知购买2个篮球和3个足球共需费用510元;购买3个篮球和5个足球共需费用810元.(1)求篮球和足球的单价分别是多少元;(2)学校计划采购篮球、足球共50个,并要求篮球不少于30个,且总费用不超过5500元.那么有哪几种购买方案?(2021·广西贵港·统考中考真题)30. 某公司需将一批材料运往工厂,计划租用甲、乙两种型号的货车,在每辆货车都满载的情况下,若租用30辆甲型货车和50辆乙型货车可装1500箱材料;若租用20辆甲型货车和60辆乙型货车可装载1400箱材料.(1)甲、乙两种型号的货车每辆分别可装载多少箱材料?(2)经初步估算,公司要运往工厂的这批材料不超过1245箱,计划租用甲、乙两种型号的货车共70辆,且乙型货车的数量不超过甲型货车数量的3倍,该公司一次性将这批材料运往工厂共有哪几种租车方案?(2019·贵州遵义·中考真题)31. 某校计划组织240名师生到红色教育基地开展革命传统教育活动.旅游公司有A,B两种客车可供租用,A型客车每辆载客量45人,B型客车每辆载客量30人.若租用4辆A型客车和3辆B型客车共需费用10700元;若租用3辆A型客车和4辆B型客车共需费用10300元.(1)求租用A,B两型客车,每辆费用分别是多少元;(2)为使240名师生有车坐,且租车总费用不超过1万元,你有哪几种租车方案?哪种方案最省钱?(2023·湖南湘潭·湘潭县云龙中学校考一模)32. 随着新能源汽车的发展,某公交公司将用新能源汽车淘汰某一条线路上“冒黑烟”较严重的燃油公交车,计划购买A型和B型新能源公交车共10辆.若购买A 型公交车1辆和B型公交车2辆共需300万元;且购买一辆A型公交车的费用比购买一辆B型公交车的费用少30万元.(1)求A型和B型公交车的单价分别为多少万元?(2)预计在该条线路上A型和B型公交车每辆日均载客量为160人次和200人次,若该公司购买A型和B型公交车的总费用不超过1000万元,且确保这10辆公交车在该线路的日均载客量总和不少于1800人次,则该公司有哪几种购车方案?哪种购车方案的总费用最少?最少总费用是多少?9.3《一元一次不等式组》重难点题型专项练习考查题型一 一元一次不等式组的定义(2021春·四川绵阳·七年级校考期中)【1题答案】【答案】C【解析】【分析】根据一元一次不等式组的定义逐个判断即可.【详解】解:A .最高二次,不是一元一次不等式组,故本选项不符合题意;B .有两个未知数,不是一元一次不等式组,故本选项不符合题意;C .是一元一次不等式组,故本选项符合题意;D .第二个不等式中有的式子不是整式,不是一元一次不等式组,故本选项不符合题意;故选:C .【点睛】本题考查了一元一次不等式组的定义,能熟记一元一次不等式组的定义是解此题的关键,含有相同字母的几个不等式,如果每个不等式都是一次不等式,那么这几个不等式组合在一起,就叫一元一次不等式组.(2020春·四川巴中·七年级统考期末)【2题答案】【答案】A【解析】【分析】根据一元一次不等式组的概念逐一辨析.【详解】A. 203x x ->⎧⎨<-⎩是一元一次不等式组,故正确; B. 1010x y +>⎧⎨-<⎩是二元一次不等式组,故不正确; C. ()()320230x x x ->⎧⎨-+>⎩是一元二次不等式组,故不正确;D.30110xx>⎧⎪⎨+>⎪⎩是分式不等式组,故不正确;故选A.【点睛】本题考查了对一元一次不等式组概念的理解,深刻理解基本定义是解决这类问题的关键.(2020春·浙江台州·七年级台州市书生中学校考期中)【3题答案】【答案】B【解析】【分析】根据不等式组中只含有一个未知数并且未知数的次数是一次的,可得答案.【详解】A、是二元一次不等式组,故A错误;B、是一元一次不等式组,故B正确;C、是一元二次不等式组,故C错误;D、不是一元一次不等式组,故D错误;故选:B.【点睛】本题考查了一元一次不等式组的定义,不等式组中只含有一个未知数并且未知数的最高次的次数是一次的.(2022春·全国·七年级假期作业)【4题答案】【答案】B【解析】【分析】根据一元一次不等式组的定义,含有两个或两个以上的不等式,不等式中的未知数相同,并且未知数的最高次数是1,对各选项判断再计算个数即可【详解】根据一元一次不等式组的定义,①②④都只含有一个未知数,所含未知数相同,并且未知数的最高次数是1,所以都是一元一次不等式组.③含有一个未知数,但是未知数的最高次数是2;⑤含有两个未知数,所以③⑤不是一元一次不等式组故选B【点睛】此题主要考查一元一次不等式组的定义考查题型二求不等式组的解集(2022春·山西晋城·七年级统考期末)【5题答案】【答案】A【解析】【分析】先分别解两个不等式,求出它们的解集,再求两个不等式解集的公共部分即可.【详解】解:211 238xx->⎧⎨-<⎩①②,解①得,1x>,解②得,2x>-,∴不等式组的解集是1x>.故选A.【点睛】本题考查了一元一次不等式组的解法,熟练掌握一元一次不等式组的解法是解答本题的关键.(2022春·海南海口·七年级琼山中学校考阶段练习)【6题答案】【答案】C【解析】【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【详解】解:21 390xx>-⎧⎨-+≥⎩①②∵解不等式①得:12 x>-,解不等式②得:3x≤,∴不等式组的解集为13 2x-<≤,故选:C.【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此(2022春·福建厦门·七年级统考期末)【7题答案】【答案】D【解析】【分析】先定界点,再定方向即可得.【详解】解:不等式组23x x >⎧⎨≥⎩的解集在数轴上表示如下:,故选:D .【点睛】本题考查了在数轴上表示不等式的解集,用数轴表示不等式的解集时,要注意“两定”:一是定界点;二是定方向,注意“实心点”、“空心点”的用法.(2022春·宁夏吴忠·七年级校考期末)【8题答案】【答案】B【解析】【分析】先解出不等式组的解集,然后在数轴上表示出来即可.【详解】解:13x x -≤-⎧⎨<⎩①②,解不等式1x -≤-得:1x ≥,∴该不等式组的解集是13x ≤<,其解集在数轴上表示如下:故选:B .【点睛】本题考查解一元一次不等式组、在数轴上表示不等式的解集,解答本题的关键是掌握解一元一次不等式的方法.考查题型三 求一元一次不等式组的整数解(2022春·陕西商洛·七年级校考期末)【答案】A【解析】【分析】先求出不等式组中每一个不等式的解集,再求出它们的公共部分就是不等式组的解集,最后在解集中找到非负整数解即可.【详解】解不等式231x +>,得:x >-1,解不等式3252x x ≤-,得:5x ≤,∴该不等式组的解集为:15x -<≤,∴该不等式组的非负整数解为:0、1、2、3、4、5,共有6个.故选A .【点睛】本题主要考查解一元一次不等式组,熟知确定解集的方法“同大取大,同小取小,大小小大中间找,大大小小无处找”是解题的关键.(2022春·四川眉山·七年级统考期末)【10题答案】【答案】C【解析】【分析】先解不等式组求出不等式组的解集,再根据56m <≤即可得.【详解】解:01112m x x x ->⎧⎪⎨-≤-⎪⎩①②,解不等式①得:x m <,解不等式②得:43x ≥, 不等式组有整数解,43x m ∴≤<,又56m <≤ ,∴不等式组的整数解为2,3,4,5,共有4个,故选:C .【点睛】本题考查了解一元一次不等式组,熟练掌握不等式组的解法是解题关键.(2022春·四川乐山·七年级统考期末)【答案】C【解析】【分析】分别求出每一个不等式的解集,根据不等式组的解集的情况得出a 的范围.【详解】解:由0x a ->,得:x a >,由320x ->,得:32x <, 不等式组有3个整数解,∴不等式组的整数解为1、0、1-,21a ∴-<- ,故选:C .【点睛】本题考查了一元一次不等式组的整数解,解题的关键是正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则.(2022春·安徽合肥·七年级统考期末)【12题答案】【答案】A【解析】【分析】按照解一元一次不等式组的步骤进行计算,即可解答.【详解】解:3620x x x -⎧⎨+≥⎩<①②,解不等式①得:x <3,解不等式②得:x ≥-2,∴原不等式组的解集为:-2≤x <3,∴该不等式组的最大的整数解是2,故选:A .【点睛】本题考查了解一元一次不等式组,一元一次不等式组的整数解,准确熟练地进行计算是解题的关键.考查题型四 由一元一次不等式组的解集求参数(2022秋·重庆北碚·七年级统考期末)【13题答案】【答案】D【解析】【分析】先求出不等式组的解集,再根据题意求a 的取值范围即可.【详解】解:51222x x x x a +⎧<-⎪⎨⎪+<+⎩①②,解①得7x >,解②得2x a <-,所以不等式组的解集为72x a <<-,因为不等式组只有4个整数解,所以11212a <-≤,所以1314a <≤.故选:D .【点睛】本题考查了求不等式组的解集和根据解集求取值范围,正确求出2a -的取值范围是解题的关键.(2023春·安徽六安·七年级校考阶段练习)【14题答案】【答案】C【解析】【分析】利用不等式组的解集是无解可知,x 应该是大大小小找不到.【详解】解:∵不等式组2x x a ≥⎧⎨<⎩无解,∴2a ≤,故选:C .【点睛】主要考查了已知一元一次不等式解集求不等式中的字母的值,同样也是利用口诀求解,注意:当符号方向不同,数字相同时(如:x a >,x a <),没有交集也是无解,但是要注意当两数相等时,在解题过程中不要漏掉相等这个关系.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).(2022春·江苏扬州·七年级校考阶段练习)【15题答案】【答案】D【解析】【分析】根据不等式组的解集口诀“同大取大”,可分两种情况:212m m +≥+和212m m +<+讨论求解即可.【详解】解:由题意,分两种情况:当212m m +≥+即m ≥1时,2m +1=-1,解得:m =-1,不合题意,舍去;当212m m +<+即m <1时,m +2=-1,解得:m =-3,符合题意,故选:D .【点睛】本题考查解一元一次不等式组,解答关键是将不等式组解集口诀“同大取大,同小取小,大小小大取中间,大大小小找不到(无解)”逆用,即已知不等式组解集求m 的范围,注意分类讨论思想的运用,以防漏解.(2022春·河南驻马店·七年级校考期中)【16题答案】【答案】B【解析】【分析】先求出第一个不等式的解集,再根据不等式组的解集为x >4得出答案即可.【详解】解:262x x x m x -+-⎧⎨-⎩<①>②解不等式①得:4x >,解不等式②得:x m >,∵不等式组的解集为x >4,∴4m ≤,故B 正确.故选:B .【点睛】本题主要考查了解一元一次不等式组,能根据不等式的解集和不等式组的解集得出关于m 的不等式是解此题的关键.考查题型五不等式组和方程组结合问题(2022春·河南南阳·七年级统考期中)【17题答案】【答案】C【解析】【分析】先求出3﹣2x=3(k﹣2)的解为x932k-=,从而推出3k≤,整理不等式组可得整理得:1xx k≤-⎧⎨≥⎩,根据不等式组无解得到k>﹣1,则﹣1<k≤3,再由整数k和932kx-=是整数进行求解即可.【详解】解:解方程3﹣2x=3(k﹣2)得x932k-=,∵方程的解为非负整数,∴932k-≥0,∴3k≤,把()213x xx k⎧--≥⎨≥⎩整理得:1xx k≤-⎧⎨≥⎩,由不等式组无解,得到k>﹣1,∴﹣1<k≤3,即整数k=0,1,2,3,∵932kx-=是整数,∴k=1,3,综上,k=1,3,则符合条件的整数k的值的和为4.故选C.【点睛】本题主要考查了解一元一次方程,根据一元一次不等式组的解集情况求参数,解题的关键在于能够熟练掌握相关知识进行求解.(2022春·重庆忠县·七年级校考期中)【18题答案】【答案】B【解析】【分析】先将二元一次方程组128x y ax y+=+⎧⎨+=⎩的解用a表示出来,然后再根据题意列出不等式组求出的取值范围,进而求出所有a的整数值,最后求和即可.【详解】解:解关于x,y的二元一次方程组128x y ax y+=+⎧⎨+=⎩,得267x ay a=-⎧⎨=-⎩,∵关于x,y的二元一次方程组128x y ax y+=+⎧⎨+=⎩的解为正数,∴260 70aa->⎧⎨->⎩,∴3<a<7,∴满足条件的所有整数a的和为4+5+6=15.故选:B.【点睛】本题考查了二元一次方程组的解法、一元一次不等式组等知识点,根据题意求得a的取值范围是解答本题关键.(2022春·内蒙古呼伦贝尔·七年级校考期末)【19题答案】【答案】A【解析】【分析】将a看做已知数求出方程组的解表示出x与y,根据x与y都为正数,取出a的范围即可.【详解】解:解方程组322x yx y a+=⎧⎨-=-⎩,得:4353axay+⎧=⎪⎪⎨-⎪=⎪⎩,方程组的解为正数,∴03503a >⎪⎪⎨-⎪>⎪⎩,解得:45a -<<,故选:A .【点睛】此题考查了二元一次方程组的解, 方程组的解即为能使方程组中两方程成立的未知数的值.(2021春·福建南平·七年级统考期末)【20题答案】【答案】B【解析】【分析】两个方程相减得出x ﹣y =1﹣2k ,由0<x ﹣y <1知0<1﹣2k <1,解之即可得出答案.【详解】解:两个方程相减,得:x ﹣y =1﹣2k ,∵0<x ﹣y <1,∴0<1﹣2k <1,解得0<k <12,故选:B .【点睛】本题考查的是解二元一次方程组和一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.考查题型六 列一元一次不等式组(2021春·辽宁抚顺·七年级期末)【21题答案】【答案】1826x ≤≤【解析】【分析】设本次期末试卷的全卷总题数为x ,根据七年级下册数学课本有6章,每章至少有3个题,全卷总题数不超过26题,即可列出关于x 的不等式组.【详解】解:设本次期末试卷的全卷总题数为x ,根据题意得,26x ⎨≤⎩,解得1826x ≤≤.故答案为:1826x ≤≤.【点睛】本题考查了一元一次不等式组的应用,解题的关键是理解题意得到不等关系.(2020春·黑龙江佳木斯·七年级统考期末)【22题答案】【答案】()142626x x ≤+--<【解析】【分析】先根据“每间住4人,2人无处住”可得学生人数,再根据“每间住 6人,空一间还有一间不空也不满”建立不等式组即可得.【详解】设有x 间宿舍,则学生有()42x +人,由题意得:()142626x x ≤+--<,故答案为:()142626x x ≤+--<.【点睛】本题考查了列一元一次不等式组,理解题意,正确找出不等关系是解题关键.(2020春·江西南昌·七年级校联考期末)【23题答案】【答案】1483x <≤【解析】【分析】根据运行程序,第一次运算结果小于等于18,第二次运算结果大于18列出不等式组,然后求解即可.【详解】解:由题意得:36183(36)618x x -≤⎧⎨-->⎩①②,解不等式①,得:8x ≤,解不等式②,得:143x >,则x得取值范围是:148 3x<≤;故答案为148 3x<≤.【点睛】本题考查了一元一次不等式组的应用,读懂题目信息,理解运行程序并列出不等式组是解题的关键.(2020春·广西崇左·七年级统考期中)【24题答案】【答案】43<k<53【解析】【分析】将两个等式相减,可得3x-7y=3k-4,再根据0<3x-7y<1即可解出k 的范围.【详解】解:43165x y kx y-=+⎧⎨+=⎩①,②,①-②,得3x-7y=3k-4,则0<3k-4<1,解得43<k<53,故答案为:43<k<53.【点睛】此题主要考查二元一次方程组与不等式的综合,熟知二元一次方程组的解法是解题的关键.考查题型七用一元一次不等式组解决销售利润问题(2020·湖南湘潭·中考真题)【25题答案】【答案】(1)两种书的单价分别为35元和30元;(2)共有4种购买方案分别为:购买《北上》和《牵风记》的数量分别为17本和33本,购买《北上》和《牵风记》的数量分别为18本和32本,购买《北上》和《牵风记》的数量分别为19本和31本,购买《北上》和《牵风记》的数量分别为20本和30本;其中购买《北上》和《牵风记》的数量分别为17本和33本费用最低,最低费用为1585元.【解析】【分析】(1)设购买《北上》和《牵风记》的单价分别为x、y,根据“购买2本《北上》和1本《牵风记》需100元”和“ 购买2本《北上》和1本《牵风记》需100元”建立方程组求解即可;(2)设购买《北上》的数量n本,则购买《牵风记》的数量为50-n,根据“购买《北上》的数量不少于所购买《牵风记》数量的一半”和“购买两种书的总价不超过1600元”两个不等关系列不等式组解答并确定整数解即可.【详解】解:(1)设购买《北上》和《牵风记》的单价分别为x、y由题意得:210067x yx y+=⎧⎨=⎩解得3530xy=⎧⎨=⎩答:两种书的单价分别为35元和30元;(2)设购买《北上》的数量n本,则购买《牵风记》的数量为50-n根据题意得()()15023530501600n nn n⎧≥-⎪⎨⎪+-≤⎩解得:216203n≤≤则n可以取17、18、19、20,当n=17时,50-n=33,共花费17×35+33×30=1585元;当n=18时,50-n=32,共花费17×35+33×30=1590元;当n=19时,50-n=31,共花费17×35+33×30=1595元;当n=20时,50-n=30,共花费17×35+33×30=1600元;所以,共有4种购买方案分别为:购买《北上》和《牵风记》的数量分别为17本和33本,购买《北上》和《牵风记》的数量分别为18本和32本,购买《北上》和《牵风记》的数量分别为19本和31本,购买《北上》和《牵风记》的数量分别为20本和30本;其中购买《北上》和《牵风记》的数量分别为17本和33本费用最低,最低费用为1585元.【点睛】本题考查了二元一次方程组和不等式组的应用,弄清题意、确定等量关系和不等关系是解答本题的关键.(2019·四川泸州·统考中考真题)【26题答案】【答案】(1)A型汽车每辆的价格为25万元,B型汽车每辆的价格为30万元;(2)费用最省的方案是购买A型汽车4辆,B型汽车6辆,该方案所需费用为280万元.【解析】【分析】(1)设A 型汽车每辆的价格为x 万元,B 型汽车每辆的价格为y 万元,根据购买A 型汽车4辆,B 型汽车7辆,共需310万元;购买A 型汽车10辆,B 型汽车15辆,共需700万元,列方程组进行求解即可;(2)设购买A 型汽车m 辆,则购买B 型汽车(10)m -辆,根据总费用不超过285万元,且A 型汽车的数量少于B 型汽车的数量,列不等式组进行求解得出购买方案,然后再讨论即可得.【详解】解:(1)设A 型汽车每辆的价格为x 万元,B 型汽车每辆的价格为y 万元,由题意得:473101015700x y x y +=⎧⎨+=⎩,解得2530x y =⎧⎨=⎩,答:A 型汽车每辆的价格为25万元,B 型汽车每辆的价格为30万元;(2)设购买A 型汽车m 辆,则购买B 型汽车(10)m -辆,由题意得:102530(10)285m m m m <-⎧⎨+-≤⎩,解得:35m ≤<,因为m 是整数,所以3m =或4,当3m =时,该方案所需费用为:253307285⨯+⨯=万元;当4m =时,该方案所需费用为:254306280⨯+⨯=万元,答:费用最省的方案是购买A 型汽车4辆,B 型汽车6辆,该方案所需费用为280万元.【点睛】本题考查了二元一次方程组的应用,一元一次不等式组的应用,弄清题意,找准题中的等量关系、不等关系是解题的关键.(2020·湖南邵阳·中考真题)【27题答案】【答案】(1)A 型风扇、B 型风扇进货的单价各是10元和16元;(2)丹4种进货方案分别是:①进A 型风扇72台,B 型风扇28台;②进A 型风扇73台,B 型风扇27台;③进A 型风扇74台,B 型风扇26台;①进A 型风扇75台,B 型风扇24。
9-3 一元一次不等式组 课后练习题
9.3 一元一次不等式组 课后练习题一、单选题1.已知不等式组1,x x a ≥⎧⎨<⎩至少有两个整数解,则a 的取值范围是( ) A .23a <≤ B .23a ≤< C .2a ≥ D .2a > 2.如图,是一个不等式组的解集在数轴上的表示,则该不等式组的解集是( )A .-1<x ≤0B .0≤x <1C .0<x ≤1D .0<x <1 3.我们用[]a 表示不大于a 的最大整数,例如:[]1.31=,[]2.72=,若[]31x +=,则x 的取值范围是( )A .43x -≤<-B .32x --≤≤C .21x -≤<-D .02x ≤< 4.不等式()123m x m -<-的解集为2x >,则m 的值为( ). A .4 B .2 C .12 D .325.对于任意实数a 、b 定义一种新运算:a ⊕b =ab -a -b +2.例如,2⊕6=12-2-6+2=6.请根据上述定义解决问题:若m <(3⊕x )<5,并且这个关于x 的不等式组的解集中只有2个整数解,那么m 的取值范围是( )A .13m -<≤B .11m -<≤C .31m -<≤D .11m -≤<6.关于x 的不等式组()31213x a x x ⎧--⎪⎨+≥-⎪⎩<恰有2个整数解,则a 的取值范围是( ) A .6a < B .5a > C .56a << D .56a ≤<7.若关于x 的不等式组1230x x a ->-⎧⎨-≥⎩ 的整数解共有5个,则a 的取值范围是( ) A .-4<a ≤-3 B .-4≤a <-3 C .-4≤a ≤-3 D .-4<a <-3 8.关于x 的不等式1x a -<有三个非负整数解,则a 的取值范围是( )A .12a <<B .12a <≤C .12a ≤≤D .23a ≤≤9.已知3x =不是关于x 的不等式32x m ->的整数解,4x =是关于x 的不等式32x m ->的一个整数解,则m 的取值范围为( )A .710m <<B .7≤10m <C .7m < ≤10D .7≤m ≤1010.若关于x 的方程()42x x ax -+=的解为正整数,且关于x 的不等式组12260x x a x -⎧+>⎪⎨⎪-≤⎩有解,则满足条件的所有整数a 的值有( )个.A .1B .2C .3D .4二、填空题11.不等式组13264x x +≤⎧⎨--<-⎩的解集是______. 12.关于x 的不等式组230x x x a ->-⎧⎨-<⎩有且只有三个整数解,求a 的最大值是____________. 13.已知关于x ,y 的二元一次方程组325x y a x y a -=+⎧⎨+=⎩的解满足x y >,且关于x 的不等式组212216x a x +<⎧⎨-≥⎩无解,那么所有符合条件的整数a 的个数为_______. 14.若关于x 的不等式组0321x a x -≥⎧⎨->-⎩的整数解恰有2个,求a 的范围是______. 15.若不等式组123x a x b -<⎧⎨->⎩的解集为11x -<<,那么()()11a b +-的值等于__________.三、解答题16.解不等式组205121123x x x ->⎧⎪+-⎨+≥⎪⎩,并把解集在数轴上表示出来,并写出该不等式组的最大整数解.17.用若干辆载重量为8吨的汽车运一批货物,若每辆汽车只装4吨,则剩下20吨货物;若每辆汽车装8吨,则最后一辆汽车不满也不空.(1)若有x 辆车,则货物共有_________吨(用含x 的代数式表示).(2)请你算一算:有多少辆汽车运这批货物?18.解不等式组:253(2)13212x x x x +≤+⎧⎪⎨+-<⎪⎩,把不等式组的解集表示在数轴上,并求出整数解. 19.永辉超市要购进甲、乙两种型号的电磁炉,已知购进3台甲和2台乙花费1425元;购进1台甲和3台乙花费1175元.(1)求甲和乙两种型号的电磁炉每台进价分别是多少元?(2)为了满足市场需求,超市决定用15125元全部采购甲、乙两种型号,且两种型号均要购买,该超市共有哪几种进货方式?20.如果某一元一次方程的解是另一个一元一次不等式组的一个解,则称该一元一次方程为该不等式组的关联方程.例如:方程260x -=的解为3x =,不等式组205x x ->⎧⎨<⎩的解集为25x <<,因为235<<,所以方程260x -=为不等式组205x x ->⎧⎨<⎩的关联方程. (1)若不等式组1144275x x x ⎧-<⎪⎨⎪+≥-+⎩的一个关联方程的解是整数,求这个关联方程(写出一个即可);(2)若方程212x x -=+,1322x x ⎛⎫+=+ ⎪⎝⎭都是关于x 的不等式组22x x m x m <-⎧⎨-≤⎩的关联方程,求m 的取值范围.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2010— 2011下期七年级9.3不等式组检测题
一.选择题 (每小题4分,共32分)
1. 解集在数轴上表示为如图1所示的不等式组是
A.⎩⎨⎧≥->23
x x B.⎩⎨⎧≤-<23
x x C.⎩⎨⎧≥-<23
x x D.⎩⎨⎧≤->23
x x
2. 把不等式组⎩⎨⎧>-≥-360
42x x 的解集表示在数轴上,正确的是
3. 把不等式组⎩⎨⎧>-≥-360
42x x 的解集表示在数轴上,正确的是
4. 不等式组⎩
⎨⎧≤-->0542x x 的解集是 A.2->x B.52≤<-x C.5≤x D.无解
5. 已知关于x 的不等式组20
0x x a +>⎧⎨-≤⎩的整数解共有4个,则a 的最小值为 A.2 B.2.1 C.3 D.1
6. 将不等式84113822
x x x x +<-⎧⎪⎨≤-⎪⎩的解集在数轴上表示出来,正确的是
7. 不等式组201x x -<⎧⎨⎩
,≥的解集为 A.12x <≤ B.1x ≥ C.2x < D.无解
8. 把不等式组1020x x +≥⎧⎨->⎩
的解集表示在数轴上,正确的是
二填空题(每题4分共32分)
9. 不等式组2752312x x x
x -<-⎧⎪⎨++>⎪⎩的整数解是 .
10. 不等式组⎩
⎨⎧<+->-81312x x 的解集为_______。
11. 若不等式组⎩⎨⎧≤->03x a
x 有三个整数解,则a 的取值范围为_____
12. 不等式组⎩⎨⎧<+≥+320
1x x 的整数解是_______________________
13. 不等式组⎩⎨⎧-<+<21
2m x m x 的解集是x <m -2,则m 的取值应为_________。
14. 如果不等式组2223x a x b ⎧+⎪⎨⎪-<⎩
≥的解集是01x <≤,那么a b +的值为 .
15. 关于x 的不等式(5 – 2m )x > -3的解是正数,那么m 所能取的最小整数是__________。
16. 比较下面两个算式结果是的大小(在横线上填“>、<、=”)
2243+______2×3×4 2222+______2×2×2
225)2(+-______2×(—2)×5 4
312______)43(122⨯⨯+ 3
2212______322122⨯⨯+)()( 通过观察归纳,写出能反映这种规律的一般情况___________
三.解答题 (共36分)
17. 解不等式组,并把其解集在数轴上表示出来;
⎪⎩
⎪⎨⎧-<--≥+-.8)1(31,32
3x x x x (6分)
18. 已知01623,0132=--=+-x b x a ,且b a <≤4,求x 的取值范围。
(6分)
19. 解不等式组⎪⎩
⎪⎨⎧+<-≤-)1(42,11x x x x ,并写出不等式组的正整数解。
(6分)
20. 青青商场经销甲、乙两种商品,甲种商品每件进价15元,售价20元;乙种商品每件进价35元,售价45元。
(1)若该商场同时购进甲、乙两种商品共100件恰好用去2700元,求能购进甲、乙两种商品各多少件?
(2)该商场为使甲、乙两种商品共100件的总利润(利润=售价-进价)不少于750元,且不超过760元,请你帮助该商场设计相应的进货方案:(10分)
21. 2007年我市某县筹备20周年县庆,园林部门决定利用现有的3490盆甲种花卉和2950盆乙种花卉搭配A B ,两种园艺造型共50个摆放在迎宾大道两侧,已知搭配一个A 种造型需甲种花卉80盆,乙种花卉40盆,搭配一个B 种造型需甲种花卉50盆,乙种花卉90盆.
(1)某校九年级(1)班课外活动小组承接了这个园艺造型搭配方案的设计,问符合题意的搭配方案有几种?请你帮助设计出来.
(2)若搭配一个A 种造型的成本是800元,搭配一个B 种造型的成本是960元,试说明(1)中哪种方案成本最低?最低成本是多少元?(10分)
1 2 3 4 5 6 7 8
D A A B A C A C
1. [解析]本题考查了在数轴上表示不等式解集的方法,题目较简单.本题要注意区别“O ”和“●”表示的不同含义,正确选好不等号。
2. [解析]本题考查了用数轴表示不等式组的解集的能力.不等式2x 一4≥0的解集是x ≥2,不等式36>-x 的解集是3<x ,则该不等式组的解集为2≤x<2.其解集在数轴上表示应如选项A 所示,故排除B 、C ,D ,选A.
3. [解析]本题考查了用数轴表示不等式组的解集的能力.不等式2x 一4≥0的解集是x ≥2,不等式36>-x 的解集是3<x ,则该不等式组的解集为2≤x<2.其解集在数轴上表示应如选项A 所示,故排除B 、C ,D ,选A.
4. [解析]本题考查了求解不等式组的能力。
不等式2x>4的解为x>2,不等式05≤-x 的解为5≤x ,则该不等式组的解集是52≤<x ,故排除选项A 、C 、D 选B 。
6. [解析]主要考查一元一次不等式组的解法、利用数轴表示解集的方法.体现了数形结合的数学思想.
二.简答题答案:
9. 2 10. 37
1<<x
[解析]考查不等式组解集的计算。
11. 0<a <1
12. -1,0
13. m ≥-3
14. 1
15. 3
要使关于x 的不等式的解是正数,必须5 – 2m <0,即m >
25,故所取的最小整数是3。
16. >=>>>b a ab b a 、(222≥+为任意有理数)
三.解答题答案:
17. 解不等式x x ≥+-32
3
,得3≤x , 解不等式x x -<--8)1(31,得2->x 。
所以,原不等式组的解集是32≤<-x 。
在数轴上表示为
18. 由
01623,0132=--=+-x b x a , 可得.316
2,21
3+=-=x b x a
∵b a <≤4,∴⎪⎪⎩
⎪⎪⎨⎧>+≤-.43162,4213x x (1)(2) 由(1),得3≤x 。
由(2),得2->x 。
∴x 的取值范围是.32≤<-x
19. 解不等式①,得3≤x 。
解不等式②,得x>-2。
∴原不等式组的解集是:-2〈3≤x .
∴原不等式组的正整数解是:1,2,3。
20. (1)设该商场能购进甲种商品x 件。
根据题意,得2700)100(3515=-+x x 40=x
乙种商品:6040100=-(件)
答:该商场能购进甲种商品40件,乙种商品60件。
(2)设该商场购进甲种商品a 件,则购进乙种商品(100-a )件。
根据题意,得 ⎩
⎨⎧≤--+-≥--+-760)100)(3545()1520(750)100)(3545()1520(a a a a 因此,不等式组的解集为5048≤≤a
根据题意,a 的值应是整数,∴48=a 或49=a 或50=a
∴该商场共有三种进货方案:
方案一:购进甲种商品48件,乙种商品52件,
方案二:购进甲种商品49件,乙种商品51件,
方案三:购进甲种商品50件,乙种商品50件。
21. 解:设搭配A 种造型x 个,则B 种造型为(50)x -个,
依题意,得:8050(50)3490
4090(50)2950x x x x +-⎧⎨+-⎩≤≤
解这个不等式组,得:33
31x x ⎧⎨⎩≤≥,3133x ∴≤≤
x 是整数,x ∴可取313233,
,, ∴可设计三种搭配方案:
①A 种园艺造型31个 B 种园艺造型19个
②A 种园艺造型32个 B 种园艺造型18个
③A 种园艺造型33个 B 种园艺造型17个.
(2)方法一:由于B 种造型的造价成本高于A 种造型成本.所以B 种造型越少,成本越低,故应选择方案③,成本最低,最低成本为:338001796042720⨯+⨯=(元) 方法二:方案①需成本:318001996043040⨯+⨯=(元)
方案②需成本:328001896042880⨯+⨯=(元)
方案③需成本:338001796042720⨯+⨯=元
∴应选择方案③,成本最低,最低成本为42720元。