AON5820;中文规格书,Datasheet资料

合集下载

BTR-5820-SPG中文资料

BTR-5820-SPG中文资料

OptowayBTR-5820G**********************************************************************************************************************************************************************************************************************************************************************************************************************************************OPTOWAY TECHNOLOGY INC. No .38, Kuang Fu S. Road, Hu Kou, Hsin Chu Industrial Park, Hsin Chu, Taiwan 3031BTR-5820G / BTR-5820-SPG / BTR-5820AG / BTR-5820A-SPG1310 nm TX / 1490 nm RX , 3.3V / 155 Mbps RoHS Compliant Single-Fiber Transceiver***********************************************************************************************************************************************************************FEATURESl Single Fiber Bi-Directional Transceiver l 1310 nm LD Transmitter l 1490 nm Receiver l 1550 nm Video Block l Distance Up to 20 kml Industry Standard 1 x 9 Footprint l Single +3.3 V Power Supply l RoHS Compliantl LVPECL Differential Inputs and Outputs l 0 to 70o C Operating : BTR-5820G l -20 to 85o C Operating : BTR-5820AG l Wave Solderable and Aqueous Washablel Class 1 Laser International Safety Standard IEC-60825 CompliantAPPLICATIONSl WDM 155/622 Mb/s Linksl SONET/SDH Equipment Interconnect l Fiber Channel 532 Mb/s Links l CATVDESCRIPTIONThe BTR-5820G series is high performance module for single fiber communications by using 1310 nm transmitter and 1490 nm receiver. This module is equipped with 3W-TRX TM OE device to reject 1.55 um high power video signal. The transmitter section uses a multiple quantum well 1310 nm laser and is a class 1 laser compliant according to International Safety Standard IEC-60825. The receiver section uses an integrated 1490 nm detector preamplifier (IDP) mounted in an optical header and a limiting post-amplifier IC. A LVPECL logic interface simplifies interface to external circuitry.LASER SAFETYThis single mode transceiver is a Class 1 laser product. It complies with IEC-60825 and FDA 21 CFR 1040.10 and 1040.11. The transceiver must be operated within the specified temperature and voltage limits. The optical ports of the module shall be terminated with an optical connector or with a dust plug.ORDER INFORMATIONP/No.Bit Rate (Mb/s) Distance (km) TX (nm) RX (nm) Voltage (V) Package Temp (o C)TX Power (dBm)RX Sens. (dBm) RoHS Compliant BTR-5820G 622 20 1310 1490 3.3 1X9 0 to 70 -8 to -14 -28 Yes BTR-5820AG62220131014903.31X9-20 to 85 -8 to -14 -28 Yes Note: 1. BTR-XXXXG is 1X9 SC receptacle type package.2. BTR-XXXX-APBBBG is 1X9 pigtail type package with different connector, A=S is SC connector, A=F is FCconnector, A=T is ST connector, A=L is LC connector, A=M is MU connector; BBB is the length of fiber in cm.3. 3W-TRX TM is trade-mark co-owned by Zenko Technologies Inc. and Optoway Technology Inc.Absolute Maximum RatingsParameterSymbol Min Max Units NotesStorage Temperature Tstg -40 85 o COperating Temperature Topr 0 -20 70 85 o CBTR-5820G BTR-5820AGSoldering Temperature --- 260 oC 10 seconds on leads only Power Supply Voltage Vcc 0 4.5 V Input Voltage --- GND Vcc VOutput CurrentIout30mA**************************************************************************************************************************************************************************OPTOWAY TECHNOLOGY INC. No .38, Kuang Fu S. Road, Hu Kou, Hsin Chu Industrial Park, Hsin Chu, Taiwan 303Recommended Operating ConditionsParameterSymbol Min Typ Max Units Power Supply Voltage Vcc 3.13 3.3 3.47 V Operating Temperature Topr 0 -20 70 85 oC / BTR-5820G oC / BTR-5820AGData Rate50 622 650 Mb/s Power Supply CurrentIcc260mATransmitter Specifications (0o C < Topr < 70o C, 3.13V < Vcc < 3. 47V)ParameterSymbolMinTypMaxUnitsNotesOpticalOptical Transmit Power Po -14 --- -8 dBm 1Output Center Wavelength λ1260 1310 1360 nm Output Spectrum Width ∆λ--- --- 3 nm RMS (σ) Extinction Ratio E R 8.2 --- --- dB Output EyeCompliant with Bellcore GR-253-CORE and ITU recommendation G.957Optical Rise Time t r 1.2 ns 10% to 90% Values Optical Fall Timet f 1.2 ns 10% to 90% Values Relative Intensity Noise RIN -116 dB/Hz Total Jitter TJ 0.55 ns 2 ElectricalData Input Current – Low I IL -350 µA Data Input Current – High I IH 350 µA Differential Input Voltage V IH - V IL 300 mVData Input Voltage – Low V IL - V CC -2.0 -1.58 V 3 Data Input Voltage -- HighV IH - V CC-1.1-0.74V3Notes: 1. Output power is power coupled into a 9/125 µm single mode fiber.2. Measured with a 223-1 PRBS with 72 ones and 72 zeros.3. These inputs are compatible with 10K, 10KH and 100K ECL and PECL inputs.Receiver Specifications (0o C < Topr < 70o C, 3.13 V < Vcc < 3.47V)ParameterSymbol Min Typ Max Units Notes Optical Sensitivity--- --- --- -28 dBm 1Maximum Input Power Pin -3 --- --- dBmSignal Detect -- Asserted Pa --- --- -28 dBm Transition: low to high Signal Detect -- Deasserted Pd -40 --- --- dBm Transition: high to low Signal detect -- Hysteresis 1.0 --- 4.0 dBWavelength of Operation 1480 1500 nm 2,3 Optical Return Loss ORL 14 dBElectricalData Output Voltage – Low V OL - V CC -2.0 -1.58 V 4 Data Output Voltage – High V OH - V CC -1.1 -0.74 V 4 SD Output Voltage -- Low V OL - V CC -2.0 -1.58 V 4 SD Output Voltage -- HighV OH - V CC-1.1-0.74V4Notes: 1. Minimum sensitivity and saturation levels at BER 1E-10 for a 223-1 PRBS with 72 ones and 72 zeros. 2. At least 30 dB optical isolation for the wavelength 1260 to 1360 nm.3. At least 30 dB optical isolation for the wavelength 1550 to 1600 nm.4. These outputs are compatible with 10K, 10KH and 100K ECL and LVPECL outputs.CONNECTION DIAGRAMReceiver Signal Ground 1 (Rx GND)Receiver Data Out 2 (RD+) N/CReceiver Data Out Bar 3 (RD−)Signal Detect 4 (SD)Receiver Power Supply 5 (Rx Vcc) TOP VIEWTransmitter Power Supply 6 (Tx Vcc)Transmitter Data In Bar 7 (TD−)Transmitter Data In 8 (TD+) N/CTransmitter Signal Ground 9 (Tx GND)************************************************************************************************************************************************************************** OPTOWAY TECHNOLOGY INC. No.38, Kuang Fu S. Road, Hu Kou, Hsin Chu Industrial Park, Hsin Chu, Taiwan 303************************************************************************************************************************************************************************** OPTOWAY TECHNOLOGY INC. No.38, Kuang Fu S. Road, Hu Kou, Hsin Chu Industrial Park, Hsin Chu, Taiwan 303。

ATSTK520;中文规格书,Datasheet资料

ATSTK520;中文规格书,Datasheet资料

STK520 .............................................................................................. User GuideSTK520 User Guide 3Table of ContentsSection 1Introduction............................................................................................1-2Section 2Using the STK520 Top Module.............................................................2-42.1Connecting the STK520 to the STK500 Starter Kit..................................2-42.1.1Placing an AT90PWM3 on the STK520.............................................2-42.1.2Placing an AT90PWM2 on the STK520.............................................2-52.2Programming the AVR..............................................................................2-72.2.1In-System Programming....................................................................2-72.2.2High-voltage Programming................................................................2-82.3JTAGICE mkII Connector.........................................................................2-92.4STK520 Jumpers, Leds & Test Points....................................................2-112.5DALI Interface.........................................................................................2-122.6Potentiometer.........................................................................................2-13Section 3Troubleshooting Guide........................................................................3-14Section 4Technical Specifications......................................................................4-16Section 5Technical Support ...............................................................................5-17Section 6Complete Schematics .........................................................................6-20IntroductionSection 1IntroductionThe STK520 board is a top module designed to add AT90PWM family support to theSTK500 development board from Atmel Corporation.The STK520 includes connectors and hardware allowing full utilization of the new fea-tures of the AT90PWM, while the Zero Insertion Force (ZIF) socket allows easy to use ofSO24 & SO32 packages for prototyping.This user guide acts as a general getting started guide as well as a complete technicalreference for advanced users.Notice that in this guide, the word AVR is used to refer to the target component(AT90PWM2, AT90PWM3...)Figure 1-1. STK520 Top Module for STK500Introduction1.1Features STK520 is a New Member of the Successful STK500 Starter Kit Family.Supports the AT90PWM2 & AT90PWM3.DALI Hardware Interface.Supported by AVR Studio® 4.Zero Insertion Force Socket for SO24 & SO32 Packages.High Voltage Parallell Programming.Serial Programming.DALI Peripherals can be Disconnected from the Device.6 Pin Connector for On-chip Debugging using JTAG MKII Emulator.Potentiometer for the Demo Application.Quick Reference to all Switches and Jumpers in the Silk-Screen of the PCB.Using the STK520 Top Module Section 2Using the STK520 Top Module2.1Connecting the STK520 to theSTK500 Starter Kit Connect the STK520 to the STK500 expansion header 0 and 1. It is important that the top module is connected in the correct orientation as shown in Figure 2-1. The EXPAND0 written on the STK520 top module should match the EXPAND0 written beside the expansion header on the STK500 board.Figure 2-1. Connecting STK520 to the STK500 BoardNote:Connecting the STK520 with wrong orientation may damage the board.2.1.1Placing anAT90PWM3 on theSTK520The STK520 contains both a ZIF socket for a SO32 package. Care should be taken so that the device is mounted with the correct orientation. Figure 2-2 shows the location of pin1 for the ZIF socket.Using the STK520 Top ModuleFigure 2-2. Pin1 on ZIF SocketCaution: Do not mount an AT90PWM3 on the STK520 at the same time as an AVR ismounted on the STK500 board or at the same time as an AT90PWM2 is mounted on theSTK520 board. None of the devices might work as intended.2.1.2Placing anAT90PWM2 on theSTK520The STK520 contains both a ZIF socket for a SO24 package. Care should be taken so that the device is mounted with the correct orientation. Figure 2-2 shows the location of pin1 for the ZIF socket.Figure 2-3. Pin1 on ZIF SocketPIN1PIN1Using the STK520 Top Module Caution: Do not mount an AT90PWM2 on the STK520 at the same time as an AVR is mounted on the STK500 board or at the same time as an AT90PWM3 is mounted on the STK520 board. None of the devices might work as intended.Using the STK520 Top Module2.2Programming theAVR The AVR (AT90PWM2, AT90PWM3...) can be programmed using both SPI and High-voltage Parallel Programming. This section will explain how to connect the programming cables to successfully use one of these two modes. The AVR Studio STK500 software is used in the same way as for other AVR partsNote:The AT90PWM3 also support Self Programming, See AVR109 application note for more information on this topic.2.2.1In-SystemProgramming Figure 2-4. In-System ProgrammingTo program the AT90PWM3 using ISP Programming mode, connect the 6-wire cable between the ISP6PIN connector on the STK500 board and the ISP connector on the STK520 board as shown in Figure 2-4. The device can be programmed using the Serial Programming mode in the AVR Studio4 STK500 software.Note:See STK500 User Guide for information on how to use the STK500 front-end software for ISP Programming.Using the STK520 Top Module2.2.2High-voltageProgramming Figure 2-5. High-voltage (Parallel) ProgrammingTo program the AVR using High-voltage (Parallel) Programming, connect the PROGC-TRL to PORTD and PROGDATA to PORTB on the STK500 as shown in Figure 2-5. Make sure that the TOSC-switch is placed in the XTAL position.As described in the STK500 User Guide (jumper settings), mount the BSEL2 jumper in order to High-voltage Program the ATmega devices. This setting also applies to High-voltage Programming of the AVR.The device can now be programmed using the High-voltage Programming mode in AVR Studio STK500 software.Note:See the STK500 User Guide for information on how to use the STK500 front-end software in High-voltage Programming mode.Note:For the High-voltage Programming mode to function correctly, the target voltage must be higher than 4.5V.Using the STK520 Top Module2.3JTAGICE mkIIConnector See the following document :“JTAGICE mkII Quick Start Guide” which purpose is “Connecting to a target board with the AVR JTAGICE mkII”.This note explains which signals are required for ISP and which signals are required for debugWIRE.Figure 2-6 shows how to connect the JTAGICE mkII probe on the STK520 board. Figure 2-6. Connecting JTAG ICE to the STK520The ISP connector is used for the AT90PWM3 built-in debugWire interface. The pin out of the connector is shown in Table 2-1 and is compliant with the pin out of the JTAG ICE available from Atmel. Connecting a JTAG ICE to this connector allows On-chip Debug-ging of the AT90PWM3.More information about the JTAG ICE and On-chip Debugging can be found in the AVR JTAG ICE User Guide, which is available at the Atmel web site, .分销商库存信息: ATMELATSTK520。

DSC-CN5820

DSC-CN5820


5
REV 1.1
如韵电子 CONSONANCE
图3 利用电位器调光
LED电流调制
CN5820通过芯片内部的高速电压比较器调制LED电流,如图4所示。
图4 电流调制原理
在N沟道MOS场效应晶体管导通期间,输入电压对电感充电,电感电流增加,当电流检测电阻两端的电 压达到176毫伏时,DRV输出低电平,关断MOS场效应晶体管;在MOS场效应晶体管关断期间,电感放 电,电流减小,当电流检测电阻两端的电压减小到144毫伏时,DRV输出高电平,MOS场效应晶体管导通。 开关频率由下面的公式决定:
典型应用电路:
输 入 电 源 RCS
L1
D1 C1
1 CSN
GND 6
CN5820
2 DIM
5 DRV
3 VIN
VCC 4 C2
NMOS
订购信息:
器件型号 CN5820
图 1 典型应用电路
封装形式 SOT23-6
包装 盘装,每盘 3000 只
工作环境温度 -40℃ 到 85℃

144
电流检测阈值电压迟滞 CSHYS
32
输出高电平传输延时
tDPDH (VIN-VCSN)从0.22V降到0V
82
输出低电平传输延时
tDPDL (VIN-VCSN)从0V上升到0.22V
82
CSN管脚输入电流
ICSN
DRV管脚
DRV管脚输出电流
DRV管脚灌入电流
DRV输出高电平 DRV输出低电平 VCC管脚
参数
符号
测试条件
最小
典型
输入电压范围
VIN
4
工作频率 工作电流 电流0.4V

AOZ8025DI;中文规格书,Datasheet资料

AOZ8025DI;中文规格书,Datasheet资料

General DescriptionThe AOZ8025 is a 6-line device integrating EMI filtering with ESD protection for each line. It is designed to suppress unwanted EMI/RFI signals and provide electrostatic discharge (ESD) protection in portableelectronic equipment. This state-of-the-art device utilizes AOS leading edge Trench Vertical Structure [TVS]2 ™ technology for superior clamping performance and filter attenuation over the full operating display range. The AOZ8025 has been optimized for protection of color LCD displays and CCD camera lines in cellular phones and other portable consumer electronic devices.The AOZ8025 consists of six identical circuitscomprised of TVS diodes for ESD protection, and a resistor–capacitor network for EMI/RFI filtering. A series resistor value of 100Ω and a capacitance value of 9pF are used to achieve -20dB minimum attenuation from 1.0GHz to 3.0GHz. The TVS diodes provide effective suppression of ESD voltages in excess of ±20kV (contact discharge) and ±20kV (air discharge). This exceeds IEC 61000-4-2, level 4 ESD immunity test.The AOZ8025 comes in an RoHS compliant,3.0mm x 1.35mm DFN package and is rated over a -40°C to +85°C ambient temperature range.Featuresz 6 lines for EMI filtering and ESD protection:– Exceeds IEC 61000-4-2, level 4 (ESD) immunity test – ±20kV (contact discharge) and ±20kV (air discharge)z Trench Vertical Structure [TVS]2 ™ based technologyused to achieve excellent ESD clamping and filter performance over the full operating display rangez Filter performance: -20db attenuation from 1.0GHz to3.0GHzz Low operating voltage: 5.0Vz Capacitance stability over wide range of voltages andtemperaturesz DFN package: 3.0mm x1.35mm z Pb-Free deviceApplicationsz EMI filtering and ESD protection for data lines z LCD displays, camera interface, I/O interface z Portable handheld devices, cell phones,PDA phonesElectrical SchematicFigure 1.Ordering InformationAOS Green Products use reduced levels of Halogens, and are also RoHS compliant.Please visit /web/quality/rohs_compliant.jsp for additional information.Pin ConfigurationPin DescriptionPart NumberAmbient Temperature Range Package EnvironmentalAOZ8025DI-40°C to +85°C DFN-12RoHS Compliant Green ProductPin NumberPin NamePin Function1,12CH 1Channel 1 Connections 2, 11CH 2Channel 2 Connections 3, 10CH 3Channel 3 Connections 4, 9CH 4Channel 4 Connections 5, 8CH 5Channel 5 Connections 6, 7CH 6Channel 6 Connections Exposed PadGNDCommon Ground ConnectionAbsolute Maximum RatingsExceeding the Absolute Maximum ratings may damage the device.Notes:1. IEC 61000-4-2 discharge with C Discharge = 150pF, R Discharge = 330Ω.2. Human Body Discharge per MIL-STD-883, Method 3015 C Discharge = 100pF, R Discharge = 1.5k Ω.Electrical CharacteristicsT A = 25°C unless otherwise specified.Notes:3. The working peak reverse voltage, V RWM , should be equal to or greater than the DC or continuous peak operating voltage level.4. V BR is measured at the pulse test current I T .5. Measurements performed using a 100ns Transmission Line Pulse (TLP) system.6. Total capacitance is equal to 2 x C CH .7. Measured at 25°C, V R = 2.5V, f = 1.0MHz.8. Guaranteed by design.ParameterRatingStorage Temperature (T S )-65°C to +150°C ESD Rating per IEC61000-4-2, contact (1)±20kV ESD Rating per IEC61000-4-2, air (1)±20kV ESD Rating per Human Body Model (2)±30kVSymbolParameterConditionsMin.Typ.Max.UnitsV RWM Reverse Working Voltage (3)5.0V V BR Reverse Breakdown Voltage I T = 1mA (4)678V I R Reverse Leakage Current V RWM = 3.3V0.1µA V CLSignal Clamp VoltageI LOAD = 1A, positive clamp (5)(8)I LOAD = 1A, negative clamp (5)(8)7.0-3.0VI LOAD = 5A, positive clamp (5)(8)I LOAD = 5A, negative clamp (5)(8)8.0-8.0I LOAD = 12A, positive clamp (5)(8)I LOAD = 12A, negative clamp (5)(8)10.0-10.0R CH Total Series Resistance I R = 20mA90100110ΩC CH Channel Capacitance Input to Ground (6)(7)(8)8910pF f CCut-off Frequency Measured with 50Ω source and 50Ω load termination250MHz Attenuation from 1.0GHz to 3.0GHzV R = 0V Measured with 50Ω source and 50Ω load termination-20dBTypical Performance CharacteristicsPackage MarkingRevision HistoryRevision Revised Item Rev. 1.0Initial releaseAs used herein:1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.Alpha & Omega Semiconductor reserves the right to make changes to this data sheet at any time without notice.LIFE SUPPORT POLICYALPHA & OMEGA SEMICONDUCTOR PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS.分销商库存信息: AOSAOZ8025DI。

FGA25N120FTD;中文规格书,Datasheet资料

FGA25N120FTD;中文规格书,Datasheet资料

@ TC = 25oC @ TC = 100oC
Diode continuous Forward current Maximum Power Dissipation Maximum Power Dissipation Operating Junction Temperature
@ TC = 100oC @ TC = 25oC @ TC = 100oC
Symbol
Parameter
Test Conditions
VFM
Diode Forward Voltage
IF = 25A
TC = 25oC TC = 125oC
trr
Diode Reverse Recovery Time
TC = 25oC TC = 125oC
Irr
Diode Reverse Recovery Time
©2009 Fairchild Semiconductor Corporation
1
FGA25N120FTD Rev. A1
G
E
Ratings
1200 ± 25 50 25 75 25 313 125 -55 to +150 -55 to +150 300
Units
V V A A A A W W oC oC
Applications
• Induction heating and Microvewave oven • Soft switching applications
February 2009
tm
General Description
Using advanced field stop trench technology, Fairchild’s 1200V trench IGBTs offer superior conduction and switching performances, and easy parallel operation with exceptional avalanche ruggedness. This device is designed for soft switching applications.

SD5820A 单总线数字温度传感器 规格书 v0.1a-9fbd9648-ebba-4635-af67-03af5bcc8f4c

SD5820A 单总线数字温度传感器 规格书 v0.1a-9fbd9648-ebba-4635-af67-03af5bcc8f4c

1.5℃。 过温报警阈值可通过内置寄存器设定。另 外,SD5820A 可使用通信线直接供电( “寄生 电源模式” ) ,从而消除了对电源供电的要求。 每颗芯片可设置一个长达 64 位的独特地 址,适用于多从机通信系统。
应用领域
温控系统 工业过程控制 电源热保护 环境温度检测
描述
SD5820A 是一款高准确度温度传感器芯 片。 支持单总线通信, 可输出 9 到 12 位数字温 度数据,在 -10℃~ +85℃范围内最大误差± 0.8℃,在 -55℃~ +125℃范围内最大误差 ±
注:最大转换时间取决于模拟电路 ADC 的转换速度。
晶华微电子
版本 0.1a
2018/4
第 4 页 共 17 页

SD5820A
CRC 发生器
在 SD5820A 中,有两处存有 CRC 字节,一 处是 64-bit ID 码的最高 8bit ,另一处是 SCRATCHPAD 的第 9 个字节。 CRC 能够在总线控 制器读取 SD5820A 时进行数据校验。 为校验数 据是否被正确读取,总线控制器对接收到的数 据计算出其 CRC 值, 并和存储在 EEPROM 中 的 8 位 CRC 值(读 ROM 时)或 SD5820A 内 部计算出的 8 位 CRC 值(读 SCRATCHPAD 时) 进行比较。 如果计算得到的 CRC 值和读取 出来的 CRC 值相吻合,表明数据传输无误。 CRC 值的比较以及是否进行下一步操作完全 由总线控制器决定。 即便 CRC 值不吻合, 总线 控制器依然可以继续发送命令序列。 CRC 的等效多项式如下: CRC = X8 + X5 + X4 + 1 如图 4 所示,CRC 电路由移位寄存器和 XOR 门组成,移位寄存器的各位都被初始化 为 0。从 ROM 码或寄存器中字节 0 的最低有 效位开始, 逐位移入寄存器。 在第 56 位编码数 据或寄存器字节 7 的最高位被移入寄存器之 后, 多项式发生器中就存储了 CRC 值。 接下来 该 CRC 值继续逐位移入电路。 如果计算得到的 CRC 值是正确的, 那么此时移位寄存器值将会 为 0。

1N5820-1N5822 PDF规格书

1N5820-1N5822 PDF规格书

1N5820 THRU 1N5822SCHOTTKY BARRIER RECTIFIERReverse Voltage - 20 to 40 Volts Forward Current - 3.0 AmperesCase : JEDEC DO-201AD molded plastic bodyTerminals : Plated axial leads, solderable per MIL-STD-750,Method 2026Polarity : Color band denotes cathode end Mounting Position : AnyWeight :0.04 ounce, 1.10 gramsPlastic package has Underwriters Laboratory Flammability Classification 94V-0Metal silicon junction,majority carrier conduction Guardring for overvoltage protection Low power loss,high erriciencyHigh current capability,low forward voltage drop High surge capabilityFor use in low voltage,high frequency inverters,free wheeling,and polarity protection applications High temperature soldering guaranteed:250 C/10 seconds,0.375”(9.5mm) lead length,5 lbs. (2.3kg) tensionFEATURESMECHANICAL DATAMAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICSDimensions in inches and (millimeters)2014203021304028401N5820VOLTS VOLTS VOLTS SYMBOLSUNITS Amps AmpsVolts V RRM V RMS V DC I (AV)I FSM V F 3.080.00.500Operating junction and storage temperature rangeMaximum repetitive peak reverse voltage Maximum RMS voltageMaximum DC blocking voltageMaximum average forward rectified current 0.375”(9.5mm) lead length at T L =95 C Peak forward surge current8.3ms single half sine-wave superimposed on rated load (JEDEC Method)Maximum instantaneous forward voltage at 3.0A Maximum DC reverse current T A =25 C at rated DC blocking voltage T A =100 C Typical junction capacitance (NOTE 1)Note:1.Measured at 1MHz and applied reverse voltage of 4.0V D.C.2.Thermal resistance from junction to ambient at 0.375”(9.5mm)lead length,P.C.B. mountedI R 0.540.0R θJA C J T J ,T STG40.0300.0-65 to +125pF CmA Typical thermal resistance (NOTE 2)C/W 1N58211N5822Ratings at 25 C ambient temperature unless otherwise specified.Single phase half-wave 60Hz,resistive or inductive load,for current capacitive load derate by 20%.DO-201AD0.4750.525RATINGS AND CHARACTERISTIC CURVES 1N5820 THRU 1N582243210 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.60.01 0.1 1 10 1001001010.1REVERSE VOLTAGE,VOLTSt,PULSE DURATION,sec.FIG. 5-TYPICAL JUNCTION CAPACITANCEFIG. 6-TYPICAL TRANSIENT THERMAL IMPEDANCEFIG. 3-TYPICAL INSTANTANEOUS FORWARDCHARACTERISTICSNUMBER OF CYCLES AT 60 HzFIG. 2-MAXIMUM NON-REPETITIVE PEAK FORWARDFIG. 1- FORWARD CURRENT DERATING CURVEA V E R A G E F O R W A R D C U R R E N T ,A M P E R E SI N S T A N T A N E O U S F O R W A R D C U R R E N T ,A M P E R E SJ U N C T I O N C A P A C I T A N C E , p FP E A K F O R W A R D S U R G E C U R R E N T ,A M P E R E SINSTANTANEOUS FORWARD VOLTAGE,VOLTS1001010.10.01PERCENT OF PEAK REVERSE VOLTAGE,%FIG. 4-TYPICAL REVERSE CHARACTERISTICSI N S T A N T A N E O U S R E V E R S E C U R R E N T ,M I L L I A M P E R E ST R A N S I E N T T H E R M A L I M P E D A N C E ,C /WLEAD TEMPERATURE, C。

HGTP20N60A4;中文规格书,Datasheet资料

HGTP20N60A4;中文规格书,Datasheet资料

HGTG20N60A4, HGTP20N60A4600V, SMPS Series N-Channel IGBTsThe HGTG20N60A4 and HGTP20N60A4 are MOS gated high voltage switching devices combining the best features of MOSFETs and bipolar transistors. These devices have the high input impedance of a MOSFET and the low on-state conduction loss of a bipolar transistor. The much loweron-state voltage drop varies only moderately between 25o C and 150o C.This IGBT is ideal for many high voltage switching applications operating at high frequencies where low conduction losses are essential. This device has been optimized for high frequency switch mode power supplies.Formerly Developmental Type TA49339.Symbol Features•>100kHz Operation at 390V, 20A•200kHz Operation at 390V, 12A•600V Switching SOA Capability•Typical Fall Time. . . . . . . . . . . . . . . . . 55ns at T J = 125o C •Low Conduction Loss•Temperature Compensating SABER™ Model•Related Literature-TB334 “Guidelines for Soldering Surface MountComponents to PC BoardsPackagingJEDEC TO-220AB ALTERNATE VERSIONJEDEC STYLE TO-247Ordering InformationPART NUMBER PACKAGE BRAND HGTP20N60A4TO-220AB20N60A4HGTG20N60A4TO-24720N60A4 NOTE:When ordering, use the entire part number.CEGGCE COLLECTOR(FLANGE)COLLECTOR(FLANGE)CEGAbsolute Maximum Ratings T C = 25o C, Unless Otherwise SpecifiedHGTG20N60A4, HGTP20N60A4UNITS Collector to Emitter Voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .BV CES600V Collector Current ContinuousAt T C = 25o C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .I C2570A At T C = 110o C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .I C11040A Collector Current Pulsed (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I CM280A Gate to Emitter Voltage Continuous. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .V GES±20V Gate to Emitter Voltage Pulsed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .V GEM±30V Switching Safe Operating Area at T J = 150o C (Figure 2) . . . . . . . . . . . . . . . . . . . . . . . SSOA100A at 600VPower Dissipation Total at T C = 25o C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .P D290W Power Dissipation Derating T C > 25o C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.32W/o C Operating and Storage Junction Temperature Range . . . . . . . . . . . . . . . . . . . . . . . . T J, T STG-55 to 150o C Maximum Lead Temperature for SolderingLeads at 0.063in (1.6mm) from Case for 10s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T L Package Body for 10s, See Tech Brief 334 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .T PKG 300260o Co CCAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.NOTE:1.Pulse width limited by maximum junction temperature.Electrical Specifications T J = 25o C, Unless Otherwise SpecifiedPARAMETER SYMBOL TEST CONDITIONS MIN TYP MAX UNITS Collector to Emitter Breakdown Voltage BV CES I C = 250µA, V GE = 0V600--V Emitter to Collector Breakdown Voltage BV ECS I C = 10mA, V GE = 0V15--V Collector to Emitter Leakage Current I CES V CE = 600V T J = 25o C--250µAT J = 125o C-- 2.0mACollector to Emitter Saturation Voltage V CE(SAT)I C = 20A,V GE = 15V T J = 25o C- 1.8 2.7V T J = 125o C- 1.6 2.0VGate to Emitter Threshold Voltage V GE(TH)I C = 250µA, V CE = 600V 4.5 5.57.0V Gate to Emitter Leakage Current I GES V GE = ±20V--±250nA Switching SOA SSOA T J = 150o C, R G = 3Ω, V GE = 15VL = 100µH, V CE = 600V100--A Gate to Emitter Plateau Voltage V GEP I C = 20A, V CE = 300V-8.6-VOn-State Gate Charge Q g(ON)I C = 20A,V CE = 300V V GE = 15V-142162nC V GE = 20V-182210nCCurrent Turn-On Delay Time t d(ON)I IGBT and Diode at T J = 25o CI CE = 20AV CE = 390VV GE =15VR G = 3ΩL = 500µHTest Circuit (Figure 20)-15-nsCurrent Rise Time t rI-12-ns Current Turn-Off Delay Time t d(OFF)I-73-ns Current Fall Time t fI-32-ns Turn-On Energy (Note 3)E ON1-105-µJ Turn-On Energy (Note 3)E ON2-280350µJ Turn-Off Energy (Note 2)E OFF-150200µJCurrent Turn-On Delay Time t d(ON)I IGBT and Diode at T J = 125o C I CE = 20A V CE = 390V V GE = 15V R G = 3ΩL = 500µHTest Circuit (Figure 20)-1521ns Current Rise Timet rI -1318ns Current Turn-Off Delay Time t d(OFF)I -105135ns Current Fall Time t fI -5573ns Turn-On Energy (Note 3)E ON1-115-µJ Turn-On Energy (Note 3)E ON2-510600µJ Turn-Off Energy (Note 2)E OFF -330500µJThermal Resistance Junction To Case R θJC--0.43o C/WNOTES:2.Turn-Off Energy Loss (E OFF ) is defined as the integral of the instantaneous power loss starting at the trailing edge of the input pulse and ending at the point where the collector current equals zero (I CE = 0A). All devices were tested per JEDEC Standard No. 24-1 Method for Measurement of Power Device Turn-Off Switching Loss. This test method produces the true total Turn-Off Energy Loss.3.Values for two Turn-On loss conditions are shown for the convenience of the circuit designer. E ON1 is the turn-on loss of the IGBT only. E ON2 is the turn-on loss when a typical diode is used in the test circuit and the diode is at the same T J as the IGBT. The diode type is specified in Figure 20.Electrical SpecificationsT J = 25o C, Unless Otherwise Specified (Continued)PARAMETERSYMBOL TEST CONDITIONSMIN TYP MAX UNITS Typical Performance CurvesUnless Otherwise SpecifiedFIGURE 1.DC COLLECTOR CURRENT vs CASETEMPERATUREFIGURE 2.MINIMUM SWITCHING SAFE OPERATING AREAFIGURE 3.OPERATING FREQUENCY vs COLLECTOR TOEMITTER CURRENTFIGURE 4.SHORT CIRCUIT WITHSTAND TIMET C , CASE TEMPERATURE (o C)I C E , D C C O L L E C T O R C U R R E N T (A )502008040602575100125150100V GE = 15VPACKAGE LIMITDIE CAPABILITYV CE , COLLECTOR TO EMITTER VOLTAGE (V)700600I C E , C O L L E C T O R T O E M I T T E R C U R R E N T (A )2030040020010050060008010040120T J = 150o C, R G = 3Ω, V GE = 15V, L = 100µHf M A X , O P E R A T I N G F R E Q U E N C Y (k H z )5I CE , COLLECTOR TO EMITTER CURRENT (A)40300501020500T J = 125o C, R G = 3Ω, L = 500µH, V CE = 390V 1004030f MAX1 = 0.05 / (t d(OFF)I + t d(ON)I )R ØJC = 0.43o C/W, SEE NOTES P C = CONDUCTION DISSIPATION(DUTY FACTOR = 50%)f MAX2 = (P D - P C ) / (E ON2 + E OFF )T C V GE 15V75o CV GE , GATE TO EMITTER VOLTAGE (V)I S C , P E A K S H O R T C I R C U I T C U R R E N T (A )t S C , S H O R T C I R C U I T W I T H S T A N D T I M E (µs )10111215021010025035045014131446812150200300400V CE = 390V, R G = 3Ω, T J = 125o Ct SCI SCFIGURE 5.COLLECTOR TO EMITTER ON-STATE VOLTAGEFIGURE 6.COLLECTOR TO EMITTER ON-STATE VOLTAGEFIGURE 7.TURN-ON ENERGY LOSS vs COLLECTOR TOEMITTER CURRENT FIGURE 8.TURN-OFF ENERGY LOSS vs COLLECTOR TOEMITTER CURRENTFIGURE 9.TURN-ON DELAY TIME vs COLLECTOR TOEMITTER CURRENT FIGURE 10.TURN-ON RISE TIME vs COLLECTOR TOEMITTER CURRENT0.8 1.2V CE , COLLECTOR TO EMITTER VOLTAGE (V)I C E , C O L L E C T O R T O E M I T T E R C U R R E N T (A )20401.62.03.28060T J = 125o C T J = 150o CPULSE DURATION = 250µsDUTY CYCLE < 0.5%, V GE = 12V 100T J = 25o C0.4 2.4 2.8I C E , C O L L E C T O R T O E M I T T E R C U R R E N T (A )V CE , COLLECTOR TO EMITTER VOLTAGE (V)DUTY CYCLE < 0.5%, V GE = 15V PULSE DURATION = 250µs T J = 150o CT J = 25o CT J = 125o C204080601000.8 1.2 1.6 2.00.4 2.4 2.8E O N 2, T U R N -O N E N E R G Y L O S S (µJ )1000600I CE , COLLECTOR TO EMITTER CURRENT (A)8004001200015102025303540T J = 125o C, V GE = 12V, V GE = 15VR G = 3Ω, L = 500µH, V CE = 390VT J = 25o C, V GE = 12V , V GE = 15V20051400600I CE , COLLECTOR TO EMITTER CURRENT (A)E OF F , T U R N -O F F E N E RG Y L O S S (µJ )100400200500700800T J = 25o C, V GE = 12V OR 15VT J = 125o C, V GE = 12V OR 15V300 R G = 3Ω, L = 500µH, V CE = 390V 151020253035405I CE , COLLECTOR TO EMITTER CURRENT (A)t d (O N )I ,T U R N -O N D E L A Y T I M E (n s )81416182022151020253035405T J = 25o C, T J = 125o C, V GE = 15VT J = 25o C, T J = 125o C, V GE = 12VR G = 3Ω, L = 500µH, V CE = 390V 1210I CE , COLLECTOR TO EMITTER CURRENT (A)t r I ,R I S E T I M E (n s )4820161224363228R G = 3Ω, L = 500µH, V CE = 390VT J = 25o C, T J = 125o C, V GE = 12VT J = 25o C OR T J = 125o C, V GE = 15V151020253035405FIGURE 11.TURN-OFF DELAY TIME vs COLLECTOR TOEMITTER CURRENT FIGURE 12.FALL TIME vs COLLECTOR TO EMITTERCURRENTFIGURE 13.TRANSFER CHARACTERISTICFIGURE 14.GATE CHARGE WAVEFORMSFIGURE 15.TOTAL SWITCHING LOSS vs CASETEMPERATUREFIGURE 16.TOTAL SWITCHING LOSS vs GATE RESISTANCE806070I CE , COLLECTOR TO EMITTER CURRENT (A)t d (O F F )I , T U R N -O F F D E L A Y T I M E (n s )12010011090V GE = 12V, V GE = 15V , T J = 25o CV GE = 12V, V GE = 15V , T J = 125o CR G = 3Ω, L = 500µH, V CE = 390V151020253035405I CE , COLLECTOR TO EMITTER CURRENT (A)t f I , F A L L T I M E (n s )16322448644056R G = 3Ω, L = 500µH, V CE = 390V7280151020253035405T J = 125o C, V GE = 12V OR 15VT J = 25o C, V GE = 12V OR 15V I C E , C O L L E C T O R T O E M I T T E R C U R R E N T (A )801207891012V GE , GATE TO EMITTER VOLTAGE (V)111602002406PULSE DURATION = 250µsDUTY CYCLE < 0.5%, V CE = 10V T J = 125o CT J = -55o CT J = 25o C40V G E , G A T E T O E M I T T E R V O L T A G E (V )Q G , GATE CHARGE (nC)2140410I G(REF) = 1mA, R L = 15Ω, T J = 25o CV CE = 200V V CE = 400V681216V CE = 600V20406080120100140160I CE = 10A00.20.45075100T C , CASE TEMPERATURE (o C)0.61.0125251501.80.8E T O T A L , T O T A L S W I T C H I N G E N E R G Y L O S S (m J )E TOTAL = E ON2 + E OFFR G = 3Ω, L = 500µH, V CE = 390V, V GE = 15V 1.41.21.6I CE = 30AI CE = 20A0.110100R G , GATE RESISTANCE (Ω)131000E T O T A L , T O T A L S W I T C H I N G E N E R G Y L O S S (m J )10T J = 125o C, L = 500µH, V CE = 390V, V GE = 15V E TOTAL = E ON2 + E OFF I CE = 10AI CE = 20A I CE = 30AFIGURE 17.CAPACITANCE vs COLLECTOR TO EMITTERVOLTAGE FIGURE 18.COLLECTOR TO EMITTER ON-STATE VOLTAGEvs GATE TO EMITTER VOLTAGEFIGURE 19.IGBT NORMALIZED TRANSIENT THERMAL RESPONSE, JUNCTION TO CASETest Circuit and WaveformsFIGURE 20.INDUCTIVE SWITCHING TEST CIRCUIT FIGURE 21.SWITCHING TEST WAVEFORMSV CE , COLLECTOR TO EMITTER VOLTAGE (V)C , C A P A C I T A N C E (n F )2040608010013452FREQUENCY = 1MHzC IESC OES C RES V GE , GATE TO EMITTER VOLTAGE (V)891.710121.82.01.911131415162.12.2V C E , C O L L E C T O R T O E M I T T E R V O L T A G E (V )I CE = 30A I CE = 20AI CE = 10ADUTY CYCLE < 0.5%, T J = 25o C PULSE DURATION = 250µs,t 1,RECTANGULAR PULSE DURATION (s)Z θJ C ,N O R M A L I Z E D T H E R M A L R E S P O N S E10-210-110010-510-310-210-110010-4t 1t 2P DDUTY FACTOR, D = t 1 / t 2PEAK T J = (P D X Z θJC X R θJC ) + T CSINGLE PULSE0.10.20.50.050.010.02R G = 3ΩL = 500µHV DD = 390V+-HGTG20N60A4D DUTDIODE TA49372t fIt d(OFF)It rI t d(ON)I10%90%10%90%V CEI CEV GEE OFFE ON2Handling Precautions for IGBTsInsulated Gate Bipolar T ransistors are susceptible togate-insulation damage by the electrostatic discharge of energy through the devices. When handling these devices, care should be exercised to assure that the static charge built in the handler’s body capacitance is not discharged through the device. With proper handling and application procedures, however, IGBTs are currently being extensively used in production by numerous equipment manufacturers in military, industrial and consumer applications, with virtually no damage problems due to electrostatic discharge. IGBTs can be handled safely if the following basic precautions are taken:1.Prior to assembly into a circuit, all leads should be keptshorted together either by the use of metal shortingsprings or by the insertion into conductive material such as “ECCOSORBD™ LD26” or equivalent.2.When devices are removed by hand from their carriers,the hand being used should be grounded by any suitable means - for example, with a metallic wristband.3.Tips of soldering irons should be grounded.4.Devices should never be inserted into or removed fromcircuits with power on.5.Gate Voltage Rating - Never exceed the gate-voltagerating of V GEM. Exceeding the rated V GE can result in permanent damage to the oxide layer in the gate region.6.Gate Termination - The gates of these devices areessentially capacitors. Circuits that leave the gateopen-circuited or floating should be avoided. Theseconditions can result in turn-on of the device due tovoltage buildup on the input capacitor due to leakagecurrents or pickup.7.Gate Protection - These devices do not have an internalmonolithic Zener diode from gate to emitter. If gateprotection is required an external Zener is recommended.Operating Frequency InformationOperating frequency information for a typical device (Figure3) is presented as a guide for estimating device performance for a specific application. Other typical frequency vs collector current (I CE) plots are possible using the information shown for a typical unit in Figures 6, 7, 8, 9 and 11. The operating frequency plot (Figure 3) of a typical device shows f MAX1 or f MAX2; whichever is smaller at each point. The information is based on measurements of a typical device and is bounded by the maximum rated junction temperature.f MAX1 is defined by f MAX1 = 0.05/(t d(OFF)I+ t d(ON)I). Deadtime (the denominator) has been arbitrarily held to 10% of the on-state time for a 50% duty factor. Other definitions are possible. t d(OFF)I and t d(ON)I are defined in Figure 21. Device turn-off delay can establish an additional frequency limiting condition for an application other than T JM.f MAX2 is defined by f MAX2 = (P D - P C)/(E OFF + E ON2). The allowable dissipation (P D) is defined by P D = (T JM - T C)/RθJC. The sum of device switching and conduction losses must not exceed P D. A 50% duty factor was used (Figure 3) and the conduction losses (P C) are approximated byP C=(V CE x I CE)/2.E ON2 and E OFF are defined in the switching waveforms shown in Figure 21. E ON2 is the integral of the instantaneous power loss (I CE x V CE) during turn-on andE OFF is the integral of the instantaneous power loss(I CE x V CE) during turn-off. All tail losses are included in the calculation for E OFF; i.e., the collector current equals zero (I CE = 0).分销商库存信息: FAIRCHILD HGTP20N60A4。

4580N;中文规格书,Datasheet资料

4580N;中文规格书,Datasheet资料

/
分销商库存信息:
EBM-PAPST 4580N
/
4580 N
AC axial compact fan
Product drawing
Web data sheet XI · Page 3 of 4 ebm-papst St. Georgen GmbH & Co. KG · Hermann-Papst-Straße 1 · D-78112 St. Georgen · Phone +49 7724 81-0 · Fax +49 7724 81-1309 · info2@ ·
/
4580 N
AC axial compact fan
Charts: Air flow
(in H ² O) 0,05 0,10 0,15
∆ pf ä
Pa
40
30
20
10
0
15
30
45
60
CFM50
75
100
Web data sheet XI · Page 4 of 4 ebm-papst St. Georgen GmbH & Co. KG · Hermann-Papst-Straße 1 · D-78112 St. Georgen · Phone +49 7724 81-0 · Fax +49 7724 81-1309 · info2@ ·
Nominal data
Type Phase Nominal voltage Frequency Speed Power input Min. ambient temperature Max. ambient temperature Air flow Sound power level Sound pressure level VAC Hz min-1 W °C °C m3/h B dB(A) 4580 N 1~ 230 50 2350 18.0 -10 55 123 5.2 41

AO4850;中文规格书,Datasheet资料

AO4850;中文规格书,Datasheet资料

SymbolTyp Max t ≤ 10s 5062.5Steady-State 82110Steady-StateR θJL4150°C/WUnits R θJA °C/W °C/W Thermal Characteristics Maximum Junction-to-Ambient A Maximum Junction-to-Ambient A Maximum Junction-to-Lead CParameterAO4850SymbolMin TypMaxUnits BV DSS 75V 1T J =55°C5I GSS 100nA V GS(th)1 2.33V I D(ON)15A 105130T J =125°C158195126165m Ωg FS 10S V SD 0.771V I S2.5A C iss 290380pF C oss 54pF C rss 24pF R g2.43.5ΩQ g (10V) 5.147nC Q g (4.5V) 2.34nC Q gs 0.97nC Q gd 1.18nC t D(on)4ns t r 3.4ns t D(off)14.4ns t f 2.4ns t rr 30.245ns Q rr21.5nCTHIS PRODUCT HAS BEEN DESIGNED AND QUALIFIED FOR THE CONSUMER MARKET. APPLICATIONS OR USES AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS ARE NOT AUTHORIZED. AOS DOES NOT ASSUME ANY LIABILITY ARISING OUT OF SUCH APPLICATIONS OR USES OF ITS PRODUCTS. AOS RESERVES THE RIGHT TO IMPROVE PRODUCT DESIGN,FUNCTIONS AND RELIABILITY WITHOUT NOTICE.Body Diode Reverse Recovery TimeBody Diode Reverse Recovery Charge I F =3.1A, dI/dt=100A/µsDrain-Source Breakdown Voltage On state drain currentI D =10mA, V GS =0V V GS =10V, V DS =5V V GS =10V, I D =3.1AReverse Transfer Capacitance I F =3.1A, dI/dt=100A/µsElectrical Characteristics (T J =25°C unless otherwise noted)STATIC PARAMETERS Parameter Conditions I DSS µA Gate Threshold Voltage V DS =V GS I D =250µA V DS =75V, V GS =0VV DS =0V, V GS = ±25V Zero Gate Voltage Drain Current Gate-Body leakage current R DS(ON)Static Drain-Source On-ResistanceForward TransconductanceDiode Forward Voltagem ΩV GS =4.5V, I D =2AI S =1A,V GS =0V V DS =5V, I D =3.1ATotal Gate Charge Gate Source Charge Gate resistanceV GS =0V, V DS =0V, f=1MHzTurn-On Rise Time Turn-Off DelayTime V GS =10V, V DS =30V, R L =9.7Ω, R GEN =3ΩTurn-Off Fall TimeMaximum Body-Diode Continuous CurrentInput Capacitance Output Capacitance Turn-On DelayTime DYNAMIC PARAMETERS V GS =10V, V DS =30V, I D =3.1ATotal Gate Charge Gate Drain Charge V GS =0V, V DS =30V, f=1MHz SWITCHING PARAMETERS A: The value of R θJA is measured with the device mounted on 1in 2 FR-4 board with 2oz. Copper, in a still air environment with T A =25°C. The value in any given application depends on the user's specific board design. The current rating is based on the t ≤10s thermal resistance rating.B: Repetitive rating, pulse width limited by junction temperature.C. The R θJA is the sum of the thermal impedence from junction to lead R θJL and lead to ambient.D. The static characteristics in Figures 1 to 6 are obtained using <300 µs pulses, duty cycle 0.5% max.E. These tests are performed with the device mounted on 1 in 2 FR-4 board with 2oz. Copper, in a still air environment with T A =25°C. The SOA curve provides a single pulse rating. Rev 1: May. 2007分销商库存信息: AOSAO4850。

AS8510 DB;中文规格书,Datasheet资料

AS8510 DB;中文规格书,Datasheet资料

AS8510Data Acquisition Device for Battery SensorsDatasheet1 General DescriptionThe AS8510 is a virtually offset free, low noise, two channel measurement device. It is tailored to accurately measure battery current from mA range up to kA range in conjunction with a 100 µΩ shunt resistor in series with the battery rail. Through the second measurement channel it enables capture of, either battery voltage synchronous with the current measurement, or, measure the analog output of an internal or external temperature sensor. Both channels are matched and can either measure small signals up to ±160 mV versus ground, through programmable gain amplifier or larger signals in the 0 to 1V range without the amplifier.After analog to digital conversion and digital filtering, the resulting 16-bit digital words are accessible through 4-wire standard serial interface.The device includes a number of additional features explained in the next section.2 Key Features3.3V supply voltageTwo High resolution 16 bit Σ−Δ A/D convertersProgrammable sampling to enable data throughputs from lessthan 1Hz to 8kHzZero Offset for both channelsIndependent control of data rate on both channels Precision, low noise, programmable gain amplifiers for bothchannels with gains 5, 25, 40, 100 to support wide dynamic ranges.Option for multiplexing either one differentialinput, or two single ended inputs or the internal temperature sensor on one channelProgrammable current source for external temperature sensorconnectable to any of the inputsHigh precision and high stability 1.2V reference voltage source Digital signal processing with filter options for both channels Four operating modes providing-Continuous data acquisition (or)-Periodic single-shot acquisition, (or)-Continuous acquisition on threshold crossing of programmed current levels (or)-A combination of the aboveOn chip high-precision 4MHz RC oscillator or option for external clock-40ºC to +125ºC ambient operation AEC - Q100 automotive qualified Internal chip ID for full traceability SSOP-20 pin package3 ApplicationsThe AS8510 is ideal for shunt based batteries sensor. For high-side current sensing, the input signal may be conditioned usingaustriamicrosystems device AS8525 before applying to this device.Contents1 General Description (1)2 Key Features (1)3 Applications (1)4 Pin Assignments (4)4.1 Pin Descriptions (4)5 Absolute Maximum Ratings (6)6 Electrical Characteristics (7)6.1 Operating Conditions (7)6.2 DC/AC Characteristics for Digital Inputs and Outputs (7)6.3 Detailed System and Block Specifications (8)6.3.1 Electrical System Specifications (8)6.4 Current Measurement Ranges (across 100µΩ shunt resistor) (9)6.4.1 Differential Input Amplifier for Current Channel (10)6.4.2 Differential Input Amplifier for Voltage Channel (11)6.4.3 Sigma Delta Analog to Digital Converter (12)6.4.4 Bandgap Reference Voltage (12)6.4.5 Internal (Programmable) Current Source for External Temperature Measurement (13)6.4.6 CMREF Circuit (VCM) (14)6.4.7 Internal AVDD Power-on Reset (14)6.4.8 Internal DVDD Power-on Reset (14)6.4.9 Low Speed Oscillator (14)6.4.10 High Speed Oscillator (15)6.4.11 External Clock (15)6.4.12 Internal Temperature Sensor (15)6.5 System Specifications (16)7 Detailed Description (17)7.1 Current Measurement Channel (17)7.2 Voltage/Temperature Measurement Channel (17)7.3 Digital Implementation of Measurement Path (18)7.4 Modes of Operation (18)7.4.1 Normal Mode 1 (NOM1) (19)7.4.2 Normal Mode 2 (NOM2) (20)7.4.3 Standby Mode1 (SBM1) (21)7.4.4 Standby Mode2 (SBM2) (21)7.5 Reference-Voltage (22)7.6 Oscillators (22)7.7 Power-On Reset (22)7.8 4-Wire Serial Port Interface (22)7.8.1 SPI Frame (23)7.8.2 Write Command (23)7.8.3 Read Command (24)7.8.4 Timing (25)7.8.5 SPI Interface Timing (26)7.9 Control Register (27)7.9.1 Standby Mode - Power Consumption (38)7.9.2 Initialization Sequence at Power ON (38)7.9.3 Soft-reset Using Bit D[7] of Reset Register 0x09 (39)7.9.4 Reconfiguring Gain Setting of PGA (40)7.9.5 Configuring the Device During Normal Mode (40)7.10 Low Side Current Measurement Application (41)8 Package Drawings and Markings (42)8.1 Recommended PCB Footprint (43)9 Ordering Information (45)4 Pin AssignmentsFigure 2. Pin Assignments (Top View)4.1 Pin DescriptionsTable 1. Pin DescriptionsPin NumberPin Name Pin Type Description1RSHH Analog inputPositive Differential input for current channel 2RSHL Negative differential input for current channel3REFAnalog outputInternal reference voltage to sigma-delta ADC; connect 100nF to AVSS from this pin.4VCM Common Mode voltage to the internal measurement path; connect 100nF to AVSS from this pin.5AVDD Supply pad +3.3V Analog Power-supply 6AVSS 0V Power-supply analog 7ETR Analog input Voltage channel single ended input 8ETS 9VBAT_IN Battery voltage (high) input 10VBAT_GNDBattery voltage (low) input11CS Digital input with pull-up Chip select with an internal pull-up resistor (SPI Interface)12SCLK Digital input Clock signal (SPI Interface)13SDODigital outputSerial Data Input (SPI Interface)14DVSS Supply pad0V Digital Ground 15DVDD+3.3V Digital Supply16CHOP_CLKDigital outputChop Clock used in High side measurements to synchronize external chopper.(As an example, when AS8525 is used to condition the input signal to the input range of AS8510, the chop clock is used by AS8525.)17MENDigital output issued during the Standby Mode (SBM) to signal the short duration of data sampling. This signal is useful in the case of a High Side Measurement application.(For example: This signal is used by AS8525 device to wake-up and enable the measurement path.)18SDI Digital input Data signal (SPI Interface)19CLK Digital I/OBy default this pin is the internal clock output which can be used by a Microcontroller. The internal clock may also be disabled as an output by programming Register 08. To use an external Clock, Register 08 has to be programmed. 20INTDigital outputActive High Interrupt to indicate data is readyTable 1. Pin DescriptionsPin NumberPin Name Pin Type DescriptionDatasheet - A b s o lu t e M a x im u m R a ti n g s5 Absolute Maximum RatingsStresses beyond those listed in Table 2 may cause permanent damage to the device. These are stress ratings only. Functional operation of the device at these or any other conditions beyond those indicated in Electrical Characteristics on page 7 is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.Table 2. Absolute Maximum RatingsParameter Min Max Units NotesElectrical ParametersDC supply voltage (AVDD and DVDD)-0.35VInput voltage (V IN)-0.3AVDD + 0.3DVDD + 0.3VInput current (latchup immunity)(I SCR)-100100mA AEC - Q100 - 004 Electrostatic DischargeElectrostatic discharge (ESD) all pins±2kV AEC - Q100 - 002 Continuous Power DissipationTotal power dissipation(all supplies and outputs) (P t)50mW SSOP20 in still air, soldered on JEDEC standard board @ 125º ambient, static operation with no time limitTemperature Ranges and Storage ConditionsStorage temperature (T STRG)-50125ºCJunction temperature (T J)130ºCThermal resistance (R thJC)80K/W JEDEC standard test board, 0 air velocityPackage body temperature (T BODY)260ºCNorm: IPC/JEDEC J-STD-020The reflow peak soldering temperature (body temperature) is specified according IPC/ JEDEC J-STD-020 “Moisture/Reflow Sensitivity Classification for Nonhermetic Solid StateSurface Mount Devices”.The lead finish for Pb-free leaded packages ismatte tin (100% Sn).Humidity non-condensing585%6 Electrical Characteristics6.1 Operating Conditions6.2 DC/AC Characteristics for Digital Inputs and OutputsAll pull-up and pull-down have been implemented with active devices. SDO has been measured with 10pF load.Table 3. Operating Conditions Symbol ParameterConditions Min Max Units AVDD Positive analog supply voltage3.0 3.6V AVSS 0V Ground00V A - D Difference in analog and digital supplies0.1V DVDD Positive digital supply 2.97 3.63V DVSS 0V Digital Ground 00V T AMB Ambient temperature -40125ºC I SUPP Supply current 5.5mA f CLKSystem clock frequency11.Nominal clock frequency from external or internal oscillator.4.096MHzTable 4. INTSymbol Parameter ConditionsMin TypMax Units I LEAK Tri-state leakage current -1+1µA V OH High level output voltage 2.5V V OL Low level output voltage0.4V I OOutput Current4mATable 5. CS InputSymbol Parameter ConditionsMin TypMaxUnits V IH High level input voltage 2.0V V IL Low level input voltage 0.8V I LEAK Input leakage current -1+1µA Ipu Pull up currentCS pulled to DV DD = 3.3V-150-15µATable 6. SDISymbol Parameter ConditionsMin TypMaxUnits V IH High level input voltage 2.0V V IL Low level input voltage 0.8V I LEAKInput leakage current-1+1µATable 7. SDO OutputSymbol Parameter Conditions Min Typ Max Units V OH High level output voltage Isource = 8mA 2.5V V OL Low level output voltage Isink = 8mA 0.4VI o Output Current8mA Table 8. CHOP_CLK OutputSymbol Parameter Conditions Min Typ Max Units V OH High level output voltage 2.5V V OL Low level output voltage0.4VI o Output Current4mA Table 9. CLK I/O with Input Schmitt Trigger and Output BufferSymbol Parameter Conditions Min Typ Max Units V IH High level input voltage DV DD = 3.3V 2.4V V IL Low level input voltage DV DD = 3.3V 1.0VI LEAK Input leakage current-1+1µAI PD Pull down current CLK pulled to DVSS10100µAI o Output Current4mAV OH High level output voltage 2.5V V OL Low level output voltage0.4V Table 10. SCLK with Input Schmitt TriggerSymbol Parameter Conditions Min Typ Max Units V IH High level input voltage DV DD = 3.3V 2.4V V IL Low level input voltage DV DD = 3.3V 1.0VI LEAK Input leakage current-1+1µA Table 11. MEN OutputSymbol Parameter Conditions Min Typ Max Units V OH High level output voltage 2.5V V OL Low level output voltage0.4VI O Output Current2mA6.3 Detailed System and Block Specifications6.3.1 Electrical System Specifications6.4 Current Measurement Ranges (across 100µΩ shunt resistor)Note:The Data Rate at the output can be calculated according to the formula:fsout=2*fchop /R2 (R2 is down sampling ratio taking values 1, 2, 4 up to 32768 as powers of 2)Table 12. Electrical System SpecificationsSymbol ParameterMinTyp Max Units NotesIDD NOM Current consumption normal mode 3 5.5mA IDD SBMCurrent consumption standby mode40µAAverage of NORMAL Mode Power consumption over a period of 10sec when the device is in STANDBY ModeTable 13. Current Measurement RangesSymbol ParameterImax [A]Vsh [mV]PGA Gain Nominal Data Rate (f OUT )V INADC 1[mV]1.V INADC = Vsh * Gain, gain deviations to be considered according to Table 15 and Table 16.PSR 2[dB]2.AVDD, DVDD of 3.3V with ±5% variation.I10 Input current range of 10A in NOM ±10±1100@ 1 kHz ±10060I200Input current range of 200A in NOM ±200±2040@ 1 kHz ±80060I400Input current range of 400A in NOM ±400±4025@ 1 kHz ±100060I1500Input current range of 1500A in NOM ±1500±1505@ 1 kHz ±75060I1Input current range of 1A in SBM33.For low power current monitoring, single shot measurement is performed with internal oscillator.±1±0.1100@ 1 Hz ±1060I10Input current range of 10A in SBM3±10±1100@ 1 Hz ±10060I200Input current range of 200A in SBM3±200±2040@ 1 Hz±80060Table 14. Valid Combinations of the Chopper Clock, Oversampling Clock and Decimation RatiosOver Sampling FrequencyChopper FrequencyDecimation Ratio1MHz 2kHz 642MHz 2kHz 642MHz 2kHz 1282MHz4kHz646.4.1 Differential Input Amplifier for Current ChannelNotes:1. Leakage test accuracy is limited by tester resource accuracy and tester hardware.2. For gain 100 PGA input common mode is 0V and the minimum supply is3.15V.3. The measurement ranges are referred only by the gain of input amplifier, while other parameters such as bandwidth etc. are pro-grammed independently.4. This parameter is not measured directly in production. It is measured indirectly via gain measurements of the whole path. It is guaran-teed by design.5. Pole frequency of input amplifier changes with GAIN. The number is valid for the gain at G1, while the bandwidth will be higher for other ranges. This parameter is not measured in production.6. Based on device evaluation. Not tested.7. These offsets are cancelled if chopping enabled (default).8. Noise density calculated by taking system bandwidth as 150Hz.9. Refer to Measurement Ranges shown in Table 13.10. No impact on the measurement path. If the chopping is enabled, both the offset and offset drift will be eliminated.11. For negative input voltages up to -160mV below ground, Input leakage is typically -20nA @ 65ºC due to forward conductance of protection diode.Table 15. Differential Input Amplifier for Current ChannelSymbol Parameter Conditions Min Typ Max Units V IN _AMP Input voltage range RSHH and RSHL-160+160mV I IN _AMP Input current1, 11RSHH and RSHL@ +160mV input voltage at 125ºC with PGA-50250nA ICM Absolute input voltage range2-160+300mVG = G1Gain1 3, 4, 9I10100G = G2Gain2 3, 4, 9I20040G = G3Gain3 3, 4, 9I40025G = G4Gain43, 4, 9I15005e Gain deviation i = 1, 2, 3, 40.9 * Gi 1.1 * Gif P _AMP Pole frequency4, 515kHzεT1Gain drift with temperature 6-20ºC to +65ºCGain 5, 25, referenced to roomtemperature±0.3%V OSDRIFT Offset drift with temperature 7, 10350µVVos Input referred offset7, 10After trim,for temperature range -20 to +65ºC350µV Vos_ch Chopping enabled0LSB VNdin Noise density4, 825nV/√Hz THD Total harmonic distortion For 150 Hz input signal 70dB分销商库存信息: AMSAS8510 DB。

1N5820RLG资料

1N5820RLG资料

1N5820, 1N5821, 1N58221N5820 and 1N5822 are Preferred DevicesAxial Lead RectifiersThis series employs the Schottky Barrier principle in a large area metal−to−silicon power diode. State−of−the−art geometry features chrome barrier metal, epitaxial construction with oxide passivation and metal overlap contact. Ideally suited for use as rectifiers in low−voltage, high−frequency inverters, free wheeling diodes, and polarity protection diodes.Features•Extremely Low V F•Low Power Loss/High Efficiency•Low Stored Charge, Majority Carrier Conduction •Shipped in plastic bags, 500 per bag•Available in Tape and Reel, 1500 per reel, by adding a “RL’’ suffix to the part number•Pb−Free Packages are Available*Mechanical Characteristics:•Case: Epoxy, Molded•Weight: 1.1 Gram (Approximately)•Finish: All External Surfaces Corrosion Resistant and Terminal Leads are Readily Solderable•Lead Temperature for Soldering Purposes:260°C Max. for 10 Seconds•Polarity: Cathode indicated by Polarity Band*For additional information on our Pb−Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.Preferred devices are recommended choices for future use and best overall value.MAXIMUM RATINGSRecommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.*THERMAL CHARACTERISTICS (Note 5)Characteristic Symbol Max Unit Thermal Resistance, Junction−to−Ambient R q JA28°C/W*ELECTRICAL CHARACTERISTICS (T L = 25°C unless otherwise noted) (Note 1)Characteristic Symbol1N58201N58211N5822UnitMaximum Instantaneous Forward Voltage (Note 2) (i F = 1.0 Amp)(i F = 3.0 Amp)(i F = 9.4 Amp)V F0.3700.4750.8500.3800.5000.9000.3900.5250.950VMaximum Instantaneous Reverse Current @ Rated dc Voltage (Note 2)T L = 25°CT L = 100°C i R2.0202.0202.020mA1.Lead Temperature reference is cathode lead 1/32″ from case.2.Pulse Test: Pulse Width = 300 m s, Duty Cycle =2.0%.*Indicates JEDEC Registered Data for 1N5820−22.ORDERING INFORMATIONDevice Package Shipping†1N5820Axial Lead500 Units/Bag500 Units/Bag1N5820G Axial Lead(Pb−Free)1N5820RL Axial Lead1500/Tape & Reel1500/Tape & Reel1N5820RLG Axial Lead(Pb−Free)1N5821Axial Lead500 Units/Bag500 Units/Bag1N5821G Axial Lead(Pb−Free)1N5821RL Axial Lead1500/Tape & Reel1500/Tape & Reel1N5821RLG Axial Lead(Pb−Free)1N5822Axial Lead500 Units/Bag500 Units/Bag1N5822G Axial Lead(Pb−Free)1N5822RL Axial Lead1500/Tape & Reel1500/Tape & Reel1N5822RLG Axial Lead(Pb−Free)†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.NOTE 3 — DETERMINING MAXIMUM RATINGSReverse power dissipation and the possibility of thermal runaway must be considered when operating this rectifier at reverse voltages above 0.1 V RWM. Proper derating may be accomplished by use of equation (1).T A(max) = T J(max)* R q JA P F(A V)* R q JA P R(A V)(1) where T A(max) = Maximum allowable ambient temperature T J(max) = Maximum allowable junction temperature(125°C or the temperature at which thermalrunaway occurs, whichever is lowest) P F(A V) = Average forward power dissipationP R(A V) = Average reverse power dissipationR q JA = Junction−to−ambient thermal resistance Figures 1, 2, and 3 permit easier use of equation (1) by taking reverse power dissipation and thermal runaway into consideration. The figures solve for a reference temperature as determined by equation (2).T R = T J(max)* R q JA P R(A V)(2) Substituting equation (2) into equation (1) yields:T A(max) = T R* R q JA P F(A V)(3) Inspection of equations (2) and (3) reveals that T R is the ambient temperature at which thermal runaway occurs or where T J = 125°C, when forward power is zero. The transition from one boundary condition to the other is evident on the curves of Figures 1, 2, and 3 as a difference in the rate of change of the slope in the vicinity of 115°C. The data of Figures 1, 2, and 3 is based upon dc conditions. For use in common rectifier circuits, Table 1 indicates suggested factors for an equivalent dc voltage to use for conservative design, that is:V R(equiv) = V(FM) F(4) The factor F is derived by considering the properties of the various rectifier circuits and the reverse characteristics of Schottky diodes.EXAMPLE: Find T A(max) for 1N5821 operated in a 12−volt dc supply using a bridge circuit with capacitive filter such that I DC = 2.0 A (I F(A V) = 1.0 A), I(FM)/I(A V) = 10, Input V oltage = 10 V(rms), R q JA =40°C/W.Step 1. Find V R(equiv).Read F = 0.65 from Table 1,N V R(equiv) = (1.41) (10) (0.65) = 9.2 V. Step 2. Find T R from Figure 2. Read T R = 108°C@ V R = 9.2 V and R q JA = 40°C/W.Step 3. Find P F(A V) from Figure 6. **Read P F(A V) = 0.85 W@I(FM)I(AV)+10and I F(AV)+1.0A.Step 4. Find T A(max) from equation (3).T A(max) = 108 * (0.85) (40) = 74°C.**Values given are for the 1N5821. Power is slightly lower for the 1N5820 because of its lower forward voltage, and higher for the 1N5822. Variations will be similar for the MBR−prefix devices, using P F(A V) from Figure 6.Table 1. Values for Factor FCircuit Half Wave Full Wave, BridgeFull Wave, Center Tapped*†Load Resistive Capacitive*Resistive Capacitive Resistive Capacitive Sine Wave0.5 1.30.50.65 1.0 1.3 Square Wave0.75 1.50.750.75 1.5 1.5*Note that V R(PK)[ 2.0 V in(PK).†Use line to center tap voltage for V in.Figure 1. Maximum Reference Temperature1N5820Figure 3. Maximum Reference Temperature1N5822Figure 4. Steady−State Thermal Resistance152.0V R , REVERSE VOLTAGE (VOLTS)115125105304.0V R , REVERSE VOLTAGE (VOLTS)125115105958575L, LEAD LENGTH (INCHES)1/8252015105.002/840TR , R E F E R E N C E T E M P E R A T U R E ( C )T R J L , T H E R M A L R E S I S T A N C E9585755.03.0 4.07.01020° 5.07.01015203/84/85/86/87/81.0403530q J U N C T I O N −T O −L E A D ( C /W )°, R E F E R E N C E T E M P E R A T U R E ( C )R °115105T R , R E F E R E N C E T E M P E R A T U R E ( C )958575°125r (t ), T R A N S I E N T T H E R M A L R E S I S T A N C E (N O R M A L I Z E D )0.20.51.02.05.01020501002005001.0 k2.0 k5.0 k10 k0.050.030.020.010.1t, TIME (ms)0.50.30.21.0Figure 5. Thermal Response20 k3.00.1I F(AV), AVERAGE FORWARD CURRENT (AMP)107.05.00.70.50.1 5.0P 0.20.30.5 2.0, A V E R A G E P O W E R D I S S I P A T I O N (W A T T S )F (A V )3.02.01.00.30.20.7 1.07.010Figure 6. Forward Power Dissipation 1N5820−22NOTE 4 − APPROXIMATE THERMAL CIRCUIT MODELUse of the above model permits junction to lead thermal resistance for any mounting configuration to be found. For a given total lead length, lowest values occur when one side of the rectifier is brought as close as possible to the heat sink.Terms in the model signify:T A = Ambient Temperature T C = Case Temperature T L = Lead Temperature T J = Junction Temperature R q S = Thermal Resistance, Heatsink to Ambient R q L = Thermal Resistance, Lead−to−Heatsink R q J = Thermal Resistance, Junction−to−Case P D = Total Power Dissipation = P F + P R P F = Forward Power Dissipation P R = Reverse Power Dissipation(Subscripts (A) and (K) refer to anode and cathode sides,respectively.) Values for thermal resistance components are:R q L = 42°C/W/in typically and 48°C/W/in maximum R q J = 10°C/W typically and 16°C/W maximumThe maximum lead temperature may be found as follows:T L = T J(max) * n T JL where n T JL [ R q JL · P DNOTE 6 — HIGH FREQUENCY OPERATIONSince current flow in a Schottky rectifier is the result of majority carrier conduction, it is not subject to junction diode forward and reverse recovery transients due to minor-ity carrier injection and stored charge. Satisfactory circuit analysis work may be performed by using a model consist-ing of an ideal diode in parallel with a variable capacitance.(See Figure 10.)Figure 9. Typical Reverse Current505.0V R , REVERSE VOLTAGE (VOLTS)8.016i F , I N S T A N T A N E O U S F O R W A R D C U R R E N T (A M P )0.52432400.050.30.20.10.070.71.02.03.07.0102030V R , REVERSE VOLTAGE (VOLTS)1.00.5200702.03.05.010500300100C , C A P A C I T A N C E (p F )0.77.02030Figure 10. Typical Capacitance4.012202836PACKAGE DIMENSIONSAXIAL LEAD CASE 267−05(DO−201AD)ISSUE GNOTES:1.DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.2.CONTROLLING DIMENSION: INCH.STYLE 1:PIN 1.CATHODE (POLARITY BAND)2.ANODEDIMMIN MAX MIN MAX MILLIMETERSINCHES A 0.2870.3747.309.50B 0.1890.209 4.80 5.30D 0.0470.051 1.20 1.30K1.000−−−25.40−−−ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.“Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates,and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.PUBLICATION ORDERING INFORMATION。

1n5820二极管参数

1n5820二极管参数

1n5820二极管参数1N5820二极管:高电流整流二极管1N5820是一种高电流整流二极管,广泛应用于电源供应器、逆变器以及直流电动机驱动器等领域。

该二极管具有低压降、高电流和高温耐受性等特点,使其成为许多电子设备中不可或缺的元件。

一、电气参数1. 最大正向电压:20V2. 最大反向电压:20V3. 最大正向电流:3A4. 最大反向电流:5μA5. 正向压降:0.55V6. 反向电容:30pF7. 工作温度范围:-65℃~+125℃二、特性1. 低压降:1N5820二极管具有较低的正向压降,仅为0.55V,因此具有较高的效率和能量转换效率。

2. 高电流:该二极管可以承受高达3A的正向电流,使其在高功率应用中非常有用。

3. 高温耐受性:1N5820二极管可以在-65℃到+125℃的范围内工作,因此非常适合在高温环境中使用。

4. 快速开关速度:该二极管的反向电容为30pF,速度较快。

三、应用领域1. 电源供应器:1N5820二极管常用于电源供应器中,以整流交流电源并将其转换为直流电源。

2. 逆变器:该二极管还可用于逆变器中,将直流电源转换为交流电源。

3. 直流电动机驱动器:1N5820二极管可用于直流电动机驱动器中,以保护电路免受反向电流的影响。

四、注意事项1. 1N5820二极管只能承受20V的最大正向电压,因此在设计电路时要注意不要超过其最大电压。

2. 在使用1N5820二极管时,要注意其最大正向电流为3A,因此在选择电流时要根据具体应用场景进行选择。

3. 1N5820二极管的工作温度范围为-65℃~+125℃,因此在极端温度环境下使用时要注意其使用寿命。

4. 在选择1N5820二极管时,要注意其正向压降和反向电容等参数,以确保其在特定应用场景下的性能。

1N5820二极管作为一种高电流整流二极管,具有低压降、高电流和高温耐受性等特点,广泛应用于电源供应器、逆变器以及直流电动机驱动器等领域。

在使用时,需要注意其最大电压、最大电流和工作温度等参数,以确保其在特定应用场景下的正常工作。

1N5820-T中文资料

1N5820-T中文资料

DS23003 Rev. 8 - 21of 21N5820-1N5822ãDiodes IncorporatedFeatures1N5820 - 1N58223.0A SCHOTTKY BARRIER RECTIFIERSMaximum Ratings and Electrical Characteristics@ T A = 25°C unless otherwise specified·Schottky Barrier Chip·Guard Ring Die Construction for Transient Protection ·Low Power Loss, High Efficiency ·High Surge Capability·High Current Capability and Low Forward Voltage Drop ·For Use in Low Voltage, High Frequency Inverters, Free Wheeling, and Polarity Protection Application ·Lead Free Finish,RoHS Compliant (Note 4)Mechanical Data·Case: DO-201AD·Case Material: Molded Plastic. UL Flammability Classification Rating 94V-0·Moisture Sensitivity: Level 1 per J-STD-020C·Terminals: Finish - Bright Tin. Plated Leads Solderable per MIL-STD-202, Method 208·Polarity: Cathode Band ·Mounting Position: Any ·Marking: Type Number·Ordering Information: See Last Page ·Weight: 1.1 grams (approximate)Single phase, half wave, 60Hz, resistive or inductive load.For capacitive load, derate current by 20%.Notes: 1. Measured at ambient temperature at a distance of 9.5mm from the case.2. Short duration pulse test used to minimize self-heating effect.3. Thermal resistance from junction to lead vertical P.C.B. mounted, 0.500" (12.7mm) lead length with 2.5 x 2.5" (63.5 x 63.5mm)copper pad.4.RoHS revision 13.2.2003. Glass and High Temperature Solder Exemptions Applied, see EU Directive Annex Notes 5 and 7.Notes: 5. For packaging details, visit our website at /datasheets/ap2008.pdfDS23003 Rev. 8 - 22of 21N5820-1N5822I A V E R A G E O U T P U T C U R R E N T (A )(A V ),012341050100150T ,LEAD TEMPERATURE (ºC)Fig.1Forward Current Derating CurveL 101001000C ,T O T A L C A P A C I T A N C E (p F )T V ,REVERSE VOLTAGE (V)Fig.4Typical Total CapacitanceR 020406080100110100I ,P E AK F O R W A R D S U R G E C U R R E N T (A )F S M NUMBER OF CYCLES AT 60Hz Fig.3Peak Forward Surge Current0.11.010300.10.30.50.70.91.1I ,I N S T A NTA N E O U S F O R W A R D C U R R E N T (A )FV ,INSTANTANEOUS FORWARD VOLTAGE (V)Fig.2Typical Forward Voltage CharacteristicsF Ordering Information(Note 5)。

RDA5820_datasheet_V2.0

RDA5820_datasheet_V2.0

Copyright © RDA Microelectronics Inc. 2006. All rights are reserved.The information contained herein is the exclusive property of RDA and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of RDA.RDA5820S INGLE -C HIP B ROADCAST FM T RANSCEIVER Rev.2.0–July.20111 General DescriptionThe RDA5820transceiver portable devices.The RDA5820 synthesizers, all and agility.The RDA5820 1.1Features● ● Total current consumption lower than 20mA at3.0V power supply● Support worldwide and campus frequency band65 -108 MHz ● Digital low-IF tunerImage-reject down-converter High performance A/D converter IF selectivity performed internally ● Fully integrated digital frequency synthesizerFully integrated on-chip RF and IF VCO Fully integrated on-chip loop filter ● All digital transmitter ● Autonomous search tuning● Include 4K memory● Support 32.768KHz crystal oscillator ● Digital auto gain control (AGC) ● Digital adaptive noise cancellationMono/stereo switch Soft mute High cut● Programmable de-emphasis (50/75 µs) ● Receive signal strength indicator (RSSI) ● Bass boost ● Volume control● Support I2S digital transmitter● Support audio power amplifier ( 32Ω resistanceVDDRIN LOUT ROUT GND LIN N DN CN CP I O 1G P I O 2P I O 3RDA Microelectronics, Inc. RDA5820 FM Transceiver V2.0The information contained herein is the exclusive property of RDA and shall not be distributed, reproduced, or disclosed in whole or inpart without prior written permission of RDA.Page 2 of 28 loading)● I 2● Line-level analog output voltage S digital input / output interface ●! Only Support 32.768 KHz reference clock● 2-wire and 3-wire serial control bus interface ● Directly support 32Ω resistance loading ● Integrated LDO regulator2.7 to 5.5 V operation voltage ● 4X4mm 24 pin QFN package1.2 Applications● Cellular handsets ● MP3, MP4 players ● Portable radios ● PDAs, Notebook PCs ● Wireless ToysRDA Microelectronics, Inc.RDA5820 FM Transceiver V2.0 2 Table of Contents1General Description (1)1.1 Features (1)1.2 Applications (2)2Table of Contents (2)3Functional Description (3)3.1 FM Transceiver Structure (3)3.2 FM Receiver (3)3.3 FM Transmitter (4)3.4 Audio Amplify (4)3.5 I2S (4)3.6 PA (4)3.7 Synthesizer1 (4)3.8 Synthesizer2 (5)3.9 Power Supply (5)3.10 RESET and Control Interface select (5)3.11 Control Interface (5)3.12 I2S Audio Data Interface (5)3.13 GPIO Outputs (5)4Electrical Characteristics (6)5Receiver Characteristics (7)6Transmitter Characteristics (8)7Serial Interface (10)7.1 Three-wire Interface Timing (10)7.2 I2C Interface Timing (11)8Register Definition (12)8 Pins D escription (16)9Application Diagram (18)9.1 Universal FM RX/TX Application Schematic: (18)9.1.1 Bill of Materials: (18)9.2 Universal FM RX/TX Application Schematic: (19)9.2.1 Bill of Materials: (19)9.3 Universal FM RX/TX Application Schematic: (20)9.3.1 Bill of Materials: (20)10Package Physical Dimension (21)11PCB Land Pattern (22)12Change List (26)13Notes:....................................................................................................................... 错误!未定义书签。

FFAF60UA60DN;中文规格书,Datasheet资料

FFAF60UA60DN;中文规格书,Datasheet资料
®
PDP SPM™ Power-SPM™
PowerTrench® PowerXS™ Programmable Active Droop™ QFET® QS™ Quiet Series™ RapidConfigure™
™ Saving our world, 1mW/W/kW at a time™ SmartMax™ SMART START™ SPM® STEALTH™ SuperFET™ SuperSOT™-3 SuperSOT™-6 SuperSOT™-8 SupreMOS™ SyncFET™ Sync-Lock™
FFAF60UA60DN UItrafast Rectifier
FFAF60UA60DN UItrafast Rectifier
Features
• Ultrafast switching, Trr < 90ns • High Reverse Voltage and High Reliability • Avalanche Energy Rated • Max Forward Voltage, VF < 2.2V • RoHS Compliant
Avalanche Energy ( L = 40mH)
Notes: 1: Pulse: Test Pulse width = 300µs, Duty Cycle = 2%
TC = 25oC TC = 125oC TC = 25oC TC = 125oC
TC = 25oC
Min.
-
-
-
20
Test Circuit and Waveforms
™*
®
Fairchild® Fairchild Semiconductor® FACT Quiet Series™ FACT® FAST® FastvCore™ FETBench™ FlashWriter®*

FM5820-A资料

FM5820-A资料

FIG.1-TYPICAL FORWARD CURRENT DERATING CURVE
AVERAGE FORWARD CURRENT,(A)
FIG.2-TYPICAL FORWARD CHARACTERISTICS
3.0 2.5
50
INSTANTANEOUS FORWARD CURRENT,(A)
0.067(1.7) 0.060(1.5)
0.110(2.8) 0.094(2.4)
0.165(4.2) 0.150(3.8)
0.040(1.0) Typ.
0.040 (1.0) Typ.
Dimensions in inches and (millimeters)
Mechanical data
Case : Molded plastic, JEDE DO-214AC C Terminals : Solder plated, s olderable per MIL-STD-750, Method 2026 Polarity : Indicated by cathode band Mounting P osition : Any Weight : 0.0015 ounce, 0.15 gr am
Plastic package has Underwriters Laboratory Flammability Classification 94V-O Utilizing Flame Retardant Epoxy Molding Compound. For surface mounted applications. Exceeds environmental standards of MIL-S-19500 / 228 Low leakage current.
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Crss
Reverse Transfer Capacitance
Rg
Gate resistance
VGS=0V, VDS=10V, f=1MHz VGS=0V, VDS=0V, f=1MHz
1000 1255 1510 pF
150 220 290 pF
100 168 235 pF
2.5
KΩ
SWITCHING PARAMETERS
Qrr
Body Diode Reverse Recovery Charge IF=10A, dI/dt=500A/µs
12
15
18
nC
A. The value of RθJA is measured with the device mounted on 1in2 FR-4 board with 2oz. Copper, in a still air environment with TA =25°C. The Power dissipation PDSM is based on R θJA and the maximum allowed junction temperature of 150°C. The value in any given application depends on the user's specific board design.
VDS=VGS, ID=250µA
0.3 0.65 1.0
V
ID(ON)
On state drain current
VGS=4.5V, VDS=5V
85
A
VGS=4.5V, ID=10A
5.5 7.4 9.5 mΩ
TJ=125°C 8
11
14
RDS(ON) Static Drain-Source On-Resistance
D. The RθJA is the sum of the thermal impedance from junction to case RθJC and case to ambient. E. The static characteristics in Figures 1 to 6 are obtained using <300µs pulses, duty cycle 0.5% max. F. These curves are based on the junction-to-case thermal impedance which is measured with the device mounted to a large heatsink, assuming a maximum junction temperature of TJ(MAX)=150°C. The SOA curve provides a single pulse rating. G. The maximum current rating is package limited.
VGS=4.0V, ID=10A VGS=3.5V, ID=9A
5.8 7.6 10 mΩ
6
8 10.5 mΩ
VGS=3.1V, ID=9A
6.3 8.3 11.5 mΩ
VGS=2.5V, ID=8A
6.8 9.2 13 mΩ
gFS
Forward Transconductance
VDS=5V, ID=10A
(Note E)
RDS(ON) (mΩ)
25 ID=10A
20
15 125°C
10
5
25°C
0
0
2
4
6
8
10
VGS (Volts) Figure 5: On-Resistance vs. Gate-Source Voltage
RθJA
30 61
Maximum Junction-to-Case
Steady-State
RθJC
4.5
Max 40 75 5.5
D2
S2
Units V V A
W °C
Units °C/W °C/W °C/W
Rev 0: Oct. 2011 /

65
S
VSD
Diode Forward Voltage
IS=1A,VGS=0V
0.58 1
V
IS
Maximum Body-Diode Continuous Current
2.5
A
DYNAMIC PARAMETERS
Ciss
Input Capacitance
Coss
Output Capacitance
20V 10A < 9.5mΩ < 10mΩ < 10.5mΩ < 11.5mΩ < 13mΩ
HBM Class 2
S1 S1 G1
Top View
DFN 2X5 Bottom View
S2 S2 G2
D1/D2
D1
G1
G2
S1
Absolute Maximum Ratings TA=25°C unless otherwise noted
AON5820
20V Common-Drain Dual N-Channel MOSFET
General Description
Product Summary
The AON5820 uses advanced trench technology to provide excellent RDS(ON), low gate charge and operation with gate voltages as low as 2.5V while retaining a 12V VGS(MAX) rating It is ESD protected. This device is suitable for use as a uni-directional or bi-directional load switch, facilitated by its common-drain configuration.
1.8
VGS=3.5V
ID=9A
1.6
VGS=3.1V
ID=9A
1.4
VGS=2.5V
ID=8A
1.2
17
VIDG=S1=04A.0V52 10
1
VGS=4.5V
ID=10A
0.8 0
25 50 75 100 125 150 175
Temperature (°C) 0 Figure 4: On-Resistance vs. Junction18Temperature
Qg
Total Gate Charge
10 12.5 15 nC
Qgs
Gate Source Charge
VGS=4.5V, VDS=10V, ID=10A
5.5
nC
Qgd
Gate Drain Charge
6.5
nC
tD(on)
Turn-On DelayTime
1.1
µs
tr
Turn-On Rise Time
Rev 0: Oct. 2011 /

Page 2 of 6
AON5820
TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS
ID (A)
80 4.5V
60
2.5V 3V
2V 40
20 VGS=1.5V
VDS ID (at VGS=4.5V) RDS(ON) (at VGS=4.5V) RDS(ON) (at VGS=4.0V) RDS(ON) (at VGS=3.5V) RDS(ON) (at VGS=3.1V) RDS(ON) (at VGS=2.5V)
Typical ESD protection
PDSM
Junction and Storage Temperature Range
TJ, TSTG
Maximum 20 ±12 10 8 85 1.7 1
-55 to 150
Thermal Characteristics
Parameter
Symbol
Typ
Maximum Junction-to-Ambient A t ≤ 10s Maximum Junction-to-Ambient A D Steady-State
VGS=4.5V, VDS=10V, RL=1Ω,
2.6
µs
tD(off)
Turn-Off DelayTime
RGEN=3Ω
7
µs
tf
Turn-Off Fall Time
7.4
µs
trr
Body Diode Reverse Recovery Time IF=10A, dI/dt=500A/µs
8.5 11 13.5 ns
Page 1 of 6
AON5820
Electrical Characteristics (TJ=25°C unless otherwise noted)
Symbol
Parameter
Conditions
Min Typ Max Units
STATIC PARAMETERS
BVDSS Drain-Source Breakdown Voltage
B. The power dissipation PD is based on TJ(MAX)=150°C, using junction-to-case thermal resistance, and is more useful in setting the upper dissipation limit for cases where additional heatsinking is used. C. Repetitive rating, pulse width limited by junction temperature TJ(MAX)=150°C. Ratings are based on low frequency and duty cycles to keep initial TJ =25°C.
相关文档
最新文档