(真题)四川省凉山州2018-2019学年中考数学试题附答案
2019年四川省凉山州中考数学试卷以及解析版
2019年四川省凉山州中考数学试卷一、选择题(共12个小题,每小题4分,共48分)在每小题给出的四个选项中只有一项是正确的,把正确选项的宇母填涂在答题卡上相应的位置1.(4分)2的相反数是()A .2B .2C .12D .122.(4分)2018年凉山州生产总值约为153300000000,用科学记数法表示数153300000000是()A .91.53310B .101.53310C .111.53310D .121.533103.(4分)如图,//BD EF ,AE 与BD 交于点C ,30B,75A,则E 的度数为()A .135B .125C .115D .1054.(4分)下列各式正确的是()A .224235aaaB .23a a aC .235()a aD .2aa5.(4分)不等式11x x …的解集是()A .1x …B .1x …C .1x,D .1x,6.(4分)某班40名同学一周参加体育锻炼时间统计如表所示:人数(人)317137时间(小时)78910那么该班40名同学一周参加体育锻炼时间的众数、中位数分别是()A .17,8.5B .17,9C .8,9D .8,8.57.(4分)下列命题:①直线外一点到这条直线的垂线段,叫做点到直线的距离;②两点之间线段最短;③相等的圆心角所对的弧相等;④平分弦的直径垂直于弦.其中,真命题的个数是()A .1B .2C .3D .48.(4分)如图,正比例函数y kx与反比例函数4yx的图象相交于A、C两点,过点A作x轴的垂线交x轴于点B,连接BC,则ABC的面积等于() A.8B.6C.4D.29.(4分)如图,在ABC中,4CA CB,1cos4C,则sin B的值为()A.102B.153C.64D.10410.(4分)如图,在ABC中,D在AC边上,:1:2AD DC,O是BD的中点,连接AO 并延长交BC于E,则:(BE EC)A.1:2B.1:3C.1:4D.2:311.(4分)如图,在AOC中,3OA cm,1OC cm,将AOC绕点O顺时针旋转90后得到BOD,则AC边在旋转过程中所扫过的图形的面积为(2)cm.A .2B .2C .178D .19812.(4分)二次函数2y ax bxc 的部分图象如图所示,有以下结论:①30ab;②240bac ;③520a bc;④430b c,其中错误结论的个数是()A .1B .2C .3D .4二、填空题(共5个小题,每小题4分,共20分)13.(4分)方程组10216x y xy 的解是.14.(4分)方程2212111x x x的解是.15.(4分)如图所示,AB 是O 的直径,弦CDAB 于H ,30A ,23CD,则O的半径是.16.(4分)在ABCD 中,E 是AD 上一点,且点E 将AD 分为2:3的两部分,连接BE 、AC相交于F ,则:AEFCBFSS是.17.(4分)将抛物线2(3)2y x 向左平移个单位后经过点(2,2)A .三、解答题(共5小题,共32分)18.(5分)计算:021tan 45(32)()|32|2.19.(5分)先化简,再求值:2(3)(1)(1)2(24)aa aa,其中12a.20.(6分)如图,正方形ABCD 的对角线AC 、BD 相交于点O ,E 是OC 上一点,连接EB .过点A 作AMBE ,垂足为M ,AM 与BD 相交于点F .求证:OEOF .21.(8分)某校初中部举行诗词大会预选赛,学校对参赛同学获奖情况进行统计,绘制了如下两幅不完整的统计图.请结合图中相关数据解答下列问题:(1)参加此次诗词大会预选赛的同学共有人;(2)在扇形统计图中,“三等奖”所对应的扇形的圆心角的度数为;(3)将条形统计图补充完整;(4)若获得一等奖的同学中有14来自七年级,12来自九年级,其余的来自八年级,学校决定从获得一等奖的同学中任选两名同学参加全市诗词大会比赛,请通过列表或树状图方法求所选两名同学中,恰好是一名七年级和一名九年级同学的概率.22.(8分)如图,点D 是以AB 为直径的O 上一点,过点B 作O 的切线,交AD 的延长线于点C ,E 是BC 的中点,连接DE 并延长与AB 的延长线交于点F .(1)求证:DF 是O 的切线;(2)若OB BF ,4EF ,求AD 的长.四、B 卷填空题(共2小题,每小题5分,共10分)23.(5分)当03x 剟时,直线y a 与抛物线2(1)3y x 有交点,则a 的取值范围是.24.(5分)如图,正方形ABCD 中,12AB ,14AE AB ,点P 在BC 上运动(不与B 、C 重合),过点P 作PQEP ,交CD 于点Q ,则CQ 的最大值为.五、解答题(共4小题,共40分)25.(8分)已知二次函数2yxxa 的图象与x 轴交于1(A x ,0)、2(B x ,0)两点,且2212111xx,求a 的值.26.(10分)根据有理数乘法(除法)法则可知:①若0ab(或0)a b ,则00a b 或00a b ;②若0ab (或0)a b,则00a b或00a b .根据上述知识,求不等式(2)(3)0x x 的解集解:原不等式可化为:(1)203x x或(2)203x x.由(1)得,2x ,由(2)得,3x,原不等式的解集为:3x或2x.请你运用所学知识,结合上述材料解答下列问题:(1)不等式2230x x 的解集为.(2)求不等式401x x的解集(要求写出解答过程)27.(10分)如图,90ABD BCD,DB 平分ADC ,过点B 作//BM CD 交AD 于M .连接CM 交DB 于N .(1)求证:2BD AD CD ;(2)若6CD,8AD,求MN 的长.28.(12分)如图,抛物线2y axbxc 的图象过点(1,0)A 、(3,0)B 、(0,3)C .(1)求抛物线的解析式;(2)在抛物线的对称轴上是否存在一点P ,使得PAC 的周长最小,若存在,请求出点P的坐标及PAC 的周长;若不存在,请说明理由;(3)在(2)的条件下,在x 轴上方的抛物线上是否存在点M (不与C 点重合),使得PAMPACS S?若存在,请求出点M 的坐标;若不存在,请说明理由.2019年四川省凉山州中考数学试卷答案与解析一、选择题(共12个小题,每小题4分,共48分)在每小题给出的四个选项中只有一项是正确的,把正确选项的宇母填涂在答题卡上相应的位置1.(4分)【分析】根据相反数的意义,只有符号不同的数为相反数.【解答】解:根据相反数的定义,2的相反数是2.故选:A.【点评】本题考查了相反数的意义.注意掌握只有符号不同的数为相反数,0的相反数是0.2.(4分)【分析】利用科学记数法表示即可【解答】解:科学记数法表示:153 300 000 11000 1.53310故选:C.【点评】本题主要考查科学记数法的表示,把一个数表示成a与10的n次幂相乘的形式,,n为整数),这种记数法叫做科学记数法.a(1103.(4分)【分析】直接利用三角形的外角性质得出ACD度数,再利用平行线的性质分析得出答案.A,B,75【解答】解:30ACD,3075105BD EF,//E ACD.105故选:D.【点评】此题主要考查了平行线的性质以及三角形的外角,正确掌握平行线的性质是解题关键.4.(4分)【分析】分别根据合并同类项的法则、同底数幂的乘法法则、幂的乘方法则以及二次根式的性质解答即可.【解答】解:A、222a a a,故选项A不合题意;235B、23a a a,故选项B符合题意;C 、236()a a ,故选项C 不合题意;D 、2||aa ,故选项D 不合题意.故选:B .【点评】本题主要考查了合并同类项的法则、幂的运算法则以及二次根式的性质,熟练掌握相关运算性质是解答本题的关键.5.(4分)【分析】移项、合并同类项,系数化为1即可求解.【解答】解:11x x …,22x …1x,.故选:C .【点评】本题考查了解简单不等式的能力,解答这类题学生往往在解题时不注意移项要改变符号这一点而出错.6.(4分)【分析】根据中位数、众数的概念分别求得这组数据的中位数、众数.【解答】解:众数是一组数据中出现次数最多的数,即8;由统计表可知,处于20,21两个数的平均数就是中位数,这组数据的中位数为898.52;故选:D .【点评】本题考查了中位数、众数的概念.本题为统计题,考查众数与中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.7.(4分)【分析】根据点到直线的距离,线段的性质,弧、弦、圆心角之间的关系以及垂径定理判断即可.【解答】解:①直线外一点到这条直线的垂线段,叫做点到直线的距离;假命题;②两点之间线段最短;真命题;③相等的圆心角所对的弧相等;假命题;④平分弦的直径垂直于弦;假命题;真命题的个数是1个;故选:A .【点评】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果那么”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.8.(4分)【分析】由于点A 、C 位于反比例函数图象上且关于原点对称,则OBAOBCSS,再根据反比例函数系数k 的几何意义作答即可.【解答】解:因为过双曲线上任意一点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S 是个定值,即1||2S k .所以ABC 的面积等于12||||42k k .故选:C .【点评】主要考查了反比例函数k yx中k 的几何意义,即过双曲线上任意一点引x 轴、y 轴垂线,所得矩形面积为||k ,是经常考查的一个知识点;这里体现了数形结合的思想,做此类题一定要正确理解k 的几何意义.图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S 的关系即1||2Sk .9.(4分)【分析】过点A 作AD BC ,垂足为D ,在Rt ACD 中可求出AD ,CD 的长,在Rt ABD中,利用勾股定理可求出AB 的长,再利用正弦的定义可求出sin B 的值.【解答】解:过点A 作AD BC ,垂足为D ,如图所示.在Rt ACD 中,cos 1CD CA C ,2215ADADCD;在Rt ABD 中,3BD CBCD,15AD,2226AB BD AD ,10sin 4AD BAB.故选:D .【点评】本题考查了解直角三角形以及勾股定理,通过解直角三角形及勾股定理,求出AD ,AB 的长是解题的关键.10.(4分)【分析】过O 作BC 的平行线交AC 与G ,由中位线的知识可得出:1:2AD DC,根据已知和平行线分线段成比例得出ADDGGC ,:2:1AG GC,:2:1AO OF ,再由同高不同底的三角形中底与三角形面积的关系可求出:BF FC 的比.【解答】解:如图,过O 作//OG BC ,交AC 于G ,O 是BD 的中点,G 是DC 的中点.又:1:2AD DC ,ADDGGC ,:2:1AG GC ,:2:1AO OE,:2AOBBOES S 设BOES S ,2AOB S S ,又BO OD ,2AOD SS ,4ABDSS ,:1:2AD DC ,28BDCABDS SS ,7CDOES S 四边形,9AECSS ,3ABES S ,3193ABE AECS BE S ECSS故选:B .【点评】本题考查平行线分线段成比例及三角形的中位线的知识,难度较大,注意熟练运用中位线定理和三角形面积公式.11.(4分)如图,在AOC中,3OA cm,1OC cm,将AOC绕点O顺时针旋转90后得到BOD,则AC边在旋转过程中所扫过的图形的面积为(2)cm.A.2B.2C.178D.198【分析】根据旋转的性质可以得到阴影部分的面积扇形OAB的面积扇形OCD的面积,利用扇形的面积公式即可求解.【解答】解:AOC BOD,阴影部分的面积扇形OAB的面积扇形OCD的面积22 9039012 360360,故选:B.【点评】本题考查了旋转的性质以及扇形的面积公式,正确理解:阴影部分的面积扇形OAB的面积扇形OCD的面积是解题关键.12.(4分)二次函数2y ax bx c的部分图象如图所示,有以下结论:①30a b;②240b ac;③520a b c;④430b c,其中错误结论的个数是()A .1B .2C .3D .4【分析】①对称轴为32x,得3ba ;②函数图象与x 轴有两个不同的交点,得△240bac ;③当1x时,0abc,当3x时,930abc,得520ab c;④由对称性可知1x 时对应的y 值与4x 时对应的y 值相等,当1x 时0a bc,43333333()0bcbbcba c abc ;【解答】解:由图象可知0a,0c,对称轴为32x,322b x a,3ba ,①正确;函数图象与x 轴有两个不同的交点,△240bac ,②正确;当1x 时,0a b c ,当3x 时,930a b c ,10420a b c ,520abc,③正确;由对称性可知1x 时对应的y 值与4x 时对应的y 值相等,当1x 时0a bc,3b a ,43333333()0b c b b c b a c a b c ,430bc,④错误;故选:C .【点评】本题考查二次函数的图象及性质;熟练掌握从函数图象获取信息,将信息与函数解析式相结合解题是关键.二、填空题(共5个小题,每小题4分,共20分)13.(4分)方程组10216x y xy 的解是64x y.【分析】利用加减消元法解之即可.【解答】解:10216x y xy①②,②①得:6x,把6x 代入①得:610y,解得:4y,方程组的解为:64x y ,故答案为:64x y.【点评】本题考查了解二元一次方程组,正确掌握加减消元法是解题的关键.14.(4分)方程2212111x x x的解是2x .【分析】去分母,把分式方程化为整式方程,求解并验根即可.【解答】解:21211(1)(1)x x x x 去分母,得(21)(1)2(1)(1)x x x x 去括号,得22231x x x 移项并整理,得22x x所以(2)(1)0x x解得2x或1x经检验,2x 是原方程的解.故答案为:2x .【点评】本题考查了分式方程、一元二次方程的解法.掌握分式方程的解法是解决本题的关键.注意验根.15.(4分)如图所示,AB 是O 的直径,弦CD AB 于H ,30A ,23CD ,则O的半径是2.【分析】连接BC ,由圆周角定理和垂径定理得出90ACB ,132CH DHCD ,由直角三角形的性质得出223ACCH,323ACBC,2ABBC ,得出2BC,4AB ,求出2OA 即可.【解答】解:连接BC ,如图所示:AB 是O 的直径,弦CD AB 于H ,90ACB ,132CHDHCD,30A ,223ACCH,在Rt ABC 中,30A,323AC BC ,2ABBC ,2BC ,4AB ,2OA ,即O 的半径是2;故答案为:2.【点评】本题考查的是垂径定理、圆周角定理、含30角的直角三角形的性质、勾股定理等知识;熟练掌握圆周角定理和垂径定理是解题的关键.16.(4分)在ABCD 中,E 是AD 上一点,且点E 将AD 分为2:3的两部分,连接BE 、AC相交于F ,则:AEFCBFSS是4:25或9:25.【分析】分:2:3AE ED 、:3:2AE ED两种情况,根据相似三角形的性质计算即可.【解答】解:①当:2:3AE ED时,四边形ABCD 是平行四边形,//AD BC ,:2:5AE BC ,AEF CBF ∽,22:()4:255AEFCBFSS;②当:3:2AE ED 时,同理可得,23:()9:255AEFCBFSS,故答案为:4:25或9:25.【点评】本题考查的是相似三角形的判定和性质、平行四边形的性质,掌握相似三角形的面积比等于相似比的平方是解题的关键.17.(4分)将抛物线2(3)2yx向左平移3个单位后经过点(2,2)A .【分析】直接利用二次函数的平移规律结合二次函数图象上点的性质进而得出答案.【解答】解:将抛物线2(3)2yx向左平移后经过点(2,2)A ,设平移后解析式为:2(3)2yx a ,则22(23)2a ,解得:3a 或1a(不合题意舍去),故将抛物线2(3)2y x向左平移3个单位后经过点(2,2)A .故答案为:3.【点评】此题主要考查了二次函数图象与几何变换,正确记忆平移规律是解题关键.三、解答题(共5小题,共32分)18.(5分)计算:021tan 45(32)()|32|2.【分析】分别进行特殊角的三角函数值的运算,任何非零数的零次幂等于1,负整数指数幂以及绝对值的意义化简,然后按照实数的运算法则进行计算求得结果.【解答】解:原式112(23)23.【点评】本题考查了实数的运算法则,属于基础题,解答本题的关键是熟练掌握负整数指数幂、特殊角的三角函数值等知识.19.(5分)先化简,再求值:2(3)(1)(1)2(24)a a a a ,其中12a.【分析】注意到2(3)a 可以利用完全平方公式进行展开,(1)(1)a a 利润平方差公式可化为2(1)a,则将各项合并即可化简,最后代入12a进行计算.【解答】解:原式2269(1)48aa aa 22a 将12a代入原式12()212【点评】本题主要考查整式的混合运算,灵活运用两条乘法公式:完全平方公式和平方差公式是解题的关键,同时,在去括号的过程中要注意括号前的符号,若为负号,去括号后,括号里面的符号要改变20.(6分)如图,正方形ABCD 的对角线AC 、BD 相交于点O ,E 是OC 上一点,连接EB .过点A 作AMBE ,垂足为M ,AM 与BD 相交于点F .求证:OEOF .【分析】根据正方形的性质对角线垂直且平分,得到OBOA ,根据AM BE ,即可得出90MEAMAEAFOMAE ,从而证出Rt BOE Rt AOF ,得到OEOF .【解答】证明:四边形ABCD 是正方形.90BOEAOF,OBOA .又AM BE,90MEA MAE AFO MAE,MEA AFO.()BOE AOF AAS.OE OF.【点评】本题主要考查了正方形的性质、三角形全等的性质和判定,在应用全等三角形的判定时,要注意三角形间的公共边和公共角,必要时添加适当辅助线构造三角形.21.(8分)某校初中部举行诗词大会预选赛,学校对参赛同学获奖情况进行统计,绘制了如下两幅不完整的统计图.请结合图中相关数据解答下列问题:(1)参加此次诗词大会预选赛的同学共有40人;(2)在扇形统计图中,“三等奖”所对应的扇形的圆心角的度数为;(3)将条形统计图补充完整;(4)若获得一等奖的同学中有14来自七年级,12来自九年级,其余的来自八年级,学校决定从获得一等奖的同学中任选两名同学参加全市诗词大会比赛,请通过列表或树状图方法求所选两名同学中,恰好是一名七年级和一名九年级同学的概率.【分析】(1)利用鼓励奖的人数除以它所占的百分比得到的总人数;(2)用360乘以二等奖人数占被调查人数的比例即可得;(3)计算出一等奖和二等奖的人数,然后补全条形统计图;(4)画树状图(用A、B、C分别表示七年级、八年级和九年级的学生)展示所有12种等可能的结果数,再找出所选出的两人中既有七年级又有九年级同学的结果数,然后利用概率公式求解.【解答】解:(1)参加此次诗词大会预选赛的同学共有1845%40(人),故答案为:40;(2)扇形统计图中获三等奖的圆心角为103609040,故答案为:90.(3)获二等奖的人数4020%8,一等奖的人数为40810184(人),条形统计图为:(4)由题意知,获一等奖的学生中,七年级有1人,八年级有1人,九年级有2人,画树状图为:(用A、B、C分别表示七年级、八年级和九年级的学生)共有12种等可能的结果数,其中所选出的两人中既有七年级又有九年级同学的结果数为4,所以所选出的两人中既有七年级又有九年级同学的概率41 123.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式求事件A或B的概率.也考查了统计图.22.(8分)如图,点D是以AB为直径的O上一点,过点B作O的切线,交AD的延长线于点C,E是BC的中点,连接DE并延长与AB的延长线交于点F.(1)求证:DF是O的切线;(2)若OB BF,4EF,求AD的长.【分析】(1)连接OD,由AB为O的直径得90BDC,根据BE EC知13、由OD OB知24,根据BC是O的切线得3490,即1290,得证;(2)根据直角三角形的性质得到30F,12 2BE EF,求得2DE BE,得到6DF,根据三角形的内角和得到OD OA,求得1302A ADO BOD,根据等腰三角形的性质即可得到结论.【解答】解:(1)如图,连接OD,BD,AB为O的直径,90ADB BDC,在Rt BDC中,BE EC,DE EC BE,13,BC是O的切线,3490,1490,又24,1290,DF为O的切线;(2)OB BF,2OF OD,30F,90FBE,122BE EF,2DE BE,6DF,30F,90ODF,60FOD,OD OA,1302A ADO BOD,A F,6AD DF.【点评】本题考查了切线的判定和性质,直角三角形的性质,等腰三角形的判定和性质,正确的作出辅助线是解题的关键.四、B 卷填空题(共2小题,每小题5分,共10分)23.(5分)当03x 剟时,直线y a 与抛物线2(1)3y x 有交点,则a 的取值范围是31a 剟.【分析】直线y a 与抛物线2(1)3yx 有交点,则可化为一元二次方程组利用根的判别式进行计算.【解答】解:法一:y a 与抛物线2(1)3yx 有交点则有2(1)3a x,整理得222x xa△2444(2)0baca …解得3a …,03x 剟,对称轴1x 2(31)31y1a,法二:由题意可知,抛物线的顶点为(1,3),而03x 剟抛物线y 的取值为31y 剟y a ,则直线y 与x 轴平行,要使直线ya 与抛物线2(1)3yx 有交点,抛物线y 的取值为31y 剟,即为a 的取值范围,31a 剟故答案为:31a 剟【点评】此题主要考查二次函数图象的性质及交点的问题,此类问题,通常可化为一元二次方程,利用根的判别式或根与系数的关系进行计算.24.(5分)如图,正方形ABCD 中,12AB ,14AEAB ,点P 在BC 上运动(不与B 、C 重合),过点P 作PQEP ,交CD 于点Q ,则CQ 的最大值为4.【分析】先证明BPE CQP ∽,得到与CQ 有关的比例式,设CQy ,BP x ,则12CP x ,代入解析式,得到y 与x 的二次函数式,根据二次函数的性质可求最值.【解答】解:90BEPBPE,90QPCBPE,BEP CPQ .又90BC,BPE CQP ∽.BE BP PC CQ.设CQy ,BP x ,则12CPx .912x x y,化简得21(12)9y xx ,整理得21(6)49y x,所以当6x时,y 有最大值为4.故答案为4.【点评】本题主要考查了正方形的性质、相似三角形的判定和性质,以及二次函数最值问题,几何最值用二次函数最值求解考查了树形结合思想.五、解答题(共4小题,共40分)25.(8分)已知二次函数2yxxa 的图象与x 轴交于1(A x ,0)、2(B x ,0)两点,且2212111xx,求a 的值.【分析】有韦达定理得121x x ,12x x a ,将式子2212111x x化简代入即可;【解答】解:2y xxa 的图象与x 轴交于1(A x ,0)、2(B x ,0)两点,121x x ,12x x a ,222121212222222121212()211121()x xx x x x a x x x x x x a,12a或12a;【点评】本题考查二次函数的性质;灵活运用完全平方公式,掌握根与系数的关系是解题的关键.26.(10分)根据有理数乘法(除法)法则可知:①若0ab(或0)a b ,则00a b 或00a b ;②若0ab (或0)a b,则00a b或00a b .根据上述知识,求不等式(2)(3)0x x 的解集解:原不等式可化为:(1)203x x或(2)203x x.由(1)得,2x ,由(2)得,3x,原不等式的解集为:3x或2x.请你运用所学知识,结合上述材料解答下列问题:(1)不等式2230x x 的解集为13x .(2)求不等式401x x的解集(要求写出解答过程)【分析】(1)根据有理数乘法运算法则可得不等式组,仿照有理数乘法运算法则得出两个不等式组,分别求解可得.(2)根据有理数除法运算法则可得不等式组,仿照有理数除法运算法则得出两个不等式组,分别求解可得.【解答】解:(1)原不等式可化为:①3010xx 或②301x x .由①得,空集,由②得,13x,原不等式的解集为:13x,故答案为:13x.(2)由401xx知①4010x x 或②401x x,解不等式组①,得:1x ;解不等式组②,得:4x ;所以不等式401x x的解集为1x 或4x .【点评】本题主要考查解不等式、不等式组的能力,将原不等式转化为两个不等式组是解题的关键.27.(10分)如图,90ABD BCD ,DB 平分ADC ,过点B 作//BM CD 交AD 于M .连接CM 交DB 于N .(1)求证:2BD AD CD ;(2)若6CD,8AD,求MN 的长.【分析】(1)通过证明ABD BCD ∽,可得AD BD BDCD,可得结论;(2)由平行线的性质可证MBDBDC ,即可证4AM MDMB,由2BDAD CD和勾股定理可求MC 的长,通过证明MNB CND ∽,可得23BM MN CDCN,即可求MN 的长.【解答】证明:(1)DB 平分ADC ,ADBCDB ,且90ABDBCD,ABD BCD ∽AD BD BDCD2BD AD CD (2)//BM CDMBDBDCADB MBD ,且90ABD BM MD ,MAB MBA4BMMDAM2BD AD CD ,且6CD ,8AD ,248BD ,22212BC BDCD22228MC MB BC 27MC//BM CD MNB CND ∽23BM MN CD CN ,且27MC475MN【点评】本题考查了相似三角形的判定和性质,勾股定理,直角三角形的性质,求MC 的长度是本题的关键.28.(12分)如图,抛物线2yaxbx c 的图象过点(1,0)A 、(3,0)B 、(0,3)C .(1)求抛物线的解析式;(2)在抛物线的对称轴上是否存在一点P ,使得PAC 的周长最小,若存在,请求出点P的坐标及PAC 的周长;若不存在,请说明理由;(3)在(2)的条件下,在x 轴上方的抛物线上是否存在点M (不与C 点重合),使得PAMPACS S?若存在,请求出点M 的坐标;若不存在,请说明理由.【分析】(1)由于条件给出抛物线与x 轴的交点(1,0)A 、(3,0)B ,故可设交点式(1)(3)ya xx,把点C 代入即求得a 的值,减小计算量.(2)由于点A 、B 关于对称轴:直线1x 对称,故有P AP B ,则PACCAC PC PA AC PCPB ,所以当C 、P 、B 在同一直线上时,PACCACCB最小.利用点A 、B 、C 的坐标求AC 、CB 的长,求直线BC 解析式,把1x 代入即求得点P 纵坐标.(3)由PA MP AC SS 可得,当两三角形以PA 为底时,高相等,即点C 和点M 到直线PA 距离相等.又因为M 在x 轴上方,故有//CM PA .由点A 、P 坐标求直线AP 解析式,即得到直线CM 解析式.把直线CM 解析式与抛物线解析式联立方程组即求得点M 坐标.【解答】解:(1)抛物线与x 轴交于点(1,0)A 、(3,0)B 可设交点式(1)(3)ya x x 把点(0,3)C 代入得:33a1a 2(1)(3)23yxxxx抛物线解析式为223yx x(2)在抛物线的对称轴上存在一点P ,使得PAC 的周长最小.如图1,连接PB 、BC 点P 在抛物线对称轴直线1x上,点A 、B 关于对称轴对称PA PBPACCAC PC PA AC PC PB 当C 、P 、B 在同一直线上时,PCPBCB 最小(1,0)A 、(3,0)B 、(0,3)C 221310AC ,223332BC 1032PACCACCB最小设直线BC 解析式为3y kx把点B 代入得:330k ,解得:1k直线:3BC y x132Py 点(1,2)P 使PAC 的周长最小,最小值为1032.(3)存在满足条件的点M ,使得PAMPACS S.PAM PACSS当以PA 为底时,两三角形等高点C 和点M 到直线PA 距离相等M 在x 轴上方//CM PA(1,0)A ,(1,2)P ,设直线AP 解析式为y pxd2p d pd 解得:11p d直线:1AP y x 直线CM 解析式为:3y x2323y x yxx解得:1103x y (即点)C ,2214x y 点M 坐标为(1,4)【点评】本题考查了待定系数法求二次函数解析式、一次函数解析式,轴对称的最短路径问题,勾股定理,平行线间距离处处相等,一元二次方程的解法.其中第(3)题条件给出点M 在x轴上方,无需分类讨论,解法较常规而简单。
《首发》四川省凉山州2019年中考数学真题试题(含解析)
2019年四川省凉山州中考数学试卷一、选择题(共12个小题,每小题4分,共48分)在每小题给出的四个选项中只有一项是正确的,把正确选项的宇母填涂在答题卡上相应的位置1.(4分)﹣2的相反数是()A.2 B.﹣2 C.D.﹣2.(4分)2018年凉山州生产总值约为153300000000,用科学记数法表示数153300000000是()A.1.533×109B.1.533×1010C.1.533×1011D.1.533×1012 3.(4分)如图,BD∥EF,AE与BD交于点C,∠B=30°,∠A=75°,则∠E的度数为()A.135°B.125°C.115°D.105°4.(4分)下列各式正确的是()A.2a2+3a2=5a4B.a2•a=a3C.(a2)3=a5D.=a5.(4分)不等式1﹣x≥x﹣1的解集是()A.x≥1 B.x≥﹣1 C.x≤1 D.x≤﹣16.(4分)某班40名同学一周参加体育锻炼时间统计如表所示:那么该班40名同学一周参加体育锻炼时间的众数、中位数分别是()A.17,8.5 B.17,9 C.8,9 D.8,8.57.(4分)下列命题:①直线外一点到这条直线的垂线段,叫做点到直线的距离;②两点之间线段最短;③相等的圆心角所对的弧相等;④平分弦的直径垂直于弦.其中,真命题的个数是()A.1 B.2 C.3 D.48.(4分)如图,正比例函数y=kx与反比例函数y=的图象相交于A、C两点,过点A作x轴的垂线交x轴于点B,连接BC,则△ABC的面积等于()A.8 B.6 C.4 D.29.(4分)如图,在△ABC中,CA=CB=4,cos C=,则sin B的值为()A.B.C.D.10.(4分)如图,在△ABC中,D在AC边上,AD:DC=1:2,O是BD的中点,连接AO并延长交BC于E,则BE:EC=()A.1:2 B.1:3 C.1:4 D.2:311.(4分)如图,在△AOC中,OA=3cm,OC=1cm,将△AOC绕点O顺时针旋转90°后得到△BOD,则AC边在旋转过程中所扫过的图形的面积为()cm2.A.B.2πC.πD.π12.(4分)二次函数y=ax2+bx+c的部分图象如图所示,有以下结论:①3a﹣b=0;②b2﹣4ac>0;③5a﹣2b+c>0;④4b+3c>0,其中错误结论的个数是()A.1 B.2 C.3 D.4二、填空题(共5个小题,每小题4分,共20分)13.(4分)方程组的解是.14.(4分)方程+=1的解是.15.(4分)如图所示,AB是⊙O的直径,弦CD⊥AB于H,∠A=30°,CD=2,则⊙O的半径是.16.(4分)在▱ABCD中,E是AD上一点,且点E将AD分为2:3的两部分,连接BE、AC相交于F,则S△AEF:S△CBF是.17.(4分)将抛物线y=(x﹣3)2﹣2向左平移个单位后经过点A(2,2).三、解答题(共5小题,共32分)18.(5分)计算:tan45°+(﹣)0﹣(﹣)﹣2+|﹣2|.19.(5分)先化简,再求值:(a+3)2﹣(a+1)(a﹣1)﹣2(2a+4),其中a=﹣.20.(6分)如图,正方形ABCD的对角线AC、BD相交于点O,E是OC上一点,连接EB.过点A作AM⊥BE,垂足为M,AM与BD相交于点F.求证:OE=OF.。
凉山州2018年中考数学试题及答案解析
四川省凉山州2018年中考数学试卷一、选择题(本大题共10小题,共30分) 1. 比1小2的数是A. B. C. D. 1【答案】A 【解析】解:. 故选:A .求比1小2的数就是求1与2的差.本题主要考查有理数的减法法则:减去一个数等于加上这个数的相反数这是需要熟记的内容.2. 下列运算正确的是A.B .C . D.【答案】C【解析】解:A 、应为,故本选项错误; B 、应为,故本选项错误; C 、,正确; D 、应为,故本选项错误. 故选:C .根据同底数的幂的运算法则、合并同类项法则及完全平方公式计算.本题考查同底数幂的乘法,同底数幂的除法,合并同类项法则,完全平方公式,计算时要认真.3. 长度单位1纳米米,目前发现一种新型病毒直径为25 100纳米,用科学记数法表示该病毒直径是A.米 B. 米 C.米 D. 米【答案】D 【解析】解:米故选D . 先将25100用科学记数法表示为,再和相乘.中,a 的整数部分只能取一位整数,此题中的n 应为负数.4. 小红上学要经过三个十字路口,每个路口遇到红、绿灯的机会都相同,小红希望上学时经过每个路囗都是绿灯,但实际这样的机会是A.B.C.D.【答案】B【解析】解:画树状图,得共有8种情况,经过每个路口都是绿灯的有一种,实际这样的机会是,故选:B.列举出所有情况,看个路口都是绿灯的情况占总情况的多少即可.此题考查了树状图法求概率,树状图法适用于三步或三步以上完成的事件,解题时要注意列出所有的情形用到的知识点为:概率所求情况数与总情况数之比.5.一个正方体的平面展开图如图所示,将它折成正方体后“建”字对面是A. 和B. 谐C. 凉D. 山【答案】D【解析】解:对于正方体的平面展开图中相对的面一定相隔一个小正方形,由图形可知,与“建”字相对的字是“山”.故选:D.本题考查了正方体的平面展开图,对于正方体的平面展开图中相对的面一定相隔一个小正方形,据此作答.注意正方体的空间图形,从相对面入手,分析及解答问题.6.一组数据:3,2,1,2,2的众数,中位数,方差分别是A. 2,1,B. 2,2,C. 3,1,2D. 2,1,【答案】B【解析】解:从小到大排列此数据为:1,2,2,2,3;数据2出现了三次最多为众数,2处在第3位为中位数平均数为,方差为,即中位数是2,众数是2,方差为.故选:B.找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不只一个利用方差公式计算方差.本题属于基础题,考查了确定一组数据的中位数、方差和众数的能力注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求如果是偶数个则找中间两位数的平均数.7.若,则正比例函数与反比例函数在同一坐标系中的大致图象可能是A. B. C. D.【答案】B【解析】解:,分两种情况:当,时,正比例函数数的图象过原点、第一、三象限,反比例函数图象在第二、四象限,无此选项;当,时,正比例函数的图象过原点、第二、四象限,反比例函数图象在第一、三象限,选项B符合.故选:B.根据及正比例函数与反比例函数图象的特点,可以从,和,两方面分类讨论得出答案.本题主要考查了反比例函数的图象性质和正比例函数的图象性质,要掌握它们的性质才能灵活解题.8.下列图形中既是轴对称图形,又是中心对称图形的是A. B. C. D.【答案】D【解析】解:A、不是轴对称图形,是中心对称图形,故本选项错误;B、既不是轴对称图形,也不是中心对称图形,故本选项错误;C、既不是轴对称图形,也不是中心对称图形,故本选项错误;D、既是轴对称图形,又是中心对称图形.故选:D.根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.本题考查了中心对称图形与轴对称图形的概念轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.9.如图将矩形ABCD沿对角线BD折叠,使C落在处,交AD于点E,则下到结论不一定成立的是A.B.C. ∽D.【答案】C【解析】解:A、,,,所以正确.B 、,,EDB正确.D、,.故选:C.主要根据折叠前后角和边相等找到相等的边之间的关系,即可选出正确答案.本题主要用排除法,证明A,B,D都正确,所以不正确的就是C,排除法也是数学中一种常用的解题方法.10.如图,是的外接圆,已知,则的大小为A.B.C.D.【答案】A【解析】解:中,,,,,故选:A.首先根据等腰三角形的性质及三角形内角和定理求出的度数,再利用圆周角与圆心角的关系求出的度数.本题主要考查了圆周角定理的应用,涉及到的知识点还有:等腰三角形的性质以及三角形内角和定理.二、填空题(本大题共6小题,共24分)11.分解因式:______,______.【答案】;【解析】解:;.观察原式,找到公因式a后,发现符合平方差公式的形式,直接运用公式可得;观察原式,找到公因式2后,发现符合完全平方差公式的形式,直接运用公式可得.本题考查整式的因式分解一般地,因式分解有两种方法,提公因式法,公式法,能提公因式先提公因式,然后再考虑公式法.12.已知∽且::2,则AB:______.【答案】1:【解析】解:∽,:::2,::.根据相似三角形的面积比等于相似比的平方求解即可.本题的关键是理解相似三角形的面积比等于相似比的平方.13.有两名学员小林和小明练习射击,第一轮10枪打完后两人打靶的环数如图所示,通常新手的成绩不太稳定,那么根据图中的信息,估计小林和小明两人中新手是______.【答案】小林【解析】解:由于小林的成绩波动较大,根据方差的意义知,波动越大,成绩越不稳定,故新手是小林.故填小林.观察图象可得:小明的成绩较集中,波动较小,即方差较小;故小明的成绩较为稳定;根据题意,一般新手的成绩不太稳定,故新手是小林.本题考查方差的意义方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.14.已知一个正数的平方根是和,则这个数是______.【答案】【解析】解:根据题意可知:,解得,所以,,故答案为:.由于一个非负数的平方根有2个,它们互为相反数依此列出方程求解即可.本题主要考查了平方根的逆运算,平时注意训练逆向思维.15.若不等式组的解集是,则______.【答案】【解析】解:由不等式得,,,,,,.故答案为.解出不等式组的解集,与已知解集比较,可以求出a、b的值,然后相加求出2009次方,可得最终答案.本题是已知不等式组的解集,求不等式中另一未知数的问题可以先将另一未知数当作已知处理,求出解集与已知解集比较,进而求得零一个未知数.16.将绕点B逆时针旋转到,使A、B、在同一直线上,若,,,则图中阴影部分面积为______.【答案】【解析】解:,,,,,,,阴影部分面积.故答案为:.易得整理后阴影部分面积为圆心角为,两个半径分别为4和2的圆环的面积.本题利用了直角三角形的性质,扇形的面积公式求解.三、计算题(本大题共3小题,共24分)17.先化简,再选择一个你喜欢的数要合适哦代入求值:.【答案】解:,当时,原式.【解析】根据分式的加法和除法可以化简题目中的式子,再选取一个使得原分式有意义的值代入即可解答本题.本题考查分式的化简求值,解答本题的关键是明确分式的化简求值的计算方法.18.如图,要在木里县某林场东西方向的两地之间修一条公路MN,已知C点周围200米范围内为原始森林保护区,在MN上的点A处测得C在A的北偏东方向上,从A向东走600米到达B处,测得C在点B的北偏西方向上.是否穿过原始森林保护区,为什么?参考数据:若修路工程顺利进行,要使修路工程比原计划提前5天完成,需将原定的工作效率提高,则原计划完成这项工程需要多少天?【答案】解:理由如下:如图,过C作于H.设,由已知有,,则,.在中,,在中,,,,解得米米.不会穿过森林保护区.设原计划完成这项工程需要y天,则实际完成工程需要天.根据题意得:解得:.经检验知:是原方程的根.答:原计划完成这项工程需要25天.【解析】要求MN是否穿过原始森林保护区,也就是求C到MN的距离要构造直角三角形,再解直角三角形;根据题意列方程求解.考查了构造直角三角形解斜三角形的方法和分式方程的应用.19.我们常用的数是十进制数,如,数要用10个数码又叫数字:0、1、2、3、4、5、6、7、8、9,在电子计算机中用的二进制,只要两个数码:0和1,如二进制中等于十进制的数6,等于十进制的数那么二进制中的数101011等于十进制中的哪个数?【答案】解:,所以二进制中的数101011等于十进制中的43.【解析】利用新定义得到,然后根据乘方的定义进行计算.本题考查了有理数的乘方:有理数乘方的定义:求n个相同因数积的运算,叫做乘方.四、解答题(本大题共7小题,共72分)20.计算:.【答案】解:原式.【解析】直接利用二次根式的性质以及特殊角的三角函数值、绝对值的性质、负指数幂的性质进而化简得出答案.此题主要考查了实数运算,正确化简各数是解题关键.21.观察表中的结果,你能发现、、之间有什么关系吗?请写出关系式.【答案】解:填表如下:根据上表中的规律判断,若一个棱柱的底面多边形的边数为,则它有个侧面,共有个面,共有2n个顶点,共有3n条棱;故a,b,c之间的关系:.【解析】结合三棱柱、四棱柱和五棱柱的特点,即可填表,根据已知的面、顶点和棱与几棱柱的关系,可知n棱柱一定有个面,2n个顶点和3n条棱,进而得出答案,利用前面的规律得出a,b,c之间的关系.此题主要考查了欧拉公式,熟记常见棱柱的特征,可以总结一般规律:n棱柱有个面,2n个顶点和3n条棱是解题关键.22.如图,在方格纸中请在方格纸上建立平面直角坐标系,使,,并求出B点坐标;以原点O为位似中心,相似比为2,在第一象限内将放大,画出放大后的图形;计算的面积S.【答案】解:如图所示,即为所求的直角坐标系;;如图:即为所求;.【解析】直接利用A,C点坐标得出原点位置进而得出答案;利用位似图形的性质即可得出;直接利用中图形求出三角形面积即可.此题主要考查了位似变换以及三角形面积求法,正确得出对应点位置是解题的关键画位似图形的一般步骤为:确定位似中心;分别连接并延长位似中心和关键点;根据位似比,确定位似图形的关键点;顺次连接上述各点,得到放大或缩小的图形.23.我国沪深股市交易中,如果买、卖一次股票均需付交易金额的作费用张先生以每股5元的价格买入“西昌电力”股票1000股,若他期望获利不低于1000元,问他至少要等到该股票涨到每股多少元时才能卖出?精确到元【答案】解:设涨到每股x元时卖出,根据题意得,分解这个不等式得,即分答:至少涨到每股元时才能卖出分【解析】根据关系式:总售价两次交易费总成本列出不等式求解即可.本题考查的是一元一次不等式在生活中的实际运用,解决本题的关键是读懂题意根据“总售价两次交易费总成本”列出不等关系式.24.已知一个口袋中装有7个只有颜色不同的球,其中3个白球,4个黑球.求从中随机抽取出一个黑球的概率是多少?若往口袋中再放入x个白球和y个黑球,从口袋中随机取出一个白球的概率是,求y与x之间的函数关系式.【答案】解:一个口袋中装有7个只有颜色不同的球,其中3个白球,4个黑球,从中随机抽取出一个黑球的概率是:;往口袋中再放入x个白球和y个黑球,从口袋中随机取出一个白球的概率是,,则.【解析】直接利用概率公式直接得出取出一个黑球的概率;直接利用从口袋中随机取出一个白球的概率是,进而得出答案函数关系式.此题主要考查了概率公式,正确掌握概率求法是解题关键.25.如图,在平面直角坐标系中,点的坐标为,以点为圆心,8为半径的圆与x轴交于A,B两点,过A作直线l与x轴负方向相交成的角,且交y轴于C点,以点为圆心的圆与x轴相切于点D.求直线l的解析式;将以每秒1个单位的速度沿x轴向左平移,当第一次与外切时,求平移的时间.【答案】解:由题意得,点坐标为.在中,,.点的坐标为设直线l的解析式为,由l过A、C两点,得,解得直线l的解析式为:.如图,设平移t秒后到处与第一次外切于点P,与x轴相切于点,连接,.则.轴,,在中,.,,秒.平移的时间为5秒.【解析】求直线的解析式,可以先求出A、C两点的坐标,就可以根据待定系数法求出函数的解析式.设平移t秒后到处与第一次外切于点P,与x轴相切于点,连接,.在直角中,根据勾股定理,就可以求出,进而求出的长,得到平移的时间.本题综合了待定系数法求函数解析式,以及圆的位置关系,其中两圆相切时的辅助线的作法是经常用到的.26.如图,已知抛物线经过,两点,顶点为D.求抛物线的解析式;将绕点A顺时针旋转后,点B落到点C的位置,将抛物线沿y轴平移后经过点C,求平移后所得图象的函数关系式;设中平移后,所得抛物线与y轴的交点为,顶点为,若点N在平移后的抛物线上,且满足的面积是面积的2倍,求点N的坐标.【答案】解:已知抛物线经过,,,解得,所求抛物线的解析式为;,,,,可得旋转后C点的坐标为,当时,由得,可知抛物线过点,将原抛物线沿y轴向下平移1个单位后过点C.平移后的抛物线解析式为:;点N在上,可设N点坐标为,将配方得,其对称轴为直线.时,如图,,,此时,点的坐标为.当时,如图,同理可得,,此时,点N的坐标为.当时,由图可知,N点不存在,舍去.综上,点N的坐标为或.【解析】利用待定系数法,将点A,B的坐标代入解析式即可求得;根据旋转的知识可得:,,,,可得旋转后C点的坐标为,当时,由得,可知抛物线过点将原抛物线沿y轴向下平移1个单位后过点平移后的抛物线解析式为:;首先求得,的坐标,根据图形分别求得即可,要注意利用方程思想.此题属于中考中的压轴题,难度较大,知识点考查的较多而且联系密切,需要学生认真审题.此题考查了二次函数与一次函数的综合知识,解题的关键是要注意数形结合思想的应用.。
凉山州2019年中考数学试题及答案
凉山州2019年中考数学试题及答案一、选择题(共12个小题,每小题4分,共48分)在每小题给出的四个选项中只有一项是正确的,把正确选项的宇母填涂在答题卡上相应的位置1.(4分)﹣2的相反数是()A.2 B.﹣2 C.D.﹣2.(4分)2018年凉山州生产总值约为153300000000,用科学记数法表示数153300000000是()A.1.533×109B.1.533×1010C.1.533×1011D.1.533×1012 3.(4分)如图,BD∥EF,AE与BD交于点C,∠B=30°,∠A=75°,则∠E的度数为()A.135°B.125°C.115°D.105°4.(4分)下列各式正确的是()A.2a2+3a2=5a4B.a2•a=a3C.(a2)3=a5D.=a5.(4分)不等式1﹣x≥x﹣1的解集是()A.x≥1 B.x≥﹣1 C.x≤1 D.x≤﹣16.(4分)某班40名同学一周参加体育锻炼时间统计如表所示:人数(人) 3 17 13 7时间(小时)7 8 9 10那么该班40名同学一周参加体育锻炼时间的众数、中位数分别是()A.17,8.5 B.17,9 C.8,9 D.8,8.57.(4分)下列命题:①直线外一点到这条直线的垂线段,叫做点到直线的距离;②两点之间线段最短;③相等的圆心角所对的弧相等;④平分弦的直径垂直于弦.其中,真命题的个数是()A.1 B.2 C.3 D.48.(4分)如图,正比例函数y=kx与反比例函数y=的图象相交于A、C两点,过点A作x轴的垂线交x轴于点B,连接BC,则△ABC的面积等于()A.8 B.6 C.4 D.29.(4分)如图,在△ABC中,CA=CB=4,cos C=,则sin B的值为()A.B.C.D.10.(4分)如图,在△ABC中,D在AC边上,AD:DC=1:2,O是BD的中点,连接AO并延长交BC于E,则BE:EC=()A.1:2 B.1:3 C.1:4 D.2:311.(4分)如图,在△AOC中,OA=3cm,OC=1cm,将△AOC绕点O顺时针旋转90°后得到△BOD,则AC边在旋转过程中所扫过的图形的面积为()cm2.A.B.2πC.πD.π12.(4分)二次函数y=ax2+bx+c的部分图象如图所示,有以下结论:①3a﹣b=0;②b2﹣4ac>0;③5a﹣2b+c>0;④4b+3c>0,其中错误结论的个数是()A.1 B.2 C.3 D.4二、填空题(共5个小题,每小题4分,共20分)13.(4分)方程组的解是.14.(4分)方程+=1的解是.15.(4分)如图所示,AB是⊙O的直径,弦CD⊥AB于H,∠A=30°,CD=2,则⊙O的半径是.16.(4分)在▱ABCD中,E是AD上一点,且点E将AD分为2:3的两部分,连接BE、AC相交于F,则S△AEF:S△CBF是.17.(4分)将抛物线y=(x﹣3)2﹣2向左平移个单位后经过点A(2,2).三、解答题(共5小题,共32分)18.(5分)计算:tan45°+(﹣)0﹣(﹣)﹣2+|﹣2|.19.(5分)先化简,再求值:(a+3)2﹣(a+1)(a﹣1)﹣2(2a+4),其中a=﹣.20.(6分)如图,正方形ABCD的对角线AC、BD相交于点O,E是OC上一点,连接EB.过点A作AM⊥BE,垂足为M,AM与BD相交于点F.求证:OE=OF.21.(8分)某校初中部举行诗词大会预选赛,学校对参赛同学获奖情况进行统计,绘制了如下两幅不完整的统计图.请结合图中相关数据解答下列问题:(1)参加此次诗词大会预选赛的同学共有人;(2)在扇形统计图中,“三等奖”所对应的扇形的圆心角的度数为;(3)将条形统计图补充完整;(4)若获得一等奖的同学中有来自七年级,来自九年级,其余的来自八年级,学校决定从获得一等奖的同学中任选两名同学参加全市诗词大会比赛,请通过列表或树状图方法求所选两名同学中,恰好是一名七年级和一名九年级同学的概率.22.(8分)如图,点D是以AB为直径的⊙O上一点,过点B作⊙O的切线,交AD的延长线于点C,E是BC的中点,连接DE并延长与AB的延长线交于点F.(1)求证:DF是⊙O的切线;(2)若OB=BF,EF=4,求AD的长.四、B卷填空题(共2小题,每小题5分,共10分)23.(5分)当0≤x≤3时,直线y=a与抛物线y=(x﹣1)2﹣3有交点,则a的取值范围是.24.(5分)如图,正方形ABCD中,AB=12,AE=AB,点P在BC上运动(不与B、C重合),过点P作PQ⊥EP,交CD于点Q,则CQ的最大值为.五、解答题(共4小题,共40分)25.(8分)已知二次函数y=x2+x+a的图象与x轴交于A(x1,0)、B(x2,0)两点,且+=1,求a的值.26.(10分)根据有理数乘法(除法)法则可知:①若ab>0(或>0),则或;②若ab<0(或<0),则或.根据上述知识,求不等式(x﹣2)(x+3)>0的解集解:原不等式可化为:(1)或(2).由(1)得,x>2,由(2)得,x<﹣3,∴原不等式的解集为:x<﹣3或x>2.请你运用所学知识,结合上述材料解答下列问题:(1)不等式x2﹣2x﹣3<0的解集为.(2)求不等式<0的解集(要求写出解答过程)27.(10分)如图,∠ABD=∠BCD=90°,DB平分∠ADC,过点B作BM∥CD交AD于M.连接CM交DB于N.(1)求证:BD2=AD•CD;(2)若CD=6,AD=8,求MN的长.28.(12分)如图,抛物线y=ax2+bx+c的图象过点A(﹣1,0)、B(3,0)、C(0,3).(1)求抛物线的解析式;(2)在抛物线的对称轴上是否存在一点P,使得△PAC的周长最小,若存在,请求出点P 的坐标及△PAC的周长;若不存在,请说明理由;(3)在(2)的条件下,在x轴上方的抛物线上是否存在点M(不与C点重合),使得S=S△PAC?若存在,请求出点M的坐标;若不存在,请说明理由.△PAM参考答案一、选择题(共12个小题,每小题4分,共48分)在每小题给出的四个选项中只有一项是正确的,把正确选项的宇母填涂在答题卡上相应的位置1.A 2.C 3.D 4.B 5.C 6.D 7.A 8.C 9.D 10.B 11.B 12.A二、填空题(共5个小题,每小题4分,共20分)13.解:,②﹣①得:x=6,把x=6代入①得:6+y=10,解得:y=4,方程组的解为:,14.解:去分母,得(2x﹣1)(x+1)﹣2=(x+1)(x﹣1)去括号,得2x2+x﹣3=x2﹣1移项并整理,得x2+x﹣2=0所以(x+2)(x﹣1)=0解得x=﹣2或x=1经检验,x=﹣2是原方程的解.故答案为:x=﹣2.15.解:连接BC,如图所示:∵AB是⊙O的直径,弦CD⊥AB于H,∴∠ACB=90°,CH=DH=CD=,∵∠A=30°,∴AC=2CH=2,在Rt△ABC中,∠A=30°,∴AC=BC=2,AB=2BC,∴BC=2,AB=4,∴OA=2,即⊙O的半径是2;16.解:①当AE:ED=2:3时,∵四边形ABCD是平行四边形,∴AD∥BC,AE:BC=2:5,∴△AEF∽△CBF,∴S△AEF:S△CBF=()2=4:25;②当AE:ED=3:2时,同理可得,S△AEF:S△CBF=()2=9:25,故答案为:4:25或9:25.17.解:∵将抛物线y=(x﹣3)2﹣2向左平移后经过点A(2,2),∴设平移后解析式为:y=(x﹣3+a)2﹣2,则2=(2﹣3+a)2﹣2,解得:a=3或a=﹣1(不合题意舍去),故将抛物线y=(x﹣3)2﹣2向左平移3个单位后经过点A(2,2).三、解答题(共5小题,共32分)18.解:原式=1+1﹣2+(2﹣)=.19.解:原式=a2+6a+9﹣(a2﹣1)﹣4a﹣8=2a+2将a=﹣代入原式=2×(﹣)+2=120.证明:∵四边形ABCD是正方形.∴∠BOE=∠AOF=90°,OB=OA.又∵AM⊥BE,∴∠MEA+∠MAE=90°=∠AFO+∠MAE,∴∠MEA=∠AFO.∴△BOE≌△AOF(AAS).∴OE=OF.21.解:(1)参加此次诗词大会预选赛的同学共有18÷45%=40(人),(2)扇形统计图中获三等奖的圆心角为360°×=90°,(3)获二等奖的人数=40×20%=8,一等奖的人数为40﹣8﹣10﹣18=4(人),条形统计图为:(4)由题意知,获一等奖的学生中,七年级有1人,八年级有1人,九年级有2人,画树状图为:(用A、B、C分别表示七年级、八年级和九年级的学生)共有12种等可能的结果数,其中所选出的两人中既有七年级又有九年级同学的结果数为4,所以所选出的两人中既有七年级又有九年级同学的概率=.22.解:(1)如图,连接OD,BD,∵AB为⊙O的直径,∴∠ADB=∠BDC=90°,在Rt△BDC中,∵BE=EC,∴DE=EC=BE,∴∠1=∠3,∵BC是⊙O的切线,∴∠3+∠4=90°,∴∠1+∠4=90°,又∵∠2=∠4,∴∠1+∠2=90°,∴DF为⊙O的切线;(2)∵OB=BF,∴OF=2OD,∴∠F=30°,∵∠FBE=90°,∴BE=EF=2,∴DE=BE=2,∴DF=6,∵∠F=30°,∠ODF=90°,∴∠FOD=60°,∵OD=OA,∴∠A=∠ADO=BOD=30°,∴∠A=∠F,∴AD=DF=6.四、B卷填空题(共2小题,每小题5分,共10分)23.﹣3≤a≤1 24. 4.五、解答题(共4小题,共40分)25.解:y=x2+x+a的图象与x轴交于A(x1,0)、B(x2,0)两点,∴x1+x2=﹣1,x1•x2=a,∵+===1,∴a=﹣1+或a=﹣1﹣;26.解:(1)原不等式可化为:①或②.由①得,空集,由②得,﹣1<x<3,∴原不等式的解集为:﹣1<x<3,故答案为:﹣1<x<3.(2)由<0知①或②,解不等式组①,得:x>1;解不等式组②,得:x<﹣4;所以不等式<0的解集为x>1或x<﹣4.27.证明:(1)∵DB平分∠ADC,∴∠ADB=∠CDB,且∠ABD=∠BCD=90°,∴△ABD∽△BCD∴∴BD2=AD•CD(2)∵BM∥CD∴∠MBD=∠BDC∴∠ADB=∠MBD,且∠ABD=90°∴BM=MD,∠MAB=∠MBA∴BM=MD=AM=4∵BD2=AD•CD,且CD=6,AD=8,∴BD2=48,∴BC2=BD2﹣CD2=12∴MC2=MB2+BC2=28∴MC=2∵BM∥CD∴△MNB∽△CND∴,且MC=2∴MN=28.解:(1)∵抛物线与x轴交于点A(﹣1,0)、B(3,0)∴可设交点式y=a(x+1)(x﹣3)把点C(0,3)代入得:﹣3a=3∴a=﹣1∴y=﹣(x+1)(x﹣3)=﹣x2+2x+3∴抛物线解析式为y=﹣x2+2x+3(2)在抛物线的对称轴上存在一点P,使得△PAC的周长最小.如图1,连接PB、BC∵点P在抛物线对称轴直线x=1上,点A、B关于对称轴对称∴PA=PB∴C△PAC=AC+PC+PA=AC+PC+PB∵当C、P、B在同一直线上时,PC+PB=CB最小∵A(﹣1,0)、B(3,0)、C(0,3)∴AC=,BC=∴C△PAC=AC+CB=最小设直线BC解析式为y=kx+3把点B代入得:3k+3=0,解得:k=﹣1∴直线BC:y=﹣x+3∴y P=﹣1+3=2∴点P(1,2)使△PAC的周长最小,最小值为.(3)存在满足条件的点M,使得S△PAM=S△PAC.∵S△PAM=S△PAC∴当以PA为底时,两三角形等高∴点C和点M到直线PA距离相等∵M在x轴上方∴CM∥PA∵A(﹣1,0),P(1,2),设直线AP解析式为y=px+d∴解得:∴直线AP:y=x+1∴直线CM解析式为:y=x+3∵解得:(即点C),∴点M坐标为(1,4)。
2019年四川省凉山州中考数学试卷含答案解析
2019年四川省凉山州中考数学试卷一、选择题(共12个小题,每小题4分,共48分)在每小题给出的四个选项中只有一项是正确的,把正确选项的宇母填涂在答题卡上相应的位置1. (4分)-2的相反数是( )A. 2B. - 2C. —D.-上2 22. (4分)2018年凉山州生产总值约为153300000000,用科学记数法表示数153300000000是( )A. 1.533X 109B. 1. 533X 1O 10C. 1.533X 1011D. 1. 533X10123. (4分)如图,BD//EF, AE 与BD 交于点C,Z 方=30° , ZJ=75°,则ZE 的度数为(C. 115°D. 1054. (4分)下列各式正确的是( )A. 2a+3a —5ac , 2、3__ 5C . ( a ) — a5. (4分)不等式1 - xNx- 1的解集是(A. xNlB. xN - 16. (4分)某班40名同学一周参加体育锻炼时间统计如表所示:人数(人)317137时间(小时)78910那么该班40名同学一周参加体育锻炼时间的众数、中位数分别是( )A. 17, 8.5B. 17, 9C. 8, 9D. 8, 8.57. (4分)下列命题:①直线外一点到这条直线的垂线段,叫做点到直线的距离;②两点之间线段最短;③相等的圆心角所对的弧相等;④平分弦的直径垂直于弦.其中,真命题的个数是(n 2. — 3d . a • a — aC. xWlD. xW - 1)A. 1B. 2C. 3D.48. (4分)如图,正比例函数y=kx 与反比例函数y=—的图象相交于,、。
两点,过点力x作X 轴的垂线交X 轴于点8连接此;则的面积等于(A. 8B. 6C. 4D.9. (4分)如图,在△,网中,G4=CB=4,cos (7=1,则 sinB 的值为(42)A 普 C.匝410. (4分)如图,在△/位?中,〃在花边上,AD-. DC=\-. 2,Vio~r。
2019四川省凉山州中考数学试题(解析版).doc
【若缺失公式、图片现象属于系统读取不成功,文档内容齐全完整,请放心下载。
】2019年四川省凉山州中考数学试卷一、选择题(共12个小题,每小题4分,共48分)在每小题给出的四个选项中只有一项是正确的,把正确选项的宇母填涂在答题卡上相应的位置1.(4分)﹣2的相反数是()A.2B.﹣2C.D.﹣2.(4分)2018年凉山州生产总值约为153300000000,用科学记数法表示数153300000000是()A.1.533×109B.1.533×1010C.1.533×1011D.1.533×1012 3.(4分)如图,BD∥EF,AE与BD交于点C,∠B=30°,∠A=75°,则∠E的度数为()A.135°B.125°C.115°D.105°4.(4分)下列各式正确的是()A.2a2+3a2=5a4B.a2•a=a3C.(a2)3=a5D.=a5.(4分)不等式1﹣x≥x﹣1的解集是()A.x≥1B.x≥﹣1C.x≤1D.x≤﹣16.(4分)某班40名同学一周参加体育锻炼时间统计如表所示:人数(人)317137时间(小时)78910那么该班40名同学一周参加体育锻炼时间的众数、中位数分别是()A.17,8.5B.17,9C.8,9D.8,8.57.(4分)下列命题:①直线外一点到这条直线的垂线段,叫做点到直线的距离;②两点之间线段最短;③相等的圆心角所对的弧相等;④平分弦的直径垂直于弦.其中,真命题的个数是()A.1B.2C.3D.48.(4分)如图,正比例函数y=kx与反比例函数y=的图象相交于A、C两点,过点A 作x轴的垂线交x轴于点B,连接BC,则△ABC的面积等于()A.8B.6C.4D.29.(4分)如图,在△ABC中,CA=CB=4,cos C=,则sin B的值为()A.B.C.D.10.(4分)如图,在△ABC中,D在AC边上,AD:DC=1:2,O是BD的中点,连接AO 并延长交BC于E,则BE:EC=()A.1:2B.1:3C.1:4D.2:311.(4分)如图,在△AOC中,OA=3cm,OC=1cm,将△AOC绕点O顺时针旋转90°后得到△BOD,则AC边在旋转过程中所扫过的图形的面积为()cm2.A.B.2πC.πD.π12.(4分)二次函数y=ax2+bx+c的部分图象如图所示,有以下结论:①3a﹣b=0;②b2﹣4ac>0;③5a﹣2b+c>0;④4b+3c>0,其中错误结论的个数是()A.1B.2C.3D.4二、填空题(共5个小题,每小题4分,共20分)13.(4分)方程组的解是.14.(4分)方程+=1的解是.15.(4分)如图所示,AB是⊙O的直径,弦CD⊥AB于H,∠A=30°,CD=2,则⊙O 的半径是.16.(4分)在▱ABCD中,E是AD上一点,且点E将AD分为2:3的两部分,连接BE、AC相交于F,则S△AEF:S△CBF是.17.(4分)将抛物线y=(x﹣3)2﹣2向左平移个单位后经过点A(2,2).三、解答题(共5小题,共32分)18.(5分)计算:tan45°+(﹣)0﹣(﹣)﹣2+|﹣2|.19.(5分)先化简,再求值:(a+3)2﹣(a+1)(a﹣1)﹣2(2a+4),其中a=﹣.20.(6分)如图,正方形ABCD的对角线AC、BD相交于点O,E是OC上一点,连接EB.过点A作AM⊥BE,垂足为M,AM与BD相交于点F.求证:OE=OF.21.(8分)某校初中部举行诗词大会预选赛,学校对参赛同学获奖情况进行统计,绘制了如下两幅不完整的统计图.请结合图中相关数据解答下列问题:(1)参加此次诗词大会预选赛的同学共有人;(2)在扇形统计图中,“三等奖”所对应的扇形的圆心角的度数为;(3)将条形统计图补充完整;(4)若获得一等奖的同学中有来自七年级,来自九年级,其余的来自八年级,学校决定从获得一等奖的同学中任选两名同学参加全市诗词大会比赛,请通过列表或树状图方法求所选两名同学中,恰好是一名七年级和一名九年级同学的概率.22.(8分)如图,点D是以AB为直径的⊙O上一点,过点B作⊙O的切线,交AD的延长线于点C,E是BC的中点,连接DE并延长与AB的延长线交于点F.(1)求证:DF是⊙O的切线;(2)若OB=BF,EF=4,求AD的长.四、B卷填空题(共2小题,每小题5分,共10分)23.(5分)当0≤x≤3时,直线y=a与抛物线y=(x﹣1)2﹣3有交点,则a的取值范围是.24.(5分)如图,正方形ABCD中,AB=12,AE=AB,点P在BC上运动(不与B、C 重合),过点P作PQ⊥EP,交CD于点Q,则CQ的最大值为.五、解答题(共4小题,共40分)25.(8分)已知二次函数y=x2+x+a的图象与x轴交于A(x1,0)、B(x2,0)两点,且+=1,求a的值.26.(10分)根据有理数乘法(除法)法则可知:①若ab>0(或>0),则或;②若ab<0(或<0),则或.根据上述知识,求不等式(x﹣2)(x+3)>0的解集解:原不等式可化为:(1)或(2).由(1)得,x>2,由(2)得,x<﹣3,∴原不等式的解集为:x<﹣3或x>2.请你运用所学知识,结合上述材料解答下列问题:(1)不等式x2﹣2x﹣3<0的解集为.(2)求不等式<0的解集(要求写出解答过程)27.(10分)如图,∠ABD=∠BCD=90°,DB平分∠ADC,过点B作BM∥CD交AD于M.连接CM交DB于N.(1)求证:BD2=AD•CD;(2)若CD=6,AD=8,求MN的长.28.(12分)如图,抛物线y=ax2+bx+c的图象过点A(﹣1,0)、B(3,0)、C(0,3).(1)求抛物线的解析式;(2)在抛物线的对称轴上是否存在一点P,使得△P AC的周长最小,若存在,请求出点P的坐标及△P AC的周长;若不存在,请说明理由;(3)在(2)的条件下,在x轴上方的抛物线上是否存在点M(不与C点重合),使得S=S△P AC?若存在,请求出点M的坐标;若不存在,请说明理由.△P AM2019年四川省凉山州中考数学试卷参考答案与试题解析一、选择题(共12个小题,每小题4分,共48分)在每小题给出的四个选项中只有一项是正确的,把正确选项的宇母填涂在答题卡上相应的位置1.(4分)﹣2的相反数是()A.2B.﹣2C.D.﹣【分析】根据相反数的意义,只有符号不同的数为相反数.【解答】解:根据相反数的定义,﹣2的相反数是2.故选:A.【点评】本题考查了相反数的意义.注意掌握只有符号不同的数为相反数,0的相反数是0.2.(4分)2018年凉山州生产总值约为153300000000,用科学记数法表示数153300000000是()A.1.533×109B.1.533×1010C.1.533×1011D.1.533×1012【分析】利用科学记数法表示即可【解答】解:科学记数法表示:153 300 000 000=1.533×1011故选:C.【点评】本题主要考查科学记数法的表示,把一个数表示成a与10的n次幂相乘的形式(1≤a<10,n为整数),这种记数法叫做科学记数法.3.(4分)如图,BD∥EF,AE与BD交于点C,∠B=30°,∠A=75°,则∠E的度数为()A.135°B.125°C.115°D.105°【分析】直接利用三角形的外角性质得出∠ACD度数,再利用平行线的性质分析得出答案.【解答】解:∵∠B=30°,∠A=75°,∴∠ACD=30°+75°=105°,∵BD∥EF,∴∠E=∠ACD=105°.故选:D.【点评】此题主要考查了平行线的性质以及三角形的外角,正确掌握平行线的性质是解题关键.4.(4分)下列各式正确的是()A.2a2+3a2=5a4B.a2•a=a3C.(a2)3=a5D.=a【分析】分别根据合并同类项的法则、同底数幂的乘法法则、幂的乘方法则以及二次根式的性质解答即可.【解答】解:A、2a2+3a2=5a2,故选项A不合题意;B、a2•a=a3,故选项B符合题意;C、(a2)3=a6,故选项C不合题意;D、=|a|,故选项D不合题意.故选:B.【点评】本题主要考查了合并同类项的法则、幂的运算法则以及二次根式的性质,熟练掌握相关运算性质是解答本题的关键.5.(4分)不等式1﹣x≥x﹣1的解集是()A.x≥1B.x≥﹣1C.x≤1D.x≤﹣1【分析】移项、合并同类项,系数化为1即可求解.【解答】解:1﹣x≥x﹣1,﹣2x≥﹣2∴x≤1.故选:C.【点评】本题考查了解简单不等式的能力,解答这类题学生往往在解题时不注意移项要改变符号这一点而出错.6.(4分)某班40名同学一周参加体育锻炼时间统计如表所示:人数(人)317137时间(小时)78910那么该班40名同学一周参加体育锻炼时间的众数、中位数分别是()A.17,8.5B.17,9C.8,9D.8,8.5【分析】根据中位数、众数的概念分别求得这组数据的中位数、众数.【解答】解:众数是一组数据中出现次数最多的数,即8;由统计表可知,处于20,21两个数的平均数就是中位数,∴这组数据的中位数为=8.5;故选:D.【点评】本题考查了中位数、众数的概念.本题为统计题,考查众数与中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.7.(4分)下列命题:①直线外一点到这条直线的垂线段,叫做点到直线的距离;②两点之间线段最短;③相等的圆心角所对的弧相等;④平分弦的直径垂直于弦.其中,真命题的个数是()A.1B.2C.3D.4【分析】根据点到直线的距离,线段的性质,弧、弦、圆心角之间的关系以及垂径定理判断即可.【解答】解:①直线外一点到这条直线的垂线段,叫做点到直线的距离;假命题;②两点之间线段最短;真命题;③相等的圆心角所对的弧相等;假命题;④平分弦的直径垂直于弦;假命题;真命题的个数是1个;故选:A.【点评】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.8.(4分)如图,正比例函数y=kx与反比例函数y=的图象相交于A、C两点,过点A作x轴的垂线交x轴于点B,连接BC,则△ABC的面积等于()A.8B.6C.4D.2【分析】由于点A、C位于反比例函数图象上且关于原点对称,则S△OBA=S△OBC,再根据反比例函数系数k的几何意义作答即可.【解答】解:因为过双曲线上任意一点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S是个定值,即S=|k|.所以△ABC的面积等于2×|k|=|k|=4.故选:C.【点评】主要考查了反比例函数y=中k的几何意义,即过双曲线上任意一点引x轴、y轴垂线,所得矩形面积为|k|,是经常考查的一个知识点;这里体现了数形结合的思想,做此类题一定要正确理解k的几何意义.图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S的关系即S=|k|.9.(4分)如图,在△ABC中,CA=CB=4,cos C=,则sin B的值为()A.B.C.D.【分析】过点A作AD⊥BC,垂足为D,在Rt△ACD中可求出AD,CD的长,在Rt△ABD中,利用勾股定理可求出AB的长,再利用正弦的定义可求出sin B的值.【解答】解:过点A作AD⊥BC,垂足为D,如图所示.在Rt△ACD中,CD=CA•cos C=1,∴AD==;在Rt△ABD中,BD=CB﹣CD=3,AD=,∴AB==2,∴sin B==.故选:D.【点评】本题考查了解直角三角形以及勾股定理,通过解直角三角形及勾股定理,求出AD,AB的长是解题的关键.10.(4分)如图,在△ABC中,D在AC边上,AD:DC=1:2,O是BD的中点,连接AO 并延长交BC于E,则BE:EC=()A.1:2B.1:3C.1:4D.2:3【分析】过O作BC的平行线交AC与G,由中位线的知识可得出AD:DC=1:2,根据已知和平行线分线段成比例得出AD=DG=GC,AG:GC=2:1,AO:OF=2:1,再由同高不同底的三角形中底与三角形面积的关系可求出BF:FC的比.【解答】解:如图,过O作OG∥BC,交AC于G,∵O是BD的中点,∴G是DC的中点.又AD:DC=1:2,∴AD=DG=GC,∴AG:GC=2:1,AO:OE=2:1,∴S△AOB:S△BOE=2设S△BOE=S,S△AOB=2S,又BO=OD,∴S△AOD=2S,S△ABD=4S,∵AD:DC=1:2,∴S△BDC=2S△ABD=8S,S四边形CDOE=7S,∴S△AEC=9S,S△ABE=3S,∴故选:B.【点评】本题考查平行线分线段成比例及三角形的中位线的知识,难度较大,注意熟练运用中位线定理和三角形面积公式.11.(4分)如图,在△AOC中,OA=3cm,OC=1cm,将△AOC绕点O顺时针旋转90°后得到△BOD,则AC边在旋转过程中所扫过的图形的面积为()cm2.A.B.2πC.πD.π【分析】根据旋转的性质可以得到阴影部分的面积=扇形OAB的面积﹣扇形OCD的面积,利用扇形的面积公式即可求解.【解答】解:∵△AOC≌△BOD,∴阴影部分的面积=扇形OAB的面积﹣扇形OCD的面积=﹣=2π,故选:B.【点评】本题考查了旋转的性质以及扇形的面积公式,正确理解:阴影部分的面积=扇形OAB的面积﹣扇形OCD的面积是解题关键.12.(4分)二次函数y=ax2+bx+c的部分图象如图所示,有以下结论:①3a﹣b=0;②b2﹣4ac>0;③5a﹣2b+c>0;④4b+3c>0,其中错误结论的个数是()A.1B.2C.3D.4【分析】①对称轴为x=﹣,得b=3a;②函数图象与x轴有两个不同的交点,得△=b2﹣4ac>0;③当x=﹣1时,a﹣b+c>0,当x=﹣3时,9a﹣3b+c>0,得5a﹣2b+c>0;④由对称性可知x=1时对应的y值与x=﹣4时对应的y值相等,当x=1时a+b+c<0,4b+3c=3b+b+3c=3b+3a+3c=3(a+b+c)<0;【解答】解:由图象可知a<0,c>0,对称轴为x=﹣,∴x=﹣=﹣,∴b=3a,①正确;∵函数图象与x轴有两个不同的交点,∴△=b2﹣4ac>0,②正确;当x=﹣1时,a﹣b+c>0,当x=﹣3时,9a﹣3b+c>0,∴10a﹣4b+2c>0,∴5a﹣2b+c>0,③正确;由对称性可知x=1时对应的y值与x=﹣4时对应的y值相等,∴当x=1时a+b+c<0,∵b=3a,∴4b+3c=3b+b+3c=3b+3a+3c=3(a+b+c)<0,∴4b+3c<0,④错误;故选:A.【点评】本题考查二次函数的图象及性质;熟练掌握从函数图象获取信息,将信息与函数解析式相结合解题是关键.二、填空题(共5个小题,每小题4分,共20分)13.(4分)方程组的解是.【分析】利用加减消元法解之即可.【解答】解:,②﹣①得:x=6,把x=6代入①得:6+y=10,解得:y=4,方程组的解为:,故答案为:.【点评】本题考查了解二元一次方程组,正确掌握加减消元法是解题的关键.14.(4分)方程+=1的解是x=﹣2.【分析】去分母,把分式方程化为整式方程,求解并验根即可.【解答】解:去分母,得(2x﹣1)(x+1)﹣2=(x+1)(x﹣1)去括号,得2x2+x﹣3=x2﹣1移项并整理,得x2+x﹣2=0所以(x+2)(x﹣1)=0解得x=﹣2或x=1经检验,x=﹣2是原方程的解.故答案为:x=﹣2.【点评】本题考查了分式方程、一元二次方程的解法.掌握分式方程的解法是解决本题的关键.注意验根.15.(4分)如图所示,AB是⊙O的直径,弦CD⊥AB于H,∠A=30°,CD=2,则⊙O 的半径是2.【分析】连接BC,由圆周角定理和垂径定理得出∠ACB=90°,CH=DH=CD=,由直角三角形的性质得出AC=2CH=2,AC=BC=2,AB=2BC,得出BC=2,AB=4,求出OA=2即可.【解答】解:连接BC,如图所示:∵AB是⊙O的直径,弦CD⊥AB于H,∴∠ACB=90°,CH=DH=CD=,∵∠A=30°,∴AC=2CH=2,在Rt△ABC中,∠A=30°,∴AC=BC=2,AB=2BC,∴BC=2,AB=4,∴OA=2,即⊙O的半径是2;故答案为:2.【点评】本题考查的是垂径定理、圆周角定理、含30°角的直角三角形的性质、勾股定理等知识;熟练掌握圆周角定理和垂径定理是解题的关键.16.(4分)在▱ABCD中,E是AD上一点,且点E将AD分为2:3的两部分,连接BE、AC相交于F,则S△AEF:S△CBF是4:25或9:25.【分析】分AE:ED=2:3、AE:ED=3:2两种情况,根据相似三角形的性质计算即可.【解答】解:①当AE:ED=2:3时,∵四边形ABCD是平行四边形,∴AD∥BC,AE:BC=2:5,∴△AEF∽△CBF,∴S△AEF:S△CBF=()2=4:25;②当AE:ED=3:2时,同理可得,S△AEF:S△CBF=()2=9:25,故答案为:4:25或9:25.【点评】本题考查的是相似三角形的判定和性质、平行四边形的性质,掌握相似三角形的面积比等于相似比的平方是解题的关键.17.(4分)将抛物线y=(x﹣3)2﹣2向左平移3个单位后经过点A(2,2).【分析】直接利用二次函数的平移规律结合二次函数图象上点的性质进而得出答案.【解答】解:∵将抛物线y=(x﹣3)2﹣2向左平移后经过点A(2,2),∴设平移后解析式为:y=(x﹣3+a)2﹣2,则2=(2﹣3+a)2﹣2,解得:a=3或a=﹣1(不合题意舍去),故将抛物线y=(x﹣3)2﹣2向左平移3个单位后经过点A(2,2).故答案为:3.【点评】此题主要考查了二次函数图象与几何变换,正确记忆平移规律是解题关键.三、解答题(共5小题,共32分)18.(5分)计算:tan45°+(﹣)0﹣(﹣)﹣2+|﹣2|.【分析】分别进行特殊角的三角函数值的运算,任何非零数的零次幂等于1,负整数指数幂以及绝对值的意义化简,然后按照实数的运算法则进行计算求得结果.【解答】解:原式=1+1﹣2+(2﹣)=.【点评】本题考查了实数的运算法则,属于基础题,解答本题的关键是熟练掌握负整数指数幂、特殊角的三角函数值等知识.19.(5分)先化简,再求值:(a+3)2﹣(a+1)(a﹣1)﹣2(2a+4),其中a=﹣.【分析】注意到(a+3)2可以利用完全平方公式进行展开,(a+1)(a﹣1)利润平方差公式可化为(a2﹣1),则将各项合并即可化简,最后代入a=进行计算.【解答】解:原式=a2+6a+9﹣(a2﹣1)﹣4a﹣8=2a+2将a=﹣代入原式=2×(﹣)+2=1【点评】本题主要考查整式的混合运算,灵活运用两条乘法公式:完全平方公式和平方差公式是解题的关键,同时,在去括号的过程中要注意括号前的符号,若为负号,去括号后,括号里面的符号要改变20.(6分)如图,正方形ABCD的对角线AC、BD相交于点O,E是OC上一点,连接EB.过点A作AM⊥BE,垂足为M,AM与BD相交于点F.求证:OE=OF.【分析】根据正方形的性质对角线垂直且平分,得到OB=OA,根据AM⊥BE,即可得出∠MEA+∠MAE=90°=∠AFO+∠MAE,从而证出Rt△BOE≌Rt△AOF,得到OE=OF.【解答】证明:∵四边形ABCD是正方形.∴∠BOE=∠AOF=90°,OB=OA.又∵AM⊥BE,∴∠MEA+∠MAE=90°=∠AFO+∠MAE,∴∠MEA=∠AFO.∴△BOE≌△AOF(AAS).∴OE=OF.【点评】本题主要考查了正方形的性质、三角形全等的性质和判定,在应用全等三角形的判定时,要注意三角形间的公共边和公共角,必要时添加适当辅助线构造三角形.21.(8分)某校初中部举行诗词大会预选赛,学校对参赛同学获奖情况进行统计,绘制了如下两幅不完整的统计图.请结合图中相关数据解答下列问题:(1)参加此次诗词大会预选赛的同学共有40人;(2)在扇形统计图中,“三等奖”所对应的扇形的圆心角的度数为90°;(3)将条形统计图补充完整;(4)若获得一等奖的同学中有来自七年级,来自九年级,其余的来自八年级,学校决定从获得一等奖的同学中任选两名同学参加全市诗词大会比赛,请通过列表或树状图方法求所选两名同学中,恰好是一名七年级和一名九年级同学的概率.【分析】(1)利用鼓励奖的人数除以它所占的百分比得到的总人数;(2)用360°乘以二等奖人数占被调查人数的比例即可得;(3)计算出一等奖和二等奖的人数,然后补全条形统计图;(4)画树状图(用A、B、C分别表示七年级、八年级和九年级的学生)展示所有12种等可能的结果数,再找出所选出的两人中既有七年级又有九年级同学的结果数,然后利用概率公式求解.【解答】解:(1)参加此次诗词大会预选赛的同学共有18÷45%=40(人),故答案为:40;(2)扇形统计图中获三等奖的圆心角为360°×=90°,故答案为:90°.(3)获二等奖的人数=40×20%=8,一等奖的人数为40﹣8﹣10﹣18=4(人),条形统计图为:(4)由题意知,获一等奖的学生中,七年级有1人,八年级有1人,九年级有2人,画树状图为:(用A、B、C分别表示七年级、八年级和九年级的学生)共有12种等可能的结果数,其中所选出的两人中既有七年级又有九年级同学的结果数为4,所以所选出的两人中既有七年级又有九年级同学的概率=.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式求事件A或B的概率.也考查了统计图.22.(8分)如图,点D是以AB为直径的⊙O上一点,过点B作⊙O的切线,交AD的延长线于点C,E是BC的中点,连接DE并延长与AB的延长线交于点F.(1)求证:DF是⊙O的切线;(2)若OB=BF,EF=4,求AD的长.【分析】(1)连接OD,由AB为⊙O的直径得∠BDC=90°,根据BE=EC知∠1=∠3、由OD=OB知∠2=∠4,根据BC是⊙O的切线得∠3+∠4=90°,即∠1+∠2=90°,得证;(2)根据直角三角形的性质得到∠F=30°,BE=EF=2,求得DE=BE=2,得到DF=6,根据三角形的内角和得到OD=OA,求得∠A=∠ADO=BOD=30°,根据等腰三角形的性质即可得到结论.【解答】解:(1)如图,连接OD,BD,∵AB为⊙O的直径,∴∠ADB=∠BDC=90°,在Rt△BDC中,∵BE=EC,∴DE=EC=BE,∴∠1=∠3,∵BC是⊙O的切线,∴∠3+∠4=90°,∴∠1+∠4=90°,又∵∠2=∠4,∴∠1+∠2=90°,∴DF为⊙O的切线;(2)∵OB=BF,∴OF=2OD,∴∠F=30°,∵∠FBE=90°,∴BE=EF=2,∴DE=BE=2,∴DF=6,∵∠F=30°,∠ODF=90°,∴∠FOD=60°,∵OD=OA,∴∠A=∠ADO=BOD=30°,∴∠A=∠F,∴AD=DF=6.【点评】本题考查了切线的判定和性质,直角三角形的性质,等腰三角形的判定和性质,正确的作出辅助线是解题的关键.四、B卷填空题(共2小题,每小题5分,共10分)23.(5分)当0≤x≤3时,直线y=a与抛物线y=(x﹣1)2﹣3有交点,则a的取值范围是﹣3≤a≤1.【分析】直线y=a与抛物线y=(x﹣1)2﹣3有交点,则可化为一元二次方程组利用根的判别式进行计算.【解答】解:法一:y=a与抛物线y=(x﹣1)2﹣3有交点则有a=(x﹣1)2﹣3,整理得x2﹣2x﹣2﹣a=0∴△=b2﹣4ac=4+4(2+a)≥0解得a≥﹣3,∵0≤x≤3,对称轴x=1∴y=(3﹣1)2﹣3=1∴a≤1法二:由题意可知,∵抛物线的顶点为(1,﹣3),而0≤x≤3∴抛物线y的取值为﹣3≤y≤1∵y=a,则直线y与x轴平行,∴要使直线y=a与抛物线y=(x﹣1)2﹣3有交点,∴抛物线y的取值为﹣3≤y≤1,即为a的取值范围,∴﹣3≤a≤1故答案为:﹣3≤a≤1【点评】此题主要考查二次函数图象的性质及交点的问题,此类问题,通常可化为一元二次方程,利用根的判别式或根与系数的关系进行计算.24.(5分)如图,正方形ABCD中,AB=12,AE=AB,点P在BC上运动(不与B、C 重合),过点P作PQ⊥EP,交CD于点Q,则CQ的最大值为4.【分析】先证明△BPE∽△CQP,得到与CQ有关的比例式,设CQ=y,BP=x,则CP =12﹣x,代入解析式,得到y与x的二次函数式,根据二次函数的性质可求最值.【解答】解:∵∠BEP+∠BPE=90°,∠QPC+∠BPE=90°,∴∠BEP=∠CPQ.又∠B=∠C=90°,∴△BPE∽△CQP.∴.设CQ=y,BP=x,则CP=12﹣x.∴,化简得y=﹣(x2﹣12x),整理得y=﹣(x﹣6)2+4,所以当x=6时,y有最大值为4.故答案为4.【点评】本题主要考查了正方形的性质、相似三角形的判定和性质,以及二次函数最值问题,几何最值用二次函数最值求解考查了树形结合思想.五、解答题(共4小题,共40分)25.(8分)已知二次函数y=x2+x+a的图象与x轴交于A(x1,0)、B(x2,0)两点,且+=1,求a的值.【分析】有韦达定理得x1+x2=﹣1,x1•x2=a,将式子+=1化简代入即可;【解答】解:y=x2+x+a的图象与x轴交于A(x1,0)、B(x2,0)两点,∴x1+x2=﹣1,x1•x2=a,∵+===1,∴a=﹣1+或a=﹣1﹣;【点评】本题考查二次函数的性质;灵活运用完全平方公式,掌握根与系数的关系是解题的关键.26.(10分)根据有理数乘法(除法)法则可知:①若ab>0(或>0),则或;②若ab<0(或<0),则或.根据上述知识,求不等式(x﹣2)(x+3)>0的解集解:原不等式可化为:(1)或(2).由(1)得,x>2,由(2)得,x<﹣3,∴原不等式的解集为:x<﹣3或x>2.请你运用所学知识,结合上述材料解答下列问题:(1)不等式x2﹣2x﹣3<0的解集为﹣1<x<3.(2)求不等式<0的解集(要求写出解答过程)【分析】(1)根据有理数乘法运算法则可得不等式组,仿照有理数乘法运算法则得出两个不等式组,分别求解可得.(2)根据有理数除法运算法则可得不等式组,仿照有理数除法运算法则得出两个不等式组,分别求解可得.【解答】解:(1)原不等式可化为:①或②.由①得,空集,由②得,﹣1<x<3,∴原不等式的解集为:﹣1<x<3,故答案为:﹣1<x<3.(2)由<0知①或②,解不等式组①,得:x>1;解不等式组②,得:x<﹣4;所以不等式<0的解集为x>1或x<﹣4.【点评】本题主要考查解不等式、不等式组的能力,将原不等式转化为两个不等式组是解题的关键.27.(10分)如图,∠ABD=∠BCD=90°,DB平分∠ADC,过点B作BM∥CD交AD于M.连接CM交DB于N.(1)求证:BD2=AD•CD;(2)若CD=6,AD=8,求MN的长.【分析】(1)通过证明△ABD∽△BCD,可得,可得结论;(2)由平行线的性质可证∠MBD=∠BDC,即可证AM=MD=MB=4,由BD2=AD•CD 和勾股定理可求MC的长,通过证明△MNB∽△CND,可得,即可求MN的长.【解答】证明:(1)∵DB平分∠ADC,∴∠ADB=∠CDB,且∠ABD=∠BCD=90°,∴△ABD∽△BCD∴∴BD2=AD•CD(2)∵BM∥CD∴∠MBD=∠BDC∴∠ADB=∠MBD,且∠ABD=90°∴BM=MD,∠MAB=∠MBA∴BM=MD=AM=4∵BD2=AD•CD,且CD=6,AD=8,∴BD2=48,∴BC2=BD2﹣CD2=12∴MC2=MB2+BC2=28∴MC=2∵BM∥CD∴△MNB∽△CND∴,且MC=2∴MN=【点评】本题考查了相似三角形的判定和性质,勾股定理,直角三角形的性质,求MC 的长度是本题的关键.28.(12分)如图,抛物线y=ax2+bx+c的图象过点A(﹣1,0)、B(3,0)、C(0,3).(1)求抛物线的解析式;(2)在抛物线的对称轴上是否存在一点P,使得△P AC的周长最小,若存在,请求出点P的坐标及△P AC的周长;若不存在,请说明理由;(3)在(2)的条件下,在x轴上方的抛物线上是否存在点M(不与C点重合),使得S=S△P AC?若存在,请求出点M的坐标;若不存在,请说明理由.△P AM【分析】(1)由于条件给出抛物线与x轴的交点A(﹣1,0)、B(3,0),故可设交点式y=a(x+1)(x﹣3),把点C代入即求得a的值,减小计算量.(2)由于点A、B关于对称轴:直线x=1对称,故有P A=PB,则C△P AC=AC+PC+P A =AC+PC+PB,所以当C、P、B在同一直线上时,C△P AC=AC+CB最小.利用点A、B、C的坐标求AC、CB的长,求直线BC解析式,把x=1代入即求得点P纵坐标.(3)由S△P AM=S△P AC可得,当两三角形以P A为底时,高相等,即点C和点M到直线P A距离相等.又因为M在x轴上方,故有CM∥P A.由点A、P坐标求直线AP解析式,即得到直线CM解析式.把直线CM解析式与抛物线解析式联立方程组即求得点M坐标.【解答】解:(1)∵抛物线与x轴交于点A(﹣1,0)、B(3,0)∴可设交点式y=a(x+1)(x﹣3)把点C(0,3)代入得:﹣3a=3∴a=﹣1∴y=﹣(x+1)(x﹣3)=﹣x2+2x+3∴抛物线解析式为y=﹣x2+2x+3(2)在抛物线的对称轴上存在一点P,使得△P AC的周长最小.如图1,连接PB、BC∵点P在抛物线对称轴直线x=1上,点A、B关于对称轴对称∴P A=PB∴C△P AC=AC+PC+P A=AC+PC+PB∵当C、P、B在同一直线上时,PC+PB=CB最小∵A(﹣1,0)、B(3,0)、C(0,3)∴AC=,BC=∴C△P AC=AC+CB=最小设直线BC解析式为y=kx+3把点B代入得:3k+3=0,解得:k=﹣1∴直线BC:y=﹣x+3∴y P=﹣1+3=2∴点P(1,2)使△P AC的周长最小,最小值为.(3)存在满足条件的点M,使得S△P AM=S△P AC.∵S△P AM=S△P AC∴当以P A为底时,两三角形等高∴点C和点M到直线P A距离相等∵M在x轴上方∴CM∥P A∵A(﹣1,0),P(1,2),设直线AP解析式为y=px+d∴解得:∴直线AP:y=x+1∴直线CM解析式为:y=x+3∵解得:(即点C),∴点M坐标为(1,4)【点评】本题考查了待定系数法求二次函数解析式、一次函数解析式,轴对称的最短路径问题,勾股定理,平行线间距离处处相等,一元二次方程的解法.其中第(3)题条件给出点M在x轴上方,无需分类讨论,解法较常规而简单.中考数学知识点代数式一、重要概念分类:1.代数式与有理式用运算符号把数或表示数的字母连结而成的式子,叫做代数式。
四川省凉山州2018年中考数学真题试题(含解析)含答案
四川省凉山州2018年中考数学真题试题一、选择题(本大题共10小题,共30分)1.比1小2的数是A. B. C. D. 1【答案】A【解析】解:.故选:A.求比1小2的数就是求1与2的差.本题主要考查有理数的减法法则:减去一个数等于加上这个数的相反数这是需要熟记的内容.2.下列运算正确的是A. B. C. D.【答案】C【解析】解:A、应为,故本选项错误;B、应为,故本选项错误;C、,正确;D、应为,故本选项错误.故选:C.根据同底数的幂的运算法则、合并同类项法则及完全平方公式计算.本题考查同底数幂的乘法,同底数幂的除法,合并同类项法则,完全平方公式,计算时要认真.3.长度单位1纳米米,目前发现一种新型病毒直径为25 100纳米,用科学记数法表示该病毒直径是A. 米B. 米C.米 D. 米【答案】D【解析】解:米故选D.先将25100用科学记数法表示为,再和相乘.中,a的整数部分只能取一位整数,此题中的n应为负数.4.小红上学要经过三个十字路口,每个路口遇到红、绿灯的机会都相同,小红希望上学时经过每个路囗都是绿灯,但实际这样的机会是A. B. C. D.【答案】B【解析】解:画树状图,得共有8种情况,经过每个路口都是绿灯的有一种,实际这样的机会是,故选:B.列举出所有情况,看个路口都是绿灯的情况占总情况的多少即可.此题考查了树状图法求概率,树状图法适用于三步或三步以上完成的事件,解题时要注意列出所有的情形用到的知识点为:概率所求情况数与总情况数之比.5.一个正方体的平面展开图如图所示,将它折成正方体后“建”字对面是A. 和B. 谐C. 凉D. 山【答案】D【解析】解:对于正方体的平面展开图中相对的面一定相隔一个小正方形,由图形可知,与“建”字相对的字是“山”.故选:D.本题考查了正方体的平面展开图,对于正方体的平面展开图中相对的面一定相隔一个小正方形,据此作答.注意正方体的空间图形,从相对面入手,分析及解答问题.6.一组数据:3,2,1,2,2的众数,中位数,方差分别是A. 2,1,B. 2,2,C. 3,1,2D. 2,1,【答案】B【解析】解:从小到大排列此数据为:1,2,2,2,3;数据2出现了三次最多为众数,2处在第3位为中位数平均数为,方差为,即中位数是2,众数是2,方差为.故选:B.找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不只一个利用方差公式计算方差.本题属于基础题,考查了确定一组数据的中位数、方差和众数的能力注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求如果是偶数个则找中间两位数的平均数.7.若,则正比例函数与反比例函数在同一坐标系中的大致图象可能是A. B. C. D.【答案】B【解析】解:,分两种情况:当,时,正比例函数数的图象过原点、第一、三象限,反比例函数图象在第二、四象限,无此选项;当,时,正比例函数的图象过原点、第二、四象限,反比例函数图象在第一、三象限,选项B符合.故选:B.根据及正比例函数与反比例函数图象的特点,可以从,和,两方面分类讨论得出答案.本题主要考查了反比例函数的图象性质和正比例函数的图象性质,要掌握它们的性质才能灵活解题.8.下列图形中既是轴对称图形,又是中心对称图形的是A. B. C. D.【答案】D【解析】解:A、不是轴对称图形,是中心对称图形,故本选项错误;B、既不是轴对称图形,也不是中心对称图形,故本选项错误;C、既不是轴对称图形,也不是中心对称图形,故本选项错误;D、既是轴对称图形,又是中心对称图形.故选:D.根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.本题考查了中心对称图形与轴对称图形的概念轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.9.如图将矩形ABCD沿对角线BD折叠,使C落在处,交AD于点E,则下到结论不一定成立的是A.B.C. ∽D.【答案】C【解析】解:A、,,,所以正确.B 、,,EDB正确.D、,.故选:C.主要根据折叠前后角和边相等找到相等的边之间的关系,即可选出正确答案.本题主要用排除法,证明A,B,D都正确,所以不正确的就是C,排除法也是数学中一种常用的解题方法.10.如图,是的外接圆,已知,则的大小为A.B.C.D.【答案】A【解析】解:中,,,,,故选:A.首先根据等腰三角形的性质及三角形内角和定理求出的度数,再利用圆周角与圆心角的关系求出的度数.本题主要考查了圆周角定理的应用,涉及到的知识点还有:等腰三角形的性质以及三角形内角和定理.二、填空题(本大题共6小题,共24分)11.分解因式:______,______.【答案】;【解析】解:;.观察原式,找到公因式a后,发现符合平方差公式的形式,直接运用公式可得;观察原式,找到公因式2后,发现符合完全平方差公式的形式,直接运用公式可得.本题考查整式的因式分解一般地,因式分解有两种方法,提公因式法,公式法,能提公因式先提公因式,然后再考虑公式法.12.已知∽且::2,则AB:______.【答案】1:【解析】解:∽,:::2,::.根据相似三角形的面积比等于相似比的平方求解即可.本题的关键是理解相似三角形的面积比等于相似比的平方.13.有两名学员小林和小明练习射击,第一轮10枪打完后两人打靶的环数如图所示,通常新手的成绩不太稳定,那么根据图中的信息,估计小林和小明两人中新手是______.【答案】小林【解析】解:由于小林的成绩波动较大,根据方差的意义知,波动越大,成绩越不稳定,故新手是小林.故填小林.观察图象可得:小明的成绩较集中,波动较小,即方差较小;故小明的成绩较为稳定;根据题意,一般新手的成绩不太稳定,故新手是小林.本题考查方差的意义方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.14.已知一个正数的平方根是和,则这个数是______.【答案】【解析】解:根据题意可知:,解得,所以,,故答案为:.由于一个非负数的平方根有2个,它们互为相反数依此列出方程求解即可.本题主要考查了平方根的逆运算,平时注意训练逆向思维.15.若不等式组的解集是,则______.【答案】【解析】解:由不等式得,,,,,,.故答案为.解出不等式组的解集,与已知解集比较,可以求出a、b的值,然后相加求出2009次方,可得最终答案.本题是已知不等式组的解集,求不等式中另一未知数的问题可以先将另一未知数当作已知处理,求出解集与已知解集比较,进而求得零一个未知数.16.将绕点B逆时针旋转到,使A、B、在同一直线上,若,,,则图中阴影部分面积为______.【答案】【解析】解:,,,,,,,阴影部分面积.故答案为:.易得整理后阴影部分面积为圆心角为,两个半径分别为4和2的圆环的面积.本题利用了直角三角形的性质,扇形的面积公式求解.三、计算题(本大题共3小题,共24分)17.先化简,再选择一个你喜欢的数要合适哦代入求值:.【答案】解:,当时,原式.【解析】根据分式的加法和除法可以化简题目中的式子,再选取一个使得原分式有意义的值代入即可解答本题.本题考查分式的化简求值,解答本题的关键是明确分式的化简求值的计算方法.18.如图,要在木里县某林场东西方向的两地之间修一条公路MN,已知C点周围200米范围内为原始森林保护区,在MN上的点A处测得C在A的北偏东方向上,从A向东走600米到达B处,测得C在点B的北偏西方向上.是否穿过原始森林保护区,为什么?参考数据:若修路工程顺利进行,要使修路工程比原计划提前5天完成,需将原定的工作效率提高,则原计划完成这项工程需要多少天?【答案】解:理由如下:如图,过C作于H.设,由已知有,,则,.在中,,在中,,,,解得米米.不会穿过森林保护区.设原计划完成这项工程需要y天,则实际完成工程需要天.根据题意得:解得:.经检验知:是原方程的根.答:原计划完成这项工程需要25天.【解析】要求MN是否穿过原始森林保护区,也就是求C到MN的距离要构造直角三角形,再解直角三角形;根据题意列方程求解.考查了构造直角三角形解斜三角形的方法和分式方程的应用.19.我们常用的数是十进制数,如,数要用10个数码又叫数字:0、1、2、3、4、5、6、7、8、9,在电子计算机中用的二进制,只要两个数码:0和1,如二进制中等于十进制的数6,等于十进制的数那么二进制中的数101011等于十进制中的哪个数?【答案】解:,所以二进制中的数101011等于十进制中的43.【解析】利用新定义得到,然后根据乘方的定义进行计算.本题考查了有理数的乘方:有理数乘方的定义:求n个相同因数积的运算,叫做乘方.四、解答题(本大题共7小题,共72分)20.计算:.【答案】解:原式.【解析】直接利用二次根式的性质以及特殊角的三角函数值、绝对值的性质、负指数幂的性质进而化简得出答案.此题主要考查了实数运算,正确化简各数是解题关键.21.观察下列多面体,并把如表补充完整.观察表中的结果,你能发现a、b、c之间有什么关系吗?请写出关系式.【答案】解:填表如下:根据上表中的规律判断,若一个棱柱的底面多边形的边数为n,则它有n个侧面,共有个面,共有2n个顶点,共有3n条棱;故a,b,c之间的关系:.【解析】结合三棱柱、四棱柱和五棱柱的特点,即可填表,根据已知的面、顶点和棱与几棱柱的关系,可知n棱柱一定有个面,2n个顶点和3n条棱,进而得出答案,利用前面的规律得出a,b,c之间的关系.此题主要考查了欧拉公式,熟记常见棱柱的特征,可以总结一般规律:n棱柱有个面,2n个顶点和3n条棱是解题关键.22.如图,在方格纸中请在方格纸上建立平面直角坐标系,使,,并求出B点坐标;以原点O为位似中心,相似比为2,在第一象限内将放大,画出放大后的图形;计算的面积S.【答案】解:如图所示,即为所求的直角坐标系;;如图:即为所求;.【解析】直接利用A,C点坐标得出原点位置进而得出答案;利用位似图形的性质即可得出;直接利用中图形求出三角形面积即可.此题主要考查了位似变换以及三角形面积求法,正确得出对应点位置是解题的关键画位似图形的一般步骤为:确定位似中心;分别连接并延长位似中心和关键点;根据位似比,确定位似图形的关键点;顺次连接上述各点,得到放大或缩小的图形.23.我国沪深股市交易中,如果买、卖一次股票均需付交易金额的作费用张先生以每股5元的价格买入“西昌电力”股票1000股,若他期望获利不低于1000元,问他至少要等到该股票涨到每股多少元时才能卖出?精确到元【答案】解:设涨到每股x元时卖出,根据题意得,分解这个不等式得,即分答:至少涨到每股元时才能卖出分【解析】根据关系式:总售价两次交易费总成本列出不等式求解即可.本题考查的是一元一次不等式在生活中的实际运用,解决本题的关键是读懂题意根据“总售价两次交易费总成本”列出不等关系式.24.已知一个口袋中装有7个只有颜色不同的球,其中3个白球,4个黑球.求从中随机抽取出一个黑球的概率是多少?若往口袋中再放入x个白球和y个黑球,从口袋中随机取出一个白球的概率是,求y与x之间的函数关系式.【答案】解:一个口袋中装有7个只有颜色不同的球,其中3个白球,4个黑球,从中随机抽取出一个黑球的概率是:;往口袋中再放入x个白球和y个黑球,从口袋中随机取出一个白球的概率是,,则.【解析】直接利用概率公式直接得出取出一个黑球的概率;直接利用从口袋中随机取出一个白球的概率是,进而得出答案函数关系式.此题主要考查了概率公式,正确掌握概率求法是解题关键.25.如图,在平面直角坐标系中,点的坐标为,以点为圆心,8为半径的圆与x轴交于A,B两点,过A作直线l与x轴负方向相交成的角,且交y轴于C点,以点为圆心的圆与x轴相切于点D.求直线l的解析式;将以每秒1个单位的速度沿x轴向左平移,当第一次与外切时,求平移的时间.【答案】解:由题意得,点坐标为.在中,,.点的坐标为设直线l的解析式为,由l过A、C两点,得,解得直线l的解析式为:.如图,设平移t秒后到处与第一次外切于点P,与x轴相切于点,连接,.则.轴,,在中,.,,秒.平移的时间为5秒.【解析】求直线的解析式,可以先求出A、C两点的坐标,就可以根据待定系数法求出函数的解析式.设平移t秒后到处与第一次外切于点P,与x轴相切于点,连接,.在直角中,根据勾股定理,就可以求出,进而求出的长,得到平移的时间.本题综合了待定系数法求函数解析式,以及圆的位置关系,其中两圆相切时的辅助线的作法是经常用到的.26.如图,已知抛物线经过,两点,顶点为D.求抛物线的解析式;将绕点A顺时针旋转后,点B落到点C的位置,将抛物线沿y轴平移后经过点C,求平移后所得图象的函数关系式;设中平移后,所得抛物线与y轴的交点为,顶点为,若点N在平移后的抛物线上,且满足的面积是面积的2倍,求点N的坐标.【答案】解:已知抛物线经过,,,解得,所求抛物线的解析式为;,,,,可得旋转后C点的坐标为,当时,由得,可知抛物线过点,将原抛物线沿y轴向下平移1个单位后过点C.平移后的抛物线解析式为:;点N在上,可设N点坐标为,将配方得,其对称轴为直线.时,如图,,,此时,点的坐标为.当时,如图,同理可得,,此时,点N的坐标为.当时,由图可知,N点不存在,舍去.综上,点N的坐标为或.【解析】利用待定系数法,将点A,B的坐标代入解析式即可求得;根据旋转的知识可得:,,,,可得旋转后C点的坐标为,当时,由得,可知抛物线过点将原抛物线沿y轴向下平移1个单位后过点平移后的抛物线解析式为:;首先求得,的坐标,根据图形分别求得即可,要注意利用方程思想.此题属于中考中的压轴题,难度较大,知识点考查的较多而且联系密切,需要学生认真审题.此题考查了二次函数与一次函数的综合知识,解题的关键是要注意数形结合思想的应用.。
四川凉山州2019年中考数学试卷附答案解析
四川凉山州2019年中考数学试卷一、选择题(共12个小题,每小题4分,共48分)在每小题给出的四个选项中只有一项是正确的,把正确选项的宇母填涂在答题卡上相应的位置1.(4分)﹣2的相反数是()A.2 B.﹣2 C.D.﹣2.(4分)2018年凉山州生产总值约为153300000000,用科学记数法表示数153300000000是()A.1.533×109B.1.533×1010C.1.533×1011D.1.533×10123.(4分)如图,BD∥EF,AE与BD交于点C,∠B=30°,∠A=75°,则∠E的度数为()A.135°B.125°C.115°D.105°4.(4分)下列各式正确的是()A.2a2+3a2=5a4B.a2?a=a3C.(a2)3=a5D.=a5.(4分)不等式1﹣x≥x﹣1的解集是()A.x≥1 B.x≥﹣1 C.x≤1 D.x≤﹣16.(4分)某班40名同学一周参加体育锻炼时间统计如表所示:人数(人) 3 17 13 7时间(小时)7 8 9 10那么该班40名同学一周参加体育锻炼时间的众数、中位数分别是()A.17,8.5 B.17,9 C.8,9 D.8,8.57.(4分)下列命题:①直线外一点到这条直线的垂线段,叫做点到直线的距离;②两点之间线段最短;③相等的圆心角所对的弧相等;④平分弦的直径垂直于弦.其中,真命题的个数是()A.1 B.2 C.3 D.48.(4分)如图,正比例函数y=kx与反比例函数y=的图象相交于A、C两点,过点A作x轴的垂线交x轴于点B,连接BC,则△ABC的面积等于()1。
2019年四川省凉山州中考数学试卷附分析答案
28.(12 分)如图,抛物线 y=ax2+bx+c 的图象过点 A(﹣1,0)、B(3,0)、C(0,3). (1)求抛物线的解析式; (2)在抛物线的对称轴上是否存在一点 P,使得△PAC 的周长最小,若存在,请求出点 P 的坐标及△PAC 的周长;若不存在,请说明理由; (3)在(2)的条件下,在 x 轴上方的抛物线上是否存在点 M(不与 C 点重合),使得 S △PAM=S△PAC?若存在,请求出点 M 的坐标;若不存在,请说明理由.
故选:C.
3.(4 分)如图,BD∥EF,AE 与 BD 交于点 C,∠B=30°,∠A=75°,则∠E 的度数为
()
A.135°
B.125°
C.115°
【解答】解:∵∠B=30°,∠A=75°,
∴∠ACD=30°+75°=105°,
∵BD∥EF,
∴∠E=∠ACD=105°.
故选:D.
4.(4 分)下列各式正确的是( )
21.(8 分)某校初中部举行诗词大会预选赛,学校对参赛同学获奖情况进行统计,绘制了 如下两幅不完整的统计图.请结合图中相关数据解答下列问题:
(1)参加此次诗词大会预选赛的同学共有
人;
(2)在扇形统计图中,“三等奖”所对应的扇形的圆心角的度数为
;
(3)将条形统计图补充完整;
(4)若获得一等奖的同学中有 来自七年级, 来自九年级,其余的来自八年级,学校决 定从获得一等奖的同学中任选两名同学参加全市诗词大会比赛,请通过列表或树状图方 法求所选两名同学中,恰好是一名七年级和一名九年级同学的概率. 22.(8 分)如图,点 D 是以 AB 为直径的⊙O 上一点,过点 B 作⊙O 的切线,交 AD 的延 长线于点 C,E 是 BC 的中点,连接 DE 并延长与 AB 的延长线交于点 F. (1)求证:DF 是⊙O 的切线; (2)若 OB=BF,EF=4,求 AD 的长.
2019年四川省凉山州中考数学试卷和答案(含解析)
2019年四川省凉山州中考数学试卷一、选择题(共12个小题,每小题4分,共48分)在每小题给出的四个选项中只有一项是正确的,把正确选项的宇母填涂在答题卡上相应的位置1.(4分)﹣2的相反数是()A.2B.﹣2C.D.﹣2.(4分)2018年凉山州生产总值约为153300000000,用科学记数法表示数153300000000是()A.1.533×109B.1.533×1010C.1.533×1011D.1.533×1012 3.(4分)如图,BD∥EF,AE与BD交于点C,∠B=30°,∠A =75°,则∠E的度数为()A.135°B.125°C.115°D.105°4.(4分)下列各式正确的是()A.2a2+3a2=5a4B.a2•a=a3C.(a2)3=a5D.=a5.(4分)不等式1﹣x≥x﹣1的解集是()A.x≥1B.x≥﹣1C.x≤1D.x≤﹣1 6.(4分)某班40名同学一周参加体育锻炼时间统计如表所示:人数(人)317137时间(小时)78910那么该班40名同学一周参加体育锻炼时间的众数、中位数分别是()A.17,8.5B.17,9C.8,9D.8,8.5 7.(4分)下列命题:①直线外一点到这条直线的垂线段,叫做点到直线的距离;②两点之间线段最短;③相等的圆心角所对的弧相等;④平分弦的直径垂直于弦.其中,真命题的个数是()A.1B.2C.3D.48.(4分)如图,正比例函数y=kx与反比例函数y=的图象相交于A、C两点,过点A作x轴的垂线交x轴于点B,连接BC,则△ABC的面积等于()A.8B.6C.4D.29.(4分)如图,在△ABC中,CA=CB=4,cosC=,则sinB的值为()A.B.C.D.10.(4分)如图,在△ABC中,D在AC边上,AD:DC=1:2,O是BD的中点,连接AO并延长交BC于E,则BE:EC=()A.1:2B.1:3C.1:4D.2:3 11.(4分)如图,在△AOC中,OA=3cm,OC=1cm,将△AOC 绕点O顺时针旋转90°后得到△BOD,则AC边在旋转过程中所扫过的图形的面积为()cm2.A.B.2πC.πD.π12.(4分)二次函数y=ax2+bx+c的部分图象如图所示,有以下结论:①3a﹣b=0;②b2﹣4ac>0;③5a﹣2b+c>0;④4b+3c>0,其中错误结论的个数是()A.1B.2C.3D.4二、填空题(共5个小题,每小题4分,共20分)13.(4分)方程组的解是.14.(4分)方程+=1的解是.15.(4分)如图所示,AB是⊙O的直径,弦CD⊥AB于H,∠A =30°,CD=2,则⊙O的半径是.16.(4分)在▱ABCD中,E是AD上一点,且点E将AD分为2:3的两部分,连接BE、AC相交于F,则S△AEF:S△CBF是.17.(4分)将抛物线y=(x﹣3)2﹣2向左平移个单位后经过点A(2,2).三、解答题(共5小题,共32分)18.(5分)计算:tan45°+(﹣)0﹣(﹣)﹣2+|﹣2|.19.(5分)先化简,再求值:(a+3)2﹣(a+1)(a﹣1)﹣2(2a+4),其中a=﹣.20.(6分)如图,正方形ABCD的对角线AC、BD相交于点O,E是OC上一点,连接EB.过点A作AM⊥BE,垂足为M,AM 与BD相交于点F.求证:OE=OF.21.(8分)某校初中部举行诗词大会预选赛,学校对参赛同学获奖情况进行统计,绘制了如下两幅不完整的统计图.请结合图中相关数据解答下列问题:(1)参加此次诗词大会预选赛的同学共有人;(2)在扇形统计图中,“三等奖”所对应的扇形的圆心角的度数为;(3)将条形统计图补充完整;(4)若获得一等奖的同学中有来自七年级,来自九年级,其余的来自八年级,学校决定从获得一等奖的同学中任选两名同学参加全市诗词大会比赛,请通过列表或树状图方法求所选两名同学中,恰好是一名七年级和一名九年级同学的概率.22.(8分)如图,点D是以AB为直径的⊙O上一点,过点B作⊙O的切线,交AD的延长线于点C,E是BC的中点,连接DE并延长与AB的延长线交于点F.(1)求证:DF是⊙O的切线;(2)若OB=BF,EF=4,求AD的长.四、B卷填空题(共2小题,每小题5分,共10分)23.(5分)当0≤x≤3时,直线y=a与抛物线y=(x﹣1)2﹣3有交点,则a的取值范围是.24.(5分)如图,正方形ABCD中,AB=12,AE=AB,点P在BC上运动(不与B、C重合),过点P作PQ⊥EP,交CD于点Q,则CQ的最大值为.五、解答题(共4小题,共40分)25.(8分)已知二次函数y=x2+x+a的图象与x轴交于A(x1,0)、B(x2,0)两点,且+=1,求a的值.26.(10分)根据有理数乘法(除法)法则可知:①若ab>0(或>0),则或;②若ab<0(或<0),则或.根据上述知识,求不等式(x﹣2)(x+3)>0的解集解:原不等式可化为:(1)或(2).由(1)得,x>2,由(2)得,x<﹣3,∴原不等式的解集为:x<﹣3或x>2.请你运用所学知识,结合上述材料解答下列问题:(1)不等式x2﹣2x﹣3<0的解集为.(2)求不等式<0的解集(要求写出解答过程)27.(10分)如图,∠ABD=∠BCD=90°,DB平分∠ADC,过点B作BM∥CD交AD于M.连接CM交DB于N.(1)求证:BD2=AD•CD;(2)若CD=6,AD=8,求MN的长.28.(12分)如图,抛物线y=ax2+bx+c的图象过点A(﹣1,0)、B (3,0)、C(0,3).(1)求抛物线的解析式;(2)在抛物线的对称轴上是否存在一点P,使得△PAC的周长最小,若存在,请求出点P的坐标及△PAC的周长;若不存在,请说明理由;(3)在(2)的条件下,在x轴上方的抛物线上是否存在点M(不与C点重合),使得S△PAM=S△PAC?若存在,请求出点M的坐标;若不存在,请说明理由.2019年四川省凉山州中考数学试卷答案与解析一、选择题(共12个小题,每小题4分,共48分)在每小题给出的四个选项中只有一项是正确的,把正确选项的宇母填涂在答题卡上相应的位置1.【分析】根据相反数的意义,只有符号不同的数为相反数.【解答】解:根据相反数的定义,﹣2的相反数是2.故选:A.2.【分析】利用科学记数法表示即可【解答】解:科学记数法表示:153 300 000 000=1.533×1011故选:C.3.【分析】直接利用三角形的外角性质得出∠ACD度数,再利用平行线的性质分析得出答案.【解答】解:∵∠B=30°,∠A=75°,∴∠ACD=30°+75°=105°,∵BD∥EF,∴∠E=∠ACD=105°.故选:D.4.【分析】分别根据合并同类项的法则、同底数幂的乘法法则、幂的乘方法则以及二次根式的性质解答即可.【解答】解:A、2a2+3a2=5a2,故选项A不合题意;B、a2•a=a3,故选项B符合题意;C、(a2)3=a6,故选项C不合题意;D、=|a|,故选项D不合题意.故选:B.5.【分析】移项、合并同类项,系数化为1即可求解.【解答】解:1﹣x≥x﹣1,﹣2x≥﹣2∴x≤1.故选:C.6.【分析】根据中位数、众数的概念分别求得这组数据的中位数、众数.【解答】解:众数是一组数据中出现次数最多的数,即8;由统计表可知,处于20,21两个数的平均数就是中位数,∴这组数据的中位数为=8.5;故选:D.7.【分析】根据点到直线的距离,线段的性质,弧、弦、圆心角之间的关系以及垂径定理判断即可.【解答】解:①直线外一点到这条直线的垂线段,叫做点到直线的距离;假命题;②两点之间线段最短;真命题;③相等的圆心角所对的弧相等;假命题;④平分弦的直径垂直于弦;假命题;真命题的个数是1个;故选:A.8.【分析】由于点A、C位于反比例函数图象上且关于原点对称,则S△OBA=S△OBC,再根据反比例函数系数k的几何意义作答即可.【解答】解:∵点A、C位于反比例函数图象上且关于原点对称,∴A、C两点到x轴的距离相等,∴S△OBA=S△OBC,∵S△OBA=|k|=×4=2,∴S△OBC=2∴S△ABC=S△OBA+S△OBC=4.故选:C.9.【分析】过点A作AD⊥BC,垂足为D,在Rt△ACD中可求出AD,CD的长,在Rt△ABD中,利用勾股定理可求出AB的长,再利用正弦的定义可求出sinB的值.【解答】解:过点A作AD⊥BC,垂足为D,如图所示.在Rt△ACD中,CD=CA•cosC=1,∴AD==;在Rt△ABD中,BD=CB﹣CD=3,AD=,∴AB==2,∴sinB==.故选:D.10.【分析】过O作BC的平行线交AC与G,由中位线的知识可得出AD:DC=1:2,根据已知和平行线分线段成比例得出AD=DG=GC,AG:GC=2:1,AO:OE=2:1,再由同高不同底的三角形中底与三角形面积的关系可求出BE:EC的比.【解答】解:如图,过O作OG∥BC,交AC于G,∵O是BD的中点,∴G是DC的中点.又AD:DC=1:2,∴AD=DG=GC,∴AG:GC=2:1,AO:OE=2:1,∴S△AOB:S△BOE=2设S△BOE=S,S△AOB=2S,又BO=OD,∴S△AOD=2S,S△ABD=4S,∵AD:DC=1:2,∴S△BDC=2S△ABD=8S,S四边形CDOE=7S,∴S△AEC=9S,S△ABE=3S,∴故选:B.11.【分析】根据旋转的性质可以得到在旋转过程中所扫过的图形的面积=扇形OAB的面积﹣扇形OCD的面积,利用扇形的面积公式即可求解.【解答】解:∵△AOC≌△BOD,∴在旋转过程中所扫过的图形的面积=扇形OAB的面积﹣扇形OCD的面积=﹣=2π,故选:B.12.【分析】①对称轴为x=﹣,得b=3a;②函数图象与x轴有两个不同的交点,得△=b2﹣4ac>0;③当x=﹣1时,a﹣b+c>0,当x=﹣3时,9a﹣3b+c>0,得5a ﹣2b+c>0;④由对称性可知x=1时对应的y值与x=﹣4时对应的y值相等,当x=1时a+b+c<0,4b+3c=3b+b+3c=3b+3a+3c=3(a+b+c)<0;【解答】解:由图象可知a<0,c>0,对称轴为x=﹣,∴x=﹣=﹣,∴b=3a,①正确;∵函数图象与x轴有两个不同的交点,∴△=b2﹣4ac>0,②正确;当x=﹣1时,a﹣b+c>0,当x=﹣3时,9a﹣3b+c>0,∴10a﹣4b+2c>0,∴5a﹣2b+c>0,③正确;由对称性可知x=1时对应的y值与x=﹣4时对应的y值相等,∴当x=1时a+b+c<0,∵b=3a,∴4b+3c=3b+b+3c=3b+3a+3c=3(a+b+c)<0,∴4b+3c<0,④错误;故选:A.二、填空题(共5个小题,每小题4分,共20分)13.【分析】利用加减消元法解之即可.【解答】解:,②﹣①得:x=6,把x=6代入①得:6+y=10,解得:y=4,方程组的解为:,故答案为:.14.【分析】去分母,把分式方程化为整式方程,求解并验根即可.【解答】解:去分母,得(2x﹣1)(x+1)﹣2=(x+1)(x﹣1)去括号,得2x2+x﹣3=x2﹣1移项并整理,得x2+x﹣2=0所以(x+2)(x﹣1)=0解得x=﹣2或x=1经检验,x=﹣2是原方程的解.故答案为:x=﹣2.15.【分析】连接BC,由圆周角定理和垂径定理得出∠ACB=90°,CH=DH=CD=,由直角三角形的性质得出AC=2CH=2,AC=BC=2,AB=2BC,得出BC=2,AB=4,求出OA=2即可.【解答】解:连接BC,如图所示:∵AB是⊙O的直径,弦CD⊥AB于H,∴∠ACB=90°,CH=DH=CD=,∵∠A=30°,∴AC=2CH=2,在Rt△ABC中,∠A=30°,∴AC=BC=2,AB=2BC,∴BC=2,AB=4,∴OA=2,即⊙O的半径是2;故答案为:2.16.【分析】分AE:ED=2:3、AE:ED=3:2两种情况,根据相似三角形的性质计算即可.【解答】解:①当AE:ED=2:3时,∵四边形ABCD是平行四边形,∴AD∥BC,AE:BC=2:5,∴△AEF∽△CBF,∴S△AEF:S△CBF=()2=4:25;②当AE:ED=3:2时,同理可得,S△AEF:S△CBF=()2=9:25,故答案为:4:25或9:25.17.【分析】直接利用二次函数的平移规律结合二次函数图象上点的性质进而得出答案.【解答】解:∵将抛物线y=(x﹣3)2﹣2向左平移后经过点A(2,2),∴设平移后解析式为:y=(x﹣3+a)2﹣2,则2=(2﹣3+a)2﹣2,解得:a=3或a=﹣1(不合题意舍去),故将抛物线y=(x﹣3)2﹣2向左平移3个单位后经过点A(2,2).故答案为:3.三、解答题(共5小题,共32分)18.【分析】分别进行特殊角的三角函数值的运算,任何非零数的零次幂等于1,负整数指数幂以及绝对值的意义化简,然后按照实数的运算法则进行计算求得结果.【解答】解:原式=1+1﹣4+(2﹣)=.19.【分析】注意到(a+3)2可以利用完全平方公式进行展开,(a+1)(a﹣1)利润平方差公式可化为(a2﹣1),则将各项合并即可化简,最后代入a=进行计算.【解答】解:原式=a2+6a+9﹣(a2﹣1)﹣4a﹣8=2a+2将a=﹣代入原式=2×(﹣)+2=120.【分析】根据正方形的性质对角线垂直且平分,得到OB=OA,根据AM⊥BE,即可得出∠MEA+∠MAE=90°=∠AFO+∠MAE,从而证出Rt△BOE≌Rt△AOF,得到OE=OF.【解答】证明:∵四边形ABCD是正方形.∴∠BOE=∠AOF=90°,OB=OA.又∵AM⊥BE,∴∠MEA+∠MAE=90°=∠AFO+∠MAE,∴∠MEA=∠AFO.∴△BOE≌△AOF(AAS).∴OE=OF.21.【分析】(1)利用鼓励奖的人数除以它所占的百分比得到的总人数;(2)用360°乘以二等奖人数占被调查人数的比例即可得;(3)计算出一等奖和二等奖的人数,然后补全条形统计图;(4)画树状图(用A、B、C分别表示七年级、八年级和九年级的学生)展示所有12种等可能的结果数,再找出所选出的两人中既有七年级又有九年级同学的结果数,然后利用概率公式求解.【解答】解:(1)参加此次诗词大会预选赛的同学共有18÷45%=40(人),故答案为:40;(2)扇形统计图中获三等奖的圆心角为360°×=90°,故答案为:90°.(3)获二等奖的人数=40×20%=8,一等奖的人数为40﹣8﹣10﹣18=4(人),条形统计图为:(4)由题意知,获一等奖的学生中,七年级有1人,八年级有1人,九年级有2人,画树状图为:(用A、B、C分别表示七年级、八年级和九年级的学生)共有12种等可能的结果数,其中所选出的两人中既有七年级又有九年级同学的结果数为4,所以所选出的两人中既有七年级又有九年级同学的概率=.22.【分析】(1)连接OD,由AB为⊙O的直径得∠BDC=90°,根据BE=EC知∠1=∠3、由OD=OB知∠2=∠4,根据BC是⊙O的切线得∠3+∠4=90°,即∠1+∠2=90°,得证;(2)根据直角三角形的性质得到∠F=30°,BE=EF=2,求得DE=BE=2,得到DF=6,根据三角形的内角和得到OD=OA,求得∠A=∠ADO=BOD=30°,根据等腰三角形的性质即可得到结论.【解答】解:(1)如图,连接OD,BD,∵AB为⊙O的直径,∴∠ADB=∠BDC=90°,在Rt△BDC中,∵BE=EC,∴DE=EC=BE,∴∠1=∠3,∵BC是⊙O的切线,∴∠3+∠4=90°,∴∠1+∠4=90°,又∵∠2=∠4,∴∠1+∠2=90°,∴DF为⊙O的切线;(2)∵OB=BF,∴OF=2OD,∴∠F=30°,∵∠FBE=90°,∴BE=EF=2,∴DE=BE=2,∴DF=6,∵∠F=30°,∠ODF=90°,∴∠FOD=60°,∵OD=OA,∴∠A=∠ADO=BOD=30°,∴∠A=∠F,∴AD=DF=6.四、B卷填空题(共2小题,每小题5分,共10分)23.【分析】直线y=a与抛物线y=(x﹣1)2﹣3有交点,则可化为一元二次方程组利用根的判别式进行计算.【解答】解:法一:y=a与抛物线y=(x﹣1)2﹣3有交点则有a=(x﹣1)2﹣3,整理得x2﹣2x﹣2﹣a=0∴△=b2﹣4ac=4+4(2+a)≥0解得a≥﹣3,∵0≤x≤3,对称轴x=1∴y=(3﹣1)2﹣3=1∴a≤1法二:由题意可知,∵抛物线的顶点为(1,﹣3),而0≤x≤3∴抛物线y的取值为﹣3≤y≤1∵y=a,则直线y与x轴平行,∴要使直线y=a与抛物线y=(x﹣1)2﹣3有交点,∴抛物线y的取值为﹣3≤y≤1,即为a的取值范围,∴﹣3≤a≤1故答案为:﹣3≤a≤124.【分析】先证明△BPE∽△CQP,得到与CQ有关的比例式,设CQ=y,BP=x,则CP=12﹣x,代入解析式,得到y与x的二次函数式,根据二次函数的性质可求最值.【解答】解:∵∠BEP+∠BPE=90°,∠QPC+∠BPE=90°,∴∠BEP=∠CPQ.又∠B=∠C=90°,∴△BPE∽△CQP.∴.设CQ=y,BP=x,则CP=12﹣x.∴,化简得y=﹣(x2﹣12x),整理得y=﹣(x﹣6)2+4,所以当x=6时,y有最大值为4.故答案为4.五、解答题(共4小题,共40分)25.【分析】有韦达定理得x1+x2=﹣1,x1•x2=a,将式子+=1化简代入即可;【解答】解:y=x2+x+a的图象与x轴交于A(x1,0)、B(x2,0)两点,∴x1+x2=﹣1,x1•x2=a,∵+===1,∴a=﹣1+或a=﹣1﹣;∵△=1﹣4a>0,∴a<,∴a=﹣1﹣;26.【分析】(1)根据有理数乘法运算法则可得不等式组,仿照有理数乘法运算法则得出两个不等式组,分别求解可得.(2)根据有理数除法运算法则可得不等式组,仿照有理数除法运算法则得出两个不等式组,分别求解可得.【解答】解:(1)原不等式可化为:①或②.由①得,空集,由②得,﹣1<x<3,∴原不等式的解集为:﹣1<x<3,故答案为:﹣1<x<3.(2)由<0知①或②,解不等式组①,得:x>1;解不等式组②,得:x<﹣4;所以不等式<0的解集为x>1或x<﹣4.27.【分析】(1)通过证明△ABD∽△BCD,可得,可得结论;(2)由平行线的性质可证∠MBD=∠BDC,即可证AM=MD=MB=4,由BD2=AD•CD和勾股定理可求MC的长,通过证明△MNB∽△CND,可得,即可求MN的长.【解答】证明:(1)∵DB平分∠ADC,∴∠ADB=∠CDB,且∠ABD=∠BCD=90°,∴△ABD∽△BCD∴∴BD2=AD•CD(2)∵BM∥CD∴∠MBD=∠BDC∴∠ADB=∠MBD,且∠ABD=90°∴BM=MD,∠MAB=∠MBA∴BM=MD=AM=4∵BD2=AD•CD,且CD=6,AD=8,∴BD2=48,∴BC2=BD2﹣CD2=12∴MC2=MB2+BC2=28∴MC=2∵BM∥CD∴△MNB∽△CND∴,且MC=2∴MN=28.【分析】(1)由于条件给出抛物线与x轴的交点A(﹣1,0)、B (3,0),故可设交点式y=a(x+1)(x﹣3),把点C代入即求得a的值,减小计算量.(2)由于点A、B关于对称轴:直线x=1对称,故有PA=PB,则C△PAC=AC+PC+PA=AC+PC+PB,所以当C、P、B在同一直线上时,C△PAC=AC+CB最小.利用点A、B、C的坐标求AC、CB的长,求直线BC解析式,把x=1代入即求得点P纵坐标.(3)由S△PAM=S△PAC可得,当两三角形以PA为底时,高相等,即点C和点M到直线PA距离相等.若点M在点P上方,则有CM∥PA.由点A、P坐标求直线AP解析式,即得到直线CM解析式.把直线CM解析式与抛物线解析式联立方程组即求得点M 坐标.若点M在点P下方,则此时M所在的直线到直线PA的距离等于第一种情况时CM到PA的距离,故可用平移的方法来求此时点M所在直线的解析式.【解答】解:(1)∵抛物线与x轴交于点A(﹣1,0)、B(3,0)∴可设交点式y=a(x+1)(x﹣3)把点C(0,3)代入得:﹣3a=3∴a=﹣1∴y=﹣(x+1)(x﹣3)=﹣x2+2x+3∴抛物线解析式为y=﹣x2+2x+3(2)在抛物线的对称轴上存在一点P,使得△PAC的周长最小.如图1,连接PB、BC∵点P在抛物线对称轴直线x=1上,点A、B关于对称轴对称∴PA=PB∴C△PAC=AC+PC+PA=AC+PC+PB∵当C、P、B在同一直线上时,PC+PB=CB最小∵A(﹣1,0)、B(3,0)、C(0,3)∴AC=,BC=∴C △PAC=AC+CB=最小设直线BC解析式为y=kx+3把点B代入得:3k+3=0,解得:k=﹣1∴直线BC:y=﹣x+3∴y P=﹣1+3=2∴点P(1,2)使△PAC的周长最小,最小值为.(3)存在满足条件的点M,使得S△PAM=S△PAC.∵S△PAM=S△PAC∴当以PA为底时,两三角形等高∴点C和点M到直线PA距离相等①若点M在点P上方,如图2,∴CM∥PA∵A(﹣1,0),P(1,2),设直线AP解析式为y=px+d∴解得:∴直线AP:y=x+1∴直线CM解析式为:y=x+3∵解得:(即点C),∴点M坐标为(1,4)②若点M在点P下方,如图3,则点M所在的直线l∥PA,且直线l到PA的距离等于直线y=x+3到PA的距离∴直线AP:y=x+1向下平移2个单位得y=x﹣1即为直线l的解析式∵解得:∵点M在x轴上方∴y>0∴点M坐标为(,)综上所述,点M坐标为(1,4)或(,)时,S△PAM =S△PAC.。
四川省凉山州2019年中考数学真题试题(含解析)
中考干货大提醒考前提前20分钟到场,稳定一下情绪!考试一定一定一定要放松,大考前深呼吸,做五组深呼吸,真的超级有用!可以让紧张感变淡好多!不用在意别人的想法,你只需要自己学好、把自己变得更优秀!!!不要太过于关注排名,它只能反映你目前的情况,不会决定你下一场考试的结果。
一定要有错题本!!一定!!!!注意知识点总结和归纳,形成网状知识结构!考前一个月每天每科一份卷子保持手感!2019年四川省凉山州中考数学试卷一、选择题(共12个小题,每小题4分,共48分)在每小题给出的四个选项中只有一项是正确的,把正确选项的宇母填涂在答题卡上相应的位置1.(4分)﹣2的相反数是()A.2 B.﹣2 C.D.﹣2.(4分)2018年凉山州生产总值约为153300000000,用科学记数法表示数153300000000是()A.1.533×109B.1.533×1010C.1.533×1011D.1.533×1012 3.(4分)如图,BD∥EF,AE与BD交于点C,∠B=30°,∠A=75°,则∠E的度数为()A.135°B.125°C.115°D.105°4.(4分)下列各式正确的是()A.2a2+3a2=5a4B.a2•a=a3C.(a2)3=a5D.=a5.(4分)不等式1﹣x≥x﹣1的解集是()A.x≥1 B.x≥﹣1 C.x≤1 D.x≤﹣16.(4分)某班40名同学一周参加体育锻炼时间统计如表所示:人数(人) 3 17 13 7时间(小时)7 8 9 10那么该班40名同学一周参加体育锻炼时间的众数、中位数分别是()A.17,8.5 B.17,9 C.8,9 D.8,8.57.(4分)下列命题:①直线外一点到这条直线的垂线段,叫做点到直线的距离;②两点之间线段最短;③相等的圆心角所对的弧相等;④平分弦的直径垂直于弦.其中,真命题的个数是()A.1 B.2 C.3 D.48.(4分)如图,正比例函数y=kx与反比例函数y=的图象相交于A、C两点,过点A 作x轴的垂线交x轴于点B,连接BC,则△ABC的面积等于()A.8 B.6 C.4 D.29.(4分)如图,在△ABC中,CA=CB=4,cos C=,则sin B的值为()A.B.C.D.10.(4分)如图,在△ABC中,D在AC边上,AD:DC=1:2,O是BD的中点,连接AO并延长交BC于E,则BE:EC=()A.1:2 B.1:3 C.1:4 D.2:311.(4分)如图,在△AOC中,OA=3cm,OC=1cm,将△AOC绕点O顺时针旋转90°后得到△BOD,则AC边在旋转过程中所扫过的图形的面积为()cm2.A.B.2πC.πD.π12.(4分)二次函数y=ax2+bx+c的部分图象如图所示,有以下结论:①3a﹣b=0;②b2﹣4ac>0;③5a﹣2b+c>0;④4b+3c>0,其中错误结论的个数是()A.1 B.2 C.3 D.4二、填空题(共5个小题,每小题4分,共20分)13.(4分)方程组的解是.14.(4分)方程+=1的解是.15.(4分)如图所示,AB是⊙O的直径,弦CD⊥AB于H,∠A=30°,CD=2,则⊙O的半径是.16.(4分)在▱ABCD中,E是AD上一点,且点E将AD分为2:3的两部分,连接BE、AC相交于F,则S△AEF:S△CBF是.17.(4分)将抛物线y=(x﹣3)2﹣2向左平移个单位后经过点A(2,2).三、解答题(共5小题,共32分)18.(5分)计算:tan45°+(﹣)0﹣(﹣)﹣2+|﹣2|.19.(5分)先化简,再求值:(a+3)2﹣(a+1)(a﹣1)﹣2(2a+4),其中a=﹣.20.(6分)如图,正方形ABCD的对角线AC、BD相交于点O,E是OC上一点,连接EB.过点A作AM⊥BE,垂足为M,AM与BD相交于点F.求证:OE=OF.21.(8分)某校初中部举行诗词大会预选赛,学校对参赛同学获奖情况进行统计,绘制了如下两幅不完整的统计图.请结合图中相关数据解答下列问题:(1)参加此次诗词大会预选赛的同学共有人;(2)在扇形统计图中,“三等奖”所对应的扇形的圆心角的度数为;(3)将条形统计图补充完整;(4)若获得一等奖的同学中有来自七年级,来自九年级,其余的来自八年级,学校决定从获得一等奖的同学中任选两名同学参加全市诗词大会比赛,请通过列表或树状图方法求所选两名同学中,恰好是一名七年级和一名九年级同学的概率.22.(8分)如图,点D是以AB为直径的⊙O上一点,过点B作⊙O的切线,交AD的延长线于点C,E是BC的中点,连接DE并延长与AB的延长线交于点F.(1)求证:DF是⊙O的切线;(2)若OB=BF,EF=4,求AD的长.四、B卷填空题(共2小题,每小题5分,共10分)23.(5分)当0≤x≤3时,直线y=a与抛物线y=(x﹣1)2﹣3有交点,则a的取值范围是.24.(5分)如图,正方形ABCD中,AB=12,AE=AB,点P在BC上运动(不与B、C重合),过点P作PQ⊥EP,交CD于点Q,则CQ的最大值为.五、解答题(共4小题,共40分)25.(8分)已知二次函数y=x2+x+a的图象与x轴交于A(x1,0)、B(x2,0)两点,且+=1,求a的值.26.(10分)根据有理数乘法(除法)法则可知:①若ab>0(或>0),则或;②若ab<0(或<0),则或.根据上述知识,求不等式(x﹣2)(x+3)>0的解集解:原不等式可化为:(1)或(2).由(1)得,x>2,由(2)得,x<﹣3,∴原不等式的解集为:x<﹣3或x>2.请你运用所学知识,结合上述材料解答下列问题:(1)不等式x2﹣2x﹣3<0的解集为.(2)求不等式<0的解集(要求写出解答过程)27.(10分)如图,∠ABD=∠BCD=90°,DB平分∠ADC,过点B作BM∥CD交AD于M.连接CM交DB于N.(1)求证:BD2=AD•CD;(2)若CD=6,AD=8,求MN的长.28.(12分)如图,抛物线y=ax2+bx+c的图象过点A(﹣1,0)、B(3,0)、C(0,3).(1)求抛物线的解析式;(2)在抛物线的对称轴上是否存在一点P,使得△PAC的周长最小,若存在,请求出点P 的坐标及△PAC的周长;若不存在,请说明理由;(3)在(2)的条件下,在x轴上方的抛物线上是否存在点M(不与C点重合),使得S=S△PAC?若存在,请求出点M的坐标;若不存在,请说明理由.△PAM2019年四川省凉山州中考数学试卷参考答案与试题解析一、选择题(共12个小题,每小题4分,共48分)在每小题给出的四个选项中只有一项是正确的,把正确选项的宇母填涂在答题卡上相应的位置1.(4分)﹣2的相反数是()A.2 B.﹣2 C.D.﹣【分析】根据相反数的意义,只有符号不同的数为相反数.【解答】解:根据相反数的定义,﹣2的相反数是2.故选:A.【点评】本题考查了相反数的意义.注意掌握只有符号不同的数为相反数,0的相反数是0.2.(4分)2018年凉山州生产总值约为153300000000,用科学记数法表示数153300000000是()A.1.533×109B.1.533×1010C.1.533×1011D.1.533×1012【分析】利用科学记数法表示即可【解答】解:科学记数法表示:153 300 000 000=1.533×1011故选:C.【点评】本题主要考查科学记数法的表示,把一个数表示成a与10的n次幂相乘的形式(1≤a<10,n为整数),这种记数法叫做科学记数法.3.(4分)如图,BD∥EF,AE与BD交于点C,∠B=30°,∠A=75°,则∠E的度数为()A.135°B.125°C.115°D.105°【分析】直接利用三角形的外角性质得出∠ACD度数,再利用平行线的性质分析得出答案.【解答】解:∵∠B=30°,∠A=75°,∴∠ACD=30°+75°=105°,∵BD∥EF,∴∠E=∠ACD=105°.故选:D.【点评】此题主要考查了平行线的性质以及三角形的外角,正确掌握平行线的性质是解题关键.4.(4分)下列各式正确的是()A.2a2+3a2=5a4B.a2•a=a3C.(a2)3=a5D.=a【分析】分别根据合并同类项的法则、同底数幂的乘法法则、幂的乘方法则以及二次根式的性质解答即可.【解答】解:A、2a2+3a2=5a2,故选项A不合题意;B、a2•a=a3,故选项B符合题意;C、(a2)3=a6,故选项C不合题意;D、=|a|,故选项D不合题意.故选:B.【点评】本题主要考查了合并同类项的法则、幂的运算法则以及二次根式的性质,熟练掌握相关运算性质是解答本题的关键.5.(4分)不等式1﹣x≥x﹣1的解集是()A.x≥1 B.x≥﹣1 C.x≤1 D.x≤﹣1【分析】移项、合并同类项,系数化为1即可求解.【解答】解:1﹣x≥x﹣1,﹣2x≥﹣2∴x≤1.故选:C.【点评】本题考查了解简单不等式的能力,解答这类题学生往往在解题时不注意移项要改变符号这一点而出错.6.(4分)某班40名同学一周参加体育锻炼时间统计如表所示:人数(人) 3 17 13 7时间(小时)7 8 9 10那么该班40名同学一周参加体育锻炼时间的众数、中位数分别是()A.17,8.5 B.17,9 C.8,9 D.8,8.5【分析】根据中位数、众数的概念分别求得这组数据的中位数、众数.【解答】解:众数是一组数据中出现次数最多的数,即8;由统计表可知,处于20,21两个数的平均数就是中位数,∴这组数据的中位数为=8.5;故选:D.【点评】本题考查了中位数、众数的概念.本题为统计题,考查众数与中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.7.(4分)下列命题:①直线外一点到这条直线的垂线段,叫做点到直线的距离;②两点之间线段最短;③相等的圆心角所对的弧相等;④平分弦的直径垂直于弦.其中,真命题的个数是()A.1 B.2 C.3 D.4【分析】根据点到直线的距离,线段的性质,弧、弦、圆心角之间的关系以及垂径定理判断即可.【解答】解:①直线外一点到这条直线的垂线段,叫做点到直线的距离;假命题;②两点之间线段最短;真命题;③相等的圆心角所对的弧相等;假命题;④平分弦的直径垂直于弦;假命题;真命题的个数是1个;故选:A.【点评】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.8.(4分)如图,正比例函数y=kx与反比例函数y=的图象相交于A、C两点,过点A 作x轴的垂线交x轴于点B,连接BC,则△ABC的面积等于()A.8 B.6 C.4 D.2【分析】由于点A、C位于反比例函数图象上且关于原点对称,则S△OBA=S△OBC,再根据反比例函数系数k的几何意义作答即可.【解答】解:因为过双曲线上任意一点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S是个定值,即S=|k|.所以△ABC的面积等于2×|k|=|k|=4.故选:C.【点评】主要考查了反比例函数y=中k的几何意义,即过双曲线上任意一点引x轴、y轴垂线,所得矩形面积为|k|,是经常考查的一个知识点;这里体现了数形结合的思想,做此类题一定要正确理解k的几何意义.图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S的关系即S=|k|.9.(4分)如图,在△ABC中,CA=CB=4,cos C=,则sin B的值为()A.B.C.D.【分析】过点A作AD⊥BC,垂足为D,在Rt△ACD中可求出AD,CD的长,在Rt△ABD中,利用勾股定理可求出AB的长,再利用正弦的定义可求出sin B的值.【解答】解:过点A作AD⊥BC,垂足为D,如图所示.在Rt△ACD中,CD=CA•cos C=1,∴AD==;在Rt△ABD中,BD=CB﹣CD=3,AD=,∴AB==2,∴sin B==.故选:D.【点评】本题考查了解直角三角形以及勾股定理,通过解直角三角形及勾股定理,求出AD,AB的长是解题的关键.10.(4分)如图,在△ABC中,D在AC边上,AD:DC=1:2,O是BD的中点,连接AO并延长交BC于E,则BE:EC=()A.1:2 B.1:3 C.1:4 D.2:3【分析】过O作BC的平行线交AC与G,由中位线的知识可得出AD:DC=1:2,根据已知和平行线分线段成比例得出AD=DG=GC,AG:GC=2:1,AO:OF=2:1,再由同高不同底的三角形中底与三角形面积的关系可求出BF:FC的比.【解答】解:如图,过O作OG∥BC,交AC于G,∵O是BD的中点,∴G是DC的中点.又AD:DC=1:2,∴AD=DG=GC,∴AG:GC=2:1,AO:OE=2:1,∴S△AOB:S△BOE=2设S△BOE=S,S△AOB=2S,又BO=OD,∴S△AOD=2S,S△ABD=4S,∵AD:DC=1:2,∴S△BDC=2S△ABD=8S,S四边形CDOE=7S,∴S△AEC=9S,S△ABE=3S,∴故选:B.【点评】本题考查平行线分线段成比例及三角形的中位线的知识,难度较大,注意熟练运用中位线定理和三角形面积公式.11.(4分)如图,在△AOC中,OA=3cm,OC=1cm,将△AOC绕点O顺时针旋转90°后得到△BOD,则AC边在旋转过程中所扫过的图形的面积为()cm2.A.B.2πC.πD.π【分析】根据旋转的性质可以得到阴影部分的面积=扇形OAB的面积﹣扇形OCD的面积,利用扇形的面积公式即可求解.【解答】解:∵△AOC≌△BOD,∴阴影部分的面积=扇形OAB的面积﹣扇形OCD的面积=﹣=2π,故选:B.【点评】本题考查了旋转的性质以及扇形的面积公式,正确理解:阴影部分的面积=扇形OAB的面积﹣扇形OCD的面积是解题关键.12.(4分)二次函数y=ax2+bx+c的部分图象如图所示,有以下结论:①3a﹣b=0;②b2﹣4ac>0;③5a﹣2b+c>0;④4b+3c>0,其中错误结论的个数是()A.1 B.2 C.3 D.4【分析】①对称轴为x=﹣,得b=3a;②函数图象与x轴有两个不同的交点,得△=b2﹣4ac>0;③当x=﹣1时,a﹣b+c>0,当x=﹣3时,9a﹣3b+c>0,得5a﹣2b+c>0;④由对称性可知x=1时对应的y值与x=﹣4时对应的y值相等,当x=1时a+b+c<0,4b+3c=3b+b+3c=3b+3a+3c=3(a+b+c)<0;【解答】解:由图象可知a<0,c>0,对称轴为x=﹣,∴x=﹣=﹣,∴b=3a,①正确;∵函数图象与x轴有两个不同的交点,∴△=b2﹣4ac>0,②正确;当x=﹣1时,a﹣b+c>0,当x=﹣3时,9a﹣3b+c>0,∴10a﹣4b+2c>0,∴5a﹣2b+c>0,③正确;由对称性可知x=1时对应的y值与x=﹣4时对应的y值相等,∴当x=1时a+b+c<0,∵b=3a,∴4b+3c=3b+b+3c=3b+3a+3c=3(a+b+c)<0,∴4b+3c<0,④错误;故选:A.【点评】本题考查二次函数的图象及性质;熟练掌握从函数图象获取信息,将信息与函数解析式相结合解题是关键.二、填空题(共5个小题,每小题4分,共20分)13.(4分)方程组的解是.【分析】利用加减消元法解之即可.【解答】解:,②﹣①得:x=6,把x=6代入①得:6+y=10,解得:y=4,方程组的解为:,故答案为:.【点评】本题考查了解二元一次方程组,正确掌握加减消元法是解题的关键.14.(4分)方程+=1的解是x=﹣2 .【分析】去分母,把分式方程化为整式方程,求解并验根即可.【解答】解:去分母,得(2x﹣1)(x+1)﹣2=(x+1)(x﹣1)去括号,得2x2+x﹣3=x2﹣1移项并整理,得x2+x﹣2=0所以(x+2)(x﹣1)=0解得x=﹣2或x=1经检验,x=﹣2是原方程的解.故答案为:x=﹣2.【点评】本题考查了分式方程、一元二次方程的解法.掌握分式方程的解法是解决本题的关键.注意验根.15.(4分)如图所示,AB是⊙O的直径,弦CD⊥AB于H,∠A=30°,CD=2,则⊙O的半径是 2 .【分析】连接BC,由圆周角定理和垂径定理得出∠ACB=90°,CH=DH=CD=,由直角三角形的性质得出AC=2CH=2,AC=BC=2,AB=2BC,得出BC=2,AB=4,求出OA=2即可.【解答】解:连接BC,如图所示:∵AB是⊙O的直径,弦CD⊥AB于H,∴∠ACB=90°,CH=DH=CD=,∵∠A=30°,∴AC=2CH=2,在Rt△ABC中,∠A=30°,∴AC=BC=2,AB=2BC,∴BC=2,AB=4,∴OA=2,即⊙O的半径是2;故答案为:2.【点评】本题考查的是垂径定理、圆周角定理、含30°角的直角三角形的性质、勾股定理等知识;熟练掌握圆周角定理和垂径定理是解题的关键.16.(4分)在▱ABCD中,E是AD上一点,且点E将AD分为2:3的两部分,连接BE、AC相交于F,则S△AEF:S△CBF是4:25或9:25 .【分析】分AE:ED=2:3、AE:ED=3:2两种情况,根据相似三角形的性质计算即可.【解答】解:①当AE:ED=2:3时,∵四边形ABCD是平行四边形,∴AD∥BC,AE:BC=2:5,∴△AEF∽△CBF,∴S△AEF:S△CBF=()2=4:25;②当AE:ED=3:2时,同理可得,S△AEF:S△CBF=()2=9:25,故答案为:4:25或9:25.【点评】本题考查的是相似三角形的判定和性质、平行四边形的性质,掌握相似三角形的面积比等于相似比的平方是解题的关键.17.(4分)将抛物线y=(x﹣3)2﹣2向左平移 3 个单位后经过点A(2,2).【分析】直接利用二次函数的平移规律结合二次函数图象上点的性质进而得出答案.【解答】解:∵将抛物线y=(x﹣3)2﹣2向左平移后经过点A(2,2),∴设平移后解析式为:y=(x﹣3+a)2﹣2,则2=(2﹣3+a)2﹣2,解得:a=3或a=﹣1(不合题意舍去),故将抛物线y=(x﹣3)2﹣2向左平移3个单位后经过点A(2,2).故答案为:3.【点评】此题主要考查了二次函数图象与几何变换,正确记忆平移规律是解题关键.三、解答题(共5小题,共32分)18.(5分)计算:tan45°+(﹣)0﹣(﹣)﹣2+|﹣2|.【分析】分别进行特殊角的三角函数值的运算,任何非零数的零次幂等于1,负整数指数幂以及绝对值的意义化简,然后按照实数的运算法则进行计算求得结果.【解答】解:原式=1+1﹣2+(2﹣)=.【点评】本题考查了实数的运算法则,属于基础题,解答本题的关键是熟练掌握负整数指数幂、特殊角的三角函数值等知识.19.(5分)先化简,再求值:(a+3)2﹣(a+1)(a﹣1)﹣2(2a+4),其中a=﹣.【分析】注意到(a+3)2可以利用完全平方公式进行展开,(a+1)(a﹣1)利润平方差公式可化为(a2﹣1),则将各项合并即可化简,最后代入a=进行计算.【解答】解:原式=a2+6a+9﹣(a2﹣1)﹣4a﹣8=2a+2将a=﹣代入原式=2×(﹣)+2=1【点评】本题主要考查整式的混合运算,灵活运用两条乘法公式:完全平方公式和平方差公式是解题的关键,同时,在去括号的过程中要注意括号前的符号,若为负号,去括号后,括号里面的符号要改变20.(6分)如图,正方形ABCD的对角线AC、BD相交于点O,E是OC上一点,连接EB.过点A作AM⊥BE,垂足为M,AM与BD相交于点F.求证:OE=OF.【分析】根据正方形的性质对角线垂直且平分,得到OB=OA,根据AM⊥BE,即可得出∠MEA+∠MAE=90°=∠AFO+∠MAE,从而证出Rt△BOE≌Rt△AOF,得到OE=OF.【解答】证明:∵四边形ABCD是正方形.∴∠BOE=∠AOF=90°,OB=OA.又∵AM⊥BE,∴∠MEA+∠MAE=90°=∠AFO+∠MAE,∴∠MEA=∠AFO.∴△BOE≌△AOF(AAS).∴OE=OF.【点评】本题主要考查了正方形的性质、三角形全等的性质和判定,在应用全等三角形的判定时,要注意三角形间的公共边和公共角,必要时添加适当辅助线构造三角形.21.(8分)某校初中部举行诗词大会预选赛,学校对参赛同学获奖情况进行统计,绘制了如下两幅不完整的统计图.请结合图中相关数据解答下列问题:(1)参加此次诗词大会预选赛的同学共有40 人;(2)在扇形统计图中,“三等奖”所对应的扇形的圆心角的度数为90°;(3)将条形统计图补充完整;(4)若获得一等奖的同学中有来自七年级,来自九年级,其余的来自八年级,学校决定从获得一等奖的同学中任选两名同学参加全市诗词大会比赛,请通过列表或树状图方法求所选两名同学中,恰好是一名七年级和一名九年级同学的概率.【分析】(1)利用鼓励奖的人数除以它所占的百分比得到的总人数;(2)用360°乘以二等奖人数占被调查人数的比例即可得;(3)计算出一等奖和二等奖的人数,然后补全条形统计图;(4)画树状图(用A、B、C分别表示七年级、八年级和九年级的学生)展示所有12种等可能的结果数,再找出所选出的两人中既有七年级又有九年级同学的结果数,然后利用概率公式求解.【解答】解:(1)参加此次诗词大会预选赛的同学共有18÷45%=40(人),故答案为:40;(2)扇形统计图中获三等奖的圆心角为360°×=90°,故答案为:90°.(3)获二等奖的人数=40×20%=8,一等奖的人数为40﹣8﹣10﹣18=4(人),条形统计图为:(4)由题意知,获一等奖的学生中,七年级有1人,八年级有1人,九年级有2人,画树状图为:(用A、B、C分别表示七年级、八年级和九年级的学生)共有12种等可能的结果数,其中所选出的两人中既有七年级又有九年级同学的结果数为4,所以所选出的两人中既有七年级又有九年级同学的概率=.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式求事件A或B的概率.也考查了统计图.22.(8分)如图,点D是以AB为直径的⊙O上一点,过点B作⊙O的切线,交AD的延长线于点C,E是BC的中点,连接DE并延长与AB的延长线交于点F.(1)求证:DF是⊙O的切线;(2)若OB=BF,EF=4,求AD的长.【分析】(1)连接OD,由AB为⊙O的直径得∠BDC=90°,根据BE=EC知∠1=∠3、由OD=OB知∠2=∠4,根据BC是⊙O的切线得∠3+∠4=90°,即∠1+∠2=90°,得证;(2)根据直角三角形的性质得到∠F=30°,BE=EF=2,求得DE=BE=2,得到DF=6,根据三角形的内角和得到OD=OA,求得∠A=∠ADO=BOD=30°,根据等腰三角形的性质即可得到结论.【解答】解:(1)如图,连接OD,BD,∵AB为⊙O的直径,∴∠ADB=∠BDC=90°,在Rt△BDC中,∵BE=EC,∴DE=EC=BE,∴∠1=∠3,∵BC是⊙O的切线,∴∠3+∠4=90°,∴∠1+∠4=90°,又∵∠2=∠4,∴∠1+∠2=90°,∴DF为⊙O的切线;(2)∵OB=BF,∴OF=2OD,∴∠F=30°,∵∠FBE=90°,∴BE=EF=2,∴DE=BE=2,∴DF=6,∵∠F=30°,∠ODF=90°,∴∠FOD=60°,∵OD=OA,∴∠A=∠ADO=BOD=30°,∴∠A=∠F,∴AD=DF=6.【点评】本题考查了切线的判定和性质,直角三角形的性质,等腰三角形的判定和性质,正确的作出辅助线是解题的关键.四、B卷填空题(共2小题,每小题5分,共10分)23.(5分)当0≤x≤3时,直线y=a与抛物线y=(x﹣1)2﹣3有交点,则a的取值范围是﹣3≤a≤1 .【分析】直线y=a与抛物线y=(x﹣1)2﹣3有交点,则可化为一元二次方程组利用根的判别式进行计算.【解答】解:法一:y=a与抛物线y=(x﹣1)2﹣3有交点则有a=(x﹣1)2﹣3,整理得x2﹣2x﹣2﹣a=0∴△=b2﹣4ac=4+4(2+a)≥0解得a≥﹣3,∵0≤x≤3,对称轴x=1∴y=(3﹣1)2﹣3=1∴a≤1法二:由题意可知,∵抛物线的顶点为(1,﹣3),而0≤x≤3∴抛物线y的取值为﹣3≤y≤1∵y=a,则直线y与x轴平行,∴要使直线y=a与抛物线y=(x﹣1)2﹣3有交点,∴抛物线y的取值为﹣3≤y≤1,即为a的取值范围,∴﹣3≤a≤1故答案为:﹣3≤a≤1【点评】此题主要考查二次函数图象的性质及交点的问题,此类问题,通常可化为一元二次方程,利用根的判别式或根与系数的关系进行计算.24.(5分)如图,正方形ABCD中,AB=12,AE=AB,点P在BC上运动(不与B、C重合),过点P作PQ⊥EP,交CD于点Q,则CQ的最大值为 4 .【分析】先证明△BPE∽△CQP,得到与CQ有关的比例式,设CQ=y,BP=x,则CP=12﹣x,代入解析式,得到y与x的二次函数式,根据二次函数的性质可求最值.【解答】解:∵∠BEP+∠BPE=90°,∠QPC+∠BPE=90°,∴∠BEP=∠CPQ.又∠B=∠C=90°,∴△BPE∽△CQP.∴.设CQ=y,BP=x,则CP=12﹣x.∴,化简得y=﹣(x2﹣12x),整理得y=﹣(x﹣6)2+4,所以当x=6时,y有最大值为4.故答案为4.【点评】本题主要考查了正方形的性质、相似三角形的判定和性质,以及二次函数最值问题,几何最值用二次函数最值求解考查了树形结合思想.五、解答题(共4小题,共40分)25.(8分)已知二次函数y=x2+x+a的图象与x轴交于A(x1,0)、B(x2,0)两点,且+=1,求a的值.【分析】有韦达定理得x1+x2=﹣1,x1•x2=a,将式子+=1化简代入即可;【解答】解:y=x2+x+a的图象与x轴交于A(x1,0)、B(x2,0)两点,∴x1+x2=﹣1,x1•x2=a,∵+===1,∴a=﹣1+或a=﹣1﹣;【点评】本题考查二次函数的性质;灵活运用完全平方公式,掌握根与系数的关系是解题的关键.26.(10分)根据有理数乘法(除法)法则可知:①若ab>0(或>0),则或;②若ab<0(或<0),则或.根据上述知识,求不等式(x﹣2)(x+3)>0的解集解:原不等式可化为:(1)或(2).由(1)得,x>2,由(2)得,x<﹣3,∴原不等式的解集为:x<﹣3或x>2.请你运用所学知识,结合上述材料解答下列问题:(1)不等式x2﹣2x﹣3<0的解集为﹣1<x<3 .(2)求不等式<0的解集(要求写出解答过程)【分析】(1)根据有理数乘法运算法则可得不等式组,仿照有理数乘法运算法则得出两个不等式组,分别求解可得.(2)根据有理数除法运算法则可得不等式组,仿照有理数除法运算法则得出两个不等式组,分别求解可得.【解答】解:(1)原不等式可化为:①或②.由①得,空集,由②得,﹣1<x<3,∴原不等式的解集为:﹣1<x<3,故答案为:﹣1<x<3.(2)由<0知①或②,解不等式组①,得:x>1;解不等式组②,得:x<﹣4;所以不等式<0的解集为x>1或x<﹣4.【点评】本题主要考查解不等式、不等式组的能力,将原不等式转化为两个不等式组是解题的关键.27.(10分)如图,∠ABD=∠BCD=90°,DB平分∠ADC,过点B作BM∥CD交AD于M.连接CM交DB于N.(1)求证:BD2=AD•CD;(2)若CD=6,AD=8,求MN的长.【分析】(1)通过证明△ABD∽△BCD,可得,可得结论;(2)由平行线的性质可证∠MBD=∠BDC,即可证AM=MD=MB=4,由BD2=AD•CD和勾股定理可求MC的长,通过证明△MNB∽△CND,可得,即可求MN的长.【解答】证明:(1)∵DB平分∠ADC,∴∠ADB=∠CDB,且∠ABD=∠BCD=90°,∴△ABD∽△BCD∴∴BD2=AD•CD(2)∵BM∥CD∴∠MBD=∠BDC∴∠ADB=∠MBD,且∠ABD=90°∴BM=MD,∠MAB=∠MBA∴BM=MD=AM=4∵BD2=AD•CD,且CD=6,AD=8,∴BD2=48,∴BC2=BD2﹣CD2=12∴MC2=MB2+BC2=28∴MC=2∵BM∥CD∴△MNB∽△CND∴,且MC=2∴MN=【点评】本题考查了相似三角形的判定和性质,勾股定理,直角三角形的性质,求MC的长度是本题的关键.28.(12分)如图,抛物线y=ax2+bx+c的图象过点A(﹣1,0)、B(3,0)、C(0,3).(1)求抛物线的解析式;(2)在抛物线的对称轴上是否存在一点P,使得△PAC的周长最小,若存在,请求出点P 的坐标及△PAC的周长;若不存在,请说明理由;(3)在(2)的条件下,在x轴上方的抛物线上是否存在点M(不与C点重合),使得S=S△PAC?若存在,请求出点M的坐标;若不存在,请说明理由.△PAM【分析】(1)由于条件给出抛物线与x轴的交点A(﹣1,0)、B(3,0),故可设交点式y=a(x+1)(x﹣3),把点C代入即求得a的值,减小计算量.(2)由于点A、B关于对称轴:直线x=1对称,故有PA=PB,则C△PAC=AC+PC+PA=AC+PC+PB,所以当C、P、B在同一直线上时,C△PAC=AC+CB最小.利用点A、B、C的坐标求AC、CB 的长,求直线BC解析式,把x=1代入即求得点P纵坐标.(3)由S△PAM=S△PAC可得,当两三角形以PA为底时,高相等,即点C和点M到直线PA距离相等.又因为M在x轴上方,故有CM∥PA.由点A、P坐标求直线AP解析式,即得到直线CM解析式.把直线CM解析式与抛物线解析式联立方程组即求得点M坐标.【解答】解:(1)∵抛物线与x轴交于点A(﹣1,0)、B(3,0)∴可设交点式y=a(x+1)(x﹣3)把点C(0,3)代入得:﹣3a=3∴a=﹣1∴y=﹣(x+1)(x﹣3)=﹣x2+2x+3∴抛物线解析式为y=﹣x2+2x+3(2)在抛物线的对称轴上存在一点P,使得△PAC的周长最小.如图1,连接PB、BC∵点P在抛物线对称轴直线x=1上,点A、B关于对称轴对称∴PA=PB∴C△PAC=AC+PC+PA=AC+PC+PB∵当C、P、B在同一直线上时,PC+PB=CB最小∵A(﹣1,0)、B(3,0)、C(0,3)∴AC=,BC=∴C△PAC=AC+CB=最小设直线BC解析式为y=kx+3把点B代入得:3k+3=0,解得:k=﹣1∴直线BC:y=﹣x+3∴y P=﹣1+3=2∴点P(1,2)使△PAC的周长最小,最小值为.(3)存在满足条件的点M,使得S△PAM=S△PAC.∵S△PAM=S△PAC∴当以PA为底时,两三角形等高∴点C和点M到直线PA距离相等∵M在x轴上方∴CM∥PA∵A(﹣1,0),P(1,2),设直线AP解析式为y=px+d∴解得:∴直线AP:y=x+1∴直线CM解析式为:y=x+3∵解得:(即点C),∴点M坐标为(1,4)【点评】本题考查了待定系数法求二次函数解析式、一次函数解析式,轴对称的最短路径问题,勾股定理,平行线间距离处处相等,一元二次方程的解法.其中第(3)题条件给出点M在x轴上方,无需分类讨论,解法较常规而简单.。
(真题)四川省凉山州最新中考数学试题附答案
2018年凉山州初中毕业、高中阶段招生统一考试数学试卷A 卷(共100分) 第Ⅰ卷(选择题 共30分)一、选择题(共10个小题,每小题3分,共30分)在每小题给出的四个选项中只有一项是正确的,请把正确选项的字母填涂在答题卡相应的位置.1.比1小2的数是( )A .-1B .-2C .-3D .1 2.下列运算正确的是( )A .3412a a a ⋅= B .632a a a ÷= C .23a a a -=- D .22(2)4a a -=-3.长度单位1纳米910-=米,目前发现一种新型病毒直径为25100纳米,用科学记数法表示该病毒直径是( )A .625.110-⨯米 B .40.25110-⨯米 C .52.5110⨯米 D .52.5110-⨯米4.小红上学要经过三个十字路口,每个路口遇到红、绿灯的机会都相同,小红希望小学时经过每个路口都是绿灯,但实际这样的机会是( ) A .12 B .18 C .38 D .111222++ 5.一个正方体的平面展开图如图所示,将它折成正方体后“建”字对面是( )A .和B .谐C .凉D .山6.一组数据3、2、1、2、2的众数,中位数,方差分别是( ) A .2,1,0.4 B .2,2,0.4 C .3,1,2 D .2,1,0.27.若0ab <,则正比例函数y ax =与反比例函数by x=在同一坐标系中的大致图象可能是( )A .B .C .D . 8.下列图形中既是轴对称图形,又是中心对称图形的是( )A .B .C .D .9.如图,将矩形ABCD 沿对角线BD 折叠,使C 落在'C 处,'BC 交AD 于E ,则下列结论不一定成立的是( )A .'AD BC =B .EBD EDB ∠=∠C .ABECBD ∆∆ D .sin AEABE ED∠=10.如图,O 是ABC ∆的外接圆,已知50ABO ∠=,则ACB ∠的大小为( )A .40B .30C .45D .502018年凉山州初中毕业、高中阶段招生统一考试数学试卷第Ⅱ卷(非选择题 共70分)二、填空题(共4小题,每小题3分,共12分)11.分解因式39a a -=________,221218x x -+= .12.已知'''ABCA B C ∆∆且''':1:2ABC A B C S S ∆∆=,则:''AB A B = .13.有两名学员小林和小明练习射击,第一轮10枪打完后两人打靶的环数如图所示,通常新手的成绩不太稳定,那么根据图中的信息,估计小林和小明两人中新手是 .14.已知一个正数的平方根是32x -和56x +,则这个数是 .三、解答题(共4小题,每小题7分,共28分)15.计算:03.14 3.1412cos 452π⎛⎫-+÷+- ⎪ ⎪⎝⎭120091)(1)-++-. 16.先化简,再选择一个你喜欢的数(要合适哦!)代入求值:2111x x x -⎛⎫+÷ ⎪⎝⎭.17.观察下列多面体,并把下表补充完整.18.如图,ABC ∆在方格纸中.(1)请在方格纸上建立平面直角坐标系,使(2,3)A ,(6,2)C ,并求出B 点坐标;(2)以原点O 为位似中心,相似比为2,在第一象限内将ABC ∆放大,画出放大后的图形'''A B C ∆;(3)计算'''A B C ∆的面积S .四、解答题(共2小题,每小题7分,共14分)19.我国沪深股市交易中,如果买、卖一次股票均需付交易金额的0.5%作费用.张先生以每股5元的价格买入“西昌电力”股票1000股,若他期望获利不低于1000元,问他至少要等到该股票涨到每股多少元时才能卖出?(精确到0.01元)20.已知一个口袋中装有7个只有颜色不同的球,其中3个白球,4个黑球. (1)求从中随机抽取出一个黑球的概率是多少?(2)若往口袋中再放入x 个白球和y 个黑球,从口袋中随机取出一个白球的概率是14,求y 与x 之间的函数关系式.五、解答题(共2小题,每小题8分,共16分)21.如图,要在木里县某林场东西方向的两地之间修一条公路MN ,已知C 点周围200米范围内为原始森林保护区,在MN 上的点A 处测得C 在A 的北偏东45︒方向上,从A 向东走600米到达B 处,测得C 在点B 的北偏西60︒方向上.(1)MN 1.732≈)(2)若修路工程顺利进行,要使修路工程比原计划提前5天完成,需将原定的工作效率提高25%,则原计划完成这项工程需要多少天?22.如图,在平面直角坐标系中,点1O 的坐标为(4,0)-,以点1O 为圆心,8为半径的圆与x 轴交于A ,B 两点,过A 作直线l 与x 轴负方向相交成60的角,且交y 轴于C 点,以点2(13,5)O 为圆心的圆与x 轴相切于点D .(1)求直线l 的解析式; (2)将2O 以每秒1个单位的速度沿x 轴向左平移,当2O 第一次与1O 外切时,求2O 平移的时间.B 卷(共20分)六、填空题(共2小题,每小题3分,共6分)23.若不等式组220x a b x ->⎧⎨->⎩的解集为11x -<<,则2009()a b +=________.24.将ABC ∆绕点B 逆时针旋转到''A BC ∆使A 、B 、'C 在同一直线上,若90BCA ∠=︒,30BAC ∠=︒,4AB cm =,则图中阴影部分面积为________2cm .七、解答题(共2小题,25题4分,26题10分,共14分)25.我们常用的数是十进制数,如3214657410610510710=⨯+⨯+⨯+⨯,数要用10个数码(又叫数字):0、1、2、3、4、5、6、7、8、9,在电子计算机中用的二进制,只要两个数码:0和1,如二进制中210110121202=⨯+⨯+⨯等于十进制的数6,543110*********=⨯+⨯+⨯210120212+⨯+⨯+⨯等于十进制的数53.那么二进制中的数101011等于十进制中的哪个数?26.如图,已知抛物线2y x bx c =++经过(1,0)A ,(0,2)B 两点,顶点为D .(1)求抛物线的解析式;(2)将OAB ∆绕点A 顺时针旋转90︒后,点B 落在点C 的位置,将抛物线沿y 轴平移后经过点C ,求平移后所得图象的函数关系式;(3)设(2)中平移后,所得抛物线与y 轴的交点为1B ,顶点为1D ,若点N 在平移后的抛物线上,且满足1NBB ∆的面积是1NDD ∆面积的2倍,求点N 的坐标.2018年凉山州初中毕业、高中阶段招生统一考试数学参考答案 A 卷(共100分)一、选择题1-5: ACDBD 6-10: BBDCA二、填空题11. (3)(3)a a a +- 22(3)x - 12. 1:小林 14.494三、解答题15.计算:原式(3.14) 3.141π=--+÷2(1)2-⨯+-13.14 3.14121π=-+--11π=-π=.16.解:2111(1)(1)1x x x x x x x x -+-+⎛⎫+÷=÷⎪⎝⎭1(1)(1)x x x x x +=⨯-+ 11x =-. 取2x =时,原式1121==-. 17.18.(1)画出原点O ,x 轴、y 轴.(2,1)B .(2)画出图形'''A B C ∆.(3)148162S =⨯⨯=. 四、解答题19.解:设至少涨到每股x 元时才能卖出.根据题意得1000(50001000)0.5%x x -+⨯50001000≥+, 解这个不等式得1205199x ≥,即 6.06x ≥. 答:至少涨到每股6.06元时才能卖出. 20.解:(1)取出一个黑球的概率44347P ==+. (2)∵取出一个白球的概率37xP x y+=++,∴3174x x y +=++,∴1247x x y +=++,∴y 与x 的函数关系式为:35y x =+.五、解答题21.(1)理由如下:如图,过C 作CH AB ⊥于H ,设CH x =, 由已知有45EAC ∠=︒,60FBC ∠=︒, 则45CAH ∠=︒,30CBA ∠=︒, 在Rt ACH ∆中,AH CH x ==, 在Rt HBC ∆中,tan CHHBC HB∠=,∴tan 303CH HB ===︒,∵AH HB AB +=,∴600x =解得220x =≈(米)200>(米).∴MN 不会穿过森林保护区.(2)解:设原计划完成这项工程需要y 天,则实际完成工程需要(5)y -天. 根据题意得:11(125%)5y y=+⨯-, 解得:25y =,经检验知:25y =是原方程的根, 答:原计划完成这项工程需要25天. 22.(1)解:由题意得4812OA =-+=, ∴A 点坐标为(12,0)-.∵在Rt AOC ∆中,60OAC ∠=︒,tan 12tan60OC OA OAC =∠=⨯︒=∴C点的坐标为(0,-. 设直线l 的解析式为y kx b =+, 由l 过A 、C 两点,得012b k b⎧-=⎪⎨=-+⎪⎩,解得b k ⎧=-⎪⎨=⎪⎩∴直线l的解析式为:y =-(2)如图,设2O 平移t 秒后到3O 处与1O 第一次外切于点P ,3O 与x 轴相切于1D 点,连接13O O ,31O D .则13138513OO O P PO =+=+=, ∵31O D x ⊥轴,∴315O D =,在131Rt OO D ∆中,1112O D ===.∵1141317O D OO OD =+=+=, ∴111117125D D O D O D =-=-=, ∴551t ==(秒), ∴2O 平移的时间为5秒.B 卷(共20分)六、填空题23. -1 24. 4π七、解答题25.解:543101011120212=⨯+⨯+⨯21021212+⨯+⨯+⨯3208021=+++++43=.26.解: (1)已知抛物线2y x bx c =++经过(1,0)A ,(0,2)B , ∴01200b c c =++⎧⎨=++⎩,解得32b c =-⎧⎨=⎩,∴所求抛物线的解析式为232y x x =-+. (2)∵(1,0)A ,(0,2)B ,∴1OA =,2OB =, 可得旋转后C 点的坐标为(3,1).当3x =时,由232y x x =-+得2y =,可知抛物线232y x x =-+过点(3,2).∴将原抛物线沿y 轴向下平移1个单位后过点C . ∴平移后的抛物线解析式为:231y x x =-+.(3)∵点N 在231y x x =-+上,可设N 点坐标为2000(,31)x x x -+,将231y x x =-+配方得23524y x ⎛⎫=-- ⎪⎝⎭,∴其对称轴为32x =..①当0302x <<时,如图①, ∵112NBB NDD S S ∆∆=, ∴00113121222x x ⎛⎫⨯⨯=⨯⨯⨯- ⎪⎝⎭, ∵01x =,此时200311x x -+=-, ∴N 点的坐标为(1,1)-.②当032x >时,如图②, 同理可得0011312222x x ⎛⎫⨯⨯=⨯⨯- ⎪⎝⎭, ∴03x =,此时200311x x -+=, ∴N 点的坐标为(3,1).综上,点N 的坐标为(1,1)-或(3,1).。
2019年四川省凉山州中考数学试卷含答案解析
2019年四川省凉山州中考数学试卷一、选择题(共12个小题,每小题4分,共48分)在每小题给出的四个选项中只有一项是正确的,把正确选项的宇母填涂在答题卡上相应的位置1.(4分)﹣2的相反数是()A.2B.﹣2C.D.﹣2.(4分)2018年凉山州生产总值约为153300000000,用科学记数法表示数153300000000是()A.1.533×109B.1.533×1010C.1.533×1011D.1.533×1012 3.(4分)如图,BD∥EF,AE与BD交于点C,∠B=30°,∠A=75°,则∠E的度数为()A.135°B.125°C.115°D.105°4.(4分)下列各式正确的是()A.2a2+3a2=5a4B.a2•a=a3C.(a2)3=a5D.=a5.(4分)不等式1﹣x≥x﹣1的解集是()A.x≥1B.x≥﹣1C.x≤1D.x≤﹣16.(4分)某班40名同学一周参加体育锻炼时间统计如表所示:人数(人)317137时间(小时)78910那么该班40名同学一周参加体育锻炼时间的众数、中位数分别是()A.17,8.5B.17,9C.8,9D.8,8.57.(4分)下列命题:①直线外一点到这条直线的垂线段,叫做点到直线的距离;②两点之间线段最短;③相等的圆心角所对的弧相等;④平分弦的直径垂直于弦.其中,真命题的个数是()A.1B.2C.3D.48.(4分)如图,正比例函数y=kx与反比例函数y=的图象相交于A、C两点,过点A 作x轴的垂线交x轴于点B,连接BC,则△ABC的面积等于()A.8B.6C.4D.29.(4分)如图,在△ABC中,CA=CB=4,cos C=,则sin B的值为()A.B.C.D.10.(4分)如图,在△ABC中,D在AC边上,AD:DC=1:2,O是BD的中点,连接AO 并延长交BC于E,则BE:EC=()A.1:2B.1:3C.1:4D.2:311.(4分)如图,在△AOC中,OA=3cm,OC=1cm,将△AOC绕点O顺时针旋转90°后得到△BOD,则AC边在旋转过程中所扫过的图形的面积为()cm2.A.B.2πC.πD.π12.(4分)二次函数y=ax2+bx+c的部分图象如图所示,有以下结论:①3a﹣b=0;②b2﹣4ac>0;③5a﹣2b+c>0;④4b+3c>0,其中错误结论的个数是()A.1B.2C.3D.4二、填空题(共5个小题,每小题4分,共20分)13.(4分)方程组的解是.14.(4分)方程+=1的解是.15.(4分)如图所示,AB是⊙O的直径,弦CD⊥AB于H,∠A=30°,CD=2,则⊙O 的半径是.16.(4分)在▱ABCD中,E是AD上一点,且点E将AD分为2:3的两部分,连接BE、AC相交于F,则S△AEF:S△CBF是.17.(4分)将抛物线y=(x﹣3)2﹣2向左平移个单位后经过点A(2,2).三、解答题(共5小题,共32分)18.(5分)计算:tan45°+(﹣)0﹣(﹣)﹣2+|﹣2|.19.(5分)先化简,再求值:(a+3)2﹣(a+1)(a﹣1)﹣2(2a+4),其中a=﹣.20.(6分)如图,正方形ABCD的对角线AC、BD相交于点O,E是OC上一点,连接EB.过点A作AM⊥BE,垂足为M,AM与BD相交于点F.求证:OE=OF.21.(8分)某校初中部举行诗词大会预选赛,学校对参赛同学获奖情况进行统计,绘制了如下两幅不完整的统计图.请结合图中相关数据解答下列问题:(1)参加此次诗词大会预选赛的同学共有人;(2)在扇形统计图中,“三等奖”所对应的扇形的圆心角的度数为;(3)将条形统计图补充完整;(4)若获得一等奖的同学中有来自七年级,来自九年级,其余的来自八年级,学校决定从获得一等奖的同学中任选两名同学参加全市诗词大会比赛,请通过列表或树状图方法求所选两名同学中,恰好是一名七年级和一名九年级同学的概率.22.(8分)如图,点D是以AB为直径的⊙O上一点,过点B作⊙O的切线,交AD的延长线于点C,E是BC的中点,连接DE并延长与AB的延长线交于点F.(1)求证:DF是⊙O的切线;(2)若OB=BF,EF=4,求AD的长.四、B卷填空题(共2小题,每小题5分,共10分)23.(5分)当0≤x≤3时,直线y=a与抛物线y=(x﹣1)2﹣3有交点,则a的取值范围是.24.(5分)如图,正方形ABCD中,AB=12,AE=AB,点P在BC上运动(不与B、C 重合),过点P作PQ⊥EP,交CD于点Q,则CQ的最大值为.五、解答题(共4小题,共40分)25.(8分)已知二次函数y=x2+x+a的图象与x轴交于A(x1,0)、B(x2,0)两点,且+=1,求a的值.26.(10分)根据有理数乘法(除法)法则可知:①若ab>0(或>0),则或;②若ab<0(或<0),则或.根据上述知识,求不等式(x﹣2)(x+3)>0的解集解:原不等式可化为:(1)或(2).由(1)得,x>2,由(2)得,x<﹣3,∴原不等式的解集为:x<﹣3或x>2.请你运用所学知识,结合上述材料解答下列问题:(1)不等式x2﹣2x﹣3<0的解集为.(2)求不等式<0的解集(要求写出解答过程)27.(10分)如图,∠ABD=∠BCD=90°,DB平分∠ADC,过点B作BM∥CD交AD于M.连接CM交DB于N.(1)求证:BD2=AD•CD;(2)若CD=6,AD=8,求MN的长.28.(12分)如图,抛物线y=ax2+bx+c的图象过点A(﹣1,0)、B(3,0)、C(0,3).(1)求抛物线的解析式;(2)在抛物线的对称轴上是否存在一点P,使得△P AC的周长最小,若存在,请求出点P的坐标及△P AC的周长;若不存在,请说明理由;(3)在(2)的条件下,在x轴上方的抛物线上是否存在点M(不与C点重合),使得S=S△P AC?若存在,请求出点M的坐标;若不存在,请说明理由.△P AM2019年四川省凉山州中考数学试卷参考答案与试题解析一、选择题(共12个小题,每小题4分,共48分)在每小题给出的四个选项中只有一项是正确的,把正确选项的宇母填涂在答题卡上相应的位置1.(4分)﹣2的相反数是()A.2B.﹣2C.D.﹣【分析】根据相反数的意义,只有符号不同的数为相反数.【解答】解:根据相反数的定义,﹣2的相反数是2.故选:A.【点评】本题考查了相反数的意义.注意掌握只有符号不同的数为相反数,0的相反数是0.2.(4分)2018年凉山州生产总值约为153300000000,用科学记数法表示数153300000000是()A.1.533×109B.1.533×1010C.1.533×1011D.1.533×1012【分析】利用科学记数法表示即可【解答】解:科学记数法表示:153 300 000 000=1.533×1011故选:C.【点评】本题主要考查科学记数法的表示,把一个数表示成a与10的n次幂相乘的形式(1≤a<10,n为整数),这种记数法叫做科学记数法.3.(4分)如图,BD∥EF,AE与BD交于点C,∠B=30°,∠A=75°,则∠E的度数为()A.135°B.125°C.115°D.105°【分析】直接利用三角形的外角性质得出∠ACD度数,再利用平行线的性质分析得出答案.【解答】解:∵∠B=30°,∠A=75°,∴∠ACD=30°+75°=105°,∵BD∥EF,∴∠E=∠ACD=105°.故选:D.【点评】此题主要考查了平行线的性质以及三角形的外角,正确掌握平行线的性质是解题关键.4.(4分)下列各式正确的是()A.2a2+3a2=5a4B.a2•a=a3C.(a2)3=a5D.=a【分析】分别根据合并同类项的法则、同底数幂的乘法法则、幂的乘方法则以及二次根式的性质解答即可.【解答】解:A、2a2+3a2=5a2,故选项A不合题意;B、a2•a=a3,故选项B符合题意;C、(a2)3=a6,故选项C不合题意;D、=|a|,故选项D不合题意.故选:B.【点评】本题主要考查了合并同类项的法则、幂的运算法则以及二次根式的性质,熟练掌握相关运算性质是解答本题的关键.5.(4分)不等式1﹣x≥x﹣1的解集是()A.x≥1B.x≥﹣1C.x≤1D.x≤﹣1【分析】移项、合并同类项,系数化为1即可求解.【解答】解:1﹣x≥x﹣1,﹣2x≥﹣2∴x≤1.故选:C.【点评】本题考查了解简单不等式的能力,解答这类题学生往往在解题时不注意移项要改变符号这一点而出错.6.(4分)某班40名同学一周参加体育锻炼时间统计如表所示:人数(人)317137时间(小时)78910那么该班40名同学一周参加体育锻炼时间的众数、中位数分别是()A.17,8.5B.17,9C.8,9D.8,8.5【分析】根据中位数、众数的概念分别求得这组数据的中位数、众数.【解答】解:众数是一组数据中出现次数最多的数,即8;由统计表可知,处于20,21两个数的平均数就是中位数,∴这组数据的中位数为=8.5;故选:D.【点评】本题考查了中位数、众数的概念.本题为统计题,考查众数与中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.7.(4分)下列命题:①直线外一点到这条直线的垂线段,叫做点到直线的距离;②两点之间线段最短;③相等的圆心角所对的弧相等;④平分弦的直径垂直于弦.其中,真命题的个数是()A.1B.2C.3D.4【分析】根据点到直线的距离,线段的性质,弧、弦、圆心角之间的关系以及垂径定理判断即可.【解答】解:①直线外一点到这条直线的垂线段,叫做点到直线的距离;假命题;②两点之间线段最短;真命题;③相等的圆心角所对的弧相等;假命题;④平分弦的直径垂直于弦;假命题;真命题的个数是1个;故选:A.【点评】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.8.(4分)如图,正比例函数y=kx与反比例函数y=的图象相交于A、C两点,过点A作x轴的垂线交x轴于点B,连接BC,则△ABC的面积等于()A.8B.6C.4D.2【分析】由于点A、C位于反比例函数图象上且关于原点对称,则S△OBA=S△OBC,再根据反比例函数系数k的几何意义作答即可.【解答】解:因为过双曲线上任意一点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S是个定值,即S=|k|.所以△ABC的面积等于2×|k|=|k|=4.故选:C.【点评】主要考查了反比例函数y=中k的几何意义,即过双曲线上任意一点引x轴、y轴垂线,所得矩形面积为|k|,是经常考查的一个知识点;这里体现了数形结合的思想,做此类题一定要正确理解k的几何意义.图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S的关系即S=|k|.9.(4分)如图,在△ABC中,CA=CB=4,cos C=,则sin B的值为()A.B.C.D.【分析】过点A作AD⊥BC,垂足为D,在Rt△ACD中可求出AD,CD的长,在Rt△ABD中,利用勾股定理可求出AB的长,再利用正弦的定义可求出sin B的值.【解答】解:过点A作AD⊥BC,垂足为D,如图所示.在Rt△ACD中,CD=CA•cos C=1,∴AD==;在Rt△ABD中,BD=CB﹣CD=3,AD=,∴AB==2,∴sin B==.故选:D.【点评】本题考查了解直角三角形以及勾股定理,通过解直角三角形及勾股定理,求出AD,AB的长是解题的关键.10.(4分)如图,在△ABC中,D在AC边上,AD:DC=1:2,O是BD的中点,连接AO 并延长交BC于E,则BE:EC=()A.1:2B.1:3C.1:4D.2:3【分析】过O作BC的平行线交AC与G,由中位线的知识可得出AD:DC=1:2,根据已知和平行线分线段成比例得出AD=DG=GC,AG:GC=2:1,AO:OF=2:1,再由同高不同底的三角形中底与三角形面积的关系可求出BF:FC的比.【解答】解:如图,过O作OG∥BC,交AC于G,∵O是BD的中点,∴G是DC的中点.又AD:DC=1:2,∴AD=DG=GC,∴AG:GC=2:1,AO:OE=2:1,∴S△AOB:S△BOE=2设S△BOE=S,S△AOB=2S,又BO=OD,∴S△AOD=2S,S△ABD=4S,∵AD:DC=1:2,∴S△BDC=2S△ABD=8S,S四边形CDOE=7S,∴S△AEC=9S,S△ABE=3S,∴故选:B.【点评】本题考查平行线分线段成比例及三角形的中位线的知识,难度较大,注意熟练运用中位线定理和三角形面积公式.11.(4分)如图,在△AOC中,OA=3cm,OC=1cm,将△AOC绕点O顺时针旋转90°后得到△BOD,则AC边在旋转过程中所扫过的图形的面积为()cm2.A.B.2πC.πD.π【分析】根据旋转的性质可以得到阴影部分的面积=扇形OAB的面积﹣扇形OCD的面积,利用扇形的面积公式即可求解.【解答】解:∵△AOC≌△BOD,∴阴影部分的面积=扇形OAB的面积﹣扇形OCD的面积=﹣=2π,故选:B.【点评】本题考查了旋转的性质以及扇形的面积公式,正确理解:阴影部分的面积=扇形OAB的面积﹣扇形OCD的面积是解题关键.12.(4分)二次函数y=ax2+bx+c的部分图象如图所示,有以下结论:①3a﹣b=0;②b2﹣4ac>0;③5a﹣2b+c>0;④4b+3c>0,其中错误结论的个数是()A.1B.2C.3D.4【分析】①对称轴为x=﹣,得b=3a;②函数图象与x轴有两个不同的交点,得△=b2﹣4ac>0;③当x=﹣1时,a﹣b+c>0,当x=﹣3时,9a﹣3b+c>0,得5a﹣2b+c>0;④由对称性可知x=1时对应的y值与x=﹣4时对应的y值相等,当x=1时a+b+c<0,4b+3c=3b+b+3c=3b+3a+3c=3(a+b+c)<0;【解答】解:由图象可知a<0,c>0,对称轴为x=﹣,∴x=﹣=﹣,∴b=3a,①正确;∵函数图象与x轴有两个不同的交点,∴△=b2﹣4ac>0,②正确;当x=﹣1时,a﹣b+c>0,当x=﹣3时,9a﹣3b+c>0,∴10a﹣4b+2c>0,∴5a﹣2b+c>0,③正确;由对称性可知x=1时对应的y值与x=﹣4时对应的y值相等,∴当x=1时a+b+c<0,∵b=3a,∴4b+3c=3b+b+3c=3b+3a+3c=3(a+b+c)<0,∴4b+3c<0,④错误;故选:A.【点评】本题考查二次函数的图象及性质;熟练掌握从函数图象获取信息,将信息与函数解析式相结合解题是关键.二、填空题(共5个小题,每小题4分,共20分)13.(4分)方程组的解是.【分析】利用加减消元法解之即可.【解答】解:,②﹣①得:x=6,把x=6代入①得:6+y=10,解得:y=4,方程组的解为:,故答案为:.【点评】本题考查了解二元一次方程组,正确掌握加减消元法是解题的关键.14.(4分)方程+=1的解是x=﹣2.【分析】去分母,把分式方程化为整式方程,求解并验根即可.【解答】解:去分母,得(2x﹣1)(x+1)﹣2=(x+1)(x﹣1)去括号,得2x2+x﹣3=x2﹣1移项并整理,得x2+x﹣2=0所以(x+2)(x﹣1)=0解得x=﹣2或x=1经检验,x=﹣2是原方程的解.故答案为:x=﹣2.【点评】本题考查了分式方程、一元二次方程的解法.掌握分式方程的解法是解决本题的关键.注意验根.15.(4分)如图所示,AB是⊙O的直径,弦CD⊥AB于H,∠A=30°,CD=2,则⊙O 的半径是2.【分析】连接BC,由圆周角定理和垂径定理得出∠ACB=90°,CH=DH=CD=,由直角三角形的性质得出AC=2CH=2,AC=BC=2,AB=2BC,得出BC=2,AB=4,求出OA=2即可.【解答】解:连接BC,如图所示:∵AB是⊙O的直径,弦CD⊥AB于H,∴∠ACB=90°,CH=DH=CD=,∵∠A=30°,∴AC=2CH=2,在Rt△ABC中,∠A=30°,∴AC=BC=2,AB=2BC,∴BC=2,AB=4,∴OA=2,即⊙O的半径是2;故答案为:2.【点评】本题考查的是垂径定理、圆周角定理、含30°角的直角三角形的性质、勾股定理等知识;熟练掌握圆周角定理和垂径定理是解题的关键.16.(4分)在▱ABCD中,E是AD上一点,且点E将AD分为2:3的两部分,连接BE、AC相交于F,则S△AEF:S△CBF是4:25或9:25.【分析】分AE:ED=2:3、AE:ED=3:2两种情况,根据相似三角形的性质计算即可.【解答】解:①当AE:ED=2:3时,∵四边形ABCD是平行四边形,∴AD∥BC,AE:BC=2:5,∴△AEF∽△CBF,∴S△AEF:S△CBF=()2=4:25;②当AE:ED=3:2时,同理可得,S△AEF:S△CBF=()2=9:25,故答案为:4:25或9:25.【点评】本题考查的是相似三角形的判定和性质、平行四边形的性质,掌握相似三角形的面积比等于相似比的平方是解题的关键.17.(4分)将抛物线y=(x﹣3)2﹣2向左平移3个单位后经过点A(2,2).【分析】直接利用二次函数的平移规律结合二次函数图象上点的性质进而得出答案.【解答】解:∵将抛物线y=(x﹣3)2﹣2向左平移后经过点A(2,2),∴设平移后解析式为:y=(x﹣3+a)2﹣2,则2=(2﹣3+a)2﹣2,解得:a=3或a=﹣1(不合题意舍去),故将抛物线y=(x﹣3)2﹣2向左平移3个单位后经过点A(2,2).故答案为:3.【点评】此题主要考查了二次函数图象与几何变换,正确记忆平移规律是解题关键.三、解答题(共5小题,共32分)18.(5分)计算:tan45°+(﹣)0﹣(﹣)﹣2+|﹣2|.【分析】分别进行特殊角的三角函数值的运算,任何非零数的零次幂等于1,负整数指数幂以及绝对值的意义化简,然后按照实数的运算法则进行计算求得结果.【解答】解:原式=1+1﹣2+(2﹣)=.【点评】本题考查了实数的运算法则,属于基础题,解答本题的关键是熟练掌握负整数指数幂、特殊角的三角函数值等知识.19.(5分)先化简,再求值:(a+3)2﹣(a+1)(a﹣1)﹣2(2a+4),其中a=﹣.【分析】注意到(a+3)2可以利用完全平方公式进行展开,(a+1)(a﹣1)利润平方差公式可化为(a2﹣1),则将各项合并即可化简,最后代入a=进行计算.【解答】解:原式=a2+6a+9﹣(a2﹣1)﹣4a﹣8=2a+2将a=﹣代入原式=2×(﹣)+2=1【点评】本题主要考查整式的混合运算,灵活运用两条乘法公式:完全平方公式和平方差公式是解题的关键,同时,在去括号的过程中要注意括号前的符号,若为负号,去括号后,括号里面的符号要改变20.(6分)如图,正方形ABCD的对角线AC、BD相交于点O,E是OC上一点,连接EB.过点A作AM⊥BE,垂足为M,AM与BD相交于点F.求证:OE=OF.【分析】根据正方形的性质对角线垂直且平分,得到OB=OA,根据AM⊥BE,即可得出∠MEA+∠MAE=90°=∠AFO+∠MAE,从而证出Rt△BOE≌Rt△AOF,得到OE=OF.【解答】证明:∵四边形ABCD是正方形.∴∠BOE=∠AOF=90°,OB=OA.又∵AM⊥BE,∴∠MEA+∠MAE=90°=∠AFO+∠MAE,∴∠MEA=∠AFO.∴△BOE≌△AOF(AAS).∴OE=OF.【点评】本题主要考查了正方形的性质、三角形全等的性质和判定,在应用全等三角形的判定时,要注意三角形间的公共边和公共角,必要时添加适当辅助线构造三角形.21.(8分)某校初中部举行诗词大会预选赛,学校对参赛同学获奖情况进行统计,绘制了如下两幅不完整的统计图.请结合图中相关数据解答下列问题:(1)参加此次诗词大会预选赛的同学共有40人;(2)在扇形统计图中,“三等奖”所对应的扇形的圆心角的度数为90°;(3)将条形统计图补充完整;(4)若获得一等奖的同学中有来自七年级,来自九年级,其余的来自八年级,学校决定从获得一等奖的同学中任选两名同学参加全市诗词大会比赛,请通过列表或树状图方法求所选两名同学中,恰好是一名七年级和一名九年级同学的概率.【分析】(1)利用鼓励奖的人数除以它所占的百分比得到的总人数;(2)用360°乘以二等奖人数占被调查人数的比例即可得;(3)计算出一等奖和二等奖的人数,然后补全条形统计图;(4)画树状图(用A、B、C分别表示七年级、八年级和九年级的学生)展示所有12种等可能的结果数,再找出所选出的两人中既有七年级又有九年级同学的结果数,然后利用概率公式求解.【解答】解:(1)参加此次诗词大会预选赛的同学共有18÷45%=40(人),故答案为:40;(2)扇形统计图中获三等奖的圆心角为360°×=90°,故答案为:90°.(3)获二等奖的人数=40×20%=8,一等奖的人数为40﹣8﹣10﹣18=4(人),条形统计图为:(4)由题意知,获一等奖的学生中,七年级有1人,八年级有1人,九年级有2人,画树状图为:(用A、B、C分别表示七年级、八年级和九年级的学生)共有12种等可能的结果数,其中所选出的两人中既有七年级又有九年级同学的结果数为4,所以所选出的两人中既有七年级又有九年级同学的概率=.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式求事件A或B的概率.也考查了统计图.22.(8分)如图,点D是以AB为直径的⊙O上一点,过点B作⊙O的切线,交AD的延长线于点C,E是BC的中点,连接DE并延长与AB的延长线交于点F.(1)求证:DF是⊙O的切线;(2)若OB=BF,EF=4,求AD的长.【分析】(1)连接OD,由AB为⊙O的直径得∠BDC=90°,根据BE=EC知∠1=∠3、由OD=OB知∠2=∠4,根据BC是⊙O的切线得∠3+∠4=90°,即∠1+∠2=90°,得证;(2)根据直角三角形的性质得到∠F=30°,BE=EF=2,求得DE=BE=2,得到DF=6,根据三角形的内角和得到OD=OA,求得∠A=∠ADO=BOD=30°,根据等腰三角形的性质即可得到结论.【解答】解:(1)如图,连接OD,BD,∵AB为⊙O的直径,∴∠ADB=∠BDC=90°,在Rt△BDC中,∵BE=EC,∴DE=EC=BE,∴∠1=∠3,∵BC是⊙O的切线,∴∠3+∠4=90°,∴∠1+∠4=90°,又∵∠2=∠4,∴∠1+∠2=90°,∴DF为⊙O的切线;(2)∵OB=BF,∴OF=2OD,∴∠F=30°,∵∠FBE=90°,∴BE=EF=2,∴DE=BE=2,∴DF=6,∵∠F=30°,∠ODF=90°,∴∠FOD=60°,∵OD=OA,∴∠A=∠ADO=BOD=30°,∴∠A=∠F,∴AD=DF=6.【点评】本题考查了切线的判定和性质,直角三角形的性质,等腰三角形的判定和性质,正确的作出辅助线是解题的关键.四、B卷填空题(共2小题,每小题5分,共10分)23.(5分)当0≤x≤3时,直线y=a与抛物线y=(x﹣1)2﹣3有交点,则a的取值范围是﹣3≤a≤1.【分析】直线y=a与抛物线y=(x﹣1)2﹣3有交点,则可化为一元二次方程组利用根的判别式进行计算.【解答】解:法一:y=a与抛物线y=(x﹣1)2﹣3有交点则有a=(x﹣1)2﹣3,整理得x2﹣2x﹣2﹣a=0∴△=b2﹣4ac=4+4(2+a)≥0解得a≥﹣3,∵0≤x≤3,对称轴x=1∴y=(3﹣1)2﹣3=1∴a≤1法二:由题意可知,∵抛物线的顶点为(1,﹣3),而0≤x≤3∴抛物线y的取值为﹣3≤y≤1∵y=a,则直线y与x轴平行,∴要使直线y=a与抛物线y=(x﹣1)2﹣3有交点,∴抛物线y的取值为﹣3≤y≤1,即为a的取值范围,∴﹣3≤a≤1故答案为:﹣3≤a≤1【点评】此题主要考查二次函数图象的性质及交点的问题,此类问题,通常可化为一元二次方程,利用根的判别式或根与系数的关系进行计算.24.(5分)如图,正方形ABCD中,AB=12,AE=AB,点P在BC上运动(不与B、C 重合),过点P作PQ⊥EP,交CD于点Q,则CQ的最大值为4.【分析】先证明△BPE∽△CQP,得到与CQ有关的比例式,设CQ=y,BP=x,则CP =12﹣x,代入解析式,得到y与x的二次函数式,根据二次函数的性质可求最值.【解答】解:∵∠BEP+∠BPE=90°,∠QPC+∠BPE=90°,∴∠BEP=∠CPQ.又∠B=∠C=90°,∴△BPE∽△CQP.∴.设CQ=y,BP=x,则CP=12﹣x.∴,化简得y=﹣(x2﹣12x),整理得y=﹣(x﹣6)2+4,所以当x=6时,y有最大值为4.故答案为4.【点评】本题主要考查了正方形的性质、相似三角形的判定和性质,以及二次函数最值问题,几何最值用二次函数最值求解考查了树形结合思想.五、解答题(共4小题,共40分)25.(8分)已知二次函数y=x2+x+a的图象与x轴交于A(x1,0)、B(x2,0)两点,且+=1,求a的值.【分析】有韦达定理得x1+x2=﹣1,x1•x2=a,将式子+=1化简代入即可;【解答】解:y=x2+x+a的图象与x轴交于A(x1,0)、B(x2,0)两点,∴x1+x2=﹣1,x1•x2=a,∵+===1,∴a=﹣1+或a=﹣1﹣;【点评】本题考查二次函数的性质;灵活运用完全平方公式,掌握根与系数的关系是解题的关键.26.(10分)根据有理数乘法(除法)法则可知:①若ab>0(或>0),则或;②若ab<0(或<0),则或.根据上述知识,求不等式(x﹣2)(x+3)>0的解集解:原不等式可化为:(1)或(2).由(1)得,x>2,由(2)得,x<﹣3,∴原不等式的解集为:x<﹣3或x>2.请你运用所学知识,结合上述材料解答下列问题:(1)不等式x2﹣2x﹣3<0的解集为﹣1<x<3.(2)求不等式<0的解集(要求写出解答过程)【分析】(1)根据有理数乘法运算法则可得不等式组,仿照有理数乘法运算法则得出两个不等式组,分别求解可得.(2)根据有理数除法运算法则可得不等式组,仿照有理数除法运算法则得出两个不等式组,分别求解可得.【解答】解:(1)原不等式可化为:①或②.由①得,空集,由②得,﹣1<x<3,∴原不等式的解集为:﹣1<x<3,故答案为:﹣1<x<3.(2)由<0知①或②,解不等式组①,得:x>1;解不等式组②,得:x<﹣4;所以不等式<0的解集为x>1或x<﹣4.【点评】本题主要考查解不等式、不等式组的能力,将原不等式转化为两个不等式组是解题的关键.27.(10分)如图,∠ABD=∠BCD=90°,DB平分∠ADC,过点B作BM∥CD交AD于M.连接CM交DB于N.(1)求证:BD2=AD•CD;(2)若CD=6,AD=8,求MN的长.【分析】(1)通过证明△ABD∽△BCD,可得,可得结论;(2)由平行线的性质可证∠MBD=∠BDC,即可证AM=MD=MB=4,由BD2=AD•CD 和勾股定理可求MC的长,通过证明△MNB∽△CND,可得,即可求MN的长.【解答】证明:(1)∵DB平分∠ADC,∴∠ADB=∠CDB,且∠ABD=∠BCD=90°,∴△ABD∽△BCD∴∴BD2=AD•CD(2)∵BM∥CD∴∠MBD=∠BDC∴∠ADB=∠MBD,且∠ABD=90°∴BM=MD,∠MAB=∠MBA∴BM=MD=AM=4∵BD2=AD•CD,且CD=6,AD=8,∴BD2=48,∴BC2=BD2﹣CD2=12∴MC2=MB2+BC2=28∴MC=2∵BM∥CD∴△MNB∽△CND∴,且MC=2∴MN=【点评】本题考查了相似三角形的判定和性质,勾股定理,直角三角形的性质,求MC 的长度是本题的关键.28.(12分)如图,抛物线y=ax2+bx+c的图象过点A(﹣1,0)、B(3,0)、C(0,3).(1)求抛物线的解析式;(2)在抛物线的对称轴上是否存在一点P,使得△P AC的周长最小,若存在,请求出点P的坐标及△P AC的周长;若不存在,请说明理由;(3)在(2)的条件下,在x轴上方的抛物线上是否存在点M(不与C点重合),使得S=S△P AC?若存在,请求出点M的坐标;若不存在,请说明理由.△P AM【分析】(1)由于条件给出抛物线与x轴的交点A(﹣1,0)、B(3,0),故可设交点式y=a(x+1)(x﹣3),把点C代入即求得a的值,减小计算量.(2)由于点A、B关于对称轴:直线x=1对称,故有P A=PB,则C△P AC=AC+PC+P A =AC+PC+PB,所以当C、P、B在同一直线上时,C△P AC=AC+CB最小.利用点A、B、C的坐标求AC、CB的长,求直线BC解析式,把x=1代入即求得点P纵坐标.(3)由S△P AM=S△P AC可得,当两三角形以P A为底时,高相等,即点C和点M到直线P A距离相等.又因为M在x轴上方,故有CM∥P A.由点A、P坐标求直线AP解析式,即得到直线CM解析式.把直线CM解析式与抛物线解析式联立方程组即求得点M坐标.【解答】解:(1)∵抛物线与x轴交于点A(﹣1,0)、B(3,0)∴可设交点式y=a(x+1)(x﹣3)把点C(0,3)代入得:﹣3a=3∴a=﹣1∴y=﹣(x+1)(x﹣3)=﹣x2+2x+3∴抛物线解析式为y=﹣x2+2x+3(2)在抛物线的对称轴上存在一点P,使得△P AC的周长最小.如图1,连接PB、BC∵点P在抛物线对称轴直线x=1上,点A、B关于对称轴对称∴P A=PB∴C△P AC=AC+PC+P A=AC+PC+PB∵当C、P、B在同一直线上时,PC+PB=CB最小∵A(﹣1,0)、B(3,0)、C(0,3)∴AC=,BC=∴C△P AC=AC+CB=最小设直线BC解析式为y=kx+3把点B代入得:3k+3=0,解得:k=﹣1∴直线BC:y=﹣x+3∴y P=﹣1+3=2∴点P(1,2)使△P AC的周长最小,最小值为.(3)存在满足条件的点M,使得S△P AM=S△P AC.∵S△P AM=S△P AC∴当以P A为底时,两三角形等高∴点C和点M到直线P A距离相等∵M在x轴上方∴CM∥P A∵A(﹣1,0),P(1,2),设直线AP解析式为y=px+d∴解得:∴直线AP:y=x+1∴直线CM解析式为:y=x+3∵解得:(即点C),∴点M坐标为(1,4)【点评】本题考查了待定系数法求二次函数解析式、一次函数解析式,轴对称的最短路径问题,勾股定理,平行线间距离处处相等,一元二次方程的解法.其中第(3)题条件给出点M在x轴上方,无需分类讨论,解法较常规而简单.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018年凉山州初中毕业、高中阶段招生统一考试数学试卷A 卷(共100分) 第Ⅰ卷(选择题 共30分)一、选择题(共10个小题,每小题3分,共30分)在每小题给出的四个选项中只有一项是正确的,请把正确选项的字母填涂在答题卡相应的位置.1.比1小2的数是( )A .-1B .-2C .-3D .1 2.下列运算正确的是( )A .3412a a a ⋅= B .632a a a ÷= C .23a a a -=- D .22(2)4a a -=-3.长度单位1纳米910-=米,目前发现一种新型病毒直径为25100纳米,用科学记数法表示该病毒直径是( )A .625.110-⨯米 B .40.25110-⨯米 C .52.5110⨯米 D .52.5110-⨯米4.小红上学要经过三个十字路口,每个路口遇到红、绿灯的机会都相同,小红希望小学时经过每个路口都是绿灯,但实际这样的机会是( ) A .12 B .18 C .38 D .111222++ 5.一个正方体的平面展开图如图所示,将它折成正方体后“建”字对面是( )A .和B .谐C .凉D .山6.一组数据3、2、1、2、2的众数,中位数,方差分别是( ) A .2,1,0.4 B .2,2,0.4 C .3,1,2 D .2,1,0.27.若0ab <,则正比例函数y ax =与反比例函数by x=在同一坐标系中的大致图象可能是( )A .B .C .D . 8.下列图形中既是轴对称图形,又是中心对称图形的是( )A .B .C .D .9.如图,将矩形ABCD 沿对角线BD 折叠,使C 落在'C 处,'BC 交AD 于E ,则下列结论不一定成立的是( )A .'AD BC =B .EBD EDB ∠=∠C .ABECBD ∆∆ D .sin AEABE ED∠=10.如图,O 是ABC ∆的外接圆,已知50ABO ∠=,则ACB ∠的大小为( )A .40B .30C .45D .502018年凉山州初中毕业、高中阶段招生统一考试数学试卷第Ⅱ卷(非选择题 共70分)二、填空题(共4小题,每小题3分,共12分)11.分解因式39a a -=________,221218x x -+= .12.已知'''ABCA B C ∆∆且''':1:2ABC A B C S S ∆∆=,则:''AB A B = .13.有两名学员小林和小明练习射击,第一轮10枪打完后两人打靶的环数如图所示,通常新手的成绩不太稳定,那么根据图中的信息,估计小林和小明两人中新手是 .14.已知一个正数的平方根是32x -和56x +,则这个数是 .三、解答题(共4小题,每小题7分,共28分)15.计算:03.14 3.1412cos 452π⎛⎫-+÷+- ⎪ ⎪⎝⎭120091)(1)-++-. 16.先化简,再选择一个你喜欢的数(要合适哦!)代入求值:2111x x x -⎛⎫+÷ ⎪⎝⎭.17.观察下列多面体,并把下表补充完整.18.如图,ABC ∆在方格纸中.(1)请在方格纸上建立平面直角坐标系,使(2,3)A ,(6,2)C ,并求出B 点坐标;(2)以原点O 为位似中心,相似比为2,在第一象限内将ABC ∆放大,画出放大后的图形'''A B C ∆;(3)计算'''A B C ∆的面积S .四、解答题(共2小题,每小题7分,共14分)19.我国沪深股市交易中,如果买、卖一次股票均需付交易金额的0.5%作费用.张先生以每股5元的价格买入“西昌电力”股票1000股,若他期望获利不低于1000元,问他至少要等到该股票涨到每股多少元时才能卖出?(精确到0.01元)20.已知一个口袋中装有7个只有颜色不同的球,其中3个白球,4个黑球. (1)求从中随机抽取出一个黑球的概率是多少?(2)若往口袋中再放入x 个白球和y 个黑球,从口袋中随机取出一个白球的概率是14,求y 与x 之间的函数关系式.五、解答题(共2小题,每小题8分,共16分)21.如图,要在木里县某林场东西方向的两地之间修一条公路MN ,已知C 点周围200米范围内为原始森林保护区,在MN 上的点A 处测得C 在A 的北偏东45︒方向上,从A 向东走600米到达B 处,测得C 在点B 的北偏西60︒方向上.(1)MN 1.732≈)(2)若修路工程顺利进行,要使修路工程比原计划提前5天完成,需将原定的工作效率提高25%,则原计划完成这项工程需要多少天?22.如图,在平面直角坐标系中,点1O 的坐标为(4,0)-,以点1O 为圆心,8为半径的圆与x 轴交于A ,B 两点,过A 作直线l 与x 轴负方向相交成60的角,且交y 轴于C 点,以点2(13,5)O 为圆心的圆与x 轴相切于点D .(1)求直线l 的解析式; (2)将2O 以每秒1个单位的速度沿x 轴向左平移,当2O 第一次与1O 外切时,求2O 平移的时间.B 卷(共20分)六、填空题(共2小题,每小题3分,共6分)23.若不等式组220x a b x ->⎧⎨->⎩的解集为11x -<<,则2009()a b +=________.24.将ABC ∆绕点B 逆时针旋转到''A BC ∆使A 、B 、'C 在同一直线上,若90BCA ∠=︒,30BAC ∠=︒,4AB cm =,则图中阴影部分面积为________2cm .七、解答题(共2小题,25题4分,26题10分,共14分)25.我们常用的数是十进制数,如3214657410610510710=⨯+⨯+⨯+⨯,数要用10个数码(又叫数字):0、1、2、3、4、5、6、7、8、9,在电子计算机中用的二进制,只要两个数码:0和1,如二进制中210110121202=⨯+⨯+⨯等于十进制的数6,543110*********=⨯+⨯+⨯210120212+⨯+⨯+⨯等于十进制的数53.那么二进制中的数101011等于十进制中的哪个数?26.如图,已知抛物线2y x bx c =++经过(1,0)A ,(0,2)B 两点,顶点为D .(1)求抛物线的解析式;(2)将OAB ∆绕点A 顺时针旋转90︒后,点B 落在点C 的位置,将抛物线沿y 轴平移后经过点C ,求平移后所得图象的函数关系式;(3)设(2)中平移后,所得抛物线与y 轴的交点为1B ,顶点为1D ,若点N 在平移后的抛物线上,且满足1NBB ∆的面积是1NDD ∆面积的2倍,求点N 的坐标.2018年凉山州初中毕业、高中阶段招生统一考试数学参考答案 A 卷(共100分)一、选择题1-5: ACDBD 6-10: BBDCA二、填空题11. (3)(3)a a a +- 22(3)x - 12. 1:小林 14.494三、解答题15.计算:原式(3.14) 3.141π=--+÷2(1)2-⨯+-13.14 3.14121π=-+--11π=-π=.16.解:2111(1)(1)1x x x x x x x x -+-+⎛⎫+÷=÷⎪⎝⎭1(1)(1)x x x x x +=⨯-+ 11x =-. 取2x =时,原式1121==-. 17.18.(1)画出原点O ,x 轴、y 轴.(2,1)B .(2)画出图形'''A B C ∆.(3)148162S =⨯⨯=. 四、解答题19.解:设至少涨到每股x 元时才能卖出.根据题意得1000(50001000)0.5%x x -+⨯50001000≥+, 解这个不等式得1205199x ≥,即 6.06x ≥. 答:至少涨到每股6.06元时才能卖出. 20.解:(1)取出一个黑球的概率44347P ==+. (2)∵取出一个白球的概率37xP x y+=++,∴3174x x y +=++,∴1247x x y +=++,∴y 与x 的函数关系式为:35y x =+.五、解答题21.(1)理由如下:如图,过C 作CH AB ⊥于H ,设CH x =, 由已知有45EAC ∠=︒,60FBC ∠=︒, 则45CAH ∠=︒,30CBA ∠=︒, 在Rt ACH ∆中,AH CH x ==, 在Rt HBC ∆中,tan CHHBC HB∠=,∴tan 303CH HB ===︒,∵AH HB AB +=,∴600x =解得220x =≈(米)200>(米).∴MN 不会穿过森林保护区.(2)解:设原计划完成这项工程需要y 天,则实际完成工程需要(5)y -天. 根据题意得:11(125%)5y y=+⨯-, 解得:25y =,经检验知:25y =是原方程的根, 答:原计划完成这项工程需要25天. 22.(1)解:由题意得4812OA =-+=, ∴A 点坐标为(12,0)-.∵在Rt AOC ∆中,60OAC ∠=︒,tan 12tan60OC OA OAC =∠=⨯︒=∴C点的坐标为(0,-. 设直线l 的解析式为y kx b =+, 由l 过A 、C 两点,得012b k b⎧-=⎪⎨=-+⎪⎩,解得b k ⎧=-⎪⎨=⎪⎩∴直线l的解析式为:y =-(2)如图,设2O 平移t 秒后到3O 处与1O 第一次外切于点P ,3O 与x 轴相切于1D 点,连接13O O ,31O D .则13138513OO O P PO =+=+=, ∵31O D x ⊥轴,∴315O D =,在131Rt OO D ∆中,1112O D ===.∵1141317O D OO OD =+=+=, ∴111117125D D O D O D =-=-=, ∴551t ==(秒), ∴2O 平移的时间为5秒.B 卷(共20分)六、填空题23. -1 24. 4π七、解答题25.解:543101011120212=⨯+⨯+⨯21021212+⨯+⨯+⨯3208021=+++++43=.26.解: (1)已知抛物线2y x bx c =++经过(1,0)A ,(0,2)B , ∴01200b c c =++⎧⎨=++⎩,解得32b c =-⎧⎨=⎩,∴所求抛物线的解析式为232y x x =-+. (2)∵(1,0)A ,(0,2)B ,∴1OA =,2OB =, 可得旋转后C 点的坐标为(3,1).当3x =时,由232y x x =-+得2y =,可知抛物线232y x x =-+过点(3,2).∴将原抛物线沿y 轴向下平移1个单位后过点C . ∴平移后的抛物线解析式为:231y x x =-+.(3)∵点N 在231y x x =-+上,可设N 点坐标为2000(,31)x x x -+,将231y x x =-+配方得23524y x ⎛⎫=-- ⎪⎝⎭,∴其对称轴为32x =.①当0302x <<时,如图①, ∵112NBB NDD S S ∆∆=, ∴00113121222x x ⎛⎫⨯⨯=⨯⨯⨯- ⎪⎝⎭, ∵01x =,此时200311x x -+=-, ∴N 点的坐标为(1,1)-.②当032x >时,如图②, 同理可得0011312222x x ⎛⎫⨯⨯=⨯⨯- ⎪⎝⎭, ∴03x =,此时200311x x -+=, ∴N 点的坐标为(3,1).综上,点N 的坐标为(1,1)-或(3,1).。