ansys后处理该看的那些应力

合集下载

ansys中beam单元应力结果

ansys中beam单元应力结果

ansys中beam单元应力结果ANSYS中的Beam单元(BEAM3或BEAM4)的应力结果可以通过查看在节点上的S1、S2和S3应力值来获得。

这些应力值表示相对于单元坐标系的正常应力,其中S1是沿单元长度方向的应力,S2是沿单元的切应力,S3是沿垂直于单元断面的应力。

要查看Beam单元的应力结果,请按照以下步骤操作:1. 在ANSYS中加载您的模型,并选择要查看应力结果的Beam单元。

2. 打开"Solution"菜单,并选择"Analysis Type"下的"Static Structural"。

3. 选择"Insert"菜单下的"Results",然后选择"Engineering Data"。

4. 在Engineering Data窗口中,找到"Beam Stresses"项,并展开它。

5. 选择你要查看的Beam单元,然后单击"OK"。

6. 在主窗口中,选择"General Postproc"界面。

7. 单击"List",然后选择"Nodal Solution"。

8. 在"Nodal Solution"窗口中,选择"Beam Stress"项,并单击"OK"。

9. 现在,您可以按节点编号或坐标对应的应力结果进行查看。

S1、S2和S3的值将以相应的单位(例如MPa)显示。

请注意,Beam单元的应力结果是基于Beam单元的假设和约束,因此可能不是准确的在复杂几何形状和应力条件下。

在解决复杂问题时,可能需要使用其他类型的单元来更准确地评估应力分布。

ANSYS基础教程——应力分析报告

ANSYS基础教程——应力分析报告
–许多软件包,包括ANSYS在, 允许读写IGES文件。
·输入IGES 文件到ANSYS中:
– Utility Menu > File > Import > IGES...
◆在弹出的对话框中,选择No defeaturing *(缺省值) ,按下OK (默认其他选项)。
◆在第二个对话框中选择想要的文件并点击OK.
ANSYS基础教程——应力分析
关键字:ANSYS应力分析ANSYS教程
信息化调查找茬投稿收藏评论好文推荐打印社区分享
应力分析是用来描述包括应力和应变在的结果量分析的通用术语,也就是结构分析,应力分析包括如下几个类型:静态分析瞬态动力分析、模态分析谱分析、谐响应分析显示动力学,本文主要是以线性静态分析为例来描述分析,主要容有: 分析步骤、几何建模、 网格划分。
·前处理
–创建或输入几何模型
–对几何模型划分网格
·求解
–施加载荷
–求解
·后处理
–结果评价
–检查结果的正确性
·注意!ANSYS 的主菜单也是按照前处理、求解、后处理来组织的;
·前处理器(在ANSYS中称为PREP7)提供了对程序的主要输入;
·前处理的主要功能是生成有限元模型,主要包括节点、单元和材料属性等的定义。也可以使用前处理器PREP7 施加载荷。
实常数
·实常数用于描述那些由单元几何模型不能完全确定的几何形状。例如:
–梁单元是由连接两个节点的线来定义的,这只定义了梁的长度。要指明梁的横截面属性,如面积和惯性矩,就要用到实常数。
–壳单元是由四面体或四边形来定义的,这只定义了壳的表面积,要指明壳的厚度,必须用实常数。
应力分析概述
·应力分析是用来描述包括应力和应变在的结果量分析的通用术语,也就是结构分析。

ANSYS压力容器应力分析中

ANSYS压力容器应力分析中

ANSYS压力容器应力分析中,列表应力名称问题1.** MEMBRANE **代表 PL?2.** BENDING **代表 PB?3.** MEMBRANE PLUS BENDING **代表 PL+PB?4.** PEAK **代表 F?5.** TOTAL **代表?注:(因为 JB4732中规定,判定各种应力许用极限的参数有一次总体薄膜应力强度 SⅠ(由 Pm 算得);一次局部薄膜应力强度 SⅡ(由 PL 算得);一次薄膜加一次弯曲应力强度 SⅢ(由 PL+PB 算得);一次加二次应力强度 SⅣ( 由 PL+PB+Q 算得 );峰值应力强度 SⅤ( 由 PL+PB+Q+F 算得 )Pm 是一次总体薄膜应力,PL 是一次局部薄膜应力;PB 是一次弯曲应力;Q是二次应力;F是峰值应力)Pm 是一次总体薄膜应力,PL 是一次局部薄膜应力;PB 是一次弯曲应力;Q是二次应力;F是峰值应力)1.** MEMBRANE **代表 PL?2.** BENDING **代表 PB?3.** MEMBRANE PLUS BENDING **代表 PL+PB?4.** PEAK **代表 F?5.** TOTAL **代表?ANSYS 后处理应力线性化得到的结果中:**MEMBRANE ** 代表薄膜应力,可能是一次总体薄膜应力也可能是一次局部薄膜应力。

**BENDING ** 代表弯曲应力,可能是一次弯曲应力也可能属于二次应力。

** MEMBRANE PLUS BENDING ** 根据前 2 者可能是一次薄膜 + 一次弯曲( 1.5kSm ),也可能是一次 + 二次应力( 3 kSm )ANSYS 只能把应力根据平均应力、线性化应力和非线性化应力来区分薄膜应力弯曲应力和峰应力,而不能分出总体薄膜应力和局部薄膜应力,一次应力还是二次应力。

这需要你根据JB4732和ASME VIII-2的标准自己去判断** MEMBRANE **,** BENDING **,** MEMBRANE PLUS BENDING **的类别。

Ansys后处理之Stress

Ansys后处理之Stress

Ansys后处理之Stress(应力)SX:X-Component of stress;SY:Y-Component of stress;SZ:Z-Component of stress,X,Y,Z轴方向应力SXY:XY Shear stress;SYZ:YZ Shear stress;,SXZ:XZ Shear stress,X,Y,Z三个方向的剪应力。

S1:1st Principal stress;S2:2st Principal stress;,S3:3st Principal stress第一、二、三主应力。

区分:首先把一个微元看成是一个正方体,那么假设三个主应力分别是F1 F2 F3,那么如果三个力中哪个力最大,就是F1,也是最大主应力,也叫第一主应力,第二大的叫第二主应力,最小的叫第三主应力,因此,是根据大小来定的[引用SINT:stress intensity(应力强度),是由第三强度理论得到的当量应力,其值为第一主应力减去第三主应力。

SEVQ:Von Mises是一种屈服准则,屈服准则的值我们通常叫等效应力。

Ansys后处理中'Von Mises Stress'我们习惯称Mises 等效应力,它遵循材料力学第四强度理论(形状改变比能理论)。

我们分析后查看应力,目的就是在于确定该结构的承载能力是否足够。

那么承载能力是如何定义的呢?比如混凝土、钢材,应该就是用万能压力机进行的单轴破坏试验吧。

也就是说,我们在ANSYS 计算中得到的应力,总是要和单轴破坏试验得到的结果进行比对的。

所以,当有限元模型本身是一维或二维结构时,通过查看某一个方向,如plnsol,s,x等,是有意义的。

但三维实体结构中,应力分布要复杂得多,不能仅用单一方向上的应力来代表结构此处的确切应力值——于是就出现了强度理论学说。

材料力学中的四种强度理论1)、第一强度理论:最大拉应力强度理论该理论认为,材料破坏的主要因素是最大拉应力,无论何种状态,只要最大拉应力达到材料的单向拉伸断裂时的最大拉应力,则材料断裂。

ANSYS后处理中应力查看总结

ANSYS后处理中应力查看总结

ANSYS后处理中应力查看总结-------------------------------------------------------------------------------------------------------SX:X-Component of stress;SY:Y-Component of stress;SZ:Z-Component of stress,X,Y,Z轴方向应力SXY:XY Shear stress;SYZ:YZ Shear stress;,SXZ:XZ Shear stress,X,Y,Z三个方向的剪应力。

S1:1st Principal stress;S2:2st Principal stress;,S3:3st Principal stress 第一、二、三主应力。

区分:首先把一个微元看成是一个正方体,那么假设三个主应力分别是F1 F2 F3,那么如果三个力中哪个力最大,就是F1,也是最大主应力,也叫第一主应力,第二大的叫第二主应力,最小的叫第三主应力,因此,是根据大小来定的。

SINT:stress intensity(应力强度),是由第三强度理论得到的当量应力,其值为第一主应力减去第三主应力。

SEVQ:Von Mises是一种屈服准则,屈服准则的值我们通常叫等效应力。

Ansys后处理中'Von Mises Stress'我们习惯称Mises等效应力,它遵循材料力学第四强度理论(形状改变比能理论)。

我们分析后查看应力,目的就是在于确定该结构的承载能力是否足够。

那么承载能力是如何定义的呢?比如混凝土、钢材,应该就是用万能压力机进行的单轴破坏试验吧。

也就是说,我们在ANSYS计算中得到的应力,总是要和单轴破坏试验得到的结果进行比对的。

所以,当有限元模型本身是一维或二维结构时,通过查看某一个方向,如plnsol,s,x等,是有意义的。

但三维实体结构中,应力分布要复杂得多,不能仅用单一方向上的应力来代表结构此处的确切应力值——于是就出现了强度理论学说。

如何在ANSYS中查看内部的应力分布(工作平面切片法)

如何在ANSYS中查看内部的应力分布(工作平面切片法)

如何在ANSYS中查看内部的应力分布(工作平面切片法)
该方法是以工作平面作为查看内部应力分布的切面,用工作平面切出一个切面来,查看该面上的结果。

首先,将工作进行平面转动和移动,到想要切割的位置上;
选择PlotCtrls菜单,选Style,选Hidden Line Option,在Type of Plot后选Capped hidden,在Cutting plane is后选Working plane确定后,就会以工作平面切割结构,将被切的部分移除,显示切平面上的结果。

命令流为
!按切平面现实控制程序
WPSTYL,DEFA !将工作平面置于初始位置
WPROTA,0,0,90 !旋转工作平面,具体参数参考帮助或相关资料WPOFFS,,,72 !平移工作平面,具体参数参考帮助或相关资料
/TYPE,1,5 !对应Type of Plot操作
/CPLANE,1 !对应Cutting plane is操作
这是自己做的一个楼盖结构的应力云图:
执行完该命令后,结果如下:
可以看到用工作平面切片后第二跨主梁截面上的应力结果。

ANSYS基础教程——应力分析

ANSYS基础教程——应力分析

ANSYS基础教程——应力分析关键字:ANSYS应力分析ANSYS教程信息化调查找茬投稿收藏评论好文推荐打印社区分享应力分析是用来描述包括应力和应变在内的结果量分析的通用术语,也就是结构分析,应力分析包括如下几个类型:静态分析瞬态动力分析、模态分析谱分析、谐响应分析显示动力学,本文主要是以线性静态分析为例来描述分析,主要内容有:分析步骤、几何建模、网格划分。

应力分析概述·应力分析是用来描述包括应力和应变在内的结果量分析的通用术语,也就是结构分析。

ANSYS 的应力分析包括如下几个类型:●静态分析●瞬态动力分析●模态分析●谱分析●谐响应分析●显示动力学本文以一个线性静态分析为例来描述分析步骤,只要掌握了这个分析步骤,很快就会作其他分析。

A. 分析步骤每个分析包含三个主要步骤:·前处理–创建或输入几何模型–对几何模型划分网格·求解–施加载荷–求解·后处理–结果评价–检查结果的正确性·注意!ANSYS 的主菜单也是按照前处理、求解、后处理来组织的;·前处理器(在ANSYS中称为PREP7)提供了对程序的主要输入;·前处理的主要功能是生成有限元模型,主要包括节点、单元和材料属性等的定义。

也可以使用前处理器PREP7 施加载荷。

·通常先定义分析对象的几何模型。

·典型方法是用实体模型模拟几何模型。

–以CAD-类型的数学描述定义结构的几何模型。

–可能是实体或表面,这取决于分析对象的模型。

B. 几何模型·典型的实体模型是由体、面、线和关键点组成的。

–体由面围成,用来描述实体物体。

–面由线围成,用来描述物体的表面或者块、壳等。

–线由关键点组成,用来描述物体的边。

–关键点是三维空间的位置,用来描述物体的顶点。

·在实体模型间有一个内在层次关系,关键点是实体的基础,线由点生成,面由线生成,体由面生成。

·这个层次的顺序与模型怎样建立无关。

ansys中的应力与屈服准则

ansys中的应力与屈服准则

ansys后处理该看的那些应力应力材料发生形变时内部产生了大小相等但方向相反的反作用力抵抗外力.把分布内力在一点的集度称为应力(Stress),应力与微面积的乘积即微内力.或物体由于外因(受力、湿度变化等)而变形时,在物体内各部分之间产生相互作用的内力,以抵抗这种外因的作用,并力图使物体从变形后的位置回复到变形前的位置。

我们分析后查看应力,目的就是在于确定该结构的承载能力是否足够。

那么承载能力是如何定义的呢?比如混凝土、钢材,应该就是用万能压力机进行的单轴破坏试验吧。

也就是说,我们在ANSYS计算中得到的应力,总是要和单轴破坏试验得到的结果进行比对的。

所以,当有限元模型本身是一维或二维结构时,通过查看某一个方向,如plnsol,s,x等,是有意义的。

但三维实体结构中,应力分布要复杂得多,不能仅用单一方向上的应力来代表结构此处的确切应力值——于是就出现了强度理论学说。

回顾–材料力学中的四种强度理论1、第一强度理论:最大拉应力强度理论该理论认为,材料破坏的主要因素是最大拉应力,无论何种状态,只要最大拉应力达到材料的单向拉伸断裂时的最大拉应力,则材料断裂。

其中,某点的最大拉应力数值,就是其第一主应力数值。

2、第二强度理论:最大拉应变理论该理论认为,引起材料破坏的主要因素,是最大拉应变。

无论何种状态,只要最大拉应变达到材料拉伸断裂时的最大应变值,则材料断裂。

此时,形式上将主应力的某一综合值与材料单向拉伸轴向拉压许用应力比较,这个综合值就是等效应力——equivalent stress。

相关公式:3、第三强度理论:最大切应力理论该理论认为,引起材料屈服的主要因素是最大切应力,不论何种状态,只要最大切应力达到材料单向拉伸屈服时的最大切应力,则认为材料屈服。

4、第四强度理论:畸变能理论该理论认为,弹性体在外力作用下产生变形,荷载做功、弹性体变形储能,称之为应变能(分为畸变能和体积的改变能)。

引起材料屈服的主要因素是畸变能密度,无论何种状态,只要畸变能密度达到材料单向拉伸屈服时的畸变能密度,材料就屈服。

ansys后处理各种应力解释

ansys后处理各种应力解释

ANSY S后处理中应力查瞧总结--——---———--————--——-—-—------—--———-———-—--———-———--—-——---—------———-——---—-————-———---———-——---——-—-SX:X-ponentof stress;SY:Y-ponen tof stress;SZ:Z-ponent ofstress,X,Y,Z轴方向应力SXY:XY Shearstress;SYZ:YZ Shears tress;,SXZ:XZ Shear stress,X,Y,Z 三个方向得剪应力。

S1:1st Principal stress;S2:2st Princ ipal stress;,S3:3stPrincipal stress第一、二、三主应力。

区分:首先把一个微元瞧成就是一个正方体,那么假设三个主应力分别就是F1 F2 F3,那么如果三个力中哪个力最大,就就是F1,也就是最大主应力,也叫第一主应力,第二大得叫第二主应力,最小得叫第三主应力,因此,就是根据大小来定得.SINT:stress intensity(应力强度),就是由第三强度理论得到得当量应力,其值为第一主应力减去第三主应力。

SEVQ:Von Mises就是一种屈服准则,屈服准则得值我们通常叫等效应力。

Ansys后处理中'Von Mises Stress'我们习惯称Mises等效应力,它遵循材料力学第四强度理论(形状改变比能理论).我们分析后查瞧应力,目得就就是在于确定该结构得承载能力就是否足够。

那么承载能力就是如何定义得呢?比如混凝土、钢材,应该就就是用万能压力机进行得单轴破坏试验吧。

也就就是说,我们在ANSYS计算中得到得应力,总就是要与单轴破坏试验得到得结果进行比对得。

所以,当有限元模型本身就是一维或二维结构时,通过查瞧某一个方向,如plnsol,s,x等,就是有意义得。

ansys梁单元残余应力

ansys梁单元残余应力

ANSYS梁单元残余应力
在ANSYS中,可以使用梁单元(BEAM)来分析梁结构的应力情况,包括残余应力。

梁单元是一种特殊类型的有限元单元,适用于分析细
长结构,如梁、柱等。

要分析梁单元的残余应力,可以按照以下步骤进行操作:
1. 创建梁单元:在ANSYS中,可以使用梁单元命令或者通过界
面选择梁单元类型来创建梁单元。

例如,使用梁单元命令BEAM188可
以创建混凝土梁单元。

2. 定义梁单元的几何和材料属性:在命令行或者界面中输入相
关指令,定义梁单元的几何尺寸、材料属性、截面特性等。

3. 添加约束条件:根据实际情况,在梁单元的节点上添加适当
的约束条件,如固定边界条件、荷载等。

4. 进行静态分析:在ANSYS中,选择适当的静态分析命令或者
界面选项,进行梁单元的应力分析。

5. 查看结果:完成分析后,可以使用ANSYS的后处理工具查看
梁单元的残余应力分布。

可以选择显示应力云图、应力剖面图或者某
个位置的残余应力数值等。

需要注意的是,在进行梁单元的应力分析时,应根据具体情况选
择合适的材料力学模型和加载条件,并对边界约束条件进行正确设置,以获得准确的残余应力结果。

ANSYS后处理(结果查看)

ANSYS后处理(结果查看)

ANSYS后处理(结果查看)
一、显示某个时间点的温度云图
1、General Postproc →Read Result →By Time/Freq
2、在跳出的窗口中输入时间点,点击OK按钮
3、然后点Plot Results按下图操作
3、然后点击plot →Replot即可显示该时刻的云图
二、提取某个节点的数值
1、首先通过下列命令,选择部分单元
nsel,s,loc,x,0,0.025
esln,all
然后读取所需节点的编号。

2、点击时间历程后处理器TimeHist postproc弹出如箭头所指对话框。

点击图对话框左上角的绿色增加按钮
/POST1
set,last !定义数据集从结果文件中读出,last表示读取最后的数据集plnsol,s,eqv !以连续的轮廓线形式显示结果,S表示应力,EQV表示等效应力
查看某个截面的云图
!-----------------选取节点结果
/post1
!seltol,1.0e-10
set,,,,,2.5
!nsel,s,loc,y,0.1,0.1
nsel,s,loc,x,0.02
/page,99999,132,99999,240
!-------------------显示某个截面
wprota,,,90
wpoffs,,,0.02
/CPLANE,1 !指定截面为WP
/TYPE,1,5 !结果显示方式选项
工作平面移回全局坐标原点
WPCSYS,-1
nsel,s,loc,x,0,0.025
esln,,1,ACTIVE。

ansys读取 某点应力和应力集中系数的问题

ansys读取 某点应力和应力集中系数的问题

ansys读取某点应力和应力集中系数的问题2009-10-13 10:20提问者:我浩然哦|浏览次数:3086次热应力计算结束后后处理我想查看模型某点的热应力,该怎么操作?还有应力集中部位有多个但我想查看其中某个位置的应力集中系数可以查看吗?怎么操作?我来帮他解答精彩回答2009-10-13 22:33GUI操作:在General Postproc——Query Results——Subgrid Solu,选择你想显示的节点。

命令流:1. 最简单的办法是使用NSORT,打印出结果,可以通过控制使其输出到文件2. 使用apdl能复杂一点,下面是以前经常用的一段命令流,参考着修改一下吧*CREATE,GET_node_inf,mac,*GET,Nnod,NODE,0,COUNT !获取所选择的节点总数*DIM,S_Xyz,ARRAY,NNOD,5 !定义1个数组存放数据*GET,Nd,NODE,0,NUM,MIN !获取最小的节点编号*DO,I,1,Nnod,1S_Xyz(I,1)=Nd !将节点列表放数组第1列S_Xyz(I,2)=NX(Nd) !节点的X坐标放数组第2列S_Xyz(I,3)=NY(Nd) !节点的Y坐标放数组第3列S_Xyz(I,4)=NZ(Nd) !节点的Z坐标放数组第4列!*GET,S_Xyz(I,5),NODE,ND,S,EQV !节点的von mises值放数组第5列*GET,S_Xyz(I,5),NODE,ND,U,SUM !节点的总变形值值放数组第5列Nd=NDNEXT(Nd) !读出下一个节点编号*ENDDO*END*CREATE,OUT_node_inf,mac,*CFOPEN,node_info,txt,,*VWRITE,S_Xyz(1,1),S_Xyz(1,2),S_Xyz(1,3),S_Xyz(1,4),S_Xyz(1,5)(F10.0,3F15.4,E15.5)*CFCLOS*ENDGET_node_infOUT_node_inf/delete,GET_node_inf,mac/delete,OUT_node_inf,mac另附1.先对节点的值进行SORT,在提取最大的值即可。

ansys workbench中的7种应力结果如何理解

ansys workbench中的7种应力结果如何理解

ANSYS Workbench中的7种应力结果如何理解?这里面有七种查看应力的方式。

那么这些方式分别是什么含义呢?由于应力是我们做结构力学分析时最为关注的对象,因此弄清楚ANSYS所给的应力究竟是什么意思也就变得非常重要。

这七种应力的含义及相互关系如下图。

从上图中可以看到,在计算出积分点的应力以后,其它应力都是在其基础上推算出来的。

下面说明每一个选项的推算过程。

(1)unveraged---------没有平均化的应力。

此时在单元内部,基于积分点的应力根据形函数推算该单元几个节点的应力。

因为它是在积分点应力的基础上做的第一次运算,所以相对准确。

此时如果一个节点周围毗邻几个单元,那么这几个单元在同一点处会有不同的应力值。

(2)areraged--------节点的平均化应力。

在对所有单元进行计算,得到其节点的应力后,此时对于共享节点,对该点的几个应力进行平均,得到该点的应力。

(3)nodal difference------节点应力差的最大值。

对于共享节点,还没有进行应力平均时,它有几个应力,对这几个应力排序,得到最大值,最小值;用最大值减去最小值,得到的值称为nodal difference.(4)nodal fraction------对于一个共享节点,用(3)除以(2),得到一个比率,就是nodal fraction.所以,(2)(3)(4)都是对于共享节点,在不同的单元间进行计算的。

(5)elmemntal difference-----在一个单元内部操作。

找到单元内部节点应力的最大值,最小值,用最大值减去最小值,得到一个值,称为elemental difference.(6)elemental mean------在一个单元内部操作,在节点应力平均后,对于单元内所有的节点应力,再一次平均,得到单元内部的elemental mean.(7)elemental fraction------在一个单元内部,用(5)除以(6),得到elemental fraction.可见,(5)(6)(7)都是针对某个特定的单元所做的计算。

ansys 平均应力和应力幅

ansys 平均应力和应力幅

ansys 平均应力和应力幅
Ansys 是一款常用的有限元分析软件,其中平均应力和应力幅是两个重要的应力指标。

平均应力是指在一定时间段内应力的平均值,它可以反映结构在长期载荷下的应力水平。

应力幅是指应力的最大值和最小值之间的差值,它可以反映结构在短时间内的应力波动情况。

在Ansys 中,可以通过后处理功能来计算平均应力和应力幅。

这些指标可以帮助工程师评估结构的强度和疲劳寿命,并为优化设计提供依据。

需要注意的是,平均应力和应力幅的计算需要根据具体的应用场景和材料属性来确定,以确保结果的准确性和可靠性。

同时,在进行有限元分析时,需要正确设置边界条件和载荷,以确保计算结果的准确性。

ansys后处理该看的那些应力

ansys后处理该看的那些应力

ansys后处理该看的那些应力昨天看文献和论坛(有一些是老帖),发现一个问题,貌似有一些朋友在用ANSYS 进行实体分析的时候,只是提供了各种各样的应力云图,有时说一说XYZ方向的应力,有时说等效应力、von misses应力……貌似语言说明部分也不是很明确。

这其实就是基础的材料力学问题,我来说说我的总结:什么时候可以查看某方向的应力应力的定义,没必要再重复了。

我们分析后查看应力,目的就是在于确定该结构的承载能力是否足够。

那么承载能力是如何定义的呢?比如混凝土、钢材,应该就是用万能压力机进行的单轴破坏试验吧。

也就是说,我们在ANSYS计算中得到的应力,总是要和单轴破坏试验得到的结果进行比对的。

所以,当有限元模型本身是一维或二维结构时,通过查看某一个方向,如plnsol,s,x等,是有意义的。

但三维实体结构中,应力分布要复杂得多,不能仅用单一方向上的应力来代表结构此处的确切应力值--于是就出现了强度理论学说。

回顾-材料力学中的四种强度理论1、第一强度理论:最大拉应力强度理论该理论认为,材料破坏的主要因素是最大拉应力,无论何种状态,只要最大拉应力达到材料的单向拉伸断裂时的最大拉应力,则材料断裂。

其中,某点的最大拉应力数值,就是其第一主应力数值。

2、第二强度理论:最大拉应变理论该理论认为,引起材料破坏的主要因素,是最大拉应变。

无论何种状态,只要最大拉应变达到材料拉伸断裂时的最大应变值,则材料断裂。

此时,形式上将主应力的某一综合值与材料单向拉伸轴向拉压许用应力比较,这个综合值就是等效应力--equivalent stress。

3、第三强度理论:最大切应力理论该理论认为,引起材料屈服的主要因素是最大切应力,不论何种状态,只要最大切应力达到材料单向拉伸屈服时的最大切应力,则认为材料屈服。

4、第四强度理论:畸变能理论该理论认为,弹性体在外力作用下产生变形,荷载做功、弹性体变形储能,称之为应变能(分为畸变能和体积的改变能)。

ansysworkbench后处理中各种应力结果的应用意义

ansysworkbench后处理中各种应力结果的应用意义

ANSYS WORKBENCH后处理中各种应力结果的应用意义(2022-11-28 18:40:34)转载▼标签:分类:CAEansys上篇说明了各种应力结果的含义,这里再看一个实际的例子,并考察ANSYS WORKBENCH在后处理中的各种云图显示效果。

几何模型如以下图在左边和下边施加无摩擦支撑,右边施加程度向右的分布力系,载荷集度为1MPa.划分网格后得到的有限元模型如下如今考察X方向正应力的各种结果。

〔1〕未均匀化的节点应力解【评】在每一个单元内部,先得到积分点的应力后,外推得到各个节点处的应力。

观察尖角处可以看到,在节点的四周颜色并不一样,这意味着在同一个节点处会有几个应力出现。

所以每个点的应力呈现为多值性。

这里的应力是最初计算出来的应力,相比照拟准确。

〔2〕均匀化后的节点应力解【评】均匀化后,我们可以看到,每个节点处只有一个颜色,此时一个节点只有一个应力值。

〔3〕节点的最大应力差【评】该值总是正数,因为是用节点应力的最大值减去最小值得到的。

我们可以发现,在尖角处,应力差很大,这意味着,从不同的单元在递推该节点的应力时,值相差很远。

显然,该图是很有用处的,它反映了应力梯度在哪个节点上最大,这正是应力集中发生的地方。

〔4〕节点的应力分数【评】我们可以看到,应力分数有正有负,这是因为它是由〔3〕/(2)后得到的。

虽然〔3〕总是正数,但是〔2〕那么有正有负。

该值是一种相对误差的概念,意味着当节点获得平均应力后,其误差是多大。

该值的绝对值越大,那么意味着平均化导致的误差越大。

〔5〕单元内部节点的最大应力差【评】它意味着单元内部的应力梯度。

该值越大,意味着该单元自身内部应力变化很大,这也意味着该单元应该进一步细分才能得到更正确的结果。

〔6〕单元内部节点的平均应力〔7〕单元内部节点的应力分数【评】它同样是一个相对误差的概念。

意味着单元获得平均值后的误差。

该值的绝对值越大,同样意味着单元值平均化后导致的单元应力误差越大。

ansys梁单元弯曲应力

ansys梁单元弯曲应力

ansys梁单元弯曲应力
在ANSYS中,梁单元是用来模拟梁结构的元素。

当梁受到弯曲
力作用时,会产生弯曲应力。

弯曲应力是指梁在受到弯矩作用时产
生的应力分布。

ANSYS可以用来分析梁单元的弯曲应力,下面我会
从几个方面来介绍。

首先,要分析梁单元的弯曲应力,需要建立合适的有限元模型。

在建立模型时,需要考虑梁的几何形状、材料属性、约束条件和加
载情况。

在ANSYS中,可以通过几何建模模块创建梁的几何形状,
然后定义材料属性和加载条件。

其次,一旦建立了模型,就可以进行弯曲应力分析。

ANSYS提
供了多种分析方法,如静力分析、模态分析和频率响应分析等。


对梁单元的弯曲应力分析,通常会选择静力分析。

在静力分析中,
可以对梁单元施加弯矩载荷,然后通过分析结果来获取梁单元的弯
曲应力分布。

另外,在进行弯曲应力分析时,需要注意梁单元的边界条件和
网格划分。

合理的边界条件可以更好地模拟实际工程情况,而合适
的网格划分可以保证分析结果的准确性。

最后,分析完成后,可以通过ANSYS的后处理模块来查看梁单元的弯曲应力分布。

后处理模块提供了丰富的可视化工具,可以直观地展示梁单元在弯曲载荷下的应力分布情况,帮助工程师更好地理解梁的受力情况。

总的来说,ANSYS可以通过建立合适的模型,进行静力分析,并利用后处理模块来分析和展示梁单元的弯曲应力分布情况。

这样的分析结果可以为工程设计和优化提供重要参考,帮助工程师更好地理解和改进梁结构的设计。

ansys各应力-推荐下载

ansys各应力-推荐下载

SX:X-Component ofstress;SY:Y-Component of stress;SZ:Z-Component ofstress--X,Y,Z轴方向应力。

SXY:XY Shear stress;SYZ:YZ Shearstress;SXZ:XZ Shear stress--X,Y,Z三个方向的剪应力。

S1:1stPrincipal stress;S2:2st Principal stress;,S3:3st Principalstress--第一、二、三主应力。

区分:首先把一个微元看成是一个正方体,那么假设三个主应力分别是F1F2F3,那么如果三个力中哪个力最大,就是F1,也是最大主应力,也叫第一主应力,第二大的叫第二主应力,最小的叫第三主应力,因此,是根据大小来定的。

SINT:stress intensity--应力强度,是由第三强度理论得到的当量应力,其值为第一主应力减去第三主应力。

SEVQ:Von Mises是一种屈服准则,屈服准则的值我们通常叫等效应力。

Ansys后处理中'VonMises Stress'我们习惯称Mises等效应力,它遵循材料力学第四强度理论(形状改变比能理论)。

我们分析后查看应力,目的就是在于确定该结构的承载能力是否足够。

那么承载能力是如何定义的呢?比如混凝土、钢材,应该就是用万能压力机进行的单轴破坏试验吧。

也就是说,我们在ANSYS计算中得到的应力,总是要和单轴破坏试验得到的结果进行比对的。

所以,当有限元模型本身是一维或二维结构时,通过查看某一个方向,如plnsol,s,x等,是有意义的。

但三维实体结构中,应力分布要复杂得多,不能仅用单一方向上的应力来代表结构此处的确切应力值——于是就出现了强度理论学说。

材料力学中的四种强度理论1.第一强度理论:最大拉应力强度理论该理论认为,材料破坏的主要因素是最大拉应力,无论何种状态,只要最大拉应力达到材料的单向拉伸断裂时的最大拉应力,则材料断裂。

ANSYS中von?mises?stress含义(转载)

ANSYS中von?mises?stress含义(转载)

ANSYS中von?mises?stress含义(转载)后处理节点应力中x,y,z方向应力和第一、二、三主应力就不介绍了,stress intensity(应力强度),是由第三强度理论得到的当量应力,其值为第一主应力减去第三主应力。

Von Mises是一种屈服准则,屈服准则的值我们通常叫等效应力。

Ansys后处理中"Von Mis后处理节点应力中x,y,z方向应力和第一、二、三主应力就不介绍了,stress intensity(应力强度),是由第三强度理论得到的当量应力,其值为第一主应力减去第三主应力。

Von Mises是一种屈服准则,屈服准则的值我们通常叫等效应力。

Ansys后处理中"Von Mises Stress"我们习惯称Mises等效应力,它遵循材料力学第四强度理论(形状改变比能理论)。

第三强度理论认为最大剪应力是引起流动破坏的主要原因,如低碳钢拉伸时在与轴线成45度的截面上发生最大剪应力,材料沿着这个平面发生滑移,出现滑移线。

这一理论比较好的解释了塑性材料出现塑性变形的现象。

形式简单,但结果偏于安全。

第四强度理论认为形状改变比能是引起材料流动破坏的主要原因。

结果更符合实际。

一般脆性材料,铸铁、石料、混凝土,多用第一强度理论。

考察绝对值最大的主应力。

一般材料在外力作用下产生塑性变形,以流动形式破坏时,应该采用第三或第四强度理论。

压力容器上用第三强度理论(安全第一),其它多用第四强度理论。

第四强度理论应力,即Von mises(范?米塞斯)等效应力作为衡量应力水平的主要指标。

Von mises应力是正应力和剪切应力的组合,常用来描绘联合作用的复杂应力状态。

von mises stress的确是一种等效应力,它用应力等值线来表示模型内部的应力分布情况,它可以清晰描述出一种结果在整个模型中的变化,从而使分析人员可以快速的确定模型中的最危险区域。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
ansys后处理该看的那些应力.txt每个女孩都曾是无泪的天使,当遇到自己喜欢的男孩时,便会流泪一一,于是坠落凡间变为女孩,所以,男孩一定不要辜负女孩,因为女孩为你放弃整个天堂。朋友,别哭,今夜我如昙花绽放在最美的瞬间凋谢,你的泪水也无法挽回我的枯萎~~~ansys后处理该看的那些应力
பைடு நூலகம்
昨天看文献和论坛(有一些是老帖),发现一个问题,貌似有一些朋友在用ANSYS进行实体分析的时候,只是提供了各种各样的应力云图,有时说一说XYZ方向的应力,有时说等效应力、von misses应力……貌似语言说明部分也不是很明确。这其实就是基础的材料力学问题,我来说说我的总结:
ANSYS后处理中应力查看总结
平面结构,查看某方向应力;
实体脆性结构,如混凝土、岩石、铸铁等,根据第一、第二强度理论,查看项目为第一主应力或等效应力;
塑形较强的实体结构,根据第三、第四强度理论,查看项目为应力强度(stress intensity)或Von Misses应力;
总的来说,宗旨就是把各项分布的应力,换算成单向应力,与规范规定的容许应力进行比较。
什么时候可以查看某方向的应力
应力的定义,没必要再重复了。我们分析后查看应力,目的就是在于确定该结构的承载能力是否足够。那么承载能力是如何定义的呢?比如混凝土、钢材,应该就是用万能压力机进行的单轴破坏试验吧。也就是说,我们在ANSYS计算中得到的应力,总是要和单轴破坏试验得到的结果进行比对的。所以,当有限元模型本身是一维或二维结构时,通过查看某一个方向,如plnsol,s,x等,是有意义的。但三维实体结构中,应力分布要复杂得多,不能仅用单一方向上的应力来代表结构此处的确切应力值——于是就出现了强度理论学说。
3、第三强度理论:最大切应力理论
该理论认为,引起材料屈服的主要因素是最大切应力,不论何种状态,只要最大切应力达到材料单向拉伸屈服时的最大切应力,则认为材料屈服。相关公式:
4、第四强度理论:畸变能理论
该理论认为,弹性体在外力作用下产生变形,荷载做功、弹性体变形储能,称之为应变能(分为畸变能和体积的改变能)。引起材料屈服的主要因素是畸变能密度,无论何种状态,只要畸变能密度达到材料单向拉伸屈服时的畸变能密度,材料就屈服。相关公式为:
回顾–材料力学中的四种强度理论
1、第一强度理论:最大拉应力强度理论
该理论认为,材料破坏的主要因素是最大拉应力,无论何种状态,只要最大拉应力达到材料的单向拉伸断裂时的最大拉应力,则材料断裂。其中,某点的最大拉应力数值,就是其第一主应力数值。
2、第二强度理论:最大拉应变理论
该理论认为,引起材料破坏的主要因素,是最大拉应变。无论何种状态,只要最大拉应变达到材料拉伸断裂时的最大应变值,则材料断裂。此时,形式上将主应力的某一综合值与材料单向拉伸轴向拉压许用应力比较,这个综合值就是等效应力——equivalent stress。相关公式:
相关文档
最新文档