图像处理实验报告
图像处理实验报告
图像处理实验报告图像处理实验报告一、引言图像处理是计算机科学与工程领域的一个重要研究方向,它涉及到对数字图像进行获取、处理、分析和显示等一系列操作。
本实验旨在通过使用图像处理技术,对一幅给定的数字图像进行处理和分析,以探索图像处理的原理和应用。
二、实验目的本实验有以下几个目的:1. 理解图像处理的基本概念和原理;2. 掌握图像处理的常用技术和方法;3. 熟悉图像处理软件的使用。
三、实验步骤1. 图像获取在本实验中,我们选择了一张风景图作为实验对象。
该图像是通过数码相机拍摄得到的,保存在计算机中的文件格式为JPEG。
我们使用图像处理软件将该图像导入到程序中,以便进行后续的处理和分析。
2. 图像预处理在进行图像处理之前,我们需要对图像进行预处理。
预处理的目的是去除图像中的噪声、平滑图像的边缘等。
我们使用了均值滤波和中值滤波两种常用的图像平滑方法。
通过对比两种方法的效果,我们可以选择合适的方法来进行图像预处理。
3. 图像增强图像增强是指通过一系列的操作,使得图像在视觉上更加鲜明、清晰、易于观察。
在本实验中,我们使用了直方图均衡化和灰度拉伸两种图像增强方法。
直方图均衡化通过对图像的像素值进行变换,使得图像的直方图更加均匀,从而增强图像的对比度。
灰度拉伸则是通过对图像的像素值进行线性变换,将图像的灰度范围拉伸到更广的范围内,从而增强图像的细节。
4. 图像分割图像分割是将图像分成若干个互不重叠的区域,每个区域具有一定的意义和特征。
在本实验中,我们使用了阈值分割和边缘检测两种图像分割方法。
阈值分割是指通过设置一个合适的阈值,将图像中的像素分为两个类别。
边缘检测则是通过检测图像中的边缘信息,将图像分割为不同的区域。
5. 图像特征提取图像特征提取是指从图像中提取出具有一定意义和特征的信息。
在本实验中,我们选择了纹理特征和颜色特征两种常用的图像特征提取方法。
纹理特征提取通过对图像的纹理进行分析,提取出图像的纹理特征。
图像分割处理实验报告
图像分割处理实验报告1. 引言图像分割是计算机视觉中的重要任务之一,其目标是将图像划分成具有相似特征的子区域。
图像分割在很多应用领域中都有着广泛的应用,比如医学影像分析、目标检测和图像编辑等。
本实验旨在探索不同的图像分割算法,并比较它们在不同场景下的效果和性能。
2. 实验方法2.1 实验数据本实验选取了一组包含不同场景的图像作为实验数据集,包括自然景观、人物肖像和城市街景等。
每张图像的分辨率为500x500像素。
2.2 实验算法本实验使用了两种经典的图像分割算法进行比较,分别是基于阈值的分割和基于边缘的分割。
2.2.1 基于阈值的分割基于阈值的分割算法是一种简单而直观的方法,其原理是根据像素值的亮度信息将图像分割成不同的区域。
在本实验中,我们将图像的灰度值与一个事先设定的阈值进行比较,如果大于阈值则设为白色,否则设为黑色,从而得到分割后的图像。
2.2.2 基于边缘的分割基于边缘的分割算法利用图像中的边缘信息进行分割,其原理是检测图像中的边缘并将其作为分割的依据。
在本实验中,我们使用了Canny边缘检测算法来提取图像中的边缘信息,然后根据边缘的位置进行分割。
2.3 实验流程本实验的流程如下:1. 加载图像数据集;2. 对每张图像分别应用基于阈值的分割算法和基于边缘的分割算法;3. 计算分割结果和原始图像之间的相似度,使用结构相似性指标(SSIM)进行评估;4. 分析并比较两种算法在不同场景下的分割效果和性能。
3. 实验结果3.1 分割效果实验结果表明,基于阈值的分割算法在处理简单场景的图像时效果较好,可以比较准确地将图像分割为目标区域和背景。
然而,当图像的复杂度增加时,基于阈值的分割算法的效果明显下降,往往会产生较多的误分割。
相比之下,基于边缘的分割算法在处理复杂场景的图像时表现良好。
通过提取图像的边缘信息,该算法能够较准确地分割出图像中的目标区域,相比于基于阈值的分割算法,其产生的误分割较少。
3.2 性能评估通过计算分割结果和原始图像之间的SSIM指标,我们可以得到两种算法在不同场景下的性能评估。
图像增强实验报告
图像增强实验报告图像增强实验报告引言:图像增强是数字图像处理中的重要技术之一,它可以通过改变图像的亮度、对比度、色彩等参数,使图像更加清晰、细节更加突出。
本实验旨在探究不同图像增强方法对图像质量的影响,并比较它们的效果。
一、实验目的通过实验比较不同的图像增强方法,包括直方图均衡化、拉普拉斯算子增强、灰度变换等,对图像质量的影响,了解各种方法的优缺点,为实际应用提供参考。
二、实验步骤1. 实验准备:准备一组包含不同场景、不同光照条件下的图像样本,以及实验所需的图像处理软件。
2. 直方图均衡化:将图像的直方图进行均衡化,使得图像的像素值分布更加均匀,从而提高图像的对比度和亮度。
3. 拉普拉斯算子增强:使用拉普拉斯算子对图像进行边缘增强,突出图像的细节和纹理。
4. 灰度变换:通过调整图像的灰度级别,改变图像的亮度和对比度,使图像更加清晰明亮。
5. 实验结果分析:对比不同图像增强方法处理后的图像,分析它们在视觉效果上的差异,并根据实验结果评估各种方法的优劣。
三、实验结果与讨论在本次实验中,我们选择了一张室内拍摄的暗淡图像作为样本进行增强处理。
首先,我们对该图像进行了直方图均衡化处理。
结果显示,通过直方图均衡化,图像的亮度和对比度得到了明显的提升,细节也更加清晰可见。
然而,由于直方图均衡化是全局处理,可能会导致图像的局部细节过于突出,从而影响整体视觉效果。
接下来,我们采用了拉普拉斯算子增强方法。
通过对图像进行边缘增强,图像的纹理和细节得到了突出展示。
然而,拉普拉斯算子增强也存在一定的局限性,对于噪声较多的图像,可能会导致边缘增强过程中出现伪影和锯齿现象。
最后,我们尝试了灰度变换方法。
通过调整图像的灰度级别,我们改变了图像的亮度和对比度,使图像的细节更加突出。
与直方图均衡化相比,灰度变换方法更加灵活,可以根据实际需求对图像进行个性化的调整。
综合对比三种图像增强方法的实验结果,我们可以得出以下结论:直方图均衡化适用于对整体亮度和对比度进行提升的场景;拉普拉斯算子增强适用于突出图像的边缘和纹理;灰度变换方法可以根据实际需求对图像进行个性化调整。
图像处理实验报告
图像处理实验报告实验⼀基于matlab 的⼈脸识别技术⼀、实验⽬的1.熟悉⼈脸识别的⼀般流程与常见识别⽅法;2.熟悉不同的特征提取⽅法在⼈脸识别的应⽤;3.了解在实际的⼈脸识别中,学习样本数等参数对识别率的影响;4.了解⾮⼈脸学习样本库的构建在⼈脸识别的重要作⽤。
使⽤MATLAB 平台编程,采⽤K-L 变换、特征提取及图像处理技术,实现⼈脸识别⼆、实验内容与实验仪器、设备1.构建⾮⼈脸学习样本库;2.观测不同的特征提取⽅法对⼈脸识别率的影响;3.观测不同的学习样本数对⼈脸识别率的影响;1. PC 机-系统最低配置 512M 内存、P4 CPU ;2. Matlab 仿真软件- 7.0 / 7.1 / 2006a 等版本的Matlab 软件。
3. CBCL ⼈脸样本库三、实验原理1.⼈脸特征提取的算法通过判别图像中所有可能区域是否属于“⼈脸模式”的⽅法来实现⼈脸检测。
这类⽅法有:特征脸法、⼈⼯神经⽹络法、⽀持向量机法;积分图像法。
本次使⽤的是PCA(主成分分析法)其原理是:利⽤K-L 变换抽取⼈脸的主要成分,构成特征脸空间,识别时将测试图像投影到此空间,得到⼀组投影系数,通过与各个⼈脸图像⽐较进⾏识别。
对于⼀幅M*N 的⼈脸图像,将其每列相连构成⼀个⼤⼩为D=M*N 维的列向量。
D 就是⼈脸图像的维数,即是图像空间的维数。
设n 是训练样本的数⽬;X j 表⽰第j 幅⼈脸图像形成的⼈脸向量,则所需样本的协⽅差矩阵为:1()()m Ti i i S x u x u ==--∑ (1)其中U 为训练样本的平均图像向量:11mi i u x n ==∑ (2)令A=[x 1-u,x 2-u,...x n -u],则有S r =AA T ,其维数为D ×D 。
根据K-L 变换原理,需要求得的新坐标系由矩阵AA T 的⾮零特征值所对应的特征向量组成。
直接计算的计算量⽐较⼤,所以采⽤奇异值分解(SVD)定理,通过求解A T A 的特征值和特征向量来获得AA T 的特征值和特征向量。
DSP图像处理技术-实验报告模板New1
西安**大学通信与信息工程学院《DSP数字图像处理技术》课内实验报告(2016/ 2017 学年第 2学期)学生姓名: 88888专业班级: 7777学号: 0000指导教师: 0000目录实验1:Code Composer Studio入门实验 0一、实验目的 0二、实验原理 0三、实验内容(调试好的程序,实验结果与分析) (1)四、实验小结 (1)实验2:编写一个以C语言为基础的DSP程序 (4)一、实验目的 (4)二、实验原理 (4)三、实验内容(调试好的程序,实验结果与分析) (4)四、实验小结 (6)实验3:图像灰度化实验 (7)一、实验目的 (7)二、实验原理 (7)三、实验内容(调试好的程序,实验结果与分析) (7)四、实验小结 (8)实验4:图像平滑实验 (10)一、实验目的 (10)二、实验原理 (10)三、实验内容(调试好的程序,实验结果与分析) (12)四、实验小结 (15)实验5:图像锐化实验 (16)一、实验目的 (16)二、实验原理 (16)三、实验内容(调试好的程序,实验结果与分析) (16)四、实验小结 (18)实验6:图像灰度变换实验 (21)一、实验目的 (21)二、实验原理 (21)三、实验内容(调试好的程序,实验结果与分析) (21)四、实验小结 (22)实验7:图像均衡化实验 (24)一、实验目的 (24)二、实验原理 (24)三、实验内容(调试好的程序,实验结果与分析) (24)四、实验小结 (24)实验8:图像边缘检测实验 (28)一、实验目的 (28)二、实验原理 (28)三、实验内容(调试好的程序,实验结果与分析) (28)四、实验小结 (30)实验总结与心得体会 (36)实验1:Code Composer Studio入门实验一、实验目的1、学习创建工程和管理工程的方法2、了解基本的编译和调试功能3、学习使用观察窗口4、了解图像功能的使用二、实验原理开发 TMS320C6xxx 应用系统一般需要以下几个调试工具来完成:1. 软件集成开发环境(CCS):完成系统的软件开发,进行软件和硬件的仿真调试,它是硬件调试的辅助工具。
图像处理美工实验报告
图像处理美工实验报告1. 实验目的本次实验旨在通过图像处理技术,提升图片的美观度。
通过对图像进行调整、修复、美化等处理,使得图片在色彩、对比度、清晰度等方面表现出更好的效果。
2. 实验环境- 操作系统:Windows 10- 编程语言:Python- 开发环境:Anaconda Navigator- 相关软件:Adobe Photoshop3. 实验过程3.1 图片调整首先,我们使用Adobe Photoshop对原始图片进行调整。
通过调整图片的亮度、对比度、色调等参数,使得图片的整体效果更加明亮、鲜艳。
3.2 图像修复接着,我们使用图像处理库中的算法对图片进行修复。
通过去除噪点、消除瑕疵、修复缺失等操作,使得图片中的细节更加清晰、完整。
3.3 图像滤镜在调整和修复完成后,我们尝试使用不同的滤镜效果来美化图片。
通过施加不同的滤镜效果,例如模糊、锐化、马赛克等,我们可以给图片加入一些艺术效果,使得图片更加具有视觉冲击力。
3.4 图像细节增强为了使得图片更加饱满、立体,我们可以对图片中的细节部分进行增强处理。
通过增强细节的锐度、增加线条的清晰程度,我们可以使得图片中的物体更加鲜活、立体。
3.5 色彩调整最后,我们对图片的色彩进行调整。
通过调整图片的色相、饱和度、明度等参数,我们可以让图片的色彩更加丰富、鲜艳。
同时,我们可以对不同色彩通道进行调整,使得图片的整体色调更加协调、统一。
4. 实验结果经过一系列的图像处理操作,我们成功提升了图片的美观度。
原始图片与经过处理后的图片相比,色彩更加明亮饱满,细节更加清晰,整体效果更加出色。
同时,通过施加不同的滤镜效果和调整色彩,我们还加入了一些艺术效果,提升了图片的视觉冲击力。
5. 总结通过本次实验,我们了解了图像处理技术在美工方面的应用。
图像处理可以对图片进行调整、修复、美化等操作,提升其美观度和质量。
合理使用图像处理技术,可以使得图片更加生动、吸引人,为设计和美工工作提供了有力的支持。
医学图像实验报告实验心得
医学图像实验报告实验心得医学图像实验报告实验心得引言:医学图像实验是医学领域中一项重要的实验内容,通过对医学图像的观察和分析,可以帮助医生了解病情、制定诊疗方案。
本文将结合个人的实验经历,分享一些关于医学图像实验的心得和体会。
一、实验准备在进行医学图像实验之前,首先需要了解实验的目的和背景知识。
对于不同的医学图像实验,可能需要掌握不同的医学知识和图像处理技术。
因此,在实验开始前,我会仔细阅读相关的文献资料,了解实验的原理和方法。
二、实验设备医学图像实验通常需要使用一些专业的设备和软件。
例如,X光片、CT扫描、MRI等医学影像设备,以及图像处理软件等。
在实验过程中,我会熟悉这些设备的操作方法,并根据实验需求进行相应的调整和设置。
三、实验步骤医学图像实验通常包括图像采集、图像处理和图像分析等步骤。
在进行实验时,我会按照实验计划的要求,逐步完成每个步骤。
在图像采集过程中,我会注意保持图像的清晰度和准确性,避免因操作不当而导致图像质量下降。
在图像处理和分析过程中,我会运用所学的图像处理技术,对图像进行去噪、增强和分割等操作,以便更好地观察和分析图像中的信息。
四、实验结果医学图像实验的结果往往是关于疾病诊断和治疗的重要依据。
因此,对于实验结果的准确性和可靠性要求较高。
在实验过程中,我会尽量避免人为因素对结果的影响,如避免操作失误和数据记录错误等。
同时,我也会对实验结果进行反复验证和分析,以确保结果的可靠性和科学性。
五、实验心得通过参与医学图像实验,我深刻体会到医学图像在临床诊断和治疗中的重要性。
医学图像可以提供丰富的信息,帮助医生了解病情、确定诊断和制定治疗方案。
同时,医学图像实验也需要一定的专业知识和技术支持,只有掌握了这些知识和技术,才能更好地进行实验和分析。
在实验过程中,我还发现了一些需要注意的问题。
首先,医学图像实验需要耐心和细心,因为有时图像中的细微变化可能对疾病的诊断和治疗有重要意义。
其次,实验结果的可靠性和科学性对于医学图像实验来说至关重要,因此在进行实验时要严格按照实验计划和操作规程进行,避免人为因素的影响。
身份证识别图像处理实验报告
身份证识别图象处理实验报告摘要:本实验通过图象处理技术,对身份证进行识别和处理。
通过对身份证图象的预处理、特征提取和识别算法的应用,实现了对身份证信息的自动提取和识别。
实验结果表明,该方法能够有效地识别身份证信息,具有较高的准确性和鲁棒性。
1. 引言身份证是一种重要的身份证明文件,广泛应用于各个领域。
然而,传统的手工识别方式效率低下且易出错。
因此,本实验旨在通过图象处理技术,实现对身份证的自动识别和信息提取。
2. 实验方法2.1 身份证图象预处理首先,对身份证图象进行预处理,包括灰度化、二值化、去噪等步骤。
通过将彩色图象转换为灰度图象,可以简化图象处理的复杂度。
然后,通过阈值分割将图象转化为二值图象,以便更好地提取身份证信息。
最后,采用滤波器等方法去除图象中的噪声,提高识别的准确性。
2.2 身份证信息提取在身份证图象预处理完成后,需要提取身份证的关键信息,包括姓名、性别、民族、出生日期、住址和身份证号码等。
通过图象处理技术,可以实现对这些信息的自动提取。
例如,通过模板匹配或者特征点提取等方法,可以准确地提取身份证号码。
同时,结合OCR(Optical Character Recognition,光学字符识别)技术,可以提取其他文字信息。
2.3 身份证信息识别在身份证信息提取完成后,需要对提取的信息进行识别。
通过特征提取和分类算法,可以实现对身份证信息的准确识别。
例如,可以使用支持向量机(Support Vector Machine,SVM)等机器学习算法进行分类。
通过训练模型,可以将提取的身份证信息与已知的身份证信息进行匹配,从而实现识别。
3. 实验结果与分析经过实验,我们得到了一批身份证图象,并进行了图象处理和信息识别。
实验结果表明,该方法能够有效地识别身份证信息。
在识别准确率方面,我们进行了多次实验,平均准确率达到了90%以上。
同时,该方法对于不同类型的身份证图象都具有较好的鲁棒性,能够适应不同光照条件和角度的变化。
photoshop 实验报告
photoshop 实验报告《Photoshop 实验报告》Photoshop 是一款功能强大的图像处理软件,被广泛应用于平面设计、摄影后期制作、网页设计等领域。
本文将通过实验报告的形式,分享一些关于Photoshop 的实验结果和使用心得。
实验一:基本工具的应用在本实验中,我们使用了 Photoshop 的基本工具,如选择工具、画笔工具、橡皮擦工具等,对一张图片进行了简单的处理。
通过调整色彩、修复瑕疵、添加文字等操作,我们成功地改善了原始图片的质量,并使其更适合用于设计和编辑。
实验二:滤镜效果的应用在这个实验中,我们尝试了 Photoshop 的各种滤镜效果,如模糊、锐化、变形等。
通过对图片进行不同的滤镜处理,我们发现可以为图片赋予不同的风格和效果,增强视觉冲击力,使得图片更加生动和吸引人。
实验三:图层和蒙版的应用图层和蒙版是 Photoshop 中非常重要的功能,可以帮助我们对图片进行更加精细和复杂的处理。
在这个实验中,我们学习了如何创建、管理和应用图层和蒙版,以及它们在设计和编辑中的作用。
通过实践,我们发现图层和蒙版的使用可以大大提高我们的工作效率和创作灵感。
总结通过以上实验,我们深入了解了 Photoshop 的一些基本功能和高级功能,掌握了一些常用的技巧和方法。
同时,我们也发现了 Photoshop 的强大之处,它可以帮助我们实现各种想象中的创意和设计,让我们的工作更加出色和专业。
综上所述,Photoshop 是一款非常优秀的图像处理软件,它拥有丰富的功能和工具,可以满足我们在设计和编辑中的各种需求。
通过不断的实践和学习,我们相信可以更加熟练地运用 Photoshop,创作出更加精彩的作品。
希望本实验报告能够对大家有所启发,也欢迎大家分享更多关于 Photoshop 的实验结果和心得体会。
数字图像处理实验一图像的基本操作和基本统计指标计算实验报告.doc
实验一图像的基本操作和基本统计指标计算一、实验目的熟悉MATLAB图像处理工具箱,在掌握MATLAB基本操作的基础上,本课程主要依靠图像处理工具箱验证和设计图像处理算法。
对于初学者来说,勤学多练、熟悉MATLAB图像处理工具箱也是学号本课程的必经之路。
了解计算图像的统计指标的方法及其在图像处理中的意义。
了解图像的几何操作,如改变图像大小、剪切、旋转等。
二、实验主要仪器设备(1)台式计算机或笔记本电脑(2)MATLAB(安装了图像处理工具箱,即Image Processing Toolbox(IPT))(3)典型的灰度、彩色图像文件三、实验原理(1)将一幅图像视为一个二维矩阵。
(2)利用MATLAB图像处理工具箱读、写和显示图像文件。
①调用imread函数将图像文件读入图像数组(矩阵)。
例如“I=imread(‘tire.tif’);”。
其基本格式为:“A=imread(‘filename.fmt’)”,其中,A为二维矩阵,filename.为文件名,fmt 为图像文件格式的扩展名。
②调用imwrite函数将图像矩阵写入图像文件。
例如“imwrite(A,’test_image.jpg’);”。
其基本格式为“imwrite(a,filename.fmt)”。
③调用imshow函数显示图像。
例如“imshow(‘tire.tif’);”。
其基本格式为:I为图像矩阵,N为显示的灰度级数,默认时为256。
(3)计算图像有关的统计参数。
四、实验内容(1)利用MATLAB图像处理工具箱和Photoshop读、写和显示图像文件。
(2)利用MATLAB计算图像有关的统计参数。
五、实验步骤(1)利用“读图像文件I/O”函数读入图像Italy.jpg。
(2)利用“读图像文件I/O”的iminfo函数了解图像文件的基本信息:主要包括Filename(文件名)、FileModDate(文件修改时间)、Filesize(文件尺寸)、Format(文件格式)、FormatVersion (格式版本)、Width(图像宽度)、Height(图像高度)、BitDepth(每个像素的位深度)、ColorType (彩色类型)、CodingMethod(编码方法)等。
医学像处理与分析实验报告
医学像处理与分析实验报告实验目的:本实验旨在探究医学像处理与分析的方法和技术,分析其在医学领域中的应用和意义。
实验材料和设备:1. 医学像处理和分析软件2. 计算机3. 医学影像数据(如CT扫描、MRI图像等)4. 数据记录表格实验步骤:1. 数据准备收集实验所需医学影像数据,包括CT扫描、MRI图像等。
确保数据完整、清晰,并妥善保存。
2. 医学像处理使用医学像处理软件对所收集的影像数据进行处理。
处理包括但不限于以下步骤:- 图像增强:通过调整亮度、对比度等参数来改善图像质量和清晰度。
- 噪声去除:运用滤波器等技术降低或去除图像中的噪声。
- 图像重建:使用重建算法对三维医学影像数据进行处理,以生成更准确的图像。
3. 医学像分析利用医学像处理后的图像数据进行进一步的分析。
分析方法包括但不限于以下方面:- 区域测量:通过选择特定区域并测量其大小、体积等参数,来评估病变或器官的状态。
- 密度分布:通过绘制直方图、密度图等,分析图像中的密度分布情况,以便检测异常。
- 三维可视化:将三维医学影像数据进行重建和可视化,帮助医生更直观地观察和分析。
4. 数据分析和结果呈现根据医学像分析的结果,进行数据统计和分析。
将结果以图表、表格等形式呈现,清晰展示实验的结果和结论。
实验结果与讨论:经过医学像处理和分析,我们得到了一系列医学图像的处理结果和分析数据。
根据所获得的结果,我们可以得出以下结论:1. 医学像处理可以有效改善图像的质量和清晰度。
通过图像增强和噪声去除等技术,可以使医生在诊断时更准确地观察和判断。
2. 医学像分析可以提供更多有关病变或器官状态的信息。
通过区域测量、密度分布等方法,可以定量评估病变的大小、体积以及密度的异常情况。
3. 三维可视化技术可以使医生更直观地观察和分析医学影像数据。
通过重建和可视化,医生可以更清楚地了解病变的位置和形态,为治疗提供指导。
综上所述,医学像处理与分析在医学领域中具有重要的应用价值。
数字图像处理图像变换实验报告
实验报告实验名称:图像处理姓名:刘强班级:电信1102学号:1404110128实验一图像变换实验——图像点运算、几何变换及正交变换一、实验条件PC机数字图像处理实验教学软件大量样图二、实验目的1、学习使用“数字图像处理实验教学软件系统”,能够进行图像处理方面的简单操作;2、熟悉图像点运算、几何变换及正交变换的基本原理,了解编程实现的具体步骤;3、观察图像的灰度直方图,明确直方图的作用与意义;4、观察图像点运算与几何变换的结果,比较不同参数条件下的变换效果;5、观察图像正交变换的结果,明确图像的空间频率分布情况。
三、实验原理1、图像灰度直方图、点运算与几何变换的基本原理及编程实现步骤图像灰度直方图就是数字图像处理中一个最简单、最有用的工具,它描述了一幅图像的灰度分布情况,为图像的相关处理操作提供了基本信息。
图像点运算就是一种简单而重要的处理技术,它能让用户改变图像数据占据的灰度范围。
点运算可以瞧作就是“从象素到象素”的复制操作,而这种复制操作就是通过灰度变换函数实现的。
如果输入图像为A(x,y),输出图像为B(x,y),则点运算可以表示为:B(x,y)=f[A(x,y)]其中f(x)被称为灰度变换(Gray Scale Transformation,GST)函数,它描述了输入灰度值与输出灰度值之间的转换关系。
一旦灰度变换函数确定,该点运算就完全确定下来了。
另外,点运算处理将改变图像的灰度直方图分布。
点运算又被称为对比度增强、对比度拉伸或灰度变换。
点运算一般包括灰度的线性变换、阈值变换、窗口变换、灰度拉伸与均衡等。
图像几何变换就是图像的一种基本变换,通常包括图像镜像变换、图像转置、图像平移、图像缩放与图像旋转等,其理论基础主要就是一些矩阵运算,详细原理可以参考有关书籍。
实验系统提供了图像灰度直方图、点运算与几何变换相关内容的文字说明,用户在操作过程中可以参考。
下面以图像点运算中的阈值变换为例给出编程实现的程序流程图,如下:2、图像正交变换的基本原理及编程实现步骤数字图像的处理方法主要有空域法与频域法,点运算与几何变换属于空域法。
图像处理实验报告
图像处理实验报告专业:姓名:学号:1几种边缘检测算子比较简单做了几组算子的边缘检测效果对比,包括几组梯度算子和二阶倒数算子。
这里简单记录一下Roberts算子、Sobel算子、Prewitt 算子、Log算子、Canny算子的运算原理与结果。
1.1Roberts算子Roberts算子是一种利用局部差分来寻找边缘的算子,Roberts 梯度算子所采用的是对角方向相邻两像素值之差,算子形式如下:Gx = f(i,j) - f(i-1,j-1)Gy = f(i-1,j) - f(i,j-1)|G(x,y)| = sprt(Gx^2+Gy^2)Roberts梯度算子对应的卷积模版为然后选择适当的阈值τ,若G ( x,y)>τ,则(i ,j)为边缘点,否则,判断(i ,j)为非边缘点。
由此得到一个二值图像{ g (i,j)},即边缘图像。
1.2Sobel算子Sobel算子在边缘检测算子扩大了其模版,在边缘检测的同时尽量削弱了噪声。
其模版大小为3×3,其将方向差分运算与局部加权平均相结合来提取边缘。
Sobel算子所对应的卷积模版为然后选择适当的阈值τ,若G ( x,y)>τ,则(i ,j)为边缘点,边缘定位精度不够高。
当对精度要求不是很高时,是一种较为常用的边缘检测方法。
1.3Prewitt 算子同Sobel 算子相似,Prewitt 算子也是一种将方向的差分运算和局部平均相结合的方法,也是取水平和垂直两个卷积核来分别对图像中各个像素点做卷积运算,所不同的是,Sobel 算子是先做加权平均然后再微分,Prewitt 算子是先平均后求微分,其对应的卷积模版为梯度幅值G ( x,y),然后选取适当的阈值τ,若G ( x,y)>τ,则(i ,j)为边缘点,否则,判断(i ,j)为非边缘点。
由此得到一个二值图像{ g (i,j)},即边缘图像。
1.4Log 算子Log算子基本思想是:先在一定的围做平滑滤波,然后再利用差分算子来检测在相应尺度上的边缘。
图像裁剪的实验报告
图像裁剪的实验报告引言图像裁剪是一个在计算机视觉领域非常常见的任务,它用于将图像中感兴趣的区域提取出来,以便进一步进行分析和处理。
图像裁剪可以应用于很多领域,例如目标检测、人脸识别、场景分析等。
本实验旨在探索不同方法对于图像裁剪的效果和性能的影响,以及比较它们的优缺点。
实验过程实验数据准备在本实验中,我们使用了一组包含不同种类图像的数据集。
这些图像包括人物、动物、自然风景等,其中一部分图像包含了我们感兴趣的区域。
实验方法本实验选择了三种常见的图像裁剪方法进行比较:1. 手工选择裁剪区域:通过鼠标手动选择图像中感兴趣的区域,然后进行裁剪。
2. 基于边缘检测的自动裁剪:使用边缘检测算法,如Canny边缘检测,自动提取图像中的边缘区域,然后进行裁剪。
3. 基于机器学习的自动裁剪:使用已训练好的目标检测模型(如YOLO、Faster R-CNN等),自动识别图像中的目标区域,并进行裁剪。
实验步骤以下是我们进行实验的步骤:1. 针对手工选择裁剪区域方法,打开一张图像,在图像上使用鼠标手动选择感兴趣的区域,并进行裁剪。
2. 针对基于边缘检测的自动裁剪方法,使用Canny边缘检测算法提取图像的边缘区域,然后根据边缘区域进行裁剪。
3. 针对基于机器学习的自动裁剪方法,使用已训练好的目标检测模型,在图像中识别感兴趣的目标区域,并进行裁剪。
4. 对比比较不同方法下裁剪的结果,分析它们的优缺点。
5. 测量比较不同方法下裁剪的时间和资源消耗,分析它们的性能差异。
实验结果我们对实验数据集中的多张图像进行了裁剪,并对不同方法下的结果进行了比较。
以下是我们的观察和结论:- 手工选择裁剪区域:这种方法需要人工干预,能够灵活地选择感兴趣的区域,并且无需额外的算法支持。
然而,它需要用户具备一定的图像处理知识,并且在处理大量图像时,工作量相对较大。
- 基于边缘检测的自动裁剪:这种方法能够自动提取图像中的边缘区域,并取得了不错的效果。
图像增强实验报告
图像增强实验报告篇一:图像处理实验报告——图像增强实验报告学生姓名:刘德涛学号:2010051060021指导老师:彭真明日期:2013年3月31日一、实验室名称:光电楼329、老计算机楼309机房二、实验项目名称:图像增强三、实验原理:图像增强是为了使受到噪声等污染图像在视觉感知或某种准则下尽量的恢复到原始图像的水平之外,还需要有目的性地加强图像中的某些信息而抑制另一些信息,以便更好地利用图像。
图像增强分频域处理和空间域处理,这里主要用空间域的方法进行增强。
空间域的增强主要有:灰度变换和图像的空间滤波。
1.灰度变换灰度变换主要有线性拉伸、非线性拉伸等。
灰度图像的线性拉伸是将输入图像的灰度值的动态范围按线性关系公式拉伸到指定范围或整个动态范围。
令原图像f(x,y)的灰度变化范围为[a,b],线性变换后图像g(x,y)的范围为[a',b'],线性拉伸的公式为:b'?a'g(x,y)?a?[f(x,y)?a] b?a灰度图像的非线性拉伸采用的数学函数是非线性的。
非线性拉伸不是对图像的灰度值进行扩展,而是有选择地对某一灰度范围进行扩展,其他范围的灰度值则可能被压缩。
常用的非线性变换:对数变换和指数变换。
对数变换的一般形式:g(x,y)?a?ln[f(x,y)?1] blnc指数变换的一般形式:g(x,y)?bc[f(x,y)?a]?1(a,b,c用于调整曲线的位置和形状的参数。
)2.图像的空间滤波图像的空间滤波主要有图像的空域平滑和锐化。
图像的平滑是一种消除噪声的重要手段。
图像平滑的低频分量进行增强,同时抑制高频噪声,空域中主要的方法有领域平均、中值滤波、多帧相加平均等方法。
图像锐化能使图像的边缘、轮廓处的灰度具有突变特性。
图像的锐化主要有微分运算的锐化,包括梯度法和拉普拉斯法算子。
四、实验目的:1.熟悉和掌握利用Matlab工具进行数字图像的读、写、显示等数字图像处理基本步骤。
图像处理综合实验报告
图像处理综合实验报告一、引言图像处理是计算机科学中的重要研究领域,其应用范围广泛,涵盖了图像增强、图像分割、图像识别等多个方面。
本实验旨在通过综合实验的方式,探索图像处理的基本方法和技术,并对实验结果进行分析和总结。
二、实验目的1. 了解图像处理的基本概念和原理;2. 熟悉常用的图像处理工具和算法;3. 掌握图像处理中常见的操作和技术;4. 分析实验结果并提出改进意见。
三、实验步骤1. 实验准备在实验开始之前,我们需要准备一台计算机和图像处理软件,例如MATLAB、Python等。
同时,需要收集一些图像数据作为实验样本。
2. 图像增强图像增强是图像处理中常用的操作,旨在改善图像的质量和视觉效果。
我们可以通过调整图像的亮度、对比度、色彩等参数来实现图像增强。
在实验中,我们可以选择一些常见的图像增强算法,如直方图均衡化、灰度拉伸等。
3. 图像滤波图像滤波是图像处理中常用的技术,用于去除图像中的噪声和平滑图像。
常见的图像滤波算法包括均值滤波、中值滤波、高斯滤波等。
在实验中,我们可以选择适合实验样本的滤波算法,并对比不同滤波算法的效果。
4. 图像分割图像分割是将图像划分为不同的区域或对象的过程。
常见的图像分割算法包括阈值分割、边缘检测、区域生长等。
在实验中,我们可以选择一种或多种图像分割算法,并对比它们的分割效果和计算复杂度。
5. 图像识别图像识别是图像处理的重要应用之一,它可以用于识别和分类图像中的对象或特征。
在实验中,我们可以选择一些常用的图像识别算法,如模板匹配、神经网络等,并通过实验样本进行图像识别的实验。
四、实验结果与分析1. 图像增强实验结果我们选取了一张低对比度的图像作为实验样本,经过直方图均衡化和灰度拉伸处理后,图像的对比度得到了明显的改善,细节部分更加清晰。
2. 图像滤波实验结果我们选取了一张带有高斯噪声的图像作为实验样本,经过均值滤波、中值滤波和高斯滤波处理后,图像的噪声得到了有效的去除,图像更加平滑。
数字图像处理实验报告图像压缩
竭诚为您提供优质文档/双击可除数字图像处理实验报告图像压缩篇一:数字图像处理实验报告数字图像处理实验报告课程:班级:学号:姓名:指导老师:日期:实验一内容一mATLAb数字图像处理初步一、实验目的与要求1.熟悉及掌握在mATLAb中能够处理哪些格式图像。
2.熟练掌握在mATLAb中如何读取图像。
3.掌握如何利用mATLAb来获取图像的大小、颜色、高度、宽度等等相关信息。
4.掌握如何在mATLAb中按照指定要求存储一幅图像的方法。
5.图像间如何转化。
二、实验内容及步骤1.利用imread()函数读取一幅图像,假设其名为flower.tif,存入一个数组中;解:读取图像,存入数组I 中:I=imread(flower.tif);2.利用whos命令提取该读入图像flower.tif的基本信息;解:查询数组I的信息:3.利用imshow()函数来显示这幅图像;解:因为imshow()方法不能直接显示tif图像矩阵,因此要先转换成Rgb模式,再调用imshow()显示。
代码如下:>>I1=I(:,:,1);>>I2=I(:,:,2);>>I3=I(:,:,3);>>Rgb=cat(3,I1,I2,I3);>>imshow(Rgb);显示的图像为:4.利用imfinfo函数来获取图像文件的压缩,颜色等等其他的详细信息;解:代码如下:>>imfinfo(flower.tif)结果截图:5.利用imwrite()函数来压缩这幅图象,将其保存为一幅压缩了像素的jpg文件,设为flower.jpg;语法:imwrite(原图像,新图像,‘quality’,q),q取0-100。
解:代码:>>imwrite(Rgb,flower.jpg,quality,80);结果截图:6.同样利用imwrite()函数将最初读入的tif图象另存为一幅bmp图像,设为flower.bmp。
opencv实验报告
opencv实验报告OpenCV实验报告引言:计算机视觉是一门研究如何使计算机“看”的学科,而OpenCV(Open Source Computer Vision Library)则是计算机视觉领域中最为常用的开源库之一。
本文将介绍我在学习和实践OpenCV过程中的一些实验和心得体会。
一、图像处理实验1.1 灰度图像转换在图像处理中,灰度图像转换是一个常见的操作。
通过OpenCV的函数,我们可以将彩色图像转换为灰度图像,这样可以方便后续的处理。
实验中,我使用了一张彩色图片,通过OpenCV提供的函数将其转换为灰度图像,并将结果进行了展示和比较。
1.2 图像平滑图像平滑是一种常见的图像处理技术,可以去除图像中的噪声,使图像更加清晰。
在实验中,我尝试了使用OpenCV中的高斯滤波和均值滤波两种方法对图像进行平滑处理,并对比了它们的效果和处理速度。
二、图像特征提取实验2.1 边缘检测边缘检测是图像处理中的重要任务之一,它可以帮助我们识别图像中的边缘和轮廓。
在实验中,我使用了OpenCV提供的Sobel算子和Canny算子两种方法对图像进行边缘检测,并对比了它们的效果和处理速度。
2.2 特征点检测特征点检测是计算机视觉中的一个重要任务,它可以帮助我们在图像中找到具有独特性质的点,用于图像匹配和目标识别等应用。
在实验中,我使用了OpenCV中的SIFT算法对图像进行特征点检测,并对比了不同参数设置下的检测结果。
三、图像识别实验3.1 目标检测目标检测是计算机视觉中的一个重要任务,它可以帮助我们在图像中找到特定的目标物体。
在实验中,我使用了OpenCV中的Haar Cascade分类器对人脸进行检测,并对比了不同参数设置下的检测结果。
3.2 图像分类图像分类是计算机视觉中的一个热门研究方向,它可以帮助我们将图像分为不同的类别。
在实验中,我使用了OpenCV中的机器学习算法SVM对图像进行分类,并对比了不同特征提取方法和分类器参数设置下的分类准确率。
图像处理实验报告
图像处理实验报告第一次实验课:绘制直方图f=imread('bld.tif');imshow(f)imhist(f)原图像:直方图:第二次实验课:图像增强f=imread('hua.jpg');imshow(f)g=gscale(f);figure,imshow(g)原图像:处理后的图像:第三次实验课:图像平滑f=imread('noisy.jpg');imshow(f)f1=imnoise(f,'salt & pepper',0.1);figure,imshow(f1)f2=medfilt2(f1);figure,imshow(f2)imwrite(f2,'w.tif')原图像:加噪声后的图像:平滑后的图像:第四次实验课:图像分割f=imread('bld.tif');imshow(f)[gc,t]=edge(f,'canny');figure,imshow(gc)tt =0.0188 0.0469[gc,t]=edge(f,'canny',[0.04 0.10]); figure,imshow(gc)[gc,t]=edge(f,'canny',[0.04 0.10],1.5); figure,imshow(gc)原图像:线检测后得到如下图像:第五次实验课:彩色图像处理f=imread('iris.tif');imshow(b)fr=f(:,:,1);fg=f(:,:,2);fb=f(:,:,3);w=fspecial('disk',3.5);fr_f=imfilter(fr,w,'replicate');fg_f=imfilter(fg,w,'replicate');fb_f=imfilter(fb,w,'replicate');f1=cat(3,fr_f,fg_f,fb_f);原图像:处理后图片为:第六次实验课:形态学处理f=imread('calculator.tif');imshow(f)se=strel('line',55,0);f0=imopen(f,se);f1=imsubtract(f,f0);figure,imshow(f1)原图像:处理后图像:第七次实验课:频域处理f=imread('periodic.jpg');[m,n]=size(f)sig=30;h=lpfilter('gaussian',m,n,sig);F=fft2(double(f));G=h.*F;figure,imshow(abs(G),[])x=real(ifft2(G));figure,imshow(x,[])原图像:处理后图像:f=imread('noise.jpg'); imshow(f)g=fft2(f);s=abs(g);figure,imshow(double(s))figure,imshow(double(s),[])h=fftshift(g);figure,imshow(double(abs(g)),[]) figure,imshow(double(abs(h)),[]) ss=log(1+s);figure,imshow(double(ss),[])原图像:处理后图像:。
图像增强技术实验报告
图像增强技术实验报告
近年来,随着数字图像处理技术的快速发展,图像增强技术在各个
领域得到了广泛的应用。
本实验旨在探究图像增强技术的原理和方法,通过实际操作加深对该技术的理解和掌握。
首先,在本实验中我们使用了常见的图像增强技术包括灰度拉伸、
直方图均衡化、滤波等方法。
针对不同的图像特点和需求,我们选择
了不同的增强方法进行处理,并分析比较它们的效果和适用场景。
在实验过程中,我们首先对原始图像进行了灰度拉伸处理,通过拉
伸灰度范围来增强图像的对比度,使得图像中的细节更加清晰。
接着,我们运用直方图均衡化技术,将图像的像素分布均匀化,从而提高了
图像的整体亮度和细节展现。
同时,我们还尝试了一些滤波方法,如
均值滤波、中值滤波等,来去除图像中的噪声和平滑图像。
通过实验数据分析,我们发现不同的图像增强方法在处理不同类型
的图像时会产生不同的效果。
比如对于对比度较低的图像,灰度拉伸
和直方图均衡化能够取得比较好的增强效果;而对于受到噪声干扰的
图像,则需要采用滤波方法进行去噪处理。
综合以上实验结果,我们深入探讨了图像增强技术的优缺点以及适
用范围。
图像增强技术在医疗影像、航空航天、安防监控等领域具有
广泛的应用前景,在实际应用中需要根据图像特点和需求选择合适的
增强方法,以达到最佳的效果。
通过本次实验,我们对图像增强技术有了更深入的了解,并在实践中提升了我们的技术水平和解决问题的能力。
希望今后能够进一步拓展应用领域,将图像增强技术发挥到更大的作用,为社会发展和人类福祉做出更大的贡献。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
重庆交通大学学生实验报告实验课程名称数字图像处理开课实验室数学实验室学院理学院年级信息与计算科学专业 2 班学生姓名李伟凯学号631122020203开课时间2014 至2015 学年第 1 学期实验(一)图像处理基础➢实验目的学习Matlab软件的图像处理工具箱,掌握常用的一些图像处理命令;通过编程实现几种简单的图像增强算法,加强对图像增强的理解。
➢实验内容题目A.打开Matlab软件帮助,学习了解Matlab中图像处理工具箱的基本功能;题目B.掌握以下常见图像处理函数的使用:imread( ) imageinfo( ) imwrite( ) imopen( ) imclose( ) imshow( ) impixel( ) imresize( ) imadjust( ) imnoise( ) imrotate( ) im2bw( ) rgb2gray( )题目C.编程实现对图像的线性灰度拉伸y = ax + b,函数形式为:imstrech(I, a,b);题目D.编程实现对图像进行直方图均衡化处理,并将实验结果与Matab中imhist 命令结果比较。
三、实验结果1).基本图像处理函数的使用:I=imread('rice.png');se = strel('disk',1);I_opened = imopen(I,se);%对边缘进行平滑subplot(1,2,1), imshow(I), title('原始图像')subplot(1,2,2), imshow(I_opened), title('平滑图像')原始图像平滑图像I=imread('rice.png');se = strel('disk',1);I_opened = imopen(I,se); imview(I_opened,[])Imageinfo(‘rice.png’)二、实现灰度图像的拉伸(代码)I = imread('rice.png');I1 = 2*I+5;%对其进行线性拉伸 2*I+5;subplot(1,2,1), imshow(I), title('原始图像')subplot(1,2,2), imshow(I1), title('f=2x+5')原始图像f=2x+5三、图像进行直方图均衡化处理(代码)4、编程实现对图像进行直方图均衡化处理,并将实验结果与Matab中imhist命令结果比较。
clear all;I=imread('rice.png');figure;subplot(221);imshow(I);subplot(222);imhist(I);I1=histeq(I);%直方图均衡化处理subplot(223);imshow(I1);subplot(224);imhist(I1);100200100200四、实验体会通过这次实验,让我认识到了到图像处理在我们生活中的应用。
,以及相应的直方图均衡化的方式和方法,收获颇丰实验二实验目的掌握数字图像增强的基本原理和方法,通过Matlab 编程实现图像的各种增强技术;掌握Matlab 软件图像处理工具箱中相关图像增强函数及用法。
实验内容1、利用灰度线性变换和非线性变换进行图像增强处理。
2、编程实现图像的平滑增强,分别采用3×3,6×6,8×8的窗口实现,比较窗口大小对图像平滑效果的影响。
下面给出了对应3×3平滑模板:11111119111⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦3、编程实现图像的锐化增强,分别采用Robert 梯度算子,prewiit 梯度算子,Laplace 算子实现,比较实现结果,说明每种算子的锐化特点;实验要求采用Matlab 自带图像或者自己找些图像,验证自己编写的图像增强图像函数的正确性,并与Matlab 工具箱中对应函数的处理结果比较,显示处理后结果,并将代码和显示结果整理在实验报告中。
实验结果用滤波器出去图像噪声: I1=imread('C:\123.png'); I=rgb2gray(I1);subplot(2,2,1),imshow(I),title('原始图像') h=ones(3,3); h=h/9; k=conv2(I,h);subplot(2,2,2),imshow(k,[]),title('3*3平滑增强')h1=ones(6,6);h1=h1/36;k1=conv2(I,h1);subplot(2,2,3),imshow(k1,[]),title('6*6平滑增强')h2=ones(8,8);h2=h2/64;k2=conv2(I,h2);subplot(2,2,4),imshow(k2,[]),title('8*8平滑增强')得到:原始图像3*3平滑增强6*6平滑增强8*8平滑增强滤波器程序为I=imread('C:\new123.png');I=rgb2gray(I);figure(1),imshow(I),title('输出原始图像');[x,y]=size(I);a=1;c=1;%算术均值滤波for i=1+a:x-afor j=1+c:y-cJ1(i,j)=sum(sum(I(i-a:i+a,j-c:j+c),1),2)/((2*a+1)*(2*c+1));endendfigure(2),imshow(J1),title('算术均值滤波后的图像')%几何均值滤波I1=double(I);for i=1+a:x-afor j=1+c:y-cJ2(i,j)=prod(prod(I1(i-a:i+a,j-c:j+c),1),2)^(1/((2*a+1)*(2*c+1)));endendfigure(3),imshow(J2),title('几何均值滤波后的图像')输出原始图像算术均值滤波后的图像几何均值滤波后的图像四、实验体会通过这次实验,让我认识到了到图像处理在我们生活中的应用。
,以及相应的图像滤波的集中方式,以及降低噪声均值滤波和中值滤波的差异以及方式和方法,收获颇丰实验(三)一、实验目的掌握Matlab中二值图像的基本逻辑运算符号;掌握膨胀和腐蚀的基本原理和作用,可以根据实际需要,熟练使用不用结构元素进行膨胀和腐蚀操作;掌握开运算和闭运算的基本原理作用,能够熟练使用开和闭运算对二值图像进行处理。
二、实验要求找Matlab自带图像或者自己找些图像,说明1中各个函数的调用格式和功能;按2中要求进行实验,显示处理后结果,并进行必要的文字说明;按3要求编写代码,并给出实验图像效果和结论。
三、实验内容题目A. 学习Matlab的图像处理工具箱中下列函数:rgb2gray( ), im2bw( ), graythresh( ), strel( ), imdilate( ), imerode( ), imopen( ), imclose( );clcclearfigure%rgb2gray()、将彩色图像转化为灰度图A='c:/cavin.jpg';I=imread(A);II=rgb2gray(I);imshow(II)%im2bw()、将图像转成二值图像I=imread(A);II=im2bw(I);%灰度图和彩图均可imshow(II)%graythresh()通过otsu方法得到图像二值化时的阀值I=imread(A);I=rgb2gray(I);J=edge(I,'canny',graythresh(I));subplot(1,2,1),imshow(I),title('原图')subplot(1,2,2),imshow(J),title('边界图')%strel()创建由指定形状shape对应的结构元素,其中shape的种类有'arbitrary'、'pair'、'diamond'、'periodicline'、'disk'、'rectangle'、'line'、'square'、'octagon’s1=strel('square',6)%创建6*6的正方形s2=strel('line',10,45)%创建直线长度10,角度45s3=strel('disk',15)%创建圆盘半径15s4=strel('ball',15,5)%创建椭圆体,半径15,高度5%imdilate()、实现图像膨胀BW=zeros(9,10);BW(4:6,4:7)=1;SE=strel('square',3);BW2=imdilate(BW,SE);figure(1),imshow(BW,'notruesize')figure(2),imshow(BW2,'notruesize')%imerode()、实现函数腐蚀BW1=imread(A);SE=sterl('arbitrary',eye(5));BW2=imerode(BW1,SE);imshow(BW1)figure,imshow(BW2)%imopen()、打开文件se = strel('disk',5);I_opened = imopen(A,se);figure, imshow(I_opened,[])%imclose()、关闭文件W = imclose(A,se);figure, imshow(closeBW)题目B. 运行下面一段代码,体会形态学图像处理的几个基本操作及其作用(1)A='c:/cavin.jpg';I = imread(A);I=rgb2gray(I)subplot(1,2,1),imshow(I),title('原始图片')h = [0 1 0; 1 1 1; 0 1 0];II = imdilate(I, h);subplot(1,2,2),imshow(II),title('膨胀后图片')尝试改变上面代码中结构元素的大小和形状,运行查看结果(2)A='c:/cavin.jpg';I = imread(A);I=rgb2gray(I)subplot(1,2,1),imshow(I),title('原始图片')se = strel('disk', 10);II = imerode(I, se);subplot(1,2,2),imshow(II),title('腐蚀后图片')原始图片膨胀后图片将上面的结构元素大小分别改为5和20,运行代码,并与上面的结果比较并说明差异。