电磁场原理习题与解答

合集下载

大学电磁场考试题及答案

大学电磁场考试题及答案

大学电磁场考试题及答案一、单项选择题(每题2分,共20分)1. 电磁波在真空中的传播速度是:A. 300,000 km/sB. 299,792,458 m/sC. 1,000,000 km/sD. 299,792,458 km/s答案:B2. 麦克斯韦方程组中描述电磁场与电荷和电流关系的方程是:A. 高斯定律B. 法拉第电磁感应定律C. 麦克斯韦-安培定律D. 所有上述方程答案:D3. 以下哪项不是电磁场的基本概念?A. 电场B. 磁场C. 引力场D. 电磁波答案:C4. 根据洛伦兹力定律,一个带电粒子在磁场中的运动受到的力与以下哪个因素无关?A. 粒子的电荷量B. 粒子的速度C. 磁场的强度D. 粒子的质量答案:D5. 电磁波的波长和频率的关系是:A. 波长与频率成正比B. 波长与频率成反比C. 波长与频率无关D. 波长与频率的乘积是常数答案:B6. 以下哪项是电磁波的主要特性?A. 需要介质传播B. 具有粒子性C. 具有波动性D. 以上都是答案:C7. 电磁波在介质中的传播速度比在真空中:A. 快B. 慢C. 相同D. 无法确定答案:B8. 根据电磁波的偏振特性,以下说法正确的是:A. 只有横波可以偏振B. 纵波也可以偏振C. 所有波都可以偏振D. 只有电磁波可以偏振答案:A9. 电磁波的反射和折射遵循的定律是:A. 斯涅尔定律B. 牛顿定律C. 欧姆定律D. 法拉第电磁感应定律答案:A10. 电磁波的干涉现象说明了:A. 电磁波具有粒子性B. 电磁波具有波动性C. 电磁波具有量子性D. 电磁波具有热效应答案:B二、填空题(每空1分,共10分)1. 电磁波的传播不需要________,可以在真空中传播。

答案:介质2. 麦克斯韦方程组由四个基本方程组成,分别是高斯定律、高斯磁定律、法拉第电磁感应定律和________。

答案:麦克斯韦-安培定律3. 根据洛伦兹力定律,一个带电粒子在磁场中受到的力的大小与粒子的电荷量、速度以及磁场强度的乘积成正比,并且与粒子速度和磁场方向的________垂直。

电磁场的典型练习题及解答

电磁场的典型练习题及解答

电磁场的典型练习题及解答电磁学是物理学中的重要分支,研究电荷和电流所产生的电场和磁场的相互作用规律。

在学习电磁学的过程中,练习题是检验我们对理论知识掌握的有效方法。

本文将介绍一些典型的电磁场练习题,并给出详细的解答,帮助读者加深对电磁场的理解。

1. 题目:一根无限长直导线产生的电场强度已知一根无限长直导线,导线上带有均匀分布的电荷线密度λ。

求导线距离d处的电场强度E。

解答:根据库仑定律可知,电场强度E与电荷线密度λ成正比,与距离d 成反比。

所以可以得出结论:电场强度E和d满足反比关系。

2. 题目:两个点电荷的叠加效应已知两个点电荷q1和q2,分别位于坐标原点和坐标轴上一点P(x,0)。

求点P处的电场强度E。

解答:根据叠加原理,点P处的电场强度E等于点电荷q1和q2分别在点P处产生的电场强度之和。

由库仑定律可知,点电荷产生的电场强度与电荷量成正比,与距离的平方成反比。

根据该性质,可以分别求出点电荷q1和q2在点P处产生的电场强度,再将两者相加得到点P处的总电场强度。

3. 题目:平行板电容器的电场强度已知一对平行板电容器,两平行板间距离为d,电容器的电容为C。

求平行板电容器中的电场强度E。

解答:根据平行板电容器的结构特点,可知平行板电容器中的电场强度E对于两平行板之间的距离d是均匀的,且大小与电容C的倒数成正比。

所以可以得出结论:电场强度E和d满足正比关系,与电容C成正比。

4. 题目:磁场的洛伦兹力已知带电粒子以速度v在磁场B中运动,其电荷量为q。

求带电粒子所受的洛伦兹力F。

解答:根据洛伦兹力的定义,带电粒子所受的洛伦兹力F等于其电荷量q与速度v以及磁场B的矢量积。

通过对矢量积的计算,可以得到带电粒子所受的洛伦兹力F的大小和方向。

5. 题目:安培环路定理的应用已知一安培环路中有多个电流元素,它们的电流分别为I1,I2,I3...In。

求安培环路中的磁场强度B。

解答:根据安培环路定理,安培环路中的磁场强度B与电流元素的电流之和成正比。

大学电磁场考试题及答案

大学电磁场考试题及答案

大学电磁场考试题及答案一、选择题(每题2分,共20分)1. 电磁场中,电场与磁场的相互作用遵循以下哪个定律?A. 高斯定律B. 法拉第电磁感应定律C. 安培环路定律D. 洛伦兹力定律答案:D2. 在真空中,电磁波的传播速度是多少?A. 100,000 km/sB. 300,000 km/sC. 1,000,000 km/sD. 3,000,000 km/s答案:B3. 一个点电荷产生的电场强度与距离的平方成什么关系?A. 正比B. 反比C. 对数关系D. 线性关系答案:B4. 以下哪种介质不能支持电磁波的传播?A. 真空B. 空气C. 玻璃D. 金属答案:D5. 麦克斯韦方程组中描述变化电场产生磁场的方程是?A. 高斯定律B. 高斯磁定律C. 法拉第电磁感应定律D. 安培环路定律答案:C6. 一个均匀带电球壳内部的电场强度是多少?A. 零B. 与球壳内的电荷分布有关C. 与球壳外的电荷分布有关D. 与球壳的总电荷量成正比答案:A7. 电磁波的频率和波长之间有什么关系?A. 频率与波长成正比B. 频率与波长成反比C. 频率与波长无关D. 频率越大,波长越小答案:B8. 根据洛伦兹力公式,一个带电粒子在磁场中运动时,其受到的力的方向与什么因素有关?A. 粒子的速度B. 磁场的方向C. 粒子的电荷D. 所有上述因素答案:D9. 电磁波的偏振现象说明电磁波是横波,这是因为?A. 电磁波的振动方向与传播方向垂直B. 电磁波的振动方向与传播方向平行C. 电磁波的传播不需要介质D. 电磁波在真空中传播速度最快答案:A10. 一个闭合电路中的感应电动势遵循以下哪个定律?A. 欧姆定律B. 基尔霍夫电压定律C. 法拉第电磁感应定律D. 安培环路定律答案:C二、填空题(每题2分,共20分)11. 电磁波的传播不需要______,因此它可以在真空中传播。

答案:介质12. 根据麦克斯韦方程组,电荷守恒定律可以表示为:∇⋅ E =______。

电磁场理论习题及答案

电磁场理论习题及答案

电磁场理论习题及答案电磁场理论是电磁学的基础,它描述了电荷和电流产生的电磁场在空间中的分布和演化规律。

在学习电磁场理论时,习题是巩固和深化理解的重要方式。

本文将介绍一些电磁场理论的习题及其答案,帮助读者更好地掌握这一理论。

一、电场和电势1. 问题:一个均匀带电球体,半径为R,总电荷为Q。

求球心处的电场强度。

答案:根据库仑定律,电场强度E与电荷Q和距离r的关系为E = kQ/r^2,其中k为库仑常数。

对于球体内部的点,距离球心的距离r小于半径R,所以电场强度为E = kQ/r^2。

对于球体外部的点,距离球心的距离r大于半径R,所以电场强度为E = kQ/R^3 * r。

2. 问题:一个无限长的均匀带电线,线密度为λ。

求距离线上一点距离为r处的电势。

答案:根据电势公式V = kλ/r,其中k为库仑常数。

所以距离线上一点距离为r处的电势为V = kλ/r。

二、磁场和磁感应强度1. 问题:一根无限长的直导线,电流为I。

求距离导线距离为r处的磁感应强度。

答案:根据安培环路定理,磁感应强度B与电流I和距离r的关系为B =μ0I/2πr,其中μ0为真空中的磁导率。

所以距离导线距离为r处的磁感应强度为B = μ0I/2πr。

2. 问题:一根长为L的直导线,电流为I。

求距离导线距离为r处的磁场强度。

答案:根据比奥萨伐尔定律,磁场强度H与电流I和距离r的关系为H = I/2πr。

所以距离导线距离为r处的磁场强度为H = I/2πr。

三、电磁场的相互作用1. 问题:一个半径为R的导体球,带电量为Q。

求导体球表面的电荷密度。

答案:导体球表面的电荷密度σ等于导体球上的电荷总量Q除以导体球表面的面积A。

导体球表面的面积A等于球的表面积4πR^2。

所以导体球表面的电荷密度为σ = Q/4πR^2。

2. 问题:一个平行板电容器,两个平行金属板之间的距离为d,电介质的介电常数为ε。

一块电介质板插入到电容器中间,使得电容器的电容增加了n倍。

电磁场考试试题及答案

电磁场考试试题及答案

电磁场考试试题及答案一、选择题1. 下列哪个物理量不是描述电磁场的基本量?A. 电场强度B. 磁感应强度C. 电势D. 磁化强度2. 静电场的本质特征是:A. 磁场产生于电场B. 电场产生于静电荷C. 电场与磁场相互作用D. 电场与静电荷相互作用3. 关于电磁场的能量密度,以下说法正确的是:A. 电磁场的能量密度只与电场强度有关B. 电磁场的能量密度只与磁感应强度有关C. 电磁场的能量密度与电场和磁感应强度都有关D. 电磁场的能量密度与电荷和电流有关4. 电磁波中电场和磁场的相互关系是:A. 电场和磁场以90°的相位差波动B. 电场和磁场以180°的相位差波动C. 电场和磁场处于同相位波动D. 电场和磁场没有固定的相位关系5. 有一根长直导线,通有电流,要使其产生的磁场最强,应将观察点放置在:A. 导线的外侧B. 导线的内侧C. 导线的中央D. 对称轴上二、填空题1. 电荷为2μC的点电荷在距离它10cm处的电场强度大小为______ N/C。

2. 一根长度为50cm的直导线通有5A的电流,它产生的磁感应强度大小为______ T。

三、简答题1. 什么是电磁场?它的基本特征是什么?电磁场是一种通过电荷和电流相互作用而产生的物质场。

它基于电荷和电流的特性,表现为电场和磁场的存在和相互作用。

电磁场的基本特征包括:电场与静电荷相互作用,磁场与电流相互作用,电磁场遵循麦克斯韦方程组等。

2. 电场与磁场有何区别和联系?电场是由电荷产生的一种物质场,描述电荷对其他电荷施加的作用力的特性。

而磁场则是由电流产生的一种物质场,描述电流对其他电流施加的作用力的特性。

电场和磁场之间存在密切的联系,根据麦克斯韦方程组的推导可知,变化的电场会产生磁场,而变化的磁场也会产生电场。

3. 什么是电磁波?其特点是什么?电磁波是由电场和磁场相互耦合在空间中传播的波动现象。

其特点包括:- 电磁波是横波,电场与磁场的振动方向垂直于波传播方向。

(完整版)大学物理电磁场练习题含答案

(完整版)大学物理电磁场练习题含答案

前面是答案和后面是题目,大家认真对对. 三、稳恒磁场答案1-5 CADBC 6-8 CBC 三、稳恒磁场习题1. 有一个圆形回路1及一个正方形回路2,圆直径和正方形的边长相等,二者中通有大小相等的电流,它们在各自中心产生的磁感强度的大小之比B 1 / B 2为 (A) 0.90. (B) 1.00.(C) 1.11. (D) 1.22. [ ]2.边长为l 的正方形线圈中通有电流I ,此线圈在A 点(见图)产生的磁感强度B 为(A) l I π420μ. (B) l Iπ220μ.(C)l Iπ02μ. (D) 以上均不对. [ ]3.通有电流I 的无限长直导线有如图三种形状,则P ,Q ,O 各点磁感强度的大小B P ,B Q ,B O 间的关系为:(A) B P > B Q > B O . (B) B Q > B P > B O .(C) B Q > B O > B P . (D) B O > B Q > B P .[ ]4.无限长载流空心圆柱导体的内外半径分别为a 、b ,电流在导体截面上均匀分布,则空间各处的B ϖ的大小与场点到圆柱中心轴线的距离r 的关系定性地如图所示.正确的图是 [ ]5.电流I 由长直导线1沿平行bc 边方向经a 点流入由电阻均匀的导线构成的正三角形线框,再由b 点沿垂直ac 边方向流出,经长直导线2返回电源(如图).若载流直导线1、2和三角形框中的电流在框中心O 点产生的磁感强度分别用1B ϖ、2B ϖ和3Bϖ表示,则O 点的磁感强度大小(A) B = 0,因为B 1 = B 2 = B 3 = 0.(B) B = 0,因为虽然B 1≠ 0、B 2≠ 0,但021=+B B ϖϖ,B 3 = 0.(C) B ≠ 0,因为虽然B 2 = 0、B 3= 0,但B 1≠ 0.(D) B ≠ 0,因为虽然021≠+B B ϖϖ,但B 3≠ 0. [ ]6.电流由长直导线1沿半径方向经a 点流入一电阻均匀的圆环,再由b 点沿切向从圆环流出,经长导线2返回电源(如图).已知直导线上电流强度为I ,圆环的半径为R ,且a 、b 与圆心O 三点在同一直线上.设直电流1、2及圆环电流分别在O 点产生的磁感强度为1B ϖ、2B ϖ及3Bϖ,则O 点的磁感强度的大小(A) B = 0,因为B 1 = B 2 = B 3 = 0.(B) B = 0,因为021=+B B ϖϖ,B 3= 0.(C) B ≠ 0,因为虽然B 1 = B 3 = 0,但B 2≠ 0. (D) B ≠ 0,因为虽然B 1 = B 2 = 0,但B 3≠ 0.(E) B ≠ 0,因为虽然B 2 = B 3 = 0,但B 1≠ 0. [ ] v7.电流由长直导线1沿切向经a 点流入一个电阻均匀的圆环,再由b 点沿切向从圆环流出,经长直导线2返回电源(如图).已知直导线上电流强度为I ,圆环的半径为R ,且a 、b 和圆心O 在同一直线上.设长直载流导线1、2和圆环中的电流分别在O 点产生的磁感强度为1B ϖ、2B ϖ、3Bϖ,则圆心处磁感强度的大小(A) B = 0,因为B 1 = B 2 = B 3 = 0.(B) B = 0,因为虽然B 1≠ 0、B 2≠ 0,但021=+B B ϖϖ,B 3 = 0.(C) B ≠ 0,因为B 1≠ 0、B 2≠ 0,B 3≠ 0.(D) B ≠ 0,因为虽然B 3= 0,但021≠+B B ϖϖ. [ ]8.a R r OO ′I在半径为R 的长直金属圆柱体内部挖去一个半径为r 的长直圆柱体,两柱体轴线平行,其间距为a ,如图.今在此导体上通以电流I ,电流在截面上均匀分布,则空心部分轴线上O ′点的磁感强度的大小为(A) 2202R a a I ⋅πμ (B)22202R r a a I -⋅πμ(C) 22202r R a a I-⋅πμ (D) )(222220a r Ra a I -πμ [ ]参考解:导体中电流密度)(/22r R I J -π=.设想在导体的挖空部分同时有电流密度为J 和-J 的流向相反的电流.这样,空心部分轴线上的磁感强度可以看成是电流密度为J 的实心圆柱体在挖空部分轴线上的磁感强度1B ϖ和占据挖空部分的电流密度-J 的实心圆柱在轴线上的磁感强度2B ϖ的矢量和.由安培环路定理可以求得02=B , )(222201r R a Ia B -π=μ 所以挖空部分轴线上一点的磁感强度的大小就等于)(22201r R IaB -π=μ 9. πR 2c3分10.221R B π-3分11. 6.67×10-7 T 3分7.20×10-7 A ·m 2 2分12. 减小 2分在2/R x <区域减小;在2/R x >区域增大.(x 为离圆心的距离) 3分13. 0 1分I 0μ- 2分14. 4×10-6 T 2分 5 A 2分15. I0μ 1分 0 2分2I0μ 2分16. 解:①电子绕原子核运动的向心力是库仑力提供的.即∶ 02202041a m a e v =πε,由此得 002a m e επ=v 2分②电子单位时间绕原子核的周数即频率000142a m a e a ενππ=π=v 2分 由于电子的运动所形成的圆电流00214a m a e e i ενππ== 因为电子带负电,电流i 的流向与 v ϖ方向相反 2分 ③i 在圆心处产生的磁感强度002a i B μ=00202018a m a eεμππ= 其方向垂直纸面向外 2分17.1 234 R ROI a β2解:将导线分成1、2、3、4四部份,各部分在O 点产生的磁感强度设为B 1、B 2、B 3、B 4.根据叠加原理O 点的磁感强度为:4321B B B B B ϖϖϖϖϖ+++= ∵ 1B ϖ、4B ϖ均为0,故32B B B ϖϖϖ+= 2分)2(4102R I B μ= 方向⊗ 2分 242)sin (sin 401203R I a I B π=-π=μββμ)2/(0R I π=μ 方向 ⊗ 2分其中 2/R a =, 2/2)4/sin(sin 2=π=β 2/2)4/sin(sin 1-=π-=β∴ R I R I B π+=2800μμ)141(20π+=R I μ 方向 ⊗ 2分 18. 解:电流元1d l I ϖ在O 点产生1d B ϖ的方向为↓(-z 方向) 电流元2d l I ϖ在O 点产生2d B ϖ的方向为⊗(-x 方向) 电流元3d l I ϖ在O 点产生3d B ϖ的方向为⊗ (-x 方向) 3分kR I i R IB ϖϖϖπ-+ππ-=4)1(400μμ 2分 19. 解:设x 为假想平面里面的一边与对称中心轴线距离,⎰⎰⎰++==Rx RRxrl B r l B S B d d d 21Φ, 2分d S = l d r2012R IrB π=μ (导线内) 2分r I B π=202μ (导线外) 2分)(42220x R R Il -π=μΦR R x Il +π+ln20μ 2分 令 d Φ / d x = 0, 得Φ 最大时 Rx )15(21-= 2分20. 解:洛伦兹力的大小 B q f v = 1分对质子:1211/R m B q v v = 1分 对电子: 2222/R m B q v v = 1分∵ 21q q = 1分 ∴ 2121//m m R R = 1分21.解:电子在磁场中作半径为)/(eB m R v =的圆周运动. 2分连接入射和出射点的线段将是圆周的一条弦,如图所示.所以入射和出射点间的距离为:)/(3360sin 2eB m R R l v ==︒= 3分2解:在任一根导线上(例如导线2)取一线元d l ,该线元距O 点为l .该处的磁感强度为θμsin 20l I B π=2分 方向垂直于纸面向里. 1分电流元I d l 受到的磁力为 B l I F ϖϖϖ⨯=d d 2分其大小θμsin 2d d d 20l lI l IB F π== 2分 方向垂直于导线2,如图所示.该力对O 点的力矩为 1分θμsin 2d d d 20π==lI F l M 2分 任一段单位长度导线所受磁力对O 点的力矩⎰⎰+π==120d sin 2d l l l I M M θμθμsin 220π=I 2分 导线2所受力矩方向垂直图面向上,导线1所受力矩方向与此相反.23. (C) 24. (B)25. 解: ===l NI nI H /200 A/m3分===H H B r μμμ0 1.06 T 2分26. 解: B = Φ /S=2.0×10-2 T 2分===l NI nI H /32 A/m 2分 ==H B /μ 6.25×10-4 T ·m/A 2分=-=1/0μμχm 496 2分9. 一磁场的磁感强度为k c j b i a B ϖϖϖϖ++= (SI),则通过一半径为R ,开口向z 轴正方向的半球壳表面的磁通量的大小为____________Wb .10.任意曲面在匀强磁场B ϖ中,取一半径为R 的圆,圆面的法线n ϖ与B ϖ成60°角,如图所示,则通过以该圆周为边线的如图所示的任意曲面S 的磁通量==⎰⎰⋅Sm S B ϖϖd Φ_______________________.11. 一质点带有电荷q =8.0×10-10 C ,以速度v =3.0×105 m ·s -1在半径为R =6.00×10-3 m 的圆周上,作匀速圆周运动.该带电质点在轨道中心所产生的磁感强度B =__________________,该带电质点轨道运动的磁矩p m =___________________.(μ0 =4π×10-7 H ·m -1)12. 载有一定电流的圆线圈在周围空间产生的磁场与圆线圈半径R 有关,当圆线圈半径增大时,(1) 圆线圈中心点(即圆心)的磁场__________________________.(2) 圆线圈轴线上各点的磁场________如图,平行的无限长直载流导线A 和B ,电流强度均为I ,垂直纸面向外,两根载流导线之间相距为a ,则(1) AB 中点(P 点)的磁感强度=p B ϖ_____________.(2) 磁感强度B ϖ沿图中环路L 的线积分 =⎰⋅L l B ϖϖd ______________________.14. 一条无限长直导线载有10 A 的电流.在离它 0.5 m 远的地方它产生的磁感强度B 为______________________.一条长直载流导线,在离它 1 cm 处产生的磁感强度是10-4 T ,它所载的电流为__________________________.两根长直导线通有电流I ,图示有三种环路;在每种情况下,⎰⋅lB ϖϖd 等于:____________________________________(对环路a ).____________________________________(对环路b ).____________________________________(对环路c ).设氢原子基态的电子轨道半径为a 0,求由于电子的轨道运动(如图)在原子核处(圆心处)产生的磁感强度的大小和方向.17.一根无限长导线弯成如图形状,设各线段都在同一平面内(纸面内),其中第二段是半径为R 的四分之一圆弧,其余为直线.导线中通有电流I ,求图中O 点处的磁感强度.18.z y xR 1 321d l I ϖ2d l I ϖ3d l I ϖO如图,1、3为半无限长直载流导线,它们与半圆形载流导线2相连.导线1在xOy平面内,导线2、3在Oyz 平面内.试指出电流元1d l I ϖ、2d l I ϖ、3d l I ϖ在O 点产生的Bϖd 的方向,并写出此载流导线在O 点总磁感强度(包括大小与方向).19.一根半径为R 的长直导线载有电流I ,作一宽为R 、长为l 的假想平面S ,如图所示。

初中电磁场考试题及答案

初中电磁场考试题及答案

初中电磁场考试题及答案
1. 电磁场的基本概念
电磁场是由变化的电场和磁场相互作用而产生的物理现象。

电场是由电荷产生的,而磁场则是由运动的电荷产生的。

电磁场的传播速度等于光速。

2. 电磁感应现象
当导体在磁场中运动时,会在导体中产生电动势,这种现象称为电磁感应。

根据法拉第电磁感应定律,感应电动势的大小与磁通量变化率成正比。

3. 电磁波的传播
电磁波是由变化的电场和磁场相互作用而产生的波动现象。

电磁波可以在真空中传播,其传播速度为光速,即每秒约300,000公里。

4. 电磁波的应用
电磁波在现代通信、广播、雷达等领域有着广泛的应用。

例如,无线电波用于无线通信,微波用于雷达探测,红外线用于遥感探测等。

5. 电磁场的生物效应
电磁场对生物体有一定的影响,如对细胞的生物电活动产生干扰。

长期暴露在高强度电磁场中可能会对人体产生一定的健康风险。

答案:
1. 电磁场是由变化的电场和磁场相互作用而产生的物理现象。

2. 电磁感应现象是指当导体在磁场中运动时,在导体中产生电动势的现象。

3. 电磁波是由变化的电场和磁场相互作用而产生的波动现象,其传播
速度为光速。

4. 电磁波在现代通信、广播、雷达等领域有着广泛的应用。

5. 电磁场对生物体有一定的影响,长期暴露在高强度电磁场中可能会对人体产生一定的健康风险。

(完整版)电磁场试题及答案

(完整版)电磁场试题及答案

(完整版)电磁场试题及答案⼀、填空1.⽅程▽2φ=0称为静电场的(拉普拉斯(微分))⽅程2.在静电平衡条件下,导体内部的电场强度E 为(0)3.线性导电媒质是指电导率不随(空间位置)变化⽽变化4.局外电场是由(局外⼒)做功产⽣的电场5.电感线圈中的磁场能量与电流的平⽅(成正⽐)6.均匀平⾯电磁波中,E 和I 均与波的传播⽅向(垂直)7.良导体的衰减常数α≈(β≈2ωµγ) 8.真空中,恒定磁场安培环路定理的微分形式(▽x B=0µJ ) 9.在库伦规范和⽆穷远参考点前提下,⾯电流分布的⽮量的磁位公式(A=?RIdl 40πµ)公式3-43 10.在导体中,电场⼒移动电荷所做的功转化为(热能)11. 在静电平衡条件下,由导体中E=0,可以得出导体内部电位的梯度为(0 )(p4页)12.电源以外的恒定电场中,电位函数满⾜的偏微分⽅程为----- (p26页)13.在⽆源⾃由空间中,阿拉贝尔⽅程可简化为----------波动⽅程。

瞬时值⽮量齐次(p145页)14.定义位移电流密度的微分表达式为------------ t ??D =0εt ??E +tP ?? (p123页) 15.设电场强度E=4,则0 P12页16.在单位时间内,电磁场通过导体表⾯流⼊导体内部的能量等于导线电阻消耗的(热能)17.某⼀⽮量场,其旋度处处为零,则这个⽮量场可以表⽰成某⼀标量函数的(梯度)18.电流连续性⽅程的积分形式为(s dS j =-dtdq ) 19.两个同性电荷之间的作⽤⼒是(相互排斥的)20.单位⾯积上的电荷多少称为(⾯电荷密度)21.静电场中,导体表⾯的电场强度的边界条件是:(D1n-D2n=ρs )22.⽮量磁位A 和磁感应强度B 之间的关系式:( =▽ x )23.E (Z ,t )=e x E m sin (wt-kz-错误!未找到引⽤源。

)+ e y E m cos (wt-kz+错误!未找到引⽤源。

电磁场考试试题及答案

电磁场考试试题及答案

电磁场考试试题及答案一、选择题(每题5分,共20分)1. 麦克斯韦方程组描述了电磁场的基本规律,下列哪一项不是麦克斯韦方程组中的方程?A. 高斯定律B. 法拉第电磁感应定律C. 欧姆定律D. 安培环路定律答案:C2. 在电磁波传播过程中,电场和磁场的相位关系是:A. 相位相同B. 相位相反C. 相位相差90度D. 相位相差180度答案:C3. 根据洛伦兹力定律,带电粒子在磁场中运动时受到的力的方向是:A. 与速度方向相同B. 与速度方向相反C. 与速度方向垂直D. 与磁场方向垂直答案:C4. 以下哪种介质的磁导率不是常数?A. 真空B. 铁C. 铜D. 空气答案:B二、填空题(每题5分,共20分)1. 根据高斯定律,通过任何闭合表面的电通量与该闭合表面所包围的总电荷量成正比,比例常数为____。

答案:\(\frac{1}{\varepsilon_0}\)2. 法拉第电磁感应定律表明,闭合回路中的感应电动势等于通过该回路的磁通量变化率的负值,其数学表达式为 \(\mathcal{E} = -\frac{d\Phi_B}{dt}\),其中 \(\Phi_B\) 表示____。

答案:磁通量3. 根据安培环路定律,磁场 \(\vec{B}\) 在闭合回路上的线积分等于该回路所包围的总电流乘以比例常数 \(\mu_0\),其数学表达式为\(\oint \vec{B} \cdot d\vec{l} = \mu_0 I_{\text{enc}}\),其中\(I_{\text{enc}}\) 表示____。

答案:回路所包围的总电流4. 电磁波在真空中的传播速度为 \(c\),其值为 \(3 \times 10^8\) 米/秒,该速度也是光速,其物理意义是____。

答案:电磁波在真空中传播的速度三、简答题(每题15分,共40分)1. 简述电磁波的产生机制。

答案:电磁波是由变化的电场和磁场相互作用产生的。

当电场变化时,会在周围空间产生磁场;同样,变化的磁场也会在周围空间产生电场。

电磁场原理习题与解答(第5章)

电磁场原理习题与解答(第5章)

第五章习题答案5-2 如题图所示,一半径为a 的金属圆盘,在垂直方向的均匀磁场B 中以等角速度ω旋转,其轴线与磁场平行。

在轴与圆盘边缘上分别接有一对电刷。

这一装置称为法拉第发电机。

试证明两电刷之间的电压为22ωBa 。

证明:,选圆柱坐标, ρφe vB e B e v B v E z ind=⨯=⨯=其中 φρωe v=22ωρρωρερρa B d B e d e v B l d E aal ind====⎰⎰⎰∙∙∴证毕 5-3解:5-4 一同轴圆柱形电容器,其内、外半径分别为cm r 11=、cm r 42=,长度cm l 5.0=,极板间介质的介电常数为04ε,极板间接交流电源,电压为V t 10026000u πsin =。

求s t 0.1=时极板间任意点的位移电流密度。

解法一:因电源频率较低,为缓变电磁场,可用求静电场方法求解。

忽略边沿效应,电容器中的场为均匀场,选用圆柱坐标,设单位长度上内导体的电荷为τ,外导体电荷为τ-,因题图5-2zvρ此有ρρπετe 2E 0=21r r <<ρ1200222121r r d dl E u r r r r lnπετρρπετ===⎰⎰∙1202r r u ln=∴πετ所以ρρer r u E 12 ln =, ρρεer r u D 12ln=2A/mρρππρερεe t 10010026000r r e tu r r tD J 1212dcos ln ln ⨯=∂∂=∂∂=当s t 1=时2512A/m10816100100260004108584ρρρππρe e J d--⨯=⨯⨯⨯⨯=.cos ln .解法二:用边值问题求解,即⎪⎩⎪⎨⎧=====∇401u 02ρϕρϕϕ 由圆柱坐标系有0)(1=∂∂∂∂ρϕρρρ(1)解式(1)得 21ln c c +=ρϕ由边界条件得: 4u c 1ln -= u c 2=u 4u +-=∴ρϕln ln所以 ρρπϕe 4t10026000Eln sin =-∇=ρρπεεe 4t 100260004E D 0ln sin ==ρπρπεe 1004t 100260004t D J 0D⨯=∂∂=ln cos当s t 1=时)(.25D mAe 10816J ρρ-⨯=5-5由圆形极板构成的平板电容器)(d a >>见题图所示,其中损耗介质的电导率为γ、介电系数为ε、磁导率为μ,外接直流电源并忽略连接线的电阻。

电磁原理基础理论知识单选题100道及答案解析

电磁原理基础理论知识单选题100道及答案解析

电磁原理基础理论知识单选题100道及答案解析1. 下列哪位科学家发现了电磁感应现象?()A. 安培B. 法拉第C. 奥斯特D. 库仑答案:B解析:法拉第发现了电磁感应现象。

2. 通电导线周围存在磁场,其方向可用()定则来判断。

A. 左手B. 右手C. 安培D. 楞次答案:C解析:通电导线周围磁场方向用安培定则判断。

3. 变化的磁场能够产生电场,这是()的重要结论。

A. 法拉第电磁感应定律B. 麦克斯韦电磁场理论C. 楞次定律D. 安培定律答案:B解析:麦克斯韦电磁场理论指出变化的磁场能够产生电场。

4. 以下哪种材料的磁导率最高?()A. 空气B. 铁C. 铜D. 铝答案:B解析:铁是磁性材料,磁导率较高。

5. 电磁感应现象中,产生的感应电动势的大小与()成正比。

A. 磁通量的变化量B. 磁通量的变化率C. 磁场强度D. 导线长度答案:B解析:感应电动势的大小与磁通量的变化率成正比。

6. 真空中电磁波的传播速度是()。

A. 3×10^5 m/sB. 3×10^6 m/sC. 3×10^7 m/sD. 3×10^8 m/s答案:D解析:真空中电磁波的传播速度约为3×10^8 m/s。

7. 以下哪种电磁波的频率最高?()A. 无线电波B. 红外线C. 紫外线D. X 射线答案:D解析:X 射线的频率高于紫外线、红外线和无线电波。

8. 楞次定律是用来判断()。

A. 感应电流的方向B. 磁场的方向C. 感应电动势的大小D. 磁通量的大小答案:A解析:楞次定律用于判断感应电流的方向。

9. 一个线圈的自感系数与()无关。

A. 电流B. 线圈匝数C. 有无铁芯D. 线圈的几何形状答案:A解析:自感系数与电流无关。

10. 互感现象中,互感系数与()有关。

A. 两个线圈的距离B. 两个线圈中的电流C. 两个线圈的电压D. 两个线圈的电阻答案:A解析:互感系数与两个线圈的距离等因素有关。

电磁场习题解答

电磁场习题解答

1—2—2、求下列情况下,真空中带电面之间的电压。

(2)、无限长同轴圆柱面,半径分别为a 和b (a b >),每单位长度上电荷:内柱为τ而外柱为τ-。

解:同轴圆柱面的横截面如图所示,做一长为l 半径为r (b r a <<)且与同轴圆柱面共轴的圆柱体。

对此圆柱体的外表面应用高斯通量定理,得l S D sτ=⋅⎰d考虑到此问题中的电通量均为r e即半径方向,所以电通量对圆柱体前后两个端面的积分为0,并且在圆柱侧面上电通量的大小相等,于是l rD l τπ=2即 r e rD πτ2=, r e r E02πετ= 由此可得 a b r e e r r E U ba r rb aln 2d 2d 00⎰⎰επτ=⋅επτ=⋅=1—2—3、高压同轴线的最佳尺寸设计——高压同轴圆柱电缆,外导体的内半径为cm 2,内外导体间电介质的击穿场强为kV/cm 200。

内导体的半径为a ,其值可以自由选定但有一最佳值。

因为a 太大,内外导体的间隙就变得很小,以至在给定的电压下,最大的E 会超过介质的击穿场强。

另一方面,由于E 的最大值m E 总是在内导体的表面上,当a 很小时,其表面的E 必定很大。

试问a 为何值时,该电缆能承受最大电压?并求此最大电压。

(击穿场强:当电场增大达到某一数值时,使得电介质中的束缚电荷能够脱离它的分子 而自由移动,这时电介质就丧失了它的绝缘性能,称为击穿。

某种材料能安全地承受的最大电场强度就称为该材料的击穿强度)。

解:同轴电缆的横截面如图,设同轴电缆内导体每单位长度所带电荷的电量为τ,则内外导体之间及内导表面上的电场强度分别为r E πετ2=, aE πετ2max = 而内外导体之间的电压为abr r r E U ba ba ln 2d 2d πετπετ⎰⎰===或 )ln(max ab aE U =0]1)[ln(a d d max =-+=abE U 即 01ln =-a b , cm 736.0e==ba V)(1047.1102736.0ln 55max max ⨯=⨯⨯==ab aE U1—3—3、两种介质分界面为平面,已知014εε=,022εε=,且分界面一侧的电场强度V /m 1001=E ,其方向与分界面的法线成045的角,求分界面另一侧的电场强度2E 的值。

电磁场原理习题与解答(第2章)

电磁场原理习题与解答(第2章)
因为,所以静电力沿z负方向,有将液体吸向空气的趋势。升 高液体的重力为

所以: 第二步 单独作用产生的电场强度为,如图(c)所示。
第三步 将和在空洞中产生的场进行叠加,即 注: 2-7半径为 a介电常数为ε的介质球内,已知极化强度 (k为常数)。 试求:(1)极化电荷体密度和面密度 ;
(2)自由电荷体密度 ; (3)介质球内、外的电场强度。 解:(1) ,
(2) 因为是均匀介质,有
的电场与方位角无关,这样处取的元电荷,它产生的电场与点电荷产生
的场相同,为:
z
y
l/2
图2-2长直线电荷周围的电场
l/2
P
其两个分量:
(1)
(2)

所以:
(3)
式(3)分别代入式(1)(2)得:

(4)

(5)
式(5)代入式(4)得:
由于对称性,在z方向 分量互相抵消,故有
(2)建立如图所示的坐标系
应用叠加原理计算电场强度时,要注意是矢量的叠加。
2-4 真空中的两电荷的量值以及它们的位置是已知的,如题图2-4所示, 试写出电位和电场的表达式。 解:为子午面场,对称轴为极轴,因此选球坐标系,由点电荷产生的电 位公式得:
又,
题图2-4
2-5解, (1) 由静电感应的性质和电荷守恒原理,充电到U0后将ቤተ መጻሕፍቲ ባይዱ源拆去,各极 板带电情况如图(1)所示
解:设导电平板的面积为S。两平行板间的间隔为d=1cm。显然, 绝缘导电片的厚度。平板间的电压为。
(1) 忽略边缘效应,未插入绝缘导电片时
插入导电片后
所以,导电片中吸收的能量为
这部分能量使绝缘导电片中的正、负电荷分离,在导电片进入极板间 时,做机械工。

电磁感应练习题及

电磁感应练习题及

电磁感应练习题及解答电磁感应练习题及解答电磁感应是物理学中的一个重要概念,涉及到电磁场的变化过程中电场和磁场相互作用产生的现象。

它在日常生活和科学研究中都有广泛的应用。

下面是一些电磁感应练习题及解答,供大家进行练习。

1. 一根长导线以速度v从北向南方向通过均匀磁场B,该导线的两端分别连接一个电阻为R的电灯泡。

求当导线通过磁场过程中,电灯泡亮起的时间。

解答:根据法拉第电磁感应定律,导线通过磁场时产生感应电动势,导致电流流过电灯泡。

所以,在导线通过磁场期间,电灯泡会一直亮起。

因此,电灯泡亮起的时间等于导线通过磁场的时间。

2. 一个长方形线圈的边长为a和b,放置在匀强磁场B中,使得长方形线圈的法线与磁场方向垂直。

求长方形线圈在匀强磁场中的磁通量。

解答:根据法拉第电磁感应定律,在匀强磁场中,线圈的磁通量可以通过以下公式计算:Φ = B * A * cosθ,其中B表示磁场强度,A表示线圈的面积,θ表示磁场方向与线圈法线方向之间的夹角。

由于线圈的法线与磁场方向垂直,θ为0,所以磁通量Φ = B * A。

3. 在一个闭合导线中有一个直径为d的圆环,该圆环的电阻为R。

当一个恒定的磁场B垂直于圆环平面时,求圆环上感应的电动势。

解答:根据法拉第电磁感应定律,当磁场的变化导致一个闭合回路中的磁通量发生改变时,会在回路中产生感应电动势。

在这个问题中,磁场是恒定的,所以不会产生感应电动势。

4. 一个导线带有电流I,在该导线旁边有另一条导线,它们平行。

第二条导线的长度为L,并且距离第一条导线的距离为d。

求第二条导线中感应的电动势。

解答:当电流从第一条导线中流过时,会在周围产生磁场。

第二条导线因为位于磁场中,所以会感受到这个磁场产生的磁通量的改变。

根据法拉第电磁感应定律,第二条导线中的感应电动势可以通过以下公式计算:ε = -dΦ/dt,其中Φ表示磁通量的变化率。

在这个问题中,需要计算第二条导线中的磁通量的变化率,并由此得出感应电动势。

电磁场试题含答案

电磁场试题含答案
PD
F -T O O L S
PD
F -T O O L S
!
W
N O
y
bu
to
om
to
bu
ww
y
N O
.c
W C
re
!
tr
ac
C
tr
ac
k e r- s o ft w a
k e r- s o ft w a
re
一、基本概念; 1. 指出下列变量的单位: 电场强度 N/C 、磁场强度 A/m 、坡印廷向量 J/(m2.s ) 、电位 V 、极化强度 C/m 、电通量密度 V/m 、磁化强度 A/m 、电感 H 、 能量密度 J/m3 、 介电常数 F/m 、 传播常数 m-1 、 电偶极矩 D 、 导纳 S 2. 解释名词: 散度、旋度、电场强度、传导电流、运流电流、位移电流、电位、梯度、电偶 极子、磁偶极子、束缚电荷、束缚电流、极化强度、磁化强度、电容、电感、 互感、能量密度、恒定电场、等位面、漏电流、铁磁物质、磁通、平面波、均 匀平面波、坡印廷向量、理想导体、理想介质 3. 主要内容: 电场、磁场边界条件;电场与电位的关系;真空中的电场;介质中的电场;真 空中的磁场;介质中的磁场;高斯定律;安培环路定律;同轴电缆中电场磁场 计算;磁通量的计算;直导线对线框的作用力;同轴线电容、漏电流、电导计 算; 二、填空题: 1、电场的最基本特征就是电场对 运动 或 静止的 电荷都有作用力。 2、在静电场中,导体内电场等于 0 ,导体是 等势体 体,导体表面是 等势 面 ,电力线 垂直 于导体表面。而在恒定电场中,导体内部可能存在 电场 。
7
10-10 数量级。由电场中的折射率
tan1 1 10 10 。由上式知,电流由良导体进入不良 tan 2 2 107

高三物理电磁场的基础练习题及答案

高三物理电磁场的基础练习题及答案

高三物理电磁场的基础练习题及答案一、选择题1. 以下哪个选项描述了电磁场正确的特性?a) 只有电荷会在电磁场中产生力b) 只有磁铁会在电磁场中产生力c) 电荷和磁铁都会在电磁场中产生力d) 只有电流会在电磁场中产生力答案:c2. 磁场的单位是:a) 牛顿/库仑b) 度c) 汤d) 物质/秒答案:c3. 以下哪个选项描述了一个正确的电磁场图案?a) 经过两个平行电容板的电场线是平行的b) 磁铁的磁场线从南极向北极c) 磁铁的磁场线从北极向南极d) 磁铁的磁场线是闭合环路答案:b4. 静止电荷周围产生的电场是:a) 仅由正电荷产生b) 仅由负电荷产生c) 由正负电荷共同产生d) 不产生电场答案:c5. 假设有两个相同大小的电荷,一个带正电,一个带负电。

将它们靠近一起时,它们之间的作用力是:a) 斥力b) 引力c) 中和d) 无法确定答案:b二、简答题1. 什么是电场?答:电场是一种存在于空间中的物理场,由电荷产生。

它是描述电荷周围电力相互作用的物理量,可以使带电粒子受到电场力的作用。

2. 什么是磁场?答:磁场是一种存在于空间中的物理场,由磁铁或电流产生。

它是描述磁力相互作用的物理量,可以使带电粒子或其他磁性物体受到磁场力的作用。

3. 电场力和磁场力之间有什么区别?答:电场力和磁场力都是电磁场中的力,但它们有一些区别。

电场力是由电荷产生的,作用在电荷上,大小与电荷的量和距离有关;而磁场力由磁铁或电流产生,作用在带电粒子或其他磁性物体上,大小与磁场的强度、带电粒子的速度和磁场的方向有关。

4. 什么是洛伦兹力?答:洛伦兹力是带电粒子在电磁场中所受的力,包括电场力和磁场力的合力。

它的大小和方向由带电粒子的电荷、速度、电场和磁场的强度决定。

5. 电磁感应定律和法拉第定律之间有什么关系?答:电磁感应定律是由法拉第定律推导而来的一个具体应用。

电磁感应定律指出,当磁通量通过一个线圈发生变化时,该线圈中将会产生感应电动势。

电磁场理论习题及答案6解读

电磁场理论习题及答案6解读

1. 在3z m =的平面内,长度0.5l m =的导线沿x 轴方向排列。

当该导线以速度24x y m v e e s=+在磁感应强度22363x y z B e x z e e xz T =+-的磁场中移动时,求感应电动势。

2.长度为l 的细导体棒位于xy 平面内,其一端固定在坐标原点。

当其在恒定磁场0z B e B =中以角速度ω旋转时,求导体棒中的感应电动势。

3.试推出在线性、无耗、各向同性的非均匀媒质中的麦克斯韦方程。

4.试由麦克斯韦方程推导出电流连续性方程J tρ∂∇⋅=-∂。

5.设真空中电荷量为q 的点电荷以速度()v vc 向正z 方向匀速运动,在0t =时刻经过坐标原点,计算任一点位移电流密度(不考虑滞后效应)。

R6.已知自由空间的磁场为0cos()/y H e H t kz A m ω=-式中的0H 、ω、k 为常数,试求位移电流密度和电场强度。

7. 由麦克斯韦方程出发,试导出静电场中点电荷的电场强度和泊松方程。

8.由麦克斯韦方程组出发,导出毕奥-萨伐尔定律。

9.如图所示,同轴电缆的内导体半径1a mm =,外导体内半径4b mm =,内、外导体间为空气介质,且电场强度为 8100cos(100.5)/r E e t z V m r=- (1)求磁场强度H 的表达式 (2)求内导体表面的电流密度; (3)计算01Z m ≤≤中的位移电流。

10.试由麦克斯韦方程组中的两个旋度方程和电流连续性方程,导出麦克斯韦方程组中的两个散度方程。

11.如图所示,两种理想介质,介电常数分别为1ε和2ε,分界面上没有自由电荷。

在分界面上,静电场电力线在介质2,1中与分界面法线的夹角分别为1α和2α。

求1α和2α之间的关系。

12.写出在空气和∞=μ的理想磁介质之间分界面上的边界条件。

13.在由理想导电壁)(∞=r 限定的区域a x ≤≤0内存在一个由以下各式表示的电磁场:)cos()cos()sin()sin()()sin()sin()(000t kz axH H t kz a xa k H H t kz a xa H E z x y ωπωππωππμω-=-=-=这个电磁场满足的边界条件如何?导电壁上的电流密度的值如何?14.设电场强度和磁场强度分别为)cos()cos(00m e t H t E ψωψω+=+=证明其坡印廷矢量的平均值为)cos(2100m e av H E S ψψ-⨯=15.一个真空中存在的电磁场为0sin x E e jE kz = 0cos H e E kz ε= 其中2//k c πλω==是波长。

《电磁感应-电磁场》练习题及答案解析

《电磁感应-电磁场》练习题及答案解析

《电磁感应-电磁场》练习题及答案解析练习11. 选择题1. 一闭合正方形线圈放在均匀磁场中,绕通过其中心且与一边平行的转轴OO′转动,转轴与磁场方向垂直,转动角速度为ω,如图所示.用下述哪一种办法可以使线圈中感应电流的幅值增加到原来的两倍(导线的电阻不能忽略):( ) A. 把线圈的匝数增加到原来的两倍;B. 把线圈的面积增加到原来的两倍,而形状不变;C. 把线圈切割磁力线的两条边增长到原来的两倍;D. 把线圈的角速度增大到原来的两倍。

2. 将形状完全相同的铜环和木环静止放置,并使通过两环面的磁通量随时间的变化率相等,则不计自感时: ( ) A. 铜环中有感应电动势,木环中无感应电动势; B. 铜环中感应电动势大,木环中感应电动势小; C. 铜环中感应电动势小,木环中感应电动势大; D. 两环中感应电动势相等。

3. 对于位移电流,下列说法中正确的是 ( ) A. 与电荷的定向运动有关; B. 揭示了变化的电场能激发磁场; C. 产生焦耳热; D. 与传导电流一样。

4. 一圆形线圈在均匀磁场中作下列运动时,会产生感应电流的情况是 ( ) A. 沿垂直磁场方向平移;B. 以直径为轴转动,轴跟磁场垂直;C. 沿平行磁场方向平移;D. 以直径为轴转动,轴跟磁场平行。

OB2. 填空题1.如图所示,在一长直导线L中通有电流I,ABCD为一矩形线圈,它与L皆在纸面内,且AB边与L平行:(1) 矩形线圈在纸面内向右移动时,线圈中感应电动势方向为____________;(2) 矩形线圈绕AD边旋转,当BC边已离开纸面正向外运动时,线圈中感应动势的方向为_________________________。

2.引起动生电动势的非静电力是力;引起感生电动势的非静电力是力。

3.∮H⃗∙dlL=I+I d表明磁场强度沿任一闭合回路的线积分等于通过以该回路为边界的任意曲面的;∮E⃗∙dll =−dΦdt的物理意义是变化的磁场产生。

电磁场原理习题与解答(第2章)

电磁场原理习题与解答(第2章)
A B C D
(4)长圆柱中,有体密度为的电荷,与它偏轴地放有一半 径为a的无限长圆柱空洞,两者轴线平行且距离为d,如图2-6所示,求 空洞内的电场强度。 x y o
b (b)0 x y o d ( c) 图2-6 (a) 解:由于空洞存在,电荷分布不具有对称性,由此产生的场亦无对称 性,因此不能用高斯定律求解。这是可把空洞看作也充满,使圆柱体内 无空洞,然后再令空洞中充满-,并单独作用,分别求出两种场的分布 后叠加即可。设空洞内的电场强度为。 第一步 单独作用,如图(b)所示, 由体密度为的电荷产生的电场强 度为,由高斯定理
将电位参考点设在外导体上,即 则 , , 即 ,所以,内,外
2-9 用双层电介质制成的同轴电缆如题图2-9所示,介电常数 , 内、外导 体单位长度上所带电荷分别为和 (1)求两种电介质中以及 和处的电场强度与电通密度;
(2)求两种电介质中的电极化强度; (3)问何处有极化电荷,并求其密度。 解: (1)由高斯定理可得:
因此
(3) 球内电场, (r<a)
球外电场,由高斯定理:
, (r>a) 或
2-8 具有两层同轴介质的圆柱形电容器,内导体的直径为2cm,内层介 质的相对介电常数,外层的相对介电常数,要使两层介质中的最大场强 相等,并且内层介质所承受的电压和外层介质相等,问两层介质的厚度 各为多少? 解:以圆柱心为坐标原点,径向为轴,设单位长度上带电荷为,由高斯 定理,。 ,,
2-32 空气中,相隔1cm的两块平行导电平板充电到100V后脱离电 源,然后将一厚度为1mm的绝缘导电片插入两极间,问:
(1)忽略边缘效应,导电片吸收了多少能量?这部分能量起到了什 么作用?两板间的电压和电荷的改变量各为多少?最后存储在其中的能 量多大?
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第五章习题答案2sin ()2a vt a B dS N a k vt +-=+-⎰5-2 如题图所示,一半径为a 的金属圆盘,在垂直方向的均匀磁场B 中以等角速度ω旋转,其轴线与磁场平行。

在轴与圆盘边缘上分别接有一对电刷。

这一装置称为法拉第发电机。

试证明两电刷之间的电压为22ωBa 。

证明:,选圆柱坐标, ρφe vB e B e v B v E z ind=⨯=⨯= 其中 φρωe v=22ωρρωρερρa B d B e d e v B l d E aal ind ====⎰⎰⎰∙∙∴证毕 5-4 一同轴圆柱形电容器,其内、外半径分别为cm r 11=、cm r 42=,长度cm l 5.0=,极板间介质的介电常数为04ε,极板间接交流电源,电压为V t 10026000u πsin =。

求s t 0.1=时极板间任意点的位移电流密度。

解法一:因电源频率较低,为缓变电磁场,可用求静电场方法求解。

忽略边沿效应,电容器中的场为均匀场,选用圆柱坐标,设单位长度上内导体的电荷为τ,外导体电荷为τ-,因题图5-2zvρ此有ρρπετe 2E 0=21r r <<ρ1200222121r rd dl E u r r r r ln πετρρπετ===⎰⎰∙1202r ru ln =∴πετ 所以 ρρe r r u E 12ln =, ρρεe r r uD 12 ln =2A/m ρρππρερεe t 10010026000r r e tu r r tD J 1212dcos ln ln ⨯=∂∂=∂∂=当s t 1=时2512A/m 10816100100260004108584ρρρππρe e J d--⨯=⨯⨯⨯⨯=.cos ln .解法二:用边值问题求解,即⎪⎩⎪⎨⎧=====∇401u 02ρϕρϕϕ 由圆柱坐标系有0)(1=∂∂∂∂ρϕρρρ (1)解式(1)得21ln c c +=ρϕ由边界条件得: 4u c 1ln -= u c 2=u 4u +-=∴ρϕln ln所以 ρρπϕe 4t 10026000Eln sin =-∇=ρρπεεe 4t 100260004E D 0ln sin ==ρπρπεe 1004t 100260004t J 0D⨯=∂∂=ln cos 当s t 1=时)(.25D mAe 10816J ρρ -⨯=5-5由圆形极板构成的平板电容器)(d a >>见题图所示,其中损耗介质的电导率为γ、介电系数为ε、磁导率为μ,外接直流电源并忽略连接线的电阻。

试求损耗介质中的电场强度、磁场强度和坡印廷矢量,并根据坡印廷矢量求出平板电容器所消耗的功率。

dz UJ E e γγ==22I Ue e dφφγρπρ=所以坡印亭矢量为:2×H=()US E e ργρ=-外部空间进入电容器的总功率,即电容器消耗的功率为:222sU S dS R dγ-=⎰5-7解:设电容器间的电流为I ,取以坐标原点O 至介质中任意点的距离ρ为半径的球面,有:24C C sJ dS J I πρ==⎰I J e ρ=题图5-5CJ I E e ρ==4baI E dl πρ=⎰⎰4mab U abU b aπγ=-4D sab J dS b πεω-=⎰(4cos m abU b πγ=-采用圆柱坐标系z U E e = cos t t dε==∂∂则有:2lHdl I πρ==⎰cos 2m U H te dφωερω=5-9 在交变电磁场中,某材料的相对介电常数为81=r ε,电导率为S/m 24.=γ。

分别求频率Hz 11k f =、MHz 12=f 以及GHz 13=f 时位移电流密度和传导电流密度的比值。

解:传导电流C J 和位移电流D J 分别由以下公式计算E J γ=C , tDJ D ∂∂=所以传导电流和位移电流的幅值比为:()8-904.2 4.29.31081811102C D J K J f fγεωεωππ⨯=====⨯⨯⨯ 分别将三种频率代入式(1)中得:5101039K 3⨯=.=f 2101039K 6⨯=.=f 930K 910.==f5-11题图所示的一对平行长线中有电流t I t i m ωsin )(=。

求矩形线框中的感应电动势。

解:在圆柱坐标中,由无限长直导线产生的磁感应强度为φπρμe I B 20=左边一条产生的φφωπρμπρμe t Ie I B m sin 10110122==右边一条产生的φφωπρμπρμe t I e I B msin 22202202==左边导线对矩形框产生的磁通1Φbcb t h I hd t I S d B m cb bm cb b+=∙=∙=Φ⎰⎰++lnsin sin ωπμρωπρμ2201011右边导线对矩形框产生的磁通2Φaca t h I m +=Φln sin ωπμ202 所以矩形框的磁通 ()()c b a c a b t h I m ++=Φ-Φ=Φln sin πωμ2012所以 ()()c b a c a b t h I t m ++=∂Φ∂-=ln cos πωωμε205-13 真空中磁场强度的表达式为z z z e x t H e H H)sin(0βω-==,求空间的位移电流密度和电场强度。

解:由d y z zz y x J e xH H x e e e H =∂∂-=∂∂=⨯∇00 得 y 0d e x t H J )cos(βωβ-=又由:tDJ d ∂∂= ,所以 C e x t H dt tD D y 0t 0+-=∙∂∂=⎰)(βωωβsin题图5-11C e x t H Dy 000+-==)sin(βωωεβε因为无恒定场分量,所以0=C所以 y e x t H D E)sin(βωωεβε-==0005-14 已知在某一理想介质中的位移电流密度为2/)5sin(2m A e z t J x D μω-=,介质的介电常数为0ε,磁导率为0μ。

求介质中的电场强度和磁场强度。

解: 由tDJ D ∂∂= 得x t D e z t dt J D )5cos(20--==⎰ωω, x e z t E )5cos(20--=ωωε又由tBE ∂∂-=⨯∇ 可得y e z t H)cos(51002--=∴ωεμω5,,1200===ββωεμc c所以: y y e z t H H )5cos(52--==ω5-16 半径为R ,厚度为h 、电导率为γ的导体圆盘,盘面与均匀正弦磁场正交,如题图所示。

已知x e t Bωsin 0=,忽略圆盘中感应电流对均匀磁场的影响,试求:(1)圆盘中的涡流电流密度c J ;(2)涡流损耗e P 。

解:选圆柱坐标题图5-16zB()z0zz e t B tB e E 10E 000e 1e e 1Eωωρρρρρρρφφφρcos -=∂∂-=∂∂=∂∂=⨯∇z 0e t B Eωρωcos 21-=所以 01cos 2C z J E B t e γγρωω==-hR B d h B dt t J TdV J P Tc V Vc42022222R22216281dV )(11γωπρπρρωγγγγ==⎥⎥⎦⎤⎢⎢⎣⎡==⎰⎰⎰⎰5-17 由圆形极板构成的平行板电容器,间距为d ,其间的均匀介质,电导率为γ,介电常数为ε,磁导率为0μ,当外加电压为t U um ωsin =V 时,忽略电容器的边缘效应。

试求电容器中任意点的位移电流和磁感应强度(假设变化的磁场产生的电场远小于外加电压产生的电场)。

解: d U E =, d tU d U E m ωsin ==∴ (1)t E t D J ∂∂=∂∂=εd , t dU t E J m ωωεεcos =∂∂=∴d (2) 方向 :E 和J 的方向相同,从高电压方向指向低压方向。

由全电流定律:S d S d d∙∙∙⎰⎰⎰+∂∂=E tD l H SSlγ22sin 2πρωγπρωωεπρ⋅+⋅=⋅dtU dtU H m m cos00cos sin 22m m U tU tB ddεμωωγμωρρ∴=+5-18 已知大地的电导率mS3105-⨯=γ,相对介电常数10=r ε,试问可把大地视为良导体的最高工作频率是多少?解:由题意知满足磁准态场的条件:由1<<γωε时,大地可视为良导体,在工程中可以认为取两个数量级时,可认为满足远远小于条件,即:01.0f 2=γεπγωε= 所以: 412310910854187818.8210501.0⨯=⨯⨯⨯⨯=--πf Hz 5-19 (1)长直螺线管中载有随时间变化相当慢的电流t I ωsin i 0=。

先用安培环路定律求半径为a 的线圈内产生的磁准静态场的磁感应强度,然后利用法拉第定律求线圈里面和外面的感应电场强度;(2)试论证上述磁准静态场的解只有在ω->0的静态极限情况下,才精确地满足麦可斯韦方程组。

解:(1)对于长直螺线管,在均匀密绕的条件下,磁场方向与电流方向成右手螺旋关系,为⎩⎨⎧=0sin )(00ze t NI t Bωμ )()(a a ><ρρ (1) N 是每单位长度上的线圈的匝数。

由于磁场分布具有轴对称性,因而它感应出的电场也具有这一性质,其方向与磁场成右螺旋。

取半径为ρ的同心圆周为积分路径,应用法拉第定律,可求得沿z e方向的磁场产生的电场为 ⎰⎰∙-==∙Sl S d B dt d t E l d E),(2ρπφ⎪⎩⎪⎨⎧-=--=-=t I a N dt di N t I N dt di N ωωπμπρμωωπρμπρμcos cos 020******* )()(a a ><ρρ (2)所以有:00200cos 2E (,)cos 2N I t t N I a t ϕμωρωρμωωρ⎧-⎪⎪=⎨⎪-⎪⎩)()(a a ><ρρ (3)(2)将(1)式和(3)式代入麦可斯韦方程中tD∂∂⨯∇ =H容易验证两边不相等,只有在ω->0的静态场极限情况下,才精确的满足麦可斯韦方程组。

)(1)1(1B 1H 000ρμφρμμρρ∂∂-+∂∂⨯⨯∇⨯∇z z B e B e==⎪⎩⎪⎨⎧=∂∂-+∂∂=00))(((1))((110000t Ni e t Ni e μρμμφρμφρ)()(a a ><ρρ (4)⎪⎪⎩⎪⎪⎨⎧=∂∂=∂∂t I Na e t I N e t E D ωωμεωρωμεεφφsin 2sin 2t 022******* )()(a a ><ρρ (5)很明显,式(4)和式(5)不相等,但是当ω->0时tD∂∂⨯∇=H =0,精确满足麦可斯韦方程组。

相关文档
最新文档