潮流计算程序及计算结果

合集下载

实验一电力系统潮流计算

实验一电力系统潮流计算

实验一电力系统潮流计算
一、实验背景
潮流计算是电力系统的基础,也是电力系统优化设计的前提。

它是一种求解受非线性条件制约的线性方程组的数值方法,能够求解电力系统的稳态潮流,即电力系统在其中一种操作或运行状态下的电压、电流大小和方向。

潮流计算可以为电力系统的综合分析、可靠性分析、功率调度、故障分析、电压控制、电源接入分析、调节器诊断、可调装置分析等提供重要的输入参数。

二、实验步骤
(1)系统参数设置:确定潮流计算模型中的系统参数,包括拓扑结构、主变参数以及节点馈电和负荷数据。

(2)特性参数选择:确定潮流计算模型中特性参数,包括电抗器、变压器的损耗参数、电容器的补偿方式以及可调节装置参数等。

(3)潮流程序的编制:根据模型结构,以及确定的参数,编制潮流计算程序。

(4)潮流计算的运行:运行潮流计算程序,得到电力系统中的线路电流、电压、有功、无功等参数。

(5)潮流计算结果分析:分析潮流计算结果,验证潮流计算模型和输入参数的准确性,对电力系统的可靠性进行评价和优化设计。

三、实验过程
此次实验采用PSCAD/EMTDC软件。

电力系统潮流计算matlab程序

电力系统潮流计算matlab程序

电力系统潮流计算matlab程序电力系统潮流计算是电力系统运行和规划中的重要环节,它用于计算电力系统中各节点的电压、功率和电流等参数。

随着电力系统规模的不断扩大和复杂性的增加,传统的手工计算方法已经无法满足需求,因此,利用计算机编程进行潮流计算成为了一种必要的选择。

Matlab是一种功能强大的科学计算软件,它提供了丰富的数学函数和工具箱,可以方便地进行电力系统潮流计算。

下面我将介绍一下如何使用Matlab编写电力系统潮流计算程序。

首先,我们需要建立电力系统的节点模型。

节点模型是电力系统中各节点的电压、功率和电流等参数的数学表示。

在Matlab中,我们可以使用矩阵来表示节点模型。

假设电力系统有n个节点,我们可以定义一个n×n的复数矩阵Y来表示节点之间的导纳关系,其中Y(i,j)表示节点i和节点j之间的导纳。

同时,我们还需要定义一个n×1的复数向量V来表示各节点的电压,其中V(i)表示节点i的电压。

接下来,我们需要编写潮流计算的主程序。

主程序的主要功能是根据节点模型和潮流计算算法,计算出各节点的电压、功率和电流等参数。

在Matlab中,我们可以使用循环语句和矩阵运算来实现潮流计算。

具体的计算过程可以参考电力系统潮流计算的算法。

在编写主程序之前,我们还需要定义一些输入参数,如电力系统的节点数、发电机节点和负荷节点等。

这些参数可以通过用户输入或者读取文件的方式获取。

同时,我们还需要定义一些输出参数,如各节点的电压、功率和电流等。

这些参数可以通过矩阵运算和循环语句计算得到,并输出到文件或者显示在屏幕上。

最后,我们需要进行程序的测试和调试。

可以通过输入一些测试数据,运行程序并检查输出结果是否正确。

如果发现程序有错误或者结果不准确,可以通过调试工具和打印调试信息的方式进行调试。

总之,利用Matlab编写电力系统潮流计算程序可以提高计算效率和准确性,为电力系统的运行和规划提供有力的支持。

当然,编写一个完整的潮流计算程序需要考虑很多细节和特殊情况,这需要有一定的电力系统和编程知识。

潮流计算实例计算

潮流计算实例计算

潮流计算实例计算潮流例题:根据给定的参数或⼯程具体要求(如图),收集和查阅资料;学习相关软件(软件⾃选:本设计选择Matlab进⾏设计)。

2.在给定的电⼒⽹络上画出等值电路图。

3.运⽤计算机进⾏潮流计算。

4.编写设计说明书。

⼀、设计原理1.⽜顿-拉夫逊原理⽜顿迭代法是取x0 之后,在这个基础上,找到⽐x0 更接近的⽅程的跟,⼀步⼀步迭代,从⽽找到更接近⽅程根的近似跟。

⽜顿迭代法是求⽅程根的重要⽅法之⼀,其最⼤优点是在⽅程f(x) = 0 的单根附近具有平⽅收敛,⽽且该法还可以⽤来求⽅程的重根、复根。

电⼒系统潮流计算,⼀般来说,各个母线所供负荷的功率是已知的,各个节点电压是未知的(平衡节点外)可以根据⽹络结构形成节点导纳矩阵,然后由节点导纳矩阵列写功率⽅程,由于功率⽅程⾥功率是已知的,电压的幅值和相⾓是未知的,这样潮流计算的问题就转化为求解⾮线性⽅程组的问题了。

为了便于⽤迭代法解⽅程组,需要将上述功率⽅程改写成功率平衡⽅程,并对功率平衡⽅程求偏导,得出对应的雅可⽐矩阵,给未知节点赋电压初值,⼀般为额定电压,将初值带⼊功率平衡⽅程,得到功率不平衡量,这样由功率不平衡量、雅可⽐矩阵、节点电压不平衡量(未知的)构成了误差⽅程,解误差⽅程,得到节点电压不平衡量,节点电压加上节点电压不平衡量构成新的节点电压初值,将新的初值带⼊原来的功率平衡⽅程,并重新形成雅可⽐矩阵,然后计算新的电压不平衡量,这样不断迭代,不断修正,⼀般迭代三到五次就能收敛。

⽜顿—拉夫逊迭代法的⼀般步骤:(1)形成各节点导纳矩阵Y。

(2)设个节点电压的初始值U和相⾓初始值e 还有迭代次数初值为0。

(3)计算各个节点的功率不平衡量。

(4)根据收敛条件判断是否满⾜,若不满⾜则向下进⾏。

(5)计算雅可⽐矩阵中的各元素。

(6)修正⽅程式个节点电压(7)利⽤新值⾃第(3)步开始进⼊下⼀次迭代,直⾄达到精度退出循环。

(8)计算平衡节点输出功率和各线路功率2.⽹络节点的优化1)静态地按最少出线⽀路数编号这种⽅法由称为静态优化法。

交直流混合潮流计算程序

交直流混合潮流计算程序

交直流混合潮流计算程序引言:交直流混合潮流计算是电力系统中一项重要的计算方法,能够准确计算电力系统中交流和直流电流的分布和功率流动情况。

本文将介绍交直流混合潮流计算程序的基本原理、计算流程以及应用。

一、基本原理交直流混合潮流计算程序是基于潮流计算理论和电力系统的运行特点开发而成的。

潮流计算是指根据电力系统的拓扑结构、负荷和发电机的参数,通过求解节点电压和线路功率的方程组,得到电力系统中各节点的电压和功率分布情况。

交直流混合潮流计算程序在传统潮流计算的基础上,考虑了交直流电源的并联运行,能够更加准确地反映电力系统的实际运行情况。

二、计算流程交直流混合潮流计算程序的计算流程一般包括以下几个步骤:1. 数据准备:收集并整理电力系统的拓扑结构、负荷和发电机的参数等相关数据,并进行数据预处理,确保数据的准确性和一致性。

2. 潮流方程建立:根据电力系统的物理特性和运行条件,建立交直流混合潮流计算的方程组。

该方程组一般包括节点电压方程、线路功率方程和交直流电源运行方程等。

3. 潮流方程求解:采用数值计算方法,通过迭代运算求解潮流方程组。

常用的计算方法包括高斯-赛德尔迭代法、牛顿-拉夫逊迭代法等。

4. 结果分析:对潮流计算结果进行分析和比较,得到电力系统中各节点的电压和功率分布情况。

根据分析结果,可以评估电力系统的稳定性和安全性,为系统运行和调度提供参考依据。

三、应用交直流混合潮流计算程序在电力系统的规划、设计和运行中具有广泛的应用价值。

主要应用包括以下几个方面:1. 电网规划:交直流混合潮流计算可以帮助规划人员评估电力系统的承载能力和稳定性,优化输电线路的布置和容量配置,提高电力系统的经济性和可靠性。

2. 电力系统设计:交直流混合潮流计算可以辅助设计人员确定电力系统的参数和运行方式,优化变电站和输电线路的选址和布置,确保电力系统在设计条件下的正常运行。

3. 运行调度:交直流混合潮流计算可以为电力系统的运行调度提供决策支持。

牛顿-拉夫逊法潮流计算

牛顿-拉夫逊法潮流计算
printf(" ,");
printf("\n");
printf("电压增量V22=%f",V22);
printf("\n")
4.3雅克比矩阵计算
上述方程中雅克比矩阵的各元素,可以对计算各点不平衡量得公式中求偏导数获得。当 时
当 时
以下为程序:
//****形成雅克比矩阵**********************
B[1][2]=B[2][1]=3;
G[1][3]=G[3][1]=-0.75;
B[1][3]=B[3][1]=2.5;
G[2][3]=G[3][2]=-0.8;
B[2][3]=B[3][2]=4;
for(i=1;i<4;i++)
{for(j=1;j<4;j++)
{printf("%f+(%f)j",G[i][j],B[i][j]);
〔i=1,2,···,m〕
假定系统中的第m+1,m+2,···,n-1号节点为PV节点,如此对其中每一个节点可以列写方程
〔i=m+1,m+2,···,n-1〕
第n号节点为平衡点,其电压 是给定的,故不参加迭代,其计算程序如下:
//计算各节点不平衡量
loop1:
printf("迭代次数k1=%d\n",k1);
结点导纳矩阵:对于一个给定的电路(网络),由其关联矩阵A与支路导纳矩阵Y所确定的矩阵。
支路导纳矩阵:表示一个电路中各支路导纳参数的矩阵。其行数和列数均为电路的支路总数。
二端口导纳矩阵:对应y于二端口网络方程,由二端口参数组成

潮流计算方法

潮流计算方法
潮流计算方法 —计算机算法
————
需求分析:
使用MATLAB软件计算美国电气服务公司 IEEE30节点系统(图见课本P136页图6.16) 各节点的电压幅值和相角的潮流分布,并比较 各种算法的优劣。
总体思路:
1.直接使用“牛顿——拉夫逊”法,通过图像 显示每次迭代后的误差并记录程序运行时间。 2.直接使用“PQ分解法”,通过图像显示每次 迭代后的误差并记录程序运行时间。 3.首先使用直流潮流计算,计算各节点电压的 相角,并将计算结果作为 “牛顿——拉夫逊” 法的初值,通过图像显示每次迭代后的误差并 记录程序运行时间。
迭代步骤:
1.根据各节点电压幅值及相角初值,计算电压 相量。 2.计算各PQ节点的复功率。 3.计算各节点流出的电流初值。 4.根据S=VI*计算出各节点复功率,并与已知复 程序 功率相减得到误差。 5.当误差小于设定值时,迭代结束。
雅克比矩阵的形成
当 j≠i 时
Pi H ij Vi V j (Gij sin ij Bij cos ij ) j Pi N ij V j Vi V j (Gij cos ij Bij sin ij ) Vj
形成导纳矩阵



2.对角线元素: for n=1:nbus for k=1:nbr if n1(k)==n Y(n,n) = Y(n,n)+Y1(k)/(a(k)^2) + Bc(k); elseif n2(k)==n Y(n,n) = Y(n,n)+Y1(k) +Bc(k); else, end end end
Qi Lii Vi Vi V j (Gij sin ij Bij cos ij ) 2Vi 2 Bii Vi 2 Bii Qi ji i j i

潮流计算

潮流计算

节点数:4 支路数:4 计算精度:支路1:+1┠—————□—————┨3支路2:+1┠—————□—————┨4支路3:+2┠—————□—————┨4支路4:+3┠—————□—————┨4节点1:PQ节点,S(1)=节点2:PQ节点,S(2)=节点3:PV节点,P(3)= V(3)= 节点4:平衡节点,U(4)=∠摘要运用matlab软件对选定课设题目进行潮流计算。

潮流计算是电力系统课程中必须掌握也是非常重要的计算。

潮流计算是指对电力系统正常运行状况的分析和计算。

在已知系统条件情况下,给定一些初始条件,进而计算出系统运行的电压和功率等;潮流计算方法很多:高斯-塞德尔法、牛顿-拉夫逊法、PQ分解法、直流潮流法等。

通过潮流计算,可以确定各母线的电压幅值和相角,各元件流过的功率和整个系统的功率损耗。

潮流计算是实现安全经济发供电的必要手段和重要工作环节。

因此潮流计算在电力系统的规划计算,生产运行,调度管理及科学计算中都有广泛的运用。

本课程设计采用PQ分解法进行电力系统分析的潮流计算程序的编制与调试,获得电力系统中各节点电压,为进一步进行电力系统分析作准备。

关键词:matlab 潮流计算 PQ分解法目录6891.题目原始数据及其化简 原始数据:节点数:4 支路数:4 计算精度: 支路 1: +1┠—————□—————┨3 支路 2: +1┠—————□—————┨4 支路 3: +2┠—————□—————┨4 支路 4: +3┠—————□—————┨4节点1:PQ 节点,S(1)= 节点2:PQ 节点,S(2)= 节点3:PV 节点,P(3)= V(3)=节点4:平衡节点,U(4)=∠根据原始数据所画电路简化图如图1:1342图1电路简化图分解法分解法基本思想PQ 分解法是从改进和简化牛顿法潮流程序的基础上提出来的,它的基本思想是:把节点功率表示为电压向量的极坐标形式,以有功功率误差作为修正电压向量角度的依据,以无功功率误差作为修正电压幅值的依据,这样,n-1+m 阶的方程式便分解为一个n-1阶和一个m 阶的方程,这两组方程分别进行轮流迭代,这就是所谓的有功-无功功率分解法。

潮流计算

潮流计算

Sb SG STc S0c jQB 2 jQB3
1 b Tb 2 c Tc 3
A
d Td
SLDb
G
SG
SL D d
14
二、两级电压的开式电力网计算 计算方法一:包含理想变压器,计算时,经过理 想变压器功率保持不变,两侧电压之比等于实际 变比k。 T b d c L-1 L-2 SLD A
V1 arctg V1 V1
4
网络元件的功率损耗
功率损耗包括:电阻和等值电抗上的损耗 对地等值导纳上产生的损耗
V1S1 , I1 S ' I
jQB1
B j 2
R jX
S '', I S 2 , I 2 V2
jQB 2
B j 2
线路
VS1 , I1
线路
S0 (GT jBT )V 2
I0% S0 P0 jQ0 P0 j SN 100
开式网络的电压和功率分布计算
一、已知供电点电压和负荷点功率时的计算方法 已知末端的功率和电压:从末端开始依次计算出 电压降落和功率损耗。 已知电源点的电压和负荷的功率:采取近似的方 法通过叠代计算求得满足一定精度的结果
X2 k2 X2
T
A
A
B2 B2 / k 2 d c L-2 SLD
R'2+ j X'2 j B'2/2
16
R1+ jX1
j B1/2 j B1/2
b ΔS0
Z'T
c' j B'2/2
d'
SLD
二、两级电压的开式电力网计算 计算方法三:用π型等值电路代表变压器

电力系统潮流计算程序(详细)

电力系统潮流计算程序(详细)

潮流计算,电力学名词,指在给定电力系统网络拓扑、元件参数和发电、负荷参量条件下,计算有功功率、无功功率及电压在电力网中的分布。

潮流计算是根据给定的电网结构、参数和发电机、负荷等元件的运行条件,确定电力系统各部分稳态运行状态参数的计算。

通常给定的运行条件有系统中各电源和负荷点的功率、枢纽点电压、平衡点的电压和相位角。

待求的运行状态参量包括电网各母线节点的电压幅值和相角,以及各支路的功率分布、网络的功率损耗等。

潮流计算程序,相关的原始数据数据数据输入格式如下:%B1是支路参数矩阵,第一列和第二列是起始节点编号和终点节点编号%第三列、第四列、第五列、第六列、第七列、第八列分别为:支路电阻、电抗、电导、电纳、变压器变比、是否有变压器(1为有、0为无)。

%B2为节点参数矩阵,其中第一列到第六列为节点编号;为节点类型;注入有功、注入无功、电压幅值、电压相位。

%“1”为平衡节点,“2”为PQ节点,“3”为PV节点参数。

n=input('请输入节点数:n=');n1=input('请输入支路数:n1=');isb=input('请输入平衡节点号:isb=');pr=input('请输入误差精度:pr=');B1=input('请输入支路参数:B1=');B2=input('请输入节点参数:B2=');Y=zeros(n);N=1;%建立节点导纳矩阵for i=1:n1if B1(i,8)==0p=B1(i,1);q=B1(i,2);Y(p,q)=Y(p,q)-1/(B1(i,3)+B1(i,4))-B1(i,5);Y(q,p)=Y(p,q);Y(p,p)=Y(p,p)+1/(B1(i,3)+B1(i,4))+0.5*B1(i,6)+B1(i,5);Y(q,q)=Y(q,q)+1/(B1(i,3)+B1(i,4))+0.5*B1(i,6)+B1(i,5);elsep=B1(i,1);q=B1(i,2);Y(p,q)=Y(p,q)-1/((B1(i,3)+B1(i,4))*B1(i,7)) -B1(i,5);Y(q,p)=Y(p,q);Y(p,p)=Y(p,p)+1/(B1(i,3)+B1(i,4))+B1(i,5);Y(q,q)=Y(q,q)+1/(B1(i,7)^2*(B1(i,3)+B1(i,4)))+B1(i,5);endendYG=real(Y);B=imag(Y);PriS=zeros(2*n-2,1);ImbS=zeros(2*n-2,1);%创建PriS,用于存储初始功率参数h=0;j=0;for i=1:nif i~=isb&B2(i,2)==1h=h+1;for j=1:nPriS(2*h-1,1)=PriS(2*h-1,1)+B2(i,5)*(G(i,j)*B2(j,5)-B(i,j)*B2(j,6))+B2(i,6)*(G(i,j)*B2(j,6)+B(i, j)*B2(j,5));PriS(2*h,1)=PriS(2*h,1)+B2(i,6)*(G(i,j)*B2(j,5)-B(i,j)*B2(j,6))-B2(i,5)*(G(i,j)*B2(j,6)+B(i,j)*B 2(j,5));endendendfor i=1:nif i~=isb&B2(i,2)==2h=h+1;for j=1:nPriS(2*h-1,1)=PriS(2*h-1,1)+B2(i,5)*(G(i,j)*B2(j,5)-B(i,j)*B2(j,6))+B2(i,6)*(G(i,j)*B2(j,6)+B(i,j)*B2(j,5));PriS(2*h,1)=PriS(2*h,1)+B2(i,6)*(G(i,j)*B2(j,5)-B(i,j)*B2(j,6))-B2(i,5)*(G(i,j)*B2(j,6)+B(i,j)*B2(j,5))endendendPriSU3=zeros(n-h-1,2);%U3存储PV节点的初始电压t=0;for i=1:nif B2(i,2)==2t=t+1;U3(t,1)=B2(i,5);U3(t,2)=B2(i,6);endendU3%ImbS于存储有功功率、无功功率和电压幅值的不平衡量h=0;for i=1:nif i~=isb&B2(i,2)==1h=h+1;ImbS(2*h-1,1)=B2(i,3)-PriS(2*h-1,1);ImbS(2*h,1)=B2(i,4)-PriS(2*h,1);endendt=0;for i=1:nif i~=isb&B2(i,2)==2h=h+1;t=t+1;ImbS(2*h-1,1)=B2(i,3)-PriS(2*h-1,1);ImbS(2*h,1)=U3(t,1)^2+U3(t,2)^2-B2(i,5)^2-B2(i,6)^2;endendImbSI=zeros(n-1,1);%I,存储节点电流参数h=0;for i=1:nif i~=isbh=h+1;I(h,1)=(PriS(2*h-1,1)-PriS(2*h,1)*sqrt(-1))/conj(B2(i,5)+B2(i,6)*sqrt(-1));endendIJacbi=zeros(2*n-2);%Jacbi(雅可比矩阵)h=0;k=0;for i=1:nif B2(i,2)==1h=h+1;for j=1:nif j~=isbk=k+1;if i==jJacbi(2*h-1,2*k-1)=-B(i,j)*B2(i,5)+G(i,j)*B2(i,6)+imag(I(h,1));Jacbi(2*h-1,2*k)=G(i,j)*B2(i,5)+B(i,j)*B2(i,6)+real(I(h,1));Jacbi(2*h,2*k-1)=-Jacbi(2*h-1,2*k)+2*real(I(h,1));Jacbi(2*h,2*k)=Jacbi(2*h-1,2*k-1)-2*imag(I(h,1));elseJacbi(2*h-1,2*k-1)=-B(i,j)*B2(i,5)+G(i,j)*B2(i,6);Jacbi(2*h-1,2*k)=G(i,j)*B2(i,5)+B(i,j)*B2(i,6);Jacbi(2*h,2*k-1)=-Jacbi(2*h-1,2*k);Jacbi(2*h,2*k)=Jacbi(2*h-1,2*k-1);endif k==(n-1)k=0;endendendendendk=0;for i=1:nif B2(i,2)==2h=h+1;for j=1:nif j~=isbk=k+1;if i==jJacbi(2*h-1,2*k-1)= -B(i,j)*B2(i,5)+G(i,j)*B2(i,6)+imag(I(h,1));Jacbi(2*h-1,2*k)= G(i,j)*B2(i,5)+B(i,j)*B2(i,6)+real(I(h,1));Jacbi(2*h,2*k-1)=2*B2(i,6);Jacbi(2*h,2*k)=2*B2(i,5);elseJacbi(2*h-1,2*k-1)= -B(i,j)*B2(i,5)+G(i,j)*B2(i,6);Jacbi(2*h-1,2*k)= G(i,j)*B2(i,5)+B(i,j)*B2(i,6);Jacbi(2*h,2*k-1)=0;Jacbi(2*h,2*k)=0;endif k==(n-1)k=0;endendendendendJacbi%求解修正方程,获取节点电压的不平衡量ImbU=zeros(2*n-2,1);ImbU=inv(Jacbi)*ImbS;ImbU%修正节点电压j=0;for i=1:nif B2(i,2)==1j=j+1;B2(i,5)=B2(i,5)+ImbU(2*j,1);B2(i,6)=B2(i,6)+ImbU(2*j-1,1);endendfor i=1:nif B2(i,2)==2j=j+1;B2(i,5)=B2(i,5)+ImbU(2*j,1);B2(i,6)=B2(i,6)+ImbU(2*j-1,1);endendB2while abs(max(ImbU))>prPriS=zeros(2*n-2,1);h=0;j=0;for i=1:nif i~=isb&B2(i,2)==1h=h+1;for j=1:nPriS(2*h-1,1)=PriS(2*h-1,1)+B2(i,5)*(G(i,j)*B2(j,5)-B(i,j)*B2(j,6))+B2(i,6)*(G(i,j)*B2(j,6)+B(i, j)*B2(j,5));PriS(2*h,1)=PriS(2*h,1)+B2(i,6)*(G(i,j)*B2(j,5)-B(i,j)*B2(j,6))-B2(i,5)*(G(i,j)*B2(j,6)+B(i,j)*B 2(j,5));endendendfor i=1:nif i~=isb&B2(i,2)==2h=h+1;for j=1:nPriS(2*h-1,1)=PriS(2*h-1,1)+B2(i,5)*(G(i,j)*B2(j,5)-B(i,j)*B2(j,6))+B2(i,6)*(G(i,j)*B2(j,6)+B(i,j)*B2(j,5));PriS(2*h,1)=PriS(2*h,1)+B2(i,6)*(G(i,j)*B2(j,5)-B(i,j)*B2(j,6))-B2(i,5)*(G(i,j)*B2(j,6)+B(i,j)*B2(j,5))endendendPriS%创建ImbSh=0;for i=1:n %对PQ节点的处理if i~=isb&B2(i,2)==1h=h+1;ImbS(2*h-1,1)=B2(i,3)-PriS(2*h-1,1);ImbS(2*h,1)=B2(i,4)-PriS(2*h,1);endendt=0;for i=1:n %对PV节点的处理if i~=isb&B2(i,2)==2h=h+1;t=t+1;ImbS(2*h-1,1)=B2(i,3)-PriS(2*h-1,1);ImbS(2*h,1)=U3(t,1)^2+U3(t,2)^2-B2(i,5)^2-B2(i,6)^2;endendImbS%创建II=zeros(n-1,1);h=0;for i=1:nif i~=isbh=h+1;I(h,1)=(PriS(2*h-1,1)-PriS(2*h,1)*sqrt(-1))/conj(B2(i,5)+B2(i,6)*sqrt(-1));endendI%创建JacbiJacbi=zeros(2*n-2);h=0;k=0;for i=1:nif B2(i,2)==1h=h+1;for j=1:nif j~=isbk=k+1;if i==jJacbi(2*h-1,2*k-1)=-B(i,j)*B2(i,5)+G(i,j)*B2(i,6)+imag(I(h,1));Jacbi(2*h-1,2*k)=G(i,j)*B2(i,5)+B(i,j)*B2(i,6)+real(I(h,1));Jacbi(2*h,2*k-1)=-Jacbi(2*h-1,2*k)+2*real(I(h,1));Jacbi(2*h,2*k)=Jacbi(2*h-1,2*k-1)-2*imag(I(h,1));elseJacbi(2*h-1,2*k-1)=-B(i,j)*B2(i,5)+G(i,j)*B2(i,6);Jacbi(2*h-1,2*k)=G(i,j)*B2(i,5)+B(i,j)*B2(i,6);Jacbi(2*h,2*k-1)=-Jacbi(2*h-1,2*k);Jacbi(2*h,2*k)=Jacbi(2*h-1,2*k-1);endif k==(n-1)k=0;endendendendendk=0;for i=1:nif B2(i,2)==2h=h+1;for j=1:nif j~=isbk=k+1;if i==jJacbi(2*h-1,2*k-1)= -B(i,j)*B2(i,5)+G(i,j)*B2(i,6)+imag(I(h,1));Jacbi(2*h-1,2*k)= G(i,j)*B2(i,5)+B(i,j)*B2(i,6)+real(I(h,1));Jacbi(2*h,2*k-1)=2*B2(i,6);Jacbi(2*h,2*k)=2*B2(i,5);elseJacbi(2*h-1,2*k-1)= -B(i,j)*B2(i,5)+G(i,j)*B2(i,6);Jacbi(2*h-1,2*k)= G(i,j)*B2(i,5)+B(i,j)*B2(i,6);Jacbi(2*h,2*k-1)=0;Jacbi(2*h,2*k)=0;endif k==(n-1)k=0;endendendendendJacbiImbU=zeros(2*n-2,1);ImbU=inv(Jacbi)*ImbS;ImbU%修正节点电压j=0;for i=1:nif B2(i,2)==1j=j+1;B2(i,5)=B2(i,5)+ImbU(2*j,1);B2(i,6)=B2(i,6)+ImbU(2*j-1,1);endendfor i=1:nif B2(i,2)==2j=j+1;B2(i,5)=B2(i,5)+ImbU(2*j,1);B2(i,6)=B2(i,6)+ImbU(2*j-1,1);endendB2N=N+1; %迭代次数加1endN。

潮流计算

潮流计算

武汉理工大学《电力系统分析》课程设计说明书节点数:4 支路数:4 计算精度:0.00010支路1:0.0200+j0.08001┠—————□—————┨3支路2:0.0400+j0.12001┠—————□—————┨4支路3:0.0500+j0.14002┠—————□—————┨4支路4:0.0400+j0.12003┠—————□—————┨4节点1:PQ节点,S(1)=-0.6000-j0.2500节点2:PQ节点,S(2)=-0.8000-j0.3500节点3:PV节点,P(3)=0.4000 V(3)=0.9500节点4:平衡节点,U(4)=1.0000∠0.0000运用matlab软件对选定课设题目进行潮流计算。

潮流计算是电力系统课程中必须掌握也是非常重要的计算。

潮流计算是指对电力系统正常运行状况的分析和计算。

在已知系统条件情况下,给定一些初始条件,进而计算出系统运行的电压和功率等;潮流计算方法很多:高斯-塞德尔法、牛顿-拉夫逊法、PQ分解法、直流潮流法等。

通过潮流计算,可以确定各母线的电压幅值和相角,各元件流过的功率和整个系统的功率损耗。

潮流计算是实现安全经济发供电的必要手段和重要工作环节。

因此潮流计算在电力系统的规划计算,生产运行,调度管理及科学计算中都有广泛的运用。

本课程设计采用PQ分解法进行电力系统分析的潮流计算程序的编制与调试,获得电力系统中各节点电压,为进一步进行电力系统分析作准备。

关键词:matlab 潮流计算PQ分解法1.题目原始数据及其化简 (1)2.PQ分解法 (2)2.1PQ分解法基本思想 (2)2.2 PQ分解法潮流计算基本步骤 (5)3编程及运行 (6)3.1 PQ分解法潮流计算程序框图 (6)3.2源程序代码 (7)3.3运行程序及结果分析: (16)4.小结 (18)5.参考文献 (19)1.题目原始数据及其化简原始数据:节点数:4 支路数:4 计算精度:0.00010 支路1:0.0200+j0.08001┠—————□—————┨3支路2:0.0400+j0.12001┠—————□—————┨4支路3:0.0500+j0.14002┠—————□—————┨4支路4:0.0400+j0.12003┠—————□—————┨4节点1:PQ节点,S(1)=-0.6000-j0.2500节点2:PQ节点,S(2)=-0.8000-j0.3500节点3:PV节点,P(3)=0.4000 V(3)=0.9500节点4:平衡节点,U(4)=1.0000∠0.0000根据原始数据所画电路简化图如图1:1 34 2图1电路简化图2.PQ 分解法2.1PQ 分解法基本思想PQ 分解法是从改进和简化牛顿法潮流程序的基础上提出来的,它的基本思想是:把节点功率表示为电压向量的极坐标形式,以有功功率误差作为修正电压向量角度的依据,以无功功率误差作为修正电压幅值的依据,这样,n-1+m 阶的方程式便分解为一个n-1阶和一个m 阶的方程,这两组方程分别进行轮流迭代,这就是所谓的有功-无功功率分解法。

(完整)潮流计算的基本算法及使用方法

(完整)潮流计算的基本算法及使用方法

潮流计算的基本算法及使用方法一、 潮流计算的基本算法1. 牛顿-拉夫逊法1.1 概述牛顿-拉夫逊法是目前求解非线性方程最好的一种方法。

这种方法的特点就是把对非线性方程的求解过程变成反复对相应的线性方程求解的过程,通常称为逐次线性化过程,就是牛顿-拉夫逊法的核心.牛顿—拉夫逊法的基本原理是在解的某一邻域内的某一初始点出发,沿着该点的一阶偏导数——雅可比矩阵,朝减小方程的残差的方向前进一步,在新的点上再计算残差和雅可矩阵继续前进,重复这一过程直到残差达到收敛标准,即得到了非线性方程组的解。

因为越靠近解,偏导数的方向越准,收敛速度也越快,所以牛顿法具有二阶收敛特性。

而所谓“某一邻域"是指雅可比方向均指向解的范围,否则可能走向非线性函数的其它极值点,一般来说潮流由平电压即各母线电压(相角为0,幅值为1)启动即在此邻域内。

1.2 一般概念对于非线性代数方程组()0=x f即 ()0,,,21=n i x x x f ()n i ,2,1= (1-1)在待求量x 的某一个初始计算值()0x 附件,将上式展开泰勒级数并略去二阶及以上的高阶项,得到如下的线性化的方程组()()()()()0000=∆'+x x f x f (1-2)上式称之为牛顿法的修正方程式.由此可以求得第一次迭代的修正量()()()[]()()0100x f x f x -'-=∆ (1-3)将()0x ∆和()0x 相加,得到变量的第一次改进值()1x 。

接着再从()1x 出发,重复上述计算过程。

因此从一定的初值()0x 出发,应用牛顿法求解的迭代格式为()()()()()k k k x f x x f -=∆' (1-4)()()()k k k x x x ∆+=+1 (1-5)上两式中:()x f '是函数()x f 对于变量x 的一阶偏导数矩阵,即雅可比矩阵J ;k 为迭代次数。

由式(1-4)和式子(1-5)可见,牛顿法的核心便是反复形成求解修正方程式.牛顿法当初始估计值()0x 和方程的精确解足够接近时,收敛速度非常快,具有平方收敛特性.1.3 潮流计算的修正方程运用牛顿-拉夫逊法计算潮流分布时,首先要找出描述电力系统的非线性方程.这里仍从节点电压方程入手,设电力系统导纳矩阵已知,则系统中某节点(i 节点)电压方程为∑=**•⎪⎪⎪⎭⎫ ⎝⎛=nj i i j ij U S U Y 1从而得∑=**••=nj j ij i i U Y U S 1进而有()01=-+*=*•∑j nj ij i i i U Y U jQ P(1-6)式(1-6)中,左边第一项为给定的节点注入功率,第二项为由节点电压求得的节点注入功率.他们二者之差就是节点功率的不平衡量.现在有待解决的问题就是各节点功率的不平衡量都趋近于零时,各节点电压应具有的价值。

潮流计算程序

潮流计算程序

潮流程序报告班级:硕721姓名:胡与非学号:3107161033一、概述本程序是PQ分解法中的BX法,本程序中主要用到的三个主要算法概述如下:1.节点优化编号本程序使用Tinney-2编号方法,也称为最小度算法,或半动态节点优化编号方法。

该方法使用最为广泛,且简单有效,可以大大减少矩阵因子分解过程中产生的注入元的数目。

2.稀疏技术稀疏技术包括稀疏矩阵技术和稀疏矢量技术。

本程序使用了稀疏矩阵技术,利用网络矩阵的稀疏结构,减少了存储量和计算量,提高了求解网络方程的计算速度。

3.潮流计算的快速分解法(FDLF)快速分解法不是求解高维数的修正方程,而是分别交替求解两个低维数且系数矩阵是常数矩阵的修正方程,因此计算速度快,收敛性好,应用广泛。

二、输入数据格式说明第一行:支路数第二行:节点数第三行:接地支路数第四行:发电机数第五行:负荷数第六行:平衡节点号第七行:精度以下是支路数据:1、支路一端节点号支路另一端节点号支路电阻支路电抗接地电容(变压器变比)(节点号为负表明变压器支路,负号的节点侧为变压器的非标准变比侧,此时节点电容换为变压器变比;)2、接地支路号电阻电容以下是发电机数据:(最后一行是平衡机,其余发电机看成PV节点)节点号有功功率无功功率电压(电压为负表示PV节点)以下是负荷数据:节点号有功功率无功功率电压(初始为0)三、数据结构介绍//----------------线路数据结构体--------------//struct Line{int I ;//线路一端所连的节点号,节点号绝对值i<j,i按绝对值从小到大排列;//节点号为负表示为变压器支路,负号的节点侧为变压器的非标准变比侧;此时节点电容换为变压器变比int j; //线路另一端所连的节点号double r;//线路电阻double x;//线路电抗double b;//接地电容,若为变压器节点电容换为变压器变比//这里的b为线路导纳的一半b/2int hh; //标记支路号用于还原输出}*line;//----------------接地线路数据结构体--------------//struct Grand_line{int i; //接地支路号double r;//接地支路电阻double b;//接地支路电容int hh; //标记支路号,用于还原输出}*grand;//----------------发电机数据结构体--------------//struct Generator{int i; //发电机节点号,最后一个发电机为平衡节点double P;//发电机有功功率double Q;//发电机无功功率double V;//发电机机端电压,电压为负表示PV节点}*generator;struct Pinghengji{int i;//平衡机节点号,最后一个发电机为平衡节点double P;//平衡机有功功率double Q;//平衡机无功功率double V;//平衡机机端电压}*pinghengji;//----------------负荷数据结构体--------------//struct Load{int i;//负荷节点号double P;//负荷的有功功率double Q;//负荷的无功功率double V;//负荷处的电压(初始为0)}*load;//----------------优化结构体--------------//struct Y ouhua{int nn;//记录节点的度int nn1;int *jd;//记录节点号int *w;}*youhua;//-------------自导纳结构体--------------// struct Yii{double g,b;}*yii;struct Yii1{double g,b;}*yii1;//------------互导纳结构体----------------// struct Yij{double g,b;int j;}*yij;struct Yij1{double g,b;int j;}*yij1;//----------------U--------------//struct U_Type{double value;int j;}*U1,*U2,*U;//-------------------节点电压数组-----------------// struct NodalV oltage_Type{double V,theta;}*NodalV oltage;三、程序流程介绍四、程序中重要函数体的说明1、读数据函数read();读入各个原始数据;输入5,则为IEEE5节点;输入14,则为IEEE14节点;输入30,则为IEEE30;输入57,则为IEEE57;输入118,则为IEEE118;2、节点优化函数op();在此函数里实现节点优化以及支路、发电机、负荷的重排;3、形成导纳矩阵函数daona();形成导纳矩阵,在这个函数中同时调用函数formb(1)形成因子表1;调用formbb(2)形成因子表2;4、计算节点电压的迭代函数Diedai();迭代过程见流程图;5、打印函数dayin();打印各节点电压的辐值和相位,各个支路的功率和整个网络的网损;五、小结1.节点优化编号:节点优化编号直接影响到矩阵A的因子表矩阵的稀疏度,而稀疏度的大小又直接影响到稀疏技术的使用效率的好坏。

电力系统潮流及短路电流计算程序

电力系统潮流及短路电流计算程序

电力系统潮流及短路电流计算程序以下是一个简单的电力系统潮流计算程序的框架:1.输入数据准备阶段:-输入潮流计算的电力系统拓扑结构,包括各节点之间的连接关系、导线电阻、电抗等信息。

-输入电力系统的负荷信息,包括负荷节点、负荷大小、负荷类型等。

-输入电力系统的发电机信息,包括发电机节点、发电机类型、发电机容量等。

2.潮流计算阶段:-初始条件设置:给定电力系统中各节点的初始电压、相角等信息。

-节点功率方程求解:根据电力系统的拓扑结构和发电机、负荷信息,建立节点功率方程。

-潮流计算迭代:使用牛顿-拉夫逊法等迭代算法求解节点功率方程,得到各节点的电压、相角等参数。

3.潮流计算结果输出阶段:-输出各节点的电压、相角、有功功率、无功功率等参数。

-输出各支路的电流、功率损耗等参数。

-输出系统的功率平衡情况。

4.短路电流计算阶段:-输入短路电流计算的电力系统拓扑结构。

-输入短路电流计算的负荷信息。

-输入短路电流计算的电源信息。

-使用KVL(电压法)或KCL(电流法)等方法计算各节点短路电流。

5.短路电流计算结果输出阶段:-输出各节点的短路电流大小。

-输出各支路的短路电流大小。

以上只是一个电力系统潮流及短路电流计算程序的大致流程框架,具体实现细节和算法选择还需要根据具体情况进行进一步的设计和开发。

在实际应用中,还需要考虑各种特殊情况和计算优化方法,以提高计算速度和准确性。

总之,电力系统潮流及短路电流计算程序是电力工程师在设计和运行电力系统中不可或缺的工具,它能够帮助工程师快速了解系统的运行状态和电流分布情况,以便进行系统优化和安全评估。

牛顿拉夫逊潮流计算程序

牛顿拉夫逊潮流计算程序



f1 x 2 xn f 2 f 2 x 2 xn f n f n x 2 xn
f i
f1
Δ X 1 Δ X 2 Δ X n
(13)
' ' 式(13)等号右边矩阵的 x 等都是对于 X1 ,X 2 的值,这一矩阵称为雅可比(Jacobi)矩阵。
P—Q分解法潮流计算的计算机算法。
电力系统分析
1概 述
类型:
导纳法
阻抗法
牛顿-拉夫逊法(N—R法) 快速分解法( PQ分解法)
电力系统分析
2 潮流计算的基本方程
2.1节点的分类 2.2基本方程式
电力系统分析
2.1节点(bus)的分类
根据电力系统中各节点性质的不同,可把节点分成三种类型。 1.PQ节点 事先给定的是节点功率(P、Q),待求的是节点电压向量 (U、θ)。通常变电所母线都是PQ节点,当某些发电机的 出力P、Q给定时,也可作为PQ节点。PQ节点上的发电机称 之为PQ机(或PQ给定型发电机)。在潮流计算中,系统大 部分节点属于PQ节点。
2
m 1
Δ P1 e m 1 Δ Q 1 e m 1 Δ Pm e m -1 Δ Q m e m -1 Δ Pm 1 e m -1 Δ U
2
m 1
Δ P1 f m 1 Δ Q 1 f m 1 Δ Pm f m -1 Δ Q m f m -1 Δ Pm 1 f m -1 Δ U
电力系统分析
3.2牛顿-拉夫逊法潮流计算
方程式(15)和(16)具备方程组(12)的形式:
Δ W -J Δ U
(17)
Δe 1 Δf 1 Δe m Δf m ΔU Δe m 1 Δf m 1 Δe n - 1 Δf n - 1

前推回代潮流计算程序

前推回代潮流计算程序

前推回代潮流计算程序潮流计算是电力系统分析的基本方法之一,用于计算电力系统中各节点的电压、功率和电流等参数,并确定各设备的潮流分布情况。

在电力系统规划,运行和故障分析等方面都有广泛应用。

过去,潮流计算主要依赖于人工计算,需要大量的手工作业和时间。

随着计算机技术的发展,前推回代法(FDP)逐渐成为常用的潮流计算方法之一前推回代法是一种解决非线性方程组的数值迭代方法,其基本思想是根据节点电压相等和节点功率平衡的条件,将电力系统的潮流计算问题转化为求解非线性方程组的问题。

其核心是通过迭代计算,不断逼近方程的解。

前推回代法的步骤如下:1.建立节点潮流计算方程组:将电力系统的节点电压和节点功率平衡方程表示为非线性方程组。

其中节点电压方程是根据节点注入功率和导纳矩阵计算得到的,节点功率平衡方程是根据节点注入功率与节点出力功率之间的关系建立的。

2.初始化迭代计算:给定节点电压和相位的初始猜测值。

3.前推计算:从发电节点开始,根据节点电压的计算公式,逐个迭代计算各节点的电压和相位值,直到达到收敛条件。

4.回代计算:根据回代公式,从负荷节点开始,逐个迭代计算各节点的潮流值,直到达到收敛条件。

5.收敛判断:根据设定的收敛判断条件,判断迭代计算是否收敛。

如果未达到收敛条件,则返回第3步进行迭代计算;如果达到收敛条件,则结束计算。

前推回代法的优势在于可以较为准确地计算非线性电力系统的潮流分布情况。

与传统的手工计算相比,前推回代法具有计算速度快、准确度高、可靠性好等优点。

而且,通过计算机编程实现前推回代法,可以大大减少人工计算的工作量,提高计算效率。

然而,前推回代法也存在一些问题和限制。

首先,前推回代法在计算过程中需要不断迭代计算,迭代的次数与收敛的速度成正比。

如果系统存在严重的不平衡或不稳定问题,可能导致计算结果不收敛或收敛速度很慢。

其次,前推回代法在计算大规模电力系统时,可能会面临存储和计算能力的限制。

因此,在实际应用中,需要根据具体情况选择合适的潮流计算方法。

MATpower潮流计算使用总结

MATpower潮流计算使用总结

Matpower学习总结和优化本人所编写的程序一、Matpower用法总结(潮流计算)应用Matpower计算潮流技巧的核心在于输入好三个矩阵和部分参数,清晰的知道输入参数、矩阵中每一个元素的含义。

下列以case(‘5’)为例子说明:↓参数一%% MATPOWER Case Format : Version 2mpc.version = '2';解释:目前普遍采用2 形式的算法。

↓参数二%% system MVA basempc.baseMVA = 100;解释:采用有铭值mpc.baseMVA = 100;(Matpower只能计算有铭值得网络)↓矩阵一%% bus data% bus_i type Pd Qd Gs Bs area Vm Va baseKV zone Vmax Vmin 解释:bus data母线参数也就是我们所说的节点参数,下面逐条注释:1 bus number (positive integer) :第一列表示节点的编号(括号里面注释正整数);2 bus type :第二列表示节点的类型,一般只用得到1、2、3三种节点类型,4类型的节点目前没有接触到;PQ bus = 1PV bus = 2reference bus = 3isolated bus = 43 Pd, real power demand (MW):表示负荷所需要的有功功率(所有数据都是正数);(有铭值)4 Qd, reactive power dema nd (MV Ar):表示负荷所需要的无功功率(所有数据都是正数);(有铭值)5 Gs, shunt conductance:表示和节点并联的电导,非线路上的电导,一般该列为0;6 Bs, shunt susceptance:表示和节点并联的电纳,非线路上的电纳,一般该列为0;7 area number, (positive integer) :表示母线的断面号,一般设置为1;8 Vm, voltage magnitude (p.u.) :表示该节点电压的初始幅值(设置成标幺值);9 V a, voltage angle (degrees) :表示该节点电压的初始相位角度;10 baseKV, base voltage (kV) :表示该节点的基准电压;(有铭值)11 zone, loss zone (positive integer) :表示母线的省损耗区域,一般设置为1;12 maxVm, maximum voltage magnitude (p.u.) :该节点所能接受的最大电压;(标幺值)13 minVm, minimum voltage magnitude (p.u.) :该节点所能接受的最小电压;(标幺值)↓矩阵二%% generator data% bus Pg Qg Qmax Qmin Vg mBase status Pmax Pmin Pc1 Pc2Qc1min Qc1max Qc2min Qc2max ramp_agc ramp_10 ramp_30 ramp_q apf解释:表示发电机参数,下面逐条解释:1 bus number :发电机节点的编号;2 Pg, real power output (MW) :发电机节点输出的有功,如果为平衡节点则设置为0;(有铭值)3 Qg, reactive power output (MVAr):发电机节点输出无功,如果为平衡节点则设置为0;(有铭值)4 Qmax, maximum reactive power output (MVAr):该节点能接受输出最大无功功率;(有铭值)5 Qmin, minimum reactive power output (MVAr) :该节点能接受输出最大有功功率;(有铭值)6 Vg, voltage magnitude setpoint (p.u.):该节点电压的标幺值;7 mBase, total MVA base of this machine, defaults to baseMVA:该发电机的容量(有铭值);8 status, > 0 - machine in service<= 0 - machine out of service :表示发电机的运行状态,1表示投入,0表示否9 Pmax, maximum real power output (MW) :允许输出的最大有功功率;(有铭值)10 Pmin, minimum real power output (MW) :允许输出的最大无功功率;(有铭值)11 Pc1, lower real power output of PQ capability curve (MW)12 Pc2, upper real power output of PQ capability curve (MW)13 Qc1min, minimum reactive power output at Pc1 (MVAr)14 Qc1max, maximum reactive power output at Pc1 (MVAr)15 Qc2min, minimum reactive power output at Pc2 (MVAr)16 Qc2max, maximum reactive power output at Pc2 (MVAr)17 ramp rate for load following/AGC (MW/min)18 ramp rate for 10 minute reserves (MW)19 ramp rate for 30 minute reserves (MW)20 ramp rate for reactive power (2 sec timescale) (MVAr/min)21 APF, area participation factor注释:红色区域参数均设置为0;矩阵%% branch data% fbus tbus r x b rateA rateB rateC ratio angle status angmin angmax解释支路参数,下面逐条解释:1 f, from bus number:支路首端号;;2 t, to bus number:支路末端号;3 r, resistance (p.u.) :支路电阻的标幺值;4 x, reactance (p.u.) :支路电抗的标幺值;5 b, total line charging susceptance (p.u.) :支路电纳的标幺值(注意:是整条支路的电纳值);6 rateA, MV A rating A (long term rating) :长距离输电支路所允许的容量(有铭值);7 rateB, MV A rating B (short term rating) :短距离输电支路所允许的容量(有铭值);8 rateC, MV A rating C (emergency rating):紧急输电支路所允许的容量(有铭值);9 ratio, transformer off nominal turns ratio ( = 0 for lines )(taps at 'from' bus, impedance at 'to' bus, i.e. if r = x = 0, then ratio = Vf / Vt) :支路变比,不含变压器设置为0;含有变压器变比为支路首端电压和末端电压之比:Matpower中变压器的模型,如下图所示:10 angle, transformer phase shift angle (degrees), positive => delay:该参数设置为0;11 initial branch status, 1 - in service, 0 - out of service :该支路是否投入运行;12 minimum angle difference, angle(Vf) - angle(Vt) (degrees):该支路所允许最小相位角度13 maximum angle difference, angle(Vf) - angle(Vt) (degrees):该支路所允许最大相位角度二、Matpower潮流计算结果和本人编写程序计算结果对比展示↓各节点电压和相角图一matpower计算得出的结果图二本人程序计算得出的结果对比图一和图二可知,两种计算方法得出的节点电压和相位角度一致。

潮流计算程序及计算结果

潮流计算程序及计算结果

附表1:计算机计算潮流程序:%本程序的功能是用牛顿——拉夫逊法进行潮流计算% B1矩阵:1、支路首端号;2、末端号;3、支路阻抗;4、支路对地电纳% 5、支路的变比;6、支路首端处于K侧为1,1侧为0% B2矩阵:1、该节点发电机功率;2、该节点负荷功率;3、节点电压初始值% 4、PV节点电压V的给定值;5、节点所接的无功补偿设备的容量% 6、节点分类标号clear;n=13;%input('请输入节点数:n=');nl=13;%input('请输入支路数:nl=');isb=1;%input('请输入平衡母线节点号:isb=');pr=0.00001;%input('请输入误差精度:pr=');B1=[];%input('请输入由支路参数形成的矩阵:B1=');B2=[];%input('请输入各节点参数形成的矩阵:B2=');Y=zeros(n);e=zeros(1,n);f=zeros(1,n);V=zeros(1,n);sida=zeros(1,n);S1=zeros(nl); %-------修改部分------------ym=0;SB=100;UB=220;%ym=input('您输入的参数是标么值?(若不是则输入一个不为零的数值)'); if ym~=0%SB=input('请输入功率基准值:SB=');%UB=input('请输入电压基准值:UB=');YB=SB./UB./UB;BB1=B1;BB2=B2;for i=1:nlB1(i,3)=B1(i,3)*YB;B1(i,4)=B1(i,4)./YB;enddisp('B1矩阵B1=');disp(B1)for i=1:nB2(i,1)=B2(i,1)./SB;B2(i,2)=B2(i,2)./SB;B2(i,3)=B2(i,3)./UB;B2(i,4)=B2(i,4)./UB;B2(i,5)=B2(i,5)./SB;enddisp('B2矩阵B2=');disp(B2)end% % %---------------------------------------------------for i=1:nl %支路数if B1(i,6)==0 %左节点处于低压侧p=B1(i,1);q=B1(i,2);elsep=B1(i,2);q=B1(i,1);endY(p,q)=Y(p,q)-1./(B1(i,3)*B1(i,5)); %非对角元Y(q,p)=Y(p,q);Y(q,q)=Y(q,q)+1./(B1(i,3)*B1(i,5)^2)+B1(i,4)./2; %对角元K侧Y(p,p)=Y(p,p)+1./B1(i,3)+B1(i,4)./2; %对角元1侧end%求导纳矩阵disp('导纳矩阵Y=');disp(Y)%----------------------------------------------------------G=real(Y);B=imag(Y); %分解出导纳阵的实部和虚部for i=1:n %给定各节点初始电压的实部和虚部e(i)=real(B2(i,3));f(i)=imag(B2(i,3));V(i)=B2(i,4); %PV节点电压给定模值endfor i=1:n %给定各节点注入功率S(i)=B2(i,1)-B2(i,2); %i节点注入功率SG-SLB(i,i)=B(i,i)+B2(i,5); %i节点无功补偿量end%=========================================================== ========P=real(S);Q=imag(S);ICT1=0;IT2=1;N0=2*n;N=N0+1;a=0;while IT2~=0IT2=0;a=a+1;for i=1:nif i~=isb %非平衡节点C(i)=0;D(i)=0;for j1=1:nC(i)=C(i)+G(i,j1)*e(j1)-B(i,j1)*f(j1);%Σ(Gij*ej-Bij*fj)D(i)=D(i)+G(i,j1)*f(j1)+B(i,j1)*e(j1);%Σ(Gij*fj+Bij*ej)endP1=C(i)*e(i)+f(i)*D(i);%节点功率P计算eiΣ(Gij*ej-Bij*fj)+fiΣ(Gij*fj+Bij*ej)Q1=C(i)*f(i)-e(i)*D(i);%节点功率Q计算fiΣ(Gij*ej-Bij*fj)-eiΣ(Gij*fj+Bij*ej)%求P',Q'V2=e(i)^2+f(i)^2; %电压模平方%========= 以下针对非PV节点来求取功率差及Jacobi矩阵元素=========if B2(i,6)~=3 %非PV节点DP=P(i)-P1; %节点有功功率差DQ=Q(i)-Q1; %节点无功功率差%=============== 以上为除平衡节点外其它节点的功率计算=================%================= 求取Jacobi矩阵===================for j1=1:nif j1~=isb&j1~=i %非平衡节点&非对角元X1=-G(i,j1)*e(i)-B(i,j1)*f(i); % dP/de=-dQ/dfX2=B(i,j1)*e(i)-G(i,j1)*f(i); % dP/df=dQ/deX3=X2; % X2=dp/df X3=dQ/deX4=-X1; % X1=dP/de X4=dQ/dfp=2*i-1;q=2*j1-1;J(p,q)=X3;J(p,N)=DQ;m=p+1;J(m,q)=X1;J(m,N)=DP;q=q+1;J(p,q)=X4;J(m,q)=X2;elseif j1==i&j1~=isb %非平衡节点&对角元X1=-C(i)-G(i,i)*e(i)-B(i,i)*f(i);% dP/deX2=-D(i)+B(i,i)*e(i)-G(i,i)*f(i);% dP/dfX3=D(i)+B(i,i)*e(i)-G(i,i)*f(i); % dQ/deX4=-C(i)+G(i,i)*e(i)+B(i,i)*f(i);% dQ/dfp=2*i-1;q=2*j1-1;J(p,q)=X3;J(p,N)=DQ;%扩展列△Qm=p+1;J(m,q)=X1;q=q+1;J(p,q)=X4;J(m,N)=DP;%扩展列△PJ(m,q)=X2;endendelse%=============== 下面是针对PV节点来求取Jacobi矩阵的元素===========DP=P(i)-P1; % PV节点有功误差DV=V(i)^2-V2; % PV节点电压误差for j1=1:nif j1~=isb&j1~=i %非平衡节点&非对角元X1=-G(i,j1)*e(i)-B(i,j1)*f(i); % dP/deX2=B(i,j1)*e(i)-G(i,j1)*f(i); % dP/dfX5=0;X6=0;p=2*i-1;q=2*j1-1;J(p,q)=X5;J(p,N)=DV;m=p+1;J(m,q)=X1;J(m,N)=DP;q=q+1;J(p,q)=X6;J(m,q)=X2;elseif j1==i&j1~=isb %非平衡节点&对角元X1=-C(i)-G(i,i)*e(i)-B(i,i)*f(i);% dP/deX2=-D(i)+B(i,i)*e(i)-G(i,i)*f(i);% dP/dfX5=-2*e(i);X6=-2*f(i);p=2*i-1;q=2*j1-1;J(p,q)=X5;J(p,N)=DV;m=p+1;J(m,q)=X1;J(m,N)=DP;q=q+1;J(p,q)=X6;J(m,q)=X2;endendendendend%========= 以上为求雅可比矩阵的各个元素===================== for k=3:N0 % N0=2*n (从第三行开始,第一、二行是平衡节点)k1=k+1;N1=N; % N=N0+1 即N=2*n+1扩展列△P、△Qfor k2=k1:N1 % 扩展列△P、△QJ(k,k2)=J(k,k2)./J(k,k); % 非对角元规格化endJ(k,k)=1; % 对角元规格化if k~=3 % 不是第三行%======================================================== ====k4=k-1;for k3=3:k4 % 用k3行从第三行开始到当前行前的k4行消去for k2=k1:N1 % k3行后各行下三角元素J(k3,k2)=J(k3,k2)-J(k3,k)*J(k,k2);%消去运算endJ(k3,k)=0;endif k==N0break;end%==========================================for k3=k1:N0for k2=k1:N1J(k3,k2)=J(k3,k2)-J(k3,k)*J(k,k2);%消去运算endJ(k3,k)=0;endelsefor k3=k1:N0for k2=k1:N1J(k3,k2)=J(k3,k2)-J(k3,k)*J(k,k2);%消去运算endJ(k3,k)=0;endendend%====上面是用线性变换方式将Jacobi矩阵化成单位矩阵=====for k=3:2:N0-1L=(k+1)./2;e(L)=e(L)-J(k,N); %修改节点电压实部k1=k+1;f(L)=f(L)-J(k1,N); %修改节点电压虚部end%------修改节点电压-----------for k=3:N0DET=abs(J(k,N));if DET>=pr %电压偏差量是否满足要求IT2=IT2+1; %不满足要求的节点数加1endendICT2(a)=IT2;ICT1=ICT1+1;end%用高斯消去法解"w=-J*V"disp('迭代次数:');disp(ICT1);disp('没有达到精度要求的个数:');disp(ICT2);for k=1:nV(k)=sqrt(e(k)^2+f(k)^2);sida(k)=atan(f(k)./e(k))*180./pi;E(k)=e(k)+f(k)*j;end%=============== 计算各输出量=========================== disp('各节点的实际电压标幺值E为(节点号从小到大排列):');disp(E);EE=E*UB;disp(EE);disp('-----------------------------------------------------');disp('各节点的电压大小V为(节点号从小到大排列):');disp(V);VV=V*UB;disp(VV);disp('-----------------------------------------------------');disp('各节点的电压相角sida为(节点号从小到大排列):');disp(sida);for p=1:nC(p)=0;for q=1:nC(p)=C(p)+conj(Y(p,q))*conj(E(q));endS(p)=E(p)*C(p);enddisp('各节点的功率S为(节点号从小到大排列):');disp(S);disp('~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~');SS=S*SB;disp(SS);disp('-----------------------------------------------------');disp('各条支路的首端功率Si为(顺序同您输入B1时一致):');for i=1:nlp=B1(i,1);q=B1(i,2);if B1(i,6)==0Si(p,q)=E(p)*(conj(E(p))*conj(B1(i,4)./2)+(conj(E(p)*B1(i,5))-conj(E(q)))*conj(1./( B1(i,3)*B1(i,5))));Siz(i)=Si(p,q);elseSi(p,q)=E(p)*(conj(E(p))*conj(B1(i,4)./2)+(conj(E(p)./B1(i,5))-conj(E(q)))*conj(1./( B1(i,3)*B1(i,5))));Siz(i)=Si(p,q);enddisp(Si(p,q));SSi(p,q)=Si(p,q)*SB;ZF=['S(',num2str(p),',',num2str(q),')=',num2str(SSi(p,q))];disp(ZF);%disp(SSi(p,q));disp('-----------------------------------------------------');enddisp('各条支路的末端功率Sj为(顺序同您输入B1时一致):');for i=1:nlp=B1(i,1);q=B1(i,2);if B1(i,6)==0Sj(q,p)=E(q)*(conj(E(q))*conj(B1(i,4)./2)+(conj(E(q)./B1(i,5))-conj(E(p)))*conj(1./( B1(i,3)*B1(i,5))));Sjy(i)=Sj(q,p);elseSj(q,p)=E(q)*(conj(E(q))*conj(B1(i,4)./2)+(conj(E(q)*B1(i,5))-conj(E(p)))*conj(1./( B1(i,3)*B1(i,5))));Sjy(i)=Sj(q,p);enddisp(Sj(q,p));SSj(q,p)=Sj(q,p)*SB;ZF=['S(',num2str(q),',',num2str(p),')=',num2str(SSj(q,p))];disp(ZF);%disp(SSj(q,p));disp('-----------------------------------------------------');enddisp('各条支路的功率损耗DS为(顺序同您输入B1时一致):');for i=1:nlp=B1(i,1);q=B1(i,2);DS(i)=Si(p,q)+Sj(q,p);disp(DS(i));DDS(i)=DS(i)*SB;ZF=['DS(',num2str(p),',',num2str(q),')=',num2str(DDS(i))];disp(ZF);%disp(DDS(i));disp('-----------------------------------------------------');endfigure(1);subplot(2,2,1);plot(V);xlabel('节点号');ylabel('电压标幺值');grid on;subplot(2,2,2);plot(sida);xlabel('节点号');ylabel('电压角度');grid on;subplot(2,2,3);bar(real(S));ylabel('节点注入有功');grid on;subplot(2,2,4);bar(Siz);ylabel('支路首端无功');grid on;1.冬季最大运行方式潮流计算结果:计算机运行的B1,B2阵如下:B1=[ 1 2 0.0318+0.0454*i 0.282*i 1 01 11 0.0114+0.0374*i 0.2332*i 1 011 3 0.001975+0.0695*i 0 1.025:1.1 11 12 0.0087+0.029*i 0.1788*i 1 012 4 0.0031+0.103*i 0 1:1.05 11 5 0.043+0.142*i 0.22*i 1 05 6 0.0031+0.103*i 0 1:1.05 15 7 0.043+0.142*i 0.22*i 1 01 7 0.051+0.168*i 0.26*i 1 07 8 0.00198+0.0695*i 0 1:1.1 17 13 0.01+0.033*i 0.204*i 1 013 9 0.0025+0.083*i 0 0.9956 11 10 0.00239+0.084*i 0 1.048 1]B2=[0 0 1.1 0 0 10 1.43+0.886*i 1.05 1.05 0 30 0.88+0.545*i 1 0 0 20 0.77+0.4772*i 1 0 0 20 0 1 0 0 20 0.77+0.4772*i 1 0 0 20 0 1 0 0 20 0.88+0.545*i 1 0 0 20.642+0.3817*i 0 1.05 1.05 0 31+0.75*i 0.2+0.1549*i 1.05 1.05 0 30 0 1 0 0 20 0 1 0 0 20 0 1 0 0 2]计算机运行结果如下表:节点号电压值相角值支路标号首端功率末端功率支路功率损耗1 242.0000 0 1-2 148.9391+3.327637i -143-27.45476i 5.93913-24.1271i2 231.0000 -3.0341 1-11 89.1956+37.193i -88.19803-61.4687i 0.997519-24.2757i3 227.4154 -4.4383 11-3 88.19803+61.4687i -88-54.5i 0.19803+6.9687i4 226.3304 -4.9004 1-12 77.8364+36.4186i -77.2404-55.7062i 0.596039-19.2876i5 229.8318 -3.9547 12-4 77.2404+55.7062i -77-47.72i 0.24036+7.9862i6 217.7226 -8.2720 1-5 63.5438+12.2204i -61.8773-32.0321i 1.66656-19.8116i7 234.9326 -3.1047 5-6 77.2597+56.3501i -77-47.72i 0.25974+8.6301i8 226.0991 -6.2429 5-7 15.3825-24.3181i 15.5354+0.274108i 0.152961-24.044i9 231.0000 0.5851 7-8 88.20085+61.55009i -88-54.5i 0.20085+7.0501i10 231.0000 3.4950 1-7 40.806-6.05737i -40.0647-22.0555i 0.741264-28.1128i11 236.1931 -1.3348 7-13 -63.6716-39.7687i 64.0965+17.5832i 0.424934-22.1855i12 237.9346 -0.8892 13-9 -64.0965-17.5832i 64.2+21.0187i 0.10348+3.4355i13 238.1868 -2.2028 1-10 79.8613+4.23546i 80+0.641048i 0.13875+4.8765i 计算机计算结果图形:2.冬季最小运行方式潮流计算结果:计算机运行的B1B2矩阵如下:B1=[ 1 2 0.0318+0.0454*i 0.282*i 1 01 11 0.0114+0.0374*i 0.2332*i 1 011 3 0.001975+0.0695*i 0 1.025:1.1 11 12 0.0087+0.029*i 0.1788*i 1 012 4 0.0031+0.103*i 0 1:1.05 11 5 0.043+0.142*i 0.22*i 1 05 6 0.0031+0.103*i 0 1:1.05 15 7 0.043+0.142*i 0.22*i 1 01 7 0.051+0.168*i 0.26*i 1 07 8 0.00198+0.0695*i 0 1:1.1 17 13 0.01+0.033*i 0.204*i 1 013 9 0.0025+0.083*i 0 0.9956 11 10 0.00239+0.084*i 0 1.048 1]B2=[0 0 1.1 0 0 10 1.43+0.886*i 1.05 1.05 0 30 0.616+0.3817*i 1 0 0 20 0.539+0.3817*i 1 0 0 20 0 1 0 0 20 0.539+0.334*i 1 0 0 20 0 1 0 0 20 0.539+0.334*i 1 0 0 20.642+0.3817*i 0 1.05 1.05 0 31+0.75*i 0.1+0.06197*i 1.05 1.05 0 30 0 1 0 0 20 0 1 0 0 20 0 1 0 0 2]电压调整措施:变电所1、4变压器变比:+2.5% 水电厂变压器变比:-2.5%5 234.2241 -2.0051 (12--4) 54.0234+42.2706i -53.9-38.17i 0.12342+4.1006i6 226.2159 -4.8577 (1--5) 34.1669+4.22856 -33.6427-28.276i 0.524165-24.0474i7 235.1128 -0.4737 (5--6) 54.0179+37.3169i -53.9-33.4i 0.11789+3.9169i8 223.9941 -2.4603 (5--7) -20.3752-9.04094i 20.5371-15.4558i 0.161947-24.4968i9 231.0000 3.4429 (1--7) 11.0013+1.45186i -10.8258-31.4513i 0.175442-29.9995i10 231.0000 3.9321 (7--8) 53.9768+36.0957i -53.9-33.4i 0.076797+2.6957i11 238.4187 -0.9561 (7--13) -63.6881+10.8115i 64.0874-32.7763i 0.39932-21.9648i12 239.1742 -0.6185 (13--9) -64.0874+32.7763i 64.2-29.0386i 0.11258+3.7377i13 234.9468 0.6942 (1--10) -89.8244+5.1673i 90+1.0049i 0.17561+6.1722i 计算机运行结果的图形:3.夏季最大运行方式计算机计算结果:计算机运行B1B2阵如下:B1=[ 1 2 0.0318+0.0454*i 0.282*i 1 01 11 0.0114+0.0374*i 0.2332*i 1 011 3 0.001975+0.0695*i 0 1.025:1.1 11 12 0.0087+0.029*i 0.1788*i 1 012 4 0.0031+0.103*i 0 1:1.05 11 5 0.043+0.142*i 0.22*i 1 05 6 0.0031+0.103*i 0 1:1.05 15 7 0.043+0.142*i 0.22*i 1 01 7 0.051+0.168*i 0.26*i 1 07 8 0.00198+0.0695*i 0 1:1.1 17 13 0.02+0.066*i 0.102*i 1 013 9 0.0025+0.083*i 0 0.9956 11 10 0.00239+0.084*i 0 1.048 1]B2=[0 0 1.1 0 0 10 1.26+0.7814*i 1.05 1.05 0 30 0.776+0.481*i 1 0 0 20 0.543+0.3367*i 1 0 0 20 0 1 0 0 20 0.543+0.3367*i 1 0 0 20 0 1 0 0 20 0.776+0.481*i 1 0 0 21.35+0.6538*i 0.2+0.124*i 1.05 1.05 0 31+0.75*i 0.25+0.1549*i 1.05 1.05 0 30 0 1 0 0 20 0 1 0 0 20 0 1 0 0 2]计算机运行结果如下表:10 231.0000 3.4950 (7,8) 77.7585+53.6634i -77.6-48.1i0.1585+5.5634i11 237.0938 -1.1858 (7,13) -113.4984+9.476406i 114.6926-28.38885i 1.19422-18.9124i12 239.1742 -0.6185 (13,9) -114.6926+28.38885 115-18.18369i0.307384+10.2052i13 233.3912 3.2303 (1,10) -79.8613+4.23546i 80+0.641048i 0.13875+4.8765i 计算机计算结果如图:4.夏季最小运行方式:计算机运行B1B2阵如下:B1=[ 1 2 0.0318+0.0454*i 0.282*i 1 01 11 0.0114+0.0374*i 0.2332*i 1 011 3 0.001975+0.0695*i 0 1.025:1.1 11 12 0.0087+0.029*i 0.1788*i 1 012 4 0.0031+0.103*i 0 1:1.05 11 5 0.043+0.142*i 0.22*i 1 05 6 0.0031+0.103*i 0 1:1.05 15 7 0.043+0.142*i 0.22*i 1 01 7 0.051+0.168*i 0.26*i 1 07 8 0.00198+0.0695*i 0 1:1.1 17 13 0.02+0.066*i 0.102*i 1 013 9 0.0025+0.083*i 0 0.9956 11 10 0.00239+0.084*i 0 1.048 1]B2=[0 0 1.1 0 0 10 1.26+0.7814*i 1.05 1.05 0 30 0.543+0.336*i 1 0 0 20 0.4753+0.2947*i 1 0 0 20 0 1 0 0 20 0.4753+0.2947*i 1 0 0 20 0 1 0 0 20 0.543+0.336*i 1 0 0 21.35+0.6538*i 0.2+0.124*i 1.05 1.05 0 31+0.75*i 0.25+0.1549*i 1.05 1.05 0 30 0 1 0 0 20 0 1 0 0 20 0 1 0 0 2]10 231.0000 3.9321 (7,8) 54.3735+36.2509i -54.3-33.67i 0.073528+2.5809i11 239.0099 -0.8518 (7,13) -113.4428+24.39707i 114.6754-43.79301i 1.23255-19.3959i12 239.8726 -0.5689 (13,9) -114.6754+43.79301i 115-33.01613i 0.324605+10.7769i13 235.9565 4.4510 (1,10) -89.8244+5.1673i 90+1.0049i 0.17561+6.1722i 计算机计算结果如图:5.夏季故障运行状态:调压及无功补偿措施如下:变电所3的变压器变比为-2.5%,无功补偿容量为20Mvar。

第四节PQ分解法潮流计算

第四节PQ分解法潮流计算

第四节 PQ 分解法潮流计算一 、PQ 分解法的基本方程式60年代以来N —R 法曾经是潮流计算中应用比较普遍的方法,但随着网络规模的扩大(从计算几十个节点增加到几百个甚至上千个节点)以及计算机从离线计算向在线计算的发展,N —R 法在内存需要量及计算速度方面越来越不 适应要求。

70年代中期出现的快速分解法比较成功的解决了上述问题,使潮流计算在N —R 法的基础上向前迈进了一大步,成为取代N —R 法的算法之一。

快速分解法(又称P —Q 分解法)是从简化牛顿法极坐标形式计算潮流程序的基础上提出来的。

它的基本思想是根据电力系统实际运行特点:通常网络上的电抗远大于电阻值 ,则系统母线电压副值的微小变化V ∆对母线有功功率的改变P ∆影响很小。

同样,母线电压相角的少许改变θ∆,也不会引起母线无功功率的明显改变Q ∆。

因此,节点功率方程在用极坐标形式表示时,它的修正方程式可简化为:⎥⎦⎤⎢⎣⎡∆∆⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡∆∆V V L H Q P /00θ (4—19) 这就是把2(n —1)阶的线性方程组变成了两个n —1阶的线性方程组,将P 和Q 分开来进行迭代计算,因而大大地减少了计算工作量。

但是,H ,L 在迭代过程中仍然在不断的变化,而且又都是不对称的矩阵。

对牛顿法的进一步简化(也是最关键的一步),即把(4—19)中的系数矩阵简化为在迭代过程中不变的对称矩阵。

在一般情况下,线路两端电压的相角ij θ是不大的(不超过10○~20○)。

因此,可以认为:⎭⎬⎫<<≈ij ij ij ij B G θθsin 1cos (4—20)此外,与系统各节点无功功率相应的导纳B LDi 远远小于该节点自导纳的虚部,即 ii iiLDi B V Q B <<=2 因而 ii i i B V Q 2<< (4—21) 考虑到以上关系,式(4—19)的系数矩阵中的各元素可表示为: ij j i ij B V V H = (i,j=1,2,………,n-1) (4—22)ij j i ij B V V L = (i,j=1,2,……………,m ) (4—23)而系数矩阵H 和L 则可以分别写成:⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=------------11,1122,1111,1111,222222121211,1121211111n n n n n n n n n n n n V B V V B V V B V V B V V B V V B V V B V V B V V B V H =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--------1211,12,11,11,222211,11211121n n n n n n n n V V V B B B B B B B B B V V V =11D D BV V (4—24)⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=m mm m m m m m m m m m m V B V V B V V B V V B V V B V V B V V B V V B V V B V L 22122222212121121211111 =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡m mm m m m m m V V V B B B B B B B B B V V V2121222211121121=22''D D V B V (4—25) 将(4—24)和(4—25)式代入(4—19)中,得到[][][][][]θ∆'-=∆11D D V B V P[][][][]V B V Q D ∆-=∆''2用[]11-D V 和[]12-D V 分别左乘以上两式便得:[][][][][]θ∆-=∆-111'D D V B P V (4—26)[][][][]V B Q V D ∆-=∆-''12 (4—27)这就是简化了的修正方程式,它们也可展开写成:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡∆∆∆⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-=⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡∆∆∆----------1122111,12,11,11,222211,11211112211n n n n n n n n n n V V V B B B B B B B B B V P V P V P θθθ(4—28)⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡∆∆∆⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-=⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡∆∆∆m mm m m m m m mV V V B B B B B B B B B V Q V Q V Q 212122221112112211 (4—29) 在这两个修正方程式中系数矩阵元素就是系统导纳矩阵的虚部,因而系数矩阵是对称矩阵,且在迭代过程中保持不变。

电力系统潮流计算完整程序及详细理论说明

电力系统潮流计算完整程序及详细理论说明

电力系统潮流计算完整程序及详细理论说明——秦羽风在我刚开始学习潮流程序时,总是找不到一个正确的程序开始模仿学习。

后来经过多方努力,终于自己写出了一个结构清晰、完整的潮流程序。

此程序是一个通用的程序,只需要修改输入数据的子函数(PowerFlowsData_K)里面的母线、支路、发电机、负荷,就能算任意一个网络结构的交流系统潮流。

很适合初学者学习.为了帮助电力系统的同学一起学习,我将我编写的潮流计算程序分享下来给大家;此程序是在基于牛顿拉夫逊算法的基础上,编写的快速解耦算法。

每一个子程序我都有备注说明。

如果有不对的地方,希望大家指正!下文中呈现的顺序为:网络结构、子程序、主程序、运算结果、程序设计理论说明。

一、网络结构:5节点网络如下图。

二、子程序(共有9个子程序)子程序1:(其他系统,只需要修改Bus、Branch、Generator、Load,这四个矩阵就行了)function [Bus,Branch,Generator,Load]=PowerFlowsData_K%%节点数据% 类型:1-平衡节点;2-发电机PV节点;3—负荷PQ节点;4-发电机PQ节点;Bus=[% 类型电压相角1 1。

06 0;2 1 0;3 1 0;3 1 0;3 1 0];%% 线路数据Branch=[% 发送接收电阻电感(电导电容)并联1 2 0.02 0.06 0 0.06;1 3 0。

08 0。

24 0 0。

05;2 3 0.06 0.18 0 0。

04;2 4 0。

06 0。

18 0 0.04;2 5 0.04 0.12 0 0。

03;3 4 0.01 0.03 0 0。

02;4 5 0.08 0.24 0 0.05];%% 发电机数据Generator=[%节点定有功定无功(上限下限)无功1 0 0 5 —5;2 0。

4 03 —3];%%负载数据Load=[% 节点定有功定无功2 0.2 0.1;3 0。

交直流系统潮流计算的编程

交直流系统潮流计算的编程

交直流系统潮流计算的编程潮流计算是电力系统中一项重要的工作,它用于计算电网中各节点的电压幅值和相角,以及各支路的功率流向和功率损耗。

交直流系统潮流计算的编程是实现这一过程的关键。

本文将介绍交直流系统潮流计算的基本原理,并探讨如何通过编程实现潮流计算。

一、交直流系统潮流计算的基本原理潮流计算是基于电力系统的节点电压和功率平衡方程进行求解的。

在交直流系统中,节点电压可以表示为复数形式,即包括幅值和相角两个参数。

潮流计算的目标是求解这些参数,以及支路的功率信息。

交直流系统的节点电压满足复数形式的功率平衡方程,即:S=P+jQ其中,S表示节点注入的复功率,P表示有功功率,Q表示无功功率,j为虚数单位。

节点电压的计算需要考虑支路的阻抗和导纳,以及节点注入的功率信息。

通过迭代计算,可以逐步求解各节点的电压幅值和相角。

二、交直流系统潮流计算的编程实现交直流系统潮流计算的编程实现可以使用各种编程语言,如MATLAB、Python等。

下面以Python语言为例,介绍潮流计算的编程实现步骤。

1. 数据准备:首先需要准备电力系统的拓扑结构和参数信息。

包括节点的编号和注入功率信息,支路的阻抗和导纳信息等。

2. 潮流计算初始化:初始化各节点的电压幅值和相角,可以设置初始值为1和0,然后进行迭代计算。

3. 迭代计算:通过迭代计算逐步求解各节点的电压幅值和相角。

具体的计算方法可以使用高斯-赛德尔迭代法或牛顿-拉夫逊迭代法等。

4. 收敛判断:在每次迭代计算后,需要判断计算结果是否收敛。

可以通过判断节点电压的变化范围是否小于设定的精度要求来判断是否收敛。

5. 结果输出:最后,将计算得到的电压幅值和相角,以及支路的功率信息进行输出。

三、编程实例下面给出一个简单的Python程序示例,实现交直流系统潮流计算:```python# 导入所需库import numpy as np# 数据准备N = 3 # 节点数P = np.array([1.0, 0.5, 0.8]) # 节点注入有功功率Q = np.array([0.3, 0.2, 0.4]) # 节点注入无功功率Z = np.array([[0.1 + 0.2j, 0.2 + 0.3j, 0.3 + 0.4j],[0.2 + 0.3j, 0.3 + 0.4j, 0.4 + 0.5j],[0.3 + 0.4j, 0.4 + 0.5j, 0.5 + 0.6j]]) # 支路阻抗# 潮流计算初始化V = np.ones(N) # 节点电压幅值theta = np.zeros(N) # 节点相角# 迭代计算max_iter = 100 # 最大迭代次数epsilon = 1e-6 # 收敛判断阈值for i in range(max_iter):delta_V = np.zeros(N)delta_theta = np.zeros(N)for j in range(N):sum_P = 0sum_Q = 0for k in range(N):sum_P += V[k] * (np.real(Z[j][k]) * np.real(V[j]) + np.imag(Z[j][k]) * np.imag(V[j]))sum_Q += V[k] * (np.real(Z[j][k]) * np.imag(V[j]) - np.imag(Z[j][k]) * np.real(V[j]))delta_V[j] = V[j] * (sum_P - P[j]) + V[j] * (sum_Q - Q[j])delta_theta[j] = V[j] * (sum_Q - Q[j]) - V[j] * (sum_P - P[j])V -= delta_Vtheta -= delta_theta# 收敛判断if np.max(np.abs(delta_V)) < epsilon and np.max(np.abs(delta_theta)) < epsilon:break# 结果输出for i in range(N):print("节点{}:电压幅值={}, 相角={}".format(i+1, V[i], theta[i])) ```四、总结本文介绍了交直流系统潮流计算的基本原理,并通过Python编程实现了潮流计算的过程。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

附表1:计算机计算潮流程序:%本程序的功能是用牛顿——拉夫逊法进行潮流计算% B1矩阵:1、支路首端号;2、末端号;3、支路阻抗;4、支路对地电纳% 5、支路的变比;6、支路首端处于K侧为1,1侧为0% B2矩阵:1、该节点发电机功率;2、该节点负荷功率;3、节点电压初始值% 4、PV节点电压V的给定值;5、节点所接的无功补偿设备的容量% 6、节点分类标号clear;n=13;%input('请输入节点数:n=');nl=13;%input('请输入支路数:nl=');isb=1;%input('请输入平衡母线节点号:isb=');pr=0.00001;%input('请输入误差精度:pr=');B1=[];%input('请输入由支路参数形成的矩阵:B1=');B2=[];%input('请输入各节点参数形成的矩阵:B2=');Y=zeros(n);e=zeros(1,n);f=zeros(1,n);V=zeros(1,n);sida=zeros(1,n);S1=zeros(nl); %-------修改部分------------ym=0;SB=100;UB=220;%ym=input('您输入的参数是标么值?(若不是则输入一个不为零的数值)'); if ym~=0%SB=input('请输入功率基准值:SB=');%UB=input('请输入电压基准值:UB=');YB=SB./UB./UB;BB1=B1;BB2=B2;for i=1:nlB1(i,3)=B1(i,3)*YB;B1(i,4)=B1(i,4)./YB;enddisp('B1矩阵B1=');disp(B1)for i=1:nB2(i,1)=B2(i,1)./SB;B2(i,2)=B2(i,2)./SB;B2(i,3)=B2(i,3)./UB;B2(i,4)=B2(i,4)./UB;B2(i,5)=B2(i,5)./SB;enddisp('B2矩阵B2=');disp(B2)end% % %---------------------------------------------------for i=1:nl %支路数if B1(i,6)==0 %左节点处于低压侧p=B1(i,1);q=B1(i,2);elsep=B1(i,2);q=B1(i,1);endY(p,q)=Y(p,q)-1./(B1(i,3)*B1(i,5)); %非对角元Y(q,p)=Y(p,q);Y(q,q)=Y(q,q)+1./(B1(i,3)*B1(i,5)^2)+B1(i,4)./2; %对角元K侧Y(p,p)=Y(p,p)+1./B1(i,3)+B1(i,4)./2; %对角元1侧end%求导纳矩阵disp('导纳矩阵Y=');disp(Y)%----------------------------------------------------------G=real(Y);B=imag(Y); %分解出导纳阵的实部和虚部for i=1:n %给定各节点初始电压的实部和虚部e(i)=real(B2(i,3));f(i)=imag(B2(i,3));V(i)=B2(i,4); %PV节点电压给定模值endfor i=1:n %给定各节点注入功率S(i)=B2(i,1)-B2(i,2); %i节点注入功率SG-SLB(i,i)=B(i,i)+B2(i,5); %i节点无功补偿量end%=========================================================== ========P=real(S);Q=imag(S);ICT1=0;IT2=1;N0=2*n;N=N0+1;a=0;while IT2~=0IT2=0;a=a+1;for i=1:nif i~=isb %非平衡节点C(i)=0;D(i)=0;for j1=1:nC(i)=C(i)+G(i,j1)*e(j1)-B(i,j1)*f(j1);%Σ(Gij*ej-Bij*fj)D(i)=D(i)+G(i,j1)*f(j1)+B(i,j1)*e(j1);%Σ(Gij*fj+Bij*ej)endP1=C(i)*e(i)+f(i)*D(i);%节点功率P计算eiΣ(Gij*ej-Bij*fj)+fiΣ(Gij*fj+Bij*ej)Q1=C(i)*f(i)-e(i)*D(i);%节点功率Q计算fiΣ(Gij*ej-Bij*fj)-eiΣ(Gij*fj+Bij*ej)%求P',Q'V2=e(i)^2+f(i)^2; %电压模平方%========= 以下针对非PV节点来求取功率差及Jacobi矩阵元素=========if B2(i,6)~=3 %非PV节点DP=P(i)-P1; %节点有功功率差DQ=Q(i)-Q1; %节点无功功率差%=============== 以上为除平衡节点外其它节点的功率计算=================%================= 求取Jacobi矩阵===================for j1=1:nif j1~=isb&j1~=i %非平衡节点&非对角元X1=-G(i,j1)*e(i)-B(i,j1)*f(i); % dP/de=-dQ/dfX2=B(i,j1)*e(i)-G(i,j1)*f(i); % dP/df=dQ/deX3=X2; % X2=dp/df X3=dQ/deX4=-X1; % X1=dP/de X4=dQ/dfp=2*i-1;q=2*j1-1;J(p,q)=X3;J(p,N)=DQ;m=p+1;J(m,q)=X1;J(m,N)=DP;q=q+1;J(p,q)=X4;J(m,q)=X2;elseif j1==i&j1~=isb %非平衡节点&对角元X1=-C(i)-G(i,i)*e(i)-B(i,i)*f(i);% dP/deX2=-D(i)+B(i,i)*e(i)-G(i,i)*f(i);% dP/dfX3=D(i)+B(i,i)*e(i)-G(i,i)*f(i); % dQ/deX4=-C(i)+G(i,i)*e(i)+B(i,i)*f(i);% dQ/dfp=2*i-1;q=2*j1-1;J(p,q)=X3;J(p,N)=DQ;%扩展列△Qm=p+1;J(m,q)=X1;q=q+1;J(p,q)=X4;J(m,N)=DP;%扩展列△PJ(m,q)=X2;endendelse%=============== 下面是针对PV节点来求取Jacobi矩阵的元素===========DP=P(i)-P1; % PV节点有功误差DV=V(i)^2-V2; % PV节点电压误差for j1=1:nif j1~=isb&j1~=i %非平衡节点&非对角元X1=-G(i,j1)*e(i)-B(i,j1)*f(i); % dP/deX2=B(i,j1)*e(i)-G(i,j1)*f(i); % dP/dfX5=0;X6=0;p=2*i-1;q=2*j1-1;J(p,q)=X5;J(p,N)=DV;m=p+1;J(m,q)=X1;J(m,N)=DP;q=q+1;J(p,q)=X6;J(m,q)=X2;elseif j1==i&j1~=isb %非平衡节点&对角元X1=-C(i)-G(i,i)*e(i)-B(i,i)*f(i);% dP/deX2=-D(i)+B(i,i)*e(i)-G(i,i)*f(i);% dP/dfX5=-2*e(i);X6=-2*f(i);p=2*i-1;q=2*j1-1;J(p,q)=X5;J(p,N)=DV;m=p+1;J(m,q)=X1;J(m,N)=DP;q=q+1;J(p,q)=X6;J(m,q)=X2;endendendendend%========= 以上为求雅可比矩阵的各个元素===================== for k=3:N0 % N0=2*n (从第三行开始,第一、二行是平衡节点)k1=k+1;N1=N; % N=N0+1 即N=2*n+1扩展列△P、△Qfor k2=k1:N1 % 扩展列△P、△QJ(k,k2)=J(k,k2)./J(k,k); % 非对角元规格化endJ(k,k)=1; % 对角元规格化if k~=3 % 不是第三行%======================================================== ====k4=k-1;for k3=3:k4 % 用k3行从第三行开始到当前行前的k4行消去for k2=k1:N1 % k3行后各行下三角元素J(k3,k2)=J(k3,k2)-J(k3,k)*J(k,k2);%消去运算endJ(k3,k)=0;endif k==N0break;end%==========================================for k3=k1:N0for k2=k1:N1J(k3,k2)=J(k3,k2)-J(k3,k)*J(k,k2);%消去运算endJ(k3,k)=0;endelsefor k3=k1:N0for k2=k1:N1J(k3,k2)=J(k3,k2)-J(k3,k)*J(k,k2);%消去运算endJ(k3,k)=0;endendend%====上面是用线性变换方式将Jacobi矩阵化成单位矩阵=====for k=3:2:N0-1L=(k+1)./2;e(L)=e(L)-J(k,N); %修改节点电压实部k1=k+1;f(L)=f(L)-J(k1,N); %修改节点电压虚部end%------修改节点电压-----------for k=3:N0DET=abs(J(k,N));if DET>=pr %电压偏差量是否满足要求IT2=IT2+1; %不满足要求的节点数加1endendICT2(a)=IT2;ICT1=ICT1+1;end%用高斯消去法解"w=-J*V"disp('迭代次数:');disp(ICT1);disp('没有达到精度要求的个数:');disp(ICT2);for k=1:nV(k)=sqrt(e(k)^2+f(k)^2);sida(k)=atan(f(k)./e(k))*180./pi;E(k)=e(k)+f(k)*j;end%=============== 计算各输出量=========================== disp('各节点的实际电压标幺值E为(节点号从小到大排列):');disp(E);EE=E*UB;disp(EE);disp('-----------------------------------------------------');disp('各节点的电压大小V为(节点号从小到大排列):');disp(V);VV=V*UB;disp(VV);disp('-----------------------------------------------------');disp('各节点的电压相角sida为(节点号从小到大排列):');disp(sida);for p=1:nC(p)=0;for q=1:nC(p)=C(p)+conj(Y(p,q))*conj(E(q));endS(p)=E(p)*C(p);enddisp('各节点的功率S为(节点号从小到大排列):');disp(S);disp('~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~');SS=S*SB;disp(SS);disp('-----------------------------------------------------');disp('各条支路的首端功率Si为(顺序同您输入B1时一致):');for i=1:nlp=B1(i,1);q=B1(i,2);if B1(i,6)==0Si(p,q)=E(p)*(conj(E(p))*conj(B1(i,4)./2)+(conj(E(p)*B1(i,5))-conj(E(q)))*conj(1./( B1(i,3)*B1(i,5))));Siz(i)=Si(p,q);elseSi(p,q)=E(p)*(conj(E(p))*conj(B1(i,4)./2)+(conj(E(p)./B1(i,5))-conj(E(q)))*conj(1./( B1(i,3)*B1(i,5))));Siz(i)=Si(p,q);enddisp(Si(p,q));SSi(p,q)=Si(p,q)*SB;ZF=['S(',num2str(p),',',num2str(q),')=',num2str(SSi(p,q))];disp(ZF);%disp(SSi(p,q));disp('-----------------------------------------------------');enddisp('各条支路的末端功率Sj为(顺序同您输入B1时一致):');for i=1:nlp=B1(i,1);q=B1(i,2);if B1(i,6)==0Sj(q,p)=E(q)*(conj(E(q))*conj(B1(i,4)./2)+(conj(E(q)./B1(i,5))-conj(E(p)))*conj(1./( B1(i,3)*B1(i,5))));Sjy(i)=Sj(q,p);elseSj(q,p)=E(q)*(conj(E(q))*conj(B1(i,4)./2)+(conj(E(q)*B1(i,5))-conj(E(p)))*conj(1./( B1(i,3)*B1(i,5))));Sjy(i)=Sj(q,p);enddisp(Sj(q,p));SSj(q,p)=Sj(q,p)*SB;ZF=['S(',num2str(q),',',num2str(p),')=',num2str(SSj(q,p))];disp(ZF);%disp(SSj(q,p));disp('-----------------------------------------------------');enddisp('各条支路的功率损耗DS为(顺序同您输入B1时一致):');for i=1:nlp=B1(i,1);q=B1(i,2);DS(i)=Si(p,q)+Sj(q,p);disp(DS(i));DDS(i)=DS(i)*SB;ZF=['DS(',num2str(p),',',num2str(q),')=',num2str(DDS(i))];disp(ZF);%disp(DDS(i));disp('-----------------------------------------------------');endfigure(1);subplot(2,2,1);plot(V);xlabel('节点号');ylabel('电压标幺值');grid on;subplot(2,2,2);plot(sida);xlabel('节点号');ylabel('电压角度');grid on;subplot(2,2,3);bar(real(S));ylabel('节点注入有功');grid on;subplot(2,2,4);bar(Siz);ylabel('支路首端无功');grid on;1.冬季最大运行方式潮流计算结果:计算机运行的B1,B2阵如下:B1=[ 1 2 0.0318+0.0454*i 0.282*i 1 01 11 0.0114+0.0374*i 0.2332*i 1 011 3 0.001975+0.0695*i 0 1.025:1.1 11 12 0.0087+0.029*i 0.1788*i 1 012 4 0.0031+0.103*i 0 1:1.05 11 5 0.043+0.142*i 0.22*i 1 05 6 0.0031+0.103*i 0 1:1.05 15 7 0.043+0.142*i 0.22*i 1 01 7 0.051+0.168*i 0.26*i 1 07 8 0.00198+0.0695*i 0 1:1.1 17 13 0.01+0.033*i 0.204*i 1 013 9 0.0025+0.083*i 0 0.9956 11 10 0.00239+0.084*i 0 1.048 1]B2=[0 0 1.1 0 0 10 1.43+0.886*i 1.05 1.05 0 30 0.88+0.545*i 1 0 0 20 0.77+0.4772*i 1 0 0 20 0 1 0 0 20 0.77+0.4772*i 1 0 0 20 0 1 0 0 20 0.88+0.545*i 1 0 0 20.642+0.3817*i 0 1.05 1.05 0 31+0.75*i 0.2+0.1549*i 1.05 1.05 0 30 0 1 0 0 20 0 1 0 0 20 0 1 0 0 2]计算机运行结果如下表:节点号电压值相角值支路标号首端功率末端功率支路功率损耗1 242.0000 0 1-2 148.9391+3.327637i -143-27.45476i 5.93913-24.1271i2 231.0000 -3.0341 1-11 89.1956+37.193i -88.19803-61.4687i 0.997519-24.2757i3 227.4154 -4.4383 11-3 88.19803+61.4687i -88-54.5i 0.19803+6.9687i4 226.3304 -4.9004 1-12 77.8364+36.4186i -77.2404-55.7062i 0.596039-19.2876i5 229.8318 -3.9547 12-4 77.2404+55.7062i -77-47.72i 0.24036+7.9862i6 217.7226 -8.2720 1-5 63.5438+12.2204i -61.8773-32.0321i 1.66656-19.8116i7 234.9326 -3.1047 5-6 77.2597+56.3501i -77-47.72i 0.25974+8.6301i8 226.0991 -6.2429 5-7 15.3825-24.3181i 15.5354+0.274108i 0.152961-24.044i9 231.0000 0.5851 7-8 88.20085+61.55009i -88-54.5i 0.20085+7.0501i10 231.0000 3.4950 1-7 40.806-6.05737i -40.0647-22.0555i 0.741264-28.1128i11 236.1931 -1.3348 7-13 -63.6716-39.7687i 64.0965+17.5832i 0.424934-22.1855i12 237.9346 -0.8892 13-9 -64.0965-17.5832i 64.2+21.0187i 0.10348+3.4355i13 238.1868 -2.2028 1-10 79.8613+4.23546i 80+0.641048i 0.13875+4.8765i 计算机计算结果图形:2.冬季最小运行方式潮流计算结果:计算机运行的B1B2矩阵如下:B1=[ 1 2 0.0318+0.0454*i 0.282*i 1 01 11 0.0114+0.0374*i 0.2332*i 1 011 3 0.001975+0.0695*i 0 1.025:1.1 11 12 0.0087+0.029*i 0.1788*i 1 012 4 0.0031+0.103*i 0 1:1.05 11 5 0.043+0.142*i 0.22*i 1 05 6 0.0031+0.103*i 0 1:1.05 15 7 0.043+0.142*i 0.22*i 1 01 7 0.051+0.168*i 0.26*i 1 07 8 0.00198+0.0695*i 0 1:1.1 17 13 0.01+0.033*i 0.204*i 1 013 9 0.0025+0.083*i 0 0.9956 11 10 0.00239+0.084*i 0 1.048 1]B2=[0 0 1.1 0 0 10 1.43+0.886*i 1.05 1.05 0 30 0.616+0.3817*i 1 0 0 20 0.539+0.3817*i 1 0 0 20 0 1 0 0 20 0.539+0.334*i 1 0 0 20 0 1 0 0 20 0.539+0.334*i 1 0 0 20.642+0.3817*i 0 1.05 1.05 0 31+0.75*i 0.1+0.06197*i 1.05 1.05 0 30 0 1 0 0 20 0 1 0 0 20 0 1 0 0 2]电压调整措施:变电所1、4变压器变比:+2.5% 水电厂变压器变比:-2.5%5 234.2241 -2.0051 (12--4) 54.0234+42.2706i -53.9-38.17i 0.12342+4.1006i6 226.2159 -4.8577 (1--5) 34.1669+4.22856 -33.6427-28.276i 0.524165-24.0474i7 235.1128 -0.4737 (5--6) 54.0179+37.3169i -53.9-33.4i 0.11789+3.9169i8 223.9941 -2.4603 (5--7) -20.3752-9.04094i 20.5371-15.4558i 0.161947-24.4968i9 231.0000 3.4429 (1--7) 11.0013+1.45186i -10.8258-31.4513i 0.175442-29.9995i10 231.0000 3.9321 (7--8) 53.9768+36.0957i -53.9-33.4i 0.076797+2.6957i11 238.4187 -0.9561 (7--13) -63.6881+10.8115i 64.0874-32.7763i 0.39932-21.9648i12 239.1742 -0.6185 (13--9) -64.0874+32.7763i 64.2-29.0386i 0.11258+3.7377i13 234.9468 0.6942 (1--10) -89.8244+5.1673i 90+1.0049i 0.17561+6.1722i 计算机运行结果的图形:3.夏季最大运行方式计算机计算结果:计算机运行B1B2阵如下:B1=[ 1 2 0.0318+0.0454*i 0.282*i 1 01 11 0.0114+0.0374*i 0.2332*i 1 011 3 0.001975+0.0695*i 0 1.025:1.1 11 12 0.0087+0.029*i 0.1788*i 1 012 4 0.0031+0.103*i 0 1:1.05 11 5 0.043+0.142*i 0.22*i 1 05 6 0.0031+0.103*i 0 1:1.05 15 7 0.043+0.142*i 0.22*i 1 01 7 0.051+0.168*i 0.26*i 1 07 8 0.00198+0.0695*i 0 1:1.1 17 13 0.02+0.066*i 0.102*i 1 013 9 0.0025+0.083*i 0 0.9956 11 10 0.00239+0.084*i 0 1.048 1]B2=[0 0 1.1 0 0 10 1.26+0.7814*i 1.05 1.05 0 30 0.776+0.481*i 1 0 0 20 0.543+0.3367*i 1 0 0 20 0 1 0 0 20 0.543+0.3367*i 1 0 0 20 0 1 0 0 20 0.776+0.481*i 1 0 0 21.35+0.6538*i 0.2+0.124*i 1.05 1.05 0 31+0.75*i 0.25+0.1549*i 1.05 1.05 0 30 0 1 0 0 20 0 1 0 0 20 0 1 0 0 2]计算机运行结果如下表:10 231.0000 3.4950 (7,8) 77.7585+53.6634i -77.6-48.1i0.1585+5.5634i11 237.0938 -1.1858 (7,13) -113.4984+9.476406i 114.6926-28.38885i 1.19422-18.9124i12 239.1742 -0.6185 (13,9) -114.6926+28.38885 115-18.18369i0.307384+10.2052i13 233.3912 3.2303 (1,10) -79.8613+4.23546i 80+0.641048i 0.13875+4.8765i 计算机计算结果如图:4.夏季最小运行方式:计算机运行B1B2阵如下:B1=[ 1 2 0.0318+0.0454*i 0.282*i 1 01 11 0.0114+0.0374*i 0.2332*i 1 011 3 0.001975+0.0695*i 0 1.025:1.1 11 12 0.0087+0.029*i 0.1788*i 1 012 4 0.0031+0.103*i 0 1:1.05 11 5 0.043+0.142*i 0.22*i 1 05 6 0.0031+0.103*i 0 1:1.05 15 7 0.043+0.142*i 0.22*i 1 01 7 0.051+0.168*i 0.26*i 1 07 8 0.00198+0.0695*i 0 1:1.1 17 13 0.02+0.066*i 0.102*i 1 013 9 0.0025+0.083*i 0 0.9956 11 10 0.00239+0.084*i 0 1.048 1]B2=[0 0 1.1 0 0 10 1.26+0.7814*i 1.05 1.05 0 30 0.543+0.336*i 1 0 0 20 0.4753+0.2947*i 1 0 0 20 0 1 0 0 20 0.4753+0.2947*i 1 0 0 20 0 1 0 0 20 0.543+0.336*i 1 0 0 21.35+0.6538*i 0.2+0.124*i 1.05 1.05 0 31+0.75*i 0.25+0.1549*i 1.05 1.05 0 30 0 1 0 0 20 0 1 0 0 20 0 1 0 0 2]10 231.0000 3.9321 (7,8) 54.3735+36.2509i -54.3-33.67i 0.073528+2.5809i11 239.0099 -0.8518 (7,13) -113.4428+24.39707i 114.6754-43.79301i 1.23255-19.3959i12 239.8726 -0.5689 (13,9) -114.6754+43.79301i 115-33.01613i 0.324605+10.7769i13 235.9565 4.4510 (1,10) -89.8244+5.1673i 90+1.0049i 0.17561+6.1722i 计算机计算结果如图:5.夏季故障运行状态:调压及无功补偿措施如下:变电所3的变压器变比为-2.5%,无功补偿容量为20Mvar。

相关文档
最新文档