2014-2015年山东省济南市历下区七年级下学期数学期末试卷及解析PDF
2014-2015学年山东省济南外国语学校七年级(下)期末数学试卷
2014-2015学年山东省济南外国语学校七年级(下)期末数学试卷学校:___________姓名:___________班级:___________考号:___________一、选择题(本大题共15小题,共45.0分)1.下列运算中,结果是b5的是()A.(b2)3B.b3•b2C.b10÷b2D.(-b)52.下面每组数分别是三根小木棒的长度,它们能摆成三角形的是()A.12cm,3cm,6cmB.8cm,16cm,8cmC.6cm,6cm,13cmD.2cm,3cm,4cm3.目前,中东呼吸综合征在韩国的爆发引起全球的普遍关注,现知某冠状病毒的直径大约为0.00000006米,用科学记数法表示为()A.0.6×10-7米B.6×10-8米C.6×10-9米D.6×10-7米4.下列交通标志中,轴对称图形的个数是()A.4个B.3个C.2个D.1个5.下列乘法中,不能运用平方差公式进行运算的是()A.(x-a)(x+a)B.(b+m)(m-b)C.(-x-m)(x-m)D.(a+b)(-a-b)6.为了丰富学生的课余生活,我校初一年级新开设了摄影、足球、动漫三个社团,小威、小武两名同学每人随机选择参加其中一个社团,则小威和小武选择到同一社团的概率为()A. B. C. D.7.如图所示,△ABD≌△CDB,下面四个结论中,不正确的是()A.△ABD和△CDB的面积相等B.△ABD和△CDB的周长相等C.∠A+∠ABD=∠C+∠CBDD.AD∥BC,且AD=BC8.如图,直线l1∥l2,∠A=124°,∠B=86°,则∠1+∠2=()A.30°B.35°C.36°D.40°9.如图,两条笔直的公路l1、l2相交于点O,村庄C的村民在公路的旁边建三个加工厂A、B、D.已知AB=BC=CD=DA=5公里,村庄C到公路l1的距离为4公里,则村庄C到公路l2的距离是()A.3kmB.4kmC.5kmD.6km10.如果a-b=8,ab=20.则a2+b2=()A.24B.104C.160D.6411.请仔细观察用直尺和圆规作一个角∠A′O′B′等于已知角∠AOB的示意图,请你根据所学的图形的全等这一章的知识,说明画出∠A′O′B′=∠AOB的依据是()A.SASB.SSSC.AASD.ASA12.如果一个三角形是轴对称图形,且有一个内角是60°,那么这个三角形是()A.等边三角形B.等腰直角三角形C.等腰三角形D.含30°角的直角三角形13.图(1)是一个长为2m,宽为2n(m>n)的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图(2)那样拼成一个正方形,则中间空的部分的面积是()A.2mnB.(m+n)2C.(m-n)2D.m2-n214.一列从济南开往日照的动车匀速通过隧道时,火车在隧道内的长度y(米)与火车行驶时间x(秒)之间的关系用图象描述如图,有下列结论:①火车的长度为180米;②火车的速度为40米/秒;③火车整体都在隧道内的时间为25秒;④隧道长度为1000米.其中正确的结论是()A.①②③B.②③C.③④D.②③④15.如图,△ABC中,∠ABC=45°,CD⊥AB于D,BE平分∠ABC,且BE⊥AC于E,与CD相交于点F,H是BC边的中点,连接DH与BE相交于点G,下列结论正确的有()个.①BF=AC;②AE=BF;③∠A=67.5°;④△DGF是等腰三角形;⑤S四边形ADGE=S四边形GHCE.A.5个B.2个C.4个D.3个二、填空题(本大题共6小题,共18.0分)16.已知16b2a-12a2b+4ab=A•B,其中A=4ab,则B= ______ .17.已知等腰三角形的两边长分别是4和9,则周长是______ .18.直线l1∥l2,一块含45°角的直角三角板如图放置,∠1=89°,则∠2= ______ .19.如果9x2-mx+4是完全平方式,则m= ______ .20.如图,DE是AB的垂直平分线,交AC于点D,若AC=6cm,BC=4cm,则△BDC的周长是______ .21.如图,已知AB=20米,MA⊥AB于A,MA=10米,射线BD⊥AB于B,P点从B点向A运动,每秒走2米,Q点从B点向D运动,每秒走3米,P、Q同时从B出发,则出发______秒后,在线段MA上有一点C,使△CAP与△PBQ全等.三、解答题(本大题共7小题,共57.0分)22.(1)计算:(-)-2-(π+6)0(2)先化简,再求值:(y+x)(y-x)-y(x+2y)+y2,其中x=1,y=-2.23.(1)如图,直线a∥b,AC⊥AB,AC交直线b于点C,请问∠1与∠2有怎样的数量关系?(2)如图,四边形ABCD中,E点在AD上,其中∠BAE=∠BCE=∠ACD=90°,且BC=CE,请问△ABC与△DEC全等吗?如果全等请说明理由.24.学校新年联欢会上某班矩形有奖竞猜活动,猜对问题的同学即可获得一次摇奖机会,摇奖机是一个圆形转盘,被分成16等分,摇中红、黄、蓝色区域,分获一、二、三等奖,奖品分别为台灯、笔记本、签字笔.请问:(1)摇奖一次,获得笔记本的概率是多少?(2)小明答对了问题,可以获得一次摇奖机会,请问小明能获得奖品的概率有多大?请你帮他算算.25.(1)问题发现:如图1,△ACB和△DCE均为等边三角形,点A、D、E在同一直线上,连接BE.填空:①∠AEB的度数为______ ;②AD与BE的数量关系______ .(2)拓展探究:图2,△ACB和△DCE均为等腰三角形,∠ACB=∠DCE=90°,点A、D、E在同一只显示行,CM为△DCE中DE边上的高,连接BE,请判断∠AEB的度数及线段CM、AE、BE之间的数量关系,并说明理由.26.观察下面的几个算式:①16×14=224=1×(1+1)×100+6×4;②23×27=621=2×(2+1)×100+3×7;③32×38=1216=3×(3+1)×100+2×8;…(1)仿照上面的书写格式,请迅速写出81×89的结果;(2)请你自己模仿上面数的特点再举出一个例子,并按照上面格写出结果;(3)用多项式的乘法验证你所发现的规律(提示:可设这两个两位数分别是(10n+a),(10n+b),其中a+b=10)27.外国语学校1号班车与2号班车每天从初中部出发往返于初中部与高中部两地之间.2号班车比1号班车多往返一趟,如图表示2号班车距初中部的路程y(单位:千米)与所用时间x(单位:小时)之间变化关系的图象.已知1号班车比2号班车晚半小时出发.到达高中部后休息1小时,然后按原路原速返回.结果比2号班车最后一次返回初中部早了半个小时.(1)2号班车的速度为______ 千米/销售;(2)请在图中画出1号班车距初中部的路程y(千米)与所用时间x(小时)的变化关系的图象;(3)两车在图中相遇的次数为______ 次;(4)求两车最后一次相遇时,距初中部的路程.28.(1)操作发现:如图①,D是等边△ABC边BA上一动点(点D与点B不重合),连接DC,以DC为边在BC上方作等边△DCF,连接AF.你能发现线段AF与BD之间的数量关系吗?并证明你发现的结论.(2)类比猜想:如图②,当动点D运动至等边△ABC边BA的延长线上时,其他作法与(1)相同,猜想AF与BD在(1)中的结论是否仍然成立?(3)深入探究:Ⅰ.如图③,当动点D在等边△ABC边BA上运动时(点D与点B不重合)连接DC,以DC为边在BC上方、下方分别作等边△DCF和等边△DCF′,连接AF、BF′,探究AF、BF′与AB有何数量关系?并证明你探究的结论.Ⅱ.如图④,当动点D在等边△边BA的延长线上运动时,其他作法与图③相同,Ⅰ中的结论是否成立?若不成立,是否有新的结论?并证明你得出的结论.。
济南市人教版七年级下册数学期末试卷及答案百度文库
济南市人教版七年级下册数学期末试卷及答案百度文库一、选择题1.下列运算中,正确的是( )A .(ab 2)2=a 2b 4B .a 2+a 2=2a 4C .a 2•a 3=a 6D .a 6÷a 3=a 22.若2200.3,3,(3)a b c -==-=-,那么a 、b 、c 三数的大小为( ).A .a c b >>B .c a b >>C .a b c >>D .c b a >>3.下列各式从左到右的变形中,是因式分解的是( )A .2(3)(3)9a a a +-=-B .2323(2)a a a a a --=--C .245(4)5a a a a --=--D .22()()a b a b a b -=+- 4.下列分解因式正确的是( )A .x 3﹣x=x (x 2﹣1)B .m 2+m ﹣6=(m+3)(m ﹣2)C .(a+4)(a ﹣4)=a 2﹣16D .x 2+y 2=(x+y )(x ﹣y )5.下列运算正确的是( )A .()3253a b a b =B .a 6÷a 2=a 3C .5y 3•3y 2=15y 5D .a +a 2=a 3 6.若正方形边长增加1,得到的新正方形面积比原正方形面积增加6,则原正方形的边长是( )A .2B .52C .3D .727.截止到3月26日0时,全球感染新型冠状病毒肺炎的人数已经突破380000人,“山川异域,风月同天”,携手抗“疫”,刻不容缓.将380000用科学记数法表示为( ) A .0.38×106 B .3.8×106 C .3.8×105 D .38×1048.下列各式中,能用平方差公式计算的是( )A .(p +q )(p +q )B .(p ﹣q )(p ﹣q )C .(p +q )(p ﹣q )D .(p +q )(﹣p ﹣q )9.计算12x a a a a ⋅⋅=,则x 等于( )A .10B .9C .8D .410.如图所示,在平面直角坐标系中,有若干个横、纵坐标均为整数的点,按如下顺序依次排列为(1,0),(2,0),(2,1),(1,1),(1,2),(2,2)根据这个规律,第2020个点的坐标为( )A .(46,4)B .(46,3)C .(45,4)D .(45,5)二、填空题11.实数x ,y 满足方程组2728x y x y +=⎧⎨+=⎩,则x +y =_____. 12.已知m a =2,n a =3,则2m n a -=_______________.13.如图,根据长方形中的数据,计算阴影部分的面积为______ .14.如图,ABC 三边的中线AD 、BE 、CF 的公共点为G ,18ABC S =,则图中阴影部分的面积是 ________.15.已知21x y =⎧⎨=⎩是方程2x ﹣y +k =0的解,则k 的值是_____. 16.一个n 边形的内角和为1080°,则n=________.17.关于,x y 的方程组3x y m x my n -=⎧⎨-=⎩的解是11x y =⎧⎨=⎩,则n 的值是______. 18.若a +b =4,a ﹣b =1,则(a +1)2﹣(b ﹣1)2的值为_____.19.如图,AD 、AE 分别是△ABC 的角平分线和高,∠B=60°,∠C=70°,则∠EAD=______.20.已知x 2a +y b ﹣1=3是关于x 、y 的二元一次方程,则ab =_____.三、解答题21.解不等式(组)(1)解不等式114136x xx+-+≤-,并把解集在数轴上....表示出来.(2)解不等式835113x xxx->⎧⎪+⎨≥-⎪⎩,并写出它的所有整数解.22.已知关于x、y的二元一次方程组21322x yx y k+=⎧⎪⎨-=-⎪⎩(k为常数).(1)求这个二元一次方程组的解(用含k的代数式表示);(2)若()2421yx+=,求k的值;(3)若14k≤,设364m x y=+,且m为正整数,求m的值.23.计算:(1)201()2016|5|2----;(2)(3a2)2﹣a2•2a2+(﹣2a3)2+a2.24.如图,点D、E、F分别是△ABC三边上的点,DF∥AC,∠BFD=∠CED,请写出∠B与∠CDE之间的数量关系,并说明理由.25.因式分解:(1)16x2-9y2(2)(x2+y2)2-4x2y226.南山植物园中现有A,B两个园区.已知A园区为长方形,长为(x+y)米,宽为(x-y)米;B园区为正方形,边长为(x+3y)米.(1)请用代数式表示A,B两园区的面积之和并化简.(2)现根据实际需要对A园区进行整改,长增加(11x-y)米,宽减少(x-2y)米,整改后A园区的长比宽多350米,且整改后两园区的周长之和为980米.①求x,y的值;②若A园区全部种植C种花,B园区全部种植D种花,且C,D两种花投入的费用与吸引游客的收益如下表:C D 投入(元/米2)12 16 收益(元/米2) 18 26求整改后A ,B 两园区旅游的净收益之和.(净收益=收益-投入)27.已知1502x x +-=,求值; (1)221x x +(2)1x x- 28.如图①所示,在三角形纸片ABC 中,70C ∠=︒,65B ∠=︒,将纸片的一角折叠,使点A 落在ABC 内的点A '处.(1)若140∠=︒,2∠=________.(2)如图①,若各个角度不确定,试猜想1∠,2∠,A ∠之间的数量关系,直接写出结论.②当点A 落在四边形BCDE 外部时(如图②),(1)中的猜想是否仍然成立?若成立,请说明理由,若不成立,A ∠,1∠,2∠之间又存在什么关系?请说明.(3)应用:如图③:把一个三角形的三个角向内折叠之后,且三个顶点不重合,那么图中的123456∠+∠+∠+∠+∠+∠和是________.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】【分析】直接利用积的乘方运算法则以及合并同类项法则和同底数幂的乘除运算法则分别分析得出答案.【详解】解:A、(ab2)2=a2b4,故此选项正确;B、a2+a2=2a2,故此选项错误;C、a2•a3=a5,故此选项错误;D、a6÷a3=a3,故此选项错误;故选:A.【点睛】此题主要考查了积的乘方运算以及合并同类项和同底数幂的乘除运算,正确掌握运算法则是解题关键.2.B解析:B【分析】先根据乘方运算法则、负整数指数幂及零指数幂分别计算,再判断大小即可得.【详解】解:a=0.32=0.09,b= -3-2=19-,c=(-3)0=1,∴c>a>b,故选B.【点睛】本题考查有理数的大小比较,解题的关键是熟练掌握乘方运算法则、负整数指数幂及零指数幂.3.D解析:D【分析】根据因式分解的定义,需要将式子变形为几个整式相乘的形式,据此可判断.【详解】A、C不是几个式子相乘的形式,错误;B中,32aa--不是整式,错误;D是正确的故选:D.【点睛】本题考查因式分解的定义,注意一定要化成多个整式相乘的形式才叫因式分解.4.B解析:B【解析】试题分析:因式分解是指将几个多项式的和的形式转化个几个多项式或多项式的积的形式.A、没有完全分解,还可以利用平方差公式进行;B、正确;C、不是因式分解;D、无法进行因式分解.考点:因式分解5.C解析:C【分析】根据积的乘方、同底数幂的除法、单项式乘以单项式、合并同类项法则进行计算即可.【详解】解:A 、(a 2b )3=a 6b 3,故A 错误;B 、a 6÷a 2=a 4,故B 错误;C 、5y 3•3y 2=15y 5,故C 正确;D 、a 和a 2不是同类项,不能合并,故D 错误;故选:C .【点睛】此题主要考查了单项式乘以单项式、同底数幂的除法、积的乘方、合并同类项,关键是掌握各计算法则.6.B解析:B【分析】设原正方形的边长为x ,则新正方形的边长为(1)x +,根据题意列出方程求解即可.【详解】解:设原正方形的边长为x ,则新正方形的边长为(1)x +,根据题意可列方程为22(1)6x x +-=, 解得52x =, ∴原正方形的边长为52. 故选:B .【点睛】 此题考查了完全平方公式,找到等量关系列方程为解题关键.7.C解析:C【分析】科学记数法的表示形式为a ×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】解:380000=3.8×105.故选:C .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.8.C解析:C【分析】利用完全平方公式和平方差公式对各选项进行判断.【详解】(p+q)(p+q)=(p+q)2=p2+2pq+q2;(p﹣q)(p﹣q)=(p﹣q)2=p2﹣2pq+q2;(p+q)(p﹣q)=p2﹣q2;(p+q)(﹣p﹣q)=﹣(p+q)2=﹣p2﹣2pq﹣q2.故选:C.【点睛】本题考查了完全平方公式和平方差公式,熟练掌握公式的结构及其运用是解答的关键.9.A解析:A【解析】【分析】利用同底数幂的乘法即可求出答案,【详解】解:由题意可知:a2+x=a12,∴2+x=12,∴x=10,故选:A.【点睛】本题考查同底数幂的乘法,要注意是指数相加,底数不变.10.D解析:D【分析】以正方形最外边上的点为准考虑,点的总个数等于最右边下角的点横坐标的平方,且横坐标为奇数时最后一个点在x轴上,为偶数时,从x轴上的点开始排列,求出与2020最接近的平方数为2025,然后写出第2020个点的坐标即可.【详解】解:由图形可知,图中各点分别组成了正方形点阵,每个正方形点阵的整点数量依次为最右下角点横坐标的平方且当正方形最右下角点的横坐标为奇数时,这个点可以看做按照运动方向到达x轴,当正方形最右下角点的横坐标为偶数时,这个点可以看做按照运动方向离开x轴∵452=2025∴第2025个点在x 轴上坐标为(45,0)则第2020个点在(45,5)故选:D .【点睛】本题为平面直角坐标系下的点坐标规律探究题,解答时除了注意点坐标的变化外,还要注意点的运动方向.二、填空题11.5【分析】方程组两方程左右两边相加即可求出所求.【详解】解:,①②得:,则,故答案为:5.【点睛】本题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法解析:5【分析】方程组两方程左右两边相加即可求出所求.【详解】解:2728x y x y +=⎧⎨+=⎩①②, ①+②得:3315x y +=,则5x y +=,故答案为:5.【点睛】本题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.12.【分析】根据同底数幂的除法和幂的乘方与积的乘方的运算法则求解即可.【详解】解:am-2n=am÷a2n=am÷(an)2=2÷9=故答案为【点睛】本题考查了同底数幂的除法和幂的解析:2 9【分析】根据同底数幂的除法和幂的乘方与积的乘方的运算法则求解即可.【详解】解:a m-2n=a m÷a2n=a m÷(a n)2=2÷9=2 9故答案为2 9【点睛】本题考查了同底数幂的除法和幂的乘方与积的乘方,解答本题的关键在于熟练掌握各知识点的运算法则.13.104【解析】两个阴影图形可以平移组成一个长方形,长为,宽为8,故阴影部分的面积13×8=104,故答案为104.解析:104【解析】两个阴影图形可以平移组成一个长方形,长为15213-=,宽为8,故阴影部分的面积13×8=104,故答案为104.14.【分析】利用三角形重心的性质证明图中个小三角形的面积相等即可得到答案.【详解】解:三边的中线AD、BE、CF的公共点为G,图中阴影部分的面积是故答案为:6.【点睛】解析:6.【分析】利用三角形重心的性质证明图中6个小三角形的面积相等即可得到答案.【详解】 解: ABC 三边的中线AD 、BE 、CF 的公共点为G ,,,,GBDGCD GCE AGE AGF BGF S S S S S S ∴=== 2,BG GE = 2,BGCGEC S S ∴= ,DGC CGE S S ∴=GBD GCD GCE AGE AGF BGF S S S S S S ∴=====∴ 图中阴影部分的面积是182 6.6⨯= 故答案为:6.【点睛】 本题考查的是三角形中线的性质,三角形重心的性质,掌握以上知识解决三角形的面积问题是解题的关键.15.-3【分析】把x 与y 的值代入方程计算即可求出k 的值.【详解】解:把代入方程得:4﹣1+k =0,解得:k =﹣3,则k 的值是﹣3.故答案为:﹣3.【点睛】此题考查的是根据二元一次方程的解析:-3【分析】把x 与y 的值代入方程计算即可求出k 的值.【详解】解:把21x y =⎧⎨=⎩代入方程得:4﹣1+k =0, 解得:k =﹣3,则k的值是﹣3.故答案为:﹣3.【点睛】此题考查的是根据二元一次方程的解,求方程中的参数,掌握二元一次方程解的定义是解决此题的关键.16.8【分析】直接根据内角和公式计算即可求解.【详解】(n﹣2)•180°=1080°,解得n=8.故答案为8.【点睛】主要考查了多边形的内角和公式.多边形内角和公式:.解析:8【分析】直接根据内角和公式()2180n-⋅︒计算即可求解.【详解】(n﹣2)•180°=1080°,解得n=8.故答案为8.【点睛】主要考查了多边形的内角和公式.多边形内角和公式:()2180n-⋅︒.17.【分析】将,代入方程组,首先求得,进而可以求得.【详解】解:将代入方程组得:,解得:,故的值为-1.【点睛】本题考查二元一次方程组,难度不大,理解二元一次方程组的解的含义是顺利解解析:1-【分析】将x,y代入方程组,首先求得m,进而可以求得n.【详解】解:将11xy=⎧⎨=⎩代入方程组得:31=1mm n-⎧⎨-=⎩,解得:21mn=⎧⎨=-⎩,故n的值为-1.【点睛】本题考查二元一次方程组,难度不大,理解二元一次方程组的解的含义是顺利解题的关键.18.12【分析】对所求代数式运用平方差公式进行因式分解,然后整体代入求值.【详解】解:∵a+b=4,a﹣b=1,∴(a+1)2﹣(b﹣1)2=(a+1+b﹣1)(a+1﹣b+1)=(a+b解析:12【分析】对所求代数式运用平方差公式进行因式分解,然后整体代入求值.【详解】解:∵a+b=4,a﹣b=1,∴(a+1)2﹣(b﹣1)2=(a+1+b﹣1)(a+1﹣b+1)=(a+b)(a﹣b+2)=4×(1+2)=12.故答案是:12.【点睛】本题考查了公式法分解因式,属于基础题,熟练掌握平方差公式的结构特征即可解答.19.;【详解】解:由题意可知,∠B=60°,∠C=70°,所以°,所以°,在三角形BAE中,°,所以∠EAD=5°故答案为:5°.【点睛】本题属于对角平分线和角度基本知识的变换求解.解析:5︒;【详解】解:由题意可知,∠B=60°,∠C=70°,所以18013050A ∠=-=°,所以25BAD ∠=°,在三角形BAE 中,906030BAE ∠=-=°,所以∠EAD=5°故答案为:5°.【点睛】本题属于对角平分线和角度基本知识的变换求解.20.1【分析】根据题意可知该式是二元一次方程组,所以x 、y 的指数均为1,这样就可以分别求出a 、b 的值,代入计算即可.【详解】解:∵是关于x 、y 的二元一次方程,所以x 、y 的指数均为1∴2a=1,解析:1【分析】根据题意可知该式是二元一次方程组,所以x 、y 的指数均为1,这样就可以分别求出a 、b 的值,代入计算即可.【详解】解:∵2a b-1x +y =3是关于x 、y 的二元一次方程,所以x 、y 的指数均为1∴2a =1,b-1=1,解得a =12,b =2, 则ab =122⨯=1, 故答案为:1.【点睛】该题考查了二元一次方程的定义,即含有两个未知量,且未知量的指数为1,将其代数式进行求解,即可求出答案.三、解答题21.(1)x ≤2,图见详解;(2)22x -≤<;-2、-1、0、1.【分析】(1)由题意直接根据解不等式的步骤逐步进行计算求解,并把解集在数轴上表示出来即可.(2)根据题意分别解出两个不等式,取公共部分得出其解集从而写出它的所有整数解即可.【详解】解:(1)去分母,得 6x+2(x+1)≤6-(x-14),去括号,得 6x+2x+2≤6-x+14,移项,合并同类项,得 9x ≤18,两边都除以9,得 x ≤2.解集在数轴上表示如下:(2)835113x x x x ->⎧⎪⎨+≥-⎪⎩①②解①得:2x <,解②得:2x ≥-,则不等式组的解集是:22x -≤<.它的所有整数解有:-2、-1、0、1.【点睛】本题考查的是一元一次不等式(组)的解法,注意掌握求不等式(组)的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.22.(1)218524k x ky -⎧=⎪⎪⎨-⎪=⎪⎩;(2)52k =或12k =-;(3)1或2. 【分析】(1)根据题意直接利用加减消元法进行计算求解即可;(2)由题意根据01(0)a a =≠和11n =以及2(1)1n -=(n 为整数)得到三个关于k 的方程,求出k 即可;(3)根据题意用含m 的代数式表示出k ,根据14k ≤,确定m 的取值范围,由m 为正整数,求得m 的值即可.【详解】 解:(1)21322x y x y k ⎧+=⎪⎪⎨⎪-=-⎪⎩①②, ①+②得:3412x k =+-,解得:218k x -=, ①-②得:3212y k =-+,解得:524k y -=,∴二元一次方程组的解为:218524k x k y -⎧=⎪⎪⎨-⎪=⎪⎩. (2)∵01(0)a a =≠,2(42)1y x +=,∴20y =,即52204k -⨯=,解得:52k =; ∵11n =,2(42)1y x +=,∴421x +=,即214218k -⨯+=,解得:12k =-; ∵2(1)1n -=(n 为正整数),2(42)1y x +=, ∴4212x y +=-,为偶数,即214218k -⨯+=-,解得:52k =-; 当52k =-时,3532115222y k =-+=++=,为奇数,不合题意,故舍去. 综上52k =或12k =-. (3)∵215213643647842k k m x y k --=+=⨯+⨯=+,即172m k =+, ∴2114m k -=, ∵14k ≤, ∴211144m k -=≤,解得94m ≤, ∵m 为正整数,∴m=1或2.【点睛】本题考查解二元一次方程组以及解一元一次不等式,根据题意列出不等式是解题的关键.23.(1)﹣2;(2)7a 4+4a 6+a 2.【分析】(1)由负整数指数幂、零指数幂、绝对值的意义进行判断,即可得到答案; (2)由积的乘方,同底数幂相乘进行计算,然后合并同类项,即可得到答案.【详解】解:(1)201()2016|5|2----=4﹣1﹣5=﹣2;(2)(3a 2)2﹣a 2•2a 2+(﹣2a 3)2+a 2=9a 4﹣2a 4+4a 6+a 2=7a 4+4a 6+a 2.【点睛】本题考查了积的乘方,同底数幂相乘,负整数指数幂,零指数幂,以及绝对值,解题的关键是熟练掌握运算法则进行解题.24.见解析【分析】由DF ∥AC ,得到∠BFD=∠A,再结合∠BFD=∠CED ,有等量代换得到∠A=∠CED ,从而可得DE ∥AB ,则由平行线的性质即可得到∠B=∠CDE.【详解】解:∠B=∠CDE,理由如下:∵ DF ∥AC ,∴∠BFD=∠A.∵∠BFD=∠CED ,∴∠A=∠CED.∴DE ∥AB ,∴∠B=∠CDE.【点睛】本题考查了平行线的判定与性质,熟记性质并准确识图理清图中各角度之间的关系是解题的关键.25.(1)(43)(4-3)x y x y +;(2)22()(-y)x y x +.【分析】(1)直接利用平方差公式22()()a b a b a b +-=-分解即可; (2)先利用平方差公式,再利用完全平方公式222()2a b a ab b ±=±+即可.【详解】(1)原式2243))((x y =-(43)(43)x y x y =+-;(2)原式2222)()(2x y xy =-+2222(2)(2)x y x y xy y x ++=+-22()()x y x y =+-.【点睛】本题考查了利用平方差公式和完全平方公式进行因式分解,熟记公式是解题关键.26.(1)2x 2+6xy+8y 2;(2)①3010x y =⎧⎨=⎩②57600元; 【分析】 (1)根据长方形的面积公式和正方形的面积公式分别计算A 、B 两园区的面积,再相加即可求解;(2)①根据等量关系:整改后A 区的长比宽多350米;整改后两园区的周长之和为980米;列出方程组求出x ,y 的值;②代入数值得到整改后A 、B 两园区的面积之和,再根据净收益=收益﹣投入,列式计算即可求解.【详解】解:(1)(x+y )(x ﹣y )+(x+3y )(x+3y )=x 2﹣y 2+x 2+6xy+9y 2=2x 2+6xy+8y 2(平方米)答:A 、B 两园区的面积之和为(2x 2+6xy )平方米;(2)(x+y )+(11x ﹣y )=x+y+11x ﹣y=12x (米),(x ﹣y )﹣(x ﹣2y )=x ﹣y ﹣x+2y=y (米),依题意有:123502(12)4(3)980x y x y x y -=⎧⎨+++=⎩, 解得3010x y =⎧⎨=⎩9. 12xy=12×30×10=3600(平方米),(x+3y )(x+3y )=x 2+6xy+9y 2=900+1800+900=3600(平方米),(18﹣12)×3600+(26﹣16)×3600=6×3600+10×3600=57600(元).答:整改后A 、B 两园区旅游的净收益之和为57600元.考点:整式的混合运算.27.(1)174;(2)32± 【分析】(1)利用完全平方公式(a +b)²=a ²+2ab +b ²解答;(2)利用(1)的结果和完全平方公式(a−b)²=a ²−2ab +b ²解答.【详解】解:(1)由题:152x x +=,21254x x ⎛⎫∴+= ⎪⎝⎭ 即2212524x x ++=, 221174x x ∴+= (2)222111792244x x x x ⎛⎫-=+-=-= ⎪⎝⎭ 132x x ∴-=± 【点睛】此题是完全平方公式的应用;两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.注意积的2倍的符号,避免漏解.28.(1)50°;(2)①见解析;②见解析;(3)360°.【分析】(1)根据题意,已知70C ∠=︒,65B ∠=︒,可结合三角形内角和定理和折叠变换的性质求解;(2)①先根据折叠得:∠ADE=∠A ′DE ,∠AED=∠A ′ED ,由两个平角∠AEB 和∠ADC 得:∠1+∠2等于360°与四个折叠角的差,化简得结果;②利用两次外角定理得出结论;(3)由折叠可知∠1+∠2+∠3+∠4+∠5+∠6等于六边形的内角和减去(∠B'GF+∠B'FG)以及(∠C'DE+∠C'ED)和(∠A'HL+∠A 'LH ),再利用三角形的内角和定理即可求解.【详解】解:(1)∵70C ∠=︒,65B ∠=︒,∴∠A ′=∠A=180°-(65°+70°)=45°,∴∠A ′ED+∠A ′DE =180°-∠A ′=135°,∴∠2=360°-(∠C+∠B+∠1+∠A ′ED+∠A ′DE )=360°-310°=50°;(2)①122A ∠+∠=∠,理由如下由折叠得:∠ADE=∠A ′DE ,∠AED=∠A ′ED ,∵∠AEB+∠ADC=360°,∴∠1+∠2=360°-∠ADE-∠A ′DE-∠AED-∠A ′ED=360°-2∠ADE-2∠AED ,∴∠1+∠2=2(180°-∠ADE-∠AED )=2∠A ;②221A ∠=∠+∠,理由如下:∵2∠是ADF 的一个外角∴2A AFD ∠=∠+∠.∵AFD ∠是A EF '△的一个外角∴1AFD A '∠=∠+∠又∵A A '∠=∠∴221A ∠=∠+∠(3)如图由题意知,∠1+∠2+∠3+∠4+∠5+∠6=720°-(∠B'GF+∠B'FG)-(∠C'DE+∠C'ED)-(∠A'HL+∠A'LH)=720°-(180°-∠B')-(180°-C')-(180°-A')=180°+(∠B'+∠C'+∠A')又∵∠B=∠B',∠C=∠C',∠A=∠A',∠A+∠B+∠C=180°,∴∠1+∠2+∠3+∠4+∠5+∠6=360°.【点睛】题主要考查了折叠变换、三角形、四边形内角和定理.注意折叠前后图形全等;三角形内角和为180°;四边形内角和等于360度.。
历下区2014-2015学年初一下学期期中考试数学试卷
c P b
B
a
C
图1
A 图2
21. (本小题满分 6 分) 先化简,再求值:
5b2 b a a b a 2b ,其中 a 1 , b 2 .
2
22. (本小题满分 7 分) 如图,直线 AB 与 CD 相交于点 O , EOD 90 , BOC 2AOC , 求 BOE 的度数.
C E A O D B
23. (本小题满分 9 分) 我们知道,海拔高度每上升 1 千米,温度下降 6℃ ,某时刻,某地地面温度为 20℃ ,设高出地面 x 千米处的温度为 y℃ (1)写出 y 与 x 之间的关系式; (2)已知该地一山峰高出地面约 500 米,求这时山顶的温度大约是多少摄氏度? (3)此刻,有一驾飞机飞过该地上空,若机舱内仪表显示飞机外面的温度为 34℃ ,求飞机离地 面的高度为多少千米? 24. (本小题满分 10 分) 如图,在 Rt△ ABC 中, ACB 90 , B 30 , AD 平分 CAB . (1)求 CAD 的度数; (2)延长 AC 至 E ,使 CE AC ,求证: △ ABC ≌ △EBC .
③ A ② B ④ 图1 ① D C
② B A ③ C
A ②
③
C
① ④ 图2 D
① B ④ 图3 D
5
2
济南学而思初中团队出品
A
C
B
15.若 x 2 mx 25 是完全平方式,则 m . 16.若某三角形两边上的高的交点恰好是三角形的一个顶点,则此三角形是 17.若 l1 ∥ l2 ,一块含 45 角的直角三角板如图放置, 1 85 ,则 2
三角形.
.
精选山东省济南市历下区七年级数学下册期末试卷及答案
(北师大版)山东省济南市历下区七年级数学下册期末试卷及答案考试时间120分钟满分120分(以下试卷分A、B卷,其中A卷为必徽;B卷为选徽,且不计入总分)A卷一、选择题(本大题共12小题,每题3分,共36分,每题四个选项中,只有一个选项符合要求.)1?( ) 的相反数是.1201311?2013A.-B.C.2013D. 201320132,有资料表明,被誉为“地球之肺”的森林正以每年15000000公顷的速度从地球上消失,每年森林的消失量用科学记数法表示应是( )×l0公顷D B. 1.5公顷×10。
公顷 C. 150×i00.15 A.15×103.下列图形中6758公顷为正方体的平面展开图的是( )4.下列调查中,适宜采用抽样调查方式的是( )A.调查伦敦奥运会女子铅球参赛运动员兴奋剂的使用情况 B.调查我校某班学生的身高情况调查一架“歼380”隐形战机各零部件的质量 C. D.调查我国中学生每天体育锻炼的时间( )O的___方向上.如图,点A位于点50000 D65.南偏西 C.南偏东6565A.南偏东35 B.北偏西( ) .下面合并同类项正确的是62223b=1 x- B.2aaA.3x+2xb=522 =0 -y+xyxab=O D. c.-ab-( )7.下列语句正确的有 BA是同一条射线①射线AB与射线②两点之间的所有连线中,线段最短③连结两点的线段叫做这两点的距离个钉子④欲将一根木条固定在墙上,至少需要2个 D.4个个个 A.1 B.2 C.3( ).下列说法不正确的是 8 A.为了反映雅安市七县一区人口分布多少情况,通常选择条形统计图.为了反映我市连续五年来中国民生产总值增长情况,通常选择折线统计图 B 为了反映本校中学生人数占全市中学学生人数的比例情况,应选择扇形统计图C. 以上三种统计图都可以直接找到所需数目 D.( ).已知有理数a,b在数轴上表示的点如图所示,则下列式子中正确的是9.10.某工厂现有工人x人,若现有人数比两年前原有人数减少35%,则该工厂原有人数为( )11.在一张挂历上,任意圈出同一列上的三个数的和不可能是( )A.4B.33C.51D.27小明解方程去分母时.方程右边的-3忘记乘.6.因而求出的解为x=2,12问原方程正确的解为( )A.x=5 B.x=7 C.x=-13 D.x=-l二、填空题(本大题共10小题,每题3分,共30分)13.如果向东运动8m记作+8m,那么向西运动5m应记作____m.14.甲、乙、丙三地的海拔高度分别是20m、-15m、-5m,那么最高的地方比最低的地方高_________m.的次数是______..多项式1516.写出一个解为x=2的一元一次方程(只写一个即可):____.比较数的大小:1718.从一个多边形的某个顶点出发,分别连接这个点和其余各顶点,可以把这个多边形分割成十个三角形,则这个多边形的为________边形.. ″______′_______°把秒化成度、分、秒:3800″=______ 19.他们身高的频数分布直方图如图,名学生,.八年级一班共有4820~165cm 则身高范围在:2:l,:各小长方形的高的比为1:13 人.的学生有________170cm是:若M是直线AB上一点,BC=4cm21.已知线段AB=lOcm,点C 。
济南市七年级下册数学期末试题及答案解答
济南市七年级下册数学期末试题及答案解答一、选择题1.下列图形可由平移得到的是()A.B.C.D.2.如图,图(1)的正方形的周长与图(2)的长方形的周长相等,且长方形的长比宽多a cm,则正方形的面积与长方形的面积的差为 ( )A.a2B.12a2C.13a2D.14a23.小晶有两根长度为 5cm、8cm 的木条,她想钉一个三角形的木框,现在有长度分别为2cm 、3cm、 8cm 、15cm 的木条供她选择,那她第三根应选择()A.2cm B.3cm C.8cm D.15cm4.新冠病毒(2019﹣nCoV)是一种新的Sarbecovirus亚属的β冠状病毒,它是一类具有囊膜的正链单股RNA病毒,其遗传物质是所有RNA病毒中最大的,也是自然界广泛存在的一大类病毒.其粒子形状并不规则,直径约60﹣220nm,平均直径为100nm(纳米).1米=109纳米,100nm可以表示为()米.A.0.1×10﹣6B.10×10﹣8C.1×10﹣7D.1×10115.下列计算错误的是()A.2a3•3a=6a4B.(﹣2y3)2=4y6C.3a2+a=3a3D.a5÷a3=a2(a≠0)6.不等式3+2x>x+1的解集在数轴上表示正确的是()A.B.C.D.7.计算a•a2的结果是()A.a B.a2C.a3D.a48.如图,△ABC中∠A=30°,E是AC边上的点,先将△ABE沿着BE翻折,翻折后△ABE的AB边交AC于点D,又将△BCD沿着BD翻折,C点恰好落在BE上,此时∠CDB=82°,则原三角形的∠B的度数为()A .75°B .72°C .78°D .82° 9.若一个三角形的两边长分别为3和6,则第三边长可能是( ) A .6B .3C .2D .1010.下列调查中,适宜采用全面调查方式的是( ) A .考察南通市民的环保意识 B .了解全国七年级学生的实力情况 C .检查一批灯泡的使用寿命 D .检查一枚用于发射卫星的运载火箭的各零部件二、填空题11.已知关于x 的不等式组()531235x a x x ⎧->-⎨-≤⎩的所有整数解的和为7则a 的取值范围是__________.12.计算:2202120192020⨯-=__________13.三角形的周长为10cm ,其中有两边的长相等且长为整数,则第三边长为______cm . 14.如图,把△ABC 沿线段DE 折叠,使点A 落在点F 处,BC ∥DE ,若∠B =50°,则∠BDF =_______°.15.已知22a b -=,则24a b ÷的值是____.16.已知:实数m,n 满足:m+n=3,mn=2.则(1+m)(1+n)的值等于____________. 17.分解因式:x 2﹣4x=__.18.学校计划购买A 和B 两种品牌的足球,已知一个A 品牌足球60元,一个B 品牌足球75元.学校准备将1500元钱全部用于购买这两种足球(两种足球都买),该学校的购买方案共有_________种.19.如图,已知AB ∥CD ,BC ∥DE .若∠A =20°,∠C =105°,则∠AED 的度数是_____.20.已知m 为正整数,且关于x ,y 的二元一次方程组210320mx y x y +=⎧⎨-=⎩有整数解,则m 的值为_______. 三、解答题21.解二元一次方程组:(1) 523150x y x y =+⎧⎨+-=⎩ (2) 3()4()427x y x y x y +--=⎧⎨+=⎩22.已知关于x ,y 的二元一次方程组533221x y n x y n +=⎧⎨-=+⎩的解适合方程x +y =6,求n 的值.23.第19届亚运会将于2022年在杭州举行,“丝绸细节”助力杭州打动世界.杭州丝绸公司为亚运会设计手工礼品,投入W 元钱,若以2条领带和1条丝巾为一份礼品,则刚好可制作600份礼品;若以1条领带和3条丝巾为一份礼品,则刚好可制作400份礼品. (1)若24W =万元,求领带及丝巾的制作成本是多少? (2)若用W 元钱全部用于制作领带,总共可以制作几条?(3)若用W 元钱恰好能制作300份其他的礼品,可以选择a 条领带和b 条丝巾作为一份礼品(两种都要有),请求出所有可能的a 、b 的值.24.如图1是一个长为 4a ,宽为 b 的长方形,沿图中虚线用剪刀平均分成四块小长方形,然后用四块小长方形拼成的一个“回形”正方形(如图2).(1)图2中的阴影部分的面积为 ;(2)观察图2请你写出 ()2a b +,()2a b -,ab 之间的等量关系是 ; (3)根据(2)中的结论,若 6x y +=,114x y ⋅=,则 x y -= ; (4)实际上我们可以用图形的面积表示许多恒等式,下面请你设计一个几何图形来表示恒等式()()2222252a b a b a ab b ++=++.在图形上把每一部分的面积标写清楚.25.如图1,在ABC 中,BD 平分ABC ∠,CD 平分ACB ∠. (1)若80A ∠=︒,则BDC ∠的度数为______; (2)若A α∠=,直线MN 经过点D .①如图2,若//MN AB ,求NDC MDB ∠-∠的度数(用含α的代数式表示); ②如图3,若MN 绕点D 旋转,分别交线段,BC AC 于点,M N ,试问在旋转过程中NDC MDB ∠-∠的度数是否会发生改变?若不变,求出NDC MDB ∠-∠的度数(用含α的代数式表示),若改变,请说明理由:③如图4,继续旋转直线MN ,与线段AC 交于点N ,与CB 的延长线交于点M ,请直接写出NDC ∠与MDB ∠的关系(用含α的代数式表示).26.计算: (1)()()1202001113π-⎛⎫--+- ⎪⎝⎭; (2)(x +1)(2x ﹣3).27.杨辉三角是一个由数字排列成的三角形数表,一般形式如图所示,其中每一横行都表示(a+b)n (此处n=0,1,2,3,4...)的展开式中的系数.杨辉三角最本质的特征是:它的两条斜边都是由数字1组成的,而其余的数则是等于它肩上的两数之和.…… ……(1)请直接写出(a +b )4=__________; (2)利用上面的规律计算: ①24+4×23+6×22+4×2+1=__________;②36-6×35+15×34-20×33+15×32-6×3+1=________. 28.平面内的两条直线有相交和平行两种位置关系.①如图a ,若//AB CD ,点P 在AB 、CD 外部,则BPD ∠、B 、D ∠之间有何数量关系?解:BPD B D ∠=∠-∠.证明:∵//AB CD ,∴B BOD ∠=∠, 又∵POD BOD ∠+∠=______,在POD 中,由三角形内角和定理可得____________180POD ∠+∠+∠=︒, 故______BPD D ∠=∠+∠,从而得BPD B D ∠=∠-∠.②若//AB CD ,将点P 移到AB 、CD 内部,如图b ,以上结论是否成立?若成立,说明理由;若不成立,则BPD ∠、B 、D ∠之间有何数量关系?请证明你的结论; ③在图b 中,将直线AB 绕点B 逆时针方向旋转一定角度交直线CD 于点Q ,如图c ,则BPD ∠、B 、D ∠、BQD ∠之间有何数量关系?请证明你的结论;【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【详解】解:观察可知A 选项中的图形可以通过平移得到, B 、C 选项中的图形需要通过旋转得到, D 选项中的图形可以通过翻折得到, 故选:A2.D解析:D 【分析】设长方形的宽为x cm ,则长为(x +a )cm ,可得正方形的边长为22x a+;求出两个图形面积然后做差即可. 【详解】解:设长方形的宽为x cm ,则长为(x +a )cm , 则正方形的边长为()2242x a x x a⨯+++=; 正方形的面积为222244224x a x a x ax a ++++=, 长方形的面积为()2x x a x ax +=+,二者面积之差为()222244144x ax a x ax a ++-+=,故选:D . 【点睛】本题考查了整式的混合运算,设出长方形的宽,然后表示出正方形和长方形的面积表达式是解题的关键.3.C解析:C 【解析】 【分析】在三角形中,任意两边之和大于第三边,任意两边之差小于第三边. 【详解】 ∵5+8=13,8-5=3∴根据三角形三边关系,第三条边应在3cm~13cm 之间(不包含3和13). 故选C 【点睛】本题考查三角形三边关系,较为简单,熟练掌握三角形三边关系即可解题.4.C解析:C 【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定. 【详解】解:100nm =100×10﹣9m =1×10﹣7m ,故选:C . 【点睛】本题是对科学记数法知识的考查,熟练掌握负指数幂知识是解决本题的关键.5.C解析:C 【分析】A .根据同底数幂乘法运算法则进行计算,底数不变指数相加,系数相乘.即可对A 进行判断B .根据幂的乘方运算法则对B 进行判断C .根据同类项的性质,判断是否是同类项,如果不是,不能进行相加减,据此对C 进行判断D .根据同底数幂除法运算法则对D 进行判断 【详解】A.2a3•3a=6a4,故A正确,不符合题意B.(﹣2y3)2=4y6,故B正确,不符合题意C.3a2+a,不能合并同类项,无法计算,故C错误,符合题意D.a5÷a3=a2(a≠0),故D正确,不符合题意故选:C【点睛】本题考查了同底数幂乘法和除法运算法则,底数不变指数相加减.幂的乘方运算法则,底数不变指数相乘.以及同类项合并的问题,如果不是同类项不能合并.6.A解析:A【分析】先解不等式求出不等式的解集,然后根据不等式的解集在数轴上的表示方法判断即可.【详解】解:移项,得2x-x>1-3,合并同类项,得x>﹣2,不等式的解集在数轴上表示为:.故选:A.【点睛】本题考查了一元一次不等式的解法和不等式的解集在数轴上的表示,属于基础题型,熟练掌握一元一次不等式的解法是关键.7.C解析:C【分析】根据同底数幂的乘法法则计算即可.【详解】解:a•a2=a1+2=a3.故选:C.【点睛】本题考查了幂的运算性质,准确应用同底数幂的乘法是解题的关键.8.C解析:C【分析】在图①的△ABC中,根据三角形内角和定理,可求得∠B+∠C=150°;结合折叠的性质和图②③可知:∠B=3∠CBD,即可在△CBD中,得到另一个关于∠B、∠C度数的等量关系式,联立两式即可求得∠B的度数.【详解】在△ABC中,∠A=30°,则∠B+∠C=150°…①;根据折叠的性质知:∠B=3∠CBD,∠BCD=∠C;在△CBD中,则有:∠CBD+∠BCD=180°-82°,即:13∠B+∠C=98°…②;①-②,得:23∠B=52°,解得∠B=78°.故选:C.【点睛】此题主要考查的是图形的折叠变换及三角形内角和定理的应用,能够根据折叠的性质发现∠B和∠CBD的倍数关系是解答此题的关键.9.A解析:A【分析】根据三角形三边关系即可确定第三边的范围,进而可得答案.【详解】解:设第三边为x,则3<x<9,纵观各选项,符合条件的整数只有6.故选:A.【点睛】本题考查了三角形的三边关系,属于基础题型,熟练掌握三角形的任意两边之和大于第三边,任意两边之差小于第三边是解题的关键.10.D解析:D【分析】调查方式的选择需要将全面调查的局限性和抽样调查的必要性结合起来,具体问题具体分析,全面调查结果准确,所以在要求精确、难度相对不大,实验无破坏性的情况下应选择全面调查方式,当考查的对象很多或考查会给被调查对象带来损伤破坏,以及考查经费和时间都非常有限时,全面调查就受到限制,这时就应选择抽样调查.【详解】解:A、考察南通市民的环保意识,人数较多,不适合全面调查;B、了解全国七年级学生的实力情况,人数较多,不适合全面调查;C、检查一批灯泡的使用寿命,数量较多,且具有破坏性,不适合全面调查;D、检查一枚用于发射卫星的运载火箭的各零部件,较为严格,必须采用全面调查,故选D.【点睛】此题考查了抽样调查和全面调查,由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果和普查得到的调查结果比较近似.二、填空题11.7≤a<9或-3≤a<-1. 【分析】先求出求出不等式组的解集,再根据已知得出关于a 的不等式组,求出不等式组的解集即可. 【详解】 解:,∵解不等式①得:, 解不等式②得:x≤4, ∴不等式组的解析:7≤a <9或-3≤a <-1. 【分析】先求出求出不等式组的解集,再根据已知得出关于a 的不等式组,求出不等式组的解集即可. 【详解】 解:()531235x a x x ⎧->-⎨-≤⎩①②,∵解不等式①得:32a x ->, 解不等式②得:x≤4, ∴不等式组的解集为342a x -<≤, ∵关于x 的不等式组()531235x a x x ⎧->-⎨-≤⎩的所有整数解的和为7,∴当32a ->0时,这两个整数解一定是3和4, ∴2≤32a -<3, ∴79a ≤<,当32a -<0时,-3≤32a -<−2, ∴-3≤a <-1,∴a 的取值范围是7≤a <9或-3≤a <-1. 故答案为:7≤a <9或-3≤a <-1. 【点睛】本题考查了解一元一次不等式组和不等式组的整数解,能得出关于a 的不等式组是解此题的关键.12.-1 【分析】根据平方差公式即可求解. 【详解】 =-1故答案为:-1. 【点睛】此题主要考查整式乘法公式的应用,解题的关键是熟知其运算法则.解析:-1 【分析】根据平方差公式即可求解. 【详解】2202120192020⨯-=()()22220201202012020202012020+⨯--=--=-1故答案为:-1. 【点睛】此题主要考查整式乘法公式的应用,解题的关键是熟知其运算法则.13.或 2 【分析】可分相等的两边的长为1cm ,2cm ,3cm ,4cm ,依此讨论,根据三角形三边关系(三角形两边之和大于第三边,两边只差小于第三边)即可求解. 【详解】解:相等的两边的长为1cm ,则解析:或 2 【分析】可分相等的两边的长为1cm ,2cm ,3cm ,4cm ,依此讨论,根据三角形三边关系(三角形两边之和大于第三边,两边只差小于第三边)即可求解. 【详解】解:相等的两边的长为1cm ,则第三边为:10-1×2=8(cm ),1+1<8,不符合题意; 相等的两边的长为2cm ,则第三边为:10-2×2=6(cm ),2+2<6,不符合题意; 相等的两边的长为3cm ,则第三边为:10-3×2=4(cm ),3+3>4,符合题意; 相等的两边的长为4cm ,则第三边为:10-4×2=2(cm ),2+4>4,符合题意. 故第三边长为4或2cm . 故答案为:4或2. 【点睛】此题考查了三角形三边关系(三角形两边之和大于第三边,两边只差小于第三边),等腰三角形的性质和周长计算,分类思想的运用是解题的关键.14.80°【解析】∵BC∥DE,∴∠ADE=∠B=50°,∵∠EDF=∠ADE=50°,∴∠BDF=180°-50°-50°=80°.故答案为80°.解析:80°【解析】∵BC ∥DE ,∴∠ADE =∠B =50°,∵∠EDF =∠ADE =50°,∴∠BDF =180°-50°-50°=80°.故答案为80°.15.【分析】先将化为同底数幂的式子,然后根据幂的除法法则进行合并,再将代入计算即可.【详解】解:==,∵,∴原式=22=4.【点睛】本题考查了幂的除法法则,掌握知识点是解题关键.解析:【分析】先将24a b ÷化为同底数幂的式子,然后根据幂的除法法则进行合并,再将22a b -=代入计算即可.【详解】解:24a b ÷=222a b ÷=()22a b -,∵22a b -=,∴原式=22=4.【点睛】本题考查了幂的除法法则,掌握知识点是解题关键.16.6【分析】根据多项式乘以多项式的法则展开,再代入计算即可.【详解】∵m+n=3,mn=2,∴(1+m)(1+n)=1+n+m+mn=1+3+2=6.故答案为:6.【点睛】本题考查了多解析:6【分析】根据多项式乘以多项式的法则展开,再代入计算即可.【详解】∵m+n=3,mn=2,∴(1+m)(1+n)=1+n+m+mn=1+3+2=6.故答案为:6.【点睛】本题考查了多项式乘以多项式,掌握多项式乘以多项式的法则是解答本题的关键.注意不要漏项,漏字母,有同类项的合并同类项.17.x(x﹣4)【详解】解:x2﹣4x=x(x﹣4).故答案为:x(x﹣4).解析:x(x﹣4)【详解】解:x2﹣4x=x(x﹣4).故答案为:x(x﹣4).18.4【分析】设购买x个A品牌足球,y个B品牌足球,根据总价=单价×数量,即可得出关于x,y的二元一次方程,结合x,y均为正整数,即可得出各进货方案,此题得解.【详解】解:设购买x个A品牌足球,解析:4【分析】设购买x个A品牌足球,y个B品牌足球,根据总价=单价×数量,即可得出关于x,y的二元一次方程,结合x,y均为正整数,即可得出各进货方案,此题得解.【详解】解:设购买x个A品牌足球,y个B品牌足球,依题意,得:60x+75y=1500,解得:y=20−45 x.∵x,y均为正整数,∴x是5的倍数,∴516xy=⎧⎨=⎩,1012xy=⎧⎨=⎩,158xy=⎧⎨=⎩,204xy=⎧⎨=⎩∴共有4种购买方案.故答案为:4.【点睛】本题考查了二元一次方程的应用,找准等量关系,正确列出二元一次方程是解题的关键.19.95°.【分析】延长DE交AB于F,根据两直线平行,同旁内角互补求出∠B,再根据两直线平行,同位角相等求出∠AFE,然后根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【详解解析:95°.【分析】延长DE交AB于F,根据两直线平行,同旁内角互补求出∠B,再根据两直线平行,同位角相等求出∠AFE,然后根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【详解】解:如图,延长DE交AB于F,∵AB∥CD,∴∠B=180°﹣∠C=180°﹣105°=75°,∵BC∥DE,∴∠AFE=∠B=75°,在△AEF中,∠AED=∠A+∠AFE=20°+75°=95°,故答案为:95°.【点睛】本题考查了平行线的性质,三角形的外角的性质,熟练掌握平行线的性质是解题的关键.20.【分析】先把二元一次方程组求解出来,用m表示,再根据有整数解求解m的值即可得到答案;【详解】解:,把①②式相加得到:,即:,要二元一次方程组有整数解,即为整数,又∵为正整数,故解析:2【分析】先把二元一次方程组210320mx y x y +=⎧⎨-=⎩求解出来,用m 表示,再根据有整数解求解m 的值即可得到答案;【详解】解:210320mx y x y +=⎧⎨-=⎩①②, 把①②式相加得到:310+=mx x , 即:103x m =+ , 要二元一次方程组210320mx y x y +=⎧⎨-=⎩有整数解, 即103x m =+为整数, 又∵m 为正整数,故m=2, 此时10223x ==+,3y = , 故,x y 均为整数,故答案为:2;【点睛】 本题主要考查了二元一次方程组的求解,掌握二元一次方程组的求解步骤是解题的关键;三、解答题21.(1) 61x y =⎧⎨=⎩;(2) 31x y =⎧⎨=⎩【分析】(1)用代入法解得即可;(2)将方程组去括号整理后,用加减法解答即可;【详解】解:(1) 523150x y x y =+⎧⎨+-=⎩①② 把方程①代入方程()253150y y ++-=解得1y =把1y =代入到①,得156x =+=所以方程组的解为:61x y =⎧⎨=⎩(2) 原方程组化简,得7427x y x y -+=⎧⎨+=⎩①② ①×2+②,得1515y =解得y=1把y=1代入到②,得217x +=解得x=3所以方程组的解为:31x y =⎧⎨=⎩【点睛】本题考查了解二元一次方程组,解题的关键是熟记代入法和加减法解方程组的步骤,并根据方程选择合适方法解题.22.116【分析】方程组消去n 后,与已知方程联立求出x 与y 的值,即可确定出n 的值.【详解】解:方程组消去n 得,-7x-8y=1,联立得:7816x y x y --=⎧⎨+=⎩解得4943x y =⎧⎨=-⎩把x=49,y=-43代入方程组,解得n=116.【点睛】本题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.23.(1)领带的制作成本是120元,丝巾的制作成本是160元;(2)可以制作2000条领带;(3)42a b =⎧⎨=⎩【分析】(1)设领带及丝巾的制作成本是x 元和y 元,根据题意列出方程组求解即可; (2)由600(2)W x y =+与400(3)W x y =+可得到43y x =,代入可得2000W x =,即可求得答案;(3)根据44600(2)300()33x x ax bx +=+即可表达出a 、b 的关系式即可解答. 【详解】解:(1)设领带及丝巾的制作成本是x 元和y 元,则600(2)240000400(3)240000x y x y +=⎧⎨+=⎩ 解得:120160x y =⎧⎨=⎩ 答:领带的制作成本是120元,丝巾的制作成本是160元.(2)由题意可得:600(2)W x y =+,且400(3)W x y =+,∴600(2)400(3)x y x y +=+, 整理得:43y x =,代入 600(2)W x y =+ 可得:4600(2)20003W x x x =+=, ∴可以制作2000条领带.(3)由(2)可得:43y x =, ∴44600(2)300()33x x ax bx +=+ 整理可得:3420a b +=∵a 、b 都为正整数, ∴42a b =⎧⎨=⎩【点睛】本题考查了二元一次方程组的综合应用,解题的关键是根据题意列出方程,并对已知条件进行适当的变形.24.(1)2()b a -;(2)22()()4a b a b ab +=-+;(3)±5;(4)详见解析 【分析】(1)表示出阴影部分正方形的边长,然后根据正方形的面积公式列式即可;(2)根据大正方形的面积减去小正方形的面积等于四个小长方形的面积列式即可;(3)将(x -y )2变形为(x +y )2—4xy ,再代入求值即可;(4)由已知的恒等式,画出相应的图形,如图所示.【详解】解:(1)阴影部分为一个正方形,其边长为b -a ,∴其面积为:2()b a -,故答案为:2()b a -;(2)大正方形面积为:()2a b +小正方形面积为:2()b a -=2()a b -, 四周四个长方形的面积为:4ab ,∴22()()4a b a b ab +=-+,故答案为:22()()4a b a b ab +=-+;(3)由(2)知,22()()4x y x y xy +=-+, ∴22()()4x y x y xy -=+-, ∴2()4x y x y xy -=±+-=2116454±-⨯=±, 故答案为:±5; (4)符合等式()()2222252a b a b a ab b ++=++的图形如图所示,【点睛】本题考查了完全平方公式的几何背景,此类题目关键在于同一个图形的面积用两种不同的方法表示.25.(1)130°;(2)①90︒-α;②不变,90︒-α;③∠NDC+∠MDB=90︒-1α2. 【分析】(1)根据已知,以及三角形内角和等于180︒,即可求解;(2)①根据平行线的性质可以证得∠ABD=∠BDM=∠MBD ,∠CND=∠A=α,再利用含有α的式子分别表示出∠NDC 、∠MDB ,进行作差,即可求解代数式;②延长BD 交AC 于点E ,则∠NDE=∠MDB ,因此∠NDC-∠MDB=∠NDC-∠NDE=∠EDC ,再利用三角形内角和为180︒,即可求解;③如图可知,∠NDC+∠MDB=180︒-∠BDC ,利用平角的定义,即可求解代数式.【详解】解:(1)∵∠A=80︒∴∠ABC+∠ACB=180︒-80︒=100︒又∵ BD 平分∠ABC ,CD 平分∠ACB ,∴∠DBC+∠DCB=12⨯100︒=50︒.∴ ∠BDC=180︒-50︒=130︒. (2)①∵MN//AB ,BD 平分∠ABC ,CD 平分∠ACB ,∴∠ABD=∠BDM=∠MBD ,∠CND=∠A=α,∴ ∠NDC=180︒-α-12∠ACB ,∠MDB=12∠ABC , ∴∠NDC-∠MDB=180︒-α-12∠ACB-12∠ABC=180︒-α-12(∠ACB+∠ABC )=180︒-α-12(180︒-α)=90︒-α. ②不变;延长BD 交AC 于点E ,如图:∴∠NDE=∠MDB ,∵∠BDC=180︒-12(∠ACB+∠ABC )=180︒-12(180︒-α)=90︒+1α2, ∴∠NDC-∠MDB=∠NDC-∠NDE=∠EDC=180︒-∠BDC=180︒-(90︒+1α2)=90︒-α, 同①,说明MN 在旋转过程中∠NDC-∠MDB 的度数只与∠A 有关系,而∠A 始终不变, 故:MN 在旋转过程中∠NDC-∠MDB 的度数不会发生改变.③如图可知,∠NDC+∠MDB=180︒-∠BDC ,由②知∠BDC=90︒+1α2, ∴∠NDC+∠MDB=180︒-(90︒+1α2)=90︒-1α2. 故∠NDC 与∠MDB 的关系是∠NDC+∠MDB=90︒-1α2. 【点睛】本题目考查平行线与三角形的综合,涉及知识点有平行线的性质,三角形内角和等于180°等,是中考的常考知识点,难度一般,熟练掌握以上知识点的综合运用是顺利解题的关键.26.(1)﹣1;(2)223x x --【分析】(1)分别根据﹣1的偶次幂、负整数指数幂的运算法则和0指数幂的意义计算每一项,再合并即可;(2)根据多项式乘以多项式的法则解答即可.【详解】解:(1)()()1202001113π-⎛⎫--+- ⎪⎝⎭=131-+=﹣1; (2)(x +1)(2x ﹣3)=22232323x x x x x -+-=--.【点睛】本题考查了负整数指数幂的运算法则和0指数幂的意义以及多项式的乘法法则等知识,属于基本题型,熟练掌握上述基础知识是解题关键.27.(1)++++432234a 4a b 6a b 4ab b ;(2)①81;②64【分析】(1)根据杨辉三角的数表规律解答即可;(2)由杨辉三角的数表规律和(1)题的结果可得所求式子=(2+1)4,据此解答即可; ②由杨辉三角的数表规律可得所求式子=(3-1)6,据此解答即可.【详解】解:(1)()4432234464a b a a b a b ab b +=++++;故答案为:++++432234a 4a b 6a b 4ab b ;(2)①24+4×23+6×22+4×2+1=(2+1)4=34=81;故答案为:81;②36-6×35+15×34-20×33+15×32-6×3+1=(3-1)6=26=64;故答案为:64.【点睛】本题考查了多项式的乘法和完全平方公式的拓展以及数的规律探求,正确理解题意、找准规律是解题的关键.28.①见解析;②BPD B D ∠=∠+∠,证明见解析;③BPD B D BQD ∠=∠+∠+∠,证明见解析.【分析】①先根据平行线的性质可得B BOD ∠=∠,再根据平角的定义可得180POD BOD ∠+∠=︒,然后根据三角形的内角和定理可得180POD BPD D ∠+∠+∠=︒,最后根据等量代换即可得证;②如图(见解析),先根据平行线的性质可得B BQD ∠=∠,再根据三角形的外角性质可得BPD BQD D ∠=∠+∠,然后根据等量代换即可得;③如图(见解析),先根据三角形的外角性质可得BED B BQD ∠=∠+∠,BPD D BED ∠=∠+∠,再根据等量代换即可得.【详解】①BPD B D ∠=∠-∠.证明:∵//AB CD ,∴B BOD ∠=∠,又∵180POD BOD ∠+∠=︒,在POD 中,由三角形内角和定理可得180POD BPD D ∠+∠+∠=︒,故BOD BPD D ∠=∠+∠,从而得BPD B D ∠=∠-∠;②BPD B D ∠=∠+∠,证明如下:如图,延长BP ,交CD 于点Q ,∵//AB CD ,B BQD ∴∠=∠,由三角形的外角性质得:BPD BQD D ∠=∠+∠,BPD B D ∴∠=∠+∠;③BPD B D BQD ∠=∠+∠+∠,证明如下:如图,延长BP ,交CD 于点E ,由三角形的外角性质得:BED B BQD BPD D BED ∠=∠+∠⎧⎨∠=∠+∠⎩, 则BPD B D BQD ∠=∠+∠+∠.【点睛】本题考查了平行线的性质、三角形的内角和定理、三角形的外角性质等知识点,熟练掌握三角形的外角性质是解题关键.。
济南市七年级下册数学期末试题及答案解答
济南市七年级下册数学期末试题及答案解答一、选择题1.现有两根木棒,它们长分别是40cm 和50cm ,若要钉成一个三角形木架,则下列四根木棒应选取( )A .10cm 的木棒B .40cm 的木棒C .90cm 的木棒D .100cm 的木棒2.下列条件中,能判定△ABC 为直角三角形的是( ).A .∠A=2∠B -3∠C B .∠A+∠B=2∠C C .∠A-∠B=30°D .∠A=12∠B=13∠C 3.a 5可以等于( )A .(﹣a )2•(﹣a )3B .(﹣a )•(﹣a )4C .(﹣a 2)•a 3D .(﹣a 3)•(﹣a 2)4.下列图形中,不能通过其中一个四边形平移得到的是( )A .B .C .D .5.已知点M (2x ﹣3,3﹣x ),在第一、三象限的角平分线上,则M 点的坐标为( ) A .(﹣1,﹣1).B .(﹣1,1)C .(1,1)D .(1,﹣1) 6.点M 位于平面直角坐标系第四象限,且到x 轴的距离是5,到y 轴的距离是2,则点M的坐标是( )A .(2,﹣5)B .(﹣2,5)C .(5,﹣2)D .(﹣5,2)7.下列各式从左到右的变形,是因式分解的是( )A .a 2-5=(a+2)(a-2)-1B .(x+2)(x-2)=x 2-4C .x 2+8x+16=(x+4)2D .a 2+4=(a+2)2-4 8.如图,在△ABC 中,BC =6,∠A =90°,∠B =70°.把△ABC 沿BC 方向平移到△DEF 的位置,若CF =2,则下列结论中错误的是( )A .BE =2B .∠F =20°C .AB ∥DED .DF =69.下列等式由左边到右边的变形中,因式分解正确的是( )A .22816(4)m m m -+=-B .323346(46)x y x y x y y +=+C .()22121x x x x ++=++D .22()()a b a b a b +-=-10..已知2x a y =⎧⎨=-⎩是关于x ,y 的方程3x ﹣ay =5的一个解,则a 的值为( ) A .1 B .2 C .3 D .4二、填空题11.若x +3y -4=0,则2x •8y =_________.12.如图,图(1)的正方形的周长与图(2)的长方形的周长相等,且长方形的长比宽多acm ,则正方形的面积与长方形的面积的差为_____(用含有字母a 的代数式表示).13.如果62x y =⎧⎨=-⎩是关于x 、y 的二元一次方程mx -10=3y 的一个解,则m 的值为_____.14.如图,点B 在线段AC 上(BC>AB ),在线段AC 同侧作正方形ABMN 及正方形BCEF ,连接AM 、ME 、EA 得到△AME .当AB=1时,△AME 的面积记为S 1;当AB=2时,△AME 的面积记为S 2;当AB=3时,△AME 的面积记为S 3;则S 2020﹣S 2019=_____.15.若2(3)(2)x x ax bx c +-=++(a 、b 、c 为常数),则a b c ++=_____. 16.已知一个多边形的每个外角都是24°,此多边形是_________边形.17.()a b -+(__________) =22a b -.18.三角形两边长分别是3、5,第三边长为偶数,则第三边长为_______19.把长和宽分别为a 和b 的四个相同的小长方形拼成如图的图形,若图中每个小长方形的面积均为3,大正方形的面积为20,则()2a b -的值为_____.20.比较大小:π0_____2﹣1.(填“>”“<”或“=”)三、解答题21.若关于x,y 的二元一次方程组 38x y mx ny +=⎧⎨+=⎩与方程组14x y mx ny -=⎧⎨-=⎩有相同的解. (1)求这个相同的解;-的值.(2)求m n22.如图,每个小正方形的边长为1个单位,每个小方格的顶点叫格点.(1)画出△ABC向右平移4个单位后得到的△A1B1C1;(2)图中AC与A1C1的关系是:_____.(3)画出△ABC的AB边上的高CD;垂足是D;(4)图中△ABC的面积是_____.23.(知识回顾):如图①,在△ABC中,根据三角形内角和定理,我们知道∠A+∠B+∠C=180°.如图②,在△ABC中,点D为BC延长线上一点,则∠ACD为△ABC的一个外角.请写出∠ACD与∠A、∠B的关系,直接填空:∠ACD=.(初步运用):如图③,点D、E分别是△ABC的边AB、AC延长线上一点.(1)若∠A=70°,∠DBC=150°,则∠ACB=°.(直接写出答案)(2)若∠A=70°,则∠DBC+∠ECB=°.(直接写出答案)(拓展延伸):如图④,点D、E分别是四边形ABPC的边AB、AC延长线上一点.(1)若∠A=70°,∠P=150°,则∠DBP+∠ECP=°.(请说明理由)(2)分别作∠DBP和∠ECP的平分线,交于点O,如图⑤,若∠O=40°,求出∠A和∠P 之间的数量关系,并说明理由.(3)分别作∠DBP和∠ECP的平分线BM、CN,如图⑥,若∠A=∠P,求证:BM∥CN.24.如果a c=b ,那么我们规定(a,b)=c,例如:因为23= 8 ,所以(2,8)=3.(1)根据上述规定,填空:(3,27)= ,(4,1)= ,(2,14)= ; (2)若记(3,5)=a ,(3,6)=b ,(3,30)=c ,求证: a + b = c .25.已知有理数,x y 满足:1x y -=,且221x y ,求22x xy y ++的值. 26.阅读材料:求1+2+22+23+24+…+22020的值.解:设S =1+2+22+23+24+…+22020,将等式两边同时乘以2得,2S =2+22+23+24+25+ (22021)将下式减去上式,得2S ﹣S =22021﹣1,即S =22021﹣1.即1+2+22+23+24+…+22020=22021﹣1仿照此法计算:(1)1+3+32+33+ (320)(2)2310011111 (2222)+++++.27.0=,|1|z -=,求x y z ++的平方根.28.在南通市中小学标准化建设工程中,某校计划购进一批电脑和电子白板,经过市场考察得知,购买1台电脑和2台电子白板需要3.5万元,购买2台电脑和1台电子白板需要2.5万元.(1)求每台电脑、每台电子白板各多少万元;(2)根据学校实际,需购进电脑和电子白板共31台,若总费用不超过30万元,则至多购买电子白板多少台?【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】试题解析:已知三角形的两边是40cm 和50cm ,则10<第三边<90.故选40cm 的木棒.故选B.点睛:三角形的三边关系:三角形任意两边之和大于第三边.2.D解析:D【分析】根据三角形内角和定理和各选项中的条件计算出△ABC的内角,然后根据直角三角形的判定方法进行判断.【详解】解:A、∠A+∠B+∠C=180°,而∠A=2∠B=3∠C,则∠A=108011°,所以A选项错误;B、∠A+∠B+∠C=180°,而∠A+∠B=2∠C,则∠C=60°,不能确定△ABC为直角三角形,所以B选项错误;C、∠A+∠B+∠C=180°,而∠A=∠B=30°,则∠C=150°,所以B选项错误;D、∠A+∠B+∠C=180°,而∠A=12∠B=13∠C,则∠C=90°,所以D选项正确.故选:D.【点睛】此题考查三角形内角和定理,直角三角形的定义,解题关键在于掌握三角形内角和是180°.3.D解析:D【分析】根据同底数幂的乘法底数不变指数相加,可得答案.【详解】A、(﹣a)2(﹣a)3=(﹣a)5,故A错误;B、(﹣a)(﹣a)4=(﹣a)5,故B错误;C、(﹣a2)a3=﹣a5,故C错误;D、(﹣a3)(﹣a2)=a5,故D正确;故选:D.【点睛】本题考查了同底数幂的乘法,利用了同底数幂的乘法法则.4.D解析:D【详解】解:A、能通过其中一个四边形平移得到,不符合题意;B、能通过其中一个四边形平移得到,不符合题意;C、能通过其中一个四边形平移得到,不符合题意;D、不能通过其中一个四边形平移得到,需要一个四边形旋转得到,符合题意.故选D.5.C解析:C【分析】直接利用角平分线上点的坐标特点得出2x﹣3=3﹣x,进而得出答案.【详解】解:∵点M(2x﹣3,3﹣x),在第一、三象限的角平分线上,∴2x﹣3=3﹣x,解得:x=2,故2x﹣3=1,3﹣x=1,则M点的坐标为:(1,1).故选:C.【点睛】此题主要考查了点的坐标,正确掌握横纵坐标的关系是解题关键.6.A解析:A【分析】先根据到x轴的距离为点的纵坐标的绝对值,到y轴的距离为点的横坐标的绝对值,进而判断出点的符号,得到具体坐标即可.【详解】∵M到x轴的距离为5,到y轴的距离为2,∴M纵坐标可能为±5,横坐标可能为±2.∵点M在第四象限,∴M坐标为(2,﹣5).故选:A.【点睛】本题考查点的坐标的确定;用到的知识点为:点到x轴的距离为点的纵坐标的绝对值,到y轴的距离为点的横坐标的绝对值.7.C解析:C【分析】根据因式分解的定义逐个判断即可.【详解】A、不是因式分解,故本选项不符合题意;B、不是因式分解,故本选项不符合题意;C、是因式分解,故本选项符合题意;D、不是因式分解,故本选项不符合题意;故选:C.【点睛】本题考查了因式分解的定义,能熟记因式分解的定义是解此题的关键,把一个多项式化成几个整式的积的形式,叫因式分解.8.D解析:D【分析】根据平移的性质可得BC=EF,然后求出BE=CF.【详解】∵△ABC沿BC方向平移得到△DEF,∴BC-EC=EF-EC ,即BE=CF ,∵CF=2cm ,∴BE=2cm .∵BC=6,∠A=90°,∠B=70°,∴∠ACB=20°,根据平移的性质可得AB ∥DE ,∴∠F=20°;故选:D .【点睛】本题考查了平移的性质,主要利用了平移对应点所连的线段平行且相等.9.A解析:A【分析】根据因式分解的意义,可得答案.【详解】解:A 、属于因式分解,故本选项正确;B 、因式分解不彻底,故B 选项不符合题意;C 、没把一个多项式转化成几个整式积的形式,故C 不符合题意;D 、是整式的乘法,故D 不符合题意;【点睛】本题考查了因式分解的意义,把一个多项式转化成几个整式积的形式是因式分解.10.A解析:A【解析】【分析】将x 和y 的值代入方程计算即可.【详解】将2x a y =⎧⎨=-⎩代入方程得:3(2)5a a -⋅-= 解得:1a =故选:A.【点睛】本题考查了已知二元一次方程的解求方程中未知数的值,理解题意是解题关键.二、填空题11.16根据幂的运算公式变形,再代入x+3y=4即可求解.【详解】∵x +3y -4=0∴x +3y=4∴2x•8y =2x•(23)y =2x+3y =24=16.故答案为:16.【点睛】解析:16【分析】根据幂的运算公式变形,再代入x+3y=4即可求解.【详解】∵x +3y -4=0∴x +3y=4∴2x •8y =2x •(23)y =2x+3y =24=16.故答案为:16.【点睛】此题主要考查幂的运算,解题的关键是熟知幂的运算公式.12.【分析】设长方形的宽为xcm ,根据“图(1)的正方形的周长与图(2)的长方形的周长相等”求得正方形的边长,最后由长方形与正方形的面积公式计算正方形的面积与长方形的面积的差.【详解】解:设长方 解析:24a 【分析】设长方形的宽为xcm ,根据“图(1)的正方形的周长与图(2)的长方形的周长相等”求得正方形的边长,最后由长方形与正方形的面积公式计算正方形的面积与长方形的面积的差.【详解】解:设长方形的宽为xcm ,则长方形的长为(x +a )cm ,∵图(1)的正方形的周长与图(2)的长方形的周长相等,∴正方形的边长为:2()242x a x x a +++=, ∴正方形的面积与长方形的面积的差为:22()2x a x x a +⎛⎫-+ ⎪⎝⎭222444x ax a x ax ++=-- =24a . 故答案为:24a . 【点睛】本题主要考查了列代数式,整式的混合运算,关键是读懂题意,正确列出代数式.13.【分析】把x 、y 的值代入方程计算即可求出m 的值.【详解】解:把代入方程得:6m -10=﹣6,解得:m =故答案为:【点睛】本题考查二元一次方程的解,解题的关键是理解方程的解能使方程左右 解析:23【分析】把x 、y 的值代入方程计算即可求出m 的值.【详解】解:把62x y =⎧⎨=-⎩代入方程得:6m -10=﹣6, 解得:m =23故答案为:23【点睛】本题考查二元一次方程的解,解题的关键是理解方程的解能使方程左右两边相等.14.【分析】先连接BE ,则BE∥AM,利用△AME 的面积=△AMB 的面积即可得出 , ,即可得出Sn-Sn-1的值,再把n=2020代入即可得到答案【详解】如图,连接BE ,∵在线段AC 同侧作解析:40392 【分析】先连接BE ,则BE ∥AM ,利用△AME 的面积=△AMB 的面积即可得出212n S n = ,211122n S n n -=-+ ,即可得出S n -S n-1的值,再把n=2020代入即可得到答案 【详解】 如图,连接BE ,∵在线段AC 同侧作正方形ABMN 及正方形BCEF ,∴BE ∥AM , ∴△AME 与△AMB 同底等高,∴△AME 的面积=△AMB 的面积,∴当AB=n 时,△AME 的面积记为212n S n =, 221111(1)222n S n n n -=-=-+ ∴当n ≥2时,221111121()22222n n n S S n n n n ---=--+=-= , ∴S 2020﹣S 2019=220201403922⨯-= , 故答案为:40392. 【点睛】此题主要考查了三角形面积求法以及正方形的性质,根据已知得出正确图形,得出S 与n 的关系是解题关键. 15.-4【分析】由x=1可知,等式左边=-4,右边=,由此即可得出答案.【详解】解:当x=1时,,,∵,∴故答案为:-4.【点睛】本题考查了代数式求值.利用了特殊值法解题,抓住当x解析:-4【分析】由x=1可知,等式左边=-4,右边=a b c ++,由此即可得出答案.【详解】解:当x=1时,()()(3)(2)13124x x +-=+⨯-=-,2ax bx c a b c ++=++,∵2(3)(2)x x ax bx c +-=++,∴4a b c ++=-故答案为:-4.【点睛】本题考查了代数式求值.利用了特殊值法解题,抓住当x=1时2ax bx c a b c ++=++是解题的关键. 16.十五【分析】任何多边形的外角和是360°,用外角和除以每个外角的度数即可得到边数.【详解】多边形的外角和是360°,每个外角的度数是24°360°24=15故答案:十五【点睛】此题主解析:十五【分析】任何多边形的外角和是360°,用外角和除以每个外角的度数即可得到边数.【详解】多边形的外角和是360°,每个外角的度数是24°360°÷24=15故答案:十五【点睛】此题主要考查了多边形的外角和,关键是掌握任何多边形的外角和都是360°,已知每个外角度数就可以求出多边形边数.17.【分析】根据平方差公式即可求出答案.【详解】解:,故答案为:.【点睛】本题考查了平方差公式,解题的关键是熟练运用平方差公式,本题属于基础题型.解析:a b --【分析】根据平方差公式即可求出答案.【详解】解:()2222()()a b a b a b a b -+--==---,故答案为:a b --.【点睛】本题考查了平方差公式,解题的关键是熟练运用平方差公式,本题属于基础题型. 18.4或6【解析】【分析】根据三角形三边关系,可令第三边为x ,则5-3<x <5+3,即2<x <8,又因为第三边长为偶数,即可求得答案.【详解】由题意,令第三边为x ,则5-3<x<5+3,即2<解析:4或6【解析】【分析】根据三角形三边关系,可令第三边为x ,则5-3<x <5+3,即2<x <8,又因为第三边长为偶数,即可求得答案.【详解】由题意,令第三边为x ,则5-3<x<5+3,即2<x<8,∵第三边长为偶数,∴第三边长是4或6,故答案为:4或6.【点睛】本题考查了三角形三边关系,熟练掌握三角形的三边关系是解决此类问题的关键.19.8【解析】【分析】根据阴影部分的面积等于大正方形的面积减去中间小正方形的面积,即可写出等式.【详解】阴影部分的面积是:.故答案为8【点睛】本题主要考查问题推理能力,解答本题关键是根解析:8【解析】【分析】根据阴影部分的面积等于大正方形的面积减去中间小正方形的面积,即可写出等式.【详解】阴影部分的面积是:()22(4)a b a b ab +-=-. ()22()204384a b a b ab ∴+-==-⨯=-故答案为8【点睛】本题主要考查问题推理能力,解答本题关键是根据图示找出大正方形,长方形,小正方形之间的关键. 20.>【分析】先求出π0=1,2-1=,再根据求出的结果比较即可.【详解】解:∵π0=1,2-1=,1>,∴π0>2-1,故答案为:>.【点睛】本题考查零指数幂和负指数幂,实数的大小比较解析:>【分析】先求出π0=1,2-1=12,再根据求出的结果比较即可. 【详解】解:∵π0=1,2-1=12,1>12,∴π0>2-1,故答案为:>.【点睛】本题考查零指数幂和负指数幂,实数的大小比较.理解任意非零数的零次方等于1和熟记负指数幂的计算公式是解题关键.三、解答题21.(1)这个相同的解为21xy=⎧⎨=⎩;(2)1【分析】(1)根据两个方程组有相同解可得方程组31x yx y+=⎧⎨-=⎩,解此方程组即可得出答案;(2)将(1)求解出的x和y的值代入其余两个式子,解出m和n的值,再代入m-n中即可得出答案.【详解】解:(1)∵关于x,y的二元一次方程组38x ymx ny+=⎧⎨+=⎩与14x ymx ny-=⎧⎨-=⎩有相同的解,∴31 x yx y+=⎧⎨-=⎩解得21 xy=⎧⎨=⎩∴这个相同的解为21 xy=⎧⎨=⎩(2)∵关于x,y的二元一次方程组38x ymx ny+=⎧⎨+=⎩与14x ymx ny-=⎧⎨-=⎩相同的解为21xy=⎧⎨=⎩,∴28 24 m nm n+=⎧⎨-=⎩解得32 mn=⎧⎨=⎩∴m-n=3-2=1【点睛】本题考查的是二元一次方程组的同解问题:将两组方程组中只含有x和y的方程组合到一起,求解即可.22.(1)画图见解析;(2)平行且相等;(3)画图见解析;(4)8【分析】(1)根据网格结构找出点A、B、C向右平移4个单位后的对应点A1、B1、C1的位置,然后顺次连接即可;(2)根据平移的性质解答;(3)延长AB,作出AB的高CD即可;(4)利用△ABC所在的矩形的面积减去四周三个三角形的面积,列式计算即可得解.【详解】解:(1)如图所示,(2)根据平移的性质得出,AC与A1C1的关系是:平行且相等;(3)如图所示,(4)△ABC的面积=5×7-12×7×5-12×7×2-12×5×1=8.23.知识回顾:∠A+∠B;初步运用:(1)80;(2)250;拓展延伸:(1)220;(2)∠A和∠P之间的数量关系是:∠P=∠A+80°,理由见解析;(3)见解析.【分析】知识回顾:根据三角形内角和即可求解.初步运用:(1)根据知识与回顾可求出∠DBC度数,进而求得∠ACB度数;(2)已知∠A度数,即可求得∠ABC+∠ACB度数,进而求得∠DBC+∠ECB度数.拓展延伸:(1)连接AP,根据三角形外角性质,∠DBP=∠BAP+∠APB,∠ECP=∠CAP+∠APC,得到∠DBP+∠ECP=∠BAC+∠BPC,已知∠BAC=70°,∠BPC=150°,即可求得∠DBP+∠ECP度数;(2)如图⑤,设∠DBO=x,∠OCE=y,则∠OBP=∠DBO=x,∠PCO=∠OCE=y,由(1)同理得:x+y=∠A+∠O,2x+2y=∠A+∠P,即可求出∠A和∠P之间的数量关系;(3)如图,延长BP交CN于点Q,根据角平分线定义,∠DBP=2∠MBP,∠ECP=2∠NCP,且∠DBP+∠ECP=∠A+∠BPC,∠A=∠BPC,得到∠BPC=∠MBP+∠NCP,因为∠BPC=∠PQC+∠NCP,证得∠MBP=∠PQC,进而得到BM∥CN.【详解】知识回顾:∵∠ACD+∠ACB=180°,∠A+∠B+∠ACB=180°,∴∠ACD=∠A+∠B;故答案为:∠A+∠B;初步运用:(1)∵∠DBC=∠A+∠ACB,∠A=70°,∠DBC=150°,∴∠ACB=∠DBC﹣∠A=150°﹣70°=80°;故答案为:80;(2)∵∠A=70°,∴∠ABC+∠ACB=110°,∴∠DBC+∠ECB=360°﹣110°=250°,故答案为:250;拓展延伸:(1)如图④,连接AP,∵∠DBP=∠BAP+∠APB,∠ECP=∠CAP+∠APC,∴∠DBP+∠ECP=∠BAP+∠APB+∠CAP+∠APC=∠BAC+∠BPC,∵∠BAC=70°,∠BPC=150°,∴∠DBP+∠ECP=∠BAC+∠BPC=70°+150°=220°,故答案为:220;(2)∠A和∠P之间的数量关系是:∠P=∠A+80°,理由是:如图⑤,设∠DBO=x,∠OCE=y,则∠OBP=∠DBO=x,∠PCO=∠OCE=y,由(1)同理得:x+y=∠A+∠O,2x+2y=∠A+∠P,2∠A+2∠O=∠A+∠P,∵∠O=40°,∴∠P=∠A+80°;(3)证明:如图,延长BP交CN于点Q,∵BM平分∠DBP,CN平分∠ECP,∴∠DBP=2∠MBP,∠ECP=2∠NCP,∵∠DBP+∠ECP=∠A+∠BPC,∠A=∠BPC,∴2∠MBP+2∠NCP=∠A+∠BPC=2∠BPC,∴∠BPC=∠MBP+∠NCP,∵∠BPC =∠PQC+∠NCP ,∴∠MBP =∠PQC ,∴BM ∥CN .【点睛】本题考查了三角形内角和定理,三角形内角和为360°;三角形外角性质定理,三角形的任一外角等于不相邻的两个内角和;角平分线定义,根据角平分线定义证明;以及平行线的判定,内错角相等两直线平行.24.(1)3;0; -2;(2)证明见解析.【分析】(1)根据已知和同底数的幂法则得出即可;(2)根据已知得出3a =5,3b =6,3c =30,求出3a ×3b =30,即可得出答案.【详解】(1)(3,27)=3,(4,1)=0,(2,14)=-2, 故答案为3;0;-2;(2)证明:由题意得:3a = 5,3b = 6,3c = 30,∵ 5⨯ 6=30,∴ 3a ⨯ 3b = 3c ,∴ 3a +b = 3c ,∴ a + b = c .【点睛】本题考查了同底数幂的乘法,有理数的混合运算等知识点,能灵活运用同底数幂的乘法法则进行变形是解此题的关键.25.【分析】利用1x y -=将221x y 整理求出xy 的值,然后将22x xy y ++利用完全平方公式变形,将各自的值代入计算即可求出值. 【详解】∵221x y ,∴化简得:241xy x y , ∵1x y -=,∴241xy x y 可化为:241xy ,即有:5xy =,∴2222313516x xy y x y xy .【点睛】此题考查了整式的混合运算-化简求值,熟练掌握运算法则是解本题的关键.26.(1)21312-;(2)101100212-. 【分析】(1)仿照阅读材料中的方法求出所求即可;(2)仿照阅读材料中的方法求出所求即可.【详解】解:(1)设S =1+3+32+33+ (320)则3S =3+32+33+ (321)∴3S ﹣S =321﹣1,即S =21312-, 则1+3+32+33+…+320=21312-; (2)设S =1+2310011112222+++⋯+, 则12S =231001011111122222+++⋯++, ∴S ﹣12S =1﹣10112=101101212-,即S =101100212-, 则S =1+2310011112222+++⋯+=101100212-. 【点睛】此题考查的是探索运算规律题,根据已知材料中的方法,探索出运算规律是解决此题的关键.27.【分析】根据题意得到三元一次方程组,解方程组,求出x y z ++,最后求平方根即可.【详解】0=,|1|z -=,=|1|0z -=,∴2113024010y x x y z -+-=⎧⎪-+=⎨⎪-=⎩,解得231x y z =⎧⎪=⎨⎪=⎩,则6x y z ++=,∴x y z ++平方根为.【点睛】本题考查相反数的意义,非负数的表达,解三元一次方程组,求平方根等知识,综合性较强,解题关键是根据题意列出三元一次方程组.28.(1)电脑0.5万元,电子白板1.5万元;(2)14台【分析】(1)设每台电脑x 元,每台电子白板y 元,根据题意列出方程组,解方程组即可;(2)设购进电子白板m 台,则购进电脑()31m -台,根据总费用不超过30万元,列出不等式,根据m 实际意义即可求解.【详解】(1)设每台电脑x 元,每台电子白板y 元,则2 3.52 2.5x y x y +=⎧⎨+=⎩,解得0.51.5x y =⎧⎨=⎩故每台电脑0.5万元,每台电子白板1.5万元;(2)设购进电子白板m 台,则购进电脑()31m -台,由题意得 1.50.5(31)30m m +-≤解得14.5m ≤,又因为m 是正整数,则14m ≤,故至多购买电子白板14台.【点睛】本题考查了二元一次方程组应用,一元一次不等式应用,综合性较强,难度不大,根据题意列出二元一次方程组、一元一次不等式是解题关键.。
山东省2014-2015学年七年级(下)期末数学试卷(解析版)
山东省七年级(下)期末数学试卷一、选择题1.实数4的算术平方根是()A.﹣2 B.2 C.±2 D.±42.12的负的平方根介于()A.﹣5与﹣4之间B.﹣4与﹣3之间C.﹣3与﹣2之间D.﹣2与﹣1之间3.在数轴上表示不等式x+5≥1的解集,正确的是()A.B.C.D.4.已知关于x的方程2x+4=m﹣x的解为负数,则m的取值范围是()A.B.C.m<4 D.m>45.下列计算正确的是()A.a3+a2=a5B.(3a﹣b)2=9a2﹣b2C.a6b÷a2=a3b D.(﹣ab3)2=a2b66.下列各式由左边到右边的变形中,属于分解因式的是()A.a(x+y)=ax+ay B.x2﹣4x+4=x(x﹣4)+4C.10x2﹣5x=5x(2x﹣1)D.x2﹣16+6x=(x+4)(x﹣4)+6x7.在分式中,是最简分式的有()A.0个B.1个C.2个D.3个8.分式方程的解是()A.x=3 B.x=﹣3 C.x=D.x=9.如图,∠1=∠2,∠3=40°,则∠4等于()A.120°B.130°C.140°D.40°10.为了帮助遭受自然灾害的地区重建家园,某学校号召同学们自愿捐款.已知第一次捐款总额为4800元,第二次捐款总额为5000元,第二次捐款人数比第一次多20人,而且两次人均捐款额恰好相等,如果设第一次捐款人数是x人,那么x满足的方程是()A.B.=C. D.二、填空题11.计算:(﹣2)3+(﹣1)0=.12.把7的平方根和立方根按从小到大的顺序排列为.13.不等式2x+9≥3(x+2)的正整数解是.14.不等式组的解集是.15.如图,一个含有30°角的直角三角形的两个顶点放在一个矩形的对边上,若∠1=25°,则∠2=.16.如图,直线AB,CD相交于点O,OE⊥AB,∠BOD=20°,则∠COE等于度.17.多项式x2+mx+5因式分解得(x+5)(x+n),则m=,n=.18.已知关于x的方程的解是负数,则n的取值范围为.19.若x+y=1,且x≠0,则(x+)÷的值为.20.杭州到北京的铁路长1487千米.火车的原平均速度为x千米/时,提速后平均速度增加了70千米/时,由杭州到北京的行驶时间缩短了3小时,则可列方程为.三、解答题(共60分)21.计算:(1)(﹣3)0﹣﹣(﹣1)2013﹣|﹣2|+(﹣)﹣2.(2)(﹣3)0﹣(﹣5)+()﹣1﹣﹣|﹣2|.22.(1);(2).23.解方程:(1)﹣=1;(2).24.已知x=3是关于x的不等式的解,求a的取值范围.25.解不等式组并求它的所有的非负整数解.26.先化简,再求值:(﹣),其中x2﹣4=0.27.如图,直线AB、CD相交于点O,OE⊥OF,OC平分∠AOE,且∠BOF=2∠BOE.请你求∠DOB 的度数.28.阅读材料:求1+2+22+23+24+…+22013的值.解:设S=1+2+22+23+24+…+22012+22013,将等式两边同时乘以2得:2S=2+22+23+24+25+…+22013+22014将下式减去上式得2S﹣S=22014﹣1即S=22014﹣1即1+2+22+23+24+…+22013=22014﹣1请你仿照此法计算:(1)1+2+22+23+24+…+210(2)1+3+32+33+34+…+3n(其中n为正整数).29.义洁中学计划从荣威公司购买A、B两种型号的小黑板,经洽谈,购买一块A型小黑板比买一块B型小黑板多用20元.且购买5块A型小黑板和4块B型小黑板共需820元.(1)求购买一块A型小黑板、一块B型小黑板各需要多少元?(2)根据义洁中学实际情况,需从荣威公司购买A、B两种型号的小黑板共60块,要求购买A、B 两种型号小黑板的总费用不超过5240元.并且购买A型小黑板的数量应大于购买A、B种型号小黑板总数量的.请你通过计算,求出义洁中学从荣威公司购买A、B两种型号的小黑板有哪几种方案?30.烟台享有“苹果之乡”的美誉.甲、乙两超市分别用3000元以相同的进价购进质量相同的苹果.甲超市销售方案是:将苹果按大小分类包装销售,其中大苹果400千克,以进价的2倍价格销售,剩下的小苹果以高于进价10%销售.乙超市的销售方案是:不将苹果按大小分类,直接包装销售,价格按甲超市大、小两种苹果售价的平均数定价.若两超市将苹果全部售完,其中甲超市获利2100元(其它成本不计).问:(1)苹果进价为每千克多少元?(2)乙超市获利多少元?并比较哪种销售方式更合算.2014-2015学年山东省潍坊市安丘经济开发区中学七年级(下)期末数学试卷B.B.B。
2015年山东省济南市历下区七年级(下)期末数学试卷与参考答案PDF
2014-2015学年山东省济南市历下区七年级(下)期末数学试卷一、选择题(共12小题,每小题3分,满分36分)1.(3分)下列图形中,不一定是轴对称图形的是()A.等腰三角形B.线段C.钝角D.直角三角形2.(3分)下列事件是不可能事件的是()A.买一张电影票,座位号是奇数B.从一个只装有红球的袋子里摸出白球C.三角形两边之和大于第三边D.明天会下雨3.(3分)下列运算,正确的是()A.(﹣a3b)2=a6b2B.4a﹣2a=2 C.a6÷a3=a2D.(a﹣b)2=a2﹣b2 4.(3分)计算()2015×1.52015的结果是()A.B.﹣ C.1 D.﹣5.(3分)如图,下列条件中,不能推断AB∥CD的是()A.∠B=∠5 B.∠1=∠2 C.∠3=∠4 D.∠B+∠BCD=180°6.(3分)如图,在△ABC中,∠B=46°,∠C=54°,AD平分∠BAC,交BC于D,DE∥AB,交AC于E,则∠ADE的大小是()A.45°B.54°C.40°D.50°7.(3分)如图,四边形ABCD中,AC垂直平分BD,垂足为E,下列结论不一定成立的是()A.AB=AD B.AC平分∠BCD C.△BEC≌△DEC D.AB=BD8.(3分)如图是我国古代计时器“漏壶”的示意图,在壶内盛一定量的水,水从壶底的小孔漏出.壶壁内画有刻度,人们根据壶中水面的位置计时,用x表示时间,y表示壶底到水面的高度,则y与x的函数关系式的图象是()A.B.C.D.9.(3分)要测量河两岸相对的两点A,B的距离,先在AB的垂线BF上取两点C,D,使CD=BC,再定出BF的垂线DE,使A,C,E在一条直线上(如图所示),可以说明△EDC≌△ABC,得ED=AB,因此测得ED的长就是AB的长,判定△EDC ≌△ABC最恰当的理由是()A.边角边B.角边角C.边边边D.边边角10.(3分)如图,把一个长方形纸片沿EF折叠后,点D,C分别落在D′,C′的位置.若∠EFB=65°,则∠D′EF等于()A.70°B.65°C.50°D.25°11.(3分)如图在△ABD和△ACE都是等边三角形,则△ADC≌△ABE的根据是()A.SSS B.SAS C.ASA D.AAS12.(3分)若m+n=7,mn=12,则m2﹣mn+n2的值是()A.11 B.13 C.37 D.61二、填空题(共6小题,每小题3分,满分18分)13.(3分)3﹣2=.14.(3分)如图,在△ABC中,∠C=90°,AD是角平分线,DE⊥AB于E,且DE=3cm,BD=5cm,则BC=cm.15.(3分)等腰三角形一边长是10cm,一边长是6cm,则它的周长是cm 或cm.16.(3分)某电视台综艺节目接到热线电话400个,现要从中抽取“幸运观众”10名,小明同学打通了一次电话,那么他成为“幸运观众”的概率为.17.(3分)如图,等腰△ABC中,AB=AC,∠DBC=15°,AB的垂直平分线MN交AC于点D,则∠A的度数是.18.(3分)若4a2﹣ka+9是一个完全平方式,则k=.三、解答题(共7小题,满分66分)19.(10分)(1)化简:(ab2)2•4a÷(﹣2ab);(2)化简求值:(a+2)2+(1﹣a)(1+a),其中a=﹣.20.(9分)(1)在边长为1的方格纸中,有如图1所示的四边形(顶点都在格点上).①作出该四边形关于直线l成轴对称的图形;②完成上述设计后,整个图案的面积等于.(2)如图2,两条公路OA和OB相交于O点,在∠AOB的内部有工厂C和D,现要修建一个货站P,使货站P到两条公路OA、OB的距离相等,且到两工厂C、D的距离相等,用尺规作出货站P的位置.(要求:不写作法,保留作图痕迹,写结论)21.(7分)一个不透明的袋中装有红、黄、白三种颜色球共100个,它们除颜色外都相同,其中黄球个数是白球个数的2倍少5个.已知从袋中摸出一个球是红球的概率是.(1)求袋中红球的个数;(2)求从袋中摸出一个球是白球的概率;(3)取走10个球(其中没有红球)后,求从剩余的球中摸出一个球是红球的概率.22.(7分)已知:如图,点B,E,C,F在同一直线上,AB∥DE,且AB=DE,BE=CF.求证:AC∥DF.23.(9分)心理学家发现,学生对概念的接受能力y与提出概念所用的时间x (单位:分)之间有如下关系:(其中0≤x≤30)提出概念所用时间(x)257101213141720对概念的接受能力(y)47.853.556.35959.859.959.858.355(1)上表中反映了哪两个变量之间的关系?(2)当提出概念所用时间是10分钟时,学生的接受能力是多少?(3)根据表格中的数据,你认为提出概念几分钟时,学生的接受能力最强;(4)从表中可知,当时间x在什么范围内,学生的接受能力逐步增强?当时间x在什么范围内,学生的接受能力逐步降低?24.(12分)如图,△ABC是等边三角形,点E、F分别在边AB和AC上,且AE=BF.(1)求证:△ABE≌△BCF;(2)若∠ABE=20°,求∠ACF的度数;(3)猜测∠BOC的度数并证明你的猜想.25.(12分)在△ABC中,AB=AC,点D是直线BC上一点(不与点B、点C重合),以AD为一边在AD的右侧作△ADE,使AD=AE,∠DAE=∠BAC,连接CE.(1)如图1,当点D在线段BC上时,如果∠BAC=90°,则∠BCE=;(2)如图2,当点D在线段BC上时,如果∠BAC=50°,请你求出∠BCE的度数.(写出求解过程);(3)探索发现,设∠BAC=α,∠BCE=β.①如图2,当点D在线段BC上移动,则α,β之间有怎样的数量关系?请直接写出你的结论:.②当点D在线段BC的延长线上时,则α,β之间有怎样的数量关系?请在图3中画出完整图形并请直接写出你的结论:.2014-2015学年山东省济南市历下区七年级(下)期末数学试卷参考答案与试题解析一、选择题(共12小题,每小题3分,满分36分)1.(3分)下列图形中,不一定是轴对称图形的是()A.等腰三角形B.线段C.钝角D.直角三角形【解答】解:A、是轴对称图形,故选项错误;B、是轴对称图形,故选项错误;C、是轴对称图形,故选项错误;D、不一定是轴对称图形如不是等腰直角三角形,故选项正确.故选:D.2.(3分)下列事件是不可能事件的是()A.买一张电影票,座位号是奇数B.从一个只装有红球的袋子里摸出白球C.三角形两边之和大于第三边D.明天会下雨【解答】解:A、买一张电影票,座位号是奇数是随机事件,故A错误;B、从一个只装有红球的袋子里摸出白球是不可能事件,故B正确;C、三角形两边之和大于第三边是必然事件,故C错误;D、明天会下雨是随机事件,故D错误;故选:B.3.(3分)下列运算,正确的是()A.(﹣a3b)2=a6b2B.4a﹣2a=2 C.a6÷a3=a2D.(a﹣b)2=a2﹣b2【解答】解:A、结果是a6b2,故本选项正确;B、结果是2a,故本选项错误;C、结果是a3,故本选项错误;D、结果是a2﹣2ab+b2,故本选项错误;故选:A.4.(3分)计算()2015×1.52015的结果是()A.B.﹣ C.1 D.﹣【解答】解:原式=(×1.5)2015=1.故选:C.5.(3分)如图,下列条件中,不能推断AB∥CD的是()A.∠B=∠5 B.∠1=∠2 C.∠3=∠4 D.∠B+∠BCD=180°【解答】解:A、∵∠B=∠5,∴AB∥CD,故本选项错误;B、∵∠1=∠2,∴AB∥CD,故本选项错误;C、∵∠3=∠4,∴AD∥BC,故本选项正确;D、∵∠B+∠BCD=180°,∴AB∥CD,故本选项错误.故选:C.6.(3分)如图,在△ABC中,∠B=46°,∠C=54°,AD平分∠BAC,交BC于D,DE∥AB,交AC于E,则∠ADE的大小是()A.45°B.54°C.40°D.50°【解答】解:∵∠B=46°,∠C=54°,∴∠BAC=180°﹣∠B﹣∠C=180°﹣46°﹣54°=80°,∵AD平分∠BAC,∴∠BAD=∠BAC=×80°=40°,∵DE∥AB,∴∠ADE=∠BAD=40°.故选:C.7.(3分)如图,四边形ABCD中,AC垂直平分BD,垂足为E,下列结论不一定成立的是()A.AB=AD B.AC平分∠BCD C.△BEC≌△DEC D.AB=BD【解答】解:∵AC垂直平分BD,∴AB=AD,BC=CD,故A正确;∴AC平分∠BCD,故B正确;在△BEC和△DEC中,,∴△BEC≌△DEC(SSS),故C正确;AB不一定等于BD,故D错误.故选:D.8.(3分)如图是我国古代计时器“漏壶”的示意图,在壶内盛一定量的水,水从壶底的小孔漏出.壶壁内画有刻度,人们根据壶中水面的位置计时,用x表示时间,y表示壶底到水面的高度,则y与x的函数关系式的图象是()A.B.C.D.【解答】解:由题意知:开始时,壶内盛一定量的水,所以y的初始位置应该大于0,可以排除A、B;由于漏壶漏水的速度不变,所以图中的函数应该是一次函数,可以排除D选项.故选:C.9.(3分)要测量河两岸相对的两点A,B的距离,先在AB的垂线BF上取两点C,D,使CD=BC,再定出BF的垂线DE,使A,C,E在一条直线上(如图所示),可以说明△EDC≌△ABC,得ED=AB,因此测得ED的长就是AB的长,判定△EDC ≌△ABC最恰当的理由是()A.边角边B.角边角C.边边边D.边边角【解答】解:∵BF⊥AB,DE⊥BD∴∠ABC=∠BDE又∵CD=BC,∠ACB=∠DCE∴△EDC≌△ABC(ASA)故选:B.10.(3分)如图,把一个长方形纸片沿EF折叠后,点D,C分别落在D′,C′的位置.若∠EFB=65°,则∠D′EF等于()A.70°B.65°C.50°D.25°【解答】解:如图,∵长方形的两边互相平行,∠EFB=65°,∴∠1=∠EFB=65°,根据翻折的性质∠D′EF=∠1=65°.故选:B.11.(3分)如图在△ABD和△ACE都是等边三角形,则△ADC≌△ABE的根据是()A.SSS B.SAS C.ASA D.AAS【解答】解:∵△ABD和△ACE都是等边三角形,∴AD=AB,AC=AE,又∵∠DAB+∠BAC=∠EAC+∠BAC,∴∠DAC=∠BAE,∴△ADC≌△ABE(SAS).故选:B.12.(3分)若m+n=7,mn=12,则m2﹣mn+n2的值是()A.11 B.13 C.37 D.61【解答】解:m2﹣mn+n2,=m2+2mn+n2﹣3mn,=(m+n)2﹣3mn,=49﹣36,=13.故选:B.二、填空题(共6小题,每小题3分,满分18分)13.(3分)3﹣2=.【解答】解:原式==.故答案为:.14.(3分)如图,在△ABC中,∠C=90°,AD是角平分线,DE⊥AB于E,且DE=3cm,BD=5cm,则BC=8cm.【解答】解:∵CD⊥AC,DE⊥AB,AD平分∠BAC,∴CD=DE=3,BC=CD+BD=3+5=8cm.故答案为:8cm.15.(3分)等腰三角形一边长是10cm,一边长是6cm,则它的周长是26cm 或22cm.【解答】解:(1)当腰是6cm时,周长=6+6+10=22cm;(2)当腰长为10cm时,周长=10+10+6=26cm,所以其周长是22cm或26cm.故填22,26.16.(3分)某电视台综艺节目接到热线电话400个,现要从中抽取“幸运观众”10名,小明同学打通了一次电话,那么他成为“幸运观众”的概率为.【解答】解:∵某电视台综艺节目接到热线电话400个,现要从中抽取“幸运观众”10名,∴小明同学打通了一次电话,他成为“幸运观众”的概率==.故答案为:.17.(3分)如图,等腰△ABC中,AB=AC,∠DBC=15°,AB的垂直平分线MN交AC于点D,则∠A的度数是50°.【解答】解:∵MN是AB的垂直平分线,∴AD=BD,∴∠A=∠ABD,∵∠DBC=15°,∴∠ABC=∠A+15°,∵AB=AC,∴∠C=∠ABC=∠A+15°,∴∠A+∠A+15°+∠A+15°=180°,解得∠A=50°.故答案为:50°.18.(3分)若4a2﹣ka+9是一个完全平方式,则k=±12.【解答】解:∵4a2﹣ka+9是一个完全平方式,∴﹣ka=±2×2a×3,∴k=±12.故答案为:±12.三、解答题(共7小题,满分66分)19.(10分)(1)化简:(ab2)2•4a÷(﹣2ab);(2)化简求值:(a+2)2+(1﹣a)(1+a),其中a=﹣.【解答】解:(1)(ab2)2•4a÷(﹣2ab)=a2b4•4a÷(﹣2ab)=4a3b4÷(﹣2ab)=﹣2a2b3;(2)(a+2)2+(1﹣a)(1+a)=a2+4a+4+1﹣a2=4a+5,把a=﹣代入上式可得:原式=4×(﹣)+5=2.20.(9分)(1)在边长为1的方格纸中,有如图1所示的四边形(顶点都在格点上).①作出该四边形关于直线l成轴对称的图形;②完成上述设计后,整个图案的面积等于10.(2)如图2,两条公路OA和OB相交于O点,在∠AOB的内部有工厂C和D,现要修建一个货站P,使货站P到两条公路OA、OB的距离相等,且到两工厂C、D的距离相等,用尺规作出货站P的位置.(要求:不写作法,保留作图痕迹,写结论)【解答】解:(1)①②面积是×2(2+3)×2=10,故答案是10;(2)点P就是所求的点.21.(7分)一个不透明的袋中装有红、黄、白三种颜色球共100个,它们除颜色外都相同,其中黄球个数是白球个数的2倍少5个.已知从袋中摸出一个球是红球的概率是.(1)求袋中红球的个数;(2)求从袋中摸出一个球是白球的概率;(3)取走10个球(其中没有红球)后,求从剩余的球中摸出一个球是红球的概率.【解答】解:(1)根据题意得:100×,答:红球有30个.(2)设白球有x个,则黄球有(2x﹣5)个,根据题意得x+2x﹣5=100﹣30解得x=25.所以摸出一个球是白球的概率P==;(3)因为取走10个球后,还剩90个球,其中红球的个数没有变化,所以从剩余的球中摸出一个球是红球的概率=;22.(7分)已知:如图,点B,E,C,F在同一直线上,AB∥DE,且AB=DE,BE=CF.求证:AC∥DF.【解答】证明:∵AB∥DE,∴∠B=∠DEF∵BE=CF,∴BC=EF,在△ABC和△DEF中,∴△ABC≌△DEF(SAS)∴∠ACB=∠F,∴AC∥DF.23.(9分)心理学家发现,学生对概念的接受能力y与提出概念所用的时间x (单位:分)之间有如下关系:(其中0≤x≤30)提出概念所用时间(x)257101213141720对概念的接受能力(y)47.853.556.35959.859.959.858.355(1)上表中反映了哪两个变量之间的关系?(2)当提出概念所用时间是10分钟时,学生的接受能力是多少?(3)根据表格中的数据,你认为提出概念几分钟时,学生的接受能力最强;(4)从表中可知,当时间x在什么范围内,学生的接受能力逐步增强?当时间x在什么范围内,学生的接受能力逐步降低?【解答】解:(1)提出概念所用的时间x和对概念接受能力y两个变量;(2)当x=10时,y=59,所以时间是10分钟时,学生的接受能力是59.(3)当x=13时,y的值最大是59.9,所以提出概念13分钟时,学生的接受能力最强.(4)由表中数据可知:当2<x<13时,y值逐渐增大,学生的接受能力逐步增强;当13<x<20时,y值逐渐减小,学生的接受能力逐步降低.24.(12分)如图,△ABC是等边三角形,点E、F分别在边AB和AC上,且AE=BF.(1)求证:△ABE≌△BCF;(2)若∠ABE=20°,求∠ACF的度数;(3)猜测∠BOC的度数并证明你的猜想.【解答】解:(1)∵△ABC是等边三角形,∴AB=BC,∠A=∠ABC=60°,在△ABE和△CBF中,,∴△ABE≌△BCF(SAS);(2)∵△ABE≌△BCF,∴∠BCF=∠ABE=20°,∵∠ACB=60°,∴∠ACF=∠ACB﹣∠BCF=40°;(3)∵△ABE≌△BCF,∴∠ABE=∠BCF,∵∠BFC=∠A+∠ACF=60°+∠ACF,∴∠BOC=∠BFO+∠ABE=60°+∠ACF+∠ABE=120°.25.(12分)在△ABC中,AB=AC,点D是直线BC上一点(不与点B、点C重合),以AD为一边在AD的右侧作△ADE,使AD=AE,∠DAE=∠BAC,连接CE.(1)如图1,当点D在线段BC上时,如果∠BAC=90°,则∠BCE=90°;(2)如图2,当点D在线段BC上时,如果∠BAC=50°,请你求出∠BCE的度数.(写出求解过程);(3)探索发现,设∠BAC=α,∠BCE=β.①如图2,当点D在线段BC上移动,则α,β之间有怎样的数量关系?请直接写出你的结论:β=180°﹣α.②当点D在线段BC的延长线上时,则α,β之间有怎样的数量关系?请在图3中画出完整图形并请直接写出你的结论:β=180°﹣α.【解答】解:(1)∵∠DAE=∠BAC,∴∠BAD=∠CAE,在△ABD和△ACE中∴△ABD≌△ACE(SAS),∴∠ABD=∠ACE,∵AB=AC,∠BAC=90°,∴∠ABD=∠ACB=45°,∴∠BCE=∠ACB+∠ACE=45°+45°=90°,故答案为:90°;(2)∵∠DAE=∠BAC,∴∠BAD=∠CAE,在△ABD和△ACE中∴△ABD≌△ACE(SAS),∴∠ABD=∠ACE,∵AB=AC,∠BAC=50°,∴∠ABD=∠ACB==65°,∴∠BCE=∠ACB+∠ACE=65°+65°=130°;(3)①∵∠DAE=∠BAC,∴∠BAD=∠CAE,在△ABD和△ACE中∴△ABD≌△ACE(SAS),∴∠ABD=∠ACE,∵AB=AC,∠BAC=α,∴∠ABD=∠ACB=,∴∠BCE=∠ACB+∠ACE=2∠ACB=180°﹣α,故答案为:180°﹣α;②如图,∵∠DAE=∠BAC,∴∠BAD=∠CAE,在△ABD和△ACE中∴△ABD≌△ACE(SAS),∴∠ABD=∠ACE,∵AB=AC,∠BAC=α,∴∠ABD=∠ACB=,∴∠BCE=∠ACB+∠ACE=2∠ACB=180°﹣α,故答案为:180°﹣α.赠送初中数学几何模型【模型五】垂直弦模型:图形特征:运用举例:1.已知A 、B 、C 、D 是⊙O 上的四个点.(1)如图1,若∠ADC =∠BCD =90°,AD =CD ,求证AC ⊥BD ; (2)如图2,若AC ⊥BD ,垂足为E ,AB =2,DC =4,求⊙O 的半径.ODABCEAODCB2.如图,已知四边形ABCD 内接于⊙O ,对角线AC ⊥BD 于P ,设⊙O 的半径是2。
山东省济南市七年级下学期数学期末考试试卷
山东省济南市七年级下学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)下列生活中的现象,属于平移的是()A . 闹钟的钟摆的运动B . 升降电梯往上升C . DVD片在光驱中运行D . 秋天的树叶从树上随风飘落2. (2分)下列数中是无理数的是()A . -2B .C . 0.010010001D . π3. (2分) (2019八下·江都月考) 下列调查中,最适合采用抽样调查的是()A . 对某地区现有的16名百岁以上老人睡眠时间的调查B . 对“神舟十一号”运载火箭发射前零部件质量情况的调查C . 对某校九年级三班学生视力情况的调查D . 对某市场上某一品牌电脑使用寿命的调查4. (2分) (2017七下·河东期中) 如图,已知∠1=∠B,∠2=∠C,则下列结论不成立的是()A . ∠2+∠B=180°B . AD//BCC . AB=BCD . AB//CD5. (2分) (2019七下·北京期中) 4的平方根是()A . 4B . ±4C . ±2D . 26. (2分) (2019八上·莲湖期中) 在平面直角坐标系中,点P(3,﹣2)到y轴的距离为()A . 3B . ﹣3C . 2D . ﹣27. (2分)二元一次方程2x+y=7的正整数解有()A . 1组B . 2组C . 3组D . 4组8. (2分)(2020·丰南模拟) 《九章算术》记载:今有共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?译文:今有人合伙购物,每人出8钱,会多3钱;每人出7钱,又会差4钱,问人数、物价各是多少?设合伙人数为人,物价为钱,以下列出的方程组正确的是()A .B .C .D .9. (2分)能反映事物发展变化的规律和趋势的统计图是()A . 条形统计图B . 扇形统计图C . 折线统计图D . 环形统计图10. (2分) (2020七下·肇州期末) 如图,∠BCD=90°,AB∥DE,则∠α与∠β满足()A . ∠α+∠β=180°B . ∠β﹣∠α=90°C . ∠β=3∠αD . ∠α+∠β=90°二、填空题: (共7题;共8分)11. (1分)请写出一个二元一次方程组________,使它的解是.12. (2分) (2016八下·周口期中) 命题“在同一个三角形中,等边对等角”的逆命题是________,是________(填“真命题”或“假命题”)13. (1分)写出和之间的所有的整数为________.14. (1分) (2020八下·朝阳月考) 如果是关于x的一元一次不等式,则其解集为________15. (1分) (2015八下·嵊州期中) 如图,△ACE是以▱ABCD的对角线AC为边的等边三角形,点C与点E关于x轴对称.若E点的坐标是(7,﹣3 ),则D点的坐标是________.16. (1分)如图,矩形ABCD的顶点AB在x轴上,点D的坐标为(6,8),点E在边BC上,△CDE沿DE翻折后点C恰好落在x轴上点F处,若△ODF为等腰三角形,点E的坐标为________.17. (1分) (2019八下·长宁期末) 方程在实数范围内的解是________.三、解答题: (共8题;共58分)18. (10分) (2017七下·上饶期末) 已知方程组的解中,x为非正数,y为负数.(1)求a的取值范围;(2)化简|a﹣3|+|a+2|.19. (5分) (2019七下·长春期末) 如图:点、、、在一条直线上,、,,求证:.20. (5分)某商店销售10台A型和20台B型电脑的利润为4000元,销售20台A型和10台B型电脑的利润为3500元.(1)求每台A型电脑和B型电脑的销售利润;(2)该商店计划一次购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的2倍,设购进A 型电脑x台,这100台电脑的销售总利润为y元.①求y关于x的函数关系式;②该商店购进A型、B型电脑各多少台,才能使销售总利润最大?(3)实际进货时,厂家对A型电脑出厂价下调m(0<m<100)元,且限定商店最多购进A型电脑70台,若商店保持同种电脑的售价不变,请你根据以上信息及(2)中条件,设计出使这100台电脑销售总利润最大的进货方案.21. (1分)(2017·深圳模拟) 某种商品的进价为800元,出售标价为1200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则最多可打________折.22. (10分) (2019八下·顺德月考) 如图,在△ABC中,∠C=90°,∠CAB=60°,(1)作AB边上的中垂线交BC边于点E,交AB边于点D(保留作图痕迹,不写作法和证明)(2)连接AE,若CE=4,求AE的长23. (10分)(2017·西固模拟) 如图,在平面直角坐标系中,Rt△ABC的三个顶点分别是A(﹣3,2),B(0,4),C(0,2).(1)将△ABC以点C为旋转中心旋转180°,画出旋转后对应的△A1B1C;平移△ABC,若点A的对应点A2的坐标为(0,﹣4),画出平移后对应的△A2B2C2;(2)若将△A1B1C绕某一点旋转可以得到△A2B2C2;请在图中标明旋转中心P的位置并写出其坐标.24. (12分)(2019·西安模拟) “机动车行驶到斑马线要礼让行人”等交通法规实施后,某校数学课外实践小组就对这些交通法规的了解情况在全校随机调查了部分学生,调查结果分为四种:非常了解,比较了解,基本了解,不太了解,实践小组把此次调查结果整理并绘制成下面不完整的条形统计图和扇形统计图.请结合图中所给信息解答下列问题:(1)本次共调查________名学生;扇形统计图中C所对应扇形的圆心角度数是________;(2)补全条形统计图;(3)该校共有800名学生,根据以上信息,请你估计全校学生中对这些交通法规“非常了解”的有多少名?25. (5分) (2020八上·吴兴期末) 某电梯的额定限载量为1000千克.两人要用电梯把一批货物从底层搬到顶层,已知这两个人的体重分别为70千克和60千克,货物每箱重50千克,问他们每次最多只能搬运货物多少箱?参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、答案:略7-1、8-1、9-1、10-1、答案:略二、填空题: (共7题;共8分)11-1、12-1、13-1、14-1、15-1、16-1、17-1、三、解答题: (共8题;共58分)18-1、答案:略18-2、19-1、答案:略20-1、答案:略21-1、22-1、22-2、23-1、23-2、答案:略24-1、24-2、答案:略24-3、答案:略25-1、答案:略。
济南市人教版(七年级)初一下册数学期末测试题及答案
济南市人教版(七年级)初一下册数学期末测试题及答案一、选择题1.下列计算中正确的是( ) A .2352a a a += B .235a a a +=C .235a a a =D .236a a a =2.把多项式228x -分解因式,结果正确的是( )A .22(8)x -B .22(2)x -C .D .42()x x x-3.如果多项式x 2+mx +16是一个二项式的完全平方式,那么m 的值为( ) A .4 B .8C .-8D .±84.一直尺与一缺了一角的等腰直角三角板如图摆放,若∠1=115°,则∠2的度数为( )A .65°B .70°C .75°D .80°5.观察下列等式:31=3,32=9,33=27,34=81,35=243,36=729,37=2187,试利用上述规律判断算式:3+32+33+34+…+32020结果的末位数字是( ) A .0 B .1 C .3 D .7 6.将下列三条线段首尾相连,能构成三角形的是( ) A .1,2,3 B .2,3,6 C .3,4,5 D .4,5,9 7.如果多项式x 2+2x+k 是完全平方式,则常数k 的值为( ) A .1B .-1C .4D .-48.一元一次不等式312x -->的解集在数轴上表示为( ) A .B .C .D .9.已知关于x ,y 的方程x 2m ﹣n ﹣2+4y m +n +1=6是二元一次方程,则m ,n 的值为( ) A .m =1,n =-1B .m =-1,n =1C .14m ,n 33==- D .14,33m n =-=10.甲、乙二人同时同地出发,都以不变的速度在环形路上奔跑.若反向而行,每隔3min 相遇一次,若同向而行,则每隔6min 相遇一次,已知甲比乙跑得快,设甲每分钟跑x 圈,乙每分钟跑y 圈,则可列方程为( )A .36x y x y -=⎧⎨+=⎩B .36x y x y +=⎧⎨-=⎩C .331661x y x y +=⎧⎨-=⎩D .331661x y x y -=⎧⎨+=⎩二、填空题11.已知等腰三角形的两边长分别为4和8,则它的周长是_______. 12.计算:20202019120192019⎛⎫⨯- ⎪⎝⎭=________.13.若把代数式245x x --化为()2x m k -+的形式,其中m 、k 为常数,则m k +=______.14.如图,将边长为6cm 的正方形ABCD 先向下平移2cm ,再向左平移1cm ,得到正方形A 'B 'C 'D ',则这两个正方形重叠部分的面积为______cm 2.15.如果62x y =⎧⎨=-⎩是关于x 、y 的二元一次方程mx -10=3y 的一个解,则m 的值为_____.16.二元一次方程7x+y =15的正整数解为_____.17.如图,ABC 三边的中线AD 、BE 、CF 的公共点为G ,18ABCS =,则图中阴影部分的面积是 ________.18.已知关于x 的不等式3()50a b x a b -+->的解集是1x <,则关于x 的不等式4ax b >的解集为_______.19.若2m =3,2n =5,则2m+n =______.20.小马在解关于x 的一元一次方程3232a xx -=时,误将- 2x 看成了+2x ,得到的解为x =6,请你帮小马算一算,方程正确的解为x =_____.三、解答题21.因式分解:(1)249x - (2) 22344ab a b b --22.先化简,再求值:(3x +2)(3x -2)-5x (x +1)-(x -1)2,其中x 2-x -10=0.23.在校运动会中,篮球队和排球队共有24支,其中篮球队每队10名队员,排球队每队12名队员,共有260名队员.请问篮球队、排球队各有多少支?(利用二元一次方程组解决问题)24.先化简,再求值:(2x+2)(2﹣2x )+5x (x+1)﹣(x ﹣1)2,其中x =﹣2. 25.先化简,再求值:(2a +b )2﹣(2a +3b )(2a ﹣3b ),其中a =12,b =﹣2. 26.解方程组(1)21325x y x y +=⎧⎨-=⎩ (2)111231233x y x y ⎧-=⎪⎪⎨⎪--=⎪⎩27.分解因式:(1)3222x x y xy -+; (2)2296(1)(1)x x y y -+++;(3)()214(1)mm m -+-.28.阅读材料:把形如2ax bx c ++的二次三项式(或其一部分)配成完全平方式的方法叫做配方法.配方法的基本形式是完全平方公式的逆写,即222)2(a ab b a b ±+=±.例如:2224213x x x x -+=-++2(1)3x =-+是224x x -+的一种形式的配方;所以,()213x -+,2(2)x -2x +,22213224x x ⎛⎫-+ ⎪⎝⎭是224x x -+的三种不同形式的配方(即“余项”分别是常数项、一次项、二次项). 请根据阅读材料解决下列问题:(1)比照上面的例子,写出249x x -+三种不同形式的配方;(2)已知22610340x y x y +-++=,求32x y -的值;(3)已知2223240a b c ab b c ++---+=,求a b c ++的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】根据同底数幂的加法和乘法法则进行计算判断即可.【详解】解:A 、23a a +无法合并,故A 选项错误; B 、23a a +无法合并,故B 选项错误; C 、235a a a =,故C 选项正确; D 、235a a a =,故D 选项错误. 故选:C 【点睛】此题考查同底数幂的运算法则,同底数幂的加减必须是同类项才可以进行加减,同底数幂的乘除底数不变,指数相加减.2.C解析:C 【解析】试题分析:首先进行提取公因式,然后利用平方差公式进行因式分解.原式=2(2x -4)=2(x+2)(x -2). 考点:因式分解.3.D解析:D 【解析】试题分析:∵(x±4)2=x 2±8x+16, 所以m=±2×4=±8. 故选D .考点:完全平方式.4.B解析:B 【分析】先将一缺了一角的等腰直角三角板补全,再由直尺为矩形,则两组对边分别平行,即可根据∠1求∠4的度数,即可求出∠4的对顶角的度数,再利用等角直角三角形的性质及三角形内角和求出∠2的对顶角,即可求∠2. 【详解】解:如图,延BA ,CD 交于点E . ∵直尺为矩形,两组对边分别平行 ∴∠1+∠4=180°,∠1=115° ∴∠4=180°-∠1=180°-115°=65°∵∠EDA与∠4互为对顶角∴∠EDA=∠4=65°∵△EBC为等腰直角三角形∴∠E=45°∴在△EAD中,∠EAD=180°-∠E-∠EDA=180°-45°-65°=70°∵∠2与∠EAD互为对顶角∴∠2=∠EAD =70°故选:B.【点睛】此题主要考查平行线的性质,等腰直角三角形的性质,挖掘三角板条件中的隐含条件是解题关键.5.A解析:A【分析】观察所给等式发现规律末位数字为:3,9,7,1,3,9,7,…,每4个数一组循环,进而可得算式:3+32+33+34+…+32020结果的末位数字.【详解】解:观察下列等式:31=3,32=9,33=27,34=81,35=243,36=729,37=2187,…,发现规律:末位数字为:3,9,7,1,3,9,7,…,每4个数一组循环,所以2020÷4=505,而3+9+7+1=20,20×505=10100.所以算式:3+32+33+34+…+32020结果的末位数字是0.故选:A.【点睛】本题考查了规律型-数字的变化类,解决本题的关键是根据数字的变化寻找规律.6.C解析:C【分析】构成三角形的三边应满足:任意两边之和大于第三边,任意两边之差小于第三边,只有同时满足以上的两个条件,才能构成三角形,根据该定则,就可判断选项正误.【详解】解:A选项:1+2=3,两边之和没有大于第三边,∴无法组成三角形;B选项:2+3<6,两边之和没有大于第三边,∴无法组成三角形;C选项:3+4>5,两边之和大于第三边,且满足两边之差小于第三边,∴可以组成三角形;D选项:4+5=9,两边之和没有大于第三边,∴无法组成三角形,故选:C.【点睛】本题主要考察了三角形的三边关系定则:在一个三角形中,任意两边之和大于第三边,任意两边之差小于第三边,只有同时满足以上的两个条件,才能构成三角形.7.A解析:A【分析】根据完全平方公式的乘积二倍项和已知平方项先确定出另一个数是1,平方即可.【详解】解:∵2x=2×1•x,∴k=12=1,故选A.【点睛】本题考查了对完全平方公式的应用,由乘积二倍项确定做完全平方运算的两个数是解题的关键.8.B解析:B【解析】【分析】先求出不等式的解集,再在数轴上表示出不等式的解集即可.【详解】-3x-1>2,-3x>2+1,-3x>3,x<-1,在数轴上表示为:,故选B.【点睛】本题考查了解一元一次不等式和在数轴上表示不等式的解集,能求出不等式的解集是解此题的关键.9.A解析:A【分析】根据二元一次方程的概念列出关于m、n的方程组,解之即可.【详解】∵关于x,y的方程x2m﹣n﹣2+4y m+n+1=6是二元一次方程,∴22111m nm n--=⎧⎨++=⎩即23m nm n-=⎧⎨+=⎩,解得:11mn=⎧⎨=-⎩,故选:A.【点睛】本题考查了二元一次方程的定义、解二元一次方程组,理解二元一次方程的定义,熟练掌握二元一次方程组的解法是解答的关键.10.C解析:C【分析】根据“反向而行,当甲、乙相遇时,甲、乙跑的路程之和等于一圈;同向而行,当甲、乙相遇时,甲跑的路程比乙跑的路程多一圈”建立方程组即可.【详解】设甲每分钟跑x圈,乙每分钟跑y圈则可列方组为:331 661 x yx y+=⎧⎨-=⎩故选:C.【点睛】本题考查了二元一次方程组的实际应用,读懂题意,依次正确建立反向和同向情况下的方程是解题关键.二、填空题11.20【分析】分腰长为4或腰长为8两种情况,根据等腰三角形的性质求出周长即可得答案.【详解】当腰长是4cm时,三角形的三边是4、4、8,∵4+4=8,∴不满足三角形的三边关系,当腰长是8解析:20【分析】分腰长为4或腰长为8两种情况,根据等腰三角形的性质求出周长即可得答案.【详解】当腰长是4cm时,三角形的三边是4、4、8,∵4+4=8,∴不满足三角形的三边关系,当腰长是8cm 时,三角形的三边是8、8、4, ∴三角形的周长是8+8+4=20. 故答案为:20 【点睛】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,进行分类讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.12.【分析】先利用幂的乘方进行分解,再根据同底数幂相乘,进行计算即可. 【详解】 = 故答案为. 【点睛】此题考查幂的乘方,同底数幂相乘,解题关键在于掌握运算法则. 解析:12019【分析】先利用幂的乘方进行分解,再根据同底数幂相乘,进行计算即可. 【详解】20202019201920191112019=2019201920192019⎛⎫⨯-⨯⨯⎪⎝⎭=12019故答案为12019. 【点睛】此题考查幂的乘方,同底数幂相乘,解题关键在于掌握运算法则.13.-7 【解析】 【分析】利用配方法把变形为(x-2)-9,则可得到m 和k 的值,然后计算m+k 的值. 【详解】x−4x−5=x−4x+4−4−5 =(x−2) −9, 所以m=2,k=−9, 所以解析:-7 【解析】 【分析】利用配方法把245x x --变形为(x-2)2-9,则可得到m 和k 的值,然后计算m+k 的值. 【详解】x 2−4x−5=x 2−4x+4−4−5 =(x−2) 2−9, 所以m=2,k=−9, 所以m+k=2−9=−7. 故答案为:-7 【点睛】此题考查配方法的应用,解题关键在于掌握运算法则.14.20 【分析】如图,向下平移2cm ,即AE=2,再向左平移1cm ,即CF=1,由重叠部分为矩形的面积为DE•DF ,即可求两个正方形重叠部分的面积 【详解】 解:如图,向下平移2cm ,即AE=2,解析:20 【分析】如图,向下平移2cm ,即AE=2,再向左平移1cm ,即CF=1,由重叠部分为矩形的面积为DE•DF ,即可求两个正方形重叠部分的面积 【详解】 解:如图,向下平移2cm ,即AE=2,则DE=AD-AE=6-2=4cm向左平移1cm ,即CF=1,则DF=DC-CF=6-1=5cm 则S 矩形DEB'F =DE•DF=4×5=20cm 2 故答案为20 【点睛】此题主要考查正方形的性质,平移的性质,关键在理解平移后,图形的位置变化.15.【分析】把x 、y 的值代入方程计算即可求出m 的值. 【详解】解:把代入方程得:6m-10=﹣6,解得:m=故答案为:【点睛】本题考查二元一次方程的解,解题的关键是理解方程的解能使方程左右解析:2 3【分析】把x、y的值代入方程计算即可求出m的值.【详解】解:把62xy=⎧⎨=-⎩代入方程得:6m-10=﹣6,解得:m=2 3故答案为:2 3【点睛】本题考查二元一次方程的解,解题的关键是理解方程的解能使方程左右两边相等.16.或【分析】将x看做已知数求出y,即可确定出正整数解.【详解】解:方程7x+y=15,解得:y=﹣7x+15,x=1,y=8;x=2,y=1,则方程的正整数解为或.故答案为:或.【点解析:18xy=⎧⎨=⎩或21xy=⎧⎨=⎩【分析】将x看做已知数求出y,即可确定出正整数解.【详解】解:方程7x+y=15,解得:y=﹣7x+15,x=1,y=8;x=2,y=1,则方程的正整数解为18x y =⎧⎨=⎩或21x y =⎧⎨=⎩. 故答案为:18x y =⎧⎨=⎩或21x y =⎧⎨=⎩. 【点睛】此题考查了解二元一次方程,熟练掌握运算法则是解本题的关键.17.【分析】利用三角形重心的性质证明图中个小三角形的面积相等即可得到答案.【详解】解: 三边的中线AD 、BE 、CF 的公共点为G ,图中阴影部分的面积是故答案为:6.【点睛】解析:6.【分析】利用三角形重心的性质证明图中6个小三角形的面积相等即可得到答案.【详解】 解: ABC 三边的中线AD 、BE 、CF 的公共点为G ,,,,GBDGCD GCE AGE AGF BGF S S S S S S ∴=== 2,BG GE = 2,BGCGEC S S ∴= ,DGC CGE S S ∴=GBD GCD GCE AGE AGF BGF S S S S S S ∴=====∴ 图中阴影部分的面积是182 6.6⨯= 故答案为:6.【点睛】 本题考查的是三角形中线的性质,三角形重心的性质,掌握以上知识解决三角形的面积问题是解题的关键.18.【分析】根据已知不等式的解集,即可确定a,b 之间得关系以及b 的符号,从而解不等式.【详解】解:∵的解集是,∴=1,a -b<0,∴a=2b,b<0.则不等式可以化为2bx>4b.∵b<解析:2x <【分析】根据已知不等式的解集,即可确定a,b 之间得关系以及b 的符号,从而解不等式.【详解】解:∵3()50a b x a b -+->的解集是1x <,∴()53a b a b --=1,a-b<0, ∴a=2b,b<0.则不等式4ax b >可以化为2bx>4b.∵b<0.∴x<2.即关于x 的不等式4ax b >的解集为x<2.【点睛】本题考查了不等式的解法,正确确定b 的符号是关键.19.15【分析】根据同底数幂的乘法逆运算法则可得,进一步即可求出答案.【详解】解:.故答案为:15.【点睛】本题考查了同底数幂的乘法法则的逆用,属于常考题型,熟练掌握同底数幂的乘法法则是关解析:15【分析】根据同底数幂的乘法逆运算法则可得222m n m n +=⋅,进一步即可求出答案.【详解】解:2223515m n m n +=⋅=⨯=.故答案为:15.【点睛】本题考查了同底数幂的乘法法则的逆用,属于常考题型,熟练掌握同底数幂的乘法法则是关键.20.3【解析】【分析】先根据题意得出a 的值,再代入原方程求出x 的值即可.【详解】∵方程的解为x=6,∴3a+12=36,解得a=8,∴原方程可化为24-2x=6x ,解得x=3.故答案为3解析:3【解析】【分析】先根据题意得出a 的值,再代入原方程求出x 的值即可.【详解】 ∵方程3232a x x +=的解为x=6, ∴3a+12=36,解得a=8, ∴原方程可化为24-2x=6x ,解得x=3.故答案为3【点睛】本题考查的是一元一次方程的解,熟知解一元一次方程的基本步骤是解答此题的关键.三、解答题21.(1)()()2323x x +-;(2)()22--b a b . 【分析】(1)直接利用平方差公式因式分解即可;(2)先提取公因式,然后利用完全平方公式分解因式即可.【详解】(1) ()()249=2323x x x -+-; (2)()223224444ab a b b b a ab b--=--+=()22--b a b .【点睛】 本题考查了用提公因式法和公式法进行因式分解.注意先提公因式,再利用公式法分解,同时因式分解要彻底,直到不能分解为止.22.3x 2-3x -5,25【分析】原式第一项利用平方差公式化简,第二项利用单项式乘以多项式法则计算,最后一项利用完全平方公式展开,去括号合并得到最简结果,将已知的方程变形后代入即可求值.【详解】原式=()222945521x x x x x -----+=222945521x x x x x ----+-=2335x x --,当2100x x =--,即210x x =-时,原式=()235310525x x -=⨯-=-【点睛】本题考查整式的混合运算-化简求值,涉及的知识点有:完全平方公式、平方差公式、去括号法则及合并同类项法则,熟练掌握以上公式及法则是解题的关键.23.篮球队14支,排球队10支【分析】根据题意可知,本题中的等量关系是“有24支队”和“260名运动员”,列方程组求解即可.【详解】设篮球队x 支,排球队y 支,由题意可得: 241012260x y x y +=⎧⎨+=⎩解的:1410x y =⎧⎨=⎩答:设篮球队14支,排球队10支【点睛】解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.利用二元一次方程组求解的应用题一般情况下题中要给出2个等量关系,准确的找到等量关系并用方程组表示出来是解题的关键.24.73x +;-11【分析】根据整式的运算法则即可求出答案.【详解】解:22222511xx x x x 222445521x x x x x73x 当2x =-时,原式14311.【点睛】本题考查整式化简求值,熟练运用运算法则是解题的关键.25.4ab+10b2;36.【解析】【分析】先利用完全平方公式和平方差公式计算,再去括号、合并同类项即可化简原式,继而将a,b的值代入计算可得.【详解】原式=4a2+4ab+b2﹣(4a2﹣9b2)=4a2+4ab+b2﹣4a2+9b2=4ab+10b2当a12=,b=﹣2时,原式=412⨯⨯(﹣2)+10×(﹣2)2=﹣4+10×4=﹣4+40=36.【点睛】本题考查了整式的混合运算﹣化简求值,涉及的知识有:完全平方公式,平方差公式,去括号法则,以及合并同类项法则,熟练掌握运算法则是解答本题的关键.26.(1)3214xy⎧=⎪⎪⎨⎪=-⎪⎩;(2)14111211xy⎧=⎪⎪⎨⎪=-⎪⎩.【分析】(1)直接利用加减消元法解方程组,即可得到答案;(2)直接利用加减消元法解方程组,即可得到答案;【详解】解:(1)21325x yx y+=⎧⎨-=⎩①②,由①+②,得46x=,∴32x=,把32x=代入①,得14y=-,∴方程组的解为:3214xy⎧=⎪⎪⎨⎪=-⎪⎩;(2)111231233x yx y⎧-=⎪⎪⎨⎪--=⎪⎩①②,由①3⨯-②,得:11763x =, ∴1411x =, 把1411x =代入①,解得:1211y =-, ∴方程组的解为:14111211x y ⎧=⎪⎪⎨⎪=-⎪⎩; 【点睛】本题考查了解二元一次方程组,解题的关键是熟练掌握加减消元法解二元一次方程组.27.(1)x (x-y )2;(2)(3x-y-1)2;(3)(m-1)(m+2)(m-2).【分析】(1)首先提公因式x ,然后利用完全平方公式即可分解;(2)根据完全平方公式进行因式分解即可;(3)首先提公因式(m-1)然后利用平方差公式即可分解.【详解】解:(1)原式=x (x 2-2xy+y 2)=x (x-y )2;(2)原式=(3x )2-2×(3x )(y+1)+(y+1)2=(3x-y-1)2;(3)原式=(m-1)(m 2-4)=(m-1)(m+2)(m-2).【点睛】本题考查了用提公因式法和公式法进行因式分解,将式子分解彻底是解题关键.28.(1)2249(2)5x x x -+=-+;2249(3)10x x x x -+=+-;2249(3)2x x x x -+=-+;(2)19;(3)4【分析】(1)根据材料中的三种不同形式的配方,“余项“分别是常数项、一次项、二次项,可解答;(2)将x 2+y 2-6x+10y+34配方,根据平方的非负性可得x 和y 的值,可解答;(3)通过配方后,求得a ,b ,c 的值,再代入代数式求值.【详解】解:(1)249x x -+的三种配方分别为:2249(2)5x x x -+=-+;2249(3)10x x x x -+=+-;2249(3)2x x x x -+=-+(或2222549339x x x x ⎛⎫-+=-+ ⎪⎝⎭; (2)∵x 2+y 2-6x+10y+34=x 2-6x+9+y 2+10y+25=(x-3)2+(y+5)2=0,∴x-3=0,y+5=0,∴x=3,y=-5,∴3x-2y=3×3-2×(-5)=19(3)2223240a b c ab b c ++---+=()2222134421044a ab b b bc c -++-++-+= 22213(2)(1)024a b b c ⎛⎫-+-+-= ⎪⎝⎭ ∴102a b -=,3(2)04b -=,10c -= ∴1a =,2b =,1c =,则4a b c ++=【点睛】本题考查的是配方法的应用,首先利用完全平方公式使等式变为两个非负数和一个正数的和的形式,然后利用非负数的性质解决问题.。
山东省济南市七年级下学期期末数学试卷
山东省济南市七年级下学期期末数学试卷姓名:________ 班级:________ 成绩:________一、选择题:在每小题给出的四个选项中,只有一项是符合要求的,请将 (共12题;共24分)1. (2分) (2019七下·大名期中) 如图,能判定EB∥AC的条件是()A . ∠C=∠ABEB . ∠A=∠EBDC . ∠A=∠ABED . ∠C=∠ABC2. (2分)计算的结果是()A .B . 3C .D . 813. (2分) (2015七下·石城期中) 在平面直角坐标系中,点P(﹣3,4)位于()A . 第一象限B . 第二象限C . 第三象限D . 第四象限4. (2分)用代入法解方程组先消去未知数()最简便.A . xB . yC . 两个中的任何一个都一样D . 无法确定5. (2分)不等式组的最小整数解为()A . -1B . -2C . 1D . 36. (2分)(2017·个旧模拟) 下列说法正确的是()A . 了解飞行员视力的达标率应使用抽样调查B . 某班7名女生的体重(单位:kg)分别是35,37,38,40,42,42,74,这组数据的众数是74C . 从2000名学生中选200名学生进行抽样调查,样本容量为2000D . 一组数据3,6,6,7,9的中位数是67. (2分)为了证明命题“任何偶数都是8的整数倍”是假命题,下列各数中可以作为反例的是()A . 32B . 16C . 8D . 48. (2分)为了节省空间,家里的饭碗一般是摞起来存放的.如果6只饭碗摞起来的高度为15cm,9只饭碗摞起来的高度为20cm,那么11只饭碗摞起来的高度更接近()A . 21cmB . 22cmC . 23cmD . 24cm9. (2分)某市的中考各科试卷总分为600分,其中数学为120分,若用扇形统计图画出各科分数比例,则数学所占扇形圆心角为()度.A . 90B . 45C . 120D . 7210. (2分) (2017八上·丹东期末) 一次函数y=kx﹣b的图像如图所示,那么点(﹣2k,b)所在的象限是()A . 第一象限B . 第二象限C . 第三象限D . 第四象限11. (2分) (2016七下·大冶期末) 不等式2x+1≤5的解集,在数轴上表示正确的是()A .B .C .D .12. (2分) (2019八上·顺德月考) 下面是二元一次方程2x﹣y=1的解的是()A .B .C .D .二、填空题:请将答案直接填在题中横线上. (共6题;共6分)13. (1分)如图,直线m∥n,△ABC为等腰三角形,∠BAC=90°,则∠1=________度.14. (1分) (2017九上·遂宁期末) 在二次根式,中x的取值范围是________.15. (1分) (2017七下·广东期中) 已知是方程2x﹣ay=3的一个解,则a的值是________.16. (1分)根据机器零件的设计图纸(如图),用不等式表示零件长度的合格尺寸(L的取值范围)________17. (1分) (2015八下·扬州期中) 某校为了解该校500名初二学生的期中数学考试成绩,从中抽查了100名学生的数学成绩.在这次调查中,样本容量是________18. (1分)(2017·杭锦旗模拟) 不等式组的最小整数解是________.三、解答题:解答应写出文字说明、演算步骤或证明过程. (共7题;共44分)19. (10分)(2014·泰州)(1)计算:﹣24﹣ +|1﹣4sin60°|+(π﹣)0;(2)解方程:2x2﹣4x﹣1=0.20. (5分) (2017七下·天水期末) 若关于x,y的二元一次方程组的解满足x+y<2,求整数a的最大值.21. (5分) (2019七下·淮安月考) 如图,,平分,与相交于,.试说明: .22. (5分) (2017七下·马龙期末) 解不等式组,并把解集在数轴上表示出来.23. (5分)已知y=,求2x+y的算术平方根.24. (5分)(2011·台州) 毕业在即,九年级某班为纪念师生情谊,班委决定花800元班费买两种不同单价的留念册,分别给50位同学和10位任课教师每人一本作纪念,其中送给任课教师的留念册单价比给同学的单价多8元.请问这两种不同留念册的单价分别是多少?25. (9分)(2017·海陵模拟) “3.15“植树节活动后,某校对栽下的甲、乙、丙、丁四个品种的树苗进行成活率观测,以下是根据观测数据制成的统计图表的一部分;表1:栽下的各品种树苗棵数统计表表植树品种甲种乙种丙种丁种植树棵数150125125请你根据以上信息解答下列问题:(1)这次栽下的四个品种的树苗共________棵,乙品种树苗________棵.(2)图1中,甲________ %、乙________ %;(3)已知这批树苗成活率为90%,将图2补充完整.参考答案一、选择题:在每小题给出的四个选项中,只有一项是符合要求的,请将 (共12题;共24分) 1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题:请将答案直接填在题中横线上. (共6题;共6分)13-1、14-1、15-1、16-1、17-1、18-1、三、解答题:解答应写出文字说明、演算步骤或证明过程. (共7题;共44分)19-1、19-2、20-1、21-1、22-1、23-1、24-1、25-1、25-2、25-3、。
【3套打包】济南市七年级下册数学期末考试试题(含答案)(3)
最新七年级(下)数学期末考试试题【答案】一、选择题(共10小题,每小题3分,满分30分) 1.下列实数中,属于无理数的是( )A 、227B 、3.14CD 、0 答案:C考点:无理数的概念。
解析是无限不循环的小数,所以,是无理数。
2.下面调查中,适宜采用全面调查方式的是( ) A 、调查某批次汽车的抗撞击能力 B 、调查市场上某种食品的色素含量是否符合国家标准C 、了解某班学生的视力情况D 、调查春节联欢晚会的收视率 答案:C 考点:统计。
解析:A 、B 、D 的样本容易大,不适宜采用全面调查方式,只有C ,某班学生的数量是有限的,全面调查可行。
3.如图,直线a ∥b ,直角三角形的直角顶点在直线b 上,已知∠1=48°,则∠2的度数是( )A 、42°B 、52°C 、48°D 、58° 答案:A考点:两直线平行的性质,平角的概念。
解析:如下图,依题意,有:∠1+90°+∠3=180°, 因为∠1=48°,所以,∠3=42°, 因为a ∥b ,所以,∠2=∠3=42°,选A 。
4.若m >n ,则下列不等式变形错误的是( ) A 、m ﹣5>n ﹣5 B 、6m >6n C 、﹣3m >﹣3n D 、21m x +>21nx + 答案:C考点:不等式的性质。
解析:A 、不等式的两边同时减去一个数,不等号方向不改变,故正确; B 、不等式的两边同时乘以一个正数6,不等号方向不改变,故正确; C 、不等式的两边同时乘以一个负数,不等号方向要改变,故错误;D 、不等式的两边同时除以一个正数(2x +1),不等号方向不改变,故正确; 选C 。
5.方程组3759y x x y =+⎧⎨+=⎩的解是( )A 、1272x y ⎧=⎪⎪⎨⎪=⎪⎩B 、1252x y ⎧=-⎪⎪⎨⎪=⎪⎩ C 、41x y =-⎧⎨=-⎩ D 、21x y =⎧⎨=-⎩ 答案:B考点:二元一次方程组。
济南历下区七(下)数学期末检测题
七(下)数学期末检测题寄语:数学使人严谨,数学使人聪明,数学充满趣味.同学们,准备好了吗?让我们一起对学过的课程做一次小结回顾吧! 注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)第Ⅲ卷(选做题)三部分,前两卷为必做题,满分120分.第Ⅲ卷为选做题,选做题得分不计入总分.2.答卷前,将自己的姓名、准考证号、考试科目涂写在答题卡上,并同时将姓名、准考证号、座号填写在试卷的密封线内.3.第Ⅰ卷为选择题,每小题选出答案后,用2B 铅笔把答题卡上对应题目的正确答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案,答案写在试卷上无效.4.考试期间,一律不得使用计算器;考试结束后,应将本试卷和答题卡一并交回.第Ⅰ卷(选择题)一、选择题(本题共15小题,每小题3分,满分45分,在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来,并把答题卡上对应题目的正确答案标号涂黑.) 1.下列各式计算正确的是( )A .326-=-B .623a a a ÷=C .()538x x x -⋅-=D .()325x x =2.对于四舍五入得到的近似数23.2010-⨯,下列说法正确的是( ) A .有3个有效数字,精确到百分位 B .有3个有效数字,精确到万分位 C .有2个有效数字,精确到万分位 D .有6个有效数字,精确到个位 3.在一个不透明的袋子里放入8个红球,2个白球,小明随意地摸出一球,这个球是白球的概率为( ) A .0.2 B .0.25 C .0.4 D .0.8 4.下列图形中,不是轴对称图形的是( )A B C D5.如图D 、E 分别是AB ,AC 上一点,若B C ∠=∠,则在下列条件中,无法判定ABE ACD△≌△是( )A .AD AE =B .AB AC = C .BE CD = D .AEB ADC ∠=∠ 6.一个角的度数是40︒,那么它的余角的补角度数是( ) A .130︒ B .140︒ C .50︒D .90︒7.判定两个三角形全等,给出如下四组条件: ①两边和一角对应相等;②两角和一边对应相等;CEADB③两个直角三角形中斜边和一条直角边对应相等;④三个角对应相等; 其中能判定这两个三角形全等的条件是( ) A .①和② B .②和③ C .①和④ D .③和④ 8.等腰三角形的两边长分别是5和10,则此三角形的周长是( ) A .20 B .25 C .20或25 D .309.如图,Rt ABC △中,90ACB ∠=︒,DE 过点C ,且DE AB ∥,若55ACD ∠=︒,则B ∠的度数是( )A .35︒B .45︒C .55︒D .65︒10.如图,12l l ∥,1120∠=︒,2100∠=︒,则3∠=( )A .20︒B .40︒C .50︒D .60︒ 11.变量x 与y 之间的关系如图所示,当自变量2x =时,因变量y 的值是( )A .2-B .1-C .1D .312.弹簧的长度与所挂物体的质量的关系如图所示,由图可知不挂重物时弹簧的长度为( )A .8cmB .9cmC .10cmD .11cm 13.若两个角的一边在同一直线上,而另一边互相平行,则这两个角( ) A .相等 B .互补 C .相等或互补 D .相等且互余 14.下列说法中错误的是( )ED C BA321l 2l1kg)A .三角形的中线、角平分线、高线都是线段B .三角形的一个外角大于任何一个内角C .三角形按角分可分为锐角三角形、直角三角形、钝角三角形D .任意三角形的内角和都是180︒15.若()227499x a x bx -=-+,则a b +之值为何( )A .18B .24C .39D .45第Ⅱ卷(非选择题)二、填空题(本题共6道小题,每小题3分,满分18分,要求将每小题的最后答案填写在答题纸上.)16.单项式2π3ab -的系数是 .17.如图:AB 、CD 相交于点O ,OB 平分DOE ∠,若60DOE ∠=︒,则AOC ∠的度数是度.18.一只小狗在如图的方砖上走来走去,最终停在阴影方砖上的概率是.19.把一副常用的三角板如图所示拼在一起,那么图中ADE ∠是度.20.已知:9xy =,3x y -=-,则223x xy y ++=.21.Rt AEB △和Rt AFC △中,BE 与AC 相交于点M ,与CF 相交于点D ,AB 与CF 相交于点N ,在90E F ∠=∠=︒,EAC EAB ∠=∠,AE AF =,给出下列结论: ①B C ∠=∠,②CD DN =,③BE CF =,④CAN ABM △≌△.其中正确的结论是 (填序号)DBEOAC三、解答题:(满分57分) 22.计算:(55616++=分)⑴ ()()22245120.54a b ab a b ⎛⎫⋅-÷- ⎪⎝⎭⑵ ()()()2212112a a a +-+-+⑶ ()()()222224xy xy x y xy ⎡⎤+--+÷⎣⎦,其中10x =,125y =-. 23.推理填空:(本题7分)已知,如图,1ACB ∠=∠,23∠=∠,FH AB ⊥于H ,求证:CD AB ⊥.证明:∵1ACB ∠=∠(已知)∴DE BC ∥( ) ∴2∠= ( ) ∵23∠=∠(已知) ∴3∠= (等量代换) ∴CD FH ∥( ) ∴BDC BHF ∠=∠( ) 又∵FH AB ⊥(已知) ∴ . 24.(本题6分)⑴ 如图所示编号为①、②、③、④的四个三角形中,关于y 轴对称的两个三角形的编号为;FNBD CMEA321CBHED A图1图2⑵ 在图2中,画出与ABC △关于x 轴对称的111A B C △.25.(本题9分)果农老张进行杨梅科学管理试验.把一片杨梅林分成甲、乙两部分,甲地块用新技术管理,乙地块用老方法管理,管理成本相同.在甲、乙两地块上各随机选取20棵杨梅树,根据每棵树产量把杨梅树划分成A ,B ,C ,D ,E 五个等级(甲、乙的等级划分标准相同,每组数据包括左端点不包括右端点).画出统计图如下:⑴ 补齐条形统计图,求a 的值及相应扇形的圆心角度数;⑵ 单棵产量80kg ≥的杨梅树视为良株,分别计算甲、乙两块地的良株率大小⑶ 若在甲地块随机抽查1棵杨梅树,求该杨梅树产量等级是B 的概率. 26.(本题10分)小明同学骑自行车去郊外春游,下图表示他离家的距离y (千米)与新用的时间x(小时)之间关系的函数图像.⑴ 根据图象回答:小明到达离家最远的地方需几小时?此时离家多远? ⑵ 小明在途中总共休息了多长时间?回家途中的速度是多少? ⑶ 求小明出发两个半小时离家多远? 27.(本小题满分9分)两个大小不同的等腰直角三角形三角板如图1所示放置,图2是由它抽象出的几何图形,B ,C ,E 在同一条直线上,连结DC .⑴ 请找出图2中的全等三角形,并给予证明(说明:结论中不得含有未标识的字母);⑵ 证明:DC BE ⊥.第Ⅲ卷(选做题)一、选择题: 1.2010年3月,温家宝总理在2010年政府工作报告中指出,2009年在国际金融危机的强烈冲击下,我国国内生产总值仍达到33.5万亿元,比上年增长8.7%.33.5万亿元这个数据用科学记数法表示为( ) A .933.510⨯ B .1233.510⨯ C .123.3510⨯ D .133.3510⨯2.下列乘法中,不能运用平方差公式进行运算的是( ) A .()()a b a b +--B .()()b m m b +-C .()()x a x a +-D .()()x b x b ---3.下面每组数分别是三根小木棒的长度,它们能摆成三角形的是( ) A .12cm ,3cm ,6cm B .2cm ,3cm ,4cm C .6cm ,6cm ,13cm D .8cm ,16cm ,8cm 4.下列结论正确的是( )A .若225x a b +-与13y ab 是同类项,则2xy =-B .0.01999-用科学记数法表示为21.99910-⨯时间(小时)ECBADC .在1x ,23a b ,20.5xy y -+这3个代数式中,只有20.5xy y -+是整式D .32m mx x x ÷=5.化简:223322x x ⎛⎫⎛⎫+-- ⎪ ⎪⎝⎭⎝⎭的值是( )A .4xB .5xC .6xD .8x二、填空题:6.若2m a =,3n a =,则m n a +=.7.计算()4322xy z -=;3221m m a a -+÷= ;220631999-⨯⨯=.8.数54.810⨯精确到 位,有个有效数字,是.9.用乘法公式计算:()()33x y x y --+-=.三、解答题:10.已知,如图,在ABC △中,AD 、AE 分别是ABC △的高和角平分线,若30B ∠=︒,50C ∠=︒.⑴ 求DAE ∠的度数;⑵ 试写出DAE ∠与C ∠、B ∠有何关系?(不必证明)11.如图,将一个矩形纸片ABCD 折叠,使点C 与点A 重合,点D 落在点E 处,抓痕为MN ,图中有全等三角形吗?若有,请找出并证明.12.已知,2226100a b a b +-++=,求100123a b -⋅-⋅的值.13.阅读材料:把一个多项式化为几个最简整式的积的形式,这种变形叫做把这个多项式因式分解,也叫作分解因式.如:()am bm cm a b c m -+=-+;()()22a b a b a b -=+-;()2222a ab b a b -+=-等. 利用因式分解证明712366⋅能被140整除.CDE BAMDCNBAE2011-2012学年七年级下数学期末测试发展卷评分标准一、CBACD ABBAB DCCBD 二、16.π3-;17. 30;18.13;19.135; 20.54; 21.①③④三、22.⑴ ()()22245120.54a b ab a b ⎛⎫⋅-÷- ⎪⎝⎭()22445140.54a b a b a b =⋅÷- ()()22445140.54a a ab b b =-⨯÷⨯⨯÷⨯⨯÷3分2=-5分⑵ ()()()2212112a a a +-+-+ ()()222141a a =+--2244141a a a =++-+ 3分42a =+ 5分⑶ ()()()222224xy xy x y xy ⎡⎤+--+÷⎣⎦()()2222424x y x y x y =--+÷ 1分 ()()22x y xy =-÷3分xy =-4分当10x =,125y =-时, 原式11025⎛⎫=-⨯- ⎪⎝⎭25=6分23.每空一分合计7分 同位角相等两直线平行;DCB ∠;两直线平行内错角相等;DCB ∠;同位角相等两直线平行;两直线平行同位角相等;CD AB ⊥. 24.⑴ ⑴⑵;2分 ⑵ 图略 4分25.解:⑴ 画直方图1分;1001510204510a =----=(1分);相应扇形的圆心角为:36010%36︒⨯=︒(1分) ⑵ 甲地的良株率为:()65200.5555%+÷==;乙地的良株率为:15%10%25%+=.各2分⑶ ()60.320P B ==(2分) 26.解:⑴ 小明到达离家最远的地方需3小时,此时离家30km ;4分 ⑵ 小明在途中总共休息了2个小时,回家途中的速度是()306415km/h ÷-=;4分⑶ 1151522.5km 2+⨯= 2分 27.(本小题满分9分) ⑴ 解:图2中ABE ACD △≌△………………………………………………1分 证明如下: ∵ABC △与AED △均为等腰直角三角形 ∴AB AC =,AE AD =,90BAC EAD ∠=∠=︒………………………………3分 ∴BAC CAE EAD CAE ∠+∠=∠+∠ 即BAE CAD ∠=∠………………………………………………………………4分 ∴ABE ACD △≌△………………………………………………………………6分 ⑵ 证明:由⑴ABE ACD △≌△知45ACD ABE ∠=∠=︒……………………………………………………………7分 又45ACB ∠=︒ ∴90BCD ACB ACD ∠=∠+∠=︒ ∴DC BE ⊥……………………………………………………………………9分第三卷答案:DABAC 6.6;7.412816x y z 、3m a -、4; 8.万 2 4、8; 9.2269x x y -+-10.解:∵30B ∠=︒,50C ∠=︒∴1803050100BAC ∠=︒-︒-︒=︒ (1分) ∵AE 是BAC ∠的平分线 ∴50BAE ∠=︒ (2分) 在Rt ABD △中,9060BAD B ∠=︒-∠=︒ (3分) ∴605010DAE BAD BAE ∠=∠-∠=︒-︒=︒ (6分) ⑵ 2C B DAE ∠=∠=∠. (2分) 11.有,ABN AEM △≌△. 2分 证明:∵四边形ABCD 是矩形, ∴AB DC =,90B C DAB ∠=∠=∠=︒. 3分 ∵四边形NCDM 翻折得到四边形NAEM , ∴AE CD =,90E D ∠=∠=︒,90EAN C ∠=∠=︒ 4分 ∴AB AE =,B E ∠=∠,DAB EAN ∠=∠, 即:BAN NAM EAM NAM ∠+∠=∠+∠, ∴BAN EAM ∠=∠. 6分 在ABN △与AEM △中, B E ∠=∠ AB AE =BAN EAM ∠=∠∴ABN AEM △≌△.9分12.解:∵2226100a b a b +-++= ∴2221690a a b b -++++= ∴()()22130a b -++=3分又∵()210a -≥,()230b +≥ ∴()210a -=,()230b += ∴1a =,3b = 5分∴100123a b --()11002133-=⨯-⨯- 8分121333⎛⎫=⨯-⨯-= ⎪⎝⎭13.712366-763636=- ()636361- 63635=⨯ 5363635=⨯⨯ 5366635=⨯⨯⨯ 5369435=⨯⨯⨯5369140=⨯⨯∴原式能被140整除.8分。
济南市人教版七年级下册数学期末考试试卷及答案
济南市人教版七年级下册数学期末考试试卷及答案一、选择题1.如图所示图形中,把△ABC 平移后能得到△DEF 的是( )A .B .C .D .2.下列运算正确的是( )A .236a a a ⋅=B .222()ab a b =C .()325a a =D .623a a a ÷=3.现有两根木棒,它们长分别是40cm 和50cm ,若要钉成一个三角形木架,则下列四根木棒应选取( )A .10cm 的木棒B .40cm 的木棒C .90cm 的木棒D .100cm 的木棒 4.如图,给出下列条件:①∠1=∠2;②∠3=∠4;③∠A=∠CDE ;④∠A+∠ADC=180°.其中,能推出AB ∥DC 的条件为( )A .①④B .②③C .①③D .①③④ 5.下列线段能构成三角形的是( ) A .2,2,4 B .3,4,5 C .1,2,3D .2,3,6 6.a 5可以等于( ) A .(﹣a )2•(﹣a )3 B .(﹣a )•(﹣a )4C .(﹣a 2)•a 3D .(﹣a 3)•(﹣a 2)7.将下列三条线段首尾相连,能构成三角形的是( )A .1,2,3B .2,3,6C .3,4,5D .4,5,9 8.不等式3+2x>x+1的解集在数轴上表示正确的是( )A .B .C .D .9.科学家发现2019﹣nCoV 冠状肺炎病毒颗粒的平均直径约为0.00000012m .数据0.00000012用科学记数法表示为( )A .1.2×107B .0.12×10﹣6C .1.2×10﹣7D .1.2×10﹣8 10.计算12x a a a a ⋅⋅=,则x 等于( )A .10B .9C .8D .4 二、填空题11.计算126x x ÷的结果为______.12.最薄的金箔的厚度为0.000000091m ,用科学记数法表示为________m .13.如图,将一副直角三角板,按如图所示叠放在一起,则图中∠COB =____.14.如图,将边长为6cm 的正方形ABCD 先向下平移2cm ,再向左平移1cm ,得到正方形A 'B 'C 'D ',则这两个正方形重叠部分的面积为______cm 2.15.20192018512125⎛⎫-⨯ ⎪⎝⎭⎭⎛⎫ ⎪⎝ =______. 16.已知30m -=,7m n +=,则2m mn +=___________.17.学校计划购买A 和B 两种品牌的足球,已知一个A 品牌足球60元,一个B 品牌足球75元.学校准备将1500元钱全部用于购买这两种足球(两种足球都买),该学校的购买方案共有_________种.18.如图,若AB ∥CD ,∠C=60°,则∠A+∠E=_____度.19.()22x y --=_____.20.已知一个多边形的每一个外角都等于,则这个多边形的边数是 . 三、解答题21.(知识生成)我们已经知道,通过计算几何图形的面积可以表示一些代数恒等式.例如图1可以得到(a+b )2=a 2+2ab+b 2,基于此,请解答下列问题:(1)根据图2,写出一个代数恒等式:.(2)利用(1)中得到的结论,解决下面的问题:若a+b+c=10,ab+ac+bc=35,则a2+b2+c2=.(3)小明同学用图3中x张边长为a的正方形,y张边长为b的正方形,z张宽、长分别为a、b的长方形纸片拼出一个面积为(2a+b)(a+2b)长方形,则x+y+z=.(知识迁移)(4)事实上,通过计算几何图形的体积也可以表示一些代数恒等式,图4表示的是一个边长为x的正方体挖去一个小长方体后重新拼成一个新长方体,请你根据图4中图形的变化关系,写出一个代数恒等式:.22.已知:直线//AB CD,点E,F分别在直线AB,CD上,点M为两平行线内部一点.(1)如图1,∠AEM,∠M,∠CFM的数量关系为________;(直接写出答案)(2)如图2,∠MEB和∠MFD的角平分线交于点N,若∠EMF等于130°,求∠ENF的度数;(3)如图3,点G为直线CD上一点,延长GM交直线AB于点Q,点P为MG上一点,射线PF、EH相交于点H,满足13PFG MFG∠=∠,13BEH BEM∠=∠,设∠EMF=α,求∠H的度数(用含α的代数式表示).23.如图,直线AC∥BD,BC平分∠ABD,DE⊥BC,垂足为点E,∠BAC=100°,求∠EDB 的度数.24.已知8m a =,2n a = .(1)填空:m n a += ; m n a -=__________.(2)求m 与n 的数量关系.25.如图,△ABC 中,AD 是高,AE 、BF 是角平分线,它们相交于点O ,∠BAC=60°,∠C=50°,求∠DAC 及∠BOA 的度数.26.计算:(1)1021(3)(4)5π-⎛⎫---- ⎪⎝⎭(2)3()6m m n mn -+(3)4(2)(2)x x -+-(4)2(2)(2)a b a a b --- 27.如图所示,点B ,E 分别在AC ,DF 上,BD ,CE 均与AF 相交,∠1=∠2,∠C =∠D ,求证:∠A =∠F .28.南山植物园中现有A ,B 两个园区.已知A 园区为长方形,长为(x +y)米,宽为(x -y)米;B 园区为正方形,边长为(x +3y)米.(1)请用代数式表示A ,B 两园区的面积之和并化简.(2)现根据实际需要对A 园区进行整改,长增加(11x -y)米,宽减少(x -2y)米,整改后A 园区的长比宽多350米,且整改后两园区的周长之和为980米.①求x ,y 的值;②若A 园区全部种植C 种花,B 园区全部种植D 种花,且C ,D 两种花投入的费用与吸引游客的收益如下表:C D求整改后A ,B 两园区旅游的净收益之和.(净收益=收益-投入)【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】根据平移的概念判断即可,注意区分图形的平移和旋转.【详解】根据平移的概念,平移后的图形与原来的图形完全重合.A 是通过平移得到;B 通过旋转得到;C 通过旋转加平移得到;D 通过旋转得到. 故选A【点睛】本题主要考查图形的平移,特别要注意区分图形的旋转和平移.2.B解析:B【解析】A.235 a a a ⋅=,故本选项错误;B. ()222ab a b =,故本选项正确;C. ()326a a =,故本选项错误;D. 624a a a ÷=,故本选项错误。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2014-2015学年山东省济南市历下区七年级(下)期末数学试卷一、选择题(共12小题,每小题3分,满分36分)1.(3分)下列图形中,不一定是轴对称图形的是()A.等腰三角形B.线段C.钝角D.直角三角形2.(3分)下列事件是不可能事件的是()A.买一张电影票,座位号是奇数B.从一个只装有红球的袋子里摸出白球C.三角形两边之和大于第三边D.明天会下雨3.(3分)下列运算,正确的是()A.(﹣a3b)2=a6b2B.4a﹣2a=2 C.a6÷a3=a2D.(a﹣b)2=a2﹣b2 4.(3分)计算()2015×1.52015的结果是()A.B.﹣ C.1 D.﹣5.(3分)如图,下列条件中,不能推断AB∥CD的是()A.∠B=∠5 B.∠1=∠2 C.∠3=∠4 D.∠B+∠BCD=180°6.(3分)如图,在△ABC中,∠B=46°,∠C=54°,AD平分∠BAC,交BC于D,DE∥AB,交AC于E,则∠ADE的大小是()A.45°B.54°C.40°D.50°7.(3分)如图,四边形ABCD中,AC垂直平分BD,垂足为E,下列结论不一定成立的是()A.AB=AD B.AC平分∠BCD C.△BEC≌△DEC D.AB=BD8.(3分)如图是我国古代计时器“漏壶”的示意图,在壶内盛一定量的水,水从壶底的小孔漏出.壶壁内画有刻度,人们根据壶中水面的位置计时,用x表示时间,y表示壶底到水面的高度,则y与x的函数关系式的图象是()A.B.C.D.9.(3分)要测量河两岸相对的两点A,B的距离,先在AB的垂线BF上取两点C,D,使CD=BC,再定出BF的垂线DE,使A,C,E在一条直线上(如图所示),可以说明△EDC≌△ABC,得ED=AB,因此测得ED的长就是AB的长,判定△EDC ≌△ABC最恰当的理由是()A.边角边B.角边角C.边边边D.边边角10.(3分)如图,把一个长方形纸片沿EF折叠后,点D,C分别落在D′,C′的位置.若∠EFB=65°,则∠D′EF等于()A.70°B.65°C.50°D.25°11.(3分)如图在△ABD和△ACE都是等边三角形,则△ADC≌△ABE的根据是()A.SSS B.SAS C.ASA D.AAS12.(3分)若m+n=7,mn=12,则m2﹣mn+n2的值是()A.11 B.13 C.37 D.61二、填空题(共6小题,每小题3分,满分18分)13.(3分)3﹣2=.14.(3分)如图,在△ABC中,∠C=90°,AD是角平分线,DE⊥AB于E,且DE=3cm,BD=5cm,则BC=cm.15.(3分)等腰三角形一边长是10cm,一边长是6cm,则它的周长是cm 或cm.16.(3分)某电视台综艺节目接到热线电话400个,现要从中抽取“幸运观众”10名,小明同学打通了一次电话,那么他成为“幸运观众”的概率为.17.(3分)如图,等腰△ABC中,AB=AC,∠DBC=15°,AB的垂直平分线MN交AC于点D,则∠A的度数是.18.(3分)若4a2﹣ka+9是一个完全平方式,则k=.三、解答题(共7小题,满分66分)19.(10分)(1)化简:(ab2)2•4a÷(﹣2ab);(2)化简求值:(a+2)2+(1﹣a)(1+a),其中a=﹣.20.(9分)(1)在边长为1的方格纸中,有如图1所示的四边形(顶点都在格点上).①作出该四边形关于直线l成轴对称的图形;②完成上述设计后,整个图案的面积等于.(2)如图2,两条公路OA和OB相交于O点,在∠AOB的内部有工厂C和D,现要修建一个货站P,使货站P到两条公路OA、OB的距离相等,且到两工厂C、D的距离相等,用尺规作出货站P的位置.(要求:不写作法,保留作图痕迹,写结论)21.(7分)一个不透明的袋中装有红、黄、白三种颜色球共100个,它们除颜色外都相同,其中黄球个数是白球个数的2倍少5个.已知从袋中摸出一个球是红球的概率是.(1)求袋中红球的个数;(2)求从袋中摸出一个球是白球的概率;(3)取走10个球(其中没有红球)后,求从剩余的球中摸出一个球是红球的概率.22.(7分)已知:如图,点B,E,C,F在同一直线上,AB∥DE,且AB=DE,BE=CF.求证:AC∥DF.23.(9分)心理学家发现,学生对概念的接受能力y与提出概念所用的时间x (单位:分)之间有如下关系:(其中0≤x≤30)提出概念所用时间(x)257101213141720对概念的接受能力(y)47.853.556.35959.859.959.858.355(1)上表中反映了哪两个变量之间的关系?(2)当提出概念所用时间是10分钟时,学生的接受能力是多少?(3)根据表格中的数据,你认为提出概念几分钟时,学生的接受能力最强;(4)从表中可知,当时间x在什么范围内,学生的接受能力逐步增强?当时间x在什么范围内,学生的接受能力逐步降低?24.(12分)如图,△ABC是等边三角形,点E、F分别在边AB和AC上,且AE=BF.(1)求证:△ABE≌△BCF;(2)若∠ABE=20°,求∠ACF的度数;(3)猜测∠BOC的度数并证明你的猜想.25.(12分)在△ABC中,AB=AC,点D是直线BC上一点(不与点B、点C重合),以AD为一边在AD的右侧作△ADE,使AD=AE,∠DAE=∠BAC,连接CE.(1)如图1,当点D在线段BC上时,如果∠BAC=90°,则∠BCE=;(2)如图2,当点D在线段BC上时,如果∠BAC=50°,请你求出∠BCE的度数.(写出求解过程);(3)探索发现,设∠BAC=α,∠BCE=β.①如图2,当点D在线段BC上移动,则α,β之间有怎样的数量关系?请直接写出你的结论:.②当点D在线段BC的延长线上时,则α,β之间有怎样的数量关系?请在图3中画出完整图形并请直接写出你的结论:.2014-2015学年山东省济南市历下区七年级(下)期末数学试卷参考答案与试题解析一、选择题(共12小题,每小题3分,满分36分)1.(3分)下列图形中,不一定是轴对称图形的是()A.等腰三角形B.线段C.钝角D.直角三角形【解答】解:A、是轴对称图形,故选项错误;B、是轴对称图形,故选项错误;C、是轴对称图形,故选项错误;D、不一定是轴对称图形如不是等腰直角三角形,故选项正确.故选:D.2.(3分)下列事件是不可能事件的是()A.买一张电影票,座位号是奇数B.从一个只装有红球的袋子里摸出白球C.三角形两边之和大于第三边D.明天会下雨【解答】解:A、买一张电影票,座位号是奇数是随机事件,故A错误;B、从一个只装有红球的袋子里摸出白球是不可能事件,故B正确;C、三角形两边之和大于第三边是必然事件,故C错误;D、明天会下雨是随机事件,故D错误;故选:B.3.(3分)下列运算,正确的是()A.(﹣a3b)2=a6b2B.4a﹣2a=2 C.a6÷a3=a2D.(a﹣b)2=a2﹣b2【解答】解:A、结果是a6b2,故本选项正确;B、结果是2a,故本选项错误;C、结果是a3,故本选项错误;D、结果是a2﹣2ab+b2,故本选项错误;故选:A.4.(3分)计算()2015×1.52015的结果是()A.B.﹣ C.1 D.﹣【解答】解:原式=(×1.5)2015=1.故选:C.5.(3分)如图,下列条件中,不能推断AB∥CD的是()A.∠B=∠5 B.∠1=∠2 C.∠3=∠4 D.∠B+∠BCD=180°【解答】解:A、∵∠B=∠5,∴AB∥CD,故本选项错误;B、∵∠1=∠2,∴AB∥CD,故本选项错误;C、∵∠3=∠4,∴AD∥BC,故本选项正确;D、∵∠B+∠BCD=180°,∴AB∥CD,故本选项错误.故选:C.6.(3分)如图,在△ABC中,∠B=46°,∠C=54°,AD平分∠BAC,交BC于D,DE∥AB,交AC于E,则∠ADE的大小是()A.45°B.54°C.40°D.50°【解答】解:∵∠B=46°,∠C=54°,∴∠BAC=180°﹣∠B﹣∠C=180°﹣46°﹣54°=80°,∵AD平分∠BAC,∴∠BAD=∠BAC=×80°=40°,∵DE∥AB,∴∠ADE=∠BAD=40°.故选:C.7.(3分)如图,四边形ABCD中,AC垂直平分BD,垂足为E,下列结论不一定成立的是()A.AB=AD B.AC平分∠BCD C.△BEC≌△DEC D.AB=BD【解答】解:∵AC垂直平分BD,∴AB=AD,BC=CD,故A正确;∴AC平分∠BCD,故B正确;在△BEC和△DEC中,,∴△BEC≌△DEC(SSS),故C正确;AB不一定等于BD,故D错误.故选:D.8.(3分)如图是我国古代计时器“漏壶”的示意图,在壶内盛一定量的水,水从壶底的小孔漏出.壶壁内画有刻度,人们根据壶中水面的位置计时,用x表示时间,y表示壶底到水面的高度,则y与x的函数关系式的图象是()A.B.C.D.【解答】解:由题意知:开始时,壶内盛一定量的水,所以y的初始位置应该大于0,可以排除A、B;由于漏壶漏水的速度不变,所以图中的函数应该是一次函数,可以排除D选项.故选:C.9.(3分)要测量河两岸相对的两点A,B的距离,先在AB的垂线BF上取两点C,D,使CD=BC,再定出BF的垂线DE,使A,C,E在一条直线上(如图所示),可以说明△EDC≌△ABC,得ED=AB,因此测得ED的长就是AB的长,判定△EDC ≌△ABC最恰当的理由是()A.边角边B.角边角C.边边边D.边边角【解答】解:∵BF⊥AB,DE⊥BD∴∠ABC=∠BDE又∵CD=BC,∠ACB=∠DCE∴△EDC≌△ABC(ASA)故选:B.10.(3分)如图,把一个长方形纸片沿EF折叠后,点D,C分别落在D′,C′的位置.若∠EFB=65°,则∠D′EF等于()A.70°B.65°C.50°D.25°【解答】解:如图,∵长方形的两边互相平行,∠EFB=65°,∴∠1=∠EFB=65°,根据翻折的性质∠D′EF=∠1=65°.故选:B.11.(3分)如图在△ABD和△ACE都是等边三角形,则△ADC≌△ABE的根据是()A.SSS B.SAS C.ASA D.AAS【解答】解:∵△ABD和△ACE都是等边三角形,∴AD=AB,AC=AE,又∵∠DAB+∠BAC=∠EAC+∠BAC,∴∠DAC=∠BAE,∴△ADC≌△ABE(SAS).故选:B.12.(3分)若m+n=7,mn=12,则m2﹣mn+n2的值是()A.11 B.13 C.37 D.61【解答】解:m2﹣mn+n2,=m2+2mn+n2﹣3mn,=(m+n)2﹣3mn,=49﹣36,=13.故选:B.二、填空题(共6小题,每小题3分,满分18分)13.(3分)3﹣2=.【解答】解:原式==.故答案为:.14.(3分)如图,在△ABC中,∠C=90°,AD是角平分线,DE⊥AB于E,且DE=3cm,BD=5cm,则BC=8cm.【解答】解:∵CD⊥AC,DE⊥AB,AD平分∠BAC,∴CD=DE=3,BC=CD+BD=3+5=8cm.故答案为:8cm.15.(3分)等腰三角形一边长是10cm,一边长是6cm,则它的周长是26cm 或22cm.【解答】解:(1)当腰是6cm时,周长=6+6+10=22cm;(2)当腰长为10cm时,周长=10+10+6=26cm,所以其周长是22cm或26cm.故填22,26.16.(3分)某电视台综艺节目接到热线电话400个,现要从中抽取“幸运观众”10名,小明同学打通了一次电话,那么他成为“幸运观众”的概率为.【解答】解:∵某电视台综艺节目接到热线电话400个,现要从中抽取“幸运观众”10名,∴小明同学打通了一次电话,他成为“幸运观众”的概率==.故答案为:.17.(3分)如图,等腰△ABC中,AB=AC,∠DBC=15°,AB的垂直平分线MN交AC于点D,则∠A的度数是50°.【解答】解:∵MN是AB的垂直平分线,∴AD=BD,∴∠A=∠ABD,∵∠DBC=15°,∴∠ABC=∠A+15°,∵AB=AC,∴∠C=∠ABC=∠A+15°,∴∠A+∠A+15°+∠A+15°=180°,解得∠A=50°.故答案为:50°.18.(3分)若4a2﹣ka+9是一个完全平方式,则k=±12.【解答】解:∵4a2﹣ka+9是一个完全平方式,∴﹣ka=±2×2a×3,∴k=±12.故答案为:±12.三、解答题(共7小题,满分66分)19.(10分)(1)化简:(ab2)2•4a÷(﹣2ab);(2)化简求值:(a+2)2+(1﹣a)(1+a),其中a=﹣.【解答】解:(1)(ab2)2•4a÷(﹣2ab)=a2b4•4a÷(﹣2ab)=4a3b4÷(﹣2ab)=﹣2a2b3;(2)(a+2)2+(1﹣a)(1+a)=a2+4a+4+1﹣a2=4a+5,把a=﹣代入上式可得:原式=4×(﹣)+5=2.20.(9分)(1)在边长为1的方格纸中,有如图1所示的四边形(顶点都在格点上).①作出该四边形关于直线l成轴对称的图形;②完成上述设计后,整个图案的面积等于10.(2)如图2,两条公路OA和OB相交于O点,在∠AOB的内部有工厂C和D,现要修建一个货站P,使货站P到两条公路OA、OB的距离相等,且到两工厂C、D的距离相等,用尺规作出货站P的位置.(要求:不写作法,保留作图痕迹,写结论)【解答】解:(1)①②面积是×2(2+3)×2=10,故答案是10;(2)点P就是所求的点.21.(7分)一个不透明的袋中装有红、黄、白三种颜色球共100个,它们除颜色外都相同,其中黄球个数是白球个数的2倍少5个.已知从袋中摸出一个球是红球的概率是.(1)求袋中红球的个数;(2)求从袋中摸出一个球是白球的概率;(3)取走10个球(其中没有红球)后,求从剩余的球中摸出一个球是红球的概率.【解答】解:(1)根据题意得:100×,答:红球有30个.(2)设白球有x个,则黄球有(2x﹣5)个,根据题意得x+2x﹣5=100﹣30解得x=25.所以摸出一个球是白球的概率P==;(3)因为取走10个球后,还剩90个球,其中红球的个数没有变化,所以从剩余的球中摸出一个球是红球的概率=;22.(7分)已知:如图,点B,E,C,F在同一直线上,AB∥DE,且AB=DE,BE=CF.求证:AC∥DF.【解答】证明:∵AB∥DE,∴∠B=∠DEF∵BE=CF,∴BC=EF,在△ABC和△DEF中,∴△ABC≌△DEF(SAS)∴∠ACB=∠F,∴AC∥DF.23.(9分)心理学家发现,学生对概念的接受能力y与提出概念所用的时间x (单位:分)之间有如下关系:(其中0≤x≤30)提出概念所用时间(x)257101213141720对概念的接受能力(y)47.853.556.35959.859.959.858.355(1)上表中反映了哪两个变量之间的关系?(2)当提出概念所用时间是10分钟时,学生的接受能力是多少?(3)根据表格中的数据,你认为提出概念几分钟时,学生的接受能力最强;(4)从表中可知,当时间x在什么范围内,学生的接受能力逐步增强?当时间x在什么范围内,学生的接受能力逐步降低?【解答】解:(1)提出概念所用的时间x和对概念接受能力y两个变量;(2)当x=10时,y=59,所以时间是10分钟时,学生的接受能力是59.(3)当x=13时,y的值最大是59.9,所以提出概念13分钟时,学生的接受能力最强.(4)由表中数据可知:当2<x<13时,y值逐渐增大,学生的接受能力逐步增强;当13<x<20时,y值逐渐减小,学生的接受能力逐步降低.24.(12分)如图,△ABC是等边三角形,点E、F分别在边AB和AC上,且AE=BF.(1)求证:△ABE≌△BCF;(2)若∠ABE=20°,求∠ACF的度数;(3)猜测∠BOC的度数并证明你的猜想.【解答】解:(1)∵△ABC是等边三角形,∴AB=BC,∠A=∠ABC=60°,在△ABE和△CBF中,,∴△ABE≌△BCF(SAS);(2)∵△ABE≌△BCF,∴∠BCF=∠ABE=20°,∵∠ACB=60°,∴∠ACF=∠ACB﹣∠BCF=40°;(3)∵△ABE≌△BCF,∴∠ABE=∠BCF,∵∠BFC=∠A+∠ACF=60°+∠ACF,∴∠BOC=∠BFO+∠ABE=60°+∠ACF+∠ABE=120°.25.(12分)在△ABC中,AB=AC,点D是直线BC上一点(不与点B、点C重合),以AD为一边在AD的右侧作△ADE,使AD=AE,∠DAE=∠BAC,连接CE.(1)如图1,当点D在线段BC上时,如果∠BAC=90°,则∠BCE=90°;(2)如图2,当点D在线段BC上时,如果∠BAC=50°,请你求出∠BCE的度数.(写出求解过程);(3)探索发现,设∠BAC=α,∠BCE=β.①如图2,当点D在线段BC上移动,则α,β之间有怎样的数量关系?请直接写出你的结论:β=180°﹣α.②当点D在线段BC的延长线上时,则α,β之间有怎样的数量关系?请在图3中画出完整图形并请直接写出你的结论:β=180°﹣α.【解答】解:(1)∵∠DAE=∠BAC,∴∠BAD=∠CAE,在△ABD和△ACE中∴△ABD≌△ACE(SAS),∴∠ABD=∠ACE,∵AB=AC,∠BAC=90°,∴∠ABD=∠ACB=45°,∴∠BCE=∠ACB+∠ACE=45°+45°=90°,故答案为:90°;(2)∵∠DAE=∠BAC,∴∠BAD=∠CAE,在△ABD和△ACE中∴△ABD≌△ACE(SAS),∴∠ABD=∠ACE,∵AB=AC,∠BAC=50°,∴∠ABD=∠ACB==65°,∴∠BCE=∠ACB+∠ACE=65°+65°=130°;(3)①∵∠DAE=∠BAC,∴∠BAD=∠CAE,在△ABD和△ACE中∴△ABD≌△ACE(SAS),∴∠ABD=∠ACE,∵AB=AC,∠BAC=α,∴∠ABD=∠ACB=,∴∠BCE=∠ACB+∠ACE=2∠ACB=180°﹣α,故答案为:180°﹣α;②如图,∵∠DAE=∠BAC,∴∠BAD=∠CAE,在△ABD和△ACE中∴△ABD≌△ACE(SAS),∴∠ABD=∠ACE,∵AB=AC,∠BAC=α,∴∠ABD=∠ACB=,∴∠BCE=∠ACB+∠ACE=2∠ACB=180°﹣α,故答案为:180°﹣α.。