微带天线设计

合集下载

宽带圆极化微带天线分析与设计

宽带圆极化微带天线分析与设计

宽带圆极化微带天线分析与设计一、本文概述本文旨在深入探讨宽带圆极化微带天线的分析与设计。

随着无线通信技术的飞速发展,天线作为无线通信系统的关键组成部分,其性能直接影响到整个系统的传输质量和效率。

宽带圆极化微带天线作为一种重要的天线类型,具有宽频带、圆极化、低剖面、易集成等优点,因此在卫星通信、移动通信、雷达系统等领域具有广泛的应用前景。

本文将首先介绍宽带圆极化微带天线的基本原理和特性,包括其辐射机制、极化特性、带宽特性等。

随后,将详细分析宽带圆极化微带天线的设计方法,包括天线尺寸的选择、馈电方式的设计、介质基板的选取等。

在此基础上,将探讨影响天线性能的关键因素,如阻抗匹配、交叉极化、增益等,并提出相应的优化策略。

本文还将通过具体的案例分析,展示宽带圆极化微带天线在实际应用中的性能表现。

通过对比分析不同设计方案下的天线性能,为工程师和研究者在实际应用中提供有益的参考。

本文将总结宽带圆极化微带天线的设计与优化策略,并展望其未来的发展趋势和应用前景。

通过本文的研究,旨在为宽带圆极化微带天线的分析与设计提供理论支持和实践指导。

二、圆极化微带天线的基本原理圆极化微带天线是一种能够在空间中产生圆形极化波的天线,它具有独特的电磁辐射特性,广泛应用于无线通信、雷达探测和卫星通信等领域。

了解圆极化微带天线的基本原理对于其分析与设计至关重要。

圆极化波是一种电磁波,其电场矢量在空间中随时间旋转,形成一个圆形的轨迹。

圆极化微带天线通过特定的设计和构造,能够在其辐射区域内产生这样的圆形极化波。

这种波形的特性在于,无论接收天线的极化方式如何,圆极化波都能在一定程度上被接收,因此具有更好的抗干扰能力和更广泛的适用性。

圆极化微带天线的基本原理主要基于电磁场理论和天线辐射原理。

它通过在微带天线的辐射贴片上引入特定的相位差,使得天线的两个正交分量产生90度的相位差,从而形成圆极化波。

这种相位差可以通过在辐射贴片上刻蚀特定的槽口或引入附加的相位延迟线来实现。

实验五-微带天线设计_图文_图文

实验五-微带天线设计_图文_图文

• 把Layout层映射到金属层,也就是把Cond层粘贴到Sub介质板上,如下图所 示,选择“Layout Layer”标签,在“Name”下拉列表中选择贴片所在的Layout层 cond,单击【Strip】按钮完成贴片的粘贴。设置金属层参数,单击【Applay】 ,然后单击“OK”
(4)添加端口
end Zt=sqrt(50*Zin) %计话框
优化目标对话框
• 进行优化仿真,下图为优化后的仿真结果。
• 打开前面仿真过的微带贴片的Layout文件,按照原理图尺寸在Layout中划出 匹配结的图形,然后设置板材参数,插入端口。
• S参数仿真。 中心频率还是发生了偏移! 改进方法:减少匹配线长度,减少贴片长度
板材参数:
H:基板厚度(1.5 mm),
Er:基板相对介电常数(2.65)
Mur:磁导率(1),
Cond:金属电导率(5.88E+7)
Hu:封装高度(1.0e+33 mm), T:金属层厚度(0.035 mm)
TanD:损耗角正切(1e-4), Roungh:表面粗糙度(0 mm)
报告要求:
(1)简单叙述微带天线工作原理; (2)给出微带天线的版图尺寸; (3)给出版图仿真结果,并对其结果进行分析; (4)制作该天线,进行测试,给出天线的驻波测试结果,分析误差原因。
使天线辐射尽可能多的功率,必须使天线与空气匹配,输入驻波比尽可 能小。阻抗、驻波比与反射系数的关系为
(5) 辐射效率 Pr为天线辐射出的功率,单位为W;Pi为馈入天线的功率,单位为W 。 天线增益、方向性系数和辐射效率的关系: (6) 半功率角
(a) 按电场定义; (b) 按功率定义
1.3 常见的天线类型

微带天线设计

微带天线设计

微带天线设计天线大体可分为线天线和口径天线两类。

移动通信用的VHF 、UHF 天线,大多是以对称振子为基础而发展的各种型式的线天线,卫星地面站接收卫星信号大多用抛物面天线(口径天线)。

天线的特征与天线的形状、大小及构成材料有关。

天线的大小一般以天线发射或接收电磁波的波长l 来计量。

因为工作于波长l = 2m 的长为1m 的偶极子天线的辐射特性与工作于波长l = 2cm 的长为1cm 的偶极子天线是相同的。

与天线方向性有关参数:方向性函数或方向图 离开天线一定距离处,描述天线辐射的电磁场强度在空间的相对分布的数学表达式,称为天线的方向性函数; 把方向性函数用图形表示出来,就是方向图。

最大辐射波束通常称为方向图的主瓣。

主瓣旁边的几个小的波束叫旁瓣。

为了方便对各种天线的方向图进行比较,就需要规定一些表示方向图特性的参数,这些参数有:1.天线增益G (或方向性GD )、波束宽度(或主瓣宽度)、旁瓣电平等。

2.天线效率3.极化特性4.频带宽度5.输入阻抗天线增益是在波阵面某一给定方向天线辐射强度的量度。

它是被研究天线在最大辐射方向的辐射强度与被研究天线具有同等输入功率的各向同性天线在同一点所产生的最大辐射强度之比。

天线方向性GD与天线增益G类似但与天线增益定义略有不同。

因为天线总有损耗,天线辐射功率比馈入功率总要小一些,所以天线增益总要比天线方向性小一些。

理想天线能把全部馈入天线的功率限制在某一立体角ΩB内辐射出去,且在ΩB立体角内均匀分布。

这种情况下天线增益与天线方向性相等。

理想的天线辐射波束立体角ΩB及波束宽度θB实际天线的辐射功率有时并不限制在一个波束中,在一个波束内也非均匀分布。

在波束中心辐射强度最大,偏离波束中心,辐射强度减小。

辐射强度减小到3db时的立体角即定义为ΩB。

波束宽度θB与立体角ΩB关系为旁瓣电平旁瓣电平是指主瓣最近且电平最高的。

第一旁瓣电平,一般以分贝表示。

方向图的旁瓣区一般是不需要辐射的区域,其电平应尽可能的低。

微带天线设计实验报告hsff

微带天线设计实验报告hsff

微带天线设计实验报告hsff1. 引言微带天线是指一种在非导体衬底上,厚度远小于工作波长的金属片片状天线。

由于其结构简单、易于实现和与尺寸成正比的频率调谐特性,微带天线在无线通信系统、雷达系统、卫星通信系统等领域都有广泛应用。

本实验旨在设计一种基于微带天线的无线通信系统。

2. 设计原理微带天线的设计基于微带线的传输线理论和天线理论,通过调整微带天线的几何结构,可以实现对特定频率信号的发送和接收。

在本实验中,我们需要设计一种工作频率为2.4 GHz的微带天线。

微带天线主要由导体衬底、金属贴片和喇叭线组成。

导体衬底可以是介电材料,如玻璃纤维板、陶瓷板等,也可以是金属材料。

金属贴片是微带天线的辐射元件,其几何形状和尺寸决定了天线的频率特性。

喇叭线用于连接导体衬底和金属贴片,起到提供电信号的功能。

3. 设计步骤根据微带天线的设计原理和工作频率要求,我们可以按照以下步骤来设计微带天线:步骤一:确定导体衬底材料和尺寸根据设计要求选择合适的导体衬底材料,一般可选用介电常数在2到12之间的材料。

确定导体衬底的尺寸,以便适应工作频率。

步骤二:计算金属贴片的尺寸根据所选导体衬底的材料和尺寸,计算金属贴片的尺寸。

一般来说,金属贴片的长度和宽度与工作波长有关,且与导体衬底的介电常数相关。

步骤三:确定喇叭线的结构根据所选导体衬底的材料和尺寸,设计合适的喇叭线结构。

喇叭线的长度、宽度和厚度都会影响微带天线的频率调谐特性。

步骤四:制作微带天线样品根据设计得到的尺寸参数,使用相应的工艺方法制作微带天线样品。

常用的制作方法包括化学腐蚀、电镀等。

步骤五:测试天线性能通过天线测试仪器对微带天线进行性能测试,包括频率响应、增益、辐射图形等参数的测量。

4. 实验结果与分析经过设计和制作,在实验中成功制作了一种工作频率为2.4 GHz的微带天线样品。

经测试,该微带天线样品的频率响应符合设计要求,在工作频率范围内具有良好的增益和辐射特性。

为了进一步优化微带天线的性能,我们对设计参数进行了微调,得到了更好的工作频率和辐射特性。

小型微带天线分析与设计

小型微带天线分析与设计

小型微带天线分析与设计随着无线通信技术的快速发展,天线作为无线通信系统的重要组成部分,其性能和尺寸成为了的焦点。

其中,微带天线由于其独特的优点在无线通信领域得到了广泛的应用。

本文将主要对小型微带天线的分析与设计进行深入探讨。

微带天线简介微带天线是一种由导体薄片贴在介质基板上形成的天线。

由于其具有体积小、易于集成、易于制作等优点,被广泛应用于移动通信、卫星导航等领域。

微带天线的分析主要涉及电磁场理论、微波传输线和电路理论等方面的知识,而设计则主要天线的性能优化和尺寸减小。

小型微带天线的分析微带天线的特点微带天线的主要特点包括体积小、重量轻、易于制作和低成本等。

微带天线还具有可共形和可集成的优点,使其能够适应不同的应用场景和设备形状。

同时,微带天线的带宽较宽,能够覆盖多个通信频段。

微带天线的分析方法微带天线的分析主要涉及电磁场理论、微波传输线和电路理论等方面的知识。

常用的分析方法包括有限元法、边界元法、高频近似方法等。

这些方法可以根据具体问题选择合适的求解器和计算精度。

小型微带天线的优化设计微带天线的设计要素微带天线的优化设计主要天线的性能优化和尺寸减小。

设计要素包括基板材料、基板厚度、贴片形状和尺寸、缝隙大小和位置等。

通过对这些要素的优化,可以提高天线的辐射效率、增益和方向性等性能。

微带天线的优化方法微带天线的优化方法包括仿真优化和理论优化。

仿真优化通过电磁仿真软件对天线进行建模和仿真,根据性能指标进行优化。

理论优化则是通过对天线理论的深入研究,提出优化的设计方案。

也可以将两种方法结合使用,以获得更佳的设计效果。

小型微带天线的应用前景及挑战应用前景随着无线通信技术的不断发展,小型微带天线具有广泛的应用前景。

未来,微带天线将不断应用于5G、6G等新一代无线通信技术中,实现更高速度、更宽带宽和更低功耗的无线通信。

同时,微带天线也将应用于物联网、智能家居、自动驾驶等领域,实现设备的互联互通和智能化。

虽然小型微带天线具有许多优点,但也存在一些挑战。

基于HFSS矩形微带天线仿真与设计

基于HFSS矩形微带天线仿真与设计

基于HFSS矩形微带天线仿真与设计HFSS(高频结构模拟软件)是一种专业的电磁场仿真软件,可以用于电磁场分析和天线设计。

在通信领域,天线设计是非常重要的工作,而微带天线是一种常用的天线结构之一。

本文将基于HFSS软件对矩形微带天线进行仿真与设计,以探讨其性能和特点。

矩形微带天线是一种常见的微带天线结构,其结构简单、制作方便,并且在通信系统中有着广泛的应用。

矩形微带天线的主要结构是由金属贴片和衬底组成,金属贴片通常被设计成矩形或正方形,可以直接在PCB(Printed Circuit Board)板上加工制作。

由于其结构简单并且性能良好,所以矩形微带天线备受研究者的关注。

在HFSS软件中进行微带天线的仿真与设计,需要按照以下步骤进行:1. 建立仿真模型:首先需要建立微带天线的三维模型,包括金属贴片和衬底。

在HFSS软件中,可以通过绘制结构、设置材料参数、定义边界条件等步骤来完成模型的建立。

2. 定义仿真参数:在建立好仿真模型后,需要定义仿真的频率范围、激励方式、网格密度等参数,以确保仿真的准确性和有效性。

3. 进行仿真分析:在设置好仿真参数后,可以进行频域分析或时域分析,得到微带天线的S参数、辐射场分布等重要信息,从而评估微带天线的性能。

4. 优化设计:根据仿真结果,可以对微带天线的结构参数进行调整和优化,以获得更好的性能指标,比如增益、带宽、驻波比等。

通过以上步骤,可以在HFSS软件中对矩形微带天线进行全面的仿真与设计,为微带天线的工程应用提供良好的设计基础和技术支持。

接下来,将从两个方面对基于HFSS的矩形微带天线仿真与设计进行详细介绍。

第一、HFSS仿真分析在HFSS软件中对矩形微带天线进行仿真分析,主要是评估其性能指标和辐射特性。

常见的性能指标包括带宽、增益、辐射方向图、驻波比等。

对于微带天线的带宽来说,是一个很重要的性能指标。

带宽的宽窄直接关系到天线的频率覆盖范围,在通信系统中有着重要的应用。

微带天线设计

微带天线设计

同轴线馈电
10
各种同轴激励示于图3-。 在所有的情况中,同 轴插座安装在印制电 路板的背面,而同轴 线内导体接在天线导 体上。对指定的模, 同轴插座的位置可由 经验去找,以便产生 最好的匹配。使用N型 同轴插座的典型微带 天线示于图3-中。
图3-8 同轴馈电的微带天线
同轴馈电模拟
根据惠更斯原理,同轴馈电可以用一个由底面 流向顶面的电流圆柱带来模拟。这个电流在地 板上被环状磁流带圈起来,同轴线在地板上的 开口则用电壁闭合。如果忽略磁流的贡献,并 假定电流在圆柱上是均匀的,则可进一步简化。 简化到最理想的情况是,取出电流圆柱,用一 电流带代替,类似微带馈电的情况。该带可认 为是圆柱的中心轴,沿宽度方向铺开并具有等 效宽度的均匀电流带,对于给定的馈电点和场 模式,等效宽度可以根据计算与测量所得的阻 抗轨迹一致性经验地确定。一旦这个参数确定 了,它就可以用在除馈电点在贴片边缘上以外 的任何馈电位置和任何频率。当馈电点在贴片 边缘上时,可以认为,在贴片边缘上的边缘场 使等效馈电宽度不同于它在天线内部时的值。 在矩形天线中,等效宽度为同轴馈线内径的五 倍时,可给出良好的结果。
微带天线结构
微带贴片天线
4
微微带天线可以分为三种基本类型:微带贴片天线、微带行波天线和微带缝 隙天线。 微带贴片天线(MPA)是由介质基片、在基片一面上有任意平面几何形状的 导电贴片和基片另一面上的地板所构成。实际上,能计算其辐射特性的贴片 图形是有限的。
正方形
圆形
矩形
椭圆形
五角形 圆环形 直角等腰 三角形
16
Z cos L1 jZ w sin L1 Z 0 cos L2 jZ w sin L2 Y1 Y0 0 (3-7) Z w cos L1 jZ 0 sin L1 Z w cos L2 jZ 0 sin L2

微带天线的设计

微带天线的设计

微带天线设计天线大体可分为线天线和口径天线两类。

移动通信用的VHF 、UHF 天线,大多是以对称振子为基础而发展的各种型式的线天线,卫星地面站接收卫星信号大多用抛物面天线(口径天线)。

天线的特征与天线的形状、大小及构成材料有关。

天线的大小一般以天线发射或接收电磁波的波长l 来计量。

因为工作于波长l = 2m 的长为1m 的偶极子天线的辐射特性与工作于波长l = 2cm 的长为1cm 的偶极子天线是相同的。

与天线方向性有关参数:方向性函数或方向图 离开天线一定距离处,描述天线辐射的电磁场强度在空间的相对分布的数学表达式,称为天线的方向性函数; 把方向性函数用图形表示出来,就是方向图。

最大辐射波束通常称为方向图的主瓣。

主瓣旁边的几个小的波束叫旁瓣。

为了方便对各种天线的方向图进行比较,就需要规定一些表示方向图特性的参数,这些参数有:1.天线增益G (或方向性GD )、波束宽度(或主瓣宽度)、旁瓣电平等。

2.天线效率3.极化特性4.频带宽度5.输入阻抗天线增益是在波阵面某一给定方向天线辐射强度的量度。

它是被研究天线在最大辐射方向的辐射强度与被研究天线具有同等输入功率的各向同性天线在同一点所产生的最大辐射强度之比。

天线方向性GD与天线增益G类似但与天线增益定义略有不同。

因为天线总有损耗,天线辐射功率比馈入功率总要小一些,所以天线增益总要比天线方向性小一些。

理想天线能把全部馈入天线的功率限制在某一立体角ΩB内辐射出去,且在ΩB立体角内均匀分布。

这种情况下天线增益与天线方向性相等。

理想的天线辐射波束立体角ΩB及波束宽度θB实际天线的辐射功率有时并不限制在一个波束中,在一个波束内也非均匀分布。

在波束中心辐射强度最大,偏离波束中心,辐射强度减小。

辐射强度减小到3db时的立体角即定义为ΩB。

波束宽度θB与立体角ΩB关系为旁瓣电平旁瓣电平是指主瓣最近且电平最高的。

第一旁瓣电平,一般以分贝表示。

方向图的旁瓣区一般是不需要辐射的区域,其电平应尽可能的低。

侧馈矩形微带天线设计与仿真全文

侧馈矩形微带天线设计与仿真全文
Curve Info
dB(S(P1,P1)) Setup1 : Sw eep L0='28mm' W1='0.9mm'
dB(S(P1,P1)) Setup1 : Sw eep L0='28mm' W1='1mm'
dB(S(P1,P1)) Setup1 : Sw eep L0='28mm' W1='1.1mm'
-30.00
1.50
Байду номын сангаас
1.75
2.00
2.25
2.50
2.75
3.00
3.25
3.50
Freq [GHz]
MX1: 2.4500
图3 S11的扫频分析结果
0.00 -5.00 -10.00 -15.00
XY Plot 2
HFSSDesign1 ANSOFT
Curve Info
dB(S(P1,P1)) Setup1 : Sw eep L0='27mm'
天线参数。介质基片采用厚度为1.6mm的FR4环氧树脂(FR4 Epoxy) 板,天线馈电方式为微带线馈电。 2、设计步骤
①计算天线尺寸:微带天线的介质基片采用厚度为1.6mm的FR4 环氧树脂板,所以厚度h=1.6mm,介质的介电常数 r 4.4 。辐射贴 片宽度:w=37.26mm,辐射贴片长度:L=30.21mm,有效介电常数: e
dB(S(P1,P1))
-20.00
-25.00
-30.00
1.50
1.75
2.00
2.25
2.50
2.75
3.00
3.25

天线原理与设计-第九章微带天线

天线原理与设计-第九章微带天线

机遇在于随着新材料、新工艺的不断 涌现,为微带天线的发展提供了更多 可能性。
感谢观看
THANKS
04
微带天线优缺点
优点
低剖面
微带天线的高度通常在毫米级,非常适合于 空间受限的应用场景。
多频段工作
通过改变贴片的形状和尺寸,微带天线可以 在多个频段上工作。
易于集成
微带天线可以方便地与微波集成电路集成在 一起,形成统一的微波系统。
易于实现圆极化
微带天线可以方便地实现圆极化,从而扩大 其应用范围。
先进的工艺技术
采用先进的工艺技术,如光刻、刻蚀等,以实现精确的贴片形状和 尺寸。
设计实例
矩形微带天线
设计一个矩形微带天线, 工作在2.4GHz频段,增 益为5dBi,波束宽度为 60度。
圆形微带天线
设计一个圆形微带天线, 工作在5GHz频段,增 益为8dBi,波束宽度为 45度。
多频带微带天线
设计一个多频带微带天 线,覆盖2.4GHz和 5GHz频段,增益为 7dBi,波束宽度为60度。
历史与发展
起源
微带天线由马可尼公司于1970年 代初研制成功,最初用于卫星通
信。
发展历程
随着微波集成电路技术的发展,微 带天线在材料、工艺和理论等方面 不断取得突破,逐渐成为天线领域 的重要分支。
未来展望
随着5G、物联网等技术的发展,微 带天线将面临更多机遇和挑战,未 来将朝着高性能、多功能、小型化、 集成化等方向发展。
极化方式决定了微带天线 信号的极化状态和稳定性。
方向性决定了微带天线信 号传输的方向和范围。
效率决定了微带天线能量 转换的效率和信号传输的 质量。
03
微带天线设计
设计流程

实现小型化微带天线的几种设计方法

实现小型化微带天线的几种设计方法

实现小型化微带天线的几种设计方法
小型微带天线是近年来不断发展的新技术,它广泛应用于手机终端、导航和定位系统和模块,特别用于智能家居设备,以及医疗仪器、工业应用和战术无线网络。

它具有小尺寸、低功耗和灵活多变的特点,有助于改善用户体验,扩大无线设备的应用场景。

为了实现小型化微带天线的设计,目前已经有多种不同的方法,这取决于嵌入物理环境、天线结构与公共网络中要求的功能,下面我就给出实现小型化微带天线的几种设计方法:
1、增加磁性位移开关(MEMS):在基础上增加磁性位移开关,其可以将多根天线收发电路连接在一起,实现单个机构的小型化,从而大大减小了天线的尺寸。

2、采用可调谐天线:将可调谐天线的平均尺寸缩小到比传统的微带天线小一些,可以通过控制控制变压器来改变振荡频率,从而满足不同的频率。

3、采用多普勒缩小型化天线:利用多普勒缩小型化天线可以实现多个带宽模块的小型化,此外还可以进一步利用多普勒技术增加天线的中心频率,从而提高小型化天线的频率范围,缩小其尺寸。

4、采用超长电缆波导:把超长电缆波导与普通电缆波导相结合,可以实现微带天线的微型化,同时利用超长电缆波导的周围增,采用相对较低的损耗,实现同样的功能。

5、利用可折叠的天线:设计可折叠的微带天线,它可以使天线更加小型化,且可以满足不同的频带要求。

总之,现有的技术可为实现小型化微带天线提供了很多可能性,也为我们提供了设计的灵活性和自由性。

微带天线的设计和阻抗匹配

微带天线的设计和阻抗匹配

微带天线的设计和阻抗匹配微带天线是一种广泛应用于无线通信领域的新型天线。

它具有体积小、重量轻、易于集成等优点,因此特别适合于现代通信系统的应用。

本文将详细介绍微带天线的原理、设计思路、阻抗匹配方法以及实验验证等方面的内容。

微带天线是在介质基板上制作的一种天线。

它主要由辐射元和传输线组成,通过在介质基板上印制金属导带,形成辐射元和传输线,利用电磁波的辐射和传播特性实现天线的功能。

由于辐射元和传输线都印制在介质基板上,因此微带天线具有体积小、重量轻、易于集成等优点。

选择合适的介质基板,根据需要选择介电常数、厚度、稳定性等参数;在介质基板上印制金属导带,形成辐射元和传输线;根据设计要求,对金属导带进行形状和尺寸的调整;为提高天线的性能,需要进行阻抗匹配等调试;选取合适的材料:根据应用场景和设计要求,选择合适的介质基板和金属材料;设计形状和尺寸:根据天线设计的原理,设计合适的辐射元和传输线形状,以及其尺寸大小;考虑天线的抗干扰能力:为提高天线的性能,需要采取措施提高天线的抗干扰能力,如设置保护区、采用滤波器等。

微带天线的阻抗匹配是实现天线高效辐射的关键环节。

通常情况下,微带天线的阻抗不是纯电阻,而是具有一定的电抗分量。

为了使天线与馈线之间实现良好的阻抗匹配,通常采用以下方法:改变馈线的特性阻抗:通过调整馈线的几何形状、材料等参数,改变馈线的特性阻抗,使其与天线的阻抗相匹配;添加电阻、电容等元件:在馈线与天线之间添加适当的电阻、电容等元件,以调整天线的阻抗,实现阻抗匹配;采用分步匹配:通过在馈线与天线之间设置适当的阶梯状阻抗,逐渐接近天线的阻抗,从而实现良好的阻抗匹配。

为了验证微带天线的性能和阻抗匹配的效果,通常需要进行实验测试。

实验测试主要包括以下步骤:搭建测试平台:根据需要搭建测试平台,包括信号源、功率放大器、接收机等;连接测试平台:将微带天线与测试平台连接,确保稳定的信号传输;调整阻抗匹配:根据实验结果,对天线的阻抗匹配进行微调,以获得最佳的性能;进行测试:在不同的频率、距离等条件下进行测试,收集数据并进行分析;结果分析与讨论:根据实验数据进行分析和讨论,评估微带天线的性能和阻抗匹配的效果。

设计1:侧馈矩形微带天线

设计1:侧馈矩形微带天线
04
此外,侧馈矩形微带天线与其他天线的集成和共形设计也将成为未来 研究的热点,为无线通信技术的发展提供更多可能性。
THANKS
感谢观看
当微波信号通过侧馈网络传输到 辐射贴片上时,在辐射贴片上形 成电磁波,通过与接地板的相互 作用,形成定向的电磁波辐射。
侧馈矩形微带天线的优缺点
优点
侧馈矩形微带天线具有体积小、重量 轻、易于集成等优点,同时其结构简 单、易于加工和制作,成本较低。
缺点
侧馈矩形微带天线的带宽较窄,且其 辐射效率受介质基片的影响较大,因 此在一些需要宽频带和高效辐射的应 用中受到限制。
设计1:侧馈矩形微带天 线
• 引言 • 侧馈矩形微带天线的基本原理 • 侧馈矩形微带天线的仿真与优化 • 侧馈矩形微带天线的实际制作与测试 • 侧馈矩形微带天线的应用案例 • 总结与展望
01
引言
微带天线简介
微带天线是一种由微带线或带状线构 成的平面天线,具有体积小、重量轻 、易于集成等优点。
它利用微波传输线原理,将辐射元件 和传输线集成在同一平面上,通过电 磁辐射实现信号的传输。
03
稳定性
材料稳定性对侧馈矩形微带天线的长期性能和使用寿命至关重要。选择
具有良好热稳定性、化学稳定性和机械强度的材料,可以确保天线在各
种环境条件下稳定工作。
侧馈矩形微带天线的制作工艺
工艺流程
制作侧馈矩形微带天线需要遵循一定的工艺流程。首先,在选定的基材上均匀涂覆一层导 电层,然后通过光刻、腐蚀等工艺形成天线结构。接下来,进行必要的金属化处理和连接 器安装,最后进行测试和调整。
侧馈矩形微带天线的现状与成果总结
侧馈矩形微带天线是一种广泛应用于无线通信领域的天线类型,具有低剖面、易于 集成和易于制造等优点。

实验10-微带贴片天线设计

实验10-微带贴片天线设计

实验十:综合设计-微带贴片天线设计
(自我认为这个做的非常好)
一、设计要求
设计一个矩形微带贴片天线,要求与50Ω馈线匹配连接,匹配结构采用短路单枝节形式。

基板参数:FR4基板,介电系数4.5,基板厚度3 mm,双面覆铜,金属厚度0.018 mm.过孔壁金属厚度0.05 mm.
设计指标:中心频率800 MHz,带宽10 MHz,反射系数小于-10 dB,驻波比小于2,增益大于6 dB。

二、实验仪器
硬件:PC
软件:AWR软件
三、设计步骤
1、贴片天线设计
2、匹配电路设计
3、总体电路设合计
四、数据记录及分析
1、贴片天线设计
(1)尺寸计算:
参数εre
辐射单元馈线
宽度/mm 长度/mm 宽度/mm 长度/mm
计算值 3.4 113 102 5.6 50.7 优化结果—138.1615906405 86.5 ——(2)贴片天线模型:
(3)参数化设置:
(4)Patch参数化模型:(5)分析及优化:
(6)注释分析:
2、匹配电路设计
天线阻抗/Ω参数 d l Z0圆图计算结果0.1930987λ0.109773λ50
电长度/deg 69.515532 39.51828 W/mm
实际值/mm 0.072412 0.041165 5.61906
调节结果/mm —
3、总体电路设合计
(1)建立电路原理图:
(2)版图验证:
(3)分析与调节:调节前:
调节后:
(4)AXIEM电磁提取分析:AXIEM提取后比没有提取的效果差!。

微带天线的设计

微带天线的设计

简易微带天线设计微带天线(Microstrip Antennas)是由导体薄片粘贴在背面有导体接地板的介质基片上形成的天线。

微带辐射器的概念首先由Deschamps于1953年提出。

和常用的微波天线相比,微带天线具有以下优点:体积小,重量轻,低剖面,能与载体(如飞行器)共形;制造成本低,易于批量生产;天线的散射截面小;能得到单方向的宽瓣方向图,最大辐射方向在平面的法线方向;易于和微带线路集成;易于实现线极化和圆极化,容易实现双频段、双极化等多功能工作。

微带天线根据其辐射单元形式大致可分为4类:微带贴片天线,微带振子天线,微带线形天线,微带隙缝天线,其中微带贴片天线是最常见的形式。

微带贴片天线由带导体接地板的介质基片上贴加导体薄片形成,通常利用微带线或同轴线一类馈线馈电,使在导体贴片与接地板之间激励起射频电磁场,并通过贴片四周与接地板间的隙缝向外辐射。

其基片厚度与波长相比一般秀小,因而可实现一维小型化。

导体贴片一般是规则形状的面积单元,如矩形、圆形或圆环形薄片等。

本文描述了一个设计完成的简易微带天线模型及其性能仿真结果,由于能力有限,设计不甚成熟。

设计的微带贴片天线如图1所示,其侧面如图2所示。

图1 微带天线结构设计示意图图2 微带天线结构设计侧面示意图如图所示,设计的微带贴片天线的贴片形状为圆形,其馈电线为微带线。

考察该天线的谐振频率可知,该天线为单频天线,其谐振曲线如图3(以线性单位计)和图4(以dB计)所示。

图3 微带天线谐振曲线(以线性单位计)图4 微带天线谐振曲线(以dB计)从谐振曲线中可看出,该微带天线的谐振频率约为2.9GHz,该谐振频率与天线设计的参数有关,如微带贴片的半径,贴片材料等因素。

适当修改这些参数即可得到中心频率不同的微带天线以适应各种不同的要求。

该微带天线的相位曲线如图5所示。

从相位曲线可以看出,当天线处于谐振频率时,其相位角恰为零。

图5 微带天线的相位曲线设计的微带天线的史密斯圆图如图6所示。

微带天线设计

微带天线设计
其电场分布如图 2-13(b)所示。大部分电力线在两种介质中的分布是不均匀的。当W h >> 1
及 εr >> 1电力线主要分布在介质中。这时边缘效应使微带传输线的电尺寸比其实际尺寸要
大。当部分波在介质中传播、部分在空气中传播时,这时就需引入有效介电常数 εre 来说明
边缘效应和波在传输线中的传播。 大多数情况下,有效介电常数可表示为
由于贴片长度 b = λ 2 ,故两开路端的垂直电场分量反相,该分量在空间产生的场互相抵消
(或很弱),而水平分量的电场是同相的。因此,远区的辐射场主要由水平分量场产生,最 大辐射方向在垂直于贴片的方向。
由此分析可见,矩形微带天线,可用两个相距 λ 2 、同相激励的缝隙天线来等效。缝
的长度为辐射片的宽度 W ≈ λ0 2 ,缝宽 ∆l ≈ h ,两缝隙在空间产生辐射作用。这是微带天线
为适应现代通信设备的需求,天线的研发方向主要往几个方面进行,即减小天线的尺寸、 宽带和多波段工作、智能方向图控制。随着电子设备集成度的提高,通信设备的体积也变得 越来越小,这时天线尺寸就需要越来越小了。然而,在减小天线的尺寸的同时又不明显影响 天线的增益和效率是一项艰巨的工作。电子设备集成度提高,经常需要一个天线在较宽的频 率范围内来支持两个或更多的无线服务,宽带和多波段天线能满足这样的需要。微带天线由 于重量轻、体积小、成本低、制作工艺简单、易与有源器件和电路集成等诸多优点,所以得 到广泛的应用和重视。
3 微带天线的多频化技术
3.1 概述
随着移动通信的发展,对移动终端上的天线大多要求能够工作在双频段甚至多 频段,同时,无线局域网(WLAN)、无线宽带接入等无线通信系统的迅速发展也推动了微带 天线多频化的发展,针对这些通信系统,许多研究者设计出多种可双频段或多频段工作的微 带天线。

实验五-微带天线设计

实验五-微带天线设计

(-33.4,39.5)
(-52.9,19.895) (-52.9,20.845)
w1=0.29mm w2=2.19mm
(-33.4,19.895) (-33.4,19.605)
(-52.9,18.655)
l1=19.5mm (-52.9,19.605) (-33.4,05) L=33.4mm
(0,39.5) W=39.5mm (0,0)
W / h 0.264 W / h 0.8
2W 2
Y in
2G
90 2W
2 0
2
120
2 0
W≤λ0 W>λ0
f0 2
c
e (L2L)
W
c 2 f0
r211/2
01.08.2020
MW & Opti. Commu. Lab, XJTU
14
矩形天线实例:
w2
w1
W
l1 L
01.08.2020
• 在数据显示窗口,执行菜单命令【Tool]->【Data File Tool】,弹出 “dttool/main Window”,利用此工具导出Momentum仿真后的S1P文件。
实验五 微带天线设计、仿 真、制作与测试
一、天线的基本知识
1.1 天线的概念
天线:向空间发射或从空间接收电磁波的装置
天线功能: (1)能量转换功能:进行导 行波(或高频电流)和自由空 间波之间的能量转换; (2)定向作用:向空间发射 或从空间接收电磁波具有一 定的方向性。对于发射天线, 是指将电磁波能量向一定方 向集中辐射; 对于接收天线, 是只接收特定方向来的电磁 波.
w1=0.40mm w2=2.31mm
(-33.4,19.95) (-33.4,19.55)

微波仿真论坛_HFSS设计微带天线

微波仿真论坛_HFSS设计微带天线

微波仿真论坛_HFSS设计微带天线
一、前言
微带天线,即微带感应力天线,是一种先进的电磁发射天线,它采用微细空心管及其他微带元件,广泛应用于宽带、多址无线通信、脉冲定位系统、脉冲探测系统等许多应用中。

以HFSS为工具,设计微带感应力天线,能够更加直观地分析微带天线的性能,从而帮助我们了解微带天线的传输特性,并根据实际应用需求实现天线高效性能设计。

二、微波仿真HFSS的设计步骤:
1、首先,选择好所采用的HFSS软件,确定需要分析的微带感应力天线的构型,并建立计算模型。

2、根据相关理论,计算出微带天线的基本参数,如振子长度、空心管半径和微带宽度等,以及天线的振荡频率、相位阶跃和频带宽等。

3、设置相应的仿真网格,根据天线实际的构形,划分仿真区域,确定网格大小和步长,以达到较高的空间分辨率,从而获得更准确的仿真结果。

4、设置仿真参考电路,根据计算出的微带天线振子长度、空心管半径和微带宽度等,及其传输特性,利用HFSS软件设置好参考模型,以及仿真频率。

5、开启仿真计算,间接计算和直接计算,从而获得微带感应力天线的S参数,用于评估微带天线的性能。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

描述天线特性的主要参数
3
与天线方向性有关参数:方向性函数或方向图 离开天线一定距离处,描述天线辐射的电磁场强度在空间的相 对分布的数学表达式,称为天线的方向性函数; 把方向性函数用图形表示出来,就是方向图。 最大辐射波束通常称为方向图的主瓣。主瓣旁边的几个小的波 束叫旁瓣。 为了方便对各种天线的方向图进行比较,就需要规定一些表示 方向图特性的参数,这些参数有:天线增益G(或方向性GD)、 θb 波束宽度(或主瓣宽度)、旁瓣电平等。 2.天线效率 3.极化特性 4.频带宽度 5.输入阻抗
天线举例
天线大体可分为线天线和口径天线两类。
2
移动通信用的VHF、UHF天线,大多是以对称振子为基础而发展的各种型式 的线天线,卫星地面站接收卫星信号大多用抛物面天线(口径天线)。
天线的特征与天线的形状、大小及构成材料有关。天线的大小一般以天线发 射或接收电磁波的波长λ来计量。因为工作于波长λ = 2m的长为1m的偶极子 天线的辐射特性与工作于波长λ = 2cm的长为1cm的偶极子天线是相同的。
极化特性是指天线在最大辐射方向上电场矢量的方向随时间变 化的规律。按天线所辐射的电场的极化形式,可将天线分为线 极化天线、圆极化天线和椭圆极化天线。线极化又可分为水平 极化和垂直极化;圆极化和椭圆极化都可分为左旋和右旋。 输入阻抗与电压驻波比: 天线的输入阻抗等于传输线的特性阻抗,才能使天线获得最大 功率。 当天线工作频率偏离设计频率时,天线与传输线的匹配变坏, 致使传输线上电压驻波比增大,天线效率降低。因此在实际应 用中,还引入电压驻波比参数,并且驻波比不能大于某一规定 值。 天线的电参数都与频率有关,当工作频率偏离设计频率时,往 往要引起天线参数的变化。当工作频率变化时,天线的有关电 参数不应超出规定的范围,这一频率范围称为频带宽度,简称 为天线的带宽。
微带馈电模拟
17
对于微带馈电,用惠更斯原理 可以把馈源模拟为贴在磁壁上 沿z方向的电流带。在薄的微带 线中,除了馈线的极邻近区域 外,在贴片边界上的任何地方, 这个电流都很小。在理想的情 况下,可假定馈源是一个恒定 图3-8 微带天线的馈电模拟 电流的均匀电流带,如图3-8所 示。边缘效应要求电流带的宽度等于馈线的有效宽度, 馈线对微带天线输入阻抗 的影响表现为增加了一个感抗分量,此感抗可以由电流 带的尺寸来计算。
同轴线馈电
18
各种同轴激励示于图3-。 在所有的情况中,同 轴插座安装在印制电 路板的背面,而同轴 线内导体接在天线导 体上。对指定的模, 同轴插座的位置可由 经验去找,以便产生 最好的匹配。使用N型 同轴插座的典型微带 天线示于图3-中。
图3-9 同轴馈电的微带天线
同轴馈电模拟
根据惠更斯原理,同轴馈电可以用一个由底面 流向顶面的电流圆柱带来模拟。这个电流在地 板上被环状磁流带圈起来,同轴线在地板上的 开口则用电壁闭合。如果忽略磁流的贡献,并 假定电流在圆柱上是均匀的,则可进一步简化。 简化到最理想的情况是,取出电流圆柱,用一 电流带代替,类似微带馈电的情况。该带可认 为是圆柱的中心轴,沿宽度方向铺开并具有等 效宽度的均匀电流带,对于给定的馈电点和场 模式,等效宽度可以根据计算与测量所得的阻 抗轨迹一致性经验地确定。一旦这个参数确定 了,它就可以用在除馈电点在贴片边缘上以外 的任何馈电位置和任何频率。当馈电点在贴片 边缘上时,可以认为,在贴片边缘上的边缘场 使等效馈电宽度不同于它在天线内部时的值。 在矩形天线中,等效宽度为同轴馈线内径的五 倍时,可给出良好的结果。
旁瓣电平是指主瓣最近且电平最高的 第一旁瓣电平,一般以分贝表示。方向图的旁瓣区一 般是不需要辐射的区域,其电平应尽可能的低。
天线效率与辐射电阻
天线效率ηA 定义为,
6
PΣ PΣ ηA 入功率;P1 为欧姆损耗;PΣ为辐射功率 天线的辐射电阻 RΣ用来度量天线辐射功率的能力,它是一个虚拟的量,定义如下: 设有一个电阻 RΣ,当通过它的电流等于天线上的最大电流时,其损耗的功率就等 于辐射功率。 显然,即辐射电阻越大,天线的辐射能力越强。 由上述定义得辐射电阻与辐射功率的关系为
微带天线结构
微带贴片天线
12
微微带天线可以分为三种基本类型:微带贴片天线、微带行波天线和微带缝 隙天线。 微带贴片天线(MPA)是由介质基片、在基片一面上有任意平面几何形状的 导电贴片和基片另一面上的地板所构成。实际上,能计算其辐射特性的贴片 图形是有限的。
正方形
圆形
矩形
椭圆形
五角形 圆环形 直角等腰 三角形
第三讲 微带天线设计
本讲座关于微带天线设计理论取自“微带天线”(美
1
I.J.鲍尔 P.布哈蒂亚著,梁联倬等译,1985年电子工业 出版社),虽然最新资料没有反映,但基本概念仍是 有用的。国内也有几本微带天线的书,很多内容也取 自鲍尔的著作,故本讲座关于微带天线设计理论部分 就参考鲍尔一书。至于本讲座后面推荐的微带天线设 计软件是否用了鲍尔的有关公式,我们并不十分关心, 比如Sonnet软件依据的是矩量法。不同的设计软件有不 同的特色,所依据的设计公式、方法有差别,有兴趣 的读者最好参阅相关的文献。
微带天线的应用
11
在许多实际设计中,微带天线的优点远远超过它的缺点。在一些显要的系统 中已经应用微带天线的有: – 移动通信; – 卫星通讯; – 多普勒及其它雷达; – 无线电测高计; – 指挥和控制系统; – 导弹遥测; – 武器信管; – 便携装置; – 环境检测仪表和遥感; – 复杂天线中的馈电单元; – 卫星导航接收机; – 生物医学辐射器。 这些绝没有列全,随着对微带天线应用可能性认识的提高,微带天线的应用 场合将继续增多。
图3-7 微带线馈电的天线
图3-9 同轴馈电的微带天线
微带馈电
16
中心微带馈电和偏心微带馈电。馈电点的位置也决定激励那种 模式。 当天线元的尺寸确定以后,可按下法进行匹配:先将中心馈电 天线的贴片同50的馈线一起光刻,测量输入阻抗并设计出匹配 变阻器;再在天线元与馈线之间接入该匹配变阻器,重新做成 天线。另外,如果天线的几何图形只维持主模,则微带馈线可 偏向一边以得到良好的匹配。 特定的天线模可用许多方法激励。如果场沿矩形贴片的宽度变 化,则当馈线沿宽度移动时,输入阻抗随之而变,从而提供了 一种阻抗匹配的简单办法。馈电位置的改变,使得馈线和天线 之间的耦合改变,因而使谐振频率产生一个小的漂移,而辐射 方向图仍然保持不变。不过,稍加改变贴片尺寸或者天线尺寸, 可补偿谐振频率的漂移。
天线方向性 GD 与天线增益 G 类似但与天线增益定义略有不同。
GD =
因为天线总有损耗,天线辐射功率比馈入功率总要小一些,所以天线增益总要比天线方向性小 一些。 理想天线能把全部馈入天线的功率限制在某一立体角 B 内辐射出去,且在 B 立体角内均匀分 布。这种情况下天线增益与天线方向性相等。
G = GD =
微带天线的优缺点及应用
但是,与通常的微波天线相比,微带天线也有一些缺点: 频带窄; 有损耗,因而增益较低; 大多数微带天线只向半空间辐射; 最大增益实际上受限制(约为20dB); 馈线与辐射元之间的隔离差; 端射性能差; 可能存在表面波; 功率容量较低。
10
但是有一些办法可以减小某些缺点。例如,只要在设计和制造 过程中特别注意就可抑制或消除表面波。
1 2 PΣ = I m RΣ 2
仿照引入辐射电阻的办法,损耗电阻 R1 为
即辐射电阻为
2 PΣ RΣ = 2 Im
2 P1 R1 = 2 Im
将上述两式代入效率公式,得天线效率为
ηA =
RΣ 1 = RΣ + R1 1 + R1 RΣ
可见,要提高天线效率,应尽可能提高 RΣ,降低 R1。
极化特性、频带宽度与输入阻抗 7
13
图3-5 微带行波天线
微带缝隙天线
14
微带缝隙天线由微带馈线和开在地板上的缝隙 组成。缝隙可以是矩形(宽的或窄的),圆形 或环形。
窄缝
圆环缝
宽缝
圆贴片缝
图3-6 微带缝隙天线
微带天线馈电
15
大多数微带天线 只在介质基片的 一面上有辐射单 元,因此,可以 用微带天线或同 轴线馈电。 因为天线输入阻 抗不等于通常的 50 传 输线 阻 抗 , 所以需要匹配。 匹配可由适当选 择馈电的位置来 做到。但是,馈 电的位置也影响 辐射特性。
4π B
理想天线的辐射波束立体角 B 及波束宽度θ B
波束宽度与旁瓣电平
5
实际天线的辐射功率有时并不限制在一个波束中,在 一个波束内也非均匀分布。在波束中心辐射强度最大, 偏离波束中心,辐射强度减小。辐射强度减小到3db时 的立体角即定义为B。波束宽度θB与立体角B关系为
B =
旁瓣电平
π
4
θ
2 B
图8-3
天线增益G与方向性G 天线增益G与方向性GD
天线增益是在波阵面某一给定方向天线辐射强度的量度,它是被研究天线在最大辐射方向的辐 射强度与被研究天线具有同等输入功率的各向同性天线在同一点所产生的最大辐射强度之比
4
G=
单位立体角最大辐射功 率 馈入天线总功率 4π
单位立体角最大辐射功率 总的辐射功率 4π
半圆形
图3-3 实际使用的各种微带天线图形
图3-4 微带天线其它可能的几何图形
微带行波天线
微带行波天线(MTA)是由基 片、在基片一面上的链形周 期结构或普通的长TEM波传输 线(也维持一个TE模)和基 片另一面上的地板组成。TEM 波传输线的末端接匹配负载, 当天线上维持行波时,可从 天线结构设计上使主波束位 于从边射到端射的任意方向。
19
图3-10 同轴线馈电的 微带天线
关于表面波的抑制
20
在微带天线中,除了直接辐射之外,还可以激励表面波,从而产生轴向辐射。 因此,在设计中必须给予考虑。这些表面波是TM型和TE型,它们传播到微 带贴片之外的基片中。当沿微带贴片传播的准TEM波相速接近于表面波相速 时,就出现了波间的强耦合。这类表面波耦合的最低频率确定了微带天线工 作频率的上限。 最低次TM模的截止频率没有下限,高次模(TMn和TEn)的截止频率为
相关文档
最新文档