PTP_Mobile_Backhauling_Acceptance_Tests_(Joachim_Atzwanger,_Telekom_Austria)

合集下载

二代测序报告放行标准

二代测序报告放行标准

二代测序报告放行标准一、测序质量测序质量是评估二代测序数据质量的重要指标。

高质量的测序数据对于后续的变异检测和分析至关重要。

在放行标准中,要求测序数据的质量得分大于Q30,以确保变异检测的准确性。

二、样本完整性样本完整性是指测序得到的DNA序列与原始样本DNA的一致性。

在二代测序中,由于PCR扩增和建库等操作可能导致DNA序列的偏移和丢失,因此需要评估样本的完整性。

在放行标准中,要求样本完整性大于90%,以避免由于序列偏移或丢失导致变异检测的误差。

三、测序深度测序深度是指测序得到的总碱基数与参考基因组的碱基总数的比值。

足够的测序深度是确保变异检测灵敏度和特异性的前提。

在放行标准中,要求测序深度大于10X,以满足大多数变异检测的需求。

四、测序覆盖率测序覆盖率是指测序得到的碱基序列与参考基因组的碱基序列的比值。

在放行标准中,要求基因组覆盖率大于95%,以确保变异检测的全面性和准确性。

五、检测变异检测变异是二代测序的主要目的之一。

在放行标准中,要求准确检测到已知的变异位点,并且变异位点的检测灵敏度和特异性均大于99%。

同时,要求对未知变异进行合理注释和解读。

六、数据分析数据分析是二代测序报告的重要组成部分。

在放行标准中,要求数据分析过程符合科学和规范的要求,并且分析结果准确可靠。

同时,要求对数据进行合理的解读和解释。

七、可重复性可重复性是指实验结果的稳定性和可靠性。

在二代测序中,由于操作复杂和数据量大等因素,实验结果的可重复性可能受到影响。

在放行标准中,要求实验结果具有较好的可重复性,以确保数据的可靠性和准确性。

八、生物信息学分析生物信息学分析是二代测序数据处理的重要环节。

在放行标准中,要求生物信息学分析过程符合规范和标准的要求,并且分析结果准确可靠。

同时,要求对生物信息学分析结果进行合理的解读和解释。

九、报告格式报告格式是二代测序报告的重要组成部分。

在放行标准中,要求报告格式规范、清晰、易于理解,并且包括必要的实验和数据分析过程、结果和结论等信息。

ptp中的延迟测量间隔

ptp中的延迟测量间隔

ptp中的延迟测量间隔
PTP(精密时间协议)中的延迟测量间隔是指在网络中进行时钟
同步时,两个节点之间进行延迟测量的时间间隔。

PTP是一种用于
精确同步网络中各个节点时钟的协议,它通过测量数据包从发送到
接收所需的时间来进行时钟同步。

延迟测量间隔的设定对于网络中
时钟同步的精度和性能至关重要。

在PTP中,延迟测量间隔的设定需要考虑网络的延迟变化情况、时钟同步的精度要求以及网络负载等因素。

通常情况下,延迟测量
间隔可以根据网络的实际情况进行调整,以确保时钟同步的准确性
和稳定性。

延迟测量间隔的设定会影响到PTP算法的收敛速度和对网络延
迟变化的适应能力。

较短的延迟测量间隔可以提高时钟同步的实时性,但也会增加网络流量和计算开销;而较长的延迟测量间隔则可
以减少网络负载,但可能降低时钟同步的精度和灵活性。

总之,延迟测量间隔的设定需要综合考虑网络的实际情况和时
钟同步的要求,以达到时钟同步精度和网络性能的平衡。

在实际应
用中,需要根据具体的网络环境和要求进行合理的设置和调整。

EPS Fallback成功率优化思路

EPS Fallback成功率优化思路

EPS Fallback成功率优化思路一、EPS Fallback的回落方式(前台信令流程)1. 基于切换方式的回落(其中又分为基于测量的切换以及基于盲的切换两种回落方式,其中基于盲的切换很少涉及,本文档不作讨论。

)1.1基于测量切换方式的回落1.主叫发送invite信令:主叫在5G侧完成默认承载建立和IMS注册流程,发起语音业务时向核心网发送invite消息,其中携带主被叫用户信息。

2. 触发EPS Fallback流程,基站下发B1测控:语音业务触发EPS Fallback流程后,基站通过RRC重配消息下发LTE测控信息,其中包括LTE测量对象、测量事件和相关门限信息。

3.终端上报MR LTE小区测量报告。

4.基站下发切换命令:基站下发MobilityFromNRCommand命令,终端从NR切换至LTE网络。

5.终端回落LTE后建立专用承载,终端在LTE侧激活QCI=1专用承载。

注:终端发起语音业务触发基于切换方式的EPS FB后,基站下发B1测控,同时启动定时器,如果定时器超时后依然没有B1 MR上报则触发盲的流程,如果LTE邻接关系中存在配置为“同覆盖”的邻区则触发盲切,如果LTE邻接关系全部配置为“相邻”则触发盲重定向。

该定时器当前固定为3s不可修改,在NR3.1版本中更改为可配置。

2.基于重定向方式的回落。

2.1基于测量重定向方式的回落1.主叫发送invite信令主叫在5G侧完成默认承载建立和IMS注册流程,发起语音业务时向核心网发送invite消息,其中携带主被叫用户信息。

2. 触发EPS Fallback流程,基站下发B1测控语音业务触发EPS Fallback流程后,基站通过RRC重配消息下发LTE测控信息,其中包括LTE 测量对象、测量事件和相关门限信息。

3.终端上报MR LTE小区测量报告。

4.基站下发RRC Release消息,其中携带重定向频点5.终端回落LTE后建立QCI=1专用承载,开始通话过程。

3GPP TS 36.331 V13.2.0 (2016-06)

3GPP TS 36.331 V13.2.0 (2016-06)

3GPP TS 36.331 V13.2.0 (2016-06)Technical Specification3rd Generation Partnership Project;Technical Specification Group Radio Access Network;Evolved Universal Terrestrial Radio Access (E-UTRA);Radio Resource Control (RRC);Protocol specification(Release 13)The present document has been developed within the 3rd Generation Partnership Project (3GPP TM) and may be further elaborated for the purposes of 3GPP. The present document has not been subject to any approval process by the 3GPP Organizational Partners and shall not be implemented.This Specification is provided for future development work within 3GPP only. The Organizational Partners accept no liability for any use of this Specification. Specifications and reports for implementation of the 3GPP TM system should be obtained via the 3GPP Organizational Partners' Publications Offices.KeywordsUMTS, radio3GPPPostal address3GPP support office address650 Route des Lucioles - Sophia AntipolisValbonne - FRANCETel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16InternetCopyright NotificationNo part may be reproduced except as authorized by written permission.The copyright and the foregoing restriction extend to reproduction in all media.© 2016, 3GPP Organizational Partners (ARIB, ATIS, CCSA, ETSI, TSDSI, TTA, TTC).All rights reserved.UMTS™ is a Trade Mark of ETSI registered for the benefit of its members3GPP™ is a Trade Mark of ETSI registered for the benefit of its Members and of the 3GPP Organizational PartnersLTE™ is a Trade Mark of ETSI currently being registered for the benefit of its Members and of the 3GPP Organizational Partners GSM® and the GSM logo are registered and owned by the GSM AssociationBluetooth® is a Trade Mark of the Bluetooth SIG registered for the benefit of its membersContentsForeword (18)1Scope (19)2References (19)3Definitions, symbols and abbreviations (22)3.1Definitions (22)3.2Abbreviations (24)4General (27)4.1Introduction (27)4.2Architecture (28)4.2.1UE states and state transitions including inter RAT (28)4.2.2Signalling radio bearers (29)4.3Services (30)4.3.1Services provided to upper layers (30)4.3.2Services expected from lower layers (30)4.4Functions (30)5Procedures (32)5.1General (32)5.1.1Introduction (32)5.1.2General requirements (32)5.2System information (33)5.2.1Introduction (33)5.2.1.1General (33)5.2.1.2Scheduling (34)5.2.1.2a Scheduling for NB-IoT (34)5.2.1.3System information validity and notification of changes (35)5.2.1.4Indication of ETWS notification (36)5.2.1.5Indication of CMAS notification (37)5.2.1.6Notification of EAB parameters change (37)5.2.1.7Access Barring parameters change in NB-IoT (37)5.2.2System information acquisition (38)5.2.2.1General (38)5.2.2.2Initiation (38)5.2.2.3System information required by the UE (38)5.2.2.4System information acquisition by the UE (39)5.2.2.5Essential system information missing (42)5.2.2.6Actions upon reception of the MasterInformationBlock message (42)5.2.2.7Actions upon reception of the SystemInformationBlockType1 message (42)5.2.2.8Actions upon reception of SystemInformation messages (44)5.2.2.9Actions upon reception of SystemInformationBlockType2 (44)5.2.2.10Actions upon reception of SystemInformationBlockType3 (45)5.2.2.11Actions upon reception of SystemInformationBlockType4 (45)5.2.2.12Actions upon reception of SystemInformationBlockType5 (45)5.2.2.13Actions upon reception of SystemInformationBlockType6 (45)5.2.2.14Actions upon reception of SystemInformationBlockType7 (45)5.2.2.15Actions upon reception of SystemInformationBlockType8 (45)5.2.2.16Actions upon reception of SystemInformationBlockType9 (46)5.2.2.17Actions upon reception of SystemInformationBlockType10 (46)5.2.2.18Actions upon reception of SystemInformationBlockType11 (46)5.2.2.19Actions upon reception of SystemInformationBlockType12 (47)5.2.2.20Actions upon reception of SystemInformationBlockType13 (48)5.2.2.21Actions upon reception of SystemInformationBlockType14 (48)5.2.2.22Actions upon reception of SystemInformationBlockType15 (48)5.2.2.23Actions upon reception of SystemInformationBlockType16 (48)5.2.2.24Actions upon reception of SystemInformationBlockType17 (48)5.2.2.25Actions upon reception of SystemInformationBlockType18 (48)5.2.2.26Actions upon reception of SystemInformationBlockType19 (49)5.2.3Acquisition of an SI message (49)5.2.3a Acquisition of an SI message by BL UE or UE in CE or a NB-IoT UE (50)5.3Connection control (50)5.3.1Introduction (50)5.3.1.1RRC connection control (50)5.3.1.2Security (52)5.3.1.2a RN security (53)5.3.1.3Connected mode mobility (53)5.3.1.4Connection control in NB-IoT (54)5.3.2Paging (55)5.3.2.1General (55)5.3.2.2Initiation (55)5.3.2.3Reception of the Paging message by the UE (55)5.3.3RRC connection establishment (56)5.3.3.1General (56)5.3.3.1a Conditions for establishing RRC Connection for sidelink communication/ discovery (58)5.3.3.2Initiation (59)5.3.3.3Actions related to transmission of RRCConnectionRequest message (63)5.3.3.3a Actions related to transmission of RRCConnectionResumeRequest message (64)5.3.3.4Reception of the RRCConnectionSetup by the UE (64)5.3.3.4a Reception of the RRCConnectionResume by the UE (66)5.3.3.5Cell re-selection while T300, T302, T303, T305, T306, or T308 is running (68)5.3.3.6T300 expiry (68)5.3.3.7T302, T303, T305, T306, or T308 expiry or stop (69)5.3.3.8Reception of the RRCConnectionReject by the UE (70)5.3.3.9Abortion of RRC connection establishment (71)5.3.3.10Handling of SSAC related parameters (71)5.3.3.11Access barring check (72)5.3.3.12EAB check (73)5.3.3.13Access barring check for ACDC (73)5.3.3.14Access Barring check for NB-IoT (74)5.3.4Initial security activation (75)5.3.4.1General (75)5.3.4.2Initiation (76)5.3.4.3Reception of the SecurityModeCommand by the UE (76)5.3.5RRC connection reconfiguration (77)5.3.5.1General (77)5.3.5.2Initiation (77)5.3.5.3Reception of an RRCConnectionReconfiguration not including the mobilityControlInfo by theUE (77)5.3.5.4Reception of an RRCConnectionReconfiguration including the mobilityControlInfo by the UE(handover) (79)5.3.5.5Reconfiguration failure (83)5.3.5.6T304 expiry (handover failure) (83)5.3.5.7Void (84)5.3.5.7a T307 expiry (SCG change failure) (84)5.3.5.8Radio Configuration involving full configuration option (84)5.3.6Counter check (86)5.3.6.1General (86)5.3.6.2Initiation (86)5.3.6.3Reception of the CounterCheck message by the UE (86)5.3.7RRC connection re-establishment (87)5.3.7.1General (87)5.3.7.2Initiation (87)5.3.7.3Actions following cell selection while T311 is running (88)5.3.7.4Actions related to transmission of RRCConnectionReestablishmentRequest message (89)5.3.7.5Reception of the RRCConnectionReestablishment by the UE (89)5.3.7.6T311 expiry (91)5.3.7.7T301 expiry or selected cell no longer suitable (91)5.3.7.8Reception of RRCConnectionReestablishmentReject by the UE (91)5.3.8RRC connection release (92)5.3.8.1General (92)5.3.8.2Initiation (92)5.3.8.3Reception of the RRCConnectionRelease by the UE (92)5.3.8.4T320 expiry (93)5.3.9RRC connection release requested by upper layers (93)5.3.9.1General (93)5.3.9.2Initiation (93)5.3.10Radio resource configuration (93)5.3.10.0General (93)5.3.10.1SRB addition/ modification (94)5.3.10.2DRB release (95)5.3.10.3DRB addition/ modification (95)5.3.10.3a1DC specific DRB addition or reconfiguration (96)5.3.10.3a2LWA specific DRB addition or reconfiguration (98)5.3.10.3a3LWIP specific DRB addition or reconfiguration (98)5.3.10.3a SCell release (99)5.3.10.3b SCell addition/ modification (99)5.3.10.3c PSCell addition or modification (99)5.3.10.4MAC main reconfiguration (99)5.3.10.5Semi-persistent scheduling reconfiguration (100)5.3.10.6Physical channel reconfiguration (100)5.3.10.7Radio Link Failure Timers and Constants reconfiguration (101)5.3.10.8Time domain measurement resource restriction for serving cell (101)5.3.10.9Other configuration (102)5.3.10.10SCG reconfiguration (103)5.3.10.11SCG dedicated resource configuration (104)5.3.10.12Reconfiguration SCG or split DRB by drb-ToAddModList (105)5.3.10.13Neighbour cell information reconfiguration (105)5.3.10.14Void (105)5.3.10.15Sidelink dedicated configuration (105)5.3.10.16T370 expiry (106)5.3.11Radio link failure related actions (107)5.3.11.1Detection of physical layer problems in RRC_CONNECTED (107)5.3.11.2Recovery of physical layer problems (107)5.3.11.3Detection of radio link failure (107)5.3.12UE actions upon leaving RRC_CONNECTED (109)5.3.13UE actions upon PUCCH/ SRS release request (110)5.3.14Proximity indication (110)5.3.14.1General (110)5.3.14.2Initiation (111)5.3.14.3Actions related to transmission of ProximityIndication message (111)5.3.15Void (111)5.4Inter-RAT mobility (111)5.4.1Introduction (111)5.4.2Handover to E-UTRA (112)5.4.2.1General (112)5.4.2.2Initiation (112)5.4.2.3Reception of the RRCConnectionReconfiguration by the UE (112)5.4.2.4Reconfiguration failure (114)5.4.2.5T304 expiry (handover to E-UTRA failure) (114)5.4.3Mobility from E-UTRA (114)5.4.3.1General (114)5.4.3.2Initiation (115)5.4.3.3Reception of the MobilityFromEUTRACommand by the UE (115)5.4.3.4Successful completion of the mobility from E-UTRA (116)5.4.3.5Mobility from E-UTRA failure (117)5.4.4Handover from E-UTRA preparation request (CDMA2000) (117)5.4.4.1General (117)5.4.4.2Initiation (118)5.4.4.3Reception of the HandoverFromEUTRAPreparationRequest by the UE (118)5.4.5UL handover preparation transfer (CDMA2000) (118)5.4.5.1General (118)5.4.5.2Initiation (118)5.4.5.3Actions related to transmission of the ULHandoverPreparationTransfer message (119)5.4.5.4Failure to deliver the ULHandoverPreparationTransfer message (119)5.4.6Inter-RAT cell change order to E-UTRAN (119)5.4.6.1General (119)5.4.6.2Initiation (119)5.4.6.3UE fails to complete an inter-RAT cell change order (119)5.5Measurements (120)5.5.1Introduction (120)5.5.2Measurement configuration (121)5.5.2.1General (121)5.5.2.2Measurement identity removal (122)5.5.2.2a Measurement identity autonomous removal (122)5.5.2.3Measurement identity addition/ modification (123)5.5.2.4Measurement object removal (124)5.5.2.5Measurement object addition/ modification (124)5.5.2.6Reporting configuration removal (126)5.5.2.7Reporting configuration addition/ modification (127)5.5.2.8Quantity configuration (127)5.5.2.9Measurement gap configuration (127)5.5.2.10Discovery signals measurement timing configuration (128)5.5.2.11RSSI measurement timing configuration (128)5.5.3Performing measurements (128)5.5.3.1General (128)5.5.3.2Layer 3 filtering (131)5.5.4Measurement report triggering (131)5.5.4.1General (131)5.5.4.2Event A1 (Serving becomes better than threshold) (135)5.5.4.3Event A2 (Serving becomes worse than threshold) (136)5.5.4.4Event A3 (Neighbour becomes offset better than PCell/ PSCell) (136)5.5.4.5Event A4 (Neighbour becomes better than threshold) (137)5.5.4.6Event A5 (PCell/ PSCell becomes worse than threshold1 and neighbour becomes better thanthreshold2) (138)5.5.4.6a Event A6 (Neighbour becomes offset better than SCell) (139)5.5.4.7Event B1 (Inter RAT neighbour becomes better than threshold) (139)5.5.4.8Event B2 (PCell becomes worse than threshold1 and inter RAT neighbour becomes better thanthreshold2) (140)5.5.4.9Event C1 (CSI-RS resource becomes better than threshold) (141)5.5.4.10Event C2 (CSI-RS resource becomes offset better than reference CSI-RS resource) (141)5.5.4.11Event W1 (WLAN becomes better than a threshold) (142)5.5.4.12Event W2 (All WLAN inside WLAN mobility set becomes worse than threshold1 and a WLANoutside WLAN mobility set becomes better than threshold2) (142)5.5.4.13Event W3 (All WLAN inside WLAN mobility set becomes worse than a threshold) (143)5.5.5Measurement reporting (144)5.5.6Measurement related actions (148)5.5.6.1Actions upon handover and re-establishment (148)5.5.6.2Speed dependant scaling of measurement related parameters (149)5.5.7Inter-frequency RSTD measurement indication (149)5.5.7.1General (149)5.5.7.2Initiation (150)5.5.7.3Actions related to transmission of InterFreqRSTDMeasurementIndication message (150)5.6Other (150)5.6.0General (150)5.6.1DL information transfer (151)5.6.1.1General (151)5.6.1.2Initiation (151)5.6.1.3Reception of the DLInformationTransfer by the UE (151)5.6.2UL information transfer (151)5.6.2.1General (151)5.6.2.2Initiation (151)5.6.2.3Actions related to transmission of ULInformationTransfer message (152)5.6.2.4Failure to deliver ULInformationTransfer message (152)5.6.3UE capability transfer (152)5.6.3.1General (152)5.6.3.2Initiation (153)5.6.3.3Reception of the UECapabilityEnquiry by the UE (153)5.6.4CSFB to 1x Parameter transfer (157)5.6.4.1General (157)5.6.4.2Initiation (157)5.6.4.3Actions related to transmission of CSFBParametersRequestCDMA2000 message (157)5.6.4.4Reception of the CSFBParametersResponseCDMA2000 message (157)5.6.5UE Information (158)5.6.5.1General (158)5.6.5.2Initiation (158)5.6.5.3Reception of the UEInformationRequest message (158)5.6.6 Logged Measurement Configuration (159)5.6.6.1General (159)5.6.6.2Initiation (160)5.6.6.3Reception of the LoggedMeasurementConfiguration by the UE (160)5.6.6.4T330 expiry (160)5.6.7 Release of Logged Measurement Configuration (160)5.6.7.1General (160)5.6.7.2Initiation (160)5.6.8 Measurements logging (161)5.6.8.1General (161)5.6.8.2Initiation (161)5.6.9In-device coexistence indication (163)5.6.9.1General (163)5.6.9.2Initiation (164)5.6.9.3Actions related to transmission of InDeviceCoexIndication message (164)5.6.10UE Assistance Information (165)5.6.10.1General (165)5.6.10.2Initiation (166)5.6.10.3Actions related to transmission of UEAssistanceInformation message (166)5.6.11 Mobility history information (166)5.6.11.1General (166)5.6.11.2Initiation (166)5.6.12RAN-assisted WLAN interworking (167)5.6.12.1General (167)5.6.12.2Dedicated WLAN offload configuration (167)5.6.12.3WLAN offload RAN evaluation (167)5.6.12.4T350 expiry or stop (167)5.6.12.5Cell selection/ re-selection while T350 is running (168)5.6.13SCG failure information (168)5.6.13.1General (168)5.6.13.2Initiation (168)5.6.13.3Actions related to transmission of SCGFailureInformation message (168)5.6.14LTE-WLAN Aggregation (169)5.6.14.1Introduction (169)5.6.14.2Reception of LWA configuration (169)5.6.14.3Release of LWA configuration (170)5.6.15WLAN connection management (170)5.6.15.1Introduction (170)5.6.15.2WLAN connection status reporting (170)5.6.15.2.1General (170)5.6.15.2.2Initiation (171)5.6.15.2.3Actions related to transmission of WLANConnectionStatusReport message (171)5.6.15.3T351 Expiry (WLAN connection attempt timeout) (171)5.6.15.4WLAN status monitoring (171)5.6.16RAN controlled LTE-WLAN interworking (172)5.6.16.1General (172)5.6.16.2WLAN traffic steering command (172)5.6.17LTE-WLAN aggregation with IPsec tunnel (173)5.6.17.1General (173)5.7Generic error handling (174)5.7.1General (174)5.7.2ASN.1 violation or encoding error (174)5.7.3Field set to a not comprehended value (174)5.7.4Mandatory field missing (174)5.7.5Not comprehended field (176)5.8MBMS (176)5.8.1Introduction (176)5.8.1.1General (176)5.8.1.2Scheduling (176)5.8.1.3MCCH information validity and notification of changes (176)5.8.2MCCH information acquisition (178)5.8.2.1General (178)5.8.2.2Initiation (178)5.8.2.3MCCH information acquisition by the UE (178)5.8.2.4Actions upon reception of the MBSFNAreaConfiguration message (178)5.8.2.5Actions upon reception of the MBMSCountingRequest message (179)5.8.3MBMS PTM radio bearer configuration (179)5.8.3.1General (179)5.8.3.2Initiation (179)5.8.3.3MRB establishment (179)5.8.3.4MRB release (179)5.8.4MBMS Counting Procedure (179)5.8.4.1General (179)5.8.4.2Initiation (180)5.8.4.3Reception of the MBMSCountingRequest message by the UE (180)5.8.5MBMS interest indication (181)5.8.5.1General (181)5.8.5.2Initiation (181)5.8.5.3Determine MBMS frequencies of interest (182)5.8.5.4Actions related to transmission of MBMSInterestIndication message (183)5.8a SC-PTM (183)5.8a.1Introduction (183)5.8a.1.1General (183)5.8a.1.2SC-MCCH scheduling (183)5.8a.1.3SC-MCCH information validity and notification of changes (183)5.8a.1.4Procedures (184)5.8a.2SC-MCCH information acquisition (184)5.8a.2.1General (184)5.8a.2.2Initiation (184)5.8a.2.3SC-MCCH information acquisition by the UE (184)5.8a.2.4Actions upon reception of the SCPTMConfiguration message (185)5.8a.3SC-PTM radio bearer configuration (185)5.8a.3.1General (185)5.8a.3.2Initiation (185)5.8a.3.3SC-MRB establishment (185)5.8a.3.4SC-MRB release (185)5.9RN procedures (186)5.9.1RN reconfiguration (186)5.9.1.1General (186)5.9.1.2Initiation (186)5.9.1.3Reception of the RNReconfiguration by the RN (186)5.10Sidelink (186)5.10.1Introduction (186)5.10.1a Conditions for sidelink communication operation (187)5.10.2Sidelink UE information (188)5.10.2.1General (188)5.10.2.2Initiation (189)5.10.2.3Actions related to transmission of SidelinkUEInformation message (193)5.10.3Sidelink communication monitoring (195)5.10.6Sidelink discovery announcement (198)5.10.6a Sidelink discovery announcement pool selection (201)5.10.6b Sidelink discovery announcement reference carrier selection (201)5.10.7Sidelink synchronisation information transmission (202)5.10.7.1General (202)5.10.7.2Initiation (203)5.10.7.3Transmission of SLSS (204)5.10.7.4Transmission of MasterInformationBlock-SL message (205)5.10.7.5Void (206)5.10.8Sidelink synchronisation reference (206)5.10.8.1General (206)5.10.8.2Selection and reselection of synchronisation reference UE (SyncRef UE) (206)5.10.9Sidelink common control information (207)5.10.9.1General (207)5.10.9.2Actions related to reception of MasterInformationBlock-SL message (207)5.10.10Sidelink relay UE operation (207)5.10.10.1General (207)5.10.10.2AS-conditions for relay related sidelink communication transmission by sidelink relay UE (207)5.10.10.3AS-conditions for relay PS related sidelink discovery transmission by sidelink relay UE (208)5.10.10.4Sidelink relay UE threshold conditions (208)5.10.11Sidelink remote UE operation (208)5.10.11.1General (208)5.10.11.2AS-conditions for relay related sidelink communication transmission by sidelink remote UE (208)5.10.11.3AS-conditions for relay PS related sidelink discovery transmission by sidelink remote UE (209)5.10.11.4Selection and reselection of sidelink relay UE (209)5.10.11.5Sidelink remote UE threshold conditions (210)6Protocol data units, formats and parameters (tabular & ASN.1) (210)6.1General (210)6.2RRC messages (212)6.2.1General message structure (212)–EUTRA-RRC-Definitions (212)–BCCH-BCH-Message (212)–BCCH-DL-SCH-Message (212)–BCCH-DL-SCH-Message-BR (213)–MCCH-Message (213)–PCCH-Message (213)–DL-CCCH-Message (214)–DL-DCCH-Message (214)–UL-CCCH-Message (214)–UL-DCCH-Message (215)–SC-MCCH-Message (215)6.2.2Message definitions (216)–CounterCheck (216)–CounterCheckResponse (217)–CSFBParametersRequestCDMA2000 (217)–CSFBParametersResponseCDMA2000 (218)–DLInformationTransfer (218)–HandoverFromEUTRAPreparationRequest (CDMA2000) (219)–InDeviceCoexIndication (220)–InterFreqRSTDMeasurementIndication (222)–LoggedMeasurementConfiguration (223)–MasterInformationBlock (225)–MBMSCountingRequest (226)–MBMSCountingResponse (226)–MBMSInterestIndication (227)–MBSFNAreaConfiguration (228)–MeasurementReport (228)–MobilityFromEUTRACommand (229)–Paging (232)–ProximityIndication (233)–RNReconfiguration (234)–RNReconfigurationComplete (234)–RRCConnectionReconfiguration (235)–RRCConnectionReconfigurationComplete (240)–RRCConnectionReestablishment (241)–RRCConnectionReestablishmentComplete (241)–RRCConnectionReestablishmentReject (242)–RRCConnectionReestablishmentRequest (243)–RRCConnectionReject (243)–RRCConnectionRelease (244)–RRCConnectionResume (248)–RRCConnectionResumeComplete (249)–RRCConnectionResumeRequest (250)–RRCConnectionRequest (250)–RRCConnectionSetup (251)–RRCConnectionSetupComplete (252)–SCGFailureInformation (253)–SCPTMConfiguration (254)–SecurityModeCommand (255)–SecurityModeComplete (255)–SecurityModeFailure (256)–SidelinkUEInformation (256)–SystemInformation (258)–SystemInformationBlockType1 (259)–UEAssistanceInformation (264)–UECapabilityEnquiry (265)–UECapabilityInformation (266)–UEInformationRequest (267)–UEInformationResponse (267)–ULHandoverPreparationTransfer (CDMA2000) (273)–ULInformationTransfer (274)–WLANConnectionStatusReport (274)6.3RRC information elements (275)6.3.1System information blocks (275)–SystemInformationBlockType2 (275)–SystemInformationBlockType3 (279)–SystemInformationBlockType4 (282)–SystemInformationBlockType5 (283)–SystemInformationBlockType6 (287)–SystemInformationBlockType7 (289)–SystemInformationBlockType8 (290)–SystemInformationBlockType9 (295)–SystemInformationBlockType10 (295)–SystemInformationBlockType11 (296)–SystemInformationBlockType12 (297)–SystemInformationBlockType13 (297)–SystemInformationBlockType14 (298)–SystemInformationBlockType15 (298)–SystemInformationBlockType16 (299)–SystemInformationBlockType17 (300)–SystemInformationBlockType18 (301)–SystemInformationBlockType19 (301)–SystemInformationBlockType20 (304)6.3.2Radio resource control information elements (304)–AntennaInfo (304)–AntennaInfoUL (306)–CQI-ReportConfig (307)–CQI-ReportPeriodicProcExtId (314)–CrossCarrierSchedulingConfig (314)–CSI-IM-Config (315)–CSI-IM-ConfigId (315)–CSI-RS-Config (317)–CSI-RS-ConfigEMIMO (318)–CSI-RS-ConfigNZP (319)–CSI-RS-ConfigNZPId (320)–CSI-RS-ConfigZP (321)–CSI-RS-ConfigZPId (321)–DMRS-Config (321)–DRB-Identity (322)–EPDCCH-Config (322)–EIMTA-MainConfig (324)–LogicalChannelConfig (325)–LWA-Configuration (326)–LWIP-Configuration (326)–RCLWI-Configuration (327)–MAC-MainConfig (327)–P-C-AndCBSR (332)–PDCCH-ConfigSCell (333)–PDCP-Config (334)–PDSCH-Config (337)–PDSCH-RE-MappingQCL-ConfigId (339)–PHICH-Config (339)–PhysicalConfigDedicated (339)–P-Max (344)–PRACH-Config (344)–PresenceAntennaPort1 (346)–PUCCH-Config (347)–PUSCH-Config (351)–RACH-ConfigCommon (355)–RACH-ConfigDedicated (357)–RadioResourceConfigCommon (358)–RadioResourceConfigDedicated (362)–RLC-Config (367)–RLF-TimersAndConstants (369)–RN-SubframeConfig (370)–SchedulingRequestConfig (371)–SoundingRS-UL-Config (372)–SPS-Config (375)–TDD-Config (376)–TimeAlignmentTimer (377)–TPC-PDCCH-Config (377)–TunnelConfigLWIP (378)–UplinkPowerControl (379)–WLAN-Id-List (382)–WLAN-MobilityConfig (382)6.3.3Security control information elements (382)–NextHopChainingCount (382)–SecurityAlgorithmConfig (383)–ShortMAC-I (383)6.3.4Mobility control information elements (383)–AdditionalSpectrumEmission (383)–ARFCN-ValueCDMA2000 (383)–ARFCN-ValueEUTRA (384)–ARFCN-ValueGERAN (384)–ARFCN-ValueUTRA (384)–BandclassCDMA2000 (384)–BandIndicatorGERAN (385)–CarrierFreqCDMA2000 (385)–CarrierFreqGERAN (385)–CellIndexList (387)–CellReselectionPriority (387)–CellSelectionInfoCE (387)–CellReselectionSubPriority (388)–CSFB-RegistrationParam1XRTT (388)–CellGlobalIdEUTRA (389)–CellGlobalIdUTRA (389)–CellGlobalIdGERAN (390)–CellGlobalIdCDMA2000 (390)–CellSelectionInfoNFreq (391)–CSG-Identity (391)–FreqBandIndicator (391)–MobilityControlInfo (391)–MobilityParametersCDMA2000 (1xRTT) (393)–MobilityStateParameters (394)–MultiBandInfoList (394)–NS-PmaxList (394)–PhysCellId (395)–PhysCellIdRange (395)–PhysCellIdRangeUTRA-FDDList (395)–PhysCellIdCDMA2000 (396)–PhysCellIdGERAN (396)–PhysCellIdUTRA-FDD (396)–PhysCellIdUTRA-TDD (396)–PLMN-Identity (397)–PLMN-IdentityList3 (397)–PreRegistrationInfoHRPD (397)–Q-QualMin (398)–Q-RxLevMin (398)–Q-OffsetRange (398)–Q-OffsetRangeInterRAT (399)–ReselectionThreshold (399)–ReselectionThresholdQ (399)–SCellIndex (399)–ServCellIndex (400)–SpeedStateScaleFactors (400)–SystemInfoListGERAN (400)–SystemTimeInfoCDMA2000 (401)–TrackingAreaCode (401)–T-Reselection (402)–T-ReselectionEUTRA-CE (402)6.3.5Measurement information elements (402)–AllowedMeasBandwidth (402)–CSI-RSRP-Range (402)–Hysteresis (402)–LocationInfo (403)–MBSFN-RSRQ-Range (403)–MeasConfig (404)–MeasDS-Config (405)–MeasGapConfig (406)–MeasId (407)–MeasIdToAddModList (407)–MeasObjectCDMA2000 (408)–MeasObjectEUTRA (408)–MeasObjectGERAN (412)–MeasObjectId (412)–MeasObjectToAddModList (412)–MeasObjectUTRA (413)–ReportConfigEUTRA (422)–ReportConfigId (425)–ReportConfigInterRAT (425)–ReportConfigToAddModList (428)–ReportInterval (429)–RSRP-Range (429)–RSRQ-Range (430)–RSRQ-Type (430)–RS-SINR-Range (430)–RSSI-Range-r13 (431)–TimeToTrigger (431)–UL-DelayConfig (431)–WLAN-CarrierInfo (431)–WLAN-RSSI-Range (432)–WLAN-Status (432)6.3.6Other information elements (433)–AbsoluteTimeInfo (433)–AreaConfiguration (433)–C-RNTI (433)–DedicatedInfoCDMA2000 (434)–DedicatedInfoNAS (434)–FilterCoefficient (434)–LoggingDuration (434)–LoggingInterval (435)–MeasSubframePattern (435)–MMEC (435)–NeighCellConfig (435)–OtherConfig (436)–RAND-CDMA2000 (1xRTT) (437)–RAT-Type (437)–ResumeIdentity (437)–RRC-TransactionIdentifier (438)–S-TMSI (438)–TraceReference (438)–UE-CapabilityRAT-ContainerList (438)–UE-EUTRA-Capability (439)–UE-RadioPagingInfo (469)–UE-TimersAndConstants (469)–VisitedCellInfoList (470)–WLAN-OffloadConfig (470)6.3.7MBMS information elements (472)–MBMS-NotificationConfig (472)–MBMS-ServiceList (473)–MBSFN-AreaId (473)–MBSFN-AreaInfoList (473)–MBSFN-SubframeConfig (474)–PMCH-InfoList (475)6.3.7a SC-PTM information elements (476)–SC-MTCH-InfoList (476)–SCPTM-NeighbourCellList (478)6.3.8Sidelink information elements (478)–SL-CommConfig (478)–SL-CommResourcePool (479)–SL-CP-Len (480)–SL-DiscConfig (481)–SL-DiscResourcePool (483)–SL-DiscTxPowerInfo (485)–SL-GapConfig (485)。

sdp编码中pt值 -回复

sdp编码中pt值 -回复

sdp编码中pt值-回复SDP(Session Description Protocol,会话描述协议)是一种用于描述多媒体会话的协议,它的主要作用是对通信参与者之间的媒体流进行描述,以便进行会话的建立和管理。

SDP编码中的pt值(Payload Type)是SDP 协议中用于标识媒体类型的参数,本文将分别介绍SDP协议和pt值的作用,以及具体的编码和使用方式。

首先,我们先了解一下SDP协议。

SDP是一种文本协议,它使用ASCII字符来描述一个会话的媒体参数。

SDP协议的设计用途是在一个会话中协商多媒体的传输方式和参数,如音频编码格式、视频编码格式、媒体端口等信息。

它可以被用于描述基于IP网络的各种会话,例如实时通信、视频会议、IP电话等。

SDP协议由多个字段组成,而pt值是其中一个重要的字段。

在SDP中,媒体流被分为多个媒体类型,如音频、视频和文本等。

每个媒体类型都有自己的pt值来进行唯一标识。

pt值的范围是0~127,其中0~63是静态分配的,而64~127是动态分配的。

静态分配的pt值由SDP协议本身定义,如0表示PCMU音频编码、8表示PCMA音频编码、26表示JPEG 视频编码等。

动态分配的pt值则由用户自行定义,以适应特定的应用需求。

在SDP编码中,pt值通常被用于描述媒体的传输格式和编码方式。

对于音频编码来说,pt值表示音频编码器的类型,可以标识出使用的音频编码算法,比如G.711、G.729等。

而对于视频编码来说,pt值则可以标识出使用的视频编码算法,如H.264、VP8等。

通过指定相应的pt值,会话参与者可以在协商过程中确定音视频的编码方式,以确保彼此可以正确解码和播放对方发送的媒体流。

在SDP编码中,pt值的具体编码方式是将其放置在"m="字段之后,紧接着媒体流的传输协议和媒体端口等信息。

例如,一个音频流的描述可以是:m=audio 49170 RTP/AVP 0 8 101其中,"0 8 101"就是音频编码可以使用的pt值。

基于深度强化学习的Π型阻抗匹配网络多参数最优求解方法

基于深度强化学习的Π型阻抗匹配网络多参数最优求解方法

第52卷第6期电力系统保护与控制Vol.52 No.6 2024年3月16日Power System Protection and Control Mar. 16, 2024 DOI: 10.19783/ki.pspc.230917基于深度强化学习的Π型阻抗匹配网络多参数最优求解方法胡正伟,夏思懿,王文彬,曹旺斌,谢志远(华北电力大学电子与通信工程系,河北 保定 071003)摘要:针对电力线信道阻抗变化复杂、负载阻抗不匹配造成通信质量差等问题,提出一种基于深度强化学习的Π型阻抗匹配网络多参数最优求解方法,并验证分析了深度强化学习对于寻找最优匹配参数的可行性。

首先,建立Π型网络结构,推导窄带匹配和宽带匹配场景下的最优匹配目标函数。

其次,采用深度强化学习,利用智能体的移动模拟实际匹配网络的元件参数变化,设置含有理论值与最优匹配值参数的公式作为奖励,构建寻优匹配模型。

然后,分别仿真验证了窄带匹配和宽带匹配两种应用场景并优化模型的网络参数。

最后,仿真结果证明,经过训练后的最优模型运行时间较短且准确度较高,能够较好地自动匹配电力线载波通信负载阻抗变化,改善和提高电力线载波通信质量。

关键词:深度强化学习;电力线通信;窄带匹配;宽带匹配Multi-parameter optimal solution method for Π-type impedance matching networksbased on deep reinforcement learningHU Zhengwei, XIA Siyi, WANG Wenbin, CAO Wangbin, XIE Zhiyuan(Department of Electrical & Electronic Engineering, North China Electric Power University, Baoding 071003, China)Abstract: There are problems of complex power line channel impedance variation and poor load impedance mismatch.Thus a multi-parameter optimal solution method for a Π-type impedance matching network based on deep reinforcement learning is proposed, and the feasibility of deep reinforcement learning for finding the optimal matching parameters is verified and analyzed. First, the Π-type network structure is established to derive the objective function for the optimal matching in the narrowband matching and broadband matching scenarios. Secondly, deep reinforcement learning is used to use the movement of the agent to simulate the component parameters of the actual matching network, and set the formula containing the theoretical value and the optimal matching value of the parameters as a reward to build the optimal matching model. Then, this paper separately verifies the network parameters of narrowband matching and broadband matching application scenarios and optimizes the network parameters of the model. Finally, the simulation results prove that the trained optimal model has short running time and high accuracy. It can better automatically match the load impedance change of power line carrier communication, and improve the quality of power line carrier communication.This work is supported by the General Program of National Natural Science Foundation of China (No. 52177083).Key words: deep reinforcement learning; power line communication; narrowband matching; broadband matching0 引言随着科技的进步,电力线通信技术飞速发展,对电力线载波通信质量也提出了更高的要求[1-3]。

sdp编码中pt值 -回复

sdp编码中pt值 -回复

sdp编码中pt值-回复SDP(Session Description Protocol)是一种用于描述多媒体会话信息的协议。

在SDP编码中,pt值(Payload Type)是会话描述中的一个重要参数。

本文将详细介绍SDP编码中pt值的定义、用途以及在实际应用中的应用场景。

首先,我们来了解一下SDP编码中pt值的定义。

在SDP编码中,pt值用来标识传输层协议中的数据类型,主要是用于指定RTP(Real-time Transport Protocol)载荷类型。

RTP是一种用于实时传输多媒体数据的协议,而pt值则用来标识不同类型的多媒体数据,如音频、视频等。

在SDP编码中,pt值的取值范围是0到127,其中0到95是预留给标准负载类型的。

这些标准负载类型包括G.711、G.722、H.264等,每个标准负载类型都有一个对应的pt值。

而96到127则是预留给动态负载类型的,这些动态负载类型可以由用户自定义。

接下来,我们来看一下pt值在SDP编码中的用途。

pt值在SDP编码中承载的信息非常重要,它可以告诉接收者如何对接收到的媒体数据进行解析和处理。

例如,假设发送者使用G.711编码进行音频传输,那么SDP的pt值就应该设置为标准负载类型中G.711对应的值。

接收者在收到数据时,根据pt值可以知道它所使用的编码格式,从而正确解析和播放音频数据。

除了用于标识负载类型,pt值还可以用于描述媒体流的特性。

例如,pt 值可以描述音频流的采样率、通道数和位深度等信息,使接收者可以根据这些信息进行适当的设置以保证媒体数据的正常播放。

在实际应用中,pt值的应用场景非常广泛。

首先,pt值可以用于多媒体会话的建立和协商。

在SDP协议中,发送者和接收者可以通过交换SDP 报文来协商会话参数,其中包括pt值的设置。

通过协商,发送者和接收者可以确定共同支持的负载类型和特性,从而保证会话的顺利进行。

此外,pt值还可以用于流媒体服务器的配置。

基于归一化延迟概率分布的小延迟缺陷测试方法[发明专利]

基于归一化延迟概率分布的小延迟缺陷测试方法[发明专利]

专利名称:基于归一化延迟概率分布的小延迟缺陷测试方法专利类型:发明专利
发明人:冯建华,林志钦
申请号:CN201210072638.7
申请日:20120319
公开号:CN102621477A
公开日:
20120801
专利内容由知识产权出版社提供
摘要:本发明公开了一种基于归一化延迟概率分布的小延迟缺陷测试方法,该方法包含三个部分:N-detect ATPG生成,归一化延迟概率计算和测试向量选取以及Top-off ATPG生成。

本发明利用常规自动测试向量生成(ATPG)工具的N-detect测试向量源,考虑了工艺波动和工艺匹配等问题,选取归一化概率值最大的测试向量组成新的测试向量集,用来检测小延迟缺陷,提高由工艺波动和工艺匹配等引起的小延迟缺陷测试的有效性。

相比于现有技术,本发明不仅可降低测试向量规模,而且可提高小延迟缺陷测试的有效性。

申请人:北京大学
地址:100871 北京市海淀区颐和园路5号
国籍:CN
代理机构:北京万象新悦知识产权代理事务所(普通合伙)
代理人:贾晓玲
更多信息请下载全文后查看。

instructpix2pix 用法 -回复

instructpix2pix 用法 -回复

instructpix2pix 用法-回复instructpix2pix 是一个基于PyTorch的图像到图像翻译模型,它可以将输入图像转换为期望的输出图像。

本文将详细介绍instructpix2pix 的用法,并提供一步一步的指导。

一、简介instructpix2pix 是基于pix2pix 模型的改进版,它在输入图像中加入了额外的指导信息,以帮助生成更加准确的输出图像。

在使用instrucpix2pix 之前,首先需要安装相关的依赖包。

可以在终端中运行以下命令进行安装:pip install torch torchvision二、数据集准备在训练instructpix2pix 模型之前,需要准备一个输入和目标输出的图像数据集。

可以手动收集图像数据集,或者在公开数据集中找到合适的数据集。

确保数据集中的输入图像和目标输出图像成对存在,并且文件名相同。

三、数据预处理在训练之前,需要对数据进行预处理。

instructpix2pix 提供了一个数据预处理脚本,可以对数据进行预处理,以适应模型的输入要求。

可以在命令行中运行以下命令:python dataset_tool.py input_dir [输入图像目录] output_dir [输出图像目录]这将会把输入图像目录中的图像转换为模型需要的格式,并将处理后的图像保存到输出图像目录中。

四、训练模型在完成数据集的预处理后,可以开始训练instructpix2pix 模型。

可以运行以下命令来训练模型:python train.py input_dir [输入图像目录] output_dir [输出图像目录] checkpoint_dir [检查点目录]这将使用指定的输入图像和输出图像目录训练模型,并保存训练过程中的检查点到检查点目录中。

五、生成图像在训练模型之后,可以使用instructpix2pix 生成图像。

可以使用以下命令:python test.py input_dir [输入图像目录] output_dir [输出图像目录] checkpoint_dir [检查点目录]这将使用指定的输入图像目录和检查点目录生成输出图像,并将生成的图像保存到输出图像目录中。

CNAS协助马来西亚建立PTP和RMP认可制度

CNAS协助马来西亚建立PTP和RMP认可制度

CNAS协助马来西亚建立PTP和RMP认可制度
赵欢
【期刊名称】《认证技术》
【年(卷),期】2011(000)011
【摘要】近日,中国合格评定国家认可委员会(CNAS)应马来西亚认可和标准化机构(DSM)邀请,派代表团赴莎阿南,对其开展有关能力验证运作、能力验证提供者(PTP)和标准物质/标准样品生产者(RMP)认可体系培训。

马来西亚认可和标准化机构有关领域的50多名员工接受了培训。

CNAS代表以国际最新文件ISO/IEC17043:2010和ISO指南34:2009为依据,讲解了能力验证运作程序与技术、
【总页数】1页(P25-25)
【作者】赵欢
【作者单位】不详
【正文语种】中文
【中图分类】N33
【相关文献】
AS顺利通过APLAC的PTP互认现场同行评审 [J], 赵欢
AS检查机构认可制度首批加入ILAC检查机构互认协议 [J],
3.中国皮革和制鞋工业研究院检测中心获得CNAS能力验证提供者(PTP)认可资格 [J], ;
AS举行资深顾问座谈会研讨科研实验室认可制度研发和成果应用 [J],
5.长沙矿冶研究院有限责任公司获CNAS认可PTP资质 [J],
因版权原因,仅展示原文概要,查看原文内容请购买。

PTP测试方案PTPTestingScheme

PTP测试方案PTPTestingScheme
Forge Delay Request (wrong format )
Broadcast storm Multicast storm
Unicast storm
测试项目: Test Scope:
NO.
流量压力测试 1
Traffic Stress Test
伪造延时请求报文测试
2
Forge delay request packet
recognition Test
Hale Waihona Puke 延时请求报文攻击测试(大流量)
3
Delay request packet
forgery attack Test(high
PTP 测试方案 PTP Testing Scheme
(国网电力科学研究院实验验证中心) (Experiment & Verification Center of State Grid Electric Power Research Institute)
1、PTP 网络损伤测试 1、PTP Network Damage Test
Up to 15 frames
Frame length can up to 2000 byte
CRC damage
2、PTP 网络压力测试 2、PTP Network Stress Test
Stress stream
Master
Slave
Slave
图 2 PTP 网络压力测试拓扑 Fig.2 PTP Network Stress Test Topology
丢包测试 Packet Loss Test
乱序测试 Re-Order Test 报文重复测试 Duplication Test 报文修改测试 Modification Test CRC 测试 CRC Corruption Test

pocock-type停止边界法规则

pocock-type停止边界法规则

Pocock-type停止边界法规则是一种用于控制临床试验中受试者退出研究的方法。

这种规则的目的是确保所有受试者在达到某个预先设定的退出标准时都能被及时地退出研究,以避免不必要的风险和损害。

Pocock-type停止边界法规则的具体实施方法如下:
1. 设定停止边界:根据临床试验的目的和安全性考虑,预先设定一个或多个停止边界。

这些边界可以是受试者的生理指标、安全性指标或其他相关指标。

2. 监测数据:在临床试验过程中,持续监测受试者的相关数据。

一旦发现数据达到或超过停止边界,就需要立即采取行动。

3. 评估风险:对于达到停止边界的受试者,需要对其风险进行评估。

这包括评估受试者的病情、可能遭受的损害以及继续参与研究的风险和获益。

4. 决定是否退出:根据评估结果,决定是否将受试者退出研究。

如果受试者的风险被认为过大,或者继续参与研究可能对其造成不适当的损害,则应将受试者退出研究。

5. 记录和报告:对于所有退出的受试者,应详细记录退出的原因、时间和处理措施。

同时,应向相关监管机构和伦理委员会报告退出情况,以确保研究的合规性和透明度。

总之,Pocock-type停止边界法规则是一种重要的临床试验质量控制方法,旨在确保受试者的安全和权益。

在实施该规则时,需要严格遵守相关法规和伦理原则,并确保研究的科学性和公正性。

sdp编码中pt值 -回复

sdp编码中pt值 -回复

sdp编码中pt值-回复SDP编码中的pt值,是指PayLoad Type(负载类型)的缩写,它用来标识音频、视频等媒体流的类型和编码方式。

在实时传输协议(Real-time Transport Protocol,简称RTP)中,SDP编码是一种用于描述多媒体会话的文本格式。

每个SDP编码都包含了一个pt值,该值用于告知接收方如何处理接收到的媒体流。

本文将逐步介绍SDP编码中的pt值以及其在多媒体传输中的作用。

首先,让我们从SDP编码的基础开始。

SDP是一种标准格式,用于在发布和接收媒体流时进行描述和协商。

它由多个字段组成,这些字段包含了关于会话本身以及媒体流的各种信息。

其中一个最重要的字段是"m="字段(media字段),它用于指定媒体流的类型和端口号。

在"m="字段中,有一个子字段是"pt"字段(payload type字段),它是SDP编码中的pt 值。

pt值用于标识媒体流的类型和编码方式。

对于音频流而言,常见的pt值有PCMU(G.711 μ-law)、PCMA(G.711 A-law)和AAC(Advanced Audio Coding)等。

对于视频流而言,常见的pt值有H.264、VP8和VP9等。

这些pt值告知了接收方媒体流的编码方式,以便接收方能够正确解码并播放相应的媒体内容。

在SDP编码中,pt值是一个8位的整数,可以用0~127的范围表示。

每个pt值对应一种特定的编码方式,一般情况下,在会话开始之前,双方会先进行协商,约定各自支持的媒体流类型和对应的pt值。

这样,发送方在发送媒体流时就会带上相应的pt值,使得接收方能够正确识别并解码该媒体流。

需要注意的是,不同的媒体流类型可能会有不同的pt值范围。

比如,音频流常见的pt值范围是0~95,而视频流则是96~127。

这是为了避免不同类型的媒体流之间发生冲突。

因此,在协商过程中,双方需要确保所选定的pt值范围不会互相重叠,以免造成混淆和错误解码的情况发生。

基于Transformer的机器人像素级抓取位姿检测

基于Transformer的机器人像素级抓取位姿检测

基于Transformer的机器人像素级抓取位姿检测俞青松;徐向荣;刘胤真【期刊名称】《工程设计学报》【年(卷),期】2024(31)2【摘要】机器人抓取检测一直是机器人领域的研究热点,但机器人在复杂环境下执行多物体抓取任务时面临位姿估计不准确的问题。

为了解决这一问题,提出了一种基于Transformer的抓取检测模型——PTGNet(pyramid Transformer grasp network)。

PTGNet采用具有金字塔池化结构和多头自注意力机制的Transformer模块,其中,金字塔池化结构能够对特征图进行分割和池化,以捕获不同层次的语义信息并降低计算复杂度,多头自注意力机制通过强大的特征提取能力有效地提取全局信息,使得PTGNet更适用于视觉抓取任务。

为了验证PTGNet的性能,基于不同数据集对PTGNet进行训练和测试,并在仿真和真实物理环境下基于PTGNet开展机械臂抓取实验。

结果表明,PTGNet在Cornell数据集和Jacquard 数据集上的准确率分别为98.2%和94.8%,表现出具有竞争力的优异性能;在多目标数据集下,相比于其他检测模型,PTGNet具有优秀的泛化能力;在PyBullet仿真环境下开展的单对象和多对象抓取实验中,机械臂的平均抓取成功率分别达到了98.1%和96.8%;在真实物理环境下开展的多对象抓取实验中,机械臂的平均抓取成功率为93.3%。

实验结果验证了PTGNet在复杂环境中预测多物体抓取位姿的有效性和优越性。

【总页数】10页(P238-247)【作者】俞青松;徐向荣;刘胤真【作者单位】安徽工业大学机械工程学院【正文语种】中文【中图分类】TP242【相关文献】1.基于虚拟位姿迟钝搜索的仿人机器人手臂抓取控制系统的设计2.并联机器人串类水果抓取模型及抓取位姿计算3.一种优化的机器人抓取位姿检测方法4.基于级联卷积神经网络的机器人平面抓取位姿快速检测5.轻量化机器人抓取位姿实时检测算法因版权原因,仅展示原文概要,查看原文内容请购买。

yolov5 ap指标

yolov5 ap指标

yolov5 ap指标AP (Average Precision) 是一种用于评估目标检测算法性能的指标,即平均精度。

在目标检测任务中,AP 值是衡量算法在不同类别上的准确性和召回率之间的平衡的度量。

以下是关于AP指标的相关内容。

AP 值是通过绘制P-R 曲线(Precision-Recall curve)并计算曲线下的积分面积得到的。

P-R 曲线展示了在不同召回率下的精度。

在计算 AP 值之前,首先需要计算不同召回率下的精确率。

所谓精确率就是分类正确的正样本个数占所有被分类为正样本的个数的比例。

在目标检测任务中,对于每个检测框,会计算其预测的置信度(confidence score)。

然后通过设置不同的置信度阈值来控制检测框的召回率和精确率。

通过改变置信度阈值,可以得到一组不同的召回率和精确率的值。

在计算AP值时,为了准确评估算法的性能,通常使用多个置信度阈值来计算精确率和召回率。

P-R 曲线通常是提取不同置信度阈值下的召回率和精确率,并将其绘制成曲线。

曲线的斜率代表了在不同召回率下的精确率,而曲线下的面积代表了AP值。

AP 值越高,意味着算法在不同类别上的性能越好。

当目标检测任务有多个类别时,AP 值可以计算出每个类别的平均精度。

对于多类别目标检测,常计算每个类别的AP 值并进行平均,得到mAP(mean Average Precision),这是另一种常用的评估指标。

mAP 是常用的比较不同目标检测算法性能的指标。

最常用的mAP值是IoU(Intersection over Union)大于0.5的计算结果。

在计算mAP时,召回率是由不同的IoU 阈值决定的。

通过比较目标检测框预测和实际标注框的IoU值,可以决定是否为真阳性。

通常,对每个类别使用不同的IoU阈值,然后将这些阈值的AP值平均。

当然,也可以使用不同的IoU阈值计算一个总体的AP值。

AP 值和mAP值是衡量目标检测算法性能的重要指标之一。

人工智能在预测耐药性肺结核中的应用进展

人工智能在预测耐药性肺结核中的应用进展

人工智能在预测耐药性肺结核中的应用进展
孙珊珊;侯代伦;李亮
【期刊名称】《医学影像学杂志》
【年(卷),期】2024(34)4
【摘要】耐药性肺结核(DR-TB)发病率持续上升,对全球卫生安全造成威胁。

而随着科技日益进步,人工智能(AI)越来越广泛地应用于医学领域,对DR-TB来说,有效地节省了人力和时间成本,并提高了检测效率和精确度。

本文回顾了AI与DR-TB放射学和基因学的文献资料,重点介绍了AI在识别肺结核的耐药性方面表现出的优越性能,这有助于临床医师及时做出临床决策,为患者制定治疗计划,为肺结核管理提供参考。

【总页数】3页(P129-131)
【作者】孙珊珊;侯代伦;李亮
【作者单位】北京市结核病胸部肿瘤研究所医学影像科;北京市结核病胸部肿瘤研究所院办公室
【正文语种】中文
【中图分类】R521;R445
【相关文献】
1.人工智能在血液透析中的监测及预测应用进展
2.影像人工智能在肺癌疗效评估和预测中的应用进展
3.人工智能在正畸诊疗及疗效预测中的应用进展
4.人工智能在
经导管动脉化疗栓塞术治疗肝细胞癌的预后和疗效预测中的应用进展5.人工智能在肝性脑病风险预测模型中的应用进展
因版权原因,仅展示原文概要,查看原文内容请购买。

prb评估值滤波因子

prb评估值滤波因子

PRB评估值滤波因子是一种用于评估PRB(概率风险评估)的模型性能的参数。

PRB是一种概率模型,用于预测潜在危害事件的概率和影响。

滤波因子是一种用于调整PRB值的参数,以减少模型的过度拟合或欠拟合现象。

在PRB评估中,通常使用交叉验证(cross-validation)来评估模型的性能。

交叉验证是一种将数据集分成多个部分,并使用一部分数据进行模型训练,然后使用另一部分数据对模型进行测试的方法。

通过多次重复这个过程,可以获得更准确的模型性能评估。

在交叉验证过程中,滤波因子通常用于调整PRB值,以避免模型过度拟合或欠拟合。

过度拟合是指模型在训练数据上表现良好,但在测试数据上表现较差的现象。

欠拟合是指模型在训练数据和测试数据上表现均较差的现象。

滤波因子可以根据交叉验证的结果进行调整,以优化模型的性能。

具体来说,滤波因子可以根据训练数据和测试数据之间的差异来调整PRB值。

如果训练数据和测试数据之间的差异较大,则可以将PRB值降低一些,以减少模型的过度拟合现象。

如果训练数据和测试数据之间的差异较小,则可以将PRB值提高一些,以增加模型的灵敏度和准确性。

总之,PRB评估值滤波因子是一种用于优化PRB模型性能的参数,可以根据交叉验证的结果进行调整。

通过合理设置滤波因子,可以提高PRB模型的准确性和可靠性。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Slide 1AJ2 Hello!My name is Atzwanger Joachim.I work for telekom Austra in the business synchronisation since 10 years.Telekom Austria is the key player on the wireline and wireless market.I am responsibel for clock concepts, distribution,recovery, product selection, customer solutions and last not least clock quality.Now we have to accept the challange to implemtPTP in your networkTherfore 1 creat acceptance tests.Atzwanger Joachim, 02/11/2008Slide 2AJ3 Here you see a overvew.I decided for this sequence of the different testsThe main issue of this test cases is how robust are the now availbale ptp SolutionsMissing test cases are:Bandwith consumptionPTP over VPLS, MPLS ?UseabilitySecurity,GroundingSurge, Electromagnetic compatibilityNMS ....At the beginning we have no idea about PTP.First we decided to analyse our network.Atzwanger Joachim, 02/11/2008Slide 3AJ4 Measuremt period; 1h )3600 seconds10 Frames/sec for synchronization frame <length = 90 Byte = ptp Sync MAditional frames with diffferent priorization andchelcked the impact of gifferent network loadsAtzwanger Joachim, 02/11/2008Slide 4AJ5 Here you can see an overview.I was astonished about radio link and SHDSL.Differential Service Code Point (DSCP) ist die Bezeichnung für das Type of Service-Feld (ToS) im IP-Header von DiffServ.In detail:MPLS nodes with less Traffic generate internet distribution. The more nodes the more traffic the more the distribution changes to quasi Gaussian distribution.SHDSL:Distribution:QoS (DSCP differential service code point) extrely dependent;Radio Link: quasi Gaussian distribution.modulation and QoS dependentAtzwanger Joachim, 02/11/2008Slide 5AJ6 Practcal View:Exchang of EquipmentYou will see the Quality of the oszillatorBack to back is a basic test:With 2 Tester you can make one Longtimemeasuremt, wih the the second you check the clockquality at time.To get to know the grandmaster and slave monitor the logs. There you see the progess of the ptp sychronisation process.I will encourage to work with Wireshark.You can watch the event- generl massagesSync M , Delay request, Delay Respns, Announce M etc.You can see themesage attributes ...In this way you really get to know ptp!Measrement setup:Cold startwarm startone step clock: A clock that provides time information using a single event massagetwo step clock: A clock that provides time infomation using the combinatuon of an event message and a subseqent genaral maeeage Event message:SyncDelay RequestPdelay requestPdelay responsGneral M:AnnounceFellow upDelay ResponsManagementSignallingAtzwanger Joachim, 02/11/2008Stability TestIEEE1588GPSIEEE1588SlaveMPLS/ MPLS+ Radio/GrandmasterE1Tester Jitter/ WanderMPLS + XDSLEthernet Network TerminationTraffic G tStability TestsGenerator CaseGMSlaveTraffic Generator TesterMeasurementPeriod (sec)Sync M/Sec2. Step Delay R.LogsLoad/ overload different queuesTIE, MTIE, TDEV10000321000064100001281000003210000064100000128Atzwanger Joachim PTM TRA6Slide 7AJ7 Why is a holdofer test impotant:Syncchain: GM - Slave - Node B1. Check the" input autonomous time"2. Good Osziilators can compensate network distortion2. In the following Test cases the holdover of the slave can be the reason that no Clock quality change will occureAtzwanger Joachim, 02/11/2008Slide 8AJ8The transient respons time can be larger as back to back connectionAtzwanger Joachim, 02/11/2008Slide 9AJ9Repetion concerning G.8261 Timing and synchronization aspects in Packet NetworksI think that model 2 is better to stress network concerning ptp features.You see here test case 1Atzwanger Joachim, 02/11/2008MPLS Network with priorisationGPSNE 1NE 2IEEE1588GrandmasterE1IEEE1588SlaveTester MPLS LABEthernet Network Traffic GeneratorTester Jitter/ WanderTerminationPerformance tests: G.8261 Test Case 1 MPLS LABGMSlaveTraffic Generator TesterJitter/WanderMeasurement Sync2 Step/TIE MTIE TDEV Period in hM/SecDelay R.LogsLoad Model 2TIE, MTIE, TDEV1h 32No /1h 64No /1h 128No /1h 32Yes /1h 64Yes /1h128Yes /G.8261: Allow a stabilization period according to Appendix II for the clock Recovery prozess to stabilize before doing the measurementAtzwanger Joachim PTM TRA11Slide 11TAA1 WE decided to use Traffic pattern from G.8261.Advantage:bigger chance to compare to other test results!In the log where ptp events are memorized you willsee mor action!Telekom Austria AG, 02/11/2008GPSNE 1NE 2IEEE1588GrandmasterE1IEEE1588SlaveTester MPLS LABEthernet Network Traffic GeneratorTester Jitter/ WanderTerminationPerformance tests: G.8261 Test Case 2 MPLS LABGMSlaveTraffic Generator TesterJitter/WanderMeasurement Sync 2 Step/Different Loads TIE MTIE TDEV Period in hM/SecDelay R.LogsMod 1 ,2TIE. MTIE, TDEV Model 1, Model 24h 32No /Distribution, Jitter 4h 64No /Distribution, Jitter4h 128NO /4h 32Yes /Distribution, Jitter 4h 64Yes /Distribution, JitterG.8261: Allow a stabilization period according to Appendix II for the clock Recovery prozess to stabilize before doing the measurement4h128Yes /Atzwanger Joachim PTM TRA12GPSNE 1NE 2IEEE1588GrandmasterE1IEEE1588SlaveTester MPLS LABEthernet Network Traffic GeneratorTester Jitter/ WanderTerminationPerformance tests: G.8261 Test Case 3 MPLS LABGMSlaveTraffic Generator TesterJitter/WanderMeasurement 2 Step/Load Model 12TIE MTIE TDEVperiod in h Sync M/SecDelay RLogsLoad Model 1,2TIE. MTIE, TDEV Model 1 Model 224h 32No /Distribution, Jitter 24h 64No /Distribution, Jitter24h 128Yes /24h 32Yes /Distribution, Jitter 24h 64Yes /Distribution, JitterG.8261: Allow a stabilization period according to Appendix II for the clock Recovery prozess to stabilize before doing the measurement24h128Yes /Atzwanger Joachim PTM TRA13Slide 14AJ15In some ares is no fibre ia avaiable therefor radio Link System are the solution.QAM = QPSK = Quadratur phas shift Keying(VierphasenmodulationRadio link System changes from 32QAM to 16 QAMand so on if the BER is to high / Receive level decreas to much.Bit: Bei 256-QAM sind das 256 Punkte in einem 16x16-Raster (bei DVB-C wird diese Konstellation z.T. im UHF-Bereich eingesetzt)Atzwanger Joachim, 02/11/2008Radio Link System32QAM, 16QAM, QPSK+MPLSGPSMPLSLABNE 1NE 2Radio Link SystemT ffi IEEE1588GrandmasterE1IEEE1588SlaveTester Ethernet Network Traffic GeneratorTester Jitter/ WanderPerformance tests: G.8261 Test Case 2 Radio Link+ MPLS LABTerminationGMSlaveRadio Link SystemTraffic G.LoadTester Jitter/ Wander Model 1 Model 2Test Time Sync M /Sec 2. Step/Delay R.Logs32QAM16QAMPAMModel 1, 2TIE, MTIE, TDEVy 4h 32No /4h 64No /4h 128No //4h 32Yes /4h 64Yes /4h128Yes /G.8261: Allow a stabilization period according to Appendix II for the clock Recovery prozess to stabilize before doing the measurementAtzwanger Joachim PTM TRA15Radio Link System 32QAM, 16QAM, QPSK+MPLSGPSMPLSLABNE 1NE 2Radio Link SystemT ffi IEEE1588GrandmasterE1IEEE1588SlaveTester Ethernet Network Traffic GeneratorTester Jitter/ WanderPerformance tests: G.8261 Test Case 3 Radio Link+ MPLS LABTerminationGMSlaveRadio Link SystemTraffic G.LoadTester Jitter / Wander Model 1 Model 2Test Time Sync M /Sec 2. Step/Delay R.Logs32QAM16QAMPAMModel 1 , 2TIE, MTIE, TDEVy 24h 32No /24h 64No /24h 128No //24h 32Yes /24h 64Yes /24h128Yes /G.8261: Allow a stabilization period according to Appendix II for the clock Recovery prozess to stabilize before doing the measurementAtzwanger Joachim PTM TRA16GPSMPLSLABNE 1NE 2SHDSLT ffi IEEE1588GrandmasterE1IEEE1588SlaveTester Ethernet Network Traffic GeneratorTester Jitter/ WanderPerformance Tests: G.8261 Test Case 1 SHDSL MPLSTerminationGMSlaveTraffic Generator Tester J & WTest Time in hSync M/Sec2. Step/Delay R.LogsLoad Model 2TIE,MTIE,TDEV1h 32No /1h 64No /1h 128No /1h 32Yes /1h 64Yes /1h128Yes /G.8261: Allow a stabilization period according to Appendix II for the clock Recovery prozess to stabilize before doing the measurementAtzwanger Joachim PTM TRA17GPSMPLSLABNE 1NE 2SHDSLT ffi IEEE1588GrandmasterE1IEEE1588SlaveTester Ethernet Network Traffic GeneratorTester Jitter/ WanderPerformance Tests: G.8261 Test Case 2 SHDSL MPLSTerminationGMSlaveTraffic Generator Tester J & WTest Time in hSync M/Sec2. Step/Delay R.LogsLoadModel 1 , 2TIE,MTIE,TDEVModel 1 Model 24h 32No /4h 64No /4h 128No /4h 32Yes //4h 64Yes /4h128Yes /G.8261: Allow a stabilization period according to Appendix II for the clock Recovery prozess to stabilize before doing the measurementAtzwanger Joachim PTM TRA18GPSMPLSLABNE 1NE 2SHDSLT ffi IEEE1588GrandmasterE1IEEE1588SlaveTester Ethernet Network Traffic GeneratorTester Jitter/ WanderPerformance Tests: G.8261 Test Case 3 SHDSL MPLSTerminationGMSlaveTraffic Generator Tester J & WTest Time in hSync M/Sec2. Step/Delay R.LogsLoadModel 1 , 2TIE, MTIE, TDEV Model 1 Model 224h 32No /24h 64No /24h 128No /24h 32Yes //24h 64Yes /24h128Yes /G.8261: Allow a stabilization period according to Appendix II for the clock Recovery prozess to stabilize before doing the measurementAtzwanger Joachim PTM TRA19Slide 20AJ11Goal: which network disturbance causes a change of the ptp sourceAtzwanger Joachim, 02/11/2008Slide 21AJ12 Why robustness tets?normally test Labs are to smal,l to represent the live network.One possibility to reach live network disturbance is to add delay and PDV with an network emulatorHere it is one way descibed how to do it.Atzwanger Joachim, 02/11/2008Slide 22AJ13 The pictire is a screen shot of a netwok emulator.You configure average delay, MIn, Max, MaxMax ∆ Negativ or positiv and the spread.Atzwanger Joachim, 02/11/2008Slide 23AJ14 Atzwanger Joachim, 01/11/2008Robustness test symmetric;Network Simulator1588 Slave Grandmaster TesterJitter / WanderNr Max Δ()Spread Down Up Delay FollowuplLogs Sync M/Metric(µsec) neg= Pos)about Requests DelayRequestssec G.823 OffestSEC PDH df/F1A151x x1B5x x1C7,5x x1D10x x1E15x x2A201x x2B5x x2C7,5x x2D10x x3A251x x3B5x x3C7,5x x3D10x xAtzwanger Joachim PTM TRA24Robustness test asymmetric;impairment downstreamNetwork Simulator1588 Slave Grandmaster TesterJitter / WanderNr Max Δ()Spread Down Up Delay FollowuplLogs Sync M/Metric(µsec) neg= Pos)about Requests DelayRequestssec G.823 OffestSEC PDH df/F1A151x1B5x1C7,5x1D10x1E15x2A201x2B5x2C7,5x2D10x3A251x3B5x3C7,5x3D10xAtzwanger Joachim PTM TRA25Robustness test asymmetric; impairment upstreamNetwork Simulator1588 Slave Grandmaster TesterJitter / WanderNr Max Δ()Spread Down Up Delay FollowuplLogs Sync M/Metric(µsec) neg= Pos)about Requests DelayRequestssec G.823 OffestSEC PDH df/F1A151x1B5x1C7,5x1D10x1E15x2A201x2B5x2C7,5x2D10x3A251x3B5x3C7,5x3D10xAtzwanger Joachim PTM TRA26Which clock relevant parameters areSlide 27AJ16 Demanding customer ask for SLA regarding Clock Quality at Node Atzwanger Joachim, 02/11/2008Many Thanks!Questions?Q ti?joachim.atzwanger@telekom.atj hi@l kAtzwanger Joachim PTM TRA28。

相关文档
最新文档