数据结构第4章 串
严蔚敏数据结构-第四章 串
15
(2)S1串长 最大串长 串长<最大串长 串长 最大串长; S1,S2串长和 最大串长 串长和>最大串长 串长和 最大串长;
S1 6 a b c d e f S2 6 g h i j k l T 8 a b c d e f g h
3
串的抽象数据类型的定义: 串的抽象数据类型的定义: ADT String{ 数据对象: 数据对象:D={ai|ai∈CharacterSet, i=1,2,...,n, n>=0} 数据关系: 数据关系:R1={<ai-1,ai>|ai-1,ai∈D, i=2,...,n} 基本操作: 基本操作: StrAssign(&T, chars)
11
作业: 作业: 1.用5种串的基本操作(StrAssign、StrCompare、StrLen Concat、SubString)来逻辑实现StrInsert(&S, pos, T)操作 、 操作. )
Status StrInsert(String S, int pos , String T) { if ……….. return error; , , ); ); ); );
chars是字符串常量。生成一个其值等于chars的串 。 是字符串常量。生成一个其值等于 的串T。 是字符串常量 的串
StrCopy(&T, S)
存在则由串S复制得串 串S存在则由串 复制得串 存在则由串 复制得串T
StrEmpty(S)
存在则若S为空串 串S存在则若 为空串 返回真否则返回假 存在则若 为空串,返回真否则返回假
Sub返回串 的第pos个字符起长度为 返回串S的第 个字符起长度为len的子串 用Sub返回串S的第pos个字符起长度为len的子串
《数据结构与算法(C++语言版)》第4章_串
串函数与串的类定义
• 常用的 常用的C++串函数 串函数 • C++的串库(string.h)中提供了许多字符串的操作函数,几 个常用的C++字符串函数及其使用方法如下。 •假设已有以下定义语句:
串函数与串的类定义
• (1)串拷贝函数 • char *strcpy(char *s1, const char *s2),将字符串s2复制到字 符串数组s1中,返回s1的值。 • char *strncpy(char *s1, const char *s2, size_tn)将字符串s2中最 多n个字符复制到字符串数组s1中,返回s1的值。 • 例如:
串函数与串的类定义
• (3)串比较函数 • int strcmp(const char *s1, const char *s2),比较字符串s1和字 符串s2。函数在s1等于、小于或大于s2时,分别返回0、小 于0或者大于0的值。 • int strncmp(const char *s1, const char *s2, size_tn)比较字符串 s1中的n个字符和字符串s2。函数在s1等于、小于或大于s2 时,分别返回0、小于0或者大于0的值。 • 例如:
串模式匹配
• 无回溯的匹配算法 • 在上面介绍的匹配算法中,某趟匹配失败时,下一趟的匹 配相当于将子串P后移1位再从头与主串中对应字符进行比 较,即相当于i指示器回溯到上趟(最近失败的一趟)匹配 的起点的下一个位置,这样,主串中每个字符都要与子串 中的第1个字符对应一次,再向后比较。因此,主串中每个 字符参加比较的次数最多可达n次(n为子串长度),因此 时间复杂度为O(nm)。那么,能否使目标串中每个字符只参 加一次比较呢?也就是说,能否不回溯i指示器?回答是肯 定的。这个问题是由D.E.Knoth与V.R.Pratt和J.H.Morris同时 解决的,所以有的文献也称这种思想的串匹配算法为KMP 算法。
数据结构——第4章 串(C#)
4.1.1 什么是串 串(或字符串)是由零个或多个字符组成的有限序列。 记作str="a1a2…an"(n≥0),其中str是串名,用双引号括 起来的字符序列为串值,引号是界限符,ai(1≤i≤n)是一 个任意字符(字母、数字或其他字符),它称为串的元素, 是构成串的基本单位,串中所包含的字符个数n称为串的 长度,当n=0时,称为空串。
4.2 串的存储结构
4.2.1 串的顺序存储结构-顺序串
和顺序表一样,用一个data数组(大小为MaxSize)和 一个整型变量length来表示一个顺序串,length表示data数 组中实际字符的个数。 定义顺序串类SqStringClass如下:
class SqStringClass { const int MaxSize=100; public char[] data; //存放串中字符 public int length; //存放串长 public SqStringClass() //构造函数,用于顺序串的初始化 { data=new char[MaxSize]; length=0; } //顺序串的基本运算 }
(9)串输出DispStr() 将当前串s的所有字符构成一个字符串并输出。对应的算 法如下:
public string DispStr() { int i; string mystr=""; if (length==0) mystr = "空串"; else { for (i=0;i<length;i++) mystr+=data[i].ToString(); } return mystr; }
数据结构第4章 串
/*若串s和t相等则返回0;若s>t则返回正数;若s<t则返 回负数*/
{ int i;
for (i=0;i<s.len&&i<t.len;i++)
if (s.ch[i]!=t.ch[i]) return(s.ch[i] - t.ch[i]);
初 始 条 件 : 串 S 存 在 ,1≤pos≤StrLength(S) 且 1≤len≤StrLength(S)-pos+1
操作结果:用Sub返回串S的第pos个字符起长度为len的子串
返回主目录
(11)StrIndex(S,T,pos)
初始条件: 串S和T存在,T是非空串, 1≤pos≤StrLength(S)
return(s.len); }
返回主目录
(7)清空函数
StrClear(SString *s) /*将串s置为空串*/ {
s->len=0; }
返回主目录
(8)连接函数
(1) 连接后串长≤MAXLEN,则直接将B加在A的 后面。 (2) 连接后串长>MAXLEN且LA<MAXLEN,则B 会有部分字符被舍弃。 (3) 连接后串长>MAXLEN且LA=MAXLEN,则B 的全部字符被舍弃(不需连接)。
for (i=s->len + t.len-1;i>=t.len + pos;i--)
s->ch[i]=s->ch[i-t.len];
for (i=0;i<t.len;i++) s->ch[i+pos]=t.ch[i];
s->len=s->len+t.len;
数据结构 串
串的存储结构( 4.1.2 串的存储结构(续)
⑵ 堆存储结构
数据结构C语言描述
这种存储方法仍然以一组地址连续的存储单元存放串的字符 序列,但它们的存储空间是在程序执行过程中动态分配的。系统 序列,但它们的存储空间是在程序执行过程中动态分配的。 将一个地址连续、容量很大的存储空间作为字符串的可用空间, 将一个地址连续、容量很大的存储空间作为字符串的可用空间, 每当建立一个新串时,系统就从这个空间中分配一个大小和字符 每当建立一个新串时, 串长度相同的空间存储新串的串值。 串长度相同的空间存储新串的串值。 在C语言中,存在一个称之为“堆”的自由存储区,并由C语 语言中,存在一个称之为“ 的自由存储区,并由C 言的动态分配函数malloc() free()来管理 利用函数malloc() malloc()和 来管理。 言的动态分配函数malloc()和free()来管理。利用函数malloc() 为每个新产生的串分配一块实际串长所需的存储空间, 为每个新产生的串分配一块实际串长所需的存储空间,若分配成 则返回一个指向起始地址的指针,作为串的基址,同时, 功,则返回一个指向起始地址的指针,作为串的基址,同时,为 了以后处理方便,约定串长也作为存储结构的一部分。 了以后处理方便,约定串长也作为存储结构的一部分。
出版社
MAXLEN
256
<最大串长> 最大串长>
typedef struct
/*串的实际长度* /*串的实际长度*/ 串的实际长度
串的存储结构( 4.1.2 串的存储结构(续)
数据结构C语言描述
串的实际长度可在这预定义长度的范围内随意, 串的实际长度可在这预定义长度的范围内随意, 超过预定义长度的串值则被舍去,称之为“截断” 超过预定义长度的串值则被舍去,称之为“截断”。 对串长有两种表示方法: 对串长有两种表示方法:一是如上述定义描述的那 以分量存放串的实际长度; 样,以分量存放串的实际长度;二是在串值后面加 一个不计入串长的结束标记字符, 如在有的 C 语言 一个不计入串长的结束标记字符 , 如在有的C 中以〞 表示串值的终结。此时的串长为隐含值, 中以〞\0〞表示串值的终结 。此时的串长为隐含值, 显然不便于进行某些串操作。 显然不便于进行某些串操作。这时数据类型可以定 义如下: 义如下: typedef char *Sstring1;
数据结构第4章数组和串
● 教学目的:理解抽象数据类型数组的概念, 掌握数组的不同存储结构的实现及应用,了 解广义表的相关概念,掌握串的逻辑结构、 存储结构及其基本运算。
● 教学重点:数作在不同 存储结构上的实现。 ● 教学难点:带状矩阵的压缩存储;稀疏矩 阵的三元组表实现及其转置算法,堆结构的 串操作实现;串的模式匹配算法。
矩阵的压缩存储
printf("Array a:\n"); k=0; for(i=0;i<N;i++)//输出矩阵A { for(j=0;j<N;j++) if(i<j)printf("%5d",sa[M-1]); else printf("%5d",sa[i*(i+1)/2+j]); printf("\n"); } printf("Array b:\n"); k=0; for(i=0;i<N;i++)//输出矩阵B { for(j=0;j<N;j++) if(i>j)printf("%5d",sb[M-1]); else printf("%5d",sb[j*(j+1)/2+i]); printf("\n"); }}
矩阵的压缩存储
由此可见,要唯一表示一个稀疏矩阵,在存储三 元组表的同时还需存储该矩阵总的行数、列数及非 零元个数。 练习:写出图4-9(a)所示稀疏矩阵的三元组表。
三元组表(也是线性表)的存储方式主要有两种: 顺序存储和链式存储,从而可引出稀疏矩阵的两种 压缩存储方法:三元组顺序表和十字链表。 3、三元组顺序表
矩阵的压缩存储
数据结构-第4章 串
4.1 串的类型定义
子串的序号:将子串在主串中首次出现时的该 子串的首字符对应在主串中的序号,称为子串 在主串中的序号(或位置)。 【例】 A=“abcdefbbcd”,B=“bcd”,B在A中的 序号为2。 特别地,空串是任意串的子串,任意串是其自 身的子串。
4.1.2 串的抽象数据类型定义
//查找ab子串
if (p->data==‘ a’ && p->next->data==‘b’)
{ p->data=‘x’; p->next->data=‘z’;
q=(LinkStrNode *)malloc(sizeof(LinkStrNode));
q->data=‘y’;
q->next=p->next; p->next=q;
s: a a a a b c d
t: a ab bac acb bc c ✓ 匹配成功 算法的思路是从s的每一个字符开始依次与t的 字符进行匹配。
4.2.1 Brute-Force算法
int BFIndex(SqString s,SqString t)
{ int i=0, j=0,k;
while (i<s.length && j<t.length)
4.1 串的类型定义 4.2 串的表示和实现 4.3 串的模式匹配算法
本章要求
理解: 1、串的基本概念、类型定义 2、串的存储表示和实现 3、串的KMP算法
掌握: 4、串的简单模式匹配算法(BF)
第4章 串的基本概念
串(或字符串):是由零个或多个字符组成 的有限序列。
串的逻辑表示: S=“a1a2…ai…an”,其中S为 串名,ai (1≤i≤n)代表单个字符,可以是字母、 数字或其它字符(包括空白符)。 串值:双引号括起来的字符序列。双引号不是 串的内容,只起标识作用。
《数据结构与算法》第四章-学习指导材料
《数据结构与算法》第四章串知识点及例题精选串(即字符串)是一种特殊的线性表,它的数据元素仅由一个字符组成。
4.1 串及其基本运算4.1.1 串的基本概念1.串的定义串是由零个或多个任意字符组成的字符序列。
一般记作:s="s1 s2 … s n""其中s 是串名;在本书中,用双引号作为串的定界符,引号引起来的字符序列为串值,引号本身不属于串的内容;a i(1<=i<=n)是一个任意字符,它称为串的元素,是构成串的基本单位,i是它在整个串中的序号; n为串的长度,表示串中所包含的字符个数,当n=0时,称为空串,通常记为Ф。
2.几个术语子串与主串:串中任意连续的字符组成的子序列称为该串的子串。
包含子串的串相应地称为主串。
子串的位置:子串的第一个字符在主串中的序号称为子串的位置。
串相等:称两个串是相等的,是指两个串的长度相等且对应字符都相等。
4.2 串的定长顺序存储及基本运算因为串是数据元素类型为字符型的线性表,所以线性表的存储方式仍适用于串,也因为字符的特殊性和字符串经常作为一个整体来处理的特点,串在存储时还有一些与一般线性表不同之处。
4.2.1 串的定长顺序存储类似于顺序表,用一组地址连续的存储单元存储串值中的字符序列,所谓定长是指按预定义的大小,为每一个串变量分配一个固定长度的存储区,如:#define MAXSIZE 256char s[MAXSIZE];则串的最大长度不能超过256。
如何标识实际长度?1. 类似顺序表,用一个指针来指向最后一个字符,这样表示的串描述如下:typedef struct{ char data[MAXSIZE];int curlen;} SeqString;定义一个串变量:SeqString s;这种存储方式可以直接得到串的长度:s.curlen+1。
如图4.1所示。
s.dataMAXSIZE-1图4.1 串的顺序存储方式12. 在串尾存储一个不会在串中出现的特殊字符作为串的终结符,以此表示串的结尾。
第四章 串
– 例如
• 主串S = • 子串T = CD • 则index(S,T),返回子串T在S中,第一次出现的位置3
19
串的模式匹配
Brute-Force算法基本思想: • 从目标串s 的第一个字符起和模式串t的第一个字符进行比较 • 若相等,则继续逐个比较后续字符,否则从串s 的第二个字 符起再重新和串t进行比较。 • 依此类推,直至串t 中的每个字符依次和串s的一个连续的字 符序列相等,则称模式匹配成功,此时串t的第一个字符在串s 中的位置就是t 在s中的位置,否则模式匹配不成功。
两式联立可得:“T0…Tk-1”= “Tj-k…Tj-1”
注意:j为当前已知的失配位置,我们的目标是计算新起点k。式中仅剩 一个未知数k,理论上已可解!
奇妙的结果:k仅与模式串T有关!
27
新起点k怎么求?
根据模式串T的规律:“T0…Tk-1”=“Tj-k …Tj-1” 由当前失配位置j(已知),归纳计算新起点k的表达式。
j=next[j]的位置(即模式串继续向右移动),再比较 si 和 tj 。
依次类推,直到下列两种情况之一: 1)j退回到某个j=next[j]时有 si = tj,则指针各增1,继续匹配; 2)j退回至j=0,此时令指针各增1,即下一次比较 si+1和 t0 。
30
串的模式匹配:KMP算法
• 模式串的next函数
6
串的基本概念
4.两个字符串相等的充分必要条件为两个字符串的长度相等,并 且对应位置上的字符相等。
例如:‘abcd’ ≠ ‘bacd’ ‘abcd’ = ‘abcd’
7
串的基本操作
1.给串变量赋值 ASSIGN(S1,S2)
数据结构第四章串
(2) 置换操作:用联接算法来实现。用在求子串序号(a,b,h)中得到的 ind 将a分成3部分:第一部分是b在a中的第一个位置前的子串substr (a,1,ind-1);第二部分是b(以c来代替);第三部分是b在a中的最后一个 位置后的子串substr(a,ind+m,n)。 即 a substr(a,I,ind-1)||c||substr(a,ind+m,n)
4. 2 串的基本运算
对于串的基本操作,许多高级语言均提供了相应的运算或标准 库函数来实现。下面仅介绍几种常用的串运算。 (1)联接(concatenation) 联接是串的最基本,最重要的运算。两个串的联接是将一个串 紧接着放在另一个串的末尾。联接用符号“||”表示。 例如:a=”bei” b=“jing” a || b=“beijing” (2)求子串(substr) SUBSTR(a,m,n)功能: 从a 中截取子串,从第m个字符到第n个 字符的子串(m<n)。子串应是将串a中取出从标号m开始的连续n -m+1个字符。 例:SUBSTR(“ABCDEFG”,2,3)=”BC” 利用求子串及联接两种运算可以完成对串的插入、删除和修改。 例如: a=“bejing” b=“iy” ,将b插入到a的第二个字符之后 得到新的串s,则 s=substr(a,1,2) || b || substr(a,3,6) =“beiyjing”
(5)置换(repleace) 置换运算repleace(a,b,c)表示在a中搜索b,若b是a的 子串,就以c代替b,若不是,则经置换后,a不变。 例如:a=“monday”, b=“mon”, c=“thurs” repleace(a,b,c)=“thursday” 置换运算是将串a中所有的子串b用c来代替。 在一部分程序设计语言中没有实现,仍可用前三种运 算来完成。 置换算法过程:实现置换运算repleace(a,b,c),同 样也是在a中搜索是否与b相同的子串,若有,以c来代 替,再继续向下搜,直到在a中找不到和b相同的子串 为止。
数据结构第四章:串
例2、串的定位 、串的定位index(s,t,pos)
在主串s中取从第 个字符起、 相等的子串和T比较 在主串 中取从第pos个字符起、长度和串 相等的子串和 比较,若 中取从第 个字符起 长度和串T相等的子串和 比较, 相等,则求得函数值为i,否则值增1直至 中不存在和串T相等的子串 直至S中不存在和串 相等,则求得函数值为 ,否则值增 直至 中不存在和串 相等的子串 为止。 为止。
}
4.2 串的表示和实现
首先强调:串与线性表的运算有所不同,是以“串的整体” 首先强调:串与线性表的运算有所不同,是以“串的整体”作 为操作对象,例如查找某子串, 为操作对象,例如查找某子串,在主串某位置上插入一个子串 等。 串有三种机内表示方法: 串有三种机内表示方法:
定长顺序存储表示
顺序 存储 ——用一组地址连续的存储单元存储串值的字 用一组地址连续的存储单元存储串值的字 符序列, 静态存储方式 方式。 符序列,属静态存储方式。
4.1 串类型的定义 4.2 串的表示和实现
4.1 串的类型定义
4.1.1串的定义
定义:串(string)是由零个或多个任意字符组成的字 符序列,是数据元素为单个字符的特殊线性表。 的特殊线性表。 是数据元素为单个字符的特殊线性表 记为:an”
(n≥0 )
第4章 串(String) 章 )
本章主题:串的各种基本运算及其实现 本章主题: 教学目的:了解数据结构的基本概念, 教学目的:了解数据结构的基本概念,理解常用术语 教学重点: 教学重点: 掌握串的基本概念及其基本运算 掌握串的存储结构 主要内容: 主要内容: 1.串的基本概念 2.串的存储结构 2.串的存储结构 3.串的基本运算及其实现 3.串的基本运算及其实现
串其中0<=pos<=strlen(s)-1,且数组 且数组sub至少可容纳 至少可容纳len+1个字符。*/ 个字符。 串其中 且数组 至少可容纳 个字符
数据结构——串
7
三、串的基本操作 C语言中常用的串运算 定义下列几个变量: char s1[20]=“dirtreeformat”,s2[20]=“file.mem”; char s3[30],*p; int result;
(1) 求串长(length) int strlen(char s); //求串的长度
例如:printf(“%d”,strlen(s1)); 输出13
char strcat(char s1 , char s2)
该函数将串s2复制到串s1的末尾,并且返回一 个指向串s1的开始处的指针。
例如:strcat(a3,”/”)
strcat(a3,a2);
2020//4//a143=“dirtreeformat/file.mem”
9
(4)串比较(compare)
A=“This is a string” B=“is” B在A中出现了两次,其中首次出现所对应的主串
位置是3。因此,称B在A中的序号(或位置)为3 特别地,空串是任意串的子串,任意串是其自身的子
串。
2020/4/14
5
二、串的抽象数据定义
• ADT String { • 数据对象:D={ai| ai
16
顺序串的类型定义和顺序表类似: typedef char ElemType;
typedef struct { ElemType ch[maxstrlen]; int length;
}sstring; //其优点是涉及到串长操作时速度快。
2020/4/14
17
4.2.2 堆分配存储表示
这种存储表示的特点是,仍以一组地址连续的存储单元存 放字符串序列,但它们的存储空间是在程序执行过程中动态 分配而得。所以也称为动态存储分配的顺序表。在C语言中, 利用malloc和realloc,free等动态存储管理函数,来根据实 际需要动态分配和释放字符数组空间。这样定义的顺序串类
数据结构4_串
• C语言约定在串尾加结束符 ‘ \0’,以利操作加速,但不计入串 长
• 若字符串超过Maxstrlen 则自动截断(因为静态数组存不 进 去)。
2020/4/26
13
例:用顺序存储方式编写求子串函数SubString(&Sub,S,pos,len)
if (T.ch) free(T.ch); //释放T原有空间
C是指针变量,可以自增! 意即每次后移一个数据单 元。
for (i=0, c=chars; *c; ++i, ++c); //求chars的串长度i
if ( !i ) {T.ch = NULL; T.length = 0;}
直到终值为“假”
}
改用动态分配的一维数组——堆
2020/4/26
14
堆分配存储特点:仍用一组连续的存储单元来存放串,但存
储空间是在程序执行过程中动态分配而得。
思路:利用malloc函数合理预设串长空间。
特点: 若在操作中串值改变,还可以利用realloc函数按新串长
度增加空间(即动态数组概念) 。
堆T的存储结构描述:
{ if(pos<1 || pos>S[0] || len<0 || len>S[0]-pos+1) return ERROR;
//若pos和len参数越界,则告警
Sub[1……len]=S[pos……pos+len-1];
子串长度
Sub[0]=len; return OK;
讨论:想存放超长字符串怎么办?
用定长的字符数组来定义,数组的上界预先给出,故称为静态存 储分配。
算法与数据结构考研试题精析(第二版)第4章串答案概要
第四章串一、选择题1.B 2.E 3.C 4.A5.C6.A7.1D 7.2F 8.B注9.D 10.B注:子串的定义是:串中随意个连续的字符构成的子序列,并规定空串是随意串的子串,随意串是其自己的子串。
若字符串长度为n(n>0),长为n的子串有1个,长为n-1的子串有2个,长为n-2的子串有3个,,,,长为1的子串有n个。
因为空串是任何串的子串,所以此题的答案为:8*(8+1)/2+1=37。
应选B。
但某些教科书上以为“空串是随意串的子串”无心义,所以以为选C。
为防止考试中的二意性,编者以为第9题出得好。
二、判断题1.√2.√3.√三.填空题1.(1)由空格字符(ASCII值32)所构成的字符串(2)空格个数23.随意个连续的字符构成的子序列4.5 5.O(m+n) 6.011223127.010104218.(1)模式般配(2)模式串.字符9.(1)其数据元素都是字符(2)次序储存(3)和链式储存(4)串的长度相等且两串中对应地点的字符也相等10.两串的长度相等且两串中对应地点的字符也相等。
11.’xyxyxywwy’12.*s++=*t++或(*s++=*t++)!=‘\0’13.(1)chars[] (2)j++ (3)i>=j14.[题目剖析]此题算法采纳次序储存构造求串s和串t的最大公共子串。
串s 用i指针(1<=i<=s.len)。
t串用j指针(1<=j<=t.len)。
算法思想是对每个i(1<=i<=s.len,即程序中第一个WHILE循环),来求从i开始的连续字符串与从j(1<=j<=t.len,即程序中第二个WHILE循环)开始的连续字符串的最大般配。
程序中第三个(即最内层)的WHILE循环,是当s中某字符(s[i])与t中某字符(t[j])相等时,求出局部公共子串。
若该子串长度大于已求出的最长公共子串(初始为0),则最长公共子串的长度要改正。
数据结构(CC++语言版)第4章串
•
else return -1;
•}
34
4.3 模式匹配
35
4.3 模式匹配
朴素的模式匹配——BF算法分析
为什么BF算法时间性能低?
在每趟匹配不成功时存在大量回溯,没有利用已经 部分匹配的结果。
如何在匹配不成功时主串不回溯?
主串不回溯,模式就需要向右滑动一段距离。
如何确定模式的滑动距离?
36
4.3 模式匹配
T[strLength(S1) +i]=S2[i]; strLength(T) =MAXSTRLEN; return FALSE; } }
CompStr (S, T)
初始条件:串 S 和 T 存在。 操作结果:若S T,则返回值 0;
若S T,则返回值 0; 若S T,则返回值 0
例如:CompStr(data, state) < 0 CompStr(capture, case) > 0
• 由于在计算机科学、生物信息学等许多领域的重要应用, 串模式匹配已经变成了一个非常重要的计算问题
28
4.3 模式匹配
常用的模式匹配算法: • 朴素的模式匹配(BF算法) • 无回溯的模式匹配(KMP算法) 其他模式匹配算法
29
4.3 模式匹配
朴素的模式匹配——BF算法
基本思想:从主串S的第一个字符开始和模式T 的第 一个字符进行比较,若相等,则继续比较两者的后 续字符;否则,从主串S的第二个字符开始和模式T 的第一个字符进行比较,重复上述过程,直到T 中的 字符全部比较完毕,则说明本趟匹配成功;或S中字 符全部比较完,则说明匹配失败。
S1="ab12 cd " S2="ab12" S3=“cd"
数据结构课件 第四章 串和数组
else {
s->str=(char*)malloc((len+1)*sizeof(char));
//分配空间
if (!s->str) return ERROR;
s->str[0..len]=string_constant[0..len];
//对应的字符赋值
s->length=len;
//赋予字符串长度
串的抽象数据类型定义
functions:
// 有13种之多
StrAssign(&T, chars) // 串赋值,生成值为chars的串T
StrCompare(S,T)
// 串比较,若S>T,返回值大于0…
StrLength(S)
// 求串长,即返回S的元素个数
Concat(&T, S1, S2) // 串连接,用T返回S1+S2的新串
type unsigned char String[MAX_STRING];
第二种是在程序执行过程中,利用标准函数malloc和free动态
地分配或释放存储字符串的存储单元,并以一个特殊的字符作为字符串
的结束标志,它的好处在于:可以根据具体情况,灵活地申请适当数目
的存储空间,从而提高存储资源的利用率。类型定义如下所示:
(4)串连接 int Concat(STRING *s1,STRING s2) { STRING s; StringAssign(&s,s1->str); //将s1原来的内容保留在s中 len=Length(s1)+Length(s2); //计算s1和s2的长度之和 free(s1->str); //释放s1原来占据的空间 s1->str=(char*)malloc((len+1)*sizeof(char)); //重新为s1分配空间
数据结构-第四章串
数据结构-第四章串串也叫字符串,它是由零个或多个字符组成的字符序列。
基本内容1 串的有关概念串的基本操作2 串的定长顺序存储结构,堆分配存储结构;3 串的基本操作算法;4 串的模式匹配算法;5 串操作的应⽤。
学习要点1 了解串的基本操作,了解利⽤这些基本操作实现串的其它操作的⽅法;2 掌握在串的堆分配存储结构下,串的基本操作算法;3 掌握串的模式匹配算法;第四章串 4.1 串的基本概念4.2 串存储和实现4.3 串的匹配算法4.4 串操作应⽤举例第四章串 4.1 串的基本概念 4.2 串存储和实现 4.3 串的匹配算法 4.4 串操作应⽤举例第四章串4.1 串的基本概念 4.2 串存储和实现 4.3 串的匹配算法 4.4 串操作应⽤举例4. 1 串类型的定义⼀、串的定义1 什么是串串是⼀种特殊的线性表,它是由零个或多个字符组成的有,a2, a3, ... a n’限序列,⼀般记作s = ‘a1其中 s----串名, a1,a2, a3, ... a n----串值串的应⽤⾮常⼴泛,许多⾼级语⾔中都把串作为基本数据类型。
在事务处理程序中,顾客的姓名、地址;货物的名称、产地。
可作为字符串处理,⽂本⽂件中的每⼀⾏字符等也可作为字符串处理。
下⾯是⼀些串的例⼦:(1)a = ‘ LIMING’(2)b = ‘NANJING UNIVERSITY OF SCIENCE &TECHNOLOGY’(3)c = ‘ DATA STRUCTURE’(4)d = ‘’说明:1) 串中包含的字符个数,称为串的长度。
长度为0的串称为空串,它不包括任何字符,上⾯(4)中的串d 是空串,(5)中的e 是包含⼀个空格符的空格串;2)串中所包含的字符可以是字母、数字或其他字符,这依赖于具体计算机所允许的字符集。
2 串的有关术语1)⼦串串中任意连续的字符组成的⼦序列称为该串的⼦串例:c = ‘ DATA STRUCTURE’,f=‘DATA’ f是c的⼦串2)⼦串的位置⼦串T 在主串S中的位置是指主串S中第⼀个与T相同的⼦串的⾸字母在主串中的位置。
数据结构 第四章 串
第四章串串又称字符串,是一种特殊的线性表,它的每个元素仅由一个字符组成。
计算机上非数值处理的对象基本上是字符串数据。
在较早的程序设计语言中,字符串仅作为输入和输出的常量出现。
随着计算机应用的发展,在越来越多的程序设计语言中,字符串也可作为一种变量类型出现,并产生了一系列字符串的操作。
在信息检索系统、文字编辑程序、自然语言翻译系统等等应用中,都是以字符串数据作为处理对象的。
本章将讨论串的存储结构和基本操作。
4.1 串的基本概念4.1.1 串的自然语言定义串(string)(或字符串)是由零个或多个字符组成的有限序列,一般记为:S="a1 a2 …… a n" (n≥0)其中,S是串名,用双引号括起来的字符串序列是串的值;a i(1≤i≤n)可以是字母、数字或其他字符;串中字符的个数n称为串的长度。
长度为0的串称为空串。
需要注意的是,串值必须用一对双引号括起来,但双引号本身不属于串,它的作用只是为了避免与变量名或数的常量混淆。
如"tempt"是个串,tempt则是变量名;"23"是串,而23则是一个常量.串中任意个连续的字符组成的子序列称为该串的子串,如:串S="This is a string",其中"This"是一个子串,"string"也是一个子串。
求子串在串中的起始位置称为子串定位或模式匹配。
例如,设A,B,C为如下三个串:A="data",B="structure",C="data structure",则它们的长度分别是4,9,14,A和B都是C的子串,A在C中的位置是1,而B在C中的位置是6。
下面注意区别空格串与空串的概念。
在各种应用中,空格常常是串的字符集合中的一个元素,因而可以出现在其他字符中间。
由一个或多个空格组成的串称为空格串,也就是说空格串中只有空格字符,空格串的长度不为零。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(9) RepStr(s, i, j, t)
在串s中,将第i(1≤i≤StrLength(s))个字符开始的j个字 符构成的子串用串t替换,并返回产生的新串。
SqString RepStr(SqString s, int i, int j, SqString t) { int k; SqString str; str.length=0; if (i<=0 || i>s.length || i+j-1>s.length) /*参数不正确时返回
顺序存储采用一般顺序表的存储结构,其类型定义 如下:
#define MaxSize 100
typedef struct { char data[MaxSize]; int length; } SqString;
其中,data域用来存储字符串,length域用来存储字符 串的当前长度,MaxSize常量表示允许所存储字符串的 最大长度。在C语言中每个字符串以'\0'标志结束。(2)StrCopy(st)将串t复制给串s。
void StrCopy(SqString &s, SqString t) /*引用型参数*/ { int i; for (i=0;i<t.length;i++) s.data[i]=t.data[i]; s.length=t.length;
}
(3)StrEqual(s,t) 判断两个串是否相等:若两个串s与t相等返回真(1); 否则返回假(0)。
for (i=0;i<s.length;i++)
/* 将s.data[0]~s.data[s.length-1]复制到str */ str.data[i]=s.data[i]; for (i=0;i<t.length;i++) /* 将t.data[0]~t.data[t.length-1]复制到str */ str.data[s.length+i]=t.data[i]; return str; }
(7)InsStr(s1, i, s2) 将串s2插入到串s1的第i个字符中,即将s2的第一个 字符作为s1的第i个字符,并返回产生的新串。
SqString InsStr(SqString s1, int i, SqString s2)
{
int j; SqString str; str.length=0;
(4)Strlength(s) 求串长:返回串s中字符个数。
int StrLength(SqString s)
{
return s.length;
}
(5)Concat(s,t) 返回由两个串s和t连接在一起形成的新串。
SqString Concat(SqString s, SqString t) { SqString str; int i; str.length=s.length+t.length;
else if (s.data[i]>t.data[i]) return 1;
if (s.length==t.length) return 0; /*s==t*/
else if (s.length<t.length)
return -1; else return 1; /*s>t*/
/*s<t*/
}
4.2.2 串的链式存储及其基本操作实现 也可以采用链式方式存储串,即用单链表形式存储 串。这称为链式串或链串。 链串中的结点类型定义:
(8) DelStr(s, i, j)
从串s中删去第i(1≤i≤StrLength(s))个字符开始的长度 为j的子串,并返回产生的新串。
SqString DelStr(SqString s, int i, int j) { int k; SqString str; str.length=0; if (i<=0 || i>s.length || i+j>s.length+1) /*参数不正确时返回 空串*/ return str;
int Strcmp(SqString s, SqString t) { int i,comlen; if (s.length<t.length) comlen=s.length;/*求s和t的共同长度*/
else comlen=t.length;
for (i=0;i<comlen;i++) /*逐个字符比较*/ if (s.data[i]<t.data[i]) return -1;
顺序串中实现串的基本运算如下:
(1)StrAssign(s,cstr)
将一个字符串常量赋给串s,即生成一个其值等于cstr 的串s。
void StrAssign(SqString &s, char cstr[ ] ) { int i; for (i=0;cstr[i]!='\0';i++) s.data[i]=cstr[i]; s.length=i; }
int StrEqual(SqString s, SqString t) { int same=1, i; if (s.length!=t.length) same=0; /*长度不相等时返回0*/ else for (i=0;i<s.length;i++) if (s.data[i]!=t.data[i]) /*有对应字符不相同时返回0*/ { same=0; break; } return same; }
(6)SubStr(s,i,j)
返回串s中从第i(1≤i≤StrLength(s))个字符开始的、 由连续j个字符组成的子串。
SqString SubStr(SqString s, int i, int j) { SqString str; int k; str.length=0; if (i<=0 || i>s.length || j<0 || i+j-1>s.length) return str; /*参数不正确时返回空串*/ for (k=i-1;k<i+j-1;k++) /*s.data[i]~s.data[i+j]=>str*/ str.data[k-i+1]=s.data[k]; str.length=j; return str; }
下面讨论在链串上实现串基本运算的算法。(只讲1,2) (1)StrAssign(s,t) 将一个字符串常量t赋给串s,即生成一个其值等于t的 串s。以下采用尾插法建立链串。
即生成一个其值等于chars的串s。
(2)StrCopy(&s, t):串复制:将串t赋给串s。
(3)StrEqual(s, t):判串相等:若两个串s与t相等则返回
真;否则返回假。
(4)StrLength(s):求串长:返回串s中字符个数。
(5)Concat(s, t):串连接:返回由两个串s和t连接在 一起形成的新串。 (6)SubStr(s, i, j): 求 子 串 : 返 回 串 s 中 从 第 i(1≤i≤StrLength(s))个字符开始的、由连续j个字符组 成的子串。 (7)InsStr(s1, i, s2): 将 串 s2 插 入 到 串 s1 的 第 i(1≤i≤StrLength(s)+1)个字符中,即将s2的第一个字符 作为s1的第i个字符,并返回产生的新串。
for (k=0;k<i-1;k++)
str.data[k]=s.data[k];
/*s.data[0]~s.data[i-2]=>str*/
for (k=i+j-1;k<s.length;k++)
/* s.data[i+j-1]~data[s.length-1]=>str */
str.ch[k-j]=s.ch[k]; str.length=s.length-j; return str; }
/* s.data[i+j-1]~data[s.length-1]=>str */
str.data[t.length+k-j]=s.data[k]; str.length=s.length-j+t.length; return str; }
(10) DispStr(s) 输出串s的所有元素值。
void DispStr(SqString s) { int i;
typedef struct snode { char data; struct snode *next;
} LiString ;
其中data域用来存储组成字符串的字符,next域 用来指向下一个结点。每个字符对应一个结点,一个 这样的链表存储一个字符串。下图所示是一个结点 大小为1的链串。
链串示意图
if (s.length>0)
{ for (i=0;i<s.length;i++) printf("%c", s.data[i]);
printf("\n");
} }
例4.1 设计顺序串上实现串比较运算Strcmp(s,t)的 算法。 解:本例的算法思路如下: (1)比较s和t两个串共同长度范围内的对应字符: ① 若s的字符<t的字符,返回-1; ② 若s的字符>t的字符,返回1; ③ 若s的字符=t的字符,按上述规则继续比较。 (2)当(1)中对应字符均相同时,比较s1和s2的长度: ① 两者相等时,返回0; ② s的长度>t的长度,返回1; ③ s的长度<t的长度,返回-1。
当且仅当两个串的长度相等并且各个对应位置上
的字符都相同时,这两个串才是相等的。
一个串中任意个连续字符组成的子序列(含空串)称 为该串的子串。例如,“a”、“ab”、“abc”和“abcd” 等都是“abcde”的子串。