山东省济宁市曲阜市2016-2017学年七年级(上)期中数学试卷(解析版)

合集下载

2016-2017学年第一学期五四制七年级数学期中试题含答案

2016-2017学年第一学期五四制七年级数学期中试题含答案

2016-2017学年第一学期期中质量调研七年级数学试题(时间:90分钟,满分120分)一、选择题(每题3分,共30分)1.运用等式性质进行的变形,不正确的是()A.如果a=b,那么a﹣c=b﹣c B.如果a=b,那么a+c=b+cC.如果a=b,那么ac=bc D.如果ac=bc,那么a=b2.在下列四个汽车标志图案中,能用平移变换来分析其形成过程的图案是()A B C D3.下图中,由AB∥CD,能得到∠1=∠2的是( )4.某人在广场上练习驾驶汽车,两次拐弯后,行驶方向与原来相同,这两次拐弯的角度可能是() A.第一次左拐30°,第二次右拐30°B.第一次右拐50°,第二次左拐130°C.第一次右拐50°,第二次右拐130°D.第一次向左拐50°,第二次向左拐120°已知5.在解方程13132x xx-++=时,方程两边同时乘以6,去分母后,正确的是()A.2x﹣1+6x=3(3x+1) B.2(x﹣1)+6x=3(3x+1)C.2(x﹣1)+x=3(3x+1) D.(x﹣1)+x=3(x+1)6.若A、B、C是直线l上的三点,P是直线l外一点,且PA=6cm,PB=5cm,PC=4cm,则点P到直线l 的距离()A.等于4cm B.大于4cm而小于5cmC.不大于4cm D.小于4cm7.∠α的补角为125°12′,则它的余角为()A. 35°12′ B.35°48′ C.55°12′ D.55°48′8.如图,把一块直角三角板的直角顶点放在直尺的一边上,若∠1=35°,则∠2等于()A.55° B.45° C.35° D.65°9.小李在解方程5a-x=13(x为未知数)时,错将-x看作+x,得方程的解为x=-2,则原方程的解为( )A.x=-3 B.x=0 C.x=2 D.x=110. 足球比赛的记分规则是:胜一场得3分,平一场得1分,负一场得0分,若一个队打了14场比赛得17分,其中负了5场,那么这个队胜了()场。

2016-2017学年第一学期七年级数学期中试卷(附答案)

2016-2017学年第一学期七年级数学期中试卷(附答案)

2016-2017学年第一学期七年级数学期中试卷(附答案)2016-2017学年度第一学期期中教学质量测试七年级数学试卷题号一二三四总分得分一.选择题(每小题3分,共30分) 1. 下列各数中,为负数的是() A、-1 B、0 C、2 D、3.14 2. 如图所示的图形为四位同学画的数轴,其中正确的是()3. 九台全区7年级学生大约有10200人,10200这个数用科学记数法表示为() A、 B、 C、 D、 4.下列各数与相等的()A. B. C. D. 5.将式子3-5-7写成和的形式,正确的是() A.3+5+7 B.-3+(-5)+(-7) C.3-(+5)-(+7) D.3+(-5)+(-7) 6.如果,且m+n<0,则下列选项正确的是() A、m<0, n< 0 B、m>0, n< 0 C、m,n异号,且负数的绝对值大 D、m,n异号,且正数的绝对值大 7.一个数的偶数次幂是正数,这个数是() A.正数 B.负数 C.正数或负数 D.有理数 8.在CCTV“开心辞典”栏目中,主持人问这样一道题目:“ 是最小的正整数,是最大的负整数,是绝对值最小的有理数.”请问:,,三数之和是() A.-1 B.0 C.1 D.2 9. 下列代数式符合书写要求的是() A、 B、 C、 5 D、10.一个两位数,十位数字是,个位数字是,则这个两位数用式子表示为() A、 B、 C、 D、二、填空题(每小题3分,共18分)11. 某粮店出售的三种品牌的面粉袋上分别标有质量为(25±0.1)kg、(25±0.2)kg、(25±0.3)kg的字样,从中任意拿出两袋,它们的质量最多相差_________kg。

12. 九台区中小学生大约有8.9万人,近似数8.9万精确到_________位 13. 比较大小(填“>”或“<” )_____ 14. 在数-5,-3,-2,2,6中,任意两个数相乘,所得的积中最小的数是________. 15. 观察下面一列数:-,,-,,…,按照这个规律,第2016个数是_________ 16.小明身上带着元钱去商店里买学习用品,付给售货员(<)元,找回元,则小明身上还有_________元(用含有、、来表示)三、计算题(本大题共6小题,共32分) 17.(5分)�D3+(-4)�D(-5)四、解答题(本大题共6小题,共40分) 23.(7分)请将数轴补全,然后把数-4,1,0,,-(-5)表示在数轴上,并按从小到大的顺序,从左到右串个糖葫芦,把数填在“○”内24.(7分)已知:与互为相反数求的值 25.(8分)某天一个巡警骑摩托车在一条南北大道上巡逻,他从岗亭出发,巡逻了一段时间停留在A处,规定以岗亭为原点,向北方向为正,这段时间行驶纪录如下(单位:千米):+10,-9,+7,-15,+6,-14,+4,-2 (1)A在岗亭哪个方向?距岗亭多远?(2)若摩托车行驶10千米耗油0.5升,且最后返回岗亭,这时摩托车共耗油多少升?26.(8分)人在运动时每分钟心跳的次数通常和人的年龄有关,如果用表示一个人的年龄,用表示正常情况下这个人在运动时所能承受的每分钟心跳的最高次数,那么 (1)正常情况下,在运动时一个20岁的人所能承受的每分钟心跳的最高次数是多少? (2)一个50岁的人运动时10秒心跳的次数为23,请问他有危险吗?为什么?27.(10分)如图,已知数轴上点A表示的数为-7,点B表示的数为5,点C到点A,点B的距离相等,动点P从点A出发,以每秒2个单位长度的速度沿数轴向右匀速运动,设运动的时间为(>0)秒(1)点C表示的数是_________ (2)求当等于多少秒时,点P到达点B 处(3)点P表示的数是_________(用含有的代数式表示)(4)求当t等于多少秒时,PC之间的距离为2个单位长度七年级数学参考答案及评分标准一、选择题(每小题3分,共30分)题号 1 2 3 4 5 6 7 8 9 10 答案 A D B B D A C B A C 二、填空题(每小题3分,共18分) 11、 0.6;12、千;13、>;14、-30;15、;16、- + 。

2016--2017学年度上期中七年级数学试卷

2016--2017学年度上期中七年级数学试卷

第1个图案 第2个图案 第3个图案2016~2017学年度第一学期期中考试七年级数学试卷一、选择题(共10小题,每小题3分,共30分)下列各题中均有四个备选答案,其中有且只有一个正确,请在答案卡上将正确答案的代号涂黑.1.-4的相反数是 A .-4 B .41 C .41- D .4 2.气温由-1℃上升2℃后是A .-1℃B .1℃C .2℃D .3℃ 3.与a -(a -b +c )相等的式子是( ) A .a -b +c B .a +b -c C .b -c D .c -b 4.据科学家推测,地球的年龄大约是4 600 000 000年,这个数用科学记数法表示为 A .8106.4⨯ B .81046⨯ C .9106.4⨯ D .101046.0⨯ 5.下列计算正确的是A .mn n m 523=+B .134=-mn mnC .2222222n m n m =+D .n m n m n m 222235=- 6.下列说法正确的是A .单项式xy 4-的系数是4,次数是2B .单项式y x 221的系数是21,次数是2C .单项式y x 251-的系数是51-,次数是3 D .单项式32y x -的系数是5,次数是17.飞机的无风航速为a km/h ,风速为20 km/h .飞机顺风飞行4h 的行程比逆风飞行3h 的行程多A . )140(+a kmB .)40(+a kmC .)207(+a kmD .a 7km 8.一列关于x 的有规律的单项式:x ,23x ,35x ,47x ,59x ,611x ,…,按照上述规律,第2016个单项式是A .20162016xB .20154031xC .20164031xD .20164033x9.某校七年级1班有学生a 人,其中女生人数比男生人数的54少3人,则男生的人数为A .9124+aB .9155-aC .9155+aD .9124-a10.已知b a b a -=-且ab ≠0,下列结论正确的是A .b a +<0B .b a ->0C .2a ≥3b D .ba≥1二、填空题(共6小题,每小题3分,共18分) 11.如果水位升高2m 时水位变化记作+2m ,那么水位下降3m 时水位变化记作__________m . 12.按要求用四舍五入法取近似数1.8945≈__________.(精确到0. 01)13.数轴上表示与-2的点距离3个单位长度的点所表示的数是_________.14. 如图,用灰、白两色正方形瓷砖铺设地面,第n 个图案中白色瓷砖块数为_________.15.若2x+5y=3,则10y-(1-4x )的值是_________.16.把四个有理数1,2,3,-5平均分成两组,假设1,3分为一组,2,-5分为另一组,规定:.已知正有理数m ,n (m <n ),以及它们的相反数,则所有A 的和为__________(用含m ,n 的整式表示).三、解答题(共8小题,共72分) 17.(本题12分)计算: (1)()()()()75320+---++- (2)()⎪⎭⎫ ⎝⎛-+⨯-21413112(3)()()4285243÷--⨯-+ (4)()⎥⎥⎦⎤⎢⎢⎣⎡-⨯⎪⎭⎫ ⎝⎛-+-÷-32222332518.(本题6分)如图,请在数轴上表示出3-的相反数,21-的倒数,绝对值等于5的数,平方等于16的数.19.(本题6分)先化简,再求值:⎪⎭⎫ ⎝⎛+-+⎪⎭⎫ ⎝⎛--22523451331y x y x x ,其中273-=x ,53=y .20.(本题8分)仓库现有100袋小麦出售,从中随机抽取10袋小麦,以90kg 为标准,超过的质量记为正数,不足的质量记为负数,称得的结果记录如下:+1,+1,+1.5,-1,+1.2,+1.3,-1.3,-1.2,+1.8,+1.1(1)这10袋小麦总计超过或不足多少千克?(2)若每千克的小麦的售价为2.5元,估计这批小麦....总销售额是多少元?)5(231-+++=A21.(1(2)做大纸盒比做小纸盒多用料多少平方厘米? 22.(本题10分)一种笔记本售价是2.3元/本,如果一次买100本以上(不含100本),售价是2.2元/本,如果一次买200本以上(不含200本),售价是2元/本.(1)如果购买50本,需要__________元,购买140本,需要__________元,购买230本,需要__________元.(2)如果需要200本笔记本,怎么购买最省钱? (3)当小明花500元购买笔记本时,销售员找回小明82元,请问小明购买了多少本笔记本? 23.(本题10分)(1)2016年11月的日历如图1所示,用1×3的长方形框出3个数.如果任意圈出一横行左右..相邻的三个数,设最小的数为x ,用含x 的式子表示这三个数的和为__________;如果任意圈出一竖列上下..相邻的三个数,设最小的数为y ,用含y 的式子表示这三个数的和为__________.(2)如图2,是2016年某月的月历,用一个2×2的正方形框出4个数,是否存在被框住的4个数的和为76,如果存在,请求出这四个数中的最小的数字,如果不存在,请说明理由.(3)如图2,用一个3×3的正方形框出9个数,在框出的9个数中,记前两行共6个数的和为a 1,最后一行3个数的和为a 2,若︱a 1-a 2︱=3.请求出正方形框中位于最中心..的数字m 的值.图1 图224.(本题12分)任意一个正整数n 都可以分解为两个正整数的乘积:q p n ⨯=(p ,q 是正整数,且p ≤q ),在n 的所有这种分解中,当p q -最小时,称q p ⨯是n 的最佳分解,并规定:()q pn F =.例如:3的最佳分解是3=1×3,()313=F ;20的最佳分解是20=4×5,()5420=F . (1)直接写出:()2F =__________; )9(F =__________;()12F =__________;(2)如果一个两位正整数t ,交换其个位上的数与十位上的数得到新的两位数记为t ',且18=-'t t .①求出正整数t 的值;②我们称数t 与t '互为一对“吉祥数”,直接写出所有“吉祥数t ”中()t F 的最大值; (3)在(2)条件下,在“吉祥数t ”的中间再插入另一个“吉祥数p ”组成一个四位数W ,再在“吉祥数t '”中间插入“吉祥数p '”(p 与p '互为一对“吉祥数”),又得到一个新的四位数N ,请用字母表示四位数W 、N,并求W -N的值.。

2016-2017学年人教版初一数学七年级上册期中测试卷及答案

2016-2017学年人教版初一数学七年级上册期中测试卷及答案

2016-2017学年人教版初一数学七年级上册期中测试卷及答案2016-2017学年七年级(上)期中数学试卷一.选择题(在每小题给出的四个选项中,只有一项是符合题目要求的,请将符合要求的选项前面的字母代号填写在答题卡上的指定位置.每小题3分,共30分)1.相反数是2的数是()A.﹣2B.C.2D.2.下列计算正确的是()A.23=6B.﹣42=﹣16C.﹣8﹣8=0 D.﹣5﹣2=﹣33.在有理数,(﹣1)2。

A.4B.3C.2D.1,﹣|﹣2|,(﹣2)3中正数有()个.4.下列说法中正确的是()A.没有最小的有理数B.既是正数也是负数C.整数只包括正整数和负整数D.﹣1是最大的负有理数5.2011年,XXX公布了第六次全国人口普查结果,总人口约为人,将用科学记数法表示正确的是()A.0.×1010B.1.3397×109C.13.397×108D.×1056.下列说法错误的是()A.2x2﹣3xy﹣1是二次三项式B.﹣x+1不是单项式C.的系数是D.﹣22xab2的次数是67.下列各式中与多项式2x﹣3y+4z相等的是()A.2x+(3y﹣4z)B.2x﹣(3y﹣4z)C.2x+(3y+4z)D.2x﹣(3y+4z)8.若﹣3x2my3与2x4yn是同类项,那么m﹣n=()A.B.1C.﹣1D.﹣29.已知a,b两数在数轴上对应的点如下图所示,下列结论正确的是()A.a+b>B.ab<C.b﹣a>D.a>b10.解为x=﹣3的方程是()A.3x﹣2=﹣7B.3x+2=﹣11C.2x+6=0D.x﹣3=0第1页(共17页)二.填空题(请将答案填写在答题卡指定的位置.每小题3分,共15分)11.如果水位升高3m时,水位变化记作+3m,那么水位下降5m时,水位变化记作:m.12.5与x的差的比x的2倍大1的方程是:.13.一个单项式加上﹣y2+x2后等于x2+y2,则这个单项式为.14.如果m、n互为相反数,a,b互为倒数,则|m+n﹣ab|等于.15.观察一列数。

最新人教版2016-2017学年七年级数学(上册)期中测试卷及答案

最新人教版2016-2017学年七年级数学(上册)期中测试卷及答案

2016-2017学年七年级(上)期中数学试卷一、单项选择题(每小题3分,共24分)1.﹣2015的相反数是( )A.2015 B.C.﹣D.﹣20152.在﹣4,0,0.1,﹣1这四个数中,最大的数是( )A.﹣4 B.0 C.0.1 D.﹣13.中国倡导的“一带一路”建设将促进我国与世界各国的互利合作,根据规划,“一带一路”地区覆盖总人口约为4400000000人,这个数用科学记数法表示为( )A.44×108B.4.4×109C.4.4×108D.4.4×10104.已知一个单项式的系数是2,次数是3,则这个单项式可以是( )A.2y3B.2xy3C.﹣2xy2D.3x25.在数轴上表示数﹣1和2014的两点分别为A和B,则A和B两点间的距离为( ) A.2013 B.2014 C.2015 D.20166.下列计算正确的是( )A.﹣5﹣5=0 B.﹣1+1=0 C.﹣3÷=﹣1 D.43=127.下列各式正确的是( )A.2a+3b=5ab B.a+2a=3a2C.2a2﹣a2=2 D.b2﹣2b2=﹣b28.下列说法正确的有( )个①0是绝对值最小的数②两个有理数相加,和大于任何一个加数③平方是它本身的数有0和1④最大的负整数是﹣1,最小的正整数是1⑤有理数中不是正有理数就是负有理数.A.2 B.3 C.4 D.5二、填空题(每小题3分,共24分)9.如果节约20元钱,记作“+20”元,那么浪费12元钱,记作__________元.10.用四舍五入把有理数2.015精确到百分位是__________.11.若﹣x2y m与3yx n是同类项,则m﹣n=__________.12.某种商品原价每件b元,第一次降价是打八折(按原价的80%出售),第二次降价每件又减10元,这时的售价是__________元.13.若|x﹣2|+|y+3|=0,则xy=__________.14.小明写作业时,不慎将墨水滴在数轴上,根据图中数值,请你确定墨迹盖住部分的整数共有__________个.15.如图是一个程序运算,若输入的x为﹣1,则输出y的结果为__________.16.一列数据、﹣、、﹣…按此排列,那么第5个数据是__________.三、解答题(温馨提示:要有解题过程喔!)17.(18分)计算:(1)(﹣﹣+)×48﹣12(2)(﹣1)2015﹣[2﹣(﹣3)2]÷(﹣)(3)﹣14×3﹣9×(﹣)÷﹣8×(﹣)2.18.若a、b互为相反数,c、d互为倒数,m=﹣2,则代数式a+|m|﹣2015cd+b+m 的值.19.一个整式A加上2xy2﹣xy+5等于4xy2﹣xy﹣3,求:(1)整式A的次数为__________.(2)整式A.20.一天,小明和小红用温差测量山峰的高度,小明在山顶测得温度是﹣2.5℃,小红此时在山脚测得温度是5.5℃.已知该地区高度每增加100米,气温大约降低1℃.问这座山峰的高度大约是多少米?21.已知一个数为两位数,个位数字是a,十位数字比个位数字小4.(1)用含a的式子表示这个两位数为__________.(2)当a=5,求这个两位数的倒数.22.有一道题“先化简,再求值:(﹣4x2+2x﹣8y)﹣(x﹣2y)﹣1,其中x=,y=﹣2015,一位同学做题时把“y=﹣2015”错抄成了“y=2015”,但她的计算结果仍然正确,请你解释这是怎么回事?23.下面是用形状和大小都相同的黑色棋子摆成的图形,观察规律完成下列问题:个图形的棋子数为__________.(3)你知道第153个图形需要几颗棋子吗?24.曲昆高速公路养护小组,乘车沿南北向公路巡视维护,如果约定向北为正,向南为负,当天的行驶记录如下(单位:千米)+17,﹣9,+7,﹣15,﹣3,+11,﹣6,﹣8,+5,+16 (1)通过计算确定养护小组最后到达的地方在出发点的哪个方向?(2)养护过程中,养护小组行使了多少千米?(3)若汽车耗油量为每千米0.5升,每升7元,则这次养护共花了多少元钱?2016-2017学年七年级(上)期中数学试卷一、单项选择题(每小题3分,共24分)1.﹣2015的相反数是( )A.2015 B.C.﹣D.﹣2015【考点】相反数.【分析】根据只有符号不同的两个数互为相反数,可得答案.【解答】解:﹣2015的相反数是2015,故选:A.【点评】本题考查了相反数,在一个数的前面加上负号就是这个数的相反数.2.在﹣4,0,0.1,﹣1这四个数中,最大的数是( )A.﹣4 B.0 C.0.1 D.﹣1【考点】有理数大小比较.【分析】先根据有理数的大小比较法则比较所有数的大小,即可得出选项.【解答】解:∵﹣4<﹣1<0<0.1,∴最大的数是0.1,故选C.【点评】本题考查了有理数的大小比较的应用,能熟记有理数的大小比较法则的内容是解此题的关键.3.中国倡导的“一带一路”建设将促进我国与世界各国的互利合作,根据规划,“一带一路”地区覆盖总人口约为4400000000人,这个数用科学记数法表示为( )A.44×108B.4.4×109C.4.4×108D.4.4×1010【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:4 400 000 000=4.4×109,故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.已知一个单项式的系数是2,次数是3,则这个单项式可以是( )A.2y3B.2xy3C.﹣2xy2D.3x2【考点】单项式.【分析】根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.【解答】解:此题规定了单项式的系数和次数,但没规定单项式中含几个字母.A、﹣2xy2系数是﹣2,错误;B、3x2系数是3,错误;C、2xy3次数是4,错误;D、2x3符合系数是2,次数是3,正确.故选D.【点评】此题考查单项式问题,解答此题需灵活掌握单项式的系数和次数的定义.5.在数轴上表示数﹣1和2014的两点分别为A和B,则A和B两点间的距离为( ) A.2013 B.2014 C.2015 D.2016【考点】数轴.【分析】数轴上两点间的距离等于表示这两点的数的差的绝对值.【解答】解:|﹣1﹣2014|=2015,故A,B两点间的距离为2015.故选:C.【点评】本题考查了数轴,由于引进了数轴,我们把数和点对应起来,也就是把“数”和“形”结合起来,二者互相补充,相辅相成,把很多复杂的问题转化为简单的问题,在学习中要注意培养数形结合的数学思想.6.下列计算正确的是( )A.﹣5﹣5=0 B.﹣1+1=0 C.﹣3÷=﹣1 D.43=12【考点】有理数的混合运算.【专题】计算题;实数.【分析】原式各项计算得到结果,即可做出判断.【解答】解:A、原式=﹣10,错误;B、原式=0,正确;C、原式=﹣3×3=﹣9,错误;D、原式=64,错误,故选B.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.7.下列各式正确的是( )A.2a+3b=5ab B.a+2a=3a2C.2a2﹣a2=2 D.b2﹣2b2=﹣b2【考点】合并同类项.【分析】本题根据同类项的概念与合并同类项法解答即可.【解答】解:解:A、两个单项式所含字母不同,不能合并,故A错误;B、两个单项式合并,字母不变,系数相加,即a+2a=3a,故B错误;C、2a2﹣a2=a2,故C错误;D、两个单项式合并,字母不变,系数相加,则b2﹣2b2=﹣b2,故D正确.故选:D.【点评】本题考查了同类项的定义:所含字母相同,相同字母的指数相同.合并同类项的方法:字母和字母的指数不变,只把系数相加减.不是同类项的一定不能合并.8.下列说法正确的有( )个①0是绝对值最小的数②两个有理数相加,和大于任何一个加数③平方是它本身的数有0和1④最大的负整数是﹣1,最小的正整数是1⑤有理数中不是正有理数就是负有理数.A.2 B.3 C.4 D.5【考点】有理数.【分析】根据绝对值的定义,有理数的加法法则,有理数平方的意义,负整数、正整数以及有理数定义分别判断即可.【解答】解:①0是绝对值最小的数,故①说法正确;②两个有理数相加,和不一定大于任何一个加数,例如:(﹣1)+(﹣2)=﹣3,故②说法错误;③平方是它本身的数有0和1,故③说法正确;④最大的负整数是﹣1,最小的正整数是1,故④说法正确;⑤有理数包括正有理数、0和负有理数,所以⑤错误.故选B.【点评】本题考查了有理数的定义及分类,绝对值的定义,有理数加法运算法则,是基础知识,需认真掌握正数、负数、整数、分数、正有理数、负有理数的定义与特点.注意0是有理数.二、填空题(每小题3分,共24分)9.如果节约20元钱,记作“+20”元,那么浪费12元钱,记作﹣12元.【考点】正数和负数.【分析】首先审清题意,明确“正”和“负”所表示的意义;再根据题意作答.【解答】解:∵节约20元钱,记作“+20”元,∴浪费12元钱,记作﹣12元.故答案为:﹣12.【点评】此题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.10.用四舍五入把有理数2.015精确到百分位是2.02.【考点】近似数和有效数字.【分析】把千分位上的数字5进行四舍五入即可.【解答】解:2.015≈2.02(精确到百分位).故答案为2.02.【点评】本题考查了近似数和有效数字:经过四舍五入得到的数为近似数;从一个数的左边第一个不是0的数字起到末位数字止,所有的数字都是这个数的有效数字.近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位,保留几个有效数字等说法.11.若﹣x2y m与3yx n是同类项,则m﹣n=﹣1.【考点】同类项.【分析】根据同类项的定义:所含字母相同,并且相同字母的指数也相同,分别求出m,n 的值,然后求出m﹣n即可.【解答】解:∵﹣x2y m与3yx n是同类项,∴m=1,n=2,∴m﹣n=﹣1,故答案为:﹣1.【点评】本题考查了同类项的知识,解答本题的关键是掌握同类项定义中的两个“相同”:一是所含字母相同,二是相同字母的指数也相同.12.某种商品原价每件b元,第一次降价是打八折(按原价的80%出售),第二次降价每件又减10元,这时的售价是0.8b﹣10元.【考点】列代数式.【专题】应用题.【分析】依题意直接列出代数式即可,注意:八折即原来的80%,还要明白是经过两次降价.【解答】解:根据题意得,第一次降价后的售价是0.8b,第二次降价后的售价是(0.8b﹣10)元.【点评】正确理解文字语言并列出代数式.注意:八折即原来的80%.13.若|x﹣2|+|y+3|=0,则xy=﹣6.【考点】非负数的性质:绝对值.【分析】根据非负数的性质,可求出x、y的值,然后代入值计算.【解答】解:根据题意得:,解得:,则xy=﹣6.故答案是:﹣6.【点评】本题考查了非负数的性质:有限个非负数的和为零,那么每一个加数也必为零.14.小明写作业时,不慎将墨水滴在数轴上,根据图中数值,请你确定墨迹盖住部分的整数共有3个.【考点】数轴.【分析】根据数轴上已知整数,求出墨迹盖住部分的整数个数.【解答】解:根据数轴得:墨迹盖住的整数共有0,1,2共3个.故答案为:3.【点评】本题主要考查了数轴,理解整数的概念,能够首先结合数轴得到被覆盖的范围,进一步根据整数这一条件是解题的关键.15.如图是一个程序运算,若输入的x为﹣1,则输出y的结果为﹣30.【考点】有理数的混合运算.【专题】图表型.【分析】根据图表列出算式,然后把x=﹣1代入算式进行计算即可得解.【解答】解:根据题意可得,y=[x+4﹣(﹣3)]×(﹣5),当x=﹣1时,y=[﹣1+4﹣(﹣3)]×(﹣5)=(﹣1+4+3)×(﹣5)=6×(﹣5)=﹣30.故答案为:﹣30.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.16.一列数据、﹣、、﹣…按此排列,那么第5个数据是.【考点】规律型:数字的变化类.【分析】分析题中数据可知第n个数的分子为n,分母为3n.故可求得第n个数是(n为奇数,为正数,n为偶数,为负数).【解答】解:第一个数的分子为1,分母为31=3,值为正;第二个数的分子为2,分母为32=9,值为负;第三个数的分子为3,分母为33=27,值为正;第n个数的分子为n,分母为3n.所以第5个数是,故答案为:.【点评】考查了规律型:数字的变化,解决此类探究性问题,关键在观察、分析已知数据,寻找它们之间的相互联系,探寻其规律.注意分别得到分子和分母与数序之间的关系.三、解答题(温馨提示:要有解题过程喔!)17.(18分)计算:(1)(﹣﹣+)×48﹣12(2)(﹣1)2015﹣[2﹣(﹣3)2]÷(﹣)(3)﹣14×3﹣9×(﹣)÷﹣8×(﹣)2.【考点】有理数的混合运算.【专题】计算题;实数.【分析】(1)原式利用乘法分配律计算即可得到结果;(2)原式第一项利用乘方的意义计算,第二项先计算括号中的运算,再计算除法运算即可得到结果;(3)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果.【解答】解:(1)原式=24﹣12﹣18+10﹣12=﹣8;(2)原式=﹣1﹣(﹣7)×(﹣2)=﹣1﹣14=﹣15;(3)原式=﹣3+6×﹣8×=﹣3+4﹣18=﹣17.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.18.若a、b互为相反数,c、d互为倒数,m=﹣2,则代数式a+|m|﹣2015cd+b+m 的值.【考点】代数式求值;相反数;倒数.【专题】计算题;实数.【分析】利用相反数,倒数的定义求出a+b,cd的值,代入原式计算即可得到结果.【解答】解:根据题意得:a+b=0,cd=1,m=﹣2,则原式=a+b+|m|+m﹣2015cd=0+2﹣2﹣2015=﹣2015.【点评】此题考查了代数式求值,相反数,以及倒数,熟练掌握运算法则是解本题的关键.19.一个整式A加上2xy2﹣xy+5等于4xy2﹣xy﹣3,求:(1)整式A的次数为3.(2)整式A.【考点】整式的加减.【分析】(1)根据两式相加后的最高次数与原式相同即可得出结论;(2)根据题意列出两式相减的式子,再合并同类项即可.【解答】解:(1)∵A+(2xy2﹣xy+5)=4xy2﹣xy﹣3,∴整式A的次数为3次.故答案为:3;(2)∵A+(2xy2﹣xy+5)=4xy2﹣xy﹣3,∴A=4xy2﹣xy﹣3﹣(2xy2﹣xy+5)=4xy2﹣xy﹣3﹣2xy2+xy﹣5=2xy2﹣8.【点评】本题考查的是整式的加减,熟知整式的加减实质上就是合并同类项是解答此题的关键.20.一天,小明和小红用温差测量山峰的高度,小明在山顶测得温度是﹣2.5℃,小红此时在山脚测得温度是5.5℃.已知该地区高度每增加100米,气温大约降低1℃.问这座山峰的高度大约是多少米?【考点】有理数的混合运算.【专题】应用题.【分析】先求出山脚与山顶温度的差,再根据该地区高度每增加100米,气温大约降低1℃列出代数式,求出代数式的值即可.【解答】解:由题意得:[5.5﹣(﹣2.5)]÷1×100=800米.答:这座山峰的高度大约是800米.【点评】本题考查的是有理数的混合运算,解题关键是要读懂题目的意思,根据题目给出的条件,列出代数式.21.已知一个数为两位数,个位数字是a,十位数字比个位数字小4.(1)用含a的式子表示这个两位数为11a﹣40.(2)当a=5,求这个两位数的倒数.【考点】列代数式;代数式求值.【分析】(1)根据十位数字比个位数字小4表示出十位数字,进而表示出这个两位数;(2)利用(1)中所求,再结合倒数的定义得出答案.【解答】解:(1)∵个位数字是a,十位数字比个位数字小4,∴十位数字为:a﹣4,∴这个两位数为:10(a﹣4)+a=11a﹣40;故答案为:11a﹣40;(2)当a=5时,11a﹣40=55﹣40=15,故这个两位数的倒数为:.【点评】此题主要考查了列代数式以及代数式求值,正确表示这个两位数是解题关键.22.有一道题“先化简,再求值:(﹣4x2+2x﹣8y)﹣(x﹣2y)﹣1,其中x=,y=﹣2015,一位同学做题时把“y=﹣2015”错抄成了“y=2015”,但她的计算结果仍然正确,请你解释这是怎么回事?【考点】整式的加减—化简求值.【专题】计算题.【分析】原式去括号合并得到最简结果,由结果与y的取值无关,故做题时把“y=﹣2015”错抄成了“y=2015”,但她的计算结果仍然正确.【解答】解:原式=﹣x2+x﹣2y﹣x+2y﹣1=﹣x2﹣1,当x=时,原式=﹣1,结果与x取值无关,故做题时把“y=﹣2015”错抄成了“y=2015”,但她的计算结果仍然正确.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.23.下面是用形状和大小都相同的黑色棋子摆成的图形,观察规律完成下列问题:3n+1.(3)你知道第153个图形需要几颗棋子吗?【考点】规律型:图形的变化类.【分析】解决这类问题首先要从简单图形入手,抓住随着“编号”或“序号”增加时,后一个图形与前一个图形相比,在数量上增加(或倍数)情况的变化,找出数量上的变化规律,从而推出一般性的结论.【解答】解:第一个图需棋子3+1=4;第二个图需棋子3×2+1=7;第三个图需棋子3×3+1=10;…第n个图需棋子3n+1枚.(3)当n=153时,3×153+1=460;【点评】此题考查了规律型中的图形变化问题,主要培养学生的观察能力和空间想象能力.24.曲昆高速公路养护小组,乘车沿南北向公路巡视维护,如果约定向北为正,向南为负,当天的行驶记录如下(单位:千米)+17,﹣9,+7,﹣15,﹣3,+11,﹣6,﹣8,+5,+16 (1)通过计算确定养护小组最后到达的地方在出发点的哪个方向?(2)养护过程中,养护小组行使了多少千米?(3)若汽车耗油量为每千米0.5升,每升7元,则这次养护共花了多少元钱?【考点】正数和负数.【分析】(1)根据有理数的加法,可得答案;(2)根据有理数的加法,可得每次行程,根据绝对值的意义,可得答案;(3)根据单位耗油量乘以路程,钱数=耗油量乘单价计算即可.【解答】解:(1)17+(﹣9)+7+(﹣15)+(﹣3)+11+(﹣6)+(﹣8)+5+16=15(千米),答:养护小组最后到达的地方在出发点的北方距出发点15千米;(2))17+|﹣9|+7+|﹣15|+|﹣3|+11+|﹣6|+|﹣8|+5+16=97(千米)(3)97×0.5×7=339.5(元)答:这次养护共花了339.5元钱.【点评】本题考查了正数和负数,根据题意列出算式是解题的关键.。

新人教版2016-2017学年七年级上册期中数学试卷含答案

新人教版2016-2017学年七年级上册期中数学试卷含答案

2016-2017学年七年级(上)期中数学试卷一、选择题在下列各题的四个备选答案中,只有一个是正确的,请把你认为正确的答案的字母代号填写在下表相应题号的方格内.1.﹣3的相反数是()A.3 B.﹣3 C.D.﹣2.在﹣1,0,﹣2,这四个数中,最小的数是()A.﹣1 B.0 C.﹣2 D.3.有理数a,b在数轴上的位置如图所示,下列关系正确的是()A.b>0>a>﹣2 B.a>b>0>﹣1 C.a>﹣2>b>0 D.b>0>a>﹣14.有理数中绝对值最小的数是()A.﹣1 B.0 C.1 D.不存在5.下列比较大小的式子中,正确的是()A.2<﹣(+5)B.﹣1>﹣0.01 C.|﹣3|<|+3| D.﹣(﹣5)>+(﹣7)6.数轴上A、B两点所对应的数分别是4和﹣6,则A、B两点间的距离为()A.﹣2 B.2 C.﹣10 D.107.4表示()A.(﹣2)×4 B.(﹣2)×(﹣2)×(﹣2)×(﹣2)C.﹣4×4 D.(﹣2)+(﹣2)+(﹣2)+(﹣2)8.数据6500 000用科学记数法表示为()A.65×105B.6.5×105C.6.5×106D.6.5×1079.把(﹣2)﹣(﹣10)+(﹣6)﹣(+5)写成省略加号和的形式为()A.﹣2+10﹣6﹣5 B.﹣2﹣10﹣6+5 C.﹣2+10﹣6+5 D.2+10﹣6﹣510.计算(﹣1)2012+(﹣1)2013等于()A.2 B.0 C.﹣1 D.﹣211.用代数式表示“a、b两数的平方和减去它们乘积的2倍”,正确的是()A.a2+b2﹣2ab B.(a+b)2﹣2ab C.a2b2﹣2ab D.2(a2+b2﹣ab)12.一个长方形的周长是30厘米,若长方形的一边用字母x(厘米)表示,则该长方形的面积是()A.x(30﹣2x)平方厘米B.x(30﹣x)平方厘米C.x(15﹣x)平方厘米D.x(15+x)平方厘米13.当x=﹣1时,代数式x2﹣2x+1的值是()A.0 B.﹣2 C.﹣1 D.414.某品牌的面粉袋上标有质量为(25±0.25)kg的字样,下列4袋面粉中质量合格的是()A.24.70kg B.24.80kg C.25.30kg D.25.51kg二、填空题15.(4分)若|a|=6,则a= .16.×()=1.17.(4分)按四舍五入法则取近似值:2.096≈(精确到百分位).﹣0.03445≈(精确到0.001).18.(4分)用火柴棒按如图所示的方式摆图形,按照这样的规律继续摆下去,第n个图形需要根火柴棒(用含n的代数式表示).三、解答题19.如图,两个圈分别表示负数集和分数集.请你把下列各数填入表示它所在的数集的圈里:﹣50%,2012,0.618,﹣3,,0,5.9,﹣3.14,﹣92.20.直接写出结果(1)﹣8﹣2=(2)2.5﹣(﹣7.5)=(3)﹣1=(4)12÷()=(5)(﹣0.8)×(﹣2)=(6)(﹣2)3=21.计算(1)0﹣16+(﹣29)﹣(﹣7)﹣(+11)(2)(3)()×(﹣30)(4)(5).22.当a=﹣2,b=3时,求下列代数式的值.(1)(a+b)2﹣(a﹣b)2;(2)a2﹣4ab+4b2.23.某公路养护小组乘车沿东西向公路巡视维护.某天早晨从A地出发,最后收工时到达B地.约定向东为正方向,当天的行驶记录如下(单位:千米):+13,﹣14,+11,﹣10,﹣8,+9,﹣12,+8.(1)问B地在A地的哪个方向?它们相距多少千米?(2)若汽车行驶每千米耗油x升,求该天共耗油多少升?24.小明去文具用品商店给同学买某品牌水性笔,已知甲、乙两商店都有该品牌的水性笔且标价都是1.50元/支,但甲、乙两商店的优惠条件却不同.甲商店:若购买不超过10支,则按标价付款;若一次购10支以上,则超过10支的部分按标价的60%付款.乙商店:按标价的80%付款.在水性笔的质量等因素相同的条件下.(1)设小明要购买的该品牌笔数是x(x>10)支,请用含x的式子分别表示在甲、乙两个商店购买该品牌笔买水性笔的费用.(2)若小明要购买该品牌笔30支,你认为在甲、乙两商店中,到哪个商店购买比较省钱?说明理由.2016-2017学年七年级(上)期中数学试卷参考答案与试题解析一、选择题在下列各题的四个备选答案中,只有一个是正确的,请把你认为正确的答案的字母代号填写在下表相应题号的方格内.1.﹣3的相反数是()A.3 B.﹣3 C.D.﹣【考点】相反数.【专题】常规题型.【分析】根据相反数的概念解答即可.【解答】解:﹣3的相反数是3,故选:A.【点评】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.2.在﹣1,0,﹣2,这四个数中,最小的数是()A.﹣1 B.0 C.﹣2 D.【考点】有理数大小比较.【专题】计算题.【分析】由于正数大于0,负数小于0,则这样比较﹣1与﹣2的大小即可,然后计算出它们的绝对值,根据负数的绝对值越大,这个数越小进行大小比较.【解答】解:∵|﹣1|=1,|﹣2|=2,∴﹣2<﹣1<0<.故选C.【点评】本题考查了有理数大小比较:正数大于0,负数小于0;负数的绝对值越大,这个数越小.3.有理数a,b在数轴上的位置如图所示,下列关系正确的是()A.b>0>a>﹣2 B.a>b>0>﹣1 C.a>﹣2>b>0 D.b>0>a>﹣1【考点】有理数大小比较;数轴.【分析】根据数轴上右边的数总比左边的数大来解答.【解答】解:根据数轴排列的特点可得b>0>a>﹣2.故选A.【点评】解答此题,要熟悉数轴的特点:数轴上右边的数总比左边的数大.4.有理数中绝对值最小的数是()A.﹣1 B.0 C.1 D.不存在【考点】绝对值.【分析】根据绝对值的定义求解.【解答】解:因为数轴上表示数a的点与原点的距离叫做数a的绝对值,0到原点的距离为0,所以有理数中绝对值最小的数是0.故选B.【点评】绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.5.下列比较大小的式子中,正确的是()A.2<﹣(+5)B.﹣1>﹣0.01 C.|﹣3|<|+3| D.﹣(﹣5)>+(﹣7)【考点】有理数大小比较.【专题】计算题.【分析】将各项两式化为最简,比较大小即可.【解答】解:A、﹣(+5)=﹣5,∴2>﹣5,本选项错误;B、∵|﹣1|=1,|﹣0.01|=0.01,∴|﹣1|>|﹣0.01|,∴﹣1<﹣0.01,本选项错误;C、∵|﹣3|=3,|+3|=3,∴|﹣3|=|+3|,本选项错误;D、﹣(﹣5)=5,+(﹣7)=﹣7,∴﹣(﹣5)>+(﹣7),本选项正确,故选D【点评】此题考查了有理数大小比较,注意两负数比较大小的方法.6.数轴上A、B两点所对应的数分别是4和﹣6,则A、B两点间的距离为()A.﹣2 B.2 C.﹣10 D.10【考点】数轴.【分析】求数轴上两点之间的距离:数轴上表示两个点所对应的两个数的差的绝对值,即用较大的数减去较小的数即可.【解答】解:∵数轴上A、B两点所对应的数分别是4和﹣6,∴A、B两点间的距离为4﹣(﹣6)=10.故选D.【点评】本题考查了求数轴上两点间的距离的方法:数轴上表示两个点所对应的两个数的差的绝对值.7.(﹣2)4表示()A.(﹣2)×4 B.(﹣2)×(﹣2)×(﹣2)×(﹣2)C.﹣4×4 D.(﹣2)+(﹣2)+(﹣2)+(﹣2)【考点】有理数的乘方.【专题】计算题.【分析】原式表示4个﹣2的乘积,即可得到正确的选项.【解答】解:(﹣2)4表示(﹣2)×(﹣2)×(﹣2)×(﹣2).故选B【点评】此题考查了有理数的乘方,熟练掌握乘方的意义是解本题的关键.8.数据6500 000用科学记数法表示为()A.65×105B.6.5×105C.6.5×106D.6.5×107【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:6500 000=6.5×106,故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.9.把(﹣2)﹣(﹣10)+(﹣6)﹣(+5)写成省略加号和的形式为()A.﹣2+10﹣6﹣5 B.﹣2﹣10﹣6+5 C.﹣2+10﹣6+5 D.2+10﹣6﹣5【考点】有理数的加减混合运算.【专题】计算题.【分析】利用去括号法则去括号后即可得到结果.【解答】解:(﹣2)﹣(﹣10)+(﹣6)﹣(+5)=﹣2+10﹣6﹣5.故选A【点评】此题考查了有理数的加减混合运算,熟练掌握去括号法则是解本题的关键.10.计算(﹣1)2012+(﹣1)2013等于()A.2 B.0 C.﹣1 D.﹣2【考点】有理数的乘方.【专题】计算题.【分析】原式利用﹣1的奇次幂为﹣1,偶次幂为1计算即可得到结果.【解答】解:原式=1﹣1=0.故选B【点评】此题考查了有理数的乘方,熟练掌握﹣1的奇偶次幂是解本题的关键.11.用代数式表示“a、b两数的平方和减去它们乘积的2倍”,正确的是()A.a2+b2﹣2ab B.(a+b)2﹣2ab C.a2b2﹣2ab D.2(a2+b2﹣ab)【考点】列代数式.【分析】根据平方和就是先平方再相加,乘积的2倍就是2ab,从而列出代数式即可.【解答】解:a、b两数的平方和是a2+b2,它们乘积的2倍是2ab,则a、b两数的平方和减去它们乘积的2倍是:a2+b2﹣2ab;故选A.【点评】此题考查了列代数式,关键是读懂题意,找到所求的量的等量关系,要理解“和”、“差”、“倍”、“商”等的意义.12.一个长方形的周长是30厘米,若长方形的一边用字母x(厘米)表示,则该长方形的面积是()A.x(30﹣2x)平方厘米B.x(30﹣x)平方厘米C.x(15﹣x)平方厘米D.x(15+x)平方厘米【考点】列代数式.【分析】先根据周长=(长+宽)×2,表示出另一边的长,再根据长方形的面积=长×宽求面积.【解答】解:由题意可知:长方形另一边用(15﹣x)厘米表示,则该长方形面积为x(15﹣x)平方厘米,故选C.【点评】本题考查了列代数式,列代数式要注意:①要注意书写的规范性,用字母表示数以后,在含有字母与数字的乘法中,通常将“×”简写作“•”或者省略不写.②在数和表示数的字母乘积中,一般把数写在字母的前面,这个数若是带分数要把它化成假分数.③含有字母的除法,一般不用“÷”(除号),而是写成分数的形式.13.当x=﹣1时,代数式x2﹣2x+1的值是()A.0 B.﹣2 C.﹣1 D.4【考点】代数式求值.【专题】计算题.【分析】直接把x=﹣1代入计算即可.【解答】解:当x=﹣1,原式=(﹣1)2﹣2×(﹣1)+1=1+2+1=4.故选D.【点评】本题考查了代数式求值:把满足条件的字母的值代入代数式中进行计算得到对应的代数式的值.14.某品牌的面粉袋上标有质量为(25±0.25)kg的字样,下列4袋面粉中质量合格的是()A.24.70kg B.24.80kg C.25.30kg D.25.51kg【考点】正数和负数.【专题】应用题.【分析】正确理解(25±0.25)的含义,25+0.25=25.25,25﹣0.25=24.75,说明面粉在此区间内合格.【解答】解:在24.75~25.25这个区间内的只有24.80.故选B.【点评】此题主要考查正负数在实际生活中的应用,所以学生在学这一部分时一定要联系实际,不能死学.二、填空题15.若|a|=6,则a= ±6 .【考点】绝对值.【专题】计算题.【分析】利用绝对值的代数意义计算即可确定出a的值.【解答】解:∵|a|=6,∴a=±6.故答案为:±6.【点评】此题考查了绝对值,熟练掌握绝对值的代数意义是解本题的关键.16.(﹣5 )×()=1.【考点】有理数的乘法.【专题】计算题.【分析】利用有理数的乘法法则计算即可得到结果.【解答】解:(﹣5)×(﹣)=1.故答案为:﹣5【点评】此题考查了有理数的乘法,熟练掌握运算法则是解本题的关键.17.按四舍五入法则取近似值:2.096≈ 2.10 (精确到百分位).﹣0.03445≈﹣0.034 (精确到0.001).【考点】近似数和有效数字.【分析】一个近似数的有效数字是从左边第一个不是0的数字起,后面所有的数字都是这个数的有效数字.精确到哪位就是对这位后边的数进行四舍五入.【解答】解:用四舍五入法计算即可.2.096精确到百分位就是小数点后两位,就是2.10;﹣0.034 45精确到0.001就是小数点后三位就是﹣0.034.【点评】本题主要考查了近似数和有效数字的有关知识,做这类题要注意按要求做题.18.用火柴棒按如图所示的方式摆图形,按照这样的规律继续摆下去,第n个图形需要5n+1 根火柴棒(用含n的代数式表示).【考点】规律型:图形的变化类.【分析】仔细观察发现每增加一个正六边形其火柴根数增加5根,将此规律用代数式表示出来即可.【解答】解:由图可知:图形标号(1)的火柴棒根数为6;图形标号(2)的火柴棒根数为11;图形标号(3)的火柴棒根数为16;…由该搭建方式可得出规律:图形标号每增加1,火柴棒的个数增加5,所以可以得出规律:搭第n个图形需要火柴根数为:6+5(n﹣1)=5n+1,故答案为:5n+1.【点评】本题是一道关于图形变化规律型的,关键在于通过题中图形的变化情况,通过归纳与总结找出普遍规律求解即可.三、解答题19.如图,两个圈分别表示负数集和分数集.请你把下列各数填入表示它所在的数集的圈里:﹣50%,2012,0.618,﹣3,,0,5.9,﹣3.14,﹣92.【考点】有理数.【分析】根据负数及分数的定义,结合所给的数据进行解答即可.【解答】解:填写如下:【点评】此题考查有理数的知识,掌握负数及分数的定义是解答本题的关键.20.(12分)(2012秋•定安县期中)直接写出结果(1)﹣8﹣2=(2)2.5﹣(﹣7.5)=(3)﹣1=(4)12÷()=(5)(﹣0.8)×(﹣2)=(6)(﹣2)3=【考点】有理数的混合运算.【分析】(1)利用加法法则计算即可;(2)首先利用减法法则转化成加法,然后运算即可;(3)利用加法法则计算即可;(4)利用有理数的乘法法则即可求解;(5)利用立方的意义即可求解.【解答】解:(1)原式=﹣(8+2)=﹣10;(2)原式=2.5+7.5=10;(3)原式=;(4)原式=﹣12×4=﹣48;(5)原式=0.8×0.2=1.6;(6)原式=﹣8.【点评】本题考查了有理数的运算,理解运算法则是关键.21.(20分)(2012秋•定安县期中)计算(1)0﹣16+(﹣29)﹣(﹣7)﹣(+11)(2)(3)()×(﹣30)(4)(5).【考点】有理数的混合运算.【分析】(1)首先利用符号法则对式子进行化简,然后进行加减运算即可;(2)首先进行同分母的分式的加减,然后对所得结果进行运算即可;(3)首先利用分配律计算乘法,然后进行加减运算即可;(4)首先计算乘方,计算括号内的式子,然后进行加减运算;(5)逆用乘法的分配律,计算整数的加减,然后进行乘法运算.【解答】解:(1)原式=﹣16﹣29+7﹣11=﹣49;(2)原式=3﹣24=﹣21;(3)原式=﹣12+2﹣25=﹣35;(4)原式=﹣1﹣[﹣2+×(﹣3)]=﹣1﹣[﹣2﹣2]=﹣1+4=3;(5)原式=(23﹣57﹣26)×=﹣15.【点评】本题考查的是有理数的运算与整式的加减运算.注意:要正确掌握运算顺序,即乘方运算(和以后学习的开方运算)叫做三级运算;乘法和除法叫做二级运算;加法和减法叫做一级运算.在混合运算中要特别注意运算顺序:先三级,后二级,再一级;有括号的先算括号里面的;同级运算按从左到右的顺序.22.(10分)(2012秋•定安县期中)当a=﹣2,b=3时,求下列代数式的值.(1)(a+b)2﹣(a﹣b)2;(2)a2﹣4ab+4b2.【考点】代数式求值.【专题】计算题.【分析】(1)先计算出a+b=﹣2+3=1,a﹣b=﹣2﹣3=﹣5,然后利用整体思想进行计算;(2)先变形原式得到(a﹣2b)2,然后把a=﹣2,b=3代入计算.【解答】解:(1)∵a=﹣2,b=3,∴a+b=﹣2+3=1,a﹣b=﹣2﹣3=﹣5,∴原式=12﹣(﹣5)2=﹣24;(2)原式=(a﹣2b)2,当a=﹣2,b=3,原式=(﹣2﹣2×3)2=64.【点评】本题考查了代数式求值:先把代数式根据已知条件进行变形,然后利用整体思想进行计算.23.某公路养护小组乘车沿东西向公路巡视维护.某天早晨从A地出发,最后收工时到达B地.约定向东为正方向,当天的行驶记录如下(单位:千米):+13,﹣14,+11,﹣10,﹣8,+9,﹣12,+8.(1)问B地在A地的哪个方向?它们相距多少千米?(2)若汽车行驶每千米耗油x升,求该天共耗油多少升?【考点】有理数的加法;正数和负数.【专题】应用题.【分析】首先审清题意,明确“正”和“负”所表示的意义,再根据题意作答.【解答】解:(1)将行驶记录所有的数据相加,得结果为﹣3,∵约定向东为正方向,∴B地在A地的西边,它们相距3千米.(2)汽车行驶每千米耗油x升,设该天共耗油y升,则y=(13+14+11+10+8+9+12+8)x=85x升.∴该天共耗油85x升.【点评】解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.24.小明去文具用品商店给同学买某品牌水性笔,已知甲、乙两商店都有该品牌的水性笔且标价都是1.50元/支,但甲、乙两商店的优惠条件却不同.甲商店:若购买不超过10支,则按标价付款;若一次购10支以上,则超过10支的部分按标价的60%付款.乙商店:按标价的80%付款.在水性笔的质量等因素相同的条件下.(1)设小明要购买的该品牌笔数是x(x>10)支,请用含x的式子分别表示在甲、乙两个商店购买该品牌笔买水性笔的费用.(2)若小明要购买该品牌笔30支,你认为在甲、乙两商店中,到哪个商店购买比较省钱?说明理由.【考点】列代数式.【分析】(1)先求出甲商店10支水性笔的价钱,然后再求出超过10支的部分的价钱,然后列出代数式;乙商店每支水性笔的价钱是1.5×0.8元,那么x支的价钱是1.5×0.8×x元;(2)把x=30代入以上两式即可得到答案.【解答】解:(1)在甲商店需要:10×1.5+0.6×1.5×(x﹣10)=0.9x+6(元),在乙商店需要:1.5×0.8×x=1.2x(元),(2)当x=30时,0.9x+6=33,1.2x=36,因为33<36,所以小明要买30支笔应到甲商店买比较省钱.【点评】本题考查了列代数式,解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量关系.。

2016-2017学年人教版七年级上期中数学试卷含答案

2016-2017学年人教版七年级上期中数学试卷含答案

期中测评(时间:120分钟,满分:120分)一、选择题(每小题3分,共36分)1.下列各题中计算正确的个数是()(1)=-3(2)=-4(3)=1(4)=-3A.1B.2C.3D.42.太阳的半径约为696 000 km,把696 000这个数用科学记数法表示为()A.6.96×103B.69.6×105C.6.96×105D.6.96×1063.下列各对单项式是同类项的是()A.-x3y2与3x3y2B.-x与yC.3与3aD.3ab2与a2b4.在数轴上有两个点A,B,点A表示-3,点B与点A相距5.5个单位长度,则点B表示的数为()A.-2.5或8.5B.2.5或-8.5C.2.5D.-8.55.一个数的平方和它的倒数相等,则这个数是()A.1B.-1C.±1D.±1和06.下列各式计算正确的是()A.6a+a=6a2B.-2a+5b=3abC.4m2n-2mn2=2mnD.3ab2-5b2a=-2ab27.某市出租车收费标准(燃油费计入起步价中)调整为:起步价7元(不超过3 km收费7元).3 km后每千米1.4元(不足1 km按1 km算).小明坐车x(x>3)km,应付车费()A.6元B.6x元C.(1.4x+2.8)元D.1.4x元8.下列各数:0.01,10,-6.67,-,0,-(-3),-|-2|,-(-42),其中属于非负整数的个数为()A.1B.2C.3D.49.一个多项式加上3x2y-3xy2得x3+3x2y,则这个多项式是()A.x3+3xy2B.x3-3xy2C.x3-6x2y+3xy2D.x3-6x2y-3x2y10.设a=-2×32,b=(-2×3)2,c=-(2×3)2,则a,b,c的大小关系是()A.a<c<bB.a<b<cC.c<a<bD.c<b<a11.已知x2+3x+5的值是7,则多项式3x2+9x-2的值是()A.6B.4C.2D.012.将正偶数按下表排成5列若干行,根据上述规律,2 016应为()A.第251行第1列B.第251行第5列C.第252行第1列D.第252行第4列二、填空题(每小题4分,共20分)13.已知a,b互为相反数,则a+2a+3a+…+49a+50a+50b+49b+…+3b+2b+b=.14.在式子,3,m,xy2+1中,单项式有个.15.多项式x3y+2xy2-y5-12x3是次多项式,它的最高次项是.16.若有理数a,b满足|a+3|+(b-2)2=0,则a b的值为.17.规定一种新的运算:a△b=a×b-a+b+1.如,3△4=3×4-3+4+1=12-3+4+1=14,比较大小:(-3)△4 4△(-3).三、解答题(共64分)18.计算(每小题4分,共24分)(1)-4÷×(-30);(2)-20+(-14)-(-18)-13;(3)-22+|5-8|+24÷(-3)×;(4)÷(-5)-2.5÷;(5)-5m2n+4mn2-2mn+6m2n+3mn;(6)2(2a-3b)-3(2b-3a).19.(8分)先化简,再求值:3x2y-,其中x=-1,y=2.20.(8分)下表列出国外几个城市与北京的时差(带正号的数表示同一时刻比北京早的时间数)城市东京巴黎纽约芝加哥时差/时+1-7-13-14(1)如果现在时间是北京时间7:00,那么现在的纽约时间是多少?(2)如果现在的北京时间是7:00,小轩现在想给巴黎的姑姑打电话,你认为合适吗?21.(8分)某休闲广场是老百姓休闲娱乐的大型场所,其形状为长方形(如图),现要在广场的四角都设计一块半径相同的四分之一圆形的花坛,若圆的半径为r m,广场长为a m,宽为b m.(1)请列式表示广场空地的面积.(2)若休闲广场的长为800 m,宽为300 m,圆形花坛的半径为30 m,求广场空地的面积.(计算结果保留π)22.(8分)观察下列式子:-a+b=-(a-b),2-3x=-(3x-2),5x+30=5(x+6),-x-6=-(x+6).由以上四个式子中括号的变化情况,说明它和去括号法则有什么不同?根据你的探索规律解决下列问题:已知a2+b2=5,1-b=-2,求-1+a2+b+b2的值.23.(8分)我们把符号“n!”读作“n的阶乘”,规定“其中n为自然数,当n≠0时,n!=n·(n-1)·(n-2)·…·2·1,当n=0时,0!=1”.例如:6!=6×5×4×3×2×1=720.又规定“在含有阶乘和加、减、乘、除运算时,应先计算阶乘,再乘除,后加减,有括号就先算括号里面的”.按照以上的定义和运算顺序,计算:(1)4!;(2);(3)(3+2)!-4!;(4)用具体数试验一下,看看等式(m+n)!=m!+n!是否恒成立.参考答案一、选择题1.B2.C696000=6.96×105.3.A根据所含字母相同且相同字母的指数也相同的项是同类项进行判断.4.B当点B在点A的左侧时,点B表示的数为-8.5;当点B在点A的右侧时,点B表示的数为2.5.所以点B表示的数为2.5或-8.5.5.A0的平方为0但0没有倒数;-1的平方为1,倒数为-1;1的平方和它的倒数相等,都是1.6.D7.C小明坐车x(x>3)km,应付车费=起步价7元+超过3km的收费=7+1.4(x-3)=(1.4x+2.8)元.8.D非负整数即正整数和0,所以10,0,-(-3)=3,-(-42)=16属于非负整数.9.A这个多项式=(x3+3x2y)-(3x2y-3xy2)=x3+3x2y-3x2y+3xy2=x3+3xy2.10.C a=-2×32=-18,b=(-2×3)2=36,c=-(2×3)2=-36,因为-36<-18<36,所以c<a<b.11.B因为x2+3x+5=7,所以x2+3x=2.所以3x2+9x-2=3(x2+3x)-2=6-2=4.12.C二、填空题13.014.3单项式有,3,m共3个.15.五-y516.9因为|a+3|≥0,(b-2)2≥0,|a+3|+(b-2)2=0,所以a+3=0,b-2=0,即a=-3,b=2,所以a b=(-3)2=9.17.>(-3)△4=(-3)×4-(-3)+4+1=-12+3+4+1=-4,4△(-3)=4×(-3)-4+(-3)+1=-12-4-3+1=-18,-4>-18,所以(-3)△4>4△(-3).三、解答题18.解:(1)-4÷×(-30)=-4××30=-6-20=-26.(2)-20+(-14)-(-18)-13=-20-14+18-13=(-20-14-13)+18=-47+18=-29.(3)-22+|5-8|+24÷(-3)×=-4+3+24×=-1-=-.(4)÷(-5)-2.5÷=125×=25++1=26.(5)-5m2n+4mn2-2mn+6m2n+3mn=(-5m2n+6m2n)+(-2mn+3mn)+4mn2=m2n+mn+4mn2.(6)2(2a-3b)-3(2b-3a)=4a-6b-6b+9a=(4a+9a)+(-6b-6b)=13a-12b.19.解:原式=3x2y-(2xy-2xy+3x2y-4xy)=3x2y-2xy+2xy-3x2y+4xy=4xy.当x=-1,y=2时,原式=4×(-1)×2=-8.20.解:(1)纽约时间是18:00.(2)北京是7:00,北京与巴黎的时差是-7,即巴黎要晚7小时,此时巴黎恰好是0:00,正好是深夜,小轩不宜给姑姑打电话.21.解:(1)(ab-πr2)m2.(2)(240000-900π)m2.22.解:四个式子中括号的变化规律其实就是去括号的逆运算.-1+a2+b+b2=a2+b2-1+b=(a2+b2)-(1-b).因为a2+b2=5,1-b=-2,所以原式=5-(-2)=7.23.解:(1)4!=4×3×2×1=24;(2);(3)(3+2)!-4!=5×4×3×2×1-4×3×2×1=120-24=96;(4)如当m=3,n=2时,(m+n)!=(3+2)!=120,m!+n!=3!+2!=8,所以(m+n)!≠m!+n!,等式(m+n)!=m!+n!不恒成立.。

2016-2017学年人教版七年级上期中数学试卷含答案

2016-2017学年人教版七年级上期中数学试卷含答案

22.(8 分)观察下列式子: -a+b=-(a-b), 2-3x=-(3x-2), 5x+30=5(x+6), -x-6=-(x+6). 由以上四个式子中括号的变化情况,说明它和去括号法则有什么不同?根据你的探索规律解 决下列问题:已知 a2+b2=5,1-b=-2,求-1+a2+b+b2 的值.
28
26
………………
根据上述规律,2 016 应为( )
A.第 251 行 第 1 列
B.第 251 行 第 5 列
C.第 252 行 第 1 列
D.第 252 行 第 4 列
二、填空题(每小题 4 分,共 20 分)
13.已知 a,b 互为相反数,则 a+2a+3a+…+49a+50a+50b+49b+…+3b+2b+b=
23.(8 分)我们把符号“n!”读作“n 的阶乘”,规定“其中 n 为自然数,当 n≠0 时,n!=n·(n-1)·(n2)·…·2·1,当 n=0 时,0!=1”.例如:6!=6×5×4×3×2×1=720. 又规定“在含有阶乘和加、减、乘、除运算时,应先计算阶乘,再乘除,后加减,有括号就先算括 号里面的”. 按照以上的定义和运算顺序,计算: (1)4!; (2); (3)(3+2)!-4!; (4)用具体数试验一下,看看等式(m+n)!=m!+n!是否恒成立.
km 后每千米 1.4 元(不足 1 km 按 1 km 算).小明坐车 x(x>3)km,应付车费( )
A.6 元
B.6x 元
C.(1.4x+2.8)元

2016-2017年第一学期七年级数学期中试题(有答案)

2016-2017年第一学期七年级数学期中试题(有答案)

2016-2017年第一学期七年级数学期中试题(有答案)【范文大全】时至深秋,美丽的金明校园霜浓露重,景色宜人,如期而至的期中考试却在秋韵中平添了一丝紧张的气氛。

下面是小编整理的期中考试试卷及答案,欢迎参考!一、选择题(每小题3分,共18分)1.-2 的绝对值是( ▲ )A.-B.±2C.2D.-22.下列各组算式中,结果为负数的是( ▲ )A. B. C. D.3.下列计算正确的是( ▲ )A.7a+a=7a2B.3x2y-2yx2=x2yC.5y-3y=2D.3a+2b=5ab4.用代数式表示“a的3倍与b的差的平方”,正确的是( ▲ )[A.(3a-b)2B.3(a-b)2C.3a-b2D.(a-3 b)25.已知a+b=4,c-d=-3,则(b+c)-(d-a)的值为( ▲ )A.7B.-7C.1D.-16.下列说法中正确的个数有( ▲ )①0是绝对值最小的有理数;②无限小数是无理数;③数轴上原点两侧的数互为相反数;④a,0,都是单项式;⑤ 是关于x,y的三次三项式,常数项是 1.A.2个B.3个C.4个D.5个二、填空题(每题3分,共30分)7. 太阳半径大约是696000千米,将696000用科学记数法表示为▲ .8.一个数的绝对值是4,那么这个数是▲ .9. 多项式的最高次项系数为▲ .10. 的相反数是▲ .11.用“>”或“<”填空:▲ .12. 若代数式3xmy2与-2x3yn是同类项,则m-n= ▲ .13. 比大而比小的所有整数的和为▲ .14.如图所示是计算机程序计算,若开始输入,则最后输出的结果是 .15.校园足球联赛规则规定:赢一场得3分,平一场得1分,负一场得0分。

某队比赛8场保持不败,得18分,求该队共胜几场?若设该队胜了x场,则可列方程:▲ .16.下列图形是由一些小正方形和实心圆按一定规律排列而成的,按此规律排列下去,第n个图形中有▲ 个实心圆.三、解答题17. (本题满分6分)把下列各数填在相应的大括号里:,,-0.101001,,― , ,0,负整数集合:( ▲ …);负分数集合:( ▲ …);无理数集合:( ▲ …);18.(本题共4小题,每小题4分,满分16分)计算:(1) -3-(-4)+7 (2)1+(3) (4)(-8)÷(-4)-(-3)3×12319.(本题满分8分)化简:(1) (2)20 .(本题满分10分)解方程:(1) (2)21.(本题满分10分)先化简,再求值:(1) —,其中 =4.(2)已知m、n互为倒数,求:-2(mn-3m2)-m2+5 (mn-m2)的值.22.(本题满分10分)王先生到区行政中心大楼办事,假定乘电梯向上一楼记作+1,向下一楼记作-1,王先生从1楼出发,电梯上下楼层依次记录如下(单位:层):+6,-3,+10,-8,+12,-7,-10.(1)请你通过计算说明王先生最后是否回到出发点1楼.(2)该中心大楼每层高3 m,电梯每向上或下1 m需要耗电0.2度,根据王先生现在所处位置,请你算算他办事时,所乘电梯共耗电多少度?23.(本题满分10分)某同学做一道数学题,“已知两个多项式A、B,B=2x2+3x-4,试求A-2B”.这位同学把“A-2B”误看成“A+2B”,结果求出的答案为5x2+8x-10.请你替这位同学求出“A-2B”的正确答案.24.(本题满分10分)某城市按以下规定收取每月煤气费,用煤气不超过60立方米,按每立方米0.8元收费;如果超过60立方米,超过部分按每立方米1.2元收费。

七年级数学上期中试卷

七年级数学上期中试卷

2016-2017学年度第一学期期中考试七年级数学试卷(满分120分,附加题10分,考试时间120分钟)一、选择题(每小题只有一个正确的选项,每小题3分,共30分)1. 5的相反数是……………………………………………………………………………( ) A .51-B .51C .5-D .5 2. 温家宝总理有句名言:多么小的问题乘以13亿,都会变得很大;多么大的经济总量,除以13亿都会变得很小.将1 300 000 000用科学记数法表示为……………………………( ) A .81310⨯ B .91.310⨯ C .81.310⨯ D .91.33. 在下列各数3,)1(,52,)31(,3),2(2009242-------+-中,负数的个数是…………( )A .2B .3C .4D .54.小明从观察图1所示的两个物体,看到的是( )5.下列计算正确的是……………………………………………………………………………( )A .y x yx y x 22223=- B .235=-y y C .277a a a =+ D .ab b a 523=+ 6.下面各种说法中正确的是…………………………………………………………………… ( ) A. 被减数一定大于差 B.两数的和一定大于每一个加数 C.积一定比每一个因数大 D. 两数相等,它们的绝对值一定相等7.下面平面图形经过折叠不能围成正方体的是………………………………………………( )A . 8.有理数a 、b 在数轴上的位置如图所示,则下列各式错误的是…………………………… ( )A .b <0<aB .│b│>│a│C .a+b <0D .b —a >09.观察下列算式:,, , , , , , , 656132187372932433813273933387654321======== 根据上述算式中的规律,你认为20083的末位数字是……………………………………………( )(A )3 (B )9 (C )7 (D )110、火车站、机场、邮局等场所都有为旅客提供打包服务的项目.现有一个长、宽、高分别为a 、b 、c 的箱子,按如图所示的方式打包,则打包带的长(不计接头处的长)至少应为……………………… ( )A .c b a 23++B .c b a642++C .c b a 4104++D .c b a 866++二、填空题(每小题3分,共30分)11. 甲、乙、丙三地的海拔高度分别为20m 、-15m 和-10m ,那么最高的地方比最低的地方高________m 。

济宁市2016-2017学年七年级上期中检测数学试题含答案

济宁市2016-2017学年七年级上期中检测数学试题含答案

济宁市2016-2017学年七年级上期中检测数学试题含答案2016-2017学年度第一学期期中教学质量检测七年级数学试卷一、选择题(本题共10小题,每小题3分,共30分)1.一种零件的尺寸在图纸是(单位:mm),它表示这种零件的标准尺寸是30mm,则加工要求尺寸最大不超过()A.0.03mmB.0.02mmC.30.03mmD.29.92mm3.2016年,我国约有9400000人参加高考,将9400000用科学记数法表示为()A.9.4×105B.9.4×106C.0.94×106D.94×1044.多项式1+2xy-3xy2的次数及最高次项的系数分别是()A.5,-3B.2,-3C.3,-3D.2,35.下列各题中,合并同类项正确的是()A.2a2+3a2=5a2B.2a2+3a2=6a2C.4xy-3xy=1D.2m2n-2mn2=06.关于x的多项式3x3+2mx2-5x+7与多项式8x2-3x+5相加后不含二次项,则常数m的值为()A.2 B.-4 C.-2 D.-87.若代数式2x2+3y+7的值为8,那么代数式6x2+9y+8的值为()A.1 B.4 C.-7 D.118.下列运算中,结果最小的是()A.–(-3-2)2B.(-3)×(-2)C.(-3)2÷(-2)2D.-32÷-29.数轴上的一点A向左移动2个单位长度到达点B,再向右移动5个单位长度达点C,若点C表示的数为1,则点A表示的数为()A.7 B.3 C.-3 D.-210.已知31=3,32=9,33=27,34=81,35=243,36=729,….推测32016的个位数字是()A.1 B.3 C.7 D.9二.填空题(本大题共5个小题;每小题3分,共15分)11.写出一个含有字母x,y,系数为-8,次数为4的单项式.12.若-5x n y2与12xy2m是同类项,则(mn)2016=.13.若︱x︱=3,y2=16,且xy<0,则x+y=.14.已知x、y为有理数,现规定一种新运算“※”,满足x※y=xy+1,则2※4的值为.15.为鼓励节约用电,某地对居民用户用电标准作如下规定:每户每月用电如果不超过100度,那么每度电价按a元收费;如果超过100度,那么超过部分每度电价按b元收费.某户居民在一个月内用电160度,他这个月应缴纳电费是元(用含a,b的代数式表示).三.(本大题共7个小题;共55分)16.计算(每小题3分,共12分)17.(本题满分5分)在数-5,1,-3,5,-2中,其中最大的数是a,绝对值最小的是b,(1)求a,b的值;(2)若︳x+a︱+︳y-b︱=0,求(x-y)÷y的值.18.先化简再求值(每小题4分,共8分);.19.(本题满分6分)某市出租车司机小李,一天下午以汽车南站为出发点,在南北走向的公路上营运,如果规定向北为正,向南为负,他这天下午行车里程(单位:千米)如下:+15,-2,+5,-13,+10,-7,-8,+12,+4,-5,+6(1)将最后一名乘客送到目的地时,小李距下午出发点汽车南站多远?在汽车南站的什么地方?(2)若出租车每千米的营业价格为3.5元,这天下午小李的营业额是多少?20.(本题满分6分)有这样一道题:“计算(2x3-3x2y-2xy2)-(x3-2xy2+y3)+(-x3+3x2y-y3)的值,其中x=y=-1”.甲同学把“”错抄成“”,但他的计算结果也是正确的,试说明理由,并求出这个结果.21.(本题满分8分)定义:a是不为1的有理数,我们把称为a的差倒数.如:2的差倒数是-1的差倒数是已知(1)=;(2)=;(3)=;…,以此类推,则=.22.(本题满分10分)我县九龙商场销售一种微波炉和电磁炉,微波炉每台定价800元,电磁炉每台定价200元.“11/11”期间,商场决定开展促销活动,活动期间向客户提供两种优惠方案.方案一:买一台微波炉送一台电磁炉:方案二:微波炉和电磁炉都按定价的90%付款.现某客户要到该商场购买10台微波炉,电磁炉x台(x>10).(1)若该客户按方案一购买,需付款多少元(用含x的代数式表示);若该客户按方案二购买,需付款多少元(用含x的代数式表示).(2)若x=30时,通过计算说明,此时应按哪种方案购买较为合算?(3)当x=30时,你能给出一种更为省钱的购买方案吗?试写出你的购买方案.参考答案:一.选择题(每小题3分,满分30分)1.D2.C3.B4.C5.A6.B7.D8.A9.D10.A二.填空题(每小题3分,满分15分)11.-8x3y(答案不唯一)12.113.1或-114.915.(100a+60b)三.解答题16(每小题3分,满分12分)解:(1)原式=3-24=-21;(2)原式=;(3)原式==-15;(4)原式==-1-(-2-2)=-1+4=3.17(本题满分12分)解:(1)a=5,b=2……2分(2)x=-5,y=1……4分原式=-6.……5分18(每小题4分,满分8分)解:(1)化简得原式=-8ab2……2分把a、b的值代入得原式=……4分(2)化简得原式=6(2a+b)2-9(2a+b)……6分把a、b的值代入得原式=……8分19.(本题满分6分)解:(1)+15-2+5-13+10-7-8+12+4-5+6=17(千米)答:小李距下午出车时的出发点汽车南站17千米,在汽车南站的北面.……3分(2)3.5×(15+2+5+13+10+7+8+12+4+5+6)=3.5×87=304.5(元)答:这天下午小李的营业额是304.5元.……6分20.(本题满分6分)解:化简得:原式=2x3-3x2y-2xy2-x3+2xy2-y3-x3+3x2y-y3=-2y3……3分所以结果与x无关,当x=或x=时的计算结果都正确.……4分当y=-1时,原式=-2×(-1)3=2.……6分.21.(每空2分,满分8分)解:(1);(2)4;(3),4.22.(本题满分10分)解:(1)方案一:800×10+200(x-10)=(200x+6000)元,方案二:(800×10+200x)×90%=(180x+7200)元;……4分(2)当x=30时,方案一:200×30+6000=12000(元),方案二:180×30+7200=12600(元),所以,按方案一购买较合算.……7分(3)先按方案一购买10台微波炉送10台电磁炉,再按方案二购买剩下的20台电磁炉,共10×800+200×20×90%=11600(元)……10分。

人教版初中数学七年级上册山东省济宁市期中试卷含答案解析

人教版初中数学七年级上册山东省济宁市期中试卷含答案解析
TB:小初高题库
人教版初中数学
A.393 B.397 C.401 D.405 【考点】规律型:图形的变化类. 【分析】观察图形可知后面一个图形比前面一个图形多 4 个小正方形,所以可得规律为:第 n 个图 形中共有 4(n﹣1)+1 个小正方形. 【解答】解:由图片可知:规律为小正方形的个数=4(n﹣1)+1=4n﹣3. n=100 时,小正方形的个数=4n﹣3=397. 故选 B. 【点评】此题考查了规律型:图形的变化,是找规律题,目的是培养同学们观察、分析问题的能 力.注意由特殊到一般的分析方法,此题的规律为:第 n 个图形中共有 4(n﹣1)+1 个小正方形. 二、细心填一填(本大题共有 5 小题,每题 3 分,共 15 分.请把结果直接填在题中的横线上.只 要你仔细运算,积极思考,相信你一定能填对!) 11.一个数的倒数是它本身,这个数是 1 或﹣1 . 【考点】倒数. 【专题】计算题. 【分析】根据倒数的定义得倒数等于它本身只有 1 和﹣1. 【解答】解:1 或﹣1 的倒数等于它本身. 故答案为 1 或﹣1. 【点评】本题考查了倒数:a 的倒数为 . 12.由四舍五入法得到的近似数 10.560 精确到 千分 位. 【考点】近似数和有效数字. 【分析】根据近似数的精确度求解. 【解答】解:近似数 10.560 精确到千分位. 故答案为千分位. 【点评】本题考查了近似数和有效数字:从一个数的左边第一个不是 0 的数字起到末位数字止,所
21.小明和小红在一起玩数学小游戏,他们规定:a*b=a2﹣2ab+b2;
=a+b﹣c;
=ad﹣bc. 请你和他们一起按规定计算: (1)2*(﹣5)的值;
(2)
(3)

TB:小初高题库

七年级数学上学期第一次月考试卷含解析版1

七年级数学上学期第一次月考试卷含解析版1

2016-2017学年山东省济宁市曲阜市七年级(上)第一次月考数学试卷一、选择题:本大题共6小题,每题3分,共18分1.在1,﹣3,﹣,0,,﹣,中,负数的个数为()A.2个B.3个C.4个D.5个2.以下说法正确的选项是()A.有理数是指整数、分数、正数、负数和0B.0是整数,但不是自然数C.在有理数中,不是正数确实是负数D.一个有理数不是整数确实是分数3.假设数轴上的点A表示的数﹣2,那么与点A相距5个单位长度的点表示的数是()A.±7 B.±3 C.3或﹣7 D.﹣3或74.一个数的相反数是非负数,那个数是()A.负数 B.非负数C.正数 D.非正数5.以下省略加号和括号的形式中,正确的选项是()A.(﹣7)+(+6)+(﹣5)+(﹣2)=﹣7++6+﹣5+﹣2 B.(﹣7)+(+6)+(﹣5)+(﹣2)=﹣7+6﹣5﹣2C.(﹣7)+(+6)+(﹣5)+(﹣2)=﹣7+6+5+2 D.(﹣7)+(+6)+(﹣5)+(﹣2)=﹣7+6﹣5+26.假设a+b<0,且,那么()A.a,b异号且负数的绝对值大B.a,b异号且正数的绝对值大C.a>0,b>0 D.a<0,b<0二、填空题:本大题共5小题,每题3分,共15分.7.比较大小:.8.实数a,b在数轴上对应点的位置如下图,那么|a| |b|(填“>”“<”或“﹦”)9.已知|a+7|+|b﹣3|=0,那么a+b= .10.假设a,b互为相反数,c,d互为倒数,m的绝对值是1,求(a+b)cd﹣2020m= .11.观看以下各数:﹣,,﹣,,﹣,…,依照它们的排列规律写出第2021个数为.三、解答题:本大题共4题,共67分.12.计算:(1)﹣7+11+4+(﹣2);(2)﹣﹣(﹣3)﹣2﹣(﹣1).(3)﹣+﹣+(4)(﹣8)+(﹣)﹣+.13.计算:(1)(﹣)÷(﹣)÷(﹣)(2)|﹣1|÷××|﹣|(3)÷﹣×(﹣6)(4)﹣1+5÷(﹣)×(﹣6)14.用适当方式计算:(1)+(﹣)++(﹣)+(﹣);(2)(﹣49)÷7.(3)(﹣)×(﹣)+(﹣)×(+)(4)÷(﹣﹣+).15.巡警乘汽车,沿东西向的公路进行巡逻,约定向东为正,向西为负,某天自巡警队驻地动身,到下班时,行走记录为(单位:km):+8,﹣9,+4,+7,﹣4,﹣10,+8,﹣6,+7,﹣5.回答以下问题:(1)下班时巡警在驻地的哪边?距巡警队驻地多少千米?(2)问从巡警队驻地动身到下班时,共行走多少千米?2016-2017学年山东省济宁市曲阜市书院街道办事处圣林中学七年级(上)第一次月考数学试卷参考答案与试题解析一、选择题:本大题共6小题,每题3分,共18分1.在1,﹣3,﹣,0,,﹣,中,负数的个数为()A.2个B.3个C.4个D.5个【考点】正数和负数.【分析】依照负数的意义,小于0的数都是负数即可求解.【解答】解:在1,﹣3,﹣,0,,﹣,中,负数有﹣3,﹣,﹣,一共3个.应选B.2.以下说法正确的选项是()A.有理数是指整数、分数、正数、负数和0B.0是整数,但不是自然数C.在有理数中,不是正数确实是负数D.一个有理数不是整数确实是分数【考点】有理数.【分析】依照有理数的分类即可作出判定.【解答】解:A、有理数是指整数和分数的统称,选项错误;B、0是整数,也是自然数,选项错误;C、在有理数中,有正数、负数,应选项错误;D、有理数是指整数和分数的统称,选项正确.应选D.3.假设数轴上的点A表示的数﹣2,那么与点A相距5个单位长度的点表示的数是()A.±7 B.±3 C.3或﹣7 D.﹣3或7【考点】数轴.【分析】依照数轴上到一点距离相等的点有两个,位于该点的左右,可得答案.【解答】解:在数轴上与﹣2的距离等于5的点表示的数是﹣2+5=3或﹣2﹣5=﹣7.应选:C.4.一个数的相反数是非负数,那个数是()A.负数 B.非负数C.正数 D.非正数【考点】相反数.【分析】非负数包括正数和0,再依照相反数的概念得出即可.【解答】解:∵一个数的相反数是非负数,∴那个数是非正数,应选D.5.以下省略加号和括号的形式中,正确的选项是()A.(﹣7)+(+6)+(﹣5)+(﹣2)=﹣7++6+﹣5+﹣2 B.(﹣7)+(+6)+(﹣5)+(﹣2)=﹣7+6﹣5﹣2C.(﹣7)+(+6)+(﹣5)+(﹣2)=﹣7+6+5+2 D.(﹣7)+(+6)+(﹣5)+(﹣2)=﹣7+6﹣5+2【考点】有理数的加法.【分析】原式各项利用去括号法那么变形,即可做出判定.【解答】解:A、原式=﹣7+6﹣5﹣2,错误;B、原式=﹣7+6﹣5﹣2,正确;C、原式=﹣7+6﹣5﹣2,错误;D、原式=﹣7+6﹣5﹣2,错误,应选B6.假设a+b<0,且,那么()A.a,b异号且负数的绝对值大B.a,b异号且正数的绝对值大C.a>0,b>0 D.a<0,b<0【考点】有理数的除法;有理数的加法.【分析】依照有理数的除法法那么确信a和b是异号,然后依照加法法那么即可确信.【解答】解:∵<0,∴a、b异号,又∵a+b<0,∴负数的绝对值较大.应选A.二、填空题:本大题共5小题,每题3分,共15分.7.比较大小:>.【考点】有理数大小比较.【分析】先计算|﹣|==,|﹣|==,然后依照负数的绝对值越大,那个数反而越小即可取得它们的关系关系.【解答】解:∵|﹣|==,|﹣|==,而<,∴﹣>﹣.故答案为:>.8.实数a,b在数轴上对应点的位置如下图,那么|a| >|b|(填“>”“<”或“﹦”)【考点】有理数大小比较;数轴.【分析】依照数轴判定出a距离原点的距离比b距离原点的距离大,即可得出答案.【解答】解:∵a距离原点的距离比b距离原点的距离大,∴|a|>|b|.故答案为:>.9.已知|a+7|+|b﹣3|=0,那么a+b= ﹣4 .【考点】非负数的性质:绝对值.【分析】依照互为相反数的两个数的和等于0列方程,再依照非负数的性质列方程求出a、b的值,然后相乘计算即可得解.【解答】解:∵|a+7|+|b﹣3|=0,∴a+7=0,b﹣3=0,∴a=﹣7,b=3,∴a+b=﹣7+3=﹣4,故答案为:﹣4.10.假设a,b互为相反数,c,d互为倒数,m的绝对值是1,求(a+b)cd﹣2020m= 2020或﹣2020 .【考点】代数式求值;相反数;绝对值;倒数.【分析】利用相反数,倒数,和绝对值的代数意义求出a+b,cd,m的值,代入原式计算即可取得结果.【解答】解:依照题意得:a+b=0,cd=1,m=1或﹣1,当m=1时,原式=﹣2020;当m=﹣1时,原式=2020.故答案为:2020或﹣2020.11.观看以下各数:﹣,,﹣,,﹣,…,依照它们的排列规律写出第2021个数为﹣.【考点】规律型:数字的转变类.【分析】分子是从1开始持续的自然数,分母比分子多1,奇数位置为负,偶数位置为正,由此得出第n个数为(﹣1)n,进一步代入求得答案即可.【解答】解:∵第n个数为(﹣1)n,∴第2021个数为﹣.故答案为:﹣.三、解答题:本大题共4题,共67分.12.计算:(1)﹣7+11+4+(﹣2);(2)﹣﹣(﹣3)﹣2﹣(﹣1).(3)﹣+﹣+(4)(﹣8)+(﹣)﹣+.【考点】有理数的加减混合运算.【分析】(1)依照有理数的加减混合运算的运算方式,求出算式的值是多少即可.(2)(3)(4)应用加法互换律和加法结合律,求出每一个算式的值各是多少即可.【解答】解:(1)﹣7+11+4+(﹣2)=4+4﹣2=6(2)﹣﹣(﹣3)﹣2﹣(﹣1)=(﹣﹣2)+(3+1)=﹣3+5=2(3)﹣+﹣+=(﹣﹣)+(+)=﹣7+7=0(4)(﹣8)+(﹣)﹣+=(﹣8﹣)+(﹣+)=﹣9﹣7=﹣1613.计算:(1)(﹣)÷(﹣)÷(﹣)(2)|﹣1|÷××|﹣|(3)÷﹣×(﹣6)(4)﹣1+5÷(﹣)×(﹣6)【考点】有理数的混合运算.【分析】依照有理数的混合运算的运算方式,求出每一个算式的值各是多少即可.【解答】解:(1)(﹣)÷(﹣)÷(﹣)=÷(﹣)=﹣1(2)|﹣1|÷××|﹣|=××=2×=1(3)÷﹣×(﹣6)=2+4=6(4)﹣1+5÷(﹣)×(﹣6)=﹣1﹣30×(﹣6)=﹣1+180=17914.用适当方式计算:(1)+(﹣)++(﹣)+(﹣);(2)(﹣49)÷7.(3)(﹣)×(﹣)+(﹣)×(+)(4)÷(﹣﹣+).【考点】有理数的混合运算.【分析】(1)应用加法互换律和加法结合律,求出算式的值是多少即可.(2)第一把﹣49化成﹣49﹣,然后依照除法的性质计算即可.(3)应用乘法分派律,求出算式的值是多少即可.(4)依照有理数的混合运算的运算方式,求出算式的值是多少即可.【解答】解:(1)+(﹣)++(﹣)+(﹣)=(﹣)+(﹣﹣)+=0﹣1+=﹣(2)(﹣49)÷7=(﹣49﹣)÷7=(﹣49)÷7﹣÷7=﹣7﹣=﹣7(3)(﹣)×(﹣)+(﹣)×(+)=(﹣)×(﹣+)=(﹣)×5=﹣6(4)÷(﹣﹣+)=÷(﹣)=﹣15.巡警乘汽车,沿东西向的公路进行巡逻,约定向东为正,向西为负,某天自巡警队驻地动身,到下班时,行走记录为(单位:km):+8,﹣9,+4,+7,﹣4,﹣10,+8,﹣6,+7,﹣5.回答以下问题:(1)下班时巡警在驻地的哪边?距巡警队驻地多少千米?(2)问从巡警队驻地动身到下班时,共行走多少千米?【考点】正数和负数.【分析】(1)将行走记录相加即可求出巡警在驻地哪个方向和距离驻地多少千米.(2)将行走记录的绝对值相加即可求出共行走多少千米.【解答】解:(1)+8﹣9+4+7﹣4﹣10+8﹣6+7﹣5=0,现在巡警在驻地处,与驻地相距0千米;(2)8+9+4+7+4+10+8+6+7+5=68共走了68千米.。

济宁市七年级上学期期中数学试卷

济宁市七年级上学期期中数学试卷

济宁市七年级上学期期中数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共15题;共30分)1. (2分) (2017七上·江海月考) 下列说法中,正确的是()A . -与2互为相反数B . 任何负数都小于它的相反数C . 数轴上表示-a的点一定在原点左边D . 5的相反数是︱一5︱2. (2分)桌面上放着1个长方体和1个圆柱体,按如图所示的方式摆放在一起,其左视图是()A .B .C .D .3. (2分) (2016七上·单县期中) 下列图形中,属于立体图形的是()A .B .C .D .4. (2分)(2020·宽城模拟) 预计到2025年,中国5G用户将超过460000000,将460000000这个数用科学记数法表示为()A . 0.46×109B . 4.6×109C . 4.6×108D . 46×1075. (2分)下列说法中正确的个数是()(1) a和0都是单项式。

(2)多项式-3a2b+7a2b2-2ab+1的次数是3。

(3)单项式-的系数为-2。

(4)x2+2xy-y2可读作x2、2xy、-y2的和。

A . 1个B . 2个C . 3个D . 4个6. (2分)(﹣2)3的值为()A . -6B . 6C . -8D . 87. (2分)下列结论正确的有()个:① 规定了原点,正方向和单位长度的直线叫数轴② 最小的整数是0 ③ 正数,负数和零统称有理数④ 数轴上的点都表示有理数A . 0B . 1C . 2D . 38. (2分)下列说法不正确的是()A . 球的截面一定是圆B . 组成长方体的各个面中不可能有正方形C . 从三个不同的方向看正方体,得到的都是正方形D . 圆锥的截面可能是圆9. (2分) (2016高二下·抚州期中) 计算(3a2+2a+1)-(2a2+3a-5)的结果是()B . a2-5a-4C . a2-a-4D . a2-a+610. (2分)如图,在数轴上有a,b两个有理数,若表示数a,b的点到原点的距离相等,则下列结论中,不正确的是()A . a+b=0B . a﹣b=2bC . ab=﹣b2D .11. (2分)下面图形中,不能折成无盖的正方体盒子的是()A .B .C .D .12. (2分) (2016七下·濮阳开学考) 甲、乙、丙三地的海拔高度分别为20m、﹣15m和﹣10m,那么最高的地方比最低的地方高()A . 5mB . 10mC . 25mD . 35m13. (2分)原产量为a千克,增产20%之后的产量应为()A . (1+20%)a千克B . (1-20%)a千克C . (a+20%)千克14. (2分)大于﹣2.7而小于1.5的所有整数的乘积是()A . 0B . -2C . 2D . -115. (2分)若(a﹣1)2+|b﹣2|=0,则(a﹣b)2016的值是()A . -1B . 1C . 0D . 2016二、填空题 (共5题;共8分)16. (1分) (2017七上·洪湖期中) 如果水位升高3m时水位变化记作+3m,那么水位下降2m时水位变化记作:________ m.17. (1分)若a=1954×1946,b=1957×1943,c=1949×1951,则a,b,c的大小关系为________ (用“<”连接).18. (2分) (2017七上·孝南期中) 项式:a,﹣2a2 , 4a3 ,﹣8a4 ,…根据你发现的规律,第7个式子是________,第n个式子是________.19. (3分) (2019七上·天津月考) 的底数是________,指数是________,计算结果是________20. (1分) (2017七上·邯郸月考) 若 =7,则x=________三、解答题 (共5题;共61分)21. (9分)(2020·浙江模拟) 如图1,小明用一张边长为6 dm的正三角形硬纸板设计一个无盖的正三棱柱糖果盒,从三个角处分别剪去一个形状大小相同的四边形,其一边长记为x dm,再折成如图2所示的无盖糖果盒,它的容积记为y dm3.(1) y关于x的函数关系式是________,自变量x的取值范围是________.(2)为探究y随x的变化规律,小明类比二次函数进行了如下探究:①列表:请你补充表格中的数据;x00.51 1.52 2.53y03.125 3.3750.6250②描点:请你把上表中各组对应值作为点的坐标,在平面直角坐标系中描出相应的点;③连线:请你用光滑的曲线顺次连接各点.(3)利用函数图象解决:①该糖果盒的最大容积是________;②若该糖果盒的容积超过2 dm3 ,请估计糖果盒的底边长a的取值范围.(保留一位小数)________22. (10分) (2017七上·丹江口期中) 某一出租车一天下午以新合作超市为出发地在东西方向营运,向东为正,向西为负,行车里程(单位km),依先后次序记录如下:+7,-4,-6,+4,-8,+6,-3,-7,-5,+10.(1)将最后一名乘客送到目的地,出租车离出发点多远?在新合作的什么方向?(2)若每千米按2.4元收费,该司机一个下午的收入多少?23. (15分) (2016七上·青山期中) 邮递员从邮局出发,先向西骑行3km到达A村,继续骑行2km到达B 村,然后向东行骑行9km到达C村,最后回到邮局.(1)如图,请在以邮局为原点,向东为正方向,1km为1个单位长度的数轴上表示出A、B、C三个村庄的位置;(2) C村离A村有多远?(3)邮递员一共行驶了多少千米?24. (15分) (2019七上·翁牛特旗期中) 某出租车司机从公司出发,在东西方向的人民路上连续接送5批客人,行驶路程记录如下(规定向东为正,向西为负,单位:km):(1)接送完第5批客人后,该驾驶员在公司什么方向,距离公司多少千米?(2)若该出租车每千米耗油0.2升,那么在这过程中共耗油多少升?(3)若该出租车的计价标准为:行驶路程不超过3km收费10元,超过3km的部分按每千米加1.8元收费,在这过程中该驾驶员共收到车费多少元?25. (12分) (2016七上·江苏期末) 如图,学校准备新建一个长度为L的读书长廊,并准备用若干块带有花纹和没有花纹的两种规格大小相同的正方形地面砖搭配在一起,按图中所示的规律拼成图案铺满长廊,已知每个小正方形地面砖的边长均为0.3m.(1)按图示规律,第一图案的长度L1=________;第二个图案的长度L2=________;(2)请用代数式表示带有花纹的地面砖块数n与走廊的长度Ln(m)之间的关系;(3)当走廊的长度L为30.3m时,请计算出所需带有花纹图案的瓷砖的块数.参考答案一、选择题 (共15题;共30分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、13-1、14-1、15-1、二、填空题 (共5题;共8分)16-1、17-1、18-1、19-1、20-1、三、解答题 (共5题;共61分)21-1、21-2、21-3、22-1、22-2、23-1、23-2、23-3、24-1、24-2、24-3、25-1、25-2、25-3、。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2016-2017学年山东省济宁市曲阜市七年级(上)期中数学试卷一、选择题(每小题2分,共30分)1.﹣2的相反数是()A.B.﹣ C.2 D.﹣22.﹣的倒数是()A.﹣3 B.3 C.D.﹣3.曲阜市某天的最高气温9℃,最低气温﹣2℃,这一天曲阜市的温差是()A.11℃B.﹣11℃C.7℃D.﹣7℃4.据报道,目前我国“天河二号”超级计算机的运算速度位居全球第一,其运算速度达到了每秒338 600 000亿次,数字338 600 000用科学记数法可简洁表示为()A.3.386×108B.0.3386×109 C.33.86×107D.3.386×1095.在有理数﹣2,2,0,﹣1中,最小的数是()A.﹣2 B.2 C.0 D.﹣16.近似数1.30所表示的准确数A的范围是()A.1.25≤A<1.35 B.1.20<A<1.30C.1.295≤A<1.305 D.1.300≤A<1.3057.多项式x3y2﹣5x2y+6xy﹣3的次数是()A.2 B.3 C.5 D.108.如果|a+2|+(b﹣1)2=0,那么a+b的值是()A.﹣2 B.2 C.﹣1 D.19.有理数a、b在数轴上的表示如图所示,那么()A.﹣b>a B.﹣a<b C.b>a D.|a|>|b|10.代数式的意义是()A.a除以b加1 B.b加1除aC.b与1的和除以a D.a除以b与1的和所得的商11.下列各对数中,相等的一对数是()A.﹣23与﹣32B.(﹣2)3与﹣23C.(﹣3)2与﹣32D.﹣(﹣2)与﹣|﹣2|12.某企业2014年的生产总值为a万元,预计2015年的生产总值比去年增长20%,那么该企业这两年的生产总值之和是()A.20%a万元B.(20%+a)万元C.(1+20%)a万元 D.[a+(1+20%)a]万元13.已知多项式x2+3x=3,可求得另一个多项式3x2+9x﹣4的值为()A.3 B.4 C.5 D.614.若|x|=7,|y|=5,且x+y>0,那么x﹣y的值是()A.2或12 B.2或﹣12 C.﹣2或12 D.﹣2或﹣1215.观察下面一组数:﹣1,2,﹣3,4,﹣5,6,﹣7,…,将这组数排成如图的形式,按照如图规律排下去,则第10行中从左边数第9个数是()A.﹣90 B.90 C.﹣91 D.91二、填空题(每小题3分,共21分)16.比较大小:﹣﹣(填“>”或“<”)17.若14x6y2和﹣3x3m y2是同类项,则12m﹣24等于.18.用四舍五入法求0.12874精确到千分位的近似数为.19.若a>0,b<0,则|ab|=.20.已知a、b互为相反数,则a+2a+3a+…+49a+50a+50b+49b+…+3b+2b+b=.21.某人买了甲、乙两个品牌的衬衣共n件,其中甲品牌衬衣比乙品牌衬衣多5件.已知甲品牌衬衣的单价为120元,乙品牌衬衣的单价为90元,则购买这n 件衬衣共需付元.22.如图,数轴上一动点A向左移动2个单位长度到达点B,再向右移动5个单位长度到达点C、若点C表示的数为1,则点A表示的数为.三、解答题(共49分)23.计算:(1)(﹣66)×(﹣+)(2)4﹣(﹣3)2×2(3)﹣22÷×(1﹣)2(4)32÷(﹣)3﹣24÷(﹣)24.化简:(1)5xy2+3x2y﹣xy2﹣2x2y﹣1;(2)(a2+2a)﹣2(a2+4a)25.有一个水库某天8:00的水位为﹣0.1m(以警戒线为基准,记高于警戒线的水位为正)在以后的6个时刻测得的水位升降情况如下(记上升为正,单位:m):0.5,﹣0.8,0,﹣0.2,﹣0.3,0.1经过6次水位升降后,水库的水位超过警戒线了吗?26.化简并求值:a+{b﹣2a+[3a﹣2(b+2a)+5b]},其中a=,b=﹣1.27.设A=2a2﹣a,B=﹣a2﹣a,求:(1)A+B.(2)A﹣B.28.某公司的年销售额为a万元,成本为销售额的60%,税额和其他费用合计为销售额的p%.(1)用关于a,p的式子表示该公司的年利润.(2)若a=8000,p=7,则该公司的年利润为多少万元?29.我们把符号“n!”读作“n的阶乘”.规定1:“n为自然数,当n≠0时,n!=n•(n﹣1)•(n﹣2)•…•2•1,当n=0时,0!=1.”例如:6!=6×5×4×3×2×1=720.规定2:“在含有阶乘和加、减、乘、除运算时,应先计算阶乘,再乘除,后加减,有括号就先算括号里面的”.按照以上的定义和运算顺序,计算:(1)4!;(2);(3)(3+2)!﹣4!;(4)用具体数试验一下,看看等式(m+n)!=m!+n!是否恒成立.2016-2017学年山东省济宁市曲阜市七年级(上)期中数学试卷参考答案与试题解析一、选择题(每小题2分,共30分)1.﹣2的相反数是()A.B.﹣ C.2 D.﹣2【考点】相反数.【分析】根据只有符号不同的两个数互为相反数,可得一个数的相反数.【解答】解:﹣2的相反数是2,故选:C.2.﹣的倒数是()A.﹣3 B.3 C.D.﹣【考点】倒数.【分析】依据倒数的定义解答即可.【解答】解:﹣的倒数是﹣3.故选:A.3.曲阜市某天的最高气温9℃,最低气温﹣2℃,这一天曲阜市的温差是()A.11℃B.﹣11℃C.7℃D.﹣7℃【考点】有理数的减法.【分析】用最高温度减去最低温度,再根据减去一个数等于加上这个数的相反数进行计算即可得解.【解答】解:9﹣(﹣2),=9+2,=11℃.故选A.4.据报道,目前我国“天河二号”超级计算机的运算速度位居全球第一,其运算速度达到了每秒338 600 000亿次,数字338 600 000用科学记数法可简洁表示为()A.3.386×108B.0.3386×109 C.33.86×107D.3.386×109【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:数字338 600 000用科学记数法可简洁表示为3.386×108.故选:A.5.在有理数﹣2,2,0,﹣1中,最小的数是()A.﹣2 B.2 C.0 D.﹣1【考点】有理数大小比较.【分析】有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.【解答】解:根据有理数比较大小的方法,可得﹣2<﹣1<0<2,故最小的有理数是﹣2.故选:A.6.近似数1.30所表示的准确数A的范围是()A.1.25≤A<1.35 B.1.20<A<1.30C.1.295≤A<1.305 D.1.300≤A<1.305【考点】近似数和有效数字.【分析】近似值是通过四舍五入得到的:精确到哪一位,只需对下一位数字进行四舍五入.【解答】解:根据取近似数的方法,得1.30可以由大于或等于1.295的数,0后面的一位数字,满5进1得到;或由小于1.305的数,舍去1后的数字得到,因而1.295≤A<1.305.故选C.7.多项式x3y2﹣5x2y+6xy﹣3的次数是()A.2 B.3 C.5 D.10【考点】多项式.【分析】由于多项式中每个单项式叫做多项式的项,这些单项式中的最高次数,就是这个多项式的次数,由此可以确定多项式的次数.【解答】解:多项式x3y2﹣5x2y+6xy﹣3的次数是5,故选C8.如果|a+2|+(b﹣1)2=0,那么a+b的值是()A.﹣2 B.2 C.﹣1 D.1【考点】非负数的性质:偶次方;非负数的性质:绝对值.【分析】根据非负数的性质列出方程求出a、b的值,代入所求代数式计算即可.【解答】解:由题意得,a+2=0,b﹣1=0,解得a=﹣2,b=1,则a+b=﹣1,故选:C.9.有理数a、b在数轴上的表示如图所示,那么()A.﹣b>a B.﹣a<b C.b>a D.|a|>|b|【考点】数轴.【分析】根据图中所给数轴,判断a、b之间的关系,分析所给选项是否正确.【解答】解:由图可知,b<0<a且|b|>|a|,所以,﹣b>a,﹣a>b,A、﹣b>a,故本选项正确;B、正确表示应为:﹣a>b,故本选项错误;C、正确表示应为:b<a,故本选项错误;D、正确表示应为:|a|<|b|,故本选项错误.故选A.10.代数式的意义是()A.a除以b加1 B.b加1除aC.b与1的和除以a D.a除以b与1的和所得的商【考点】代数式.【分析】根据代数式的意义,注意表示a除以b与1的和所得的商.【解答】解:代数式表示a除以b与1的和所得的商.故应选D.11.下列各对数中,相等的一对数是()A.﹣23与﹣32B.(﹣2)3与﹣23C.(﹣3)2与﹣32D.﹣(﹣2)与﹣|﹣2|【考点】有理数的乘方.【分析】根据有理数的乘方,即可解答.【解答】解:A、﹣23=﹣8,﹣32=9,﹣8≠9,故错误;B、(﹣2)3=﹣8,﹣23=﹣8,﹣8=﹣8,故正确;C、(﹣3)2=9,﹣32=﹣9,9≠﹣9,故错误;D、﹣(﹣2)=2,﹣|﹣2|=﹣2,﹣2≠2,故错误;故选:B.12.某企业2014年的生产总值为a万元,预计2015年的生产总值比去年增长20%,那么该企业这两年的生产总值之和是()A.20%a万元B.(20%+a)万元C.(1+20%)a万元 D.[a+(1+20%)a]万元【考点】列代数式.【分析】根据题意可得,2015年的生产总值=(1+20%)×2014年的生产总值,在加14年即可求解.【解答】解:由题意得,2015年的生产总值=(1+20%)a,两年的生产总值之和是:a+(1+20%)故选D.13.已知多项式x2+3x=3,可求得另一个多项式3x2+9x﹣4的值为()A.3 B.4 C.5 D.6【考点】代数式求值.【分析】先把3x2+9x﹣4变形为3(x2+3x)﹣4,然后把x2+3x=3整体代入计算即可.【解答】解:∵x2+3x=3,∴3x2+9x﹣4=3(x2+3x)﹣4=3×3﹣4=9﹣4=5.故选:C.14.若|x|=7,|y|=5,且x+y>0,那么x﹣y的值是()A.2或12 B.2或﹣12 C.﹣2或12 D.﹣2或﹣12【考点】有理数的减法;绝对值;有理数的加法.【分析】题中给出了x,y的绝对值,可求出x,y的值;再根据x+y>0,分类讨论,求x﹣y的值.【解答】解:∵|x|=7,|y|=5,∴x=±7,y=±5.又x+y>0,则x,y同号或x,y异号,但正数的绝对值较大,∴x=7,y=5或x=7,y=﹣5.∴x﹣y=2或12.故本题选A.15.观察下面一组数:﹣1,2,﹣3,4,﹣5,6,﹣7,…,将这组数排成如图的形式,按照如图规律排下去,则第10行中从左边数第9个数是()A.﹣90 B.90 C.﹣91 D.91【考点】规律型:数字的变化类.【分析】奇数为负,偶数为正,每行的最后一个数的绝对值是这个行的行数n 的平方,所以第9行最后一个数字的绝对值是81,第10行从左边第9个数是81+9=90.【解答】解:由题意可得:9×9=81,81+9=90,故第10行从左边第9个数是90.故选:B.二、填空题(每小题3分,共21分)16.比较大小:﹣>﹣(填“>”或“<”)【考点】有理数大小比较.【分析】根据两负数比较大小的法则进行比较即可.【解答】解:∵<,∴﹣>﹣;故答案为:>.17.若14x6y2和﹣3x3m y2是同类项,则12m﹣24等于0.【考点】同类项.【分析】同类项是指相同字母的指数要相等.【解答】解:由题意可知:6=3m,∴m=2,故答案为:12m﹣24=0故答案为:018.用四舍五入法求0.12874精确到千分位的近似数为0.129.【考点】近似数和有效数字.【分析】把万分位上的数字7进行四舍五入即可.【解答】解:0.12874≈0.129四舍五入法求0.12874精确到千分位的近似数为0.129.故答案为:0.129.19.若a>0,b<0,则|ab|=﹣ab.【考点】有理数的乘法;绝对值.【分析】根据有理数的乘法法则,以及绝对值的代数意义判断即可.【解答】解:∵a>0,b<0,∴ab<0,则原式=﹣ab,故答案为:﹣ab20.已知a、b互为相反数,则a+2a+3a+…+49a+50a+50b+49b+…+3b+2b+b=0.【考点】相反数.【分析】根据相反数的概念,a+b=0,继而可求出a+2a+3a+…+49a+50a+50b+49b+…+3b+2b+b=(a+b)+2(a+b)+3(a+b)+…+50(a+b)=0.【解答】解:∵a、b互为相反数,∴a+b=0,∴a+2a+3a+…+49a+50a+50b+49b+…+3b+2b+b=(a+b)+2(a+b)+3(a+b)+…+50(a+b)=0.故答案为:0.21.某人买了甲、乙两个品牌的衬衣共n件,其中甲品牌衬衣比乙品牌衬衣多5件.已知甲品牌衬衣的单价为120元,乙品牌衬衣的单价为90元,则购买这n 件衬衣共需付105n+75元.【考点】列代数式.【分析】由题意得,乙品牌的衣服为件,则乙品牌的衣服为件,根据单价和数量以及总价的关系列出代数式即可.【解答】解:买这n件衬衣需付款:90×+×120=105n+75(元).故答案为:105n+75.22.如图,数轴上一动点A向左移动2个单位长度到达点B,再向右移动5个单位长度到达点C、若点C表示的数为1,则点A表示的数为﹣2.【考点】数轴.【分析】根据数轴上点的移动和数的大小变化规律:左减右加.可设这个数是x,则x﹣2+5=1,x=﹣2.【解答】解:设A点对应的数为x.则:x﹣2+5=1,解得:x=﹣2.所以A点表示的数为﹣2.故答案为:﹣2.三、解答题(共49分)23.计算:(1)(﹣66)×(﹣+)(2)4﹣(﹣3)2×2(3)﹣22÷×(1﹣)2(4)32÷(﹣)3﹣24÷(﹣)【考点】有理数的混合运算.【分析】(1)原式利用乘法分配律计算即可得到结果;(2)原式先计算乘方运算,再计算乘法运算,最后算加减运算即可得到结果;(3)原式先计算乘方运算,再计算乘除运算即可得到结果;(4)原式先计算乘方运算,再计算除法运算,最后算加减运算即可得到结果.【解答】解:(1)原式=﹣33+22﹣30=﹣41;(2)原式=4﹣18=﹣14;(3)原式=﹣4××=﹣;(4)原式=9×(﹣27)+16×2=﹣243+32=﹣211.24.化简:(1)5xy2+3x2y﹣xy2﹣2x2y﹣1;(2)(a2+2a)﹣2(a2+4a)【考点】整式的加减.【分析】(1)先去括号再合并同类项即可;(2)先去括号再合并同类项即可.【解答】解:(1)原式=(3x2y﹣2x2y)+(5xy2﹣xy2)﹣1=x2y+4xy2﹣1;(2)原式=a2+2a﹣a2﹣8a=﹣6a.25.有一个水库某天8:00的水位为﹣0.1m(以警戒线为基准,记高于警戒线的水位为正)在以后的6个时刻测得的水位升降情况如下(记上升为正,单位:m):0.5,﹣0.8,0,﹣0.2,﹣0.3,0.1经过6次水位升降后,水库的水位超过警戒线了吗?【考点】正数和负数.【分析】求得上述各数的和,然后根据结果与0的大小关系即可做出判断.【解答】解:﹣0.1+0.5﹣0.8+0﹣0.2﹣0.3+0.1=﹣0.8.答:水库的水位没有超过警戒线.26.化简并求值:a+{b﹣2a+[3a﹣2(b+2a)+5b]},其中a=,b=﹣1.【考点】整式的加减—化简求值.【分析】原式去括号合并得到最简结果,把a与b的值代入计算即可求出值.【解答】解:原式=a+b﹣2a+3a﹣2b﹣4a+5b=﹣2a+4b,当a=,b=﹣1时,原式=﹣1﹣4=﹣5.27.设A=2a2﹣a,B=﹣a2﹣a,求:(1)A+B.(2)A﹣B.【考点】整式的加减.【分析】(1)根据A=2a2﹣a,B=﹣a2﹣a,直接代入A+B计算即可;(2)根据A=2a2﹣a,B=﹣a2﹣a,直接代入A﹣B计算即可.【解答】解:(1)∵A=2a2﹣a,B=﹣a2﹣a,∴A+B=(2a2﹣a)+(﹣a2﹣a)=a2﹣2a;(2)∵A=2a2﹣a,B=﹣a2﹣a,∴A﹣B=(2a2﹣a)﹣(﹣a2﹣a)=3a2.28.某公司的年销售额为a万元,成本为销售额的60%,税额和其他费用合计为销售额的p%.(1)用关于a,p的式子表示该公司的年利润.(2)若a=8000,p=7,则该公司的年利润为多少万元?【考点】代数式求值;列代数式.【分析】(1)先求出利润率,再求出答案即可;(2)把a和p的值代入(1)的代数式,即可求出答案.【解答】解:(1)∵1﹣60%=40%,∴该公司的年利润是(40%﹣p%)a万元;(2)当a=8000,p=7时,(40%﹣p%)a=2640,则该公司的年利润为2640万元.29.我们把符号“n!”读作“n的阶乘”.规定1:“n为自然数,当n≠0时,n!=n•(n﹣1)•(n﹣2)•…•2•1,当n=0时,0!=1.”例如:6!=6×5×4×3×2×1=720.规定2:“在含有阶乘和加、减、乘、除运算时,应先计算阶乘,再乘除,后加减,有括号就先算括号里面的”.按照以上的定义和运算顺序,计算:(1)4!;(2);(3)(3+2)!﹣4!;(4)用具体数试验一下,看看等式(m+n)!=m!+n!是否恒成立.【考点】规律型:数字的变化类.【分析】(1)根据题意4!=4×3×2×1=24;(2)根据规定2,==;(3)根据规定2,(3+2)!﹣4!=5!﹣4!,再运算即可;(4)用赋值法证明即可;【解答】解:(1)4!=4×3×2×1=24;(2)==;(3)(3+2)!﹣4!=5!﹣4!=5×4×3×2×1﹣4×3×2×1=120﹣24=96;(4)不成立.如:m=3,n=2时,3!=3×2×1=6,2!=2,m!+n!=3!+2!=6+2=8,(m+n)!=5!=120,∴(m+n)!=m!+n!不成立.2017年4月11日。

相关文档
最新文档