金属学

合集下载

金属学及热处理

金属学及热处理

时效处理工艺
总结词
时效处理是一种通过长时间放置或加热使金属内部发生沉淀 或析出反应的过程,主要用于提高金属的强度和稳定性。
详细描述
时效处理工艺通常将金属加热至较低的温度,并保持一定时 间,使金属内部的原子或分子的分布发生变化,形成更加稳 定的结构。通过时效处理,金属的强度和稳定性可以得到提 高。
表面热处理工艺
总结词
表面热处理是一种仅对金属表面进行 加热和冷却的过程,主要用于改善金 属表面的耐磨性、耐腐蚀性和抗氧化 性等。
详细描述
表面热处理工艺通常仅对金属表面进行加热 和冷却,而内部保持不变。通过表面热处理 ,可以改变金属表面的晶格结构、化学成分 和组织结构等,从而改善其表面的性能。
04 热处理设备与工具
热处理炉应定期进行维护和保养,确保设备的正常运行 和使用寿命。
在操作过程中,应定期检查炉温和炉压是否正常,防止 超温或超压。
在使用过程中,应保持炉膛的清洁,防止杂物和积炭对 加热元件和金属材料的影响。
热处理工具的选择与使用
01
02
03
04
根据不同的热处理工艺和金属 材料,选择合适的热处理工具

在使用过程中,应注意工具的 材质和尺寸是否符合要求,防 止工具损坏或金属材料表面损
金属学及热处理
contents
目录
• 金属学基础 • 热处理原理 • 热处理工艺技术 • 热处理设备与工具 • 热处理的应用与发展趋势
01 金属学基础
金属材料的分类与特性
钢铁材料
根据碳含量和用途,钢铁材料可分为生铁、铸铁和钢 材。其特性包括高强度、耐磨性和耐腐蚀性。
有色金属
如铜、铝、锌等,具有良好的导电性、导热性和延展 性。

第二节 金属学及热处理基本知识

第二节  金属学及热处理基本知识

第二节金属学及热处理基本知识一、金属晶体结构的一般知识众所周知,世界上的物质都是由化学元素组成的,这些化学元素按性质可分成两大类:第一大类是金属,化学元素中有83种是金属元素。

固态金属具有不透明、有光泽、有延展性、有良好的导电性和导热性等特性,并且随着温度的升高,金属的导电性降低,电阻率增大,这是金属独具的一个特点。

常见的金属元素有铁、铝、铜、铬、镍、钨等。

第二大类是非金属,化学元素中有22种,非金属元素不具备金属元素的特征。

而且与金属相反,随着温度的升高,非金属的电阻率减小,导电性提高。

常见的非金属元素有碳、氧、氢、氮、硫、磷等。

我们所焊接的材料主要是金属,尤其是钢材,钢材的性能不仅取决于钢材的化学成分,而且取决于钢材的组织,为了了解钢材的组织及对性能的影响,我们必须先从晶体结构讲起。

(一)晶体的特点对于晶体,大家并不生疏。

食盐、水结成的冰,都是晶体。

一般的固态金属及合金也都是晶体。

并非所有固态物质都是晶体。

如玻璃、松香之类就不是晶体,而属于非晶体。

晶体与非晶体的区别不在外形,而在内部的原子排列。

在晶体中,原子按一定规律排列得很整齐。

而在非晶体中,原子则是散乱分布着,至多有些局部的短程规则排列。

由于晶体与非晶体中原子排列不同,因此性能也不相同。

(二)典型的金属晶体结构金属的原子按一定方式有规则地排列成一定空间几何形状的结晶格子,称为晶格。

金属的晶格常见的有体心立方晶格和面心立方晶格,如图1—4所示。

体心立方晶格的立方体的中心和八个顶点各有一个铁原子,而面心立方晶格的立方体的八个顶点和六个面的中心各有一个铁原子。

图1—4 典型的金属晶体结构(a)体心立方晶格(b)面心立方晶格铁属于立方晶格,随着温度的变化,铁可以由一种晶格转变为另一种晶格。

这种晶格的转变,称为同素异晶转变。

纯铁在常温下是体心立方晶格(称为α-Fe);当温度升高到910℃时,纯铁的晶格由体心立方晶格转变为面心立方晶格(称为γ-Fe);再升温到1390℃时,面心立方晶格又重新转变为体心立方晶格(称为δ-Fe),然后一直保持到纯铁的熔化温度。

金属学及金属工艺学

金属学及金属工艺学

金属学及金属工艺学概述金属学是研究金属材料的学科,涉及金属材料的结构、性能、加工和应用等方面。

金属工艺学是研究金属的加工和成型过程的学科,包括金属的切削、锻造、铸造、焊接等工艺。

金属是人类历史上最重要的材料之一,广泛应用于建筑、交通、机械、电子、化工等领域。

金属学和金属工艺学的研究对于开发新型金属材料、提高金属材料的性能和开发新型金属工艺具有重要意义。

金属学结构金属的结构主要由原子和晶格构成。

金属中的原子呈规则排列,并形成晶格结构。

金属的晶格结构决定了其性能、塑性和导电性能等特点。

金属的常见晶格结构有面心立方结构、体心立方结构和六方最密堆积结构。

不同的晶格结构会导致金属的性能差异,例如铜的面心立方结构使其具有良好的导电性能。

性能金属的性能包括力学性能、物理性能和化学性能等方面。

力学性能是指金属材料的抗拉强度、屈服强度、硬度和韧性等特性。

金属材料的力学性能对其在不同领域的应用具有重要影响。

物理性能是指金属材料的热膨胀系数、导热系数和电阻率等特性。

金属材料的物理性能决定了其在热传导和电传导方面的应用。

化学性能是指金属与其他物质的反应性。

金属在不同环境下可能会发生氧化、腐蚀、传递等化学反应,这些化学反应对金属材料的稳定性和耐久性有重要影响。

应用金属材料广泛应用于各个行业。

以钢铁为例,它是一种由铁和一定量的碳组成的金属材料,具有较高的强度和耐磨性,广泛用于建筑、汽车、船舶等领域。

铜是具有良好导电性能的金属材料,被广泛应用于电子、通信、电力等领域。

铝是一种轻、强、耐腐蚀的金属材料,广泛应用于航空、汽车、包装等领域。

其他金属材料如锌、镁、钛等也都具有特定的优良性能,在不同领域有重要应用。

金属工艺学切削工艺切削工艺是金属加工中常用的一种方式,通过切削加工来使金属材料得到所需形状和尺寸。

切削工艺包括车削、铣削、钻削、磨削等方法。

这些工艺依靠切削工具对金属材料进行削除和变形,从而得到所需的形状。

锻造工艺锻造工艺是将金属材料在受控温度和应力下进行塑性变形的加工方法。

金属学-知识点

金属学-知识点

金属是具有正的电阻温度系数的物质,其电阻随温度的升高而增加。

晶体的三个特性:原子按一定的规律周期性地重复排列着;具有一定的熔点;各向异性(异向性)空间点阵:由这些阵点有规则地周期性重复排列所形成的三维空间阵列。

晶格:将阵点用直线连接起来形成空间格子晶格常数/点阵常数:晶胞的棱边长度布拉菲点阵:14种类型,7个晶系,常见类型:体心立方结构a-Fe Cr V、面心立方结构r-Fe Cu Ni、密排六方结构Zn Mg Be配位数:晶体结构中与任一个原子最近邻、等距离的原子数目致密度:原子排列的紧密程度,原子所占体积与晶胞体积之比。

晶向指数和晶面指数——画图晶向族:原子排列相同但空间位向不同的所有晶向晶向[uvw]与晶面(hkl)平行hu+kv+lw=0 垂直u=h v=k w=l 晶面间距公式P17伪等向性:多晶体中的晶粒位向是任意的,晶粒的各向异性被互相抵消,因此在一般情况下整个晶体不显示各向异性。

晶体缺陷:点、线、面缺陷。

点缺陷:1、原子迁移到晶体的表面上,肖脱基空位。

2、迁移到晶格间隙中,弗兰克尔空位刃型位错:柏氏矢量与位错线垂直。

螺型位错:柏氏矢量与位错线平行晶体内部位错线是封闭的晶界特性:高温弱化,低温强化。

过冷度:金属理论结晶温度与实际结晶温度之差。

结晶的过程是形核、长大两个过程交错重叠结构起伏/相起伏:不断变化着的短程有序原子集团。

晶核形成:均匀形核、非均匀形核。

晶体长大机制:1、二维晶核长大机制2、螺型位错长大机制(光滑界面长大);3、连续长大机制(粗糙界面长大)晶体长大的要点:1、具有粗糙界面的金属,其长大机制为连续长大,长大速度大,多需过冷度小。

2、具有光滑界面的金属化合物、半金属或非金属等,其长大机制两种:二维长大和螺型位错长大,长大速度慢,所需过冷度大。

3、晶体成长的界面形态与界面前沿的温度梯度和界面的微观结构有关,正温度梯度是,光滑界面的一些小晶面互成一定角度,呈锯齿张;粗糙界面的形态为平行于Tm等温的平直界面,呈平面长大方式;在负的温度梯度下长大时,一般金属和非金属都呈树枝状,只有杰克逊因子a值较高的物质保持光滑界面形态。

金属学

金属学

为简单,考虑λ=90° 为简单,考虑λ=90°-φ,即滑移 λ=90 面法线、滑移方向、外力轴在同一 平面上,则: cosλcosφ=cos(90°-φ)cosφ cosλcosφ=(1/2)sin2φ φ=45°,(cosλcosφ) =1/2, φ=45°,(cosλcosφ)max=1/2, cosλcosφ τ最大。这样的滑移系启动时所需 最大。 外力最小,最易滑移。 外力最小,最易滑移。
(2)对有多组滑移பைடு நூலகம்的晶体:多个滑移系滑移。 )对有多组滑移面的晶体:
5、多系滑移 多系滑移: 多系滑移:在两个或更多个滑移系上同时或交替 进行的滑移。 进行的滑移。 出现在: 出现在:外力轴和几个滑移系构成的取向因子相 同(称等效滑移系),分切应力同时达到临界值。 多个等效滑移系各自作独立的滑移。 滑移线:呈交叉、曲折形状。 滑移线:
3、滑移所需的临界分切应力 滑移面的面积=A/cosφ 外力在滑移方向上的分力为Fcosλ,
外力在滑移面上沿滑移方向的分切应 力:
式中:F/A为正应力; cosλcosφ为取向因子(Schmidt)。 式中: 看出: 看出:外力和截面一定,作用于滑移系上的分切应力只与晶体 的受力方位(λ、φ)有关。当某一滑移系的取向因子大时,作 用在该滑移系的分切应力也大。
2、滑移的晶体学特征(滑移系) 滑移的晶体学特征(
滑移面:能够发生滑移的晶面( 滑移面:能够发生滑移的晶面(原子密度最大或次大的晶 面)。 滑移方向:在滑移面上能够进行滑移的方向( 滑移方向:在滑移面上能够进行滑移的方向(原子密度最 大的方向)。 大的方向)。 原因: 原因: 原子面密度最大,其面间距大,原子面间结合力小。位错 滑移所需加的临界切应力小,位错易发生移动; 原子密度最大的方向, 原子列间距大,原子列间 结合力小。

铁素体奥氏体渗碳体珠光体马氏体

铁素体奥氏体渗碳体珠光体马氏体

深入探讨金属学中的重要概念一、介绍在金属学中,铁素体、奥氏体、渗碳体、珠光体和马氏体是极为重要的概念,它们对于金属材料的性能和应用有着重要的影响。

本文将深入探讨这些概念,并对其进行全面评估,以便读者能够更好地理解它们。

二、铁素体铁素体是指铁和碳组成的固溶体,是一种具有面心立方结构的金属组织。

在铁碳合金中,当温度高于A3点时,铁的组织结构为铁素体。

铁素体的性质稳定,具有较好的塑性和韧性,是一些重要金属材料的基本组织形式。

三、奥氏体奥氏体是另一种铁碳合金的组织形式,其结构为面心立方。

当温度低于A1点时,铁的组织结构为奥氏体。

奥氏体具有较高的硬度和强度,但塑性和韧性较差。

在一些要求高强度的金属材料中,奥氏体是重要的组织形式。

四、渗碳体渗碳体是指在铁素体或奥氏体内部溶解了一定量的碳,形成固溶体的金相。

渗碳体的形成可以显著提高金属材料的硬度和强度,但会降低其塑性和韧性。

在热处理过程中,渗碳体的形成可以有效改善金属材料的性能。

五、珠光体珠光体是一种由铁素体和渗碳体相互交替排列形成的组织形式,具有条纹状的外观。

珠光体在金属材料中起着重要的强化作用,可以显著提高材料的硬度和强度。

在一些对耐磨性要求较高的金属制品中,珠光体是重要的组织形式。

六、马氏体马氏体是一种在金属材料中由奥氏体或铁素体经过相变而形成的组织形式,具有高硬度和弹性,是一些高强度金属材料的重要组织形式。

马氏体的形成可以显著提高金属材料的强度和耐磨性。

七、总结与回顾通过对铁素体、奥氏体、渗碳体、珠光体和马氏体的全面评估,我们可以更好地理解这些重要的金属学概念。

铁素体和奥氏体是金属材料的两种基本组织形式,渗碳体、珠光体和马氏体则是在热处理过程中形成的重要组织形式,它们对于金属材料的性能和应用有着重要的影响。

八、个人观点与理解在我看来,对于金属学中的这些重要概念,我们需要深入学习和理解其形成的原理、性质和应用,这对于提高金属材料的设计、加工和应用水平具有重要意义。

金属学名词解释

金属学名词解释

金属学名词解释第一章:金属的晶体结构金属:具有正的电阻温度系数的物质,其电阻岁温度的升高而增加。

晶体:原子在三维空间作有规则的周期性排列的物质。

它具有一定的熔点并且各向异性。

晶体结构:晶体中原子在三维空间有规则的周期性的具体排列方式。

阵点:为了清楚地表明原子在空间排列的规律性,常常将构成晶体的原子(或原子群)忽略,而将其抽象为纯粹的几何点,称之为阵点空间点阵:由阵点有规则的周期性重复排列所形成的三维空间阵列。

晶格:将阵点用直线连接起来形成的空间格子。

晶胞:能够反映晶格特征的最小几何单元。

晶面:在晶体中,由一系列原子所组成的平面称之为~晶向:在晶体中,任意两个原子之间的连线所指的方向。

多晶体:凡是由两颗以上晶粒所组成的晶体能量起伏:对于一个原子来说,这一瞬间能量可能高些,另一瞬间反而可可能低些的现象刃型位错:1.有一额外半原子面,2 位错线是一个具有一定宽度的细长晶格畸变管道,既有正应变又有切应变,3位错线与晶体滑移方向相垂直,位错线运动方向垂直于位错线。

4,柏氏矢量与位错线垂直。

螺型位错:1没有额外半原子面,2位错线是一个具有一定宽度的细长晶格畸变管道,只有切应变,而无正应变,3位错线与晶体滑移方向相平行,位错线运动方向垂直于位错线。

4,柏氏矢量与位错线平行。

晶界:晶体结构相同但位向不同的晶粒之间的界面。

亚晶界:由直径为10-100μm的晶块组成,彼此间存在极小的位相差(通常<2°)这些晶块之间的内界面称为亚晶粒间接,简称~层错:在实际晶体中,晶面堆垛顺序发生局部差错而产生的一种晶体缺陷,是通常发生于面心立方金属的一种面缺陷。

相界:具有不同晶体结构的两相之间的分界面。

有共格,半共格,非共格三种。

第二章:纯金属的结晶结晶:金属由液态转变为固态的过程称谓凝固,由于凝固后的固态金属通常是晶体,所以又将这一转变过程称谓~过冷度:金属的理论结晶温度Tm与实际结晶温度Tn之差,金属不同,则过冷度大小不同,金属的纯度越高,则过冷度越大,当以上两因素确定后,过冷度的大小主要取决于冷却速度,冷却速度越大,则过冷度越大,实际结晶温度越低,反之,冷却速度越慢,则过冷度越小,实际结晶温度越接近于理论结晶温度。

金属学与金属工艺

金属学与金属工艺

金属学与金属工艺
金属学是研究金属的性质、组织结构、合金化、腐蚀等方面的科学学科,涉及材料科学、物理学、化学等多个学科的知识。

金属学通过实验、分析和理论推导等方法,探索金属的结构、性能和行为规律,为金属材料的设计、制备和应用提供科学依据。

金属工艺是利用金属材料进行加工、成型和制造的技术和工艺。

金属工艺包括金属加工工艺、热处理工艺、焊接工艺、涂装工艺等。

金属工艺的目的是通过控制金属材料的组织结构和性能,使其满足不同工程要求,并实现金属制品的设计、制造和应用。

金属工艺涉及到材料的物理、化学和机械性质,以及加工设备、工艺参数等方面的知识。

金属学和金属工艺是密切相关的学科,二者相互依存、相互促进。

金属学提供了金属材料的基础研究和理论指导,为金属工艺的发展提供科学依据;而金属工艺则是金属学理论的应用,将金属材料的性能和特点转化为具体的加工工艺和工程实践,为社会和经济发展提供了重要的技术支持。

金属学教材

金属学教材

金属学教材
金属学是研究金属材料的成分、组织结构、工艺性质以及它们之间关系的科学。

以下是几本经典的金属学教材:
1. 《材料科学基础(金属材料方向)》,作者是王昆林,是机械工业出版社出版的图书。

2. 《金属学与热处理》,作者是崔忠圻,是机械工业出版社出版的图书。

3. 《材料的力学性能》,作者是束德林,是机械工业出版社出版的图书。

4. 《材料物理性能》,作者是周美玲,是机械工业出版社出版的图书。

5. 《材料表面腐蚀与防护》,作者是陆世英,是化学工业出版社出版的图书。

6. 《马氏体相变》,作者是刘宗昌,是冶金工业出版社出版的图书。

7. 《不锈钢中的金属学问题》,作者是艾星辉,是冶金工业出版社出版的图书。

此外,还有一些专门针对某一类金属材料的教材,如《钢铁材料学》、《有色金属学》等。

这些教材内容深入浅出,适合作为高校相关专业的学习教材,也适合从事金属材料研究和生产的工程技术人员阅读参考。

金属学基础晶体结构与晶体缺陷的影响

金属学基础晶体结构与晶体缺陷的影响

金属学基础晶体结构与晶体缺陷的影响金属学是材料科学的一个重要分支,研究金属的结构、特性和性能等方面。

其中,晶体结构与晶体缺陷是金属学中的基础概念,对金属材料的性能和应用具有重要的影响。

本文将讨论金属基础晶体结构与晶体缺陷的影响,并分析其在金属学中的应用。

1. 晶体结构的基本概念晶体是由原子、离子或分子等基本单位有序排列而成的固态物质。

金属晶体结构是金属原子有序排列的方式,常见的金属晶体结构包括体心立方晶体结构、面心立方晶体结构和密堆积晶体结构。

这些不同的晶体结构会直接影响金属的物理和化学性质。

2. 晶体缺陷的分类与特征晶体缺陷是指晶体中存在的结构缺陷或点缺陷。

根据缺陷的性质和形式,晶体缺陷可分为点缺陷、线缺陷和面缺陷。

点缺陷包括金属材料中的空位、间隙原子、替位原子等。

线缺陷指的是晶体中的位错,它们能够影响金属材料的力学性能。

面缺陷包括晶界和格界,它们会影响金属的强度和腐蚀性能。

3. 晶体缺陷对金属性能的影响晶体缺陷对金属的性能和行为具有深远的影响。

首先,点缺陷可以影响金属的导电性、热导率和化学反应性等。

例如,空位缺陷会降低金属的密度和导电性能。

其次,线缺陷会在金属材料中产生位错,位错对金属的塑性变形和强度起重要作用。

最后,面缺陷如晶界和格界会影响金属的强度、腐蚀性能和电子迁移等。

4. 晶体缺陷的控制与应用在金属的制备和加工过程中,控制晶体缺陷是实现特定性能要求的重要手段。

通过热处理、合金化、冷变形等方式可以调控晶体缺陷的类型和数量,从而改变金属的性能。

例如,通过合金化可以增强金属的强度和耐腐蚀性能;通过冷变形可以提高金属的塑性和韧性。

此外,晶体缺陷还在材料工程中具有重要的应用价值。

例如,在半导体材料中,控制晶体缺陷可以调制材料的导电性能,从而实现半导体器件的制备。

在金属材料的薄膜制备中,晶界和格界缺陷可以调控材料的导电性和机械性能,用于制备微电子器件和薄膜电极等。

总结:金属学中的晶体结构和晶体缺陷是影响金属材料性能和行为的重要因素。

第2章金属学的基本知识

第2章金属学的基本知识

(1)点缺陷 空间三维尺寸都很小的缺陷。 最常见的点缺陷是空位和间隙原子。 点缺陷可提高材料的强度和硬度。
(2)线缺陷 线缺陷的特征是在两个方向的 尺寸很小,在另一个方向的尺寸相对很大。 晶体中的线缺陷实际上就是位错,也就是说 在晶体中有一列或若干列原子,发生了有规律的 错排现象。分为刃型位错和螺型位错。
(3)晶格常数 在三维空间中,晶胞的几何 特征即大小和形状常以晶胞的棱边长度a、b、c及 棱边夹角α、β、γ来描述,其中晶胞的棱边长 度a、b、c一般称为晶格常数。
3.金属常见的晶体结构 (1)体心立方晶格 体心立方晶格的晶胞是一 个立方体,在立方体的中心有一个原子,在立方体 的八个角上分别有一个与其他晶胞共有的原子。其 晶格常数a=b=c,棱边夹角α=β=γ=90°。属于 体心立方晶格的金属有α-Fe、Cr、W、Mo等。
2.2
金属与合金的结晶
结晶 金属与合金在液态转变为固态晶体的过 程中,其原子是由不规则排列的液体状态逐步过渡 到原子作规则排列的晶体状态,这一过程称为结晶。 一、纯金属的结晶 1.冷却曲线和过冷现象 纯金属都有一个固定的熔点(或结晶温度), 因此纯金属的结晶过程是在一个恒定的温度下进行 的,其结晶过程可以用冷却曲线来描述。
臵换固溶体
②间隙固溶体 间隙固溶体是指溶质原子溶入 溶剂晶格的间隙而形成的固溶体。 由于溶剂晶格的间隙有限,因此间隙固溶体都 是有限固溶体。 形成间隙固溶体的条件是溶质原子与溶剂原子 的比值r溶质/r溶剂≤0.59。因此形成间隙固溶体的溶 质元素都是一些原子半径 小的非金属元素,如氢、 硼、碳、氮、氧等。

柱状晶区 由于模壁温度升高,结晶释放 出的潜热,使细晶区前沿液体的过冷度减小, 形核困难。加上模壁的定向散热,使已有的晶 体沿着与散热相反的方向生长而形成柱状晶区。

金属学部分名词解释

金属学部分名词解释

金属学部分名词解释第一章金属与合金的晶体结构金属学、材料科学基础;晶体、非晶体;结合能、结合键、键能;离子键、共价键、金属键、分子键、氢键;金属材料、陶瓷材料、高分子材料、复合材料;晶体结构、晶格、晶胞、晶系、布拉菲点阵;晶格常数、晶胞原子数、配位数、致密度;晶面、晶向、晶面指数、晶向指数、晶面族、晶向族;各向异性、各向同性;原子堆积、同素异构转变;陶瓷、离子晶体、共价晶体。

点缺陷、线缺陷、面缺陷;空位、间隙原子、肖脱基缺陷、弗兰克尔缺陷;刃形位错、螺形位错、混合位错、位错线、柏氏矢量、位错密度;滑移、攀移、交滑移、交割、塞积;位错的应力场、应变能、线张力、作用在位错上的力;位错源、位错的增殖;单位位错、不全位错、堆垛层错、肖克莱位错、弗兰克尔位错;扩展位错、固定位错、可动位错、位错反应;晶界、相界、界面能、大角度晶界、小角度晶界、孪晶界。

相、固溶体、置换固溶体、间隙固溶体、有序固溶体、电负性、电子浓度;中间相、正常价化合物、电子化合物、间隙相、间隙化合物、第二章纯金属的结晶结晶与凝固、非晶态金属;近程有序、远程有序、结构起伏、能量起伏;过冷现象、过冷度、理论结晶温度、实际结晶温度;均匀形核、非均匀形核;晶胚、晶核、临界晶核、临界形核功;形核率、生长速率;光滑界面、粗糙界面;温度梯度、正温度梯度、负温度梯度;平面状长大、树枝状长大;活性质点、变质处理、晶粒度;结晶区、柱状晶区、(粗)等轴晶区。

第三章二元合金相图与合金凝固合金、组元、二元合金;相律、杠杆定律、相图;热分析法、平衡相;匀晶转变、共晶转变、包晶转变、共析转变、有序-无序转变、熔晶转变、偏晶转变、合晶转变;平衡凝固、不平衡凝固、正常凝固;枝晶偏析、比重偏析、晶界偏析、胞状偏析;共晶体、稳定化合物、不稳定化合物;共晶合金、亚共晶合金、过共晶合金、伪共晶、不平衡共晶、离异共晶;第四章铁碳相图铁素体、奥氏体、莱氏体、珠光体、渗碳体;工业纯铁、亚共析钢、共析钢、过共析钢、亚共晶白口铁、共晶白口铁、过共晶白口铁,Fe—Fe3C相图,Fe-C相图第五章三元合金相图浓度三角形、相区相邻规则、直线法则、重心法则、共轭线、共轭曲面、共轭三角形、蝴蝶形变化规律、单变量线、液相面、固相面、溶解度曲面、四相平衡转变温度、投影图、垂直截面图和等温截面图。

工程材料学_第一章-金属学基础知识

工程材料学_第一章-金属学基础知识

晶向(crystal direction) :
通过晶体中任意两个原子中心连线来表示晶体结构的空间的各 个方向。 晶胞原子数:一个晶胞内包含的原子数目。
原子半径:晶胞中原子密度最大的方向上相邻两原子之间
平衡距离的一半,与晶格常数有一定的关系。 配位数:晶格中任一原子处于相等距离并相距最近原子数
的性能、塑性变形及其组织 转变均有极为重要的作用 。
通过冷塑性变形,提高位错
密度使得金属强度、硬度提
高的方法称为加工硬化。
面缺陷-晶界与亚晶界
大角度晶界---晶界
小角度晶界---亚晶界
大角度晶界---晶界
小角度晶界---亚晶界
小角度晶界---亚晶界
大角度晶界---晶界
金属的晶体结构
合金与合金的相结构
•单相合金组织(homogeneous structure )与多相合金组织 (Heterogenous structure):显微组织为单相的称为单相组织,为 多相的称为多相组织。
•合金组织的相:构成合金组织的各个相称为合金组织的相。 • 相结构:相组成物的晶体结构称为合金的相结构
二、合金的相结构
点位置的异类原子
线缺陷
位错( dislocation ):晶格的一部分相对
于另一部分发生的局部滑移现象,或者说 局部原子发生有规律的位置错排现象
面缺陷
晶界( grain boundary ) 亚晶界( sub-boundary )
点缺陷
置换原子
间隙原子
化合物离子晶体两种常见的缺陷
晶格空位
(1)晶面(crystal face)和晶向( crystal directions ):
晶向指数(indices of directions)和晶面指数(indices of crystal-plane)是分

第二章 金属学的基本知识

第二章 金属学的基本知识
上一页 下一页
§ 2.1 金属与合金的晶体结构
合金中,具有同一化学成分且结构相同的均匀部分叫相。合金中相
与相之间有明显的界面。液态合金通常为单相液体。合金在固态下,
由一个固相组成时称为单相合金,由两个以上固相组成时称为多相合 金。
组成合金各相的成分、结构、形态、性能和各相的组合情况构成
了合金的组织。组织是合金的内部情景,还包括晶粒的大小、形状、 种类以及各种晶粒之间的相对数量和相对分布,可以用肉眼或借助各
固溶体,如图2-10(b)所示。
由于溶剂晶格的间隙有限,因此间隙固溶体都是有限固溶体。形成间 隙固溶体的条件是溶质原子与溶剂原子的比值r溶质/r溶剂≤0. 59。因此
形成间隙固溶体的溶质元素都是一些原子半径小的非金属元素,如氢、
硼、碳、氮、氧等。
上一页 下一页
§ 2.1 金属与合金的晶体结构
应当指出,所形成的固溶体虽然仍保持着溶剂金属的晶格类型, 但由于溶质与溶剂原子尺寸的差别,必然会造成晶格的畸变,如图 2-11。晶格畸变使合金的强度、硬度和电阻升高。这种通过溶人 溶质元素使固溶体的强度、硬度升高的现象称为固溶强化。固溶强 化是提高金属材料力学性能的重要途径之一。实践表明,适当控制
态的金属和合金。晶体具有一定的熔点,并具有各向异性的特征。
晶体中的原子排列情况如图2-1(a)所示。 2.晶体结构的基本知识 (1)晶格为了便于描述晶体中原子排列的规律及几何形状,人 为地将原子看作一个点,再用一些假想的线条,将原子的中心
下一页
§ 2.1 金属与合金的晶体结构
连接起来,使之构成一个空间格子,如图2-1 ( b)。这种抽象 的、用于描述原子在晶体中排列方式的空间格子叫做“晶格”。 晶格中的每个点叫做晶格结点。 (2)晶胞由于晶体中原子排列具有周期性特点,因此在研究晶 体结构时,为方便起见,通常只从晶格中选取一个能够完全反映 晶格特征的最小的几何单元来分析晶体中原子排列的规律,这个 最小的几何单元称为晶胞,如图2-1 (c)。实际上整个晶格就是 由许多大小、形状和位向相同的晶胞在空间重复堆积而成的。晶 胞的大小和形状常以晶胞的棱边长度a,b,c及棱边夹角α,β,γ来

金属学原理期末复习缩印全解

金属学原理期末复习缩印全解

⾦属学原理期末复习缩印全解⾦属学热处理I第⼀章⾦属的晶体结构第⼀节、⾦属1、⾦属的定义:⾦属是具有正的电阻温度系数的物质(温度升⾼,电阻升⾼)特点:①良好的导电性②良好的导热性③正的电阻温度系数④有⾦属光泽⑤延展性2、⾦属及合⾦主要以⾦属键的⽅式结合,⾦属键的结合能⼒强;⾦属键特点:没有⽅向性,没有饱和性。

第⼆节、⾦属的晶体结构1、①晶体:原⼦在三维空间作有规则的周期性排列的物质称为晶体(⾦属⼀般是晶体)晶体的特性:⑴规则外形⑵固定熔点⑶各向异性②晶体结构:原⼦在三维空间的具体排列⽅式③阵点(结点):将构成晶体的原⼦忽略,抽象成纯粹的⼏何点,称为阵点④空间点阵:将阵点有规则地周期性重复排列所形成的三维空间阵列称为空间点阵。

⑤晶格:将阵点⽤直线连接起来形成的空间格⼦,称为晶格。

⑥晶胞:从晶体中选取⼀个能够完全反映晶格特征的最⼩⼏何单元,来分析晶体中原⼦排列的规律性,这个最⼩的⼏何单元称为晶胞。

(选取原则:对称性最⾼)2、晶格常数分为7种类型(晶胞),对应七种晶系(三斜、单斜、正交、六⽅、菱⽅、⽴⽅,四⽅)14种布拉菲点阵。

密排六⽅与⾯⼼⽴⽅结构的配位数及致密度相同。

▲晶体中的间隙(通常为⾮⾦属原⼦C、N等进⼊,间隙⼤并不代表就容易进⼊)间隙分为两种:⼋⾯体间隙(6个原⼦围成)和四⾯体间隙(4个原⼦围成)体⼼⽴⽅中四⾯体间隙⽐⼋⾯体间隙⼤得多;⾯⼼⽴⽅中⼋⾯体间隙⽐四⾯体间隙⼤得多。

3、晶⾯、晶向指数:①晶⾯:由⼀系列原⼦组成的平⾯晶向:任意两个原⼦之间连线所指的⽅向②★两个定理:⑴在⽴⽅结构中,当⼀晶向[uvw]位于或平⾏于某⼀晶⾯(hkl)时,必须满⾜hu+kv+lw=0;⑵当某⼀晶向与某⼀晶⾯垂直时,则其晶向指数和晶⾯指数必须完全相等,即u=h, v=k, w=l.3、晶体的各向异性是晶体的重要特征,是区别⾮⾦属的重要标志;产⽣各向异性的原因:不同晶向上原⼦紧密程度不同。

⾦属属于多晶体,多晶体中晶粒位向是任意的,晶粒的各向异性被抵消。

金属学--第1章:金属及合金的固态结构

金属学--第1章:金属及合金的固态结构

第一章:金属及合金的固态结构1.纯金属的典型结构模型:面心立方(fcc)、密集六方(hcp)和体心立方(bcc)结构模型。

2.合金中的典型结构:(1)代位固溶体和有序固溶体——异类原子按任意比例〔在一定成分范围内〕统计式的分布在各类结构中各相应晶面上,并处于与主组元相似的正常位置,犹如主组元的一部分原子被其它组元的原子所取代似的,但始终保持着主组元的结构类型。

这类结构叫代位固溶体结构。

假设异类原子不是统计式的分布,而是按一定的顺序分布,这类结构叫有序固溶体结构。

(2)异类原子分布在主组元原子间的空隙中,这种结构属于间隙固溶体结构。

(3)各组元原子按一定比例和一定顺序,共同组成一个新的,不同于其任一组元的典型结构,这种结构属于金属化合物类型。

3.空间点阵:在空间由点排列成的无限阵列,其中每一个点都和其他所有的点具有相同的环境,这种点的排列就称为空间点阵。

4.单胞:我们在空间点阵中选取一个能够点阵特点的最小单元来作为分析代表,一般来说,只要取最邻近的这样八个阵点,以其为顶点能够构成一个体积最小,对称性最高的平行六面体,这个六面体构成了点阵的基元,称之为单胞,有时也叫基胞。

5.点阵参数:选取单胞的一个顶点作为参考坐标原点,并以通过此顶点的三个棱边分别作为坐标的三个轴X、Y、Z,,称之为晶轴。

晶轴分别以单胞各相应边的长度a、b、c作为量度单位。

对一定的点阵来说,各晶轴之间的夹角为定值,通常以α、β、γ本别表示YZ、ZX、XY轴间的夹角。

这六个量就是表征点阵特征的六个参量,通常叫点阵参数,前三个有时叫点阵常数。

6.七大晶系:三斜、单斜、正交、六方、棱方、正方、立方。

7.复合单胞:单胞中假设除了八个顶角上的阵点外,还在其它位置,如面心、体心或棱的中心等处也分布着阵点,那么这种单胞就叫复合单胞。

复合单胞沿三个晶轴在空间重复平移而组成的点阵称复合点阵。

8.布喇菲点阵:布喇菲证明除了7种简单单胞外,还可以有7种不同的复合单胞,即共有14种点阵,这14种点阵,无论是简单的或复合的,都可以看做是单胞中的阵点沿三个晶轴,分别以三个点阵常数为单位矢量做平移运动而组成的,称布喇菲点阵。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

金属:具有正的电阻温度特性的物质。

晶体:物质的质点(原子、分子或离子)在三维空间作有规则的周期性重复排列的物质叫晶体。

原子排列规律不同,性能也不同。

点阵或晶格:从理想晶体的原子堆垛模型可看出,是有规律的,为清楚空间排列规律性,人们将实际质点(原子、分子或离子)忽略,抽象成纯粹几何点,称为阵点或节点。

为便于观察,用许多平行线将阵点连接起来,构成三维空间格架。

这种用以描述晶体中原子(分子或离子)排列规律的空间格架称为空间点阵,简称点阵或晶格。

晶胞:由于排列的周期性,简便起见,可从晶格中取出一个能够完全反映晶格特征的最小几何单元来分析原子排列的规律性。

这个用以完全反映晶格特征最小的几何单元称为晶胞。

多晶型转变或同素异构转变:当外部条件(如温度和压强)改变时,金属内部由一种晶体结构向另一种晶体结构的转变称为多晶型转变或同素异构转变。

空位:某一温度下某一瞬间,总有一些原子具有足够能量克服周围原子约束,脱离原平能位置迁移到别处,在原位置上出现空节点,形成空位。

到晶体表面,称为肖脱基空位;到点阵间隙中,称弗兰克尔空位;位错:它是晶体中某处有一列或若干列原子发生了有规律的错排现象,使长达几百至几万个原子间距、宽约几个原子间距范围内原子离开平衡位置,发生有规律的错动,所以叫做位错。

基本类型有两种:即刃型位错和螺型位错。

晶界:晶体结构相同但位相不同的晶粒之间的界面称为晶粒间界,简称晶界。

小角度晶界位相差小于10°,基本上由位错组成。

大角度晶界相邻晶粒位相差大于10°,晶界很薄。

亚晶界和亚结构:分别泛指尺寸比晶粒更小的所有细微组织及分界面。

柯氏气团:刃型位错的应力场会与间隙及置换原子发生弹性交互作用,吸引这些原子向位错区偏聚。

小的间隙原子如C、N 等,往往钻入位错管道;而大置换原子,原来处的应力场是受压的,正位错下部受拉,由相互吸引作用,富集在受拉区域;小的置换原子原来受拉,易于聚集在受压区域,即位错的上部。

使畸变能降低,同时使位错难以运动,造成金属的强化。

这就是利用溶质原子与位错交互作用的柯垂尔气团--柯氏气团。

用以解释钢的脆化、强度提高等宏观现象。

元:组成合金的最基本的独立的物质,简称元相:合金中结构相同、成分和性能均一并以界面互相分开的组成部分,称之为相。

组织:由于形成条件不同,形成具有不同形状、大小数量及分布的相相互结合而成的综合体。

固溶体:组元以不同比例混合后形成的固相晶体结构与组成合金的某一组元相同,这种相称固溶体化合物:是构成的组元相互作用,生成不同与任何组元晶体结构的新物质相图:是表示合金系中合金的状态与温度、压力与成分之间关系的一种图解。

又称状态图或平衡图。

匀晶转变:从液相结晶出单相的固溶体,这种结晶过程称匀晶转变异分结晶:固溶体结晶过程中,结晶出的固相与母相成分不同,这种结晶也称为选择结晶。

同分结晶:纯金属结晶时,所结晶出的晶体与母相化学成分完全一样。

枝晶偏析:生成固体的成分不均匀-偏析,快速冷却时在一个晶粒内部先后结晶的成分有差别,所以称为晶内偏析,金属的晶体往往以树枝晶方式生长,偏析的分布表现为不同层次的枝晶成分有差别,因此又称枝晶偏析区域偏析:固溶体不平衡结晶时造成的大范围内化学成分不均匀的现象叫做宏观偏析或区域偏析。

伪共晶:这种非共晶成分合金所得到的共晶组织称伪共晶。

成分过冷:在正温度梯度下,纯金属的生长方式为平面长大;负温度梯度时,树枝状生长。

而固溶体结晶时,即使温度梯度是正值,也经常出现树枝状生长和胞状生长的情况,这是由于凝固过程中,成分是在不断的变化,溶质元素重新分配,在液固界面处形成溶质浓度梯度,液体和固体的成分均不能达到平衡状态,即产生了所谓成分过冷的现象。

离异共晶:在先共晶相数量较多而共晶组织甚少的情况下,有时共晶组织中与先共晶相相同那一相会依附于先共晶相上生长,剩余另一相单独存在晶界上,使共晶组织特征消失,这种两相分离的共晶称为离异共晶。

铁素体:碳溶于α-Fe 铁中的间隙固溶体叫铁素体奥氏体:碳溶于γ- 铁中的间隙固溶体渗碳体:铁与碳可以形成间隙化合物Fe3C,称为渗碳体,贝氏体:过饱和的α相和Fe3C 的机械混合物。

珠光体:由α和Fe3C组成的机械混合物马氏体:是C在α-Fe中的过饱和间隙固溶体回火:是将淬火钢加热到低于临界点A1某一温度,保温一定时间后,以适当方式冷却到室温的一种热处理工艺。

回火屈氏体:由针状α 相和与其无共格关系的细小粒状和片状渗碳体组成的机械很合物,叫做回火屈氏体。

回火马氏体:高碳钢在350℃以下回火时,马氏体分解后形成α相和弥散的ε-FexC 组成的复合组织称为回火马氏体。

奥氏体的形成过程一、奥氏体的形核奥氏体晶核主要在α和Fe3C的相界面形核,其次在珠光体团的界面上、α亚结构( 嵌镶块) 界面形核。

这样能满足:(1)能量起伏;(2)结构起伏;(3)成分起伏三个条件。

二、奥氏体的长大奥氏体的长大是依靠原子扩散完成的,原子扩散包括:(1)Fe原子自扩散完成晶格改组;(2)C原子扩散使奥氏体晶核向α 相和Fe3C相两侧推移并长大。

三、剩余渗碳体的溶解α→γ结束后,α消失,但还有相当数量Fe3C尚未溶解,这些Fe3C 被称为残余渗碳体。

继续保温或继续加热时,随碳在γ 中的继续扩散,剩余的渗碳体不断向奥氏体中溶解。

四、奥氏体的均匀化Fe3C刚刚溶入γ 后,γ 浓度仍然不均匀,在原Fe3C的地方C 浓度高,而原来α的地方C 浓度低,只有经过长时间保温或继续加热,才能使碳原子充分扩散获得均匀的奥氏体。

滑移:滑移是晶体的两部分之间沿着一定的晶面(滑移面)和一定的晶向(滑移方向)而发生的一种相对滑动,滑移的本质是的位错运动。

孪生:切应力作用下,晶体的一部分相对于另一部分沿一定晶面(孪生面)与晶向(孪生方向)产生一定角度的均匀切变过程,叫做孪生。

孪生与滑移变形过程比较滑移系:一个滑移面和此面上的一个滑移方向组成一个滑移系。

变形织构:塑性变形过程中,随着形变程度的增加,各个晶粒的滑移面和滑移方向都要向主形变方向转动,逐渐使多晶体中原取向互不相同的各个晶粒在空间取向上呈现一定程度的规律性,这一现象称为择优取向;择优取向后的晶体结构称为“织构”,这种由变形引起的织构称为变形织构。

丝织构:在拉拔时形成,各个晶粒的某一晶向转向与拉伸方向平行,与线轴平行的晶向用<uvw>表示。

板织构:轧制时,使晶粒的某一晶向趋向于与轧制方向平行,某一晶面趋向于与轧制面平行,以与轧面平行的晶面{hkl} 和与轧向平行的晶向<uvw> 表示,记为{hkl}<uvw>。

回复:是指冷塑性变形金属再加热时,在光学显微组织改变以前(再结晶晶核形成以前)所产生的某些亚结构和性能的变化过程。

再结晶:冷变形金属加热到一定温度之后,在原来形组织中重新产生无畸变新晶核,而性能也发生变化,并恢复到完全软化状态,这个过程称为再结晶回复机理1、低温回复主要涉及点缺陷的运动。

空位或间隙原子移动到晶界或位错处消失,空位与间隙原子的相遇复合,空位集结形成空位对或空位片,使点缺陷密度大大下降。

对点缺陷敏感的电阻率此时发生明显下降。

?2、中温回复随温度升高,原子活动能力增强,位错可以在滑移面上滑移或交滑移(被激活),使异号位错相遇而相消,位错密度下降,位错缠结内部重新排列组合,使亚晶规整化。

3、高温回复原子活动能力进一步增强,位错除滑移外,还可攀移。

主要机制是多边化。

过冷奥氏体:临界点以下存在且不稳定的奥氏体,叫做过冷奥氏体。

退火:是将钢加热到临界点Ac1 以上或以下温度,经保温后缓慢冷却下来(一般为随炉冷却或埋入石灰中),以获得接近平衡状态组织的热处理工艺。

正火:将钢加热到Ac3或Accm以上30~50℃,保温以后在空气中冷却得到珠光体类型组织的热处理工艺。

淬火:是指将钢加热到临界温度以上,保温后以大于临界冷却速度的冷速冷却,使奥氏体转变为马氏体(或下贝氏体)的热处理工艺。

加热温度亚共析钢淬火加热温度为Ac3以上30~50℃;共析、过共析钢为Ac1以上30~50℃。

淬火方法(一)、单液淬火法将加热至奥氏体状态的工件置于某一种淬火介质连续冷却到室温。

(二)、双液淬火法将加热至奥氏体状态的工件先在较强冷却能力介质中冷却接近Ms 温度(300℃)左右,再在另一种冷却能力较弱的介质中冷却,直至完成马氏体转变。

(三)、分级淬火法将加热至奥氏体状态的工件在温度略高于钢的Ms点的盐浴或碱浴炉中保温,工件内外温度均匀后,然后取出空冷,完成马氏体转变。

(四)、等温淬火将加热至奥氏体状态的工件在温度高于Ms盐浴中,等温停留较长时间,使之转变为下贝氏体组织,取出空冷。

淬透性:淬透性是钢的固有属性,是指钢在淬火时获得马氏体的能力。

淬透性与淬硬性淬硬性也叫可硬性,它是指钢在正常淬火条件下,所能够达到的最高硬度。

淬硬性主要与钢中的碳含量有关,更确切地说,它取决于淬火加热时固溶于奥氏体中的碳含量。

奥氏体中固溶的碳量愈高,淬火后马氏体的硬度也越高。

可见,淬硬性与淬透性的含义是不同的。

淬硬性高的钢,其淬透性不一定高,而淬硬性低的钢,其淬透性也不一定低.化学热处理:是将钢件置于一定温度的活性介质中保温,使一种或几种元素渗入其表面,改变表面化学成分和组织,达到改进表面性能,满足技术要求的热处理过程。

对零件表面和心部的不同要求的零件,采用化学热处理满足性能要求。

气体渗碳原理∙渗碳介质的分解CH4+CO2→2CO+2H2CH4+H2O→CO+3H22CO+H2→2 [C]+H2O+1/2O2CO+H2O→CO2+H2(水煤气反应)原料气组分稳定情况下,只要控制气氛中微量组分CO2、H2O、CH4、O2 的任何一个含量,便可控制上述反应达到其一个平衡点;从而实现控制气氛碳势的目的。

通常,生产中使用露点仪来控制H2O含量,或用红外线仪控制CO2 含量;70年代新发展起来的氧探头法则控制O2含量。

∙碳原子的吸收要使反应生成的活性碳原于被工件的表面吸收,必须满足以下条件:∙工件表面应清洁,无外来阻挡,为此工件入炉前务必清理表面;∙活性碳原于被吸收后,剩下的CO2、H2 或H2O需及时被驱散,否则反应将无法继续进行,这就要求炉气有良好的循环;∙控制好分解和吸收两个阶段的速度,使之恰当配合,如供给碳原子的速度(分解速度)大于吸收的速度,工件上便会出现积碳,这会在一定程度上影响吸收速度。

∙碳原子的扩散碳原子由表面向心部的扩散是渗碳得以进行并获得一定深度渗层所必需的。

扩散的驱动力是表面与心部间碳的浓度梯度。

渗碳后缓冷组织自表面至心部依次为:过共析组织(P +碳化物)、共析组织(P)、亚共析组织(P+α)的过渡层,直至心部的原始组织。

两次淬火法两次淬火法工件渗碳冷却后两次加热淬火,即为两次淬火法。

相关文档
最新文档