2017成都市高新区九年级上期末数学试题与答案
(2021年整理)最新2016-2017学年人教版九年级上册数学期末测试卷及答案
(完整)最新2016-2017学年人教版九年级上册数学期末测试卷及答案(完整)最新2016-2017学年人教版九年级上册数学期末测试卷及答案编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整)最新2016-2017学年人教版九年级上册数学期末测试卷及答案)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整)最新2016-2017学年人教版九年级上册数学期末测试卷及答案的全部内容。
第1 页共6 页2016—-—2017学年度九年级上册数学期末试卷(时间120分钟,满分120分)一、选择题(每小题3分,共30分)1.下列图形中,既是中心对称图形又是轴对称图形的是( )2.将函数y=2x2的图象向左平移1个单位,再向上平移3个单位,可得到的抛物线是( )A.y=2(x-1)2-3 B.y=2(x-1)2+3C.y=2(x+1)2-3 D.y=2(x+1)2+33.如图,将Rt△ABC(其中∠B=35°,∠C=90°)绕点A按顺时针方向旋转到△AB1C1的位置,使得点C、A、B1在同一条直线上,那么旋转角等于 ( )A.55° B。
70° C。
125° D。
145°4.一条排水管的截面如下左图所示,已知排水管的半径OB=10,水面宽AB=16,则截面圆心O到水面的距离OC是( )A。
4 5.一个半径为2cm的圆内接正六边形A.24cm2 B.63 cm2 C .6.如图,若AB是⊙O的直径,CD是A.35° B.45° C.55°7.函数mxxy+--=822的图象上有两点B。
人教版2016-2017学年第一学期九年级数学(上册 )期末测试卷及答案
2016-2017学年九年级(上)期末数学试卷一、选择题(本大题共8个小题,每小题3分,满分24分.每小题只有一个正确选项,答案写在答题卷上)1.﹣的倒数是()A.B.C.﹣D.﹣2.如图,由四个正方体组成的图形,观察这个图形,不能得到的平面图形是()A.B.C.D.3.函数中,自变量x的取值范围是()A.x>1 B.x≥1 C.x>﹣2 D.x≥﹣24.现有四个外观完全一样的粽子,其中有且只有一个有蛋黄.若从中一次随机取出两个,则这两个粽子都没有蛋黄的概率是()A.B.C.D.5.如图,为估算某河的宽度,在河岸边选定一个目标点A,在对岸取点B、C,D,使得AB⊥BC,CD⊥BC,点E在BC上,并且点A、E、D在同一条直线上,若测得BE=20m,EC=10m,CD=20m,则河的宽度AB等于()A.60m B.40m C.30m D.20m6.如图,将△ABC沿BC方向平移得到△DCE,连接AD,下列条件能够判定四边形ABCD为菱形的是()A.AB=BC B.AC=BC C.∠B=60°D.∠ACB=60°7.二次函数y=ax2+bx+c的图象如图所示,对于下列结论:①a<0;②b<0;③c>0;④b+2a=0;⑤a+b+c<0.其中正确的个数是()A.1个B.2个C.3个D.4个8.如图,Rt△ABC的顶点B在反比例函数的图象上,AC边在x轴上,已知∠ACB=90°,∠A=30°,BC=4,则图中阴影部分的面积是()A.12 B. C.D.二、填空题(本大题共6个小题,每小题3分,满分18分.答案写在答题卷上)9.一元二次方程2x2﹣3x+1=0的解为.10.点(2,y1),(3,y2)在函数y=﹣的图象上,则y1y2(填“>”或“<”或“=”).11.若一个三角形的各边长扩大为原来的5倍,则此三角形的周长扩大为原来的倍.12.如图,在Rt△ABC中,CD是斜边AB上的中线,已知CD=2,AC=3,则tanB的值是.13.如图,O是矩形ABCD的对角线AC的中点,M是AD的中点.若AB=5,AD=12,则四边形ABOM的周长为.14.观察下列各数,它们是按一定规律排列的,则第n个数是.,,,,,…三、解答题(本大题共9个小题,满分58分.答案写在答题卷上)15.计算:(1﹣)0+|﹣|﹣2cos45°+()﹣1.16.如图,在△ABC中,点D、E分别是AB和AC上的点,DE∥BC,AD=3BD,S△ABC=48,求S四边形BCED.17.如图,已知△ABC,以点O为位似中心画一个△DEF,使它与△ABC位似,且相似比为2.18.如图,小明在教学楼上的窗口A看地面上的B、C两个花坛,测得俯角∠EAB=30°,俯角∠EAC=45°.已知教学楼基点D与点C、B在同一条直线上,且B、C两花坛之间的距离为6m.求窗口A到地面的高度AD.(结果保留根号)19.在不透明的袋子中有四张标着数字1,2,3,4的卡片,小明、小华两人按照各自的规则玩抽卡片游戏.小明画出树状图如图所示:(1)根据小明画出的树形图分析,他的游戏规则是,随机抽出一张卡片后(填“放回”或“不放回”),再随机抽出一张卡片;(2)根据小华的游戏规则,表格中①表示的有序数对为;(3)规定两次抽到的数字之和为奇数的获胜,你认为谁获胜的可能性大?为什么?20.如图,长100m、宽90m的长方形绿地上修建宽度相同的道路,6块绿地的面积共8448m2,求道路的宽.21.如图,在等腰Rt△ABC中,∠C=90°,正方形DEFG的顶点D在边AC上,点E、F在边AB 上,点G在边BC上.(1)求证:△ADE≌△BGF;(2)若正方形DEFG的面积为16cm2,求AC的长.22.如图所示,等边三角形ABC放置在平面直角坐标系中,已知A(0,0)、B(6,0),反比例函数的图象经过点C.(1)求点C的坐标及反比例函数的解析式.(2)将等边△ABC向上平移n个单位,使点B恰好落在双曲线上,求n的值.23.如图,已知直线y=kx﹣6与抛物线y=ax2+bx+c相交于A,B两点,且点A(1,﹣4)为抛物线的顶点,点B在x轴上.直线AB交y轴于点D,抛物线交y轴于点C.(1)求直线AB的解析式;(2)求抛物线的解析式;(3)在y轴上是否存在点Q,使△ABQ为直角三角形?若存在,请求出点Q的坐标;若不存在,请说明理由.参考答案与试题解析一、选择题(本大题共8个小题,每小题3分,满分24分.每小题只有一个正确选项,答案写在答题卷上)1.﹣的倒数是()A.B.C.﹣D.﹣【考点】倒数.【分析】根据倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.【解答】解:∵(﹣)×(﹣)=1,∴﹣的倒数是﹣.故选D.【点评】本题主要考查倒数的定义,要求熟练掌握.需要注意的是:倒数的性质:负数的倒数还是负数,正数的倒数是正数,0没有倒数.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.2.如图,由四个正方体组成的图形,观察这个图形,不能得到的平面图形是()A.B.C.D.【考点】简单组合体的三视图.【分析】分别找出这个图形的主视图、俯视图、左视图,然后结合选项选出正确答案即可.【解答】解:该图形的主视图为:,俯视图为:,左视图为:,A、该图形为原图形的主视图,本选项正确;B、该图形为原图形的俯视图,本选项正确;C、该图形为原图形的左视图,本选项正确;D、观察原图形,不能得到此平面图形,故本选项错误;故选D.【点评】本题考查了简单组合体的三视图,要求同学们掌握主视图是从物体的正面看得到的视图,俯视图是从物体的上面看得到的视图,左视图是从物体的左面看得到的视图.3.函数中,自变量x的取值范围是()A.x>1 B.x≥1 C.x>﹣2 D.x≥﹣2【考点】函数自变量的取值范围.【分析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x的范围.【解答】解:根据题意得:x﹣1>0,解得:x>1.故选A.【点评】考查了函数自变量的取值范围,函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.4.现有四个外观完全一样的粽子,其中有且只有一个有蛋黄.若从中一次随机取出两个,则这两个粽子都没有蛋黄的概率是()A.B.C.D.【考点】列表法与树状图法.【分析】根据概率的求法,先画出树状图,求出所有出现的情况,即可求出答案.【解答】解:用A表示没蛋黄,B表示有蛋黄的,画树状图如下:∵一共有12种情况,两个粽子都没有蛋黄的有6种情况,∴则这两个粽子都没有蛋黄的概率是=故选B.【点评】此题主要考查了画树状图求概率,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.5.如图,为估算某河的宽度,在河岸边选定一个目标点A,在对岸取点B、C,D,使得AB⊥BC,CD⊥BC,点E在BC上,并且点A、E、D在同一条直线上,若测得BE=20m,EC=10m,CD=20m,则河的宽度AB等于()A.60m B.40m C.30m D.20m【考点】相似三角形的应用.【分析】由两角对应相等可得△BAE∽△CDE,利用对应边成比例可得两岸间的大致距离AB.【解答】解:∵AB⊥BC,CD⊥BC,∴△BAE∽△CDE,∴=,∵BE=20m,CE=10m,CD=20m,∴,解得:AB=40,故选B.【点评】考查相似三角形的应用;用到的知识点为:两角对应相等的两三角形相似;相似三角形的对应边成比例.6.如图,将△ABC沿BC方向平移得到△DCE,连接AD,下列条件能够判定四边形ABCD为菱形的是()A.AB=BC B.AC=BC C.∠B=60°D.∠ACB=60°【考点】菱形的判定;平移的性质.【分析】首先根据平移的性质得出AB平行且等于CD,得出四边形ABCD为平行四边形,根据邻边相等的平行四边形是菱形可得添加条件AB=BC即可.【解答】解:∵将△ABC沿BC方向平移得到△DCE,∴AB平行且等于CD,∴四边形ABCD为平行四边形,当AB=BC时,平行四边形ACED是菱形.故选:A.【点评】此题主要考查了平移的性质和平行四边形的判定和菱形的判定,得出AB平行且等于CD是解题关键.7.二次函数y=ax2+bx+c的图象如图所示,对于下列结论:①a<0;②b<0;③c>0;④b+2a=0;⑤a+b+c<0.其中正确的个数是()A.1个B.2个C.3个D.4个【考点】二次函数图象与系数的关系.【分析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.【解答】解:如图,①抛物线开口方向向下,则a<0.故①正确;②∵对称轴x=﹣=1,∴b=﹣2a>0,即b>0.故②错误;③∵抛物线与y轴交于正半轴,∴c>0.故③正确;④∵对称轴x=﹣=1,∴b+2a=0.故④正确;⑤根据图示知,当x=1时,y>0,即a+b+c>0.故⑤错误.综上所述,正确的说法是①③④,共有3个.故选C.【点评】本题考查了二次函数图象与系数的关系.二次函数y=ax2+bx+c系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点抛物线与x轴交点的个数确定.8.如图,Rt△ABC的顶点B在反比例函数的图象上,AC边在x轴上,已知∠ACB=90°,∠A=30°,BC=4,则图中阴影部分的面积是()A.12 B. C.D.【考点】反比例函数系数k的几何意义;含30度角的直角三角形;勾股定理.【分析】先由∠ACB=90°,BC=4,得出B点纵坐标为4,根据点B在反比例函数的图象上,求出B点坐标为(3,4),则OC=3,再解Rt△ABC,得出AC=4,则OA=4﹣3.设AB与y 轴交于点D,由OD∥BC,根据平行线分线段成比例定理得出=,求得OD=4﹣,最后根据梯形的面积公式即可求出阴影部分的面积.【解答】解:∵∠ACB=90°,BC=4,∴B点纵坐标为4,∵点B在反比例函数的图象上,∴当y=4时,x=3,即B点坐标为(3,4),∴OC=3.在Rt△ABC中,∠ACB=90°,∠A=30°,BC=4,∴AB=2BC=8,AC=BC=4,OA=AC﹣OC=4﹣3.设AB与y轴交于点D.∵OD∥BC,∴=,即=,解得OD=4﹣,∴阴影部分的面积是:(OD+BC)•OC=(4﹣+4)×3=12﹣.故选:D.【点评】本题考查了反比例函数图象上点的坐标特征,含30度角的直角三角形的性质,平行线分线段成比例定理,梯形的面积公式,难度适中,求出B点坐标及OD的长度是解题的关键.二、填空题(本大题共6个小题,每小题3分,满分18分.答案写在答题卷上)9.一元二次方程2x2﹣3x+1=0的解为x1=,x2=1.【考点】解一元二次方程-因式分解法.【分析】分解因式后即可得出两个一元一次方程,求出方程的解即可.【解答】解:2x2﹣3x+1=0,(2x﹣1)(x﹣1)=0,2x﹣1=0,x﹣1=0,x1=,x2=1,故答案为:x1=,x2=1【点评】本题考查了解一元一次方程和解一元二次方程的应用,关键是能把一元二次方程转化成解一元一次方程.10.点(2,y1),(3,y2)在函数y=﹣的图象上,则y1<y2(填“>”或“<”或“=”).【考点】反比例函数图象上点的坐标特征.【分析】根据反比例函数图象所经过的象限与函数图象的增减性进行填空.【解答】解:∵函数y=﹣中的﹣2<0,∴函数y=﹣的图象经过第二、四象限,且在每一象限内,y随x的增大而增大,∴点(2,y1),(3,y2)同属于第四象限,∵2<3,∴y1<y2.故填:<.【点评】本题主要考查反比例函数图象上点的坐标特征.解答该题时,利用了反比例函数图象的增减性.当然了,解题时也可以把已知两点的坐标分别代入函数解析式,求得相应的y值后,再来比较它们的大小.11.若一个三角形的各边长扩大为原来的5倍,则此三角形的周长扩大为原来的5倍.【考点】相似图形.【分析】由题意一个三角形的各边长扩大为原来的5倍,根据相似三角形的性质及对应边长成比例来求解.【解答】解:∵一个三角形的各边长扩大为原来的5倍,∴扩大后的三角形与原三角形相似,∵相似三角形的周长的比等于相似比,∴这个三角形的周长扩大为原来的5倍,故答案为:5.【点评】本题考查了相似三角形的性质:相似三角形的周长的比等于相似比.12.如图,在Rt△ABC中,CD是斜边AB上的中线,已知CD=2,AC=3,则tanB的值是.【考点】解直角三角形.【分析】根据直角三角形斜边上的中线等于斜边的一半求出AB的长度,再利用勾股定理求出BC 的长度,然后根据锐角的正切等于对边比邻边解答.【解答】解:∵CD是斜边AB上的中线,CD=2,∴AB=2CD=4,根据勾股定理,BC==,tanB===.故答案为:.【点评】本题考查了锐角三角函数的定义,直角三角形斜边上的中线等于斜边的一半的性质,勾股定理的应用,在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边应熟练掌握.13.如图,O是矩形ABCD的对角线AC的中点,M是AD的中点.若AB=5,AD=12,则四边形ABOM的周长为20.【考点】矩形的性质;三角形中位线定理.【专题】几何图形问题.【分析】根据题意可知OM是△ADC的中位线,所以OM的长可求;根据勾股定理可求出AC的长,利用直角三角形斜边上的中线等于斜边的一半可求出BO的长,进而求出四边形ABOM的周长.【解答】解:∵O是矩形ABCD的对角线AC的中点,M是AD的中点,∴OM=CD=AB=2.5,∵AB=5,AD=12,∴AC==13,∵O是矩形ABCD的对角线AC的中点,∴BO=AC=6.5,∴四边形ABOM的周长为AB+AM+BO+OM=5+6+6.5+2.5=20,故答案为:20.【点评】本题考查了矩形的性质、三角形的中位线的性质以及直角三角形斜边上的中线等于斜边的一半这一性质,题目的综合性很好,难度不大.14.观察下列各数,它们是按一定规律排列的,则第n个数是.,,,,,…【考点】规律型:数字的变化类.【专题】规律型.【分析】观察不难发现,分母为2的指数次幂,分子比分母小1,根据此规律解答即可.【解答】解:∵2=21,4=22,8=23,16=24,32=25,…∴第n个数的分母是2n,又∵分子都比相应的分母小1,∴第n个数的分子为2n﹣1,∴第n个数是.故答案为:.【点评】本题是对数字变化规律的考查,熟练掌握2的指数次幂是解题的关键.三、解答题(本大题共9个小题,满分58分.答案写在答题卷上)15.计算:(1﹣)0+|﹣|﹣2cos45°+()﹣1.【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【专题】计算题.【分析】分别进行零指数幂、绝对值、特殊角的三角函数值、负整数指数幂等运算,然后按照实数的运算法则计算即可.【解答】解:原式=1+﹣2×+4=5.【点评】本题考查了实数的运算,涉及了零指数幂、绝对值、负整数指数幂及特殊角的三角函数值,属于基础题,注意各部分的运算法则.16.如图,在△ABC中,点D、E分别是AB和AC上的点,DE∥BC,AD=3BD,S△ABC=48,求S四边形BCED.【考点】相似三角形的判定与性质.【分析】根据DE∥BC,于是得到△ADE∽△ABC,根据相似三角形的性质得到=()2,于是求得S△ADE=27,即可得到结论.【解答】解:∵DE∥BC,∴△ADE∽△ABC,∴=()2,∵AD=3BD,∴=,∴=,∵S△ABC=48,∴S△ADE=27,∴S四边形BCED=S△ABC﹣S△ADE=48﹣27=21.【点评】此题考查了相似三角形的判定与性质.此题难度不大,注意掌握相似三角形面积的比等于相似比的平方定理的应用是解此题的关键.17.如图,已知△ABC,以点O为位似中心画一个△DEF,使它与△ABC位似,且相似比为2.【考点】作图-位似变换.【专题】作图题.【分析】延长OA到A′,使AA′=OA,则点A′为点A的对应点,用同样方法作出B、C的对应点B′、C′,则△A′B′C′与△ABC位似,且相似比为2.【解答】解:如图,△A′B′C′为所作.【点评】本题考查了作图﹣位似变换:画位似图形的一般步骤为:先确定位似中心;再分别连接并延长位似中心和能代表原图的关键点;然后根据位似比,确定能代表所作的位似图形的关键点;最后顺次连接上述各点,得到放大或缩小的图形.18.如图,小明在教学楼上的窗口A看地面上的B、C两个花坛,测得俯角∠EAB=30°,俯角∠EAC=45°.已知教学楼基点D与点C、B在同一条直线上,且B、C两花坛之间的距离为6m.求窗口A到地面的高度AD.(结果保留根号)【考点】解直角三角形的应用-仰角俯角问题.【分析】设窗口A到地面的高度AD为xm,根据题意在直角三角形ABD和直角三角形ACD中,利用锐角三角函数用含x的代数式分别表示线段BD和线段CD的长,再根据BD﹣CD=BC=6列出方程,解方程即可.【解答】解:设窗口A到地面的高度AD为xm.由题意得:∠ABC=30°,∠ACD=45°,BC=6m.∵在Rt△ABD中,BD==xm,在Rt△ADC中,CD==xm,∵BD﹣CD=BC=6,∴x﹣x=6,∴x=3+3.答:窗口A到地面的高度AD为(3+3)米.【点评】本题考查了解直角三角形的应用,解题的关键是从实际问题中整理出直角三角形并选择合适的边角关系求解.19.在不透明的袋子中有四张标着数字1,2,3,4的卡片,小明、小华两人按照各自的规则玩抽卡片游戏.小明画出树状图如图所示:(1)根据小明画出的树形图分析,他的游戏规则是,随机抽出一张卡片后不放回(填“放回”或“不放回”),再随机抽出一张卡片;(2)根据小华的游戏规则,表格中①表示的有序数对为(3,2);(3)规定两次抽到的数字之和为奇数的获胜,你认为谁获胜的可能性大?为什么?【考点】列表法与树状图法.【分析】(1)根据小明画出的树形图知数字1在第一次中出现,但没有在第二次中出现可以判断;(2)根据横坐标表示第一次,纵坐标表示第二次可以得到答案;(3)根据树状图和统计表分别求得其获胜的概率,比较后即可得到答案.【解答】解:(1)观察树状图知:第一次摸出的数字没有在第二次中出现,∴小明的实验是一个不放回实验,(2)观察表格发现其横坐标表示第一次,纵坐标表示第二次,(3)理由如下:∵根据小明的游戏规则,共有12种等可能的结果,数字之和为奇数的有8种,∴概率为:=;∵根据小华的游戏规则,共有16种等可能的结果,数字之和为奇数的有8种,∴概率为:=,∵>∴小明获胜的可能性大.故答案为:不放回;(3,2).【点评】本题考查了列表法和树状图法,利用列表法或树状图法展示某一随机事件中所有等可能出现的结果数n,再找出其中某一事件所出现的可能数m,然后根据概率的定义可计算出这个事件的概率=.20.如图,长100m、宽90m的长方形绿地上修建宽度相同的道路,6块绿地的面积共8448m2,求道路的宽.【考点】一元二次方程的应用.【专题】几何图形问题.【分析】设道路的宽为x米,则绿地的面积就为(100﹣2x)(90﹣x),就有(100﹣2x)(90﹣x)=8448建立方程求出其解即可.【解答】解:设道路的宽为x米,由题意,得(100﹣2x)(90﹣x)=8448,解得:x1=2,x2=138(不符合题意,舍去)∴道路的宽为2米.【点评】本题考查了列一元二次方程解实际问题的运用,矩形面积公式的运用,一元二次方程的解法的运用,解答时根据绿地的面积为8448建立方程是关键.21.如图,在等腰Rt△ABC中,∠C=90°,正方形DEFG的顶点D在边AC上,点E、F在边AB 上,点G在边BC上.(1)求证:△ADE≌△BGF;(2)若正方形DEFG的面积为16cm2,求AC的长.【考点】相似三角形的判定与性质;全等三角形的判定与性质;等腰直角三角形.【分析】(1)先根据等腰直角三角形的性质得出∠B=∠A=45°,再根据四边形DEFG是正方形可得出∠BFG=∠AED,故可得出∠BGF=∠ADE=45°,GF=ED,由全等三角形的判定定理即可得出结论;(2)过点C作CG⊥AB于点G,由正方形DEFG的面积为16cm2可求出其边长,故可得出AB的长,在Rt△ADE中,根据勾股定理可求出AD的长,再由相似三角形的判定定理得出△ADE∽△ACG,由相似三角形的对应边成比例即可求出AC的长.【解答】(1)证明:∵△ABC是等腰直角三角形,∠C=90°,∴∠B=∠A=45°,∵四边形DEFG是正方形,∴∠BFG=∠AED=90°,故可得出∠BGF=∠ADE=45°,GF=ED,∵在△ADE与△BGF中,,∴△ADE≌△BGF(ASA);(2)解:过点C作CG⊥AB于点H,∵正方形DEFG的面积为16cm2,∴DE=AE=4cm,∴AB=3DE=12cm,∵△ABC是等腰直角三角形,CH⊥AB,∴AH=AB=×12=6cm,在Rt△ADE中,∵DE=AE=4cm,∴AD===4cm,∵CH⊥AB,DE⊥AB,∴CH∥DE,∴△ADE∽△ACH,∴=,=,解得AC=6cm.【点评】本题考查的是相似三角形的判定与性质,熟知相似三角形的对应边成比例是解答此题的关键.22.如图所示,等边三角形ABC放置在平面直角坐标系中,已知A(0,0)、B(6,0),反比例函数的图象经过点C.(1)求点C的坐标及反比例函数的解析式.(2)将等边△ABC向上平移n个单位,使点B恰好落在双曲线上,求n的值.【考点】反比例函数综合题.【分析】(1)过C点作CD⊥x轴,垂足为D,设反比例函数的解析式为y=,根据等边三角形的知识求出AC和CD的长度,即可求出C点的坐标,把C点坐标代入反比例函数解析式求出k的值.(2)若等边△ABC向上平移n个单位,使点B恰好落在双曲线上,则此时B点的横坐标即为6,求出纵坐标,即可求出n的值.【解答】解:(1)过C点作CD⊥x轴,垂足为D,设反比例函数的解析式为y=,∵△ABC是等边三角形,∴AC=AB=6,∠CAB=60°,∴AD=3,CD=sin60°×AC=×6=3,∴点C坐标为(3,3),∵反比例函数的图象经过点C,∴k=9,∴反比例函数的解析式y=;(2)若等边△ABC向上平移n个单位,使点B恰好落在双曲线上,则此时B点的横坐标为6,即纵坐标y==,也是向上平移n=.【点评】本题主要考查反比例函数的综合题,解答本题的关键是熟练掌握反比例函数的性质以及平移的相关知识,此题难度不大,是中考的常考点.23.如图,已知直线y=kx﹣6与抛物线y=ax2+bx+c相交于A,B两点,且点A(1,﹣4)为抛物线的顶点,点B在x轴上.直线AB交y轴于点D,抛物线交y轴于点C.(1)求直线AB的解析式;(2)求抛物线的解析式;(3)在y轴上是否存在点Q,使△ABQ为直角三角形?若存在,请求出点Q的坐标;若不存在,请说明理由.【考点】二次函数综合题.【分析】(1)把点A坐标代入y=kx﹣6,根据待定系数法即可求得直线AB的解析式;(2)根据直线AB的解析式求出点B的坐标,点A是抛物线的顶点,那么可以将抛物线的解析式设为顶点式,再代入点B的坐标,依据待定系数法即可求解;(3)分别以A、B、Q为直角顶点,分类进行讨论.找出相关的相似三角形,依据对应线段成比例进行求解即可.【解答】解:(1)把A(1,﹣4)代入y=kx﹣6,得k=2,∴直线AB的解析式为y=2x﹣6,(2)∵抛物线的顶点为A(1,﹣4),∴设此抛物线的解析式为y=a(x﹣1)2﹣4,∵点B在直线y=2x﹣6上,且横坐标为0,∴点B的坐标为(3,0),又∵点B在抛物线y=a(x﹣1)2﹣4上,∴a(3﹣1)2﹣4=0,解之得a=1,∴此抛物线的解析式为y=(x﹣1)2﹣4,即y=x2﹣2x﹣3;(3)在y轴上存在点Q,使△ABQ为直角三角形.理由如下:作AE⊥y轴,垂足为点E.又∵点D是直线y=2x﹣6与y轴的交点,点C是抛物线y=x2﹣2x﹣3与y轴的交点∴E(0,﹣4),D(0,﹣6),C(0,﹣3)∴OD=6,OE=4,AE=1,ED=2,OC=3,OB=3,BD=,AD=①如图,当∠Q1AB=90°时,△DAQ1∽△DOB,∴=,即=,∴DQ1=,∴OQ1=6﹣=,即Q1(0,﹣);②如图,当∠Q2BA=90°时,△BOQ2∽△DOB,∴=,即=,∴OQ2=,即Q2(0,);③如图,当∠AQ3B=90°时,则△BOQ3∽△Q3EA,∴=,即=,∴OQ32﹣4OQ3+3=0,∴OQ3=1或3,即Q3(0,﹣1),Q4(0,﹣3).综上,Q点坐标为(0,﹣)或(0,)或(0,﹣1)或(0,﹣3).【点评】本题主要考查了利用待定系数法求函数解析式的方法、直角三角形的判定、相似三角形应用等重点知识.(3)题较为复杂,需要考虑的情况也较多,因此要分类进行讨论.。
四川省成都市高新区统考 2017-2018学年九年级期末数学质量检测试题及答案
2017-2018学年四川省成都市高新区九年级(上)期末数学试卷一、选择题(本大题共10个小题,每小题3分,共30分,每小题均有四个选项,其中只有一项符合题目要求,答案涂在答题卡上)1.(3分)sin30° 的值为()A.B.C.D.2.(3分)下面的几何体中,俯视图为三角形的是()A.B.C.D.3.(3分)2017年10月18 日上午9时,中国共产党第十九次全国代表大会在北京人民大会堂开幕.据统计,在 10月18日9时至10月19日9时期间,新浪微博话题#十九大#阅读量25.3亿,把数据 25.3 亿写成科学记数法正确的是()A.25.3×108B.2.53×108C.2.53×109D.25.3×109 4.(3分)一枚质地均匀的骰子,其六个面上分别标有数字1,2,3,4,5,6,投掷一次,朝上一面的数字是偶数的概率为()A.B.C.D.5.(3分)下列各点中,在反比例函数y=﹣图象上的点是()A.(1,3)B.(3,1)C.(2,)D.(﹣,2)6.(3分)如图,在△ABC中,点D在AB上,BD=2AD,DE∥BC交AC于E,则下列结论不正确的是()A.BC=3DE B. =C.△ADE∽△ABC D.S△ADE =S△ABC7.(3分)二次函数y=x2﹣2x+1与x轴的交点个数为()A.0 个B.1 个C.2 个D.3 个8.(3分)在菱形ABCD中,AE⊥BC于点E,AF⊥CD于点F,且E、F分别为BC、CD的中点,(如图)则∠EAF等于()A.75°B.45°C.60°D.30°9.(3分)如图,在⊙O中,半径OC与弦AB垂直于点D,且AB=8,OC=5,则CD 的长是()A.3 B.2.5 C.2 D.110.(3分)如图,Rt△AOB中,AB⊥OB,且AB=OB=3,设直线x=t截此三角形所得阴影部分的面积为S,则S与t之间的函数关系的图象为下列选项中的()A.B.C.D.二、填空题(本大题共4个小题,每小题3分,共16分,答案写在答题卡上)11.(3分)在某一时刻,测得一根长为1.5m的标杆的影长为3m,同时测得一根旗杆的影长为26m,那么这根旗杆的高度为m.12.(3分)抛物线y=x2+1向右平移一个单位后,得到的新抛物线的解析式为.13.(3分)如图,AB是⊙O的直径,点C、D在⊙O上,连接AC、BC、AD、CD,若∠BAC=50°,则∠ADC的度数等于.14.(3分)双曲线y=与直线y=x交于A、B两点,且A(﹣2,m),则点B 的坐标是.三、解答题(本大题共6个小题,共54分,解答过程写在答题卡上)15.(6分)(1)计算:|﹣1|﹣+2cos30°+()﹣2(2)解方程:(x﹣1)2+2x﹣2=0.16.(6分)已知关于 x的方程3x2+2x﹣m=0有两个不相等的实数根.(1)求 m 的取值范围;(2)若方程的一个根为﹣1,求方程的另一个根.17.(8分)如图,某地标性大厦离小伟家 60m,小伟从自家的窗中眺望大厦,并测得大厦顶部的仰角是45°,而大厦底部的俯角是37°,求该大厦 DC 的高度.(可选用数据:sin 37°≈0.60,cos37°≈0.80,tan 37°≈0.75 )18.(8分)为了了解成都市初中学生“数学核心素养”的掌握情况,教育科学院命题教师赴某校初三年级进行调研,命题教师将随机抽取的部分学生成绩(得分为整数,满分 160 分)分为 5 组:第一组 85~100;第二组100~115;第三组 115~130;第四组 130~145;第五组 145~160,统计后得到如图所示的频数分布直方图(每组含最小值不含最大值)和扇形统计图,观察图形的信息,回答下列问题:(1)本次调查共随机抽取了该年级多少名学生?成绩为第五组的有多少名学生?(2)针对考试成绩情况,现各组分别派出1名代表(分别用 A、B、C、D、E 表示5个小组中选出来的同学),命题教师从这5名同学中随机选出两名同学谈谈做题的感想,请你用列表或画树状图的方法求出所选两名同学刚好来自第一、五组的概率.19.(10分)如图,直线y=﹣x+5与双曲线y=(x>0)相交于A、B两点,与x轴相交于C点,且△BOC的面积是.(1)求反比例函数的表达式及点A的坐标;(2)点E为线段AB上一个动点,且直线OE将△AOB的面积分成1:2的两部分,求点E的坐标.20.(10分)如图所示,P是⊙O外一点,PA是⊙的切线,A是切点,B是⊙O上一点,且PA=PB,连接AO、BO、AB,并延长BO与切线PA相交于点Q.(1)求证:PB是⊙O的切线;(2)求证:AQ•PQ=BQ•OQ;(3)设∠P=α,若tanɑ=,AQ=3,求AB的长.一、填空题(本大题共5个小题,每小题0分,共20分,答案写在答题卡上)21.若2x+y=4,x﹣=1,则4x2﹣y2= .22.如图,AB是⊙O的弦,AB=2,点C是⊙O上的一个动点,且∠ACB=45°.若点M、N分别是AB、BC的中点,则MN长的最大值是.23.如图,矩形ABCD中,BC=2,将矩形ABCD绕点D顺时针旋转90°,点A、C 分别落在点A′、C′处.如果点A′、C′、B在同一条直线上,那么tan∠ABA′的值为.24.如图,在正方形纸片ABCD中,EF∥AD,M,N是线段EF的六等分点,若把该正方形纸片卷成一个圆柱,使点A与点D重合,此时,底面圆的半径为2cm,则此时M、N两点间的距离是cm.25.若实数 m、n 满足m+n=mn,且n≠0时,就称点 P(m,)为“完美点”,若反比例函数y=的图象上存在两个“完美点”A、B,且 AB=4,则 k的值为.二、解答题(本大题共3个小题,共30分,解答过程写在答题卡上)26.(8分)某种商品的标价为400元/件,经过两次降价后的价格为324元/件,并且两次降价的百分率相同.(1)求该种商品每次降价的百分率;(2)若该种商品进价为300元/件,两次降价共售出此种商品100件,为使两次降价销售的总利润不少于3480元.问第一次降价后至少要售出该种商品多少件?27.(10分)在矩形ABCD边AD上有一个动点P,点P沿AD﹣﹣﹣DC﹣﹣﹣CA 运动,并且不与点A重合,连接BP,以BP为直角边作等腰直角三角形BPQ,AB=3,AD=2.(1)如图1所示,当点P在AD边上运动时,△BPQ的边PQ与DC交于点E,当△BPQ的面积最大时,BP=;若AP:AD=1:2时,BP:PE的值为;若AP:AD=1:n时,BP:PE的值为;(2)如图2所示,当点P在DC上运动且PQ∥AC时,请求出PC的长度;(3)如图3所示,当点P运动到CA的延长线上时,PQ与射线CD交于点F,请探究PF与QF有怎样的数量关系,并说明理由.28.(12分)如图,二次函数y=ax2+bx+c(a≠0)的图象经过点A(1,4),对称轴是x=﹣,线段AD平行于x轴,交抛物线于点D.在y轴上取一点C(0,2),直线AC交抛物线于点B,连接OA、OB、OD、BD.(1)求该二次函数的解析式;(2)求点B的坐标和坐标平面内使△EOD∽△COB的点E的坐标;(3)设点F是BD的中点,点P是线段DO上的动点,问PD为何值时,将△BPF 沿边PF翻折,使△BPF与△DPF重叠部分的面积是△BDP的面积的?参考答案与解析一、选择题1.【解答】解:sin30°=,故选:A.2.【解答】解:俯视图为三角形的是.故选:C.3.【解答】解:将25.3亿用科学记数法表示为:2.53×109.故选:C.4.【解答】解:∵一枚质地均匀的骰子,其六个面上分别标有数字1,2,3,4,5,6,投掷一次,∴朝上一面的数字是偶数的概率为: =.故选:C.5.【解答】解:∵y=﹣,∴xy=﹣3,A、∵1×3=3≠﹣3,∴点(1,3)不在反比例函数y=﹣图象上,故本选项错误;B、∵3×1=3≠﹣3,∴点(3,1)不在反比例函数y=﹣图象上,故本选项错误;C、∵2×=3≠﹣3,∴点(2,)不在反比例函数y=﹣图象上,故本选项错误;D、∵﹣×2=﹣3,∴点(﹣,2)在反比例函数y=﹣图象上,故本选项正确.故选:D.6.【解答】解:∵BD=2AD,∴AB=3AD,∵DE∥BC,∴==,∴BC=3DE,A结论正确;∵DE∥BC,∴=,B结论正确;∵DE∥BC,∴△ADE∽△ABC,C结论正确;∵DE∥BC,AB=3AD,∴S△ADE =S△ABC,D结论错误,故选:D.7.【解答】解:令y=0,则x2﹣2x+1=0,△=b2﹣4ac=(﹣2)2﹣4×1×1=4﹣4=0,所以,二次函数与x轴有1个交点.故选:B.8.【解答】解:连接AC,∵AE⊥BC,AF⊥CD,且E、F分别为BC、CD的中点,∴AB=AC,AD=AC,∵四边形ABCD是菱形,∴AB=BC=CD=AD,∴AB=BC=AC,AC=CD=AD,∴∠B=∠D=60°,∴∠BAE=∠DAF=30°,∠BAD=180°﹣∠B=120°,∴∠EAF=∠BAD﹣∠BAE﹣∠DAF=60°.故选:C.9.【解答】解:连接OA,设CD=x,∵OA=OC=5,∴OD=5﹣x,∵OC⊥AB,∴由垂径定理可知:AB=4,由勾股定理可知:52=42+(5﹣x)2∴x=2,∴CD=2,故选:C.10.【解答】解:∵Rt△AOB中,AB⊥OB,且AB=OB=3,∴∠AOB=∠A=45°,∵CD⊥OB,∴CD∥AB,∴∠OCD=∠A,∴∠AOD=∠OCD=45°,∴OD=CD=t,=×OD×CD∴S△OCD=t2(0≤t≤3),即S=t2(0≤t≤3)故S与t之间的函数关系的图象应为定义域为[0,3]、开口向上的二次函数图象;故选:D.二、填空题(本大题共4个小题,每小题3分,共16分,答案写在答题卡上)11.【解答】解:设旗杆高度为x米,由题意得, =,解得x=13.故答案为13.12.【解答】解:函数y=x2+1向右平移1个单位,得:y=(x﹣1)2+1;故答案为:y=(x﹣1)2+113.【解答】解:∵AB是⊙O的直径,∴∠ACB=90°,∵∠BAC=50°,∴∠B=40°,∴∠ADC=∠B=40°.故答案为:40°14.【解答】解:将A(﹣2,m)代入y=x,得m=×(﹣2)=﹣1,即A(﹣2,﹣1).将A点坐标代入y=,得k=﹣2×(﹣1)=2,反比例函数的解析式为y=.解方程组,得,,则B(2,1).故答案为(2,1).三、解答题(本大题共6个小题,共54分,解答过程写在答题卡上)15.【解答】解:(1)原式=﹣1﹣3+2×+4=2﹣;(2)因式分解,得(x﹣1)(x﹣1+2)=0,于是,得x﹣1=0或x+1=0,解得x1=1,x2=﹣1.16.【解答】解:(1)∵关于 x的方程3x2+2x﹣m=0有两个不相等的实数根,∴△=22﹣4×3×(﹣m)>0,解得:m>﹣,即 m 的取值范围是m>﹣;(2)设方程的另一个根为a,根据根与系数的关系得:a+(﹣1)=﹣,解得:a=﹣,即方程的另一个根为﹣.17.【解答】解:过点A作AE⊥CD于E,∵AB⊥BC,DC⊥BC,∴四边形ABCE是矩形,∵BC=60米,∴AE=BC=60米,∴在Rt△AEC中,EC=AE•tan∠EAC=60×tan37°≈45.2(米),在Rt△ADE中,∵∠D AE=45°,∴DE=AE=60(米),∴BC=DE+CE=60+45.2=105.2(米).答:该大厦的高度约为105.2米.18.【解答】解:(1)本次调查的学生总数为20÷40%=50(名),成绩在第5组的学生人数为50﹣(4+8+20+14)=4(人);(2)画树状图如下:由树状图知,共有20种等可能结果,其中所选两名同学刚好来自第一、五组的情况有2种结果,所以所选两名同学刚好来自第一、五组的概率为.19.【解答】解:(1)过点B作BD⊥x轴于点D,如图所示.令直线y=﹣x+5中y=0,则0=﹣x+5,解得:x=5,即OC=5.∵△BOC的面积是,∴OC•BD=×5•BD=,解得:BD=1.结合题意可知点B的纵坐标为1,当y=1时,有1=﹣x+5,解得:x=4,∴点B的坐标为(4,1),∴k=4×1=4,即反比例函数的解析式为y=;解方程组,得,,∴点A的坐标为(1,4);(2)如图,过点E作EF⊥x轴于点F,过点A作AG⊥x轴于点G,则BD∥EF∥AG.∵点A的坐标为(1,4),点B的坐标为(4,1),∴G(1,0),D(4,0),∴GD=3.∵点E为线段AB上一个动点,∴可设E(x,﹣x+5).∵直线OE将△AOB的面积分成1:2的两部分,∴=或=2,.∴=或=.∵BD∥EF∥AG,∴=,∴GF=•GD=×3=1或GF=•GD=×3=2,∴OF=OG+GF=1+1=2或OF=OG+GF=1+2=3,∴x=2或x=3,∴﹣x+5=3或﹣x+5=2,∴点E的坐标为(2,3)或(3,2).20.【解答】(1)证明:在△PAO和△PBO中,,∴△PAO≌△PBO(SSS),∴∠PBO=∠PAO.∵PA是⊙的切线,A是切点,∴∠PAO=90°,∴∠PBO=90°,∴PB是⊙O的切线.(2)证明:∵∠APB+∠PAO+∠AOB+PBO=360°,∴∠APB+∠AOB=180°.又∵∠AOQ+∠AOB=180°,∴∠AOQ=∠APB.∵OA=OB,∴∠ABQ=∠BAO=∠AOQ.∵△PAO≌△PBO,∴∠OPQ=∠OPB=∠APB,∴∠ABQ=∠OPQ.又∵∠AQB=∠OQP,∴△QAB∽△QOP,∴=,即AQ•PQ=BQ•OQ.(3)解:设AB与PO交于点E,则AE⊥PO,如图所示.∵∠AOQ=∠APB,∴tan∠AOQ=.在Rt△OAQ中,∠OAQ=90°,tan∠AOQ=,AQ=3,∴AO=4,OQ==5,∴BQ=BO+OQ=9.∵AQ•PQ=BQ•OQ,∴PQ=15,∴PA=PQ﹣AQ=12,∴PO==4.由面积法可知:AE==,∴AB=2AE=.一、填空题(本大题共5个小题,每小题0分,共20分,答案写在答题卡上)21.【解答】解:∵x﹣=1,∴2x﹣y=2,则4x2﹣y2=(2x+y)(2x﹣y)=4×2=8.故答案为:8.22.【解答】解:连接OA、OB,如图,∴∠AOB=2∠ACB=2×45°=90°,∴△OAB为等腰直角三角形,∴OA=AB=×2=2,∵点M、N分别是AB、BC的中点,∴MN=AC,当AC为直径时,AC的值最大,∴MN的最大值为2.故答案为2.23.【解答】解:设AB=x,则CD=x,A′C=x+2,∵AD∥BC,∴=,即=,解得,x1=﹣1,x2=﹣﹣1(舍去),∵AB∥CD,∴∠ABA′=∠BA′C,tan∠BA′C===,∴tan∠ABA′=,故答案为:.24.【解答】解:根据题意得:EF=BC,MN=EF,把该正方形纸片卷成一个圆柱,使点A与点D重合,则线段BC形成一半径为2cm的圆,线段BC是圆的周长,BC=EF=2π×2=4π,∴MN=EF=cm,故答案为:.25.【解答】解:∵m+n=mn且n≠0,∴+1=m,即=m﹣1,∴P(m,m﹣1),即“完美点”P在直线y=x﹣1上,设点A、B坐标分别为(x1,y1),(x2,y2),令=x﹣1化简得x2﹣x﹣k=0,∵AB=4,∴|x1﹣x2|=2,由韦达定理x1+x2=1,x1x2=﹣k,∴(x1﹣x2)2=(x1+x2)2﹣4x1x2=8,∴1+4k=8,解得:k=,此时x2﹣x﹣k=0的△>0,∴k=;故答案为.二、解答题(本大题共3个小题,共30分,解答过程写在答题卡上)26.【解答】解:(1)设该种商品每次降价的百分率为x%,依题意得:400×(1﹣x%)2=324,解得:x=10,或x=190(舍去).答:该种商品每次降价的百分率为10%.(2)设第一次降价后售出该种商品m件,则第二次降价后售出该种商品(100﹣m)件,第一次降价后的单件利润为:400×(1﹣10%)﹣300=60(元/件);第二次降价后的单件利润为:324﹣300=24(元/件).依题意得:60m+24×(100﹣m)=36m+2400≥3480,解得:m≥30.答:为使两次降价销售的总利润不少于3480元.第一次降价后至少要售出该种商品30件.27.【解答】解(1)∵当点P移动到点D处时,BP>BA>BC,此时BP=BD==(最大)∵△BPQ是等腰直角三角形∴△BPQ的面积=BP2=×()2=即P点运动到D点的时,△BPQ有面积的最大值.如图1,当AP:AD=1:2时,AP=PD=AD=1,由△ABP∽△DPE,∴BP:PE=AB:PD=3:1此时,AB:PD=3:1═3,当AP:AD=1:n时,AP=AD×=,∴PD=AD﹣AP=2﹣=,由△ABP∽△DPE,∴BP:PE=AB:PD=3: =3n:2(n﹣1),故答案为:,3:1,3n:2(n﹣1).(2)如图2,当PQ∥AC时,∵∠BPQ=90°,∴PB⊥PQ,∴PB⊥AC,∴∠CAB+∠ABP=90°,∠ABP+∠CBP=90°,∴∠CAB=∠CBP,∵∠ABC=∠BCP=90°,∴△ABC∽△BCP,∴=,∴=,∴PC=.(3)如图3,当点P运动到CA的延长线上时,过P作PG⊥CB于G,作PH⊥CD 于H,则∠PGB=∠PHF=90°,∠HPG=90°∵等腰直角三角形BPQ中,∠FPB=90°∴∠GPB=∠HPF∴△GPB∽△HPF∴=①∵PG∥AB,PH∥AD∴==,即==②由①②可得, =,∴PF:QF=2:1.28.【解答】解:(1)∵y=ax2+bx(a≠0)的图象经过点A(1,4),且对称轴是直线x=﹣1.5,∴,解得:,∴二次函数的解析式为y=x2+3x;(2)如图1,∵点A(1,4),线段AD平行于x轴,∴D的纵坐标为4,∴4=x2+3x,∴x1=﹣4,x2=1,∴D(﹣4,4).设直线AC的解析式为y=kx+b,由题意,得,解得:,∴y=2x+2;当2x+2=x2+3x时,解得:x1=﹣2,x2=1(舍去).∴y=﹣2.∴B(﹣2,﹣2).∴DO=4,BO=2,BD=2,OA=.∴DO2=32,BO2=8,BD2=40,∴DO2+BO2=BD2,∴△BDO为直角三角形.∵△EOD∽△AOB,∴∠EOD=∠AOB,=2,∴∠AOB﹣∠AOD=∠EOD﹣∠AOD,∴∠BOD=∠AOE=90°.即把△AOB绕着O点顺时针旋转90°,OB落在OD上B′,OA落在OE上A1∴A1(4,﹣1),∴E(8,﹣2).作△AOB关于x轴的对称图形,所得点E的坐标为(2,﹣8).∴当点E的坐标是(8,﹣2)或(2,﹣8)时,△EOD∽△AOB;(3)由(2)知DO=4,BO=2,BD=2,∠BOD=90°.若翻折后,点B落在FD的左下方,连接B′P与BD交于点H,连接B′D,如图2.S△HFP =S△BDP=S△DPF=S△B′PF=S△DHP=S△B′HF,∴DH=HF,B′H=PH,∴在平行四边形B′FPD中,PD=B′F=BF=BD=;若翻折后,点B,D重合,S△HFP =S△BDP,不合题意,舍去.若翻折后,点B落在OD的右上方,连接B′F交OD于点H,连接B′D,如图3,S△HFP =S△BDP=S△BPF=S△DPF=S△B′PF=S△DHF=S△B′HP∴B′P=BP,B′F=BF,DH=HP,B′H=HF,∴四边形DFPB′是平行四边形,∴B′P=DF=BF,∴B′P=BP=B′F=BF,∴四边形B′FBP是菱形,∴FD=B′P=BP=BD=,根据勾股定理,得OP2+OB2=BP2,∴(4﹣PD)2+(2)2=()2,解得P D=3,PD=5>4(舍去),综上所述,PD=或PD=3时,将△BPF沿边PF翻折,使△BPF与△DPF重叠部分的面积是△BDP的面积的.。
四川省成都市 九年级(上)期末数学试卷 (含答案)
2017-2018学年四川省成都市新津县九年级(上)期末数学试卷副标题题号一二三总分得分一、选择题(本大题共9小题,共27.0分)1.在平面直角坐标系中,四边形OBCD 与四边形OEFG 位似,位似中心是原点,已知C 与F 是对应点,且C ,F 的坐标分别是(1,)、(4,4),则四边形OBCD33与四边形OEFG 的位似比是( )A. 1:B. 1:3C. 1:4D. 1:822.在阳光照射下的升旗广场的旗杆从上午九点到十一点的影子长的变化规律为( )A. 逐渐变长 B. 逐渐变短C. 影子长度不变D. 影子长短变化无规律3.二次函数y =2(x +1)2+1的对称轴是( )A. 直线B. 直线C. 直线D. 直线y =1x =1y =−1x =−14.在菱形ABCD 中,BD 为对角线,AB =BD ,则sin ∠BAD =( )A.B. C. D. 331232225.若函数y =的图象过点(1,-1),则函数y =kx -2的图象不经过( )k x A. 第一象限B. 第二象限C. 第三象限D. 第四象限6.下列说法正确的是( )A. 平行四边形的对角线互相平分且相等B. 矩形的对角线相等且互相平分C. 菱形的对角线互相垂直且相等D. 正方形的对角线是正方形的对称轴7.小明和小军两人一起做游戏,游戏规则如下:每人从1,2,…,7这7个数中任意选择一个数字,然后两人各掷一次质地均匀的骰子,谁事先选择的数等于两人掷得的点数之和谁就获胜;若两人选择的数都不等于掷得的点数之和,就再做一次上述游戏,直至决出胜负.若你是游戏者,为了获胜,你会选择数( )A. 7 B. 6 C. 5 D. 48.若方程(x -1)2=m 有解,则m 的取值范围是( )A. B. C. D. m ≤0m ≥0m <0m >09.若角α,β都是锐角,以下结论:①若α<β,则sinα<sinβ;②若α<β,则cosα<cosβ;③若α<β,则tanα<tanβ;④若α+β=90°,则sinα=cosβ.其中正确的是( )A. B. C. D. ①②①②③①③④①②③④二、填空题(本大题共8小题,共32.0分)10.把一枚六个面编号为1,2,3,4,5,6的质地均匀的正六面体骰子连续投掷2次,若两次正面朝上的编号分别为m 、n ,则二次函数的图象与x 轴至y =x 2+mx +2n 少有一个交点的概率是______.11.如图,四边形ABCD 是正方形,△CDE 是等边三角形,则∠AEB =______.12.反比例函数y =-的图象的对称中心的坐标是______.1x 13.如图,两条直线被第三条直线所截,DE =,EF =,36AB =1,则AC =______.14.一次函数y =kx +b 的图象与反比例函数y =的图象交于点A (-1,m ),B (n ,-1)−2x 两点,则使kx +b 的x 的取值范围是______.>−2x 15.若2a =3b -1,则4a 2-12ab +9b 2-1的值为______.16.已知二次函数的y =ax 2+bx +c (a ≠0)图象如图所示,有下列5个结论:①abc <0;②b <a +c ;③4a +2b +c >0;④2c <3b ;⑤b 2-4ac <0,其中正确结论的番号有______.17.经过某十字路口的行人,可能直行,也可能左拐或右拐.假设这三种可能性相同,现有两人经过该路口,则恰好有一人直行,另一人左拐的概率为______.三、解答题(本大题共6小题,共60.0分)18.如图所示,一个小球从斜坡O 点处抛出,球的抛出路线可以用二次函数y =4x -x 2的刻画,斜坡可以用一次函数y =刻画.12x (1)求小球到达最高点的坐标;(2)小球的落点是A ,求点A 的坐标.19.如图所示,在四边形ABCD 中,点E 、F 是对角线BD 上的两点,且BE =FD .(1)若四边形AECF 是平行四边形,求证:四边形ABCD 是平行四边形;(2)若四边形AECF 是菱形,那么四边形ABCD也是菱形吗?为什么?(3)若四边形AECF是矩形,试判断四边形ABCD是否为矩形,不必写理由.20.如图,平台AB高度为12米,在B处测得楼房的仰角为45°,底部点C的俯角为30°,求楼房CD的高度(精确到0.1km).21.如图,在平行四边形ABCD中,CE⊥AD于点E,且CB=CE,点F为CD边上的一点,CB=CF,连接BF交CE于点G.3(1)若∠D=60°,CF=2,求CG的长度;(2)求证:AB=ED+CG.22.如图,抛物线y=x2-2x-3与x轴交于A、B两点(点A在点B的左边),与y轴交于C点,点D是抛物线的顶点.(1)求B、C、D三点的坐标;(2)连接BC,BD,CD,若点P为抛物线上一动点,设点P的横坐标为m,当S△PBC=S△BCD时,求m的值(点P不与点D重合);(3)连接AC,将△AOC沿x轴正方向平移,设移动距离为a,当点A和点B重合时,停止运动,设运动过程中△AOC与△OBC重叠部分的面积为S,请直接写出S 与a之间的函数关系式,并写出相应自变量a的取值范围.23.(1)解方程:(x-2)(x-3)=12(2)计算:sin230°-2sin60°+tan45°-tan60°+cos230°答案和解析1.【答案】C【解析】解:∵四边形OBCD与四边形OEFG位似,位似中心是原点O,C与F的坐标分别是(1,)、(4,4),∴对应点坐标扩大到原来的4倍,故四边形OBCD与四边形OEFG的相似比是:1:4.故选:C.利用位似图形的性质,结合图形的对应点坐标得出相似比即可.此题主要考查了位似图形的性质,得出对应点坐标变化是解题关键.2.【答案】B【解析】解:在阳光照射下的升旗广场的旗杆从上午九点到十一点的影子长的变化规律为逐渐变短,故选:B.根据平行投影的定义结合题意可得.本题主要考查平行投影,解题的关键是熟练掌握平行投影的定义.3.【答案】D【解析】解:∵y=2(x+1)2+1∴该函数的对称轴是直线x=-1,故选:D.根据题目中的函数解析式可以直接写出该函数的对称轴,从而可以解答本题.本题考查二次函数的性质,解答本题的关键是由顶点式可以直接写出二次函数的对称轴.4.【答案】C【解析】解:如图,∵四边形ABCD是菱形,∴AB=AD.∵AB=BD,∴AB=AD=BD,∴△ABD是等边三角形,∴∠BAD=60°.∴sin∠BAD=sin60°=.故选:C.根据菱形性质和已知条件判断△ABD为等边三角形,可得∠BAD=60°,由特殊角的三角函数值解答即可.本题涉及到菱形及等边三角形的性质,特殊角的三角函数值,具有一定的综合性,但难度适中.5.【答案】B【解析】解:∵函数y=的图象过点(1,-1),∴代入得:k=-1,即y=kx-2=-x-2,图象经过第一、三、四象限,不经第二象限,故选:B.把点的坐标代入反比例函数解析式,求出k,再根据一次函数的性质得出即可.本题考查了反比例函数图象上点的坐标特征和一次函数的性质,能熟记一次函数的性质的内容是解此题的关键.6.【答案】B【解析】解:平行四边形的对角线互相平分,不一定相等,A错误;矩形的对角线相等且互相平分,B正确;菱形的对角线互相垂直,不一定相等,C错误;正方形的对角线所在的直线是正方形的对称轴,D错误;故选:B.根据平行四边形、矩形、菱形、正方形的性质定理判断即可.本题考查的是命题的真假判断,掌握平行四边形、矩形、菱形、正方形的性质是解题的关键.7.【答案】A【解析】解:两解:两人抛掷骰子各一次,共有6×6=36种等可能的结果,点数之和为7的有6种,最多,故选择7获胜的可能性大,故选:A.找到点数之和为几的次数最多,选择那个数的获胜的可能性就大.本题考查了有理数的加法和可能性的大小,解题的关键是确定点数之和为7最多,有6次,难度不大.8.【答案】B【解析】解:根据题意得m≥0时,方程有实数解.故选:B.利用平方根的定义确定m的范围.本题考查了解一元二次方程-直接开平方法:形如x2=p或(nx+m)2=p(p≥0)的一元二次方程可采用直接开平方的方法解一元二次方程.9.【答案】C【解析】解:①∵sinα随α的增大而增大,∴若α<β,则sinα<sinβ,此结论正确;②∵cosα随α的增大而减小,∴若α<β,则cosα>cosβ,此结论错误;③∵tanα随α的增大而增大,∴若α<β,则tanα<tanβ,此结论正确;④若α+β=90°,则sinα=cosβ,此结论正确;综上,正确的结论为①③④,故选:C.根据锐角范围内sinα、cosα、tanα的增减性及互余两锐角的正余弦函数间的关系可得.本题主要考查互余两锐角三角函数关系,解题的关键是掌握锐角范围内sinα、cosα、tanα的增减性及互余两锐角的正余弦函数间的关系.10.【答案】518【解析】【分析】本题可先列出出现的点数的情况,因为二次图象开口向上,要使图象与x轴有至少有一个交点,则m-8n≥0,再把m、n的值一一代入检验,看是否满足.最后把满足的个数除以掷骰子可能出现的点数的总个数即可.本题考查了二次函数的性质图象,概率,列表法,树状图法等知识点,确定m n之间的关系和列树状图法是解此题的关键.【解答】解:掷骰子有6×6=36种情况.根据题意有:m2-8n≥0,因此满足的点有:n=1,m=3,4,5,6,n=2,m=4,5,6,n=3,m=5,6,n=4,m=6,n=5,m不存在n=6,m不存在共有10种,故概率为:=.故答案为.11.【答案】30°【解析】解:∵四边形ABCD是正方形,△CDE是等边三角形,∴AD=CD=DE;∠ADE=90°+60°=150°,∴∠AED=(180°-150°)÷2=15°.同理可得∠CEB=15°,∴∠AEB=∠DEC-∠DEA-∠CEB=30°.故答案为:30°.根据题意知△ADE是等腰三角形,且∠ADE=90°+60°=150°.根据三角形内角和定理及等腰三角形性质可求出底角∠AED的度数.同理可求得∠CEB的度数,则∠AEB=60°-∠AED-∠CEB.此题考查了正方形、等边三角形的性质及三角形内角和定理,属于基础题.12.【答案】(0,0)【解析】解:反比例函数y=-的图象的对称中心是原点,其坐标为(0,0).故答案是:(0,0).反比例函数的图象是双曲线,其对称中心是原点.考查了反比例函数的图象.反比例函数图象是双曲线,它既是轴对称图形,也是中心对称图形.13.【答案】+12【解析】解:∵l1∥l2∥l3,∴===,∴=,∴AC==+1,故答案为+1.由l1∥l2∥l3,可得===,可得=,由此即可解决问题;本题考查平行线分线段成比例定理,解题的关键是熟练掌握基本知识,属于中考常考题型.14.【答案】x<-1或0<x<2【解析】解:把A(-1,m),B(n,-1)分别代入y=,得-m=-2,-n=-2,解得m=2,n=2,所以A点坐标为(-1,2),B点坐标为(2,-1),把A(-1,2),B(2,-1)代入y=kx+b得,解得,所以这个一次函数的表达式为y=-x+1,函数图象如图所示:根据图象可知,使kx+b的x的取值范围是x<-1或0<x<2.坐标为(-1,m)和(n,-1)的两点在双曲线上,联立并解可得m、n的值;设一次函数的解析式为:y=kx+b,代入数据,解可得一次函数的解析式;画出函数图象,根据函数的图象,可得答案.本题考查了反比例函数与一次函数的交点问题:反比例函数与一次函数图象的交点坐标满足两函数解析式.注意结合题意,结合图象选用合适的方法解题.15.【答案】0【解析】解:∵2a=3b-1,∴2a-3b=-1,∴4a2-12ab+9b2-1=(2a-3b)2-1=(-1)2-1=0.故答案是:0.把式子4a2-12ab+9b2-1运用完全平方公式整理,整体代入求得数值即可.此题考查了因式分解的应用,将所求式子进行适当的变形是解本题的关键.16.【答案】①③④【解析】解:①∵抛物线开口向下,对称轴为直线x=1,与y轴交于正半轴,∴a<0,-=1,c>0,∴b=-2a>0,∴abc<0,结论①正确;②∵当x=-1时,y<0,∴a-b+c<0,∴b>a+c,结论②错误;③∵抛物线的对称轴为直线x=1,当x=0时,y>0,∴当x=2时,y>0,∴4a+2b+c>0,结论③正确;④∵a+c<b,b=-2a,∴c<b-a=b,∴2c<3b,结论④正确;⑤图象和x轴有两个交点,∴b2-4ac>0,结论⑤错误;故答案为:①③④.①由抛物线与x轴有两个交点,即可得出△=b2-4ac>0,即4ac<b2,结论①正确;②根据抛物线的对称轴及与x轴的一个交点坐标,即可找出抛物线与x轴的另一交点坐标,进而可得出方程ax2+bx+c=0的两个根是x1=-1,x2=3,结论②正确;③由抛物线的对称轴为直线x=1可得出b=-2a,结合当x=-1时y=0,即可得出a-b+c=0,即3a+c=0,结论③正确;④根据抛物线与x轴交点的坐标结合图象,即可判断结论④错误;⑤根据抛物线和x轴的交点个数,即可判断⑤.本题考查了二次函数图象与系数的关系以及抛物线与x轴的交点,观察函数图象,利用二次函数图象与系数的关系逐一分析五条结论的正误是解题的关键.17.【答案】29【解析】解:画树状图为:共有9种等可能的结果数,其中恰好有一人直行,另一人左拐的结果数为2,所以恰好有一人直行,另一人左拐的概率=.故答案为.画树状图展示所有9种等可能的结果数,再找出恰好有一人直行,另一人左拐的结果数,然后根据概率公式求解.本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n ,再从中选出符合事件A 或B 的结果数目m ,然后利用概率公式求事件A 或B 的概率.18.【答案】解:(1)由题意得,y =4x -x 2=-(x -2)2+4,故可得小球到达的最高点的坐标为(2,4);(2)联立两解析式可得:,{y =4x −x 2y =12x 解得:或.{x 1=0y 1=0{x 2=72y 2=74故可得点A 的坐标为(,).7274【解析】(1)根据抛物线的解析式,可求出小球到达的最高点的坐标;(2)联立两解析式,可求出交点A 的坐标.本题考查了二次函数的应用,解答本题的关键是熟练掌握两函数图象交点的求解方法及二次函数顶点坐标的求解方法,难度一般.19.【答案】解:连AC ,设AC 、BD 相交于点O ;(1)∵四边形AECF 是平行四边形,∴OE =OF ,OA =OC ,∵BE =FD ,∴OB =OD .∴四边形ABCD 是平行四边形.(2)∵四边形AECF 是菱形,∴OE =OF ,OA =OC ,AC ⊥BD .∵BE =FD ,∴OB =OD .∴四边形ABCD 是菱形.(3)四边形ABCD 不是矩形.【解析】(1)连AC ,证OB=OD ,即可;(2)四边形ABCD 是菱形.证对角线互相垂直平分即可;(3)因为∠BAD 和∠EAF 不可能都为90°,所以四边形ABCD 不是矩形.此题主要考查平行四边形、菱形、矩形的判定.20.【答案】解:作BE ⊥CD 于E .∵∠DBE =45°,∠CBE =30°,∠BCE =60°,又∵AB ⊥AC ,CD ⊥AC ,∴四边形ABEC 是矩形,∴CE =AB =12,在Rt △CBE 中,tan ∠BCE =,B EC E ∴BE =CE •tan60°=12,3在Rt △BDE 中,∵∠DBE =45°,∴DE =BE =12,3∴CD =CE +DE =12+12=12(1+)≈32.8m ,33答:楼房CD 的高度约为32.8m .【解析】作BE ⊥CD 于E .在Rt △CBE 中,tan ∠BCE=,可得BE=CE•tan60°=12,在Rt △BDE 中,由∠DBE=45°,可得DE=BE=12,根据CD=CE+DE 计算即可.本题考查解直角三角形-仰角俯角、锐角三角函数等知识,解题的关键是熟练掌握锐角三角函数的定义,属于基础题,中考常考题型.21.【答案】解:(1)∵四边形ABCD 是平行四边形,∴AD ∥BC ,∵CE ⊥AD ,∴∠CED =90°=∠ECB ,∵∠D =60°,∠DEC =90°,∴∠ECD =30°,∠BCF =120°,∵BC =CF ,∴∠GBC =30°,在Rt △BCG 中,∠GCB =90°,∴tan ∠GBC ===,G C B C 33C G23∴GC =2;(2)延长EC 到点H ,使得DE =HC ,连接BH ,∵在△HBC 和△DCE 中,{D E =HC ∠D E C =∠H C B E C =E B∴△HBC ≌△DCE ,∴∠1=∠3,BH =CD ,∵BC =CF ,∴∠2=∠5,∵∠GBH =∠2+∠1,∠4=∠3+∠5,∴∠4=∠GBH ,∴BH =GH ,∴DC =ED +CG ,∵DC =AB ,∴AB =ED +CG .【解析】(1)根据平行四边形的性质得到AD ∥BC ,然后得到∠GBC=30°,利用tan ∠GBC=即可求得GC=2;(2)延长EC 到点H ,连接BH ,证得△HBC ≌△DCE ,根据各角之间的关系得到∠4=∠GBH ,从而得到BH=GH ,证得DC=ED+CG .本题考查了平行四边形的性质,平行四边形的对角线互相平分、对边平行且相等,对角相等,牢记平行四边形的性质是解答本题的关键,难度中等.22.【答案】解:(1)当y =0时,x 2-2x -3=0,解得x 1=-1,x 2=3,∴A (-1,0),B (3,0),当x =0时,y =-3,∴C (0,-3),∵y =x 2-2x -3=(x -1)2-4,∴D (1,-4);(2)设BC :y =kx +b将B (3,0),C (0,-3)代入得:解得,{0=3k +b −3=b {k =1b =−3∴直线BC 为y =x -3,过点D 作DE ∥y 轴,交BC 于点E ,∵x D =1=x E ,∴y E =-2,∴DE =2,∴S △BCD =S △BED +S △CDE =×2×1+×2×2=3,1212过点P 作PQ ∥y 轴,交直线BC 于点Q ,设P (m ,m 2-2m -3),Q (m ,m -3)①当P 是BC 下方抛物线上一点时,如图1,∴.S △P C B =S △P B Q +S △P Q C =−32m 2+92m =3∴m 1=-1(舍),m 2=2,②当P 是BC 上方抛物线上一点时,如图2,S △PBC =S △PQC -S △PQB =m 2-m =3,3292解得m 1=,m 2=,3+1723−172综上:m 的值为;3+172,3−172,2(3)①当0<a ≤1时,如图3,∵OA ′=1-a ,O ′C ′=OC =3,∵=A E O ′C ′O A ′O ′A ′即=,A E 31−a 1∴AE =3-3a ,∴CE =3a ,∵=,O ′G O C O ′BO B 即=,O ′G 33−a 3∴O ′G =3-a ,∴GC ′=a ,∵==,E C C ′G 3a a 31∴△FC ′G 边CG ′上的高为a ,14∴S =S △AOC -S △A ′OE -S △FGC ′=×1×3-(1-a )×(3-3a )-a ×a =-12121214a 2+3a ;138②当1<a ≤3时,如图4,∵GC =a ,△FC ′G 边CG ′上的高为a ,14∴S =S △AOC -S △FGC ′=×1×3-a ×a =-a 2+;1212141832③当3<a ≤4时,如图5,∵A ′B =4-a ,CC ′=a ,设△A ′FB 边A ′B 上的高为h ,则△CFC ′边CC ′的高为3-h ,∵△A ′FB ∽△C ′FC ,∴=,解得h =(4-a ),ℎ3−ℎ4−a a 34∴S =(4-a )×(4-a )=a 2-3a +6;123438综上,.S ={−138a 2+3a (0<a ≤1)−18a 2+32(1<a ≤3)38a 2−3a +6(3<a ≤4)【解析】(1)令y=0,解方程即可求得A 、B 的坐标,令x=0,即可求得C 的坐标,把解析式化成顶点式即可求得顶点坐标;(2)根据待定系数法求得直线BC 的解析式,过点D 作DE ∥y 轴,交BC 于点E ,则x D =1=x E ,求得y E =-2,DE=2,进而得出S △BCD =S △BED +S △CDE=×2×1+×2×2=3,然后分两种情况分别讨论求得即可;(3)分三种情况:①当0<a≤1时,根据S=S △AOC -S △A′OE -S △FGC′即可求得;②当1<a≤3时,如图4,根据S=S △AOC -S △FGC′=即可求得;③当3<a≤4时,如图5,S=(4-a )×(4-a ).本题是二次函数的综合题,考查了待定系数法求函数的解析式,抛物线的交点坐标,三角形的面积等,分类讨论思想的应用是解题的关键.23.【答案】解:(1)(x -2)(x -3)=12,整理得:x 2-5x -6=0,(x -6)(x +1)=0,x -6=0,x +1=0,x 1=6,x 2=-1;(2)原式=()2-2×+1-+()21232332=-+1-+143334=-2+2.3【解析】(1)整理后分解因式,即可得出两个一元一次方程,求出方程的解即可; (2)先求出每一部分的值,再代入求出即可.本题考查了解一元二次方程和特殊角的三角函数值,能把一元二次方程转化成一元一次方程是解(1)的关键,能熟记特殊角的三角函数值是解(2)的关键.。
最新2017年九年级上学期期末数学试卷两套汇编四附答案解析.docx
2017年九年级上学期期末数学试卷两套汇编四附答案解析中学九年级(上)期末数学试卷一、选择题(共12小题,每小题3分,满分36分)1.方程x(x+2)=0的根是()A.x=2 B.x=0 C.x1=0,x2=﹣2 D.x1=0,x2=22.下列事件中,属于必然事件的是()A.明天我市下雨B.抛一枚硬币,正面朝下C.购买一张福利彩票中奖了D.掷一枚骰子,向上一面的数字一定大于零3.已知x=1是关于x的方程(1﹣k)x2+k2x﹣1=0的根,则常数k的值为()A.0 B.1 C.0或1 D.0或﹣14.△ABC的三边长分别为、、2,△DEF的两边长分别为1和,如果△ABC∽△DEF,那么△DEF的第三边长为()A.B.2 C.D.25.某机械厂七月份生产零件50万个,计划八、九月份共生产零件146万个,设八、九月份平均每月的增长率为x,那么x满足的方程是()A.50(1+x)2=146 B.50+50(1+x)+50(1+x)2=146C.50(1+x)+50(1+x)2=146 D.50+50(1+x)+50(1+2x)=1466.如图,随机闭合开关S1、S2、S3中的两个,能让灯泡⊙发光的概率是()A.B.C.D.7.如图,在Rt△AOB中,∠AOB=90°,OA=3,OB=2,将Rt△AOB绕点O顺时针旋转90°后得Rt△FOE,将线段EF绕点E逆时针旋转90°后得线段ED,分别以O,E为圆心,OA、ED长为半径画弧AF和弧DF,连接AD,则图中阴影部分面积是()A.πB. C.3+πD.8﹣π8.已知⊙O的半径是4,OP=3,则点P与⊙O的位置关系是()A.点P在圆内B.点P在圆上C.点P在圆外D.不能确定9.如图是二次函数y=ax2+bx+c的部分图象,由图象可知不等式ax2+bx+c<0的解集是()A.﹣1<x<5 B.x>5 C.x<﹣1且x>5 D.x<﹣1或x>510.同一坐标系中,一次函数y=ax+1与二次函数y=x2+a的图象可能是()A.B.C.D.11.如图是抛物线y=ax2+bx+c(a≠0)的部分图象,其顶点坐标为(1,n),且与x轴的一个交点在点(3,0)和(4,0)之间.则下列结论:①a﹣b+c>0;②3a+b=0;③b2=4a(c﹣n);④一元二次方程ax2+bx+c=n﹣1有两个不相等的实数根.其中正确结论的个数是()A .1B .2C .3D .412.如图,大正方形中有2个小正方形,如果它们的面积分别是S 1、S 2,那么S 1、S 2的大小关系是( )A .S 1>S 2B .S 1=S 2C .S 1<S 2D .S 1、S 2的大小关系不确定二、填空题(本大题共6小题,每小题3分,共18分)13.如果函数1)1(232++-=+-kx x k y k k 是二次函数,那么k 的值一定是 .14.圆内接正六边形的边心距为2cm ,则这个正六边形的面积为 cm 2. 15.如图,等腰直角三角形ABC 绕C 点按顺时针旋转到△A 1B 1C 1的位置(A 、C 、B 1在同一直线上),∠B=90°,如果AB=1,那么AC 运动到A 1C 1所经过的图形的面积是 .16.一个不透明的袋中装有除颜色外均相同的8个黑球、4个白球和若干个红球.每次摇匀后随机摸出一个球,记下颜色后再放回袋中,通过大量重复摸球试验后,发现摸到红球的频率稳定于0.4,由此可估计袋中约有红球 个. 17.如图,铁路口栏杆短臂长1米,长臂长16米,当短臂端点下降0.5米时,长臂端点升高 米.18.如图,在Rt△ABC中,∠ABC是直角,AB=3,BC=4,P是BC边上的动点,设BP=x,若能在AC边上找到一点Q,使∠BQP=90°,则x的取值范围是.三、解答题(本大题共7小题,共56分)19.(8分)如图,已知直线与双曲线(k>0)交于A、B两点,且点A的横坐标为4.(1)求k的值;(2)若双曲线(k>0)上一点C的纵坐标为8,求△AOC的面积.20.解方程:2x2﹣3x﹣1=0.(2)已知关于x的方程(x﹣3)(x﹣2)﹣p2=0.①求证:方程总有两个不相等的实数根.②当p=2时,求该方程的根.21.(8分)如图,点C、D在线段AB上,△PCD是等边三角形.(1)当AC、CD、DB满足怎样的关系时,△ACP∽△PDB;(2)当△ACP∽△PDB时,求∠APB的度数.22.(8分)鄂州市化工材料经销公司购进一种化工原料若干千克,价格为每千克30元.物价部门规定其销售单价不高于每千克60元,不低于每千克30元.经市场调查发现:日销售量y(千克)是销售单价x(元)的一次函数,且当x=60时,y=80;x=50时,y=100.在销售过程中,每天还要支付其他费用450元.(1)求出y与x的函数关系式,并写出自变量x的取值范围.(2)求该公司销售该原料日获利w(元)与销售单价x(元)之间的函数关系式.(3)当销售单价为多少元时,该公司日获利最大?最大获利是多少元?23.(8分)如图,AB是⊙O的直径,C是弧AB的中点,⊙O的切线BD交AC 的延长线于点D,E是OB的中点,CE的延长线交切线DB于点F,AF交⊙O于点H,连接BH.(1)求证:AC=CD;(2)若OB=2,求BH的长.24.(8分)在锐角△ABC中,AB=4,BC=5,∠ACB=45°,将△ABC绕点B按逆时针方向旋转,得到△A1BC1.(1)如图1,当点C1在线段CA的延长线上时,求∠CC1A1的度数;(2)如图2,连接AA1,CC1.若△ABA1的面积为4,求△CBC1的面积;(3)如图3,点E为线段AB中点,点P是线段AC上的动点,在△ABC绕点B 按逆时针方向旋转过程中,点P的对应点是点P1,求线段EP1长度的最大值与最小值.25.(8分)如图,在矩形OABC中,AO=10,AB=8,沿直线CD折叠矩形OABC 的一边BC,使点B落在OA边上的点E处.分别以OC,OA所在的直线为x轴,y轴建立平面直角坐标系,抛物线y=ax2+bx+c经过O,D,C三点.(1)求AD的长及抛物线的解析式;(2)一动点P从点E出发,沿EC以每秒2个单位长的速度向点C运动,同时动点Q从点C出发,沿CO以每秒1个单位长的速度向点O运动,当点P运动到点C时,两点同时停止运动.设运动时间为t秒,当t为何值时,以P、Q、C为顶点的三角形与△ADE相似?参考答案与试题解析一、选择题(共12小题,每小题3分,满分36分)1.方程x(x+2)=0的根是()A.x=2 B.x=0 C.x1=0,x2=﹣2 D.x1=0,x2=2【考点】解一元二次方程-因式分解法.【分析】本题可根据“两式相乘值为0,这两式中至少有一式值为0”来解题.【解答】解:x(x+2)=0,⇒x=0或x+2=0,解得x1=0,x2=﹣2.故选C.【点评】本题考查了一元二次方程的解法,解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法.2.下列事件中,属于必然事件的是()A.明天我市下雨B.抛一枚硬币,正面朝下C.购买一张福利彩票中奖了D.掷一枚骰子,向上一面的数字一定大于零【考点】随机事件.【分析】必然事件就是一定发生的事件,即发生的概率是1的事件.【解答】解:∵A,B,C选项为不确定事件,即随机事件,故不符合题意.∴一定发生的事件只有D,掷一枚骰子,向上一面的数字一定大于零,是必然事件,符合题意.故选D.【点评】本题考查的是对必然事件的概念的理解.解决此类问题,要学会关注身边的事物,并用数学的思想和方法去分析、看待、解决问题,提高自身的数学素养.用到的知识点为:必然事件指在一定条件下一定发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.3.已知x=1是关于x的方程(1﹣k)x2+k2x﹣1=0的根,则常数k的值为()A.0 B.1 C.0或1 D.0或﹣1【考点】一元二次方程的解.【分析】一元二次方程的根就是一元二次方程的解,就是能够使方程左右两边相等的未知数的值;即用这个数代替未知数所得式子仍然成立;将x=1代入原方程即可求得k的值.【解答】解:当k=1时,方程(1﹣k)x2+k2x﹣1=0为一元一次方程,解为x=1;k≠1时,方程(1﹣k)x2+k2x﹣1=0为一元二次方程,把x=1代入方程(1﹣k)x2+k2x﹣1=0可得:1﹣k+k2﹣1=0,即﹣k+k2=0,可得k(k﹣1)=0,即k=0或1(舍去);故选C.【点评】该题应注意方程与一元二次方程的区别,此题1﹣k可为0,同时此题也考查了因式分解.4.△ABC的三边长分别为、、2,△DEF的两边长分别为1和,如果△ABC∽△DEF,那么△DEF的第三边长为()A.B.2 C.D.2【考点】相似三角形的性质.【分析】由△ABC的三边长分别为、、2,△DEF的两边长分别为1和,如果△ABC∽△DEF,根据相似三角形的对应边成比例,即可求得答案.【解答】解:设△DEF的第三边长为x,∵△ABC的三边长分别为、、2,△DEF的两边长分别为1和,△ABC ∽△DEF,∴,解得:x=.即△DEF的第三边长为.故选C.【点评】此题考查了相似三角形的性质.此题比较简单,注意相似三角形的对应边成比例定理的应用.5.某机械厂七月份生产零件50万个,计划八、九月份共生产零件146万个,设八、九月份平均每月的增长率为x,那么x满足的方程是()A.50(1+x)2=146 B.50+50(1+x)+50(1+x)2=146C.50(1+x)+50(1+x)2=146 D.50+50(1+x)+50(1+2x)=146【考点】由实际问题抽象出一元二次方程.【分析】根据八、九月份平均每月的增长率相同,分别表示出八、九月份生产零件的个数列出方程,即可作出判断.【解答】解:根据题意得:八月份生产零件为50(1+x)(万个);九月份生产零件为50(1+x)2(万个),则x满足的方程是50(1+x)+50(1+x)2=146,故选C【点评】此题考查了由实际问题抽象出一元二次方程,若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.6.如图,随机闭合开关S1、S2、S3中的两个,能让灯泡⊙发光的概率是()A.B.C.D.【考点】列表法与树状图法.【分析】依据题意先用列表法或画树状图法分析所有等可能的出现结果,然后根据概率公式求出该事件的概率.【解答】解:随机闭合开关S1、S2、S3中的两个出现的情况列表得,所以概率为,故选B.【点评】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.7.如图,在Rt△AOB中,∠AOB=90°,OA=3,OB=2,将Rt△AOB绕点O顺时针旋转90°后得Rt△FOE,将线段EF绕点E逆时针旋转90°后得线段ED,分别以O,E为圆心,OA、ED长为半径画弧AF和弧DF,连接AD,则图中阴影部分面积是()A.πB. C.3+πD.8﹣π【考点】扇形面积的计算;旋转的性质.【分析】作DH⊥AE于H,根据勾股定理求出AB,根据阴影部分面积=△ADE的面积+△EOF的面积+扇形AOF的面积﹣扇形DEF的面积、利用扇形面积公式计算即可.【解答】解:作DH⊥AE于H,∵∠AOB=90°,OA=3,OB=2,∴AB==,由旋转的性质可知,OE=OB=2,DE=EF=AB=,△DHE≌△BOA,∴DH=OB=2,阴影部分面积=△ADE的面积+△EOF的面积+扇形AOF的面积﹣扇形DEF的面积=×5×2+×2×3+﹣=8﹣π,故选:D.【点评】本题考查的是扇形面积的计算、旋转的性质、全等三角形的性质,掌握扇形的面积公式S=和旋转的性质是解题的关键.8.已知⊙O的半径是4,OP=3,则点P与⊙O的位置关系是()A.点P在圆内B.点P在圆上C.点P在圆外D.不能确定【考点】点与圆的位置关系.【分析】点在圆上,则d=r;点在圆外,d>r;点在圆内,d<r(d即点到圆心的距离,r即圆的半径).【解答】解:∵OP=3<4,故点P与⊙O的位置关系是点在圆内.故选A.【点评】本题考查了点与圆的位置关系,注意掌握点和圆的位置关系与数量之间的等价关系是解决问题的关键.9.如图是二次函数y=ax2+bx+c的部分图象,由图象可知不等式ax2+bx+c<0的解集是()A.﹣1<x<5 B.x>5 C.x<﹣1且x>5 D.x<﹣1或x>5【考点】二次函数与不等式(组).【分析】利用二次函数的对称性,可得出图象与x轴的另一个交点坐标,结合图象可得出ax2+bx+c<0的解集.【解答】解:由图象得:对称轴是x=2,其中一个点的坐标为(5,0),∴图象与x轴的另一个交点坐标为(﹣1,0).利用图象可知:ax2+bx+c<0的解集即是y<0的解集,∴x<﹣1或x>5.故选:D.【点评】此题主要考查了二次函数利用图象解一元二次方程根的情况,很好地利用数形结合,题目非常典型.10.同一坐标系中,一次函数y=ax+1与二次函数y=x2+a的图象可能是()A.B.C.D.【考点】二次函数的图象;一次函数的图象.【分析】根据一次函数和二次函数的解析式可得一次函数与y轴的交点为(0,1),二次函数的开口向上,据此判断二次函数的图象.【解答】解:当a<0时,二次函数顶点在y轴负半轴,一次函数经过一、二、四象限;当a>0时,二次函数顶点在y轴正半轴,一次函数经过一、二、三象限.故选C.【点评】此题主要考查了二次函数及一次函数的图象的性质,用到的知识点为:二次函数和一次函数的常数项是图象与y轴交点的纵坐标.11.如图是抛物线y=ax2+bx+c(a≠0)的部分图象,其顶点坐标为(1,n),且与x轴的一个交点在点(3,0)和(4,0)之间.则下列结论:①a﹣b+c>0;②3a+b=0;③b2=4a(c﹣n);④一元二次方程ax2+bx+c=n﹣1有两个不相等的实数根.其中正确结论的个数是()A.1 B.2 C.3 D.4【考点】二次函数图象与系数的关系.【分析】利用抛物线的对称性得到抛物线与x轴的另一个交点在点(﹣2,0)和(﹣1,0)之间,则当x=﹣1时,y>0,于是可对①进行判断;利用抛物线的对称轴为直线x=﹣=1,即b=﹣2a,则可对②进行判断;利用抛物线的顶点的纵坐标为n得到=n,则可对③进行判断;由于抛物线与直线y=n有一个公共点,则抛物线与直线y=n﹣1有2个公共点,于是可对④进行判断.【解答】解:∵抛物线与x轴的一个交点在点(3,0)和(4,0)之间,而抛物线的对称轴为直线x=1,∴抛物线与x轴的另一个交点在点(﹣2,0)和(﹣1,0)之间.∴当x=﹣1时,y>0,即a﹣b+c>0,所以①正确;∵抛物线的对称轴为直线x=﹣=1,即b=﹣2a,∴3a+b=3a﹣2a=a,所以②错误;∵抛物线的顶点坐标为(1,n),∴=n,∴b2=4ac﹣4an=4a(c﹣n),所以③正确;∵抛物线与直线y=n有一个公共点,∴抛物线与直线y=n﹣1有2个公共点,∴一元二次方程ax2+bx+c=n﹣1有两个不相等的实数根,所以④正确.故选C.【点评】本题考查了二次函数图象与系数的关系:对于二次函数y=ax2+bx+c(a ≠0),二次项系数a决定抛物线的开口方向和大小:当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右;常数项c决定抛物线与y轴交点位置:抛物线与y轴交于(0,c):抛物线与x轴交点个数由△决定:△=b2﹣4ac>0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点.12.如图,大正方形中有2个小正方形,如果它们的面积分别是S1、S2,那么S1、S2的大小关系是()A.S1>S2B.S1=S2C.S1<S2D.S1、S2的大小关系不确定【考点】正方形的性质;勾股定理.【分析】设大正方形的边长为x,根据等腰直角三角形的性质知AC、BC的长,进而可求得S2的边长,由面积的求法可得答案.【解答】解:如图,设大正方形的边长为x,根据等腰直角三角形的性质知,AC=BC,BC=CE=CD,∴AC=2CD,CD=,∴S2的边长为x,S2的面积为x2,S1的边长为,S1的面积为x2,∴S 1>S 2,故选:A .【点评】本题利用了正方形的性质和等腰直角三角形的性质求解.二、填空题(本大题共6小题,每小题3分,共18分)13.如果函数1)1(232++-=+-kx x k y k k 是二次函数,那么k 的值一定是 0 .【考点】二次函数的定义.【分析】根据二次函数的定义,列出方程与不等式求解即可.【解答】解:根据二次函数的定义,得:k 2﹣3k +2=2,解得k=0或k=3;又∵k ﹣3≠0,∴k ≠3.∴当k=0时,这个函数是二次函数.【点评】本题考查二次函数的定义.14.圆内接正六边形的边心距为2cm ,则这个正六边形的面积为 24 cm 2.【考点】正多边形和圆.【分析】根据正六边形的特点,通过中心作边的垂线,连接半径,结合解直角三角形的有关知识解决.【解答】解:如图,连接OA 、OB ;过点O 作OG ⊥AB 于点G .在Rt△AOG中,OG=2,∠AOG=30°,∵OG=OA•cos 30°,∴OA===4cm,∴这个正六边形的面积为6××4×2=24cm2.故答案为:24.【点评】此题主要考查正多边形的计算问题,根据题意画出图形,再根据正多边形的性质及锐角三角函数的定义解答即可.15.如图,等腰直角三角形ABC绕C点按顺时针旋转到△A1B1C1的位置(A、C、B1在同一直线上),∠B=90°,如果AB=1,那么AC运动到A1C1所经过的图形的面积是.【考点】扇形面积的计算;旋转的性质.【分析】根据已知条件可得,AC的长度,∠ACA1的度数,从而根据扇形的面积公式得出答案.【解答】解:由AB=1,可得AC==,∠ACA1=135°S扇形ACA1===,故答案为.【点评】本题考查图形的旋转及扇形面积公式,解此题的关键是计算求出圆的半径和圆心角.16.一个不透明的袋中装有除颜色外均相同的8个黑球、4个白球和若干个红球.每次摇匀后随机摸出一个球,记下颜色后再放回袋中,通过大量重复摸球试验后,发现摸到红球的频率稳定于0.4,由此可估计袋中约有红球8个.【考点】利用频率估计概率.【分析】根据摸到红球的频率,可以得到摸到黑球和白球的概率之和,从而可以求得总的球数,从而可以得到红球的个数.【解答】解:由题意可得,摸到黑球和白球的频率之和为:1﹣0.4=0.6,∴总的球数为:(8+4)÷0.6=20,∴红球有:20﹣(8+4)=8(个),故答案为:8.【点评】本题考查利用频率估计概率,解题的关键是明确题意,找出所求问题需要的条件.17.如图,铁路口栏杆短臂长1米,长臂长16米,当短臂端点下降0.5米时,长臂端点升高8米.【考点】相似三角形的应用.【分析】连接AB、CD,根据相似三角形的判定定理判断出△AOB∽△COD,再由相似三角形的对应边成比例即可得出CD的长.【解答】解:连接AB、CD,由题意可知,OA=OB=1米,OC=OD=16米,AB=0.5米,在△AOB与△COD中,∵=,∠AOB=∠COD,∴△AOB∽△COD,∴=,即=,解得CD=8米.故答案为:8.【点评】本题考查的是相似三角形的应用,根据题意判断出△AOB∽△COD,再根据相似三角形的对应边成比例即可解答.18.如图,在Rt△ABC中,∠ABC是直角,AB=3,BC=4,P是BC边上的动点,设BP=x,若能在AC边上找到一点Q,使∠BQP=90°,则x的取值范围是3≤x ≤4.【考点】直线与圆的位置关系;勾股定理;相似三角形的判定与性质.【分析】根据已知首先找出BP取最小值时QO⊥AC,进而求出△ABC∽△OQC,再求出x的最小值,进而求出PB的取值范围即可.【解答】解:过BP中点O,以BP为直径作圆,连接QO,当QO⊥AC时,QO最短,即BP最短,∵∠OQC=∠ABC=90°,∠C=∠C,∴△ABC∽△OQC,∴=,∵AB=3,BC=4,∴AC=5,∵BP=x,∴QO=x,CO=4﹣x,∴=,解得:x=3,当P与C重合时,BP=4,∴BP=x的取值范围是:3≤x≤4,故答案为:3≤x≤4.【点评】此题主要考查了直线与圆的位置关系以及三角形的相似的性质与判定和勾股定理等知识,找出当QO⊥AC时,QO最短即BP最短,进而利用相似求出是解决问题的关键.三、解答题(本大题共7小题,共56分)19.如图,已知直线与双曲线(k>0)交于A、B两点,且点A的横坐标为4.(1)求k的值;(2)若双曲线(k>0)上一点C的纵坐标为8,求△AOC的面积.【考点】反比例函数与一次函数的交点问题.【分析】(1)根据正比例函数先求出点A的坐标,从而求出了k值为8;=S△AOF,所以S梯形CEFA=S△COA=15.(2)根据k的几何意义可知S△COE【解答】解:(1)∵点A横坐标为4,∴当x=4时,y=2.∴点A的坐标为(4,2).∵点A是直线与双曲线(k>0)的交点,∴k=4×2=8.(2)如图,过点C、A分别作x轴的垂线,垂足为E、F,∵点C在双曲线上,当y=8时,x=1.∴点C的坐标为(1,8).∵点C、A都在双曲线上,∴S△COE=S△AOF=4.∴S△COE +S梯形CEFA=S△COA+S△AOF.∴S△COA=S梯形CEFA.(6分)∵S梯形CEFA=×(2+8)×3=15,∴S△COA=15.(8分)【点评】主要考查了待定系数法求反比例函数的解析式和反比例函数中k的几何意义.这里体现了数形结合的思想,做此类题一定要正确理解k的几何意义.20.(1)解方程:2x2﹣3x﹣1=0.(2)已知关于x的方程(x﹣3)(x﹣2)﹣p2=0.①求证:方程总有两个不相等的实数根.②当p=2时,求该方程的根.【考点】根的判别式;解一元二次方程-公式法.【分析】(1)应用公式法,求出方程2x2﹣3x﹣1=0的解是多少即可.(2)①判断出△>0,即可推得方程总有两个不相等的实数根.②当p=2时,应用公式法,求出该方程的根是多少即可.【解答】解:(1)2x2﹣3x﹣1=0,∵a=2,b=﹣3,c=﹣1,∴△=(﹣3)2﹣4×2×(﹣1)=9+8=17,∴x1=,x2=.(2)①方程可变形为x2﹣5x+6﹣p2=0,∴△=(﹣5)2﹣4×1×(6﹣p2)=1+4p2,∵4p2≥0,∴△>0,∴这个方程总有两个不相等的实数根.②当p=2时,方程变形为x2﹣5x+2=0,∵△=(﹣5)2﹣4×1×2=25﹣8=17,∴x1=,x2=.【点评】此题主要考查了用公式法解一元二次方程,以及根的判别式,要熟练掌握.21.如图,点C、D在线段AB上,△PCD是等边三角形.(1)当AC、CD、DB满足怎样的关系时,△ACP∽△PDB;(2)当△ACP∽△PDB时,求∠APB的度数.【考点】等边三角形的性质;相似三角形的判定与性质.【分析】(1)利用△ACP∽△PDB的对应边成比例和等边三角形的性质可以找到AC、CD、DB的关系;(2)利用相似三角形的性质对应角相等和等边三角形的性质可以求出∠APB的度数.【解答】解:(1)当CD2=AC•DB时,△ACP∽△PDB,∵△PCD是等边三角形,∴∠PCD=∠PDC=60°,∴∠ACP=∠PDB=120°,若CD2=AC•DB,由PC=PD=CD可得:PC•PD=AC•DB,即=,则根据相似三角形的判定定理得△ACP∽△PDB(2)当△ACP∽△PDB时,∠APC=∠PBD∵∠PDB=120°∴∠DPB+∠DBP=60°∴∠APC+∠BPD=60°∴∠APB=∠CPD+∠APC+∠BPD=120°即可得∠APB的度数为120°.【点评】此题是开放性试题,要熟练运用相似三角形的性质和等边三角形的性质.22.鄂州市化工材料经销公司购进一种化工原料若干千克,价格为每千克30元.物价部门规定其销售单价不高于每千克60元,不低于每千克30元.经市场调查发现:日销售量y(千克)是销售单价x(元)的一次函数,且当x=60时,y=80;x=50时,y=100.在销售过程中,每天还要支付其他费用450元.(1)求出y与x的函数关系式,并写出自变量x的取值范围.(2)求该公司销售该原料日获利w(元)与销售单价x(元)之间的函数关系式.(3)当销售单价为多少元时,该公司日获利最大?最大获利是多少元?【考点】二次函数的应用.【分析】(1)根据y与x成一次函数解析式,设为y=kx+b,把x与y的两对值代入求出k与b的值,即可确定出y与x的解析式,并求出x的范围即可;(2)根据利润=单价×销售量列出W关于x的二次函数解析式即可;(3)利用二次函数的性质求出W的最大值,以及此时x的值即可.【解答】解:(1)设y=kx+b,根据题意得,解得:k=﹣2,b=200,∴y=﹣2x+200(30≤x≤60);(2)W=(x﹣30)(﹣2x+200)﹣450=﹣2x2+260x﹣6450=﹣2(x﹣65)2+2000;(3)W=﹣2(x﹣65)2+2000,∵30≤x≤60,∴x=60时,w有最大值为1950元,∴当销售单价为60元时,该公司日获利最大,为1950元.【点评】此题考查了二次函数的应用,待定系数法求一次函数解析式,以及二次函数的性质,熟练掌握二次函数性质是解本题的关键.23.如图,AB是⊙O的直径,C是弧AB的中点,⊙O的切线BD交AC的延长线于点D,E是OB的中点,CE的延长线交切线DB于点F,AF交⊙O于点H,连接BH.(1)求证:AC=CD;(2)若OB=2,求BH的长.【考点】切线的性质.【分析】(1)连接OC,只要证明OC∥BD即可.(2)在Rt△ABF中,根据BH=计算即可.【解答】证明(1)连接OC.∵C是中点,AB是○O的直径∴OC⊥AB,∵BD是○O切线,∴BD⊥AB.∴OC∥BD.∵AO=BO,∴AC=CD(2)∵E是OB中点,∴OE=BE在△COE与△FBE中,∠CEO=∠FEBOE=BE∠COE=∠FBE△COE≌△FBE(ASA)∴BF=CO∵OB=2,∴BF=2∴AF===2,∵AB是直径∴BH⊥AF∴AB•BF=AF•BH∴BH===.【点评】本题考查圆的有关知识,切线的性质全等三角形的判定和性质等知识,解题的关键是熟练掌握这些知识的应用,学会条件常用辅助线,属于中考常考题型.24.在锐角△ABC中,AB=4,BC=5,∠ACB=45°,将△ABC绕点B按逆时针方向旋转,得到△A1BC1.(1)如图1,当点C1在线段CA的延长线上时,求∠CC1A1的度数;(2)如图2,连接AA1,CC1.若△ABA1的面积为4,求△CBC1的面积;(3)如图3,点E为线段AB中点,点P是线段AC上的动点,在△ABC绕点B 按逆时针方向旋转过程中,点P的对应点是点P1,求线段EP1长度的最大值与最小值.【考点】相似三角形的判定与性质;全等三角形的判定与性质;旋转的性质.【分析】(1)由由旋转的性质可得:∠A1C1B=∠ACB=45°,BC=BC1,又由等腰三角形的性质,即可求得∠CC1A1的度数;(2)由△ABC≌△A1BC1,易证得△ABA1∽△CBC1,然后利用相似三角形的面积比等于相似比的平方,即可求得△CBC1的面积;(3)由①当P在AC上运动至垂足点D,△ABC绕点B旋转,使点P的对应点P1在线段AB上时,EP1最小;②当P在AC上运动至点C,△ABC绕点B旋转,使点P的对应点P1在线段AB的延长线上时,EP1最大,即可求得线段EP1长度的最大值与最小值.【解答】解:(1)由旋转的性质可得:∠A1C1B=∠ACB=45°,BC=BC1,∴∠CC1B=∠C1CB=45°,∴∠CC1A1=∠CC1B+∠A1C1B=45°+45°=90°.(2)∵△ABC≌△A1BC1,∴BA=BA1,BC=BC1,∠ABC=∠A1BC1,∴,∠ABC+∠ABC1=∠A1BC1+∠ABC1,∴∠ABA1=∠CBC1,∴△ABA1∽△CBC1.∴,=4,∵S△ABA1=;∴S△CBC1(3)①如图1,过点B作BD⊥AC,D为垂足,∵△ABC为锐角三角形,∴点D在线段AC上,在Rt△BCD中,BD=BC×sin45°=,当P在AC上运动,BP与AC垂直的时候,△ABC绕点B旋转,使点P的对应点P1在线段AB上时,EP1最小,最小值为:EP1=BP1﹣BE=BD﹣BE=﹣2;②当P在AC上运动至点C,△ABC绕点B旋转,使点P的对应点P1在线段AB 的延长线上时,EP1最大,最大值为:EP1=BC+BE=2+5=7.【点评】此题考查了旋转的性质、相似三角形的判定与性质、全等三角形的判定与性质以及三角函数的应用.此题难度较大,注意数形结合思想的应用,注意旋转前后的对应关系.25.如图,在矩形OABC中,AO=10,AB=8,沿直线CD折叠矩形OABC的一边BC,使点B落在OA边上的点E处.分别以OC,OA所在的直线为x轴,y轴建立平面直角坐标系,抛物线y=ax2+bx+c经过O,D,C三点.(1)求AD的长及抛物线的解析式;(2)一动点P从点E出发,沿EC以每秒2个单位长的速度向点C运动,同时动点Q从点C出发,沿CO以每秒1个单位长的速度向点O运动,当点P运动到点C时,两点同时停止运动.设运动时间为t秒,当t为何值时,以P、Q、C为顶点的三角形与△ADE相似?【考点】二次函数综合题.【分析】(1)根据折叠图形的轴对称性,△CED、△CBD全等,首先在Rt△CEO 中求出OE的长,进而可得到AE的长;在Rt△AED中,AD=AB﹣BD、ED=BD,利用勾股定理可求出AD的长.进一步能确定D点坐标,利用待定系数法即可求出抛物线的解析式;(2)分两种情况进行讨论:①当∠PQC=∠DAE=90°时,△ADE∽△QPC,②当∠QPC=∠DAE=90°时,△ADE∽△PQC,分别根据相似三角形的性质,得出关于t的方程,求得t的值.【解答】解:(1)∵四边形ABCO为矩形,∴∠OAB=∠AOC=∠B=90°,AB=CO=8,AO=BC=10.由折叠的性质得,△BDC≌△EDC,∴∠B=∠DEC=90°,EC=BC=10,ED=BD.由勾股定理易得EO=6.∴AE=10﹣6=4.设AD=x,则BD=CD=8﹣x,由勾股定理,得x2+42=(8﹣x)2,解得,x=3.∴AD=3.∴点D(﹣3,10)∵抛物线y=ax2+bx+c过点O(0,0),∴c=0.∵抛物线y=ax2+bx+c过点D(﹣3,10),C(﹣8,0),∴,解得.∴抛物线的解析式为:y=﹣x2﹣x.(2)∵∠DEA+∠OEC=90°,∠OCE+∠OEC=90°,∴∠DEA=∠OCE,由(1)可得,AD=3,AE=4,DE=5,∵CQ=t,EP=2t,∴PC=10﹣2t,①当∠PQC=∠DAE=90°时,△ADE∽△QPC,∴=,即=,解得t=;②当∠QPC=∠DAE=90°时,△ADE ∽△PQC ,∴=,即=, 解得t=,综上所述,当t=或时,以P 、Q 、C 为顶点的三角形与△ADE 相似.【点评】本题主要考查了相似三角形的判定与性质、矩形的性质及二次函数的综合应用,解题时注意:折叠的性质叠种对称变换,属于对称,折叠前后图形的形和小不变,位变化,对边和对应角相等.解题时注意分类思想的运用.2017学年初三数学第一学期期末试卷(试卷满分130分,考试时间120分)一.选择题.(本大题共10小题,每小题3分,共30分)1.下列点中,一定在二次函数21y x =-图象上的是A .(0,0)B .(1,1)C .(1,0)D .(0,1)2.如图,△ABC 中,∠B=90°,AB=1,BC=2,则sinA=A. B. 12 C. D.3.函数2(1)(3)y x x =+-的对称轴是直线 ( )A .x=1B .x= —1C .x=—3D .x=34.一个扇形的圆心角是120°,面积3πcm 2,那么这个扇形的半径是 ( )A .1cmB .3cmC .6cmD .9cm5.如图,已知AB 是圆O 的直径,∠CAB=30°,则cosD 的值为( )A . 12B C D 6.已知二次函数2y x =的图像上有一点P (1,1).若将该抛物线平移后所得的二次函数表达式221y x x =--,则点P 经过该次平移后的坐标为( )A. (2,1)B. (2,-1)C. (1,-2)D. (0,5)7.某市2015年国内生产总值(GDP )比2014年增长了12%,预计2016年比2015年增长7%,若这两年GDP 年平均增长率为x %,则x %满足的关系是 ( )A .12%+7%=x %B . (1+12%)(1+7%)=2(1+x %)C . 12%+7%=2x %D .(1+12%)(1+7%)=(1+x %)28.在△ABC 中,∠C=90°,a 、b 分别是∠A 、∠B 的对边,220a ab b --=,则tanA=( )A. B. C. D.1 9. 如图,在平面直角坐标系xOy 中,⊙P 的圆心是(2,)a (0a >),半径是2,与y 轴相切于点C ,直线y x =被⊙P 截得的弦AB 的长为a 的值是( )A .B .2+C .D .2+第9题图 第10题图10. 如图,已知二次函数2(0)y ax bx c a =++≠的图象与x 轴交于点(1,0)A -, 顶点坐标为(1,)n ,点与轴的交点在(0,2)-和(0,1)-之间(不包括端点).有下列结论:①当3x >时,0y <;②n c a =-;③30a b +>;④2-1-3a <<.其中正确的结论有 ( )A . 1 个B .2 个C .3 个D .4 个。
九年级上期末考试数学答案
2017—2017学年第一学期期末考试九年级数学试题参考答案及评分标准(共3页)一、选择题(10×3分=30分)1.C ; 2.D ; 3.C ; 4.A ; 5.B ; 6.B ; 7.B ; 8.C ; 9.C ; 10.D .二、填空题(6×3分=18)11.60°; 12.12; 13.20%; 14.(1,0); 15.6π-; 16.(3,2) . 三、解答题(72分)17.(6分)解:a=1, b=1-, c=3-. ------------ 1分△=224(1)41(3)130b ac -=--⨯⨯-=> ------------ 3分方程有两个不等的实数根122b x a -±±== ------------ 5分即121122x x == ----------- 6分 18.(6分)解:设该班男生人数为x 人,依题意得: -2483x = ------------ 4分 解得:x =32, 48-x =16 ------------ 5分即该班男生人数为32人,女生人数为16人. ------------ 6分19.(7分)证明:连OC ,则OC ⊥PQ∴∠BCP +∠BCO =90° ------------ 2分又∵AB 是直径, ∴∠ACB =90°∴∠A +∠B =90° ------------ 4分∵OB =OC∴∠B =∠BCO ------------ 6分∴∠BCP =∠A ------------ 7分20.(7分)解:(1)画树形图:------------ 2分∴21(63P A ==选中型号电脑) ------------ 3分 (2) 设购买A 型号电脑x 台,由(1)知,则购买D 型号电脑或E 型号电脑(36-x )台. 依题意得:①6000x +5000(36-x )=100000 ------------ 4分方程解不合题意,舍去. ------------ 5分②6000x +2000(36-x )=100000 ------------ 6分解得:x =7 ------------7分综合①、②知购买A 型号电脑7台.21.(7分)解:(1)由题知△=2241(24)0k -⨯⨯->, ------------ 2分 解得:52k < ------------ 3分 (2)由(1)知52k <,又k 为正整数,∴k =1或k =2 ------------ 4分 ①当k =1时,原方程可化为:2220x x +-=该方程的两根都不是整数,不合题意,舍去. ------------ 5分②当k =2时,原方程可化为:220x x +=该方程的两根都是整数,符合题意. ------------ 6分∴k =2. ------------ 7分22.(8分)解:(1)设A (a ,b ) 由11122OAM S OM AM ab ∆=== 得:2ab = ------------ 2分 ∴2k ab == ------------ 3分 ∴反比例函数解析式为:2y x =(2)由122y x y x⎧=⎪⎪⎨⎪=⎪⎩解得点A 的坐标为A (2,1) ------------ 4分 由题知B (1,2) ------------ 5分延长AM 到A ',使AM =A 'M ,连A 'B 交x 轴于点P ,则P 为所求由B (1,2),(2,1)A '-求得直线A 'B 的解析式为:35y x =-+ ------------ 6分在35y x =-+中,令y =0,得x =53 ------------ 7分 ∴所求点P 坐标为P (53,0). ------------ 8分 23.(8分)解:(1)设所求函数关系式为:y kx b =+由图象知:360830010k b k b =+⎧⎨=+⎩,解得:30300k b =-⎧⎨=⎩∴所求函数关系式为:y =-30x +600 ------------ 3分(2) 2(6)30(13)1470w y x x =-=--+ ------------ 5分∵a =-30<0,对称轴为x =13 ------------ 6分∴当x ≤13时,w 随x 增大而增大 ------------ 7分∴当x =12时,w 值最大,且最大值为1440元. ------------ 8分24.(10分)(1)证明:连OE .∵AB =AC ,D 是BC 中点∴AD ⊥BC ------------ 1分∵OA =OE , ∴∠OAE =∠OEA∵AE 平分∠BAD , ∴∠DAE =∠OAE∴∠DAE =∠OEA ------------ 2分∴OD ∥AC∴OE ⊥BC ------------ 3分又∵点E 在⊙O 上∴BC 与⊙O 相切. ------------ 4分(2)解:∵AB =AC ,D 是BC 中点∴AD ⊥BC ,∠BAD =∠CAD∵AE 平分∠BAD , ∠BAC =120°∴∠DAE =∠EAF =∠B =30° ------------ 5分在Rt △DAE 中:由2222(2)AD DE AE DE +==,得:2223(2)DE DE +=解得:DE------------ 7分∴AE =2 DE =在Rt △AEF 中,由勾股定理,同上可得:EF =2 ------------ 8分∴AF =2 EF =4在Rt △ABD 中,∵∠B =30°∴AB =2 AD =6 ------------ 9分∴BF =AB -AF =2. ------------ 10分25.(12分)解:(1)把A (-2,0)代入y =a (x -1)2+33,得0=a (-2-1)2+33.∴a =-33 ∴该抛物线的解析式为y =-33(x -1)2+33 ------------ 2分 即y =-33x 2+332x +338. (2)设点D 的坐标为(x D ,y D ),则x D =-)(-332332 =1,y D =-33×1 2+332×1+338=33. ∴顶点D 的坐标为(1,33). ------------ 3分 如图,过点D 作DN ⊥x 轴于N ,则DN =33,AN =3,∴AD =22333)+(=6.∴∠ADN =60°∴∠DAO =60° ------------ 4分 ∵OM ∥AD①当DP ⊥OM 时,四边形DAOP 为直角梯形.过点O 作OE ⊥AD 轴于E .在Rt △AOE 中,∵AO =2,∠EAO =60°,∴AE =1.∵四边形DEOP 为矩形,∴OP =DE =6-1=5.∴t =5(s ) ------------ 5分②当PD =OA 时,四边形DAOP 为等腰梯形,此时OP =AD -2AE =6-2=4.∴t =4(s ) ------------ 6分综上所述,当t =5s ,4s 时,四边形DAOP 分别为直角梯形,等腰梯形.(3)由题知DAOC 是平行四边形.∵∠DAO =60°,OM ∥AD ,∴∠COB =60°.又∵OC =OB ,∴△COB 是等边三角形,∴OB =OC =AD =6.∵BQ =2t ,∴OQ =6-2t (0<t <3) ------------ 7分过点P 作PF ⊥x 轴于F ,则PF =23t . ∴S 四边形BCPQ =S △COB -S △POQ =21×6×33-21×(6-2t )×23t =23(t -23)2+8363 ------------ 10分 ∴当t =23(s )时,S 四边形BCPQ 的最小值为8363. ------------ 11分 此时OQ =6-2t =6-2×23=3,OP =23,OF =43, ∴QF =3-43=49,PF =433. ∴PQ =22QF PF +=2249433)+()(=233. ------------ 12分。
成都市数学九年级上册期末试题和答案
成都市数学九年级上册期末试题和答案一、选择题1.如图,已知AB 为O 的直径,点C ,D 在O 上,若28BCD ∠=︒,则ABD ∠=( )A .72︒B .56︒C .62︒D .52︒2.若将半径为24cm 的半圆形纸片围成一个圆锥的侧面,则这个圆锥的底面圆半径为( ) A .3cmB .6cmC .12cmD .24cm3.如图,点A ,B ,C 在⊙O 上,∠A=36°,∠C=28°,则∠B=( )A .100°B .72°C .64°D .36°4.若25x y =,则x y y+的值为( ) A .25B .72C .57D .755.二次函数()20y ax bx c a =++≠的图像如图所示,它的对称轴为直线1x =,与x 轴交点的横坐标分别为1x ,2x ,且110x -<<.下列结论中:①0abc <;②223x <<;③421a b c ++<-;④方程()2200ax bx c a ++-=≠有两个相等的实数根;⑤13a >.其中正确的有( )A .②③⑤B .②③C .②④D .①④⑤ 6.已知a 是方程x 2+3x ﹣1=0的根,则代数式a 2+3a+2019的值是( ) A .2020 B .﹣2020 C .2021 D .﹣2021 7.下列方程是一元二次方程的是( )A .2321x x =+B .3230x x --C .221x y -=D .20x y +=8.如图示,二次函数2y x mx =-+的图像与x 轴交于坐标原点和()4,0,若关于x 的方程20x mx t -+=(t 为实数)在15x <<的范围内有解,则t 的取值范围是( )A .53t -<<B .5t >-C .34t <≤D .54t -<≤9.已知二次函数y =x 2+mx +n 的图像经过点(―1,―3),则代数式mn +1有( ) A .最小值―3 B .最小值3 C .最大值―3 D .最大值310.如图,AC 是⊙O 的内接正四边形的一边,点B 在弧AC 上,且BC 是⊙O 的内接正六边形的一边.若AB 是⊙O 的内接正n 边形的一边,则n 的值为( )A .6B .8C .10D .1211.如图,如果从半径为6cm 的圆形纸片剪去13圆周的一个扇形,将留下的扇形围成一个圆锥(接缝处不重叠),那么这个圆锥的底面半径为( )A .2cmB .4cmC .6cmD .8cm12.方程x 2=4的解是( )A .x=2B .x=﹣2C .x 1=1,x 2=4D .x 1=2,x 2=﹣213.下列对于二次函数y =﹣x 2+x 图象的描述中,正确的是( ) A .开口向上 B .对称轴是y 轴C .有最低点D .在对称轴右侧的部分从左往右是下降的14.如图1,一个扇形纸片的圆心角为90°,半径为4.如图2,将这张扇形纸片折叠,使点A 与点O 恰好重合,折痕为CD ,图中阴影为重合部分,则阴影部分的面积为( )A .4233π- B .8433π- C .8233π- D .843π- 15.已知函数2y x bx c =-++的部分图像如图所示,若0y >,则的取值范围是( )A .41x -<<B .21x -<<C .31x -<<D .31x x <->或二、填空题16.一元二次方程290x 的解是__.17.若记[]x 表示任意实数的整数部分,例如:[]4.24=,21=,…,则123420192020⎡⎡⎡⎤⎡⎡⎡⎤-+-+⋅⋅⋅⋅⋅⋅+-⎣⎣⎣⎦⎣⎣⎣⎦(其中“+”“-”依次相间)的值为______.18.飞机着陆后滑行的距离s (单位:m )关于滑行的时间t (单位:s )的函数解析式是2200.5s t t =-,飞机着陆后滑行______m 才能停下来.19.将边长分别为2cm ,3cm ,4cm 的三个正方形按如图所示的方式排列,则图中阴影部分的面积为______2cm .20.如图,在□ABCD 中,AB =5,AD =6,AD 、AB 、BC 分别与⊙O 相切于E 、F 、G 三点,过点C 作⊙O 的切线交AD 于点N ,切点为M .当CN ⊥AD 时,⊙O 的半径为____.21.如图,在Rt △ABC 中,BC AC ⊥,CD 是AB 边上的高,已知AB =25,BC =15,则BD =__________.22.如图是二次函数2y ax bx c =++的部分图象,由图象可知不等式20ax bx c ++>的解集是_______.23.如图,Rt △ABC 中,∠ACB =90°,AC =BC =4,D 为线段AC 上一动点,连接BD ,过点C 作CH ⊥BD 于H ,连接AH ,则AH 的最小值为_____.24.如图,D 、E 分别是△ABC 的边AB ,AC 上的点,AD AB =AEAC,AE =2,EC =6,AB =12,则AD 的长为_____.25.一个不透明的口袋中装有若干只除了颜色外其它都完全相同的小球,若袋中有红球6只,且摸出红球的概率为35,则袋中共有小球_____只. 26.如图,O 的弦8AB =,半径ON 交AB 于点M ,M 是AB 的中点,且3OM =,则MN 的长为__________.27.当21x -≤≤时,二次函数22()1y x m m =--++有最大值4,则实数m 的值为________.28.在某市中考体考前,某初三学生对自己某次实心球训练的录像进行分析,发现实心球飞行高度y (米)与水平距离x (米)之间的关系为21251233y x x =-++,由此可知该生此次实心球训练的成绩为_______米.29.某服装店搞促销活动,将一种原价为56元的衬衣第一次降价后,销售量仍然不好,又进行第二次降价,两次降价的百分率相同,现售价为31.5元,设降价的百分率为x ,则列出方程是______________.30.如图,在□AB CD 中,E 、F 分别是AD 、CD 的中点,EF 与BD 相交于点M ,若△DEM 的面积为1,则□ABCD 的面积为________.三、解答题31.某商店经销的某种商品,每件成本为30元.经市场调查,当售价为每件70元时,可销售20件.假设在一定范围内,售价每降低2元,销售量平均增加4件.如果降价后商店销售这批商品获利1200元,问这种商品每件售价是多少元?32.已知二次函数y =-x 2+bx +c (b ,c 为常数)的图象经过点(2,3),(3,0). (1)则b =,c =;(2)该二次函数图象与y 轴的交点坐标为,顶点坐标为; (3)在所给坐标系中画出该二次函数的图象; (4)根据图象,当-3<x <2时,y 的取值范围是.33.2016年,某贫困户的家庭年人均纯收入为2500元,通过政府产业扶持,发展了养殖业后,到2018年,家庭年人均纯收入达到了3600元.(1)求该贫困户2016年到2018年家庭年人均纯收入的年平均增长率;(2)若年平均增长率保持不变,2019年该贫困户的家庭年人均纯收入是否能达到4200元?34.如图,在平面直角坐标系中,⊙O的半径为1,点A在x轴的正半轴上,B为⊙O上一点,过点A、B的直线与y轴交于点C,且OA2=AB•AC.(1)求证:直线AB是⊙O的切线;(2)若AB3AB对应的函数表达式.35.如图甲,在△ABC中,∠ACB=90°,AC=4cm,BC=3cm.如果点P由点B出发沿BA方向向点A匀速运动,同时点Q由点A出发沿AC方向向点C匀速运动,它们的速度均为1cm/s.连接PQ,设运动时间为t(s)(0<t<4),解答下列问题:(1)设△APQ的面积为S,当t为何值时,S取得最大值,S的最大值是多少;(2)如图乙,连接PC,将△PQC沿QC翻折,得到四边形PQP′C,当四边形PQP′C为菱形时,求t的值;(3)当t为何值时,△APQ是等腰三角形.四、压轴题36.在平面直角坐标系xOy中,对于任意三点A,B,C,给出如下定义:若矩形的任何一条边均与某条坐标轴平行,且A,B,C三点都在矩形的内部或边界上,则称该矩形为点A,B,C的外延矩形.点A,B,C的所有外延矩形中,面积最小的矩形称为点A,B,C的最佳外延矩形.例如,图中的矩形,,都是点A,B,C的外延矩形,矩形是点A,B,C的最佳外延矩形.(1)如图1,已知A(-2,0),B(4,3),C(0,).①若,则点A,B,C的最佳外延矩形的面积为;②若点A,B,C的最佳外延矩形的面积为24,则的值为;(2)如图2,已知点M(6,0),N(0,8).P(,)是抛物线上一点,求点M,N,P的最佳外延矩形面积的最小值,以及此时点P的横坐标的取值范围;(3)如图3,已知点D(1,1).E(,)是函数的图象上一点,矩形OFEG是点O,D,E的一个面积最小的最佳外延矩形,⊙H是矩形OFEG的外接圆,请直接写出⊙H的半径r的取值范围.37. 如图,在Rt △ABC 中,∠C=90°,AC=8,BC=6,P 为边BC 上一个动点(可以包括点C 但不包括点B ),以P 为圆心PB 为半径作⊙P 交AB 于点D 过点D 作⊙P 的切线交边AC 于点E ,(1)求证:AE=DE ; (2)若PB=2,求AE 的长;(3)在P 点的运动过程中,请直接写出线段AE 长度的取值范围.38.如图,B 是O 的半径OA 上的一点(不与端点重合),过点B 作OA 的垂线交O 于点C ,D ,连接OD ,E 是O 上一点,CE CA =,过点C 作O 的切线l ,连接OE 并延长交直线l 于点F.(1)①依题意补全图形. ②求证:∠OFC=∠ODC . (2)连接FB ,若B 是OA 的中点,O 的半径是4,求FB 的长.39.()1尺规作图1:已知:如图,线段AB 和直线且点B 在直线上求作:点C ,使点C 在直线上并且使ABC 为等腰三角形. 作图要求:保留作图痕迹,不写作法,做出所有符合条件的点C .()2特例思考:如图一,当190∠=时,符合()1中条件的点C 有______个;如图二,当160∠=时,符合()1中条件的点C 有______个.()3拓展应用:如图,AOB 45∠=,点M ,N 在射线OA 上,OM x =,ON x 2=+,点P 是射线OB 上的点.若使点P ,M ,N 构成等腰三角形的点P 有且只有三个,求x 的值.40.如图1,ABC ∆是⊙O 的内接等腰三角形,点D 是弧AC 上异于,A C 的一个动点,射线AD 交底边BC 所在的直线于点E ,连结BD 交AC 于点F . (1)求证:ADB CDE ∠=∠;(2)若7BD =,3CD =,①求AD DE •的值;②如图2,若AC BD ⊥,求tan ACB ∠;(3)若5tan 2CDE ∠=,记AD x =,ABC ∆面积和DBC ∆面积的差为y ,直接写出y 关于x 的函数关系式.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】 【分析】连接AD,根据同弧所对的圆周角相等,求∠BAD 的度数,再根据直径所对的圆周角是90°,利用内角和求解. 【详解】解:连接AD,则∠BAD=∠BCD=28°, ∵AB 是直径, ∴∠ADB=90°,∴∠ABD=90°-∠BAD=90°-28°=62°.故选:C. 【点睛】本题考查圆周角定理,运用圆周角定理是解决圆中角问题的重要途径,直径所对的圆周角是90°是圆中构造90°角的重要手段.2.C解析:C 【解析】 【分析】易得圆锥的母线长为24cm ,以及圆锥的侧面展开图的弧长,也就是圆锥的底面周长,除以2π即为圆锥的底面半径. 【详解】解:圆锥的侧面展开图的弧长为:2π24224π⨯÷=, ∴圆锥的底面半径为:()24π2π12cm ÷=. 故答案为:C. 【点睛】本题考查的知识点是圆锥的有关计算,熟记各计算公式是解题的关键.3.C解析:C 【解析】 【分析】 【详解】试题分析:设AC 和OB 交于点D ,根据同弧所对的圆心角的度数等于圆周角度数2倍可得:∠O=2∠A=72°,根据∠C=28°可得:∠ODC=80°,则∠ADB=80°,则∠B=180°-∠A-∠ADB=180°-36°-80°=64°,故本题选C .4.D解析:D【解析】【分析】由已知可得x与y的关系,然后代入所求式子计算即可.【详解】解:∵25xy=,∴25x y =,∴2755y yx yy y++==.故选:D.【点睛】本题考查了比例的性质,属于基础题型,熟练掌握比例的性质是解题关键.5.A解析:A【解析】【分析】利用抛物线开口方向得到a<0,利用对称轴位置得到b>0,利用抛物线与y轴的交点在x 轴下方得c<0,则可对①进行判断;根据二次函数的对称性对②③进行判断;利用抛物线与直线y=2的交点个数对④进行判断,利用函数与坐标轴的交点列出不等式即可判断⑤.【详解】∵抛物线开口向下,∴a<0,∵对称轴为直线1x=∴b=-2a>0∵抛物线与y轴的交点在x轴下方,∴c<-1,∴abc>0,所以①错误;∵110x -<<,对称轴为直线1x =∴1212x x +=故223x <<,②正确; ∵对称轴x=1,∴当x=0,x=2时,y 值相等,故当x=0时,y=c <0,∴当x=2时,y=421a b c ++<-,③正确;如图,作y=2,与二次函数有两个交点,故方程()2200ax bx c a ++-=≠有两个不相等的实数根,故④错误; ∵当x=-1时,y=a-b+c=3a+c >0,当x=0时,y=c <-1∴3a >1,故13a >,⑤正确; 故选A.【点睛】本题考查了二次函数图象与系数的关系:对于二次函数y =ax 2+bx +c (a ≠0),二次项系数a 决定抛物线的开口方向和大小.当a >0时,抛物线向上开口;当a <0时,抛物线向下开口;一次项系数b 和二次项系数a 共同决定对称轴的位置. 当a 与b 同号时(即ab >0),对称轴在y 轴左; 当a 与b 异号时(即ab <0),对称轴在y 轴右;常数项c 决定抛物线与y 轴交点位置:抛物线与y 轴交于(0,c ).也考查了二次函数的性质.6.A解析:A【解析】【分析】根据一元二次方程的解的定义,将a 代入已知方程,即可求得a 2+3a 的值,然后再代入求值即可.【详解】解:根据题意,得a 2+3a ﹣1=0,解得:a 2+3a =1,所以a 2+3a+2019=1+2019=2020.【点睛】此题考查的是一元二次方程的解,掌握一元二次方程解的定义是解决此题的关键7.A解析:A【解析】【分析】根据一元二次方程的定义逐一判断即可.【详解】解:A . 2321x x =+是一元二次方程,故本选项符合题意;B . 3230x x --是一元三次方程,故本选项不符合题意;C . 221x y -=是二元二次方程,故本选项不符合题意;D . 20x y +=是二元一次方程,故本选项不符合题意;故选A .【点睛】此题考查的是一元二次方程的判断,掌握一元二次方程的定义是解决此题的关键.8.D解析:D【解析】【分析】首先将()4,0代入二次函数,求出m ,然后利用根的判别式和求根公式即可判定t 的取值范围.【详解】将()4,0代入二次函数,得2440m -+=∴4m =∴方程为240x x t -+=∴x = ∵15x <<∴54t -<≤故答案为D .【点睛】此题主要考查二次函数与一元二次方程的综合应用,熟练掌握,即可解题.9.A解析:A【解析】把点(-1,-3)代入y=x2+mx+n得n=-4+m,再代入mn+1进行配方即可.【详解】∵二次函数y=x2+mx+n的图像经过点(-1,-3),∴-3=1-m+n,∴n=-4+m,代入mn+1,得mn+1=m2-4m+1=(m-2)2-3.∴代数式mn+1有最小值-3.故选A.【点睛】本题考查了二次函数图象上点的坐标特征,以及二次函数的性质,把函数mn+1的解析式化成顶点式是解题的关键.10.D解析:D【解析】【分析】连接AO、BO、CO,根据中心角度数=360°÷边数n,分别计算出∠AOC、∠BOC的度数,根据角的和差则有∠AOB=30°,根据边数n=360°÷中心角度数即可求解.【详解】连接AO、BO、CO,∵AC是⊙O内接正四边形的一边,∴∠AOC=360°÷4=90°,∵BC是⊙O内接正六边形的一边,∴∠BOC=360°÷6=60°,∴∠AOB=∠AOC﹣∠BOC=90°﹣60°=30°,∴n=360°÷30°=12;故选:D.【点睛】本题考查正多边形和圆,解题的关键是根据正方形的性质、正六边形的性质求出中心角的度数.11.B解析:B【解析】【分析】因为圆锥的高,底面半径,母线构成直角三角形,首先求得留下的扇形的弧长,利用勾股定理求圆锥的高即可.【详解】解:∵从半径为6cm 的圆形纸片剪去13圆周的一个扇形, ∴剩下的扇形的角度=360°×23=240°, ∴留下的扇形的弧长=24061880ππ⨯=, ∴圆锥的底面半径248r ππ==cm ; 故选:B.【点睛】此题主要考查了主要考查了圆锥的性质,要知道(1)圆锥的高,底面半径,母线构成直角三角形,(2)此扇形的弧长等于圆锥底面周长,扇形的半径等于圆锥的母线长. 12.D解析:D【解析】x 2=4,x =±2.故选D.点睛:本题利用方程左右两边直接开平方求解.13.D解析:D【解析】【分析】根据题目中的函数解析式和二次函数的性质,可以判断各个选项中的结论是否正确,从而可以解答本题.【详解】解:∵二次函数y =﹣x 2+x =﹣(x 12-)2+14, ∴a =﹣1,该函数的图象开口向下,故选项A 错误;对称轴是直线x =12,故选项B 错误; 当x =12时取得最大值14,该函数有最高点,故选项C 错误; 在对称轴右侧的部分从左往右是下降的,故选项D 正确;故选:D .【点睛】本题考查了二次函数的性质,掌握函数解析式和二次函数的性质是解题的关键.14.C解析:C【解析】【分析】连接OD,根据勾股定理求出CD,根据直角三角形的性质求出∠AOD,根据扇形面积公式、三角形面积公式计算,得到答案.【详解】解:连接OD,在Rt△OCD中,OC=12OD=2,∴∠ODC=30°,CD=2223OD OC+=∴∠COD=60°,∴阴影部分的面积=260418223=23 36023π⨯-⨯⨯π-,故选:C.【点睛】本题考查的是扇形面积计算、勾股定理,掌握扇形面积公式是解题的关键.15.C解析:C【解析】【分析】根据抛物线的对称性确定抛物线与x轴的另一个交点为(−3,0),然后观察函数图象,找出抛物线在x轴上方的部分所对应的自变量的范围即可.【详解】∵y=ax2+bx+c的对称轴为直线x=−1,与x轴的一个交点为(1,0),∴抛物线与x轴的另一个交点为(−3,0),∴当−3<x<1时,y>0.故选:C.【点睛】此题主要考查二次函数的图像与性质,解题的关键是根据函数对称轴找到抛物线与x轴的交点.二、填空题16.x1=3,x2=﹣3.【解析】【分析】先移项,在两边开方即可得出答案.【详解】∵∴=9,∴x=±3,即x1=3,x2=﹣3,故答案为x1=3,x2=﹣3.【点睛】本题考查了解一解析:x1=3,x2=﹣3.【解析】【分析】先移项,在两边开方即可得出答案.【详解】x-=∵290∴2x=9,∴x=±3,即x1=3,x2=﹣3,故答案为x1=3,x2=﹣3.【点睛】本题考查了解一元二次方程-直接开平方法,熟练掌握该方法是本题解题的关键.17.-22【解析】【分析】先确定的整数部分的规律,根据题意确定算式的运算规律,再进行实数运算. 【详解】解:观察数据12=1,22=4,32=9,42=16,52=25,62=36的特征,得出数解析:-22【解析】【分析】2020的整数部分的规律,根据题意确定算式-+-+⋅⋅⋅⋅⋅⋅+-的运算规律,再进行实数运算.【详解】解:观察数据12=1,22=4,32=9,42=16,52=25,62=36的特征,得出数据1,2,3,4……2020中,算术平方根是1的有3个,算术平方根是2的有5个,算数平方根是3的有7个,算数平方根是4的有9个,…其中432=1849,442=1936,452=2025,所以在、⋅⋅⋅⋅⋅⋅中,算术平方根依次为1,2,3……43的个数分别为3,5,7,9……个,均为奇数个,最大算数平方根为44的有85个,所以-+-+⋅⋅⋅⋅⋅⋅+-=1-2+3-4+…+43-44= -22 【点睛】本题考查自定义运算,通过正整数的算术平方根的整数部分出现的规律,找到算式中相同加数的个数及符号的规律,方能进行运算.18.200【解析】【分析】要求飞机从滑行到停止的路程就,即求出函数的最大值即可.【详解】解:所以当t=20时,该函数有最大值200.故答案为200.【点睛】本题主要考查了二次函数的应用解析:200【解析】【分析】要求飞机从滑行到停止的路程就,即求出函数的最大值即可.【详解】解:()()222200.50.5404002000.520200s t t t t t =-=--++=--+ 所以当t=20时,该函数有最大值200.故答案为200.【点睛】本题主要考查了二次函数的应用,掌握二次函数求最值的方法,即公式法或配方法是解题关键.19.【解析】【分析】首先对图中各点进行标注,阴影部分的面积等于正方形BEFL 的面积减去梯形BENK 的面积,再利用相似三角形的性质求出BK 、EN 的长从而求出梯形的面积即可得出答案. 【详解】解:如解析:13 3【解析】【分析】首先对图中各点进行标注,阴影部分的面积等于正方形BEFL的面积减去梯形BENK的面积,再利用相似三角形的性质求出BK、EN的长从而求出梯形的面积即可得出答案.【详解】解:如图所示,∵四边形MEGH为正方形,∴NE GH∴△AEN~△AHG∴NE:GH=AE:AG∵AE=2+3=5,AG=2+3+4=9,GH=4∴NE:4=5:9∴NE=20 9同理可求BK=8 9梯形BENK的面积:1208143 2993⎛⎫⨯+⨯=⎪⎝⎭∴阴影部分的面积:1413 3333⨯-=故答案为:13 3.【点睛】本题主要考查的知识点是图形面积的计算以及相似三角形判定及其性质,根据相似的性质求出相应的边长是解答本题的关键.20.2或1.5【解析】【分析】根据切线的性质,切线长定理得出线段之间的关系,利用勾股定理列出方程解出圆的半径.【详解】解:设半径为r,∵AD、AB、BC分别与⊙O相切于E、F、G三点,AB=解析:2或1.5【解析】【分析】根据切线的性质,切线长定理得出线段之间的关系,利用勾股定理列出方程解出圆的半径.【详解】解:设半径为r,∵AD、AB、BC分别与⊙O相切于E、F、G三点,AB=5,AD=6∴GC=r,BG=BF=6-r,∴AF=5-(6-r)=r-1=AE∴ND=6-(r-1)-r=7-2r,在Rt△NDC中,NC2+ND2=CD2,(7-r)2+(2r)2=52,解得r=2或1.5.故答案为:2或1.5.【点睛】本题考查了切线的性质,切线长定理,勾股定理,平行四边形的性质,正确得出线段关系,列出方程是解题关键.21.9【解析】【分析】利用两角对应相等两三角形相似证△BCD∽△BAC,根据相似三角形对应边成比例得比例式,代入数值求解即可.【详解】解:∵,,∴∠ACB=∠CDB=90°,∵∠B=∠B,解析:9【解析】【分析】利用两角对应相等两三角形相似证△BCD∽△BAC,根据相似三角形对应边成比例得比例式,代入数值求解即可.【详解】解:∵BC AC ⊥,CD AB ⊥,∴∠ACB=∠CDB=90°,∵∠B=∠B,∴△BCD ∽△BAC, ∴BC BD AB BC = , ∴152515BD =, ∴BD=9.故答案为:9.【点睛】本题考查利用相似三角形的性质求线段长,证明两三角形相似注意题中隐含条件,如公共角,对顶角等,利用相似的性质得出比例式求解是解答此题的关键.22.【解析】【分析】求方程的解即是求函数图象与x 轴的交点坐标,因为图像具有对称性,知道一个坐标,就可求出另一个,分析x 轴上方的图象可得结果.【详解】由图像可知,二次函数的对称轴x=2,图像与x解析:15x -<<【解析】【分析】求方程的解即是求函数图象与x 轴的交点坐标,因为图像具有对称性,知道一个坐标,就可求出另一个,分析x 轴上方的图象可得结果.【详解】由图像可知,二次函数的对称轴x=2,图像与x 轴的一个交点为5,所以,另一交点为2-3=-1. ∴x 1=-1,x 2=5. ∴不等式20ax bx c ++>的解集是15x -<<.故答案为15x -<<【点睛】要了解二次函数性质与图像,由于图像的开口向下,所以,有两个交点,知一易求另一个,本题属于基础题.23.2﹣2【解析】【分析】取BC 中点G ,连接HG ,AG ,根据直角三角形的性质可得HG =CG =BG =BC =2,根据勾股定理可求AG =2,由三角形的三边关系可得AH≥AG ﹣HG ,当点H 在线段AG 上时,解析:2【解析】【分析】取BC中点G,连接HG,AG,根据直角三角形的性质可得HG=CG=BG=12BC=2,根据勾股定理可求AG=25,由三角形的三边关系可得AH≥AG﹣HG,当点H在线段AG上时,可求AH的最小值.【详解】解:如图,取BC中点G,连接HG,AG,∵CH⊥DB,点G是BC中点∴HG=CG=BG=12BC=2,在Rt△ACG中,AG22AC CG5在△AHG中,AH≥AG﹣HG,即当点H在线段AG上时,AH最小值为52,故答案为:52【点睛】本题考查了动点问题,解决本题的关键是熟练掌握直角三角形中勾股定理关系式. 24.3【解析】【分析】把AE=2,EC=6,AB=12代入已知比例式,即可求出答案.【详解】解:∵=,AE=2,EC=6,AB=12,∴=,解得:AD=3,故答案为:3.【点睛】本题解析:3【解析】【分析】把AE =2,EC =6,AB =12代入已知比例式,即可求出答案.【详解】 解:∵AD AB =AE AC,AE =2,EC =6,AB =12, ∴12AD =226+, 解得:AD =3,故答案为:3.【点睛】 本题考查了成比例线段,灵活的将已知线段的长度代入比例式是解题的关键.25.【解析】【分析】直接利用概率公式计算.【详解】解:设袋中共有小球只,根据题意得,解得x =10,经检验,x=10是原方程的解,所以袋中共有小球10只.故答案为10.【点睛】此题主解析:【解析】【分析】直接利用概率公式计算.【详解】解:设袋中共有小球只, 根据题意得635x =,解得x =10, 经检验,x=10是原方程的解,所以袋中共有小球10只.故答案为10.【点睛】此题主要考查概率公式,解题的关键是熟知概率公式的运用.26.2【解析】【分析】连接OA ,先根据垂径定理求出AO 的长,再设ON=OA ,则MN=ON-OM即可得到答案.【详解】解:如图所示,连接OA,∵半径交于点,是的中点,∴AM=BM==4解析:2【解析】【分析】连接OA,先根据垂径定理求出AO的长,再设ON=OA,则MN=ON-OM即可得到答案.【详解】解:如图所示,连接OA,∵半径ON交AB于点M,M是AB的中点,∴AM=BM=12AB=4,∠AMO=90°,∴在Rt△AMO中22OMAM∵ON=OA,∴MN=ON-OM=5-3=2.故答案为2.【点睛】本题考查的是垂径定理及勾股定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.27.2或【解析】【分析】求出二次函数对称轴为直线x=m,再分m<-2,-2≤m≤1,m>1三种情况,根据二次函数的增减性列方程求解即可.【详解】解:二次函数的对称轴为直线x=m,且开口向下,解析:2或【解析】【分析】求出二次函数对称轴为直线x=m ,再分m <-2,-2≤m≤1,m >1三种情况,根据二次函数的增减性列方程求解即可.【详解】解:二次函数22()1y x m m =--++的对称轴为直线x=m ,且开口向下,①m <-2时,x=-2取得最大值,-(-2-m )2+m 2+1=4, 解得74m =-, 724->-, ∴不符合题意,②-2≤m≤1时,x=m 取得最大值,m 2+1=4,解得m =所以m =,③m >1时,x=1取得最大值,-(1-m )2+m 2+1=4,解得m=2,综上所述,m=2或时,二次函数有最大值.故答案为:2或【点睛】本题考查了二次函数的最值,熟悉二次函数的性质及图象能分类讨论是解题的关键. 28.10【解析】【分析】根据铅球落地时,高度,把实际问题可理解为当时,求x 的值即可.【详解】解:当时,,解得,(舍去),.故答案为10.【点睛】本题考查了二次函数的实际应用,解析式中自解析:10【解析】【分析】根据铅球落地时,高度0y =,把实际问题可理解为当0y =时,求x 的值即可.【详解】解:当0y =时,212501233y x x =-++=, 解得,2x =-(舍去),10x =.故答案为10.【点睛】本题考查了二次函数的实际应用,解析式中自变量与函数表达的实际意义;结合题意,选取函数或自变量的特殊值,列出方程求解是解题关键.29.=31.5【解析】【分析】根据题意,第一次降价后的售价为,第二次降价后的售价为,据此列方程得解.【详解】根据题意,得:=31.5故答案为:=31.5.【点睛】本题考查一元二次方程的解析:()2561x -=31.5【解析】【分析】根据题意,第一次降价后的售价为()561x -,第二次降价后的售价为()2561x -,据此列方程得解.【详解】根据题意,得:()2561x -=31.5故答案为:()2561x -=31.5.【点睛】本题考查一元二次方程的应用,关键是理解第二次降价是以第一次降价后的售价为单位“1”的. 30.16【解析】【分析】【详解】延长EF交BC的延长线与H,在平行四边形ABCD中,∵AD=BC,AD∥BC∴△DEF∽△CHF, △DEM∽△BHM ∴ ,∵F是CD的中点∴DF解析:16【解析】【分析】【详解】延长EF交BC的延长线与H,在平行四边形ABCD中,∵AD=BC,AD∥BC∴△DEF∽△CHF, △DEM∽△BHM∴DE DFCH CF= ,2()DEMBMHS DES BH∆∆=∵F是CD的中点∴DF=CF∴DE=CH∵E是AD中点∴AD=2DE∴BC=2DE∴BC=2CH∴BH=3CH∵1DEMS∆=∴211()3BMHS∆=∴9BMHS∆=∴9CFHBCFMS S∆+=四边形∴9DEFBCFMS S∆+=四边形∴9DME DFM BCFM S S S ∆∆++=四边形∴19BCD S ∆+=∴8BCD S ∆=∵四边形ABCD 是平行四边形∴2816ABCD S =⨯=四边形故答案为:16.三、解答题31.每件商品售价60元或50元时,该商店销售利润达到1200元.【解析】【分析】根据题意得出,(售价-成本)⨯(原来的销量+2⨯降低的价格)=1200,据此列方程求解即可.【详解】解:设每件商品应降价x 元时,该商店销售利润为1200元.根据题意,得()()70302021200x x --+=整理得:2302000x x -+=,解这个方程得:110x =,220x =.所以,7060x -=或50答:每件商品售价60元或50元时,该商店销售利润达到1200元.【点睛】本题考查的知识点是生活中常见的商品打折销售问题,弄清题目中的关键概念,找出题目中隐含的等量关系式是解决问题的关键.32.(1)b =2,c =3;(2)(0,3),(1,4)(3)见解析;(4)-12<y ≤4【解析】【分析】(1)将点(2,3),(3,0)的坐标直接代入y =-x 2+bx +c 即可;(2)由(1)可得解析式,将二次函数的解析式华为顶点式即可;(3)根据二次函数的定点、对称轴及所过的点画出图象即可;(4)直接由图象可得出y 的取值范围.【详解】(1)解:把点(2,3),(3,0)的坐标直接代入y =-x 2+bx +c 得3=-4+2b+c 0=-9+3b+c ⎧⎨⎩,解得23b c =⎧⎨=⎩, 故答案为:b=2,c=3;(2)解:令x=0,c=3, 二次函数图像与y 轴的交点坐标为则(0,3),二次函数解析式为y=y =-x 2+2x +3=-(x-1)²+4,则顶点坐标为(1,4).(3)解:如图所示…(4)解:根据图像,当-3<x <2时,y 的取值范围是:-12<y ≤4.【点睛】本题考查了待定系数法求二次函数的解析式:在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.一般地,当已知抛物线上三点时,常选择一般式,用待定系数法列三元一次方程组来求解;当已知抛物线的顶点或对称轴时,常设其解析式为顶点式来求解;当已知抛物线与x 轴有两个交点时,可选择设其解析式为交点式来求解.也考查了二次函数的图象与性质.33.(1)该贫困户2016年到2018年家庭年人均纯收入的年平均增长率为20%. (2)2019年该贫困户的家庭年人均纯收入能达到4200元.【解析】【分析】(1)设该贫困户2016年到2018年家庭年人均纯收入的年平均增长率为x ,根据该该贫困户2016年及2018年家庭年人均纯收入,即可得出关于的一元二次方程,解之取其中正值即可得出结论;(2)根据2019年该贫困户的家庭年人均纯收入=2018年该贫困户的家庭年人均纯收入×(1+增长率),可求出2019年该贫困户的家庭年人均纯收入,再与4200比较后即可得出结论.【详解】解:(1)设该贫困户2016年到2018年家庭年人均纯收入的年平均增长率为x ,依题意,得:2250013600x +()=,解得120.220% 2.2x x :==,=﹣(舍去). 答:该贫困户2016年到2018年家庭年人均纯收入的年平均增长率为20% .(2)3600120%4320⨯+()=(元) , 43204200>.答:2019年该贫困户的家庭年人均纯收入能达到4200元.【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.34.(1)见解析;(2)3333y x =-+ 【解析】。
四川省成都市天府新区2017-2018学年上期九年级期末学业质量监测数学试题
天府新区2017-2018学年上期九年级期末学业质量监测数学试题A 卷(共100分) 第Ⅰ卷(选择题,共30分)一、选择题(本大题共10个小题,每小题3分,共30分。
在每小题给出的四个选项中,只有一项是符合题目要求的)1、下面四个几何体中,主视图与俯视图不同的共有( )A 、1个B 、2个C 、3个D 、4个 2、以三角形的一条中位线和第三边上的中线为对角线的四边形是( ) A 、梯形 B 、矩形 C 、平行四边形 D 、菱形3、已知关于x 的一元二次方程x 2-2x -3=0两实数根为x 1,x 2,则x 1+x 2的值是( ) A 、3 B 、-3 C 、2 D 、-24、如图,在平行四边形ABCD 中,AB =3,AD =24,AF 交BC 于E ,交DC 的延长线于F ,且CF =1,则CE 的长为( )A 、2B 、22C 、32D 、23第4题 第5题 第6题5、已知如图,点C 是线段AB 的黄金分割点(AC >BC ),则下列结论中正确的是( ) A 、AB 2=AC 2+BC 2B 、BC 2=AC ·BA C 、215-=AC BC D 、215-=BC AC6、小明将一张矩形纸片ABCD 沿CE 折叠,B 点恰好落在AD 边上,设此点为F ,若AB :BC =4:5,则cos ∠DFC 的值为( ) A 、54 B 、53 C 、34 D 、43 7、某学校计划在一块长8米,宽6米的矩形草坪块的中央划出面积为16平方米的矩形地块栽花,使这矩形地块四周的留地宽度都一样,求这宽度应为多少?设矩形地块四周的留地宽度为x ,根据题意,下列方程不正确的是( )A 、48-(16x +12x -4x 2)=16 B 、16x +2x (6-2x )=32 C 、(8-x )(6-x )=16 D 、(8-2x )(6-2x )=168、已知点A (x 1、y 1),B (x 2,y 2)在反比例函数y =xm23 的图像上,当x 1<x 2<0时,y 1>y 2,则m 的范围为( ) A 、m >32 B 、m <32 C 、>23 D 、m <23 9、如图,在圆O 中,在AC =32,点B 是圆上一点,且∠ABC =45°,则圆O 的半径是( )A 、2B 、4C 、3D 、610、如图,已知二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,给出以下四个结论: ①abc =0;②a +b +c >0;③a >b ;④4ac -b 2<0;其中正确的结论有( ) A 、1 B 、2 C 、3 D 、4第9题 第10题 第14题第Ⅱ卷(非选择题,共70分)二、填空题(本大题共4个小题,每小题4分,共16分)11、菱形的面积为24,其中一条的对角线长为6,则此菱形的另一条对角线长为_______.12、若抛物线y =2(x -1)2-1,先向上平移2个单位,再向右平移1个单位后其顶点坐标是_______.13、已知关于x 的一元二次方程mx 2+x +1=0有两个不相等的实数根,那么m 的取值范围是________.14、如图,在△ABC 中,D ,E 分别是边AB ,AC 上的点,且DE ∥BC ,若△ADE 与△ABC 的周长之比为2:3,AD =4,则DB =______.15、三、解答题(本大题共6个小题,共54分.解答题写出必要的文字说明、证明过程或演算步骤)15、(本题满分12分,每小题6分)(1)计算:︒+---+-45cos 4)5(821210π(2)解方程:2x 2+3x -1=016、(本小题满分8分)先化简分式1)113(2-÷+--x x x x x x ,再从不等式组⎩⎨⎧+-≥--15242)2(3x x x x <的解集中取一个合适的值代入,求原分式的值.如图,AB、CD为两个建筑物,建筑物AB的高度为60米,从建筑物AB的顶点A处测得建筑物CD的顶点C的俯角∠EAC=30°,测得底部D点的俯角∠EAD=45°.(1)求两建筑物之间水平距离BD的长度;(2)求建筑物CD的高度(结果保留根号).18、(本小题满分8分)天府新区某校在推进选课走班的过程中,开设的体育选修课有:A:篮球,B:足球,C:排球,D:羽毛球,E:乒乓球,学生可根据自己的爱好选修一门,学校王老师对某班全班学生的选课情况进行调查统计,制成了两幅不完整的统计图(如图).(1)该班的总人数为人,并补全频数分布直方图;(2)表示“足球”所在扇形的圆心角是°.(3)该班班委4人中,1人选修篮球,2人选修足球,1人选修排球,李老师要从这4人中任选2人了解他们对体育选修课的看法,则选出的2人恰好1人选修篮球,1人选修足球的概率.如图,在平面直角坐标系中xOy 中,正比例函数y =2x 与反比例函数y =xk的图象交于A ,B 两点,A 点的横坐标为2,AC ⊥x 轴于点C ,连接BC . (1)求反比例函数的解析式;(2)结合图象,直接写出2x >x k时,x 的取值范围; (3)若点P 是反比例函数y =xk图象上的一点,且满足△OPC 与△ABC 的面积相等,求出点P 的坐标.20、(本下题满分10分)如图,已知BF 是⊙O 的直径,A 为圆O 上(异于B 、F )一点,⊙O 的切线MA 与FB 的延长线交于点M ;P 为AM 上一点,PB 的延长线交⊙O 于点C ,D 为BC 上一点且PA =PD ,AD 的延长线交⊙O 于点E . (1)求证:弧BE =弧CE ;(2)若ED 、EA 的长是一元二次方程x 2-5x +5=0的两根,求BE 的长; (3)若MA =26,sin ∠AMF =31,求AB 的长.B 卷(50分)一、填空题(本大题5个小题,每小题4分,共20分)21、设a 、b 是方程x 2+2x -2018=0的两个实数根,则a 2+3a +b 的值为_______. 22、有七张正面分别标有数字-1,-2,0,1,2,3,4的卡片,除数字不同外其余全部相同,现将它们背面朝上,洗匀后从中随机抽取一张,记卡片上的数字为m ,则使关于x 的方程x 2-2(m -1)x +m 2-3m =0有实数根,且不等式组⎩⎨⎧-+0932<>m x x 无解的概率是____23、如图,已知抛物线y =ax 2+bx +c (a <0)经过点A (-1,0),B (3,0),且与y 轴交于点C ,点D 为顶点,直线CD 与x 轴交于点E ,以DE 为腰作等腰Rt △DEF ,若点F 落在y 轴上时a 的值为_______.第23题 第24题 第25题 24、如图,在平行四边形ABCD 中,以对角线AC 为直径的圆O 分别交BC ,CD 于点E ,F .若AB =13,BC =14,BE =9,则线段EF 的长为_______.25、在直角梯形ABCD 中,AD ∥BC ,∠ABC =90°,AB =BC ,E 为AB 边上一点,∠BCE =15°,且AE =AD ,连接DE 交对角线AC 于H ,连接BH ,下列结论: ① △ACD ≌△ACE ;②426+=CD BC ;③BE EH =2;④CHAHS S EHC EBC =△△解答题(26题8分,27题10分,28题12分,共30分)26、企业的污水处理有两种方式:一种是输送到污水厂进行集中处理,另一种是通过企业的自身设备进行处理.某企业去年每月的污水量均为12000吨,由于污水厂处于调试阶段,污水处理能力有限,该企业投资自建设备处理污水,两种处理方式同时进行.1至6月,该企业向污水厂输送的污水量y 1(吨)与月份x (1≤x ≤6,且x 取整数)之间满足的函数关系如下表:7至12月,该企业自身处理的污水量y 2(吨)与月份x (7≤x ≤12,且x 取整数)之间满足二次函数关系式为y 2=ax 2+c (a ≠0).其图象如图所示.1至6月,污水厂处理每吨污水的费用:z 1(元)与月份x 之间满足函数关系式:z 1=21x ,该企业自身处理每吨污水的费用:z 2(元)与月份x 之间满足函数关系式:z 2=43x -121x 2;7至12月,污水厂处理每吨污水的费用均为2元,该企业自身处理每吨污水的费用均为1.5元. (1)请观察题中的表格和图象,用所学过的一次函数、反比例函数或二次函数的有关知识,分别直接写出y 1,y 2与x 之间的函数关系式;(2)请你求出该企业去年哪个月用于污水处理的费用W (元)最多,并求出这个最多费用;27、阅读下面材料:天府新区某学校数学兴趣活动小组在一次活动中,对一个数学问题作如下探究: (1)问题发现:如图1,在△ABC 中,AB =AC ,点D 在BC 边上,∠DAB =∠ABD ,BE ⊥AD ,垂足为E .小明经探究发现,过点A 作AF ⊥BC ,垂足为F ,可得到BC =2AE ,请你写出证明过程;(2)变式探究:如图2,△ABC 中,AB =AC =6,∠BAC =90°,D 为BC 的中点,E 为DC 的中点,点F 在AC 的延长线上,且∠CDF =∠EAC ,求CF 的长;(3)解决问题:如图3,△ABC 中,AB =AC ,∠BAC =120°,点D 、E 分别在AB 、AC 边上,且AD =kDB (其中0<k <33),∠AED =∠BCD ,求EC AE 的值(用含k 的式子表示).28、如图,已知抛物线C1:y=ax2+4ax+4a-5的顶点为F,与x轴轴相交于A,B两点(点A在点B的左边),点B的横坐标是1.(1)求a的值及P的坐标;(2)如图(1),抛物线C2与抛物线C1关于x轴对称,将抛物线C2向右平移,平移后的抛物线记为C3,C3的顶点为M,当点P、M关于点B成中心对称时,求C3的解析式;(3)如图(2),点Q是x正半轴上一点,将抛物线C1绕点Q旋转180°后得到抛物线C4.抛物线C4的顶点为N,与x轴相交于E、F两点(点E在点F的左边),当以点P、N、F为顶点的三角形是直角三角形时,求点Q的坐标.。
初2017届成都市高新区中考数学九年级二诊数学试卷(含答案)
初2017届成都市高新区中考数学九年级二诊数学试卷(考试时间:120分钟满分:150分)A卷(共100分)一、选择题(每小題3分,共30分)1.﹣1,0,1,2四个数中,绝对值最小的数是()A.﹣1 B.0 C.1 D.22.下列运算正确的是()A.(ab)2=ab2B.3a+2a=5a2C.(a+b)2=a2+b2D.a•a=a23.如图,几何体是由底面圆心在同一条直线上的三个圆柱构成的,其俯视图是()A.B.C.D.4.我国计划在2020年左右发射火星探测卫星,据科学研究,火星距离地球的最近距离约为5500万千米,这个数据用科学记数法可表示为()A.5.5×106千米B.5.5×107千米C.55×106千米D.0.55×108千米5.如图,直线a∥b,直角三角板的直角顶点P在直线b上,若∠1=56°,则∠2为()A.24°B.34°C.44°D.54°6.下列命题正确的是()A.若甲组数据的方差s2甲=0.39,乙组数据的方差s2乙=0.25,则甲组数据波动比乙组数据波动小B.从1、2、3、4、5中随机抽取一个数,是偶数的可能性比较大C.数据3、4、4、1、﹣2的中位数是3,众数是4D.若某种游戏活动的中奖率是30%,则参加这种活动10次必有3次中奖7.把抛物线y=2x2向下平移1个单位,再向左平移2个单位,得到的抛物线是()A.y=2(x+2)2﹣1 B.y=2(x﹣1)2+2C.y=2(x+1)2﹣2 D.y=2(x﹣2)2﹣18.如图,矩形ABCD的边AD长为2,AB长为1,点A在数轴上对应的数是﹣1,以A点为圆心,对角线AC 长为半径画弧,交数轴于点E,则这个点E表示的实数是()A.+1 B.C.﹣1 D.1﹣9.根据下列表格提供的对应的数值,判断关于x的方程ax2+bx+c=0(a≠0)的一个解x的取值范围是()x … 3.24 3.25 3.26 …ax2+bx+c …﹣0.02 0.01 0.03 …A.x<3.24 B.3.24<x<3.25C.3.25<x<3.26 D.3.25<x<3.2810.如图,“凸轮”的外围是由以正三角形的顶点为圆心,正三角形的边长为半径的三段等弧组成.已知正三角形的边长为a,则“凸轮”的周长等于()A.πa B.2πa C.πa D.πa二、填空题(每小题4分,共16分)11.函数y=的自变量x的取值范围是.12.为了估计暗箱里白球的数量(箱内只有白球),将5个红球放进去,随机摸出一个球,记下颜色后放回,搅匀后再摸出一个球记下颜色,多次重复后发现红球出现的频率约为0.2,那么可以估计暗箱里白球的数量大约为个.13.如图,以点O为位似中心,将△ABC放大得到△DEF,若AD=OA,则△ABC与△DEF的面积之比为.14.已知点(m﹣1,y1),(m﹣3,y2)是反比例函数y=(m<0)图象上的两点,则y1y2(填“>”或“=”或“<”)三、解答题(共54分)15.(12分)(1)计算:(﹣2)﹣1+1﹣||﹣4cos30°+(π﹣4)0.(2)方程x2+3x+m=0的一个根是另一根的2倍,求m的值.16.(6分)先化简,再求值:÷(x+2﹣),其中x=﹣3.17.(8分)从水平地面到水平观景台之间有一段台阶路和一段坡路,示意图如下,台阶路AE共有8个台阶,每个台阶的宽度均为0.5m,台阶路AE与水平地面夹角∠EAB为28°;坡路EC长7m,与观景台地面的夹角∠ECD为15°;求观景台地面CD距水平地面AB的高度BD(精确到0.1m)(参考数据:sin28°≈0.47,cos28°≈0.88,tan28°≈0.53;sin15°≈0.26,cos15°≈0.97,tan15°≈0.27)18.(8分)为全面开展“大课间”活动,某校准备成立“足球”、“篮球”、“跳绳”、“踢毽”四个课外活动小组,学校体工处根据七年级学生的报名情况(每人限报一项)绘制了两幅不完整的统计图,请根据以上信息,完成下列问题:(1)m=,n=,并将条形统计图补充完整;(2)试问全校2000人中,大约有多少人报名参加足球活动小组?(3)根据活动需要,从“跳绳”小组的二男二女四名同学中随机选取两人到“踢毽”小组参加训练,请用列表或树状图的方法计算恰好选中一男一女两名同学的概率.19.(10分)如图,已知反比例函数y=(k≠0)的图象经过点A(﹣1,a),过点A作AB⊥x轴,垂足为点B,△AOB的面积为.(1)求a、k的值;(2)若一次函数y=mx+n的图象经过点A和反比例函数图象上另一点C(b,),且与x轴交于M点,求AM的值;(3)在(2)的条件下,以线段AM为边作等边△AMN,请直接写出点N的坐标.20.(10分)如图,线段AB为⊙O的直径,点C为⊙O上一点,连接BC,取的中点D,过点D作⊙O的切线,交AB的延长线于点E,连接AD、CD,CD与AB交于点F.(1)求证:∠ABC=2∠OAD;(2)当sinE=时,求;(3)在(2)的条件下,若⊙O的半径r=3,求DF的值.一、填空题(共5小题,每小题4分,满分20分)21.已知a﹣b=3,则a2﹣b2﹣6b的值是.22.如图,在菱形ABCD中,AB=AC=4cm,动点P从点A开始沿AD边以1cm/s的速度运动,动点Q从点D 开始沿DC边以2cm/s的速度运动,点P和点Q同时出发,当其中一点到达终点时,另一点也随之停止运动,则S△DPQ的最大值为.23.如图,在平面直角坐标系xOy中,点A是反比例函数y=在第一象限的图象上一点,连接AO,并以AO为直角边作Rt△AOB,点B落在第二象限内,斜边AB交y轴于点C.若BC=2CA,tanA=,则点A的坐标为.24.任意给定两个整数(M,N),若存在另外两个整数(m,n),它们的和与积分别是已知两数的和与积的,则称已知的两数(M,N)组成“二分数组”,现从﹣1、0、1、2四个数中随机抽取出两个数,组成“二分数组”的概率是.25.在正方形ABCD中,边长为2,如图1,点E为边BC的中点,将边AB沿AE折叠到AM,点F为边CD上一点,将边AD沿AF折叠恰能使AD与AM重合.(1)CF=;(2)如图2,延长AM,交CD于点N,连接EN并延长,交AF的延长线于点G,连接CG,则GN=.二、解答题(共30分)26.(8分)学校组织“绿色成都,美丽心灵”的爱心集市义卖活动,拟将义卖活动的全部收益捐献给贫困地区学校.一班同学准备定制印有自创徽标的马克杯、抱枕两种物品参加此次义卖,两种物品定制价格和预期售价如下表.已知用1000元定制马克杯的数量与用800元定制抱枕的数量相同.马克杯抱枕定制价格(元/件)m m﹣4预期售价(元/件)40 30(1)求两种物品定制价格.(2)该班拟定制的马克杯、抱枕两种物品共120件,定制费用不高于2200元,售出全部物品的收益不低于1920元,则该班有几种定制方案?(3)在(2)的基础上,义卖当天,该班根据实际情况准备对马克杯进行促销,决定对马克杯每件按预期售价优惠a(2≤a≤8)元出售,抱枕则按预期售价出售.该班应如何安排定制方案能获得最大收益?(注:收益=实际收入﹣实际成本)27.(10分)如图1,在凸四边形ABCD中,对角线AC垂直平分对角线BD,∠BAD+∠BCD=180°.(1)求证:∠ABC=90°;(2)将△ABC绕点C逆时针旋转,旋转后的图形是三角形A'B'C,BE是边上的中线,设∠BAC=α.①当0°<α<30°时,点B的对应点B'落在BE上,如图2,试探究线段BE和线段A'C'的位置关系,并证明;②延长BE交AD于点F,当点B的对应点B′落在EF上时,如图3,A'B'与AD交于点G,cosα=,AC=5,则BB'=,=.28.(12分)已知:如图,在平面直角坐标系xOy中,直线y=﹣x+6与x轴、y轴的交点分别为A、B两点,将∠OBA对折,使点O的对应点H落在直线AB上,折痕交x轴于点C.(1)直接写出点C的坐标,并求过A、B、C三点的抛物线的解析式;(2)若(1)中抛物线的顶点为D,在直线BC上是否存在点P,使得四边形ODAP为平行四边形?若存在,求出点P的坐标;若不存在,说明理由;(3)若把(1)中的抛物线向左平移3.5个单位,则图象与x轴交于F、N(点F在点N的左侧)两点,交y轴于E点,则在此抛物线的对称轴上是否存在一点Q,使点Q到E、N两点的距离之差最大?若存在,请求出点Q的坐标;若不存在,请说明理由.参考答案与试题解析1.【解答】解:|﹣1|=1,|0|=0,|1|=1,|2|=2,绝对值最小的数是0.故选:B.2.【解答】解:(ab)2=a2b2,故选项A不合题意;3a+2a=5a,故选项B不合题意;(a+b)2=a2+2ab+b2,故选项C不合题意;a•a=a2,故选项D符合题意.故选:D.3.【解答】解:图中几何体的俯视图是C选项中的图形.故选:C.4.【解答】解:5500万=5.5×107.故选:B.5.【解答】解:如图,∵∠1+∠3+∠4=180°,∠1=56°,∠4=90°,∴∠3=34°,∵a∥b,∴∠2=∠3=34°.故选:B.6.【解答】解:A.若甲组数据的方差s2甲=0.39,乙组数据的方差s2乙=0.25,则甲组数据波动比乙组数据波动小;不正确;B.从1、2、3、4、5中随机抽取一个数,是偶数的可能性比较大;不正确;C.数据3、4、4、1、﹣2的中位数是3,众数是4;正确;D.若某种游戏活动的中奖率是30%,则参加这种活动10次必有3次中奖;不正确;故选:C.7.【解答】解:将抛物线y=2x2向下平移1个单位y=2x2﹣1.左平移2个单位所得直线解析式为:y=2(x+2)2﹣1.故选:A.8.【解答】解:∵AD长为2,AB长为1,∴AC==,∵A点表示﹣1,∴E点表示的数为:﹣1,故选:C.9.【解答】解:由表可以看出,当x取3.24与3.25之间的某个数时,y=0,即这个数是ax2+bx+c=0的一个根.则ax2+bx+c=0的一个解x的取值范围为3.24<x<3.25.故选:B.10.【解答】解:∵△ABC是等边三角形,∴∠A=∠B=∠C=60°AB=CB=AC,∴====,∴凸轮”的周长等于×3=πa,故选:A.11.【解答】解:根据二次根式有意义,分式有意义得:x+2≥0且x≠0,解得:x≥﹣2且x≠0.故答案为:x≥﹣2且x≠0.12.【解答】解:设暗箱里白球的数量是n,则根据题意得:=0.2,解得:n=20,故答案为:20.13.【解答】解:∵以点O为位似中心,将△ABC放大得到△DEF,AD=OA,∴AB:DE=OA:OD=1:2,∴△ABC与△DEF的面积之比为:1:4.故答案为:1:4.14.【解答】解:∵在反比例函数y=(m<0)中,k=m<0,∴该反比例函数在第二象限内y随x的增大而增大,∵m﹣3<m﹣1<0,∴y1>y2.故答案为:>.15.【解答】解:(1)原式=﹣+1﹣2﹣4×+1=﹣4﹣;(2)设方程一个根为a,则另一个根为2a,根据题意得a+2a=﹣3①,a•2a=m,由①得a=﹣1,所以m=﹣1×(﹣2)=2.16.【解答】解:原式=÷=•=,当x=﹣3时,原式=.17.【解答】解:作EM⊥CD于M,EN⊥AB于N.在△ANE中,∠ENA=90°,tan∠EAN=,∵∠BAE=28°,AN=0.5×8=4m,∴EN=AN•tan28°=4×0.53=2.12m,在△CME中,∠CME=90°,sin∠ECM=,∵∠DCE=15°,EC=7m,∴ME=CE•sin15°=7×0.26=1.82m,∴NE+ME=2.12+1.82=3.94m≈3.9m,答:观景台地面CD距水平地面AB的高度BD约3.9m.18.【解答】解:(1)调查的总人数=15÷15%=100(人),所以m%=×100%=25%,即m=25,参加跳绳活动小组的人数=100﹣30﹣25﹣15=30(人),所以n°=×360°=108°,即n=108,如图,故答案为:25,108;(2)2000×=600,所以全校2000人中,大约有600人报名参加足球活动小组;(3)画树状图为:共有12种等可能的结果数,其中一男一女两名同学的结果数为8,所以恰好选中一男一女两名同学的概率==.19.【解答】解:(1)∵AB⊥OB,A(﹣1,a),∴OB=1,∵,∴AB=,∴a=,A(﹣1,),∵A(﹣1,)在y=上,∴k=﹣.(2)∵点C(b,)在y=﹣上,∴b=3,∴C(3,﹣),把A(﹣1,),C(3,﹣)代入y=mx+n,则有,解得,∴直线AC的解析式为y=﹣x+,令y=0,可得x=2,∴M(2,0),∴AM===2.(3)如图,∵sin∠AMB===,∴∠AMB=30°,∵△AMN是等边三角形,∴∠AMN=60°,MN=AN=2,∴∠BMN=90°,∴N(2,2),当点N′在AM的下方时,同法可得N′(﹣1,﹣),综上所述满足条件的点N的坐标为(2,2)或(﹣1,﹣).20.【解答】解:(1)如图1,连接AC,∴∠ACB=90°,∴∠BCD+∠ACD=90°,∵点D是的中点,∴,∴∠ACD=∠CAD,∴∠BCD+∠CAD=90°连接DO并延长交⊙O于G,连接CG,∴∠CAD=∠CGD,∴∠BCD+∠CGD=90°,∵DG是⊙O的直径,∴∠DCG=90°,∴∠CDG+∠CGD=90°,∴∠BCD=∠CDG,∴DG∥BC,∴∠ABC=∠BOD,∵∠BOD=2∠OAD,∴∠ABC=2∠OAD;(2)如图2,连接AC,连接DO并延长交AC于G,∵OD=r,则OA=OB=OD=r,∴∠OAD=∠ODA,∵∠ABC=2∠OAD,∵∠ADC=∠ABC,∴∠ADH=∠CDH,∴DH⊥AC,∴∠AHO=90°=∠ODE,∴∠BAC=∠E,∴AC∥DE,∵DE是⊙O的切线,∴∠ODE=90°,∴sinE=,∴OE==3r,根据勾股定理得,DE==2r,在Rt△ABC中,AB=2r,sin∠BAC==,∴BC=AB=r,根据勾股定理得,AC===r,∵AC∥DE,∴△AFC∽△EFD,∴==;(3)如图2,由(2)知,OD=3,BC=r=2,由(2)知,DH⊥AC,∴CH=AC=××3=2,在Rt△AOH中,sin∠BAC=,∴OH=OA•sin∠BAC=1,∴DH=OD+OH=4,在Rt△DHC中,根据勾股定理得,DC==2,∵OA=OD,∵∠ABC=2∠OAD,∴∠DOF=∠ABC,∴OD∥BD,∴△OFD∽△BFC,∴=,∴=,∴,∴DF=CD=.21.【解答】解:∵a﹣b=3,∴a=b+3,∴a2﹣b2﹣6b=(b+3)2﹣b2﹣6b=b2+6b+9﹣b2﹣6b=9.故答案为:9.22.【解答】解:过Q点作QE⊥AD于点E,∵在菱形ABCD中,AB=AC=4cm,∴三角形ABC和三角形ADC都是等边三角形,∴∠D=60°,∴∠DQE=30°,根据题意,可知AP=t,PD=4﹣t,DQ=2t,∴DE=t,QE=t,∴S△DPQ=PD•QE=(4﹣t)•t,=﹣(t2﹣4t)=﹣(t﹣2)+2∴当t=2时,S△DPQ有最大值为2.故答案为2.23.【解答】解:作AM⊥x轴于M,BN⊥x轴于N.∵BN∥OC∥AM,∴ON:OM=BC:AC=2,时ON=2a,则OM=a,AM=,∵∠ONB=∠AMO=∠AOB=90°,∴∠BON+∠AOM=90°,∠AOM+∠MAO=90°,∴∠BON=∠MAO,∴△BNO∽△OMA,∴==tanA=,∴=,∴a=,∴A(,).故答案为(,)24.【解答】解:一共有(﹣1,0)、(﹣1,1)、(﹣1,2)、(0,1)、(0,2)、(1,2)6种可能,只有(0,2),存在(0,1)它们的和与积分别是已知两数的和与积的,∴从﹣1、0、1、2四个数中随机抽取出两个数,组成“二分数组”的概率是.故答案为.25.【解答】解:(1)设CF=x,则DF=2﹣x,∵四边形ABCD是正方形,∴BC=CD=2,∠C=∠B=∠D=90°,∵点E为边BC的中点,∴CE=BE=BC=1,由折叠的性质得:BE=ME,DF=MF=x,则EF=ME+MF=1+2﹣x=3﹣x,在Rt△CEF中,由勾股定理得:12+x2=(3﹣x)2,解得:x=,即CF=;故答案为:;(2)延长GE交AB的延长线于点P,过点G作GQ⊥BC交BC的延长线于点Q,如图2所示:由折叠性质得:∠BAE=∠MAE,∠AEN=90°,∠EAG=45°,∴∠AGE=45°,∴△AEG为等腰直角三角形,∴EG=AE===,∵∠AEB+∠GEQ=90°,∠AEB+∠BAE=90°,∴∠GEQ=∠BAE,在△ABE和△EQG中,,∴△ABE≌△EQG(AAS),∴AB=EQ,∵点E为边BC的中点,∴EC=CQ,∵四边形ABCD是正方形,∴CN⊥BC,∴CN∥GQ,∴CN是△EQG的中位线,∴EN=GN,∴GN=EG=,故答案为:.26.【解答】解:(1)由题意可得,,解得,m=20,经检验,m=20是原分式方程的根,∴m﹣4=16,答:马克杯的定制价格是20元/件,抱枕的定制价格是16元/件;(2)设定制马克杯b件,则定制抱枕(120﹣b)件,,解得,40≤b≤70,70﹣40+1=31,答:改班又31种定制方案;(3)设该班的总收益为w元,购进马克杯b个,w=(40﹣20﹣a)b+(30﹣16)×(120﹣b)=(6﹣a)b+1680,∵2≤a≤8,40≤b≤70,∴当2≤a<6时,当b=70时,w取得最大值,120﹣b=50,当a=6时,w的值不变,都是1680元,当6<a≤8时,当b=40时,w取得最大值,120﹣b=80,答:当2≤a<6时,定制马克杯70个,抱枕50个,能获得最大收益;当a=6时,马克杯定制的个数在40≤b≤70内,抱枕的个数是120﹣b可以获得最大收益;当6<a≤8时,定制马克杯40个,抱枕80个,能获得最大收益.27.【解答】(1)证明:如图1中,∵对角线AC垂直平分对角线BD,∴BA=AD,CB=CD,∵AC=AC,∴△ABC≌△ADC(SSS),∴∠ABC=∠ADC,∵∠BAD+∠BCD=180°,∴∠ABC+∠ADC=180°,∴∠ABC=∠ADC=90°.(2)①证明:如图2中,∵∠ABC=90°,AE=EC,∴BE=EC=AE,∴∠BCE=∠CBE,∵CB=CB′,∴∠CB′B=∠CBE,∴∠CB′B=∠ACB,∵∠ACB=∠A′CB′,∴∠CB′B=∠A′CB′,∴BE∥CA′.②解:如图3中,作CM⊥BE于M,连接AA′,延长BE交AA′于点H,连接CH,CG.∵EB=EC=EA,∴∠EBC=∠BCE,∵cosα==,AC=5,∴AB=4,AC=5,则BC=3,∴cos∠EBC=cos∠BCA=,∴BM=BC•cos∠CBM=3×=,∵CB=CB′,CM⊥BB′,∴BM=MB′,∴BB′=2BM=,∵∠ACB=∠A′CB′,∴∠BCB′=∠ACA′,∵CB=CB′,CA=CA′,∴=,∴△BCB′∽△ACA′,∴=,∴=,∴AA′=6,∵EH∥CA′,AE=EC,∴AH=HA′=3,∵CA=CA′,∴CH⊥AA′,GA=GA′,∴CH===4,∵∠CB′G=∠D=90°,CG=CG,CB′=CD,∴Rt△CGB′≌Rt△CGD(HL),∴∠GCB′=∠GCD,∵∠ACD=∠A′CB′,∴∠ACB′=∠A′CD,∴∠ACG=∠A′CG,∵CA=CA′,∴CG⊥AA′,∴C,G,H共线,∵AC=CA,AH=CD,AD=CH,∴△ACH≌△CAD(SSS),∴∠ACH=∠DAC,∴AG=GC,设AG=GC=x,在Rt△CGD中,∵CG2=DG2+CD2,∴x2=32+(4﹣x)2,∴x=,∴AG=GA′=,在Rt△CGB′中,GB′===,∴==.故答案为,.28.【解答】解:(1)连接CH,由轴对称得CH⊥AB,BH=BO,CH=CO∴在△CHA中由勾股定理,得AC2=CH2+AH2∵直线y=x+6与x轴、y轴的交点分别为A、B两点,∴当x=0时,y=6,当y=0时,x=8∴B(0,6),A(8,0)∴OB=6,OA=8,在Rt△AOB中,由勾股定理,得AB=10设C(a,0),∴OC=a∴CH=a,AH=4,AC=8﹣a,在Rt△AHC中,由勾股定理,得(8﹣a)2=a2+42解得a=3C(3,0)设抛物线的解析式为:y=ax2+bx+c,由题意,得解得:∴抛物线的解析式为:y=x2+6,∴y=;(2)由(1)的结论,得D(,﹣)∴DF=,设BC的解析式为:y=kx+b,则有解得:直线BC的解析式为:y=﹣2x+6设存在点P使四边形ODAP是平行四边形,P(m,n)作PE⊥OA于E,HD交OA于F.∴∠PEO=∠AFD=90°,PO=DA,PO∥DA∴∠POE=∠DAF∴△OPE≌△ADF∴PE=DF=n=,∴=﹣2x+6∴P(,)当x=时,y=﹣2×+6=1≠∴点P不再直线BC上,即直线BC上不存在满足条件的点P;(3)由题意得,平移后的解析式为:y=(x﹣2)2∴对称轴为:x=2,当x=0时,y=﹣当y=0时,0=(x﹣2)2解得:x1=;x2=∵F在N的左边F(,0),E(0,﹣),N(,0)连接EF交x=2于Q,设EF的解析式为:y=kx+b,则有解得:∴EF的解析式为:y=﹣x﹣∴解得:∴Q(2,﹣).。
2017学年第一学期期末教学质量监测九年级数学试卷及详细解答
2017学年第一学期期末教学质量监测九年级 数学试卷考生须知:1.本试卷分试题卷和答题卷两部分。
满分100分,考试时间90分钟。
2.答题前,必须在答题卷的密封区内填写校名、班级、学号、姓名、试场、座位码。
3.所有答案都必须做在答题卷标定的位置上,务必注意试题序号和答题序号对应。
4.考试结束后,只需上交答题卷。
试题卷一、选择题:本大题有10个小题,每小题3分,共30分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.两个相似三角形的面积比为2:3,则这两个三角形的面积比为( ) A. 2:3B.2:3C. 4:9D. 9:42.已知圆O 的半径为2,点P 在同一平面内,PO=3,那么点P 与圆O 的位置关系是( ) A. 点P 在圆O 内 B. 点P 在圆O 上 C. 点P 在圆O 外 D. 无法确定3.下列函数中有最小值的是( ) A. y=2x -1 B.y=x3-C.y=-2x +1 C.y=22x+3x4.“a 是实数,|a|⩾0”这一事件是( ) A. 必然事件 B. 不确定事件 C. 不可能事件 D. 随机事件5.在Rt △ABC 中,∠C=90∘, ∠B=58∘,BC=3 , 则AB 的长为( ) A. ︒58sin 3B.︒58cos 3C. 3sin58∘D. 3cos58∘6.已知圆心角为120°的扇形的面积为12π,则扇形的弧长为( ) A. 4π B.2π C. 4 D.27.如图,圆O 是△ABC 的外接圆,BC 的中垂线与弧AC 相交于D 点,若∠A =60°,∠C =40°,则弧AD 的度数为( ) A. 80°B. 70°D. 30°8.如图,在相同的4×4的正方形网格中,三角形相似的是()A.①和②B.②和④C.②和③D.①和③9.定义符号min{a ,b}的含义为:当a ≥b 时,min{a ,b}=b ;当a <b 时,min{a ,b}=a.如:min{5,-2}=-2,min{-6,-3}=-6,则min{2-x+3,x}的最大值是( )A.2131+ B.2131+- C.3 D.213-1-10.如图,AB 是圆O 的直径,弦CD ⊥AB 于点G ,点F 是CD 上一点,且满足CF :FD=3:7,连接AF 并延长交圆O 于点E ,连接AD 、DE ,若CF=3,AF=3,给出下列结论:①FG=2; ②tan ∠E=55 ③S △DEF=6549 其中正确的有( )个。
(完整word版)成都市九年级上学期期末数学试卷(含答案)
九年级上册期末数学测试卷(时间:120分钟,总分:150分)A 卷(共100分)一 、选择题(每题3分,共30分) 1、3--的倒数是( )A .3B .3-C .31 D .31- 2、已知12-=-b a ,则124+-b a 的值为( )A .1-B .0C .1D .33、如图,桌子上放着一个长方体的茶叶盒和一个圆柱形的水杯,则其主视图是( )4、在正方形网格中,ABC △的位置如图所示,则cos B ∠的值为( ) A .12B .22C .32 D .335、某商店购进一种商品,单价为30元.试销中发现这种商品每天的销售量P (件)与每件的销售价x (元)满足关系:1002P x =-.若商店在试销期间每天销售这种商品获得200元的利润,根据题意,下面所列方程正确的是( ).A . (x -30)(100-2x)=200B .x(100-2x)=200C . (30-x)(100-2x)=200D . (x -30)(2x -100)=200 6、反比例函数ky x=在第二象限的图象如图所示,过函数图象上一点P 作PA ⊥x 轴交x 轴于点A, 已知PAO ∆的面积为3,则k 的值为( ) A .6 B .6- C .3 D .3-7、如图,在一块形状为直角梯形的草坪中,修建了一条由A .B .C .D .正面A →M →N →C 的小路(M 、N 分别是AB 、CD 中点).极少数同学 为了走“捷径”,沿线段AC 行走,破坏了草坪,实际上他们 仅少走了( )A .7米B .6米C .5米D .4米8、将抛物线23y x =先向左平移2个单位,再向下平移1个单位后得到新的抛物线,则新抛物线的解析式是( )A .23(2)1y x =++B .23(2)1y x =-+C . 23(2)1y x =+-D .23(2)1y x =-- 9、已知二次函数c bx ax y ++=2)0(≠a 的图象如图所示, 给出以下结论:①0<abc ;②当1x =时,函数有最大值; ③当13x x =-=或时,函数y 的值都等于0; ④024<++c b a 其中正确结论的个数是( )A .1个B .2个C .3个D .4个10、下列四个图象表示的函数中,当x <0时,函数值y 随自变量x 的增大而减小的是( )二、填空题(每空4分,共16分) 11、化简.12、如图,在□ABCD 中,AB =5,AD =8,DE 平分∠ADC , 则B E = .13、若关于x 一元二次方程02)2(2=++-a x a x 的两个实数根分别是3、b ,则=b .14、如图,矩形ABCD 的边AB 与y 轴平行,顶点A 的坐标为(1,2),点B 、xxxxy yy y O O O O A .B .C .D .D 在反比例函数xy 6=(x >0)的图象上,则点C 的坐标为 . 三、计算题(15题6分,16题每小题6分,共18分)15、计算:245sin 2201221801-︒++⎪⎭⎫ ⎝⎛--;16、解方程:(1)x x 232-=; (2)1213122+=--+-x x x x四、解答题(每小题8分,共16分)17、放风筝是大家喜爱的一种运动.星期天的上午小明在万达广场上放风筝.如图他在A 处时不小心让风筝挂在了一棵树的树梢上,风筝固定在了D 处.此时风筝线AD 与水平线的夹角为30°.为了便于观察,小明迅速向前边移动边收线到达了离A 处10米的B 处,此时风筝线BD 与水平线的夹角为45°.已知点A 、B 、C 在同一条直线上,∠ACD=90°.请你求出小明此吋的风筝线的长度是多少米?(本题中风筝线均视为线段,结果保留根号)18、今只有一张欢乐谷门票,而小明和小华都想要去,于是他们两人分别提出一个方案:小明的方案是:转动如图所示的转盘,当转盘停止转动后,如果指针停在阴影区域,则小明获得门票;如果指针停在白色区域,则小华获得门票(转盘被等分成6个扇形,若指针停在边界处,则重新转动转盘).小华的方案是:有三张卡片,上面分别标有数字1,2,3,将它们背面朝上洗匀后,从中摸出一张,记录下卡片上的数字后放回,重新洗匀后再摸出一张.若摸出两张卡片上的数字之和为奇数,则小明获得门票;若摸出两张卡片上的数字之和为偶数,则小华获得门票.(1)在小明的方案中,计算小明获得门票的概率,并说明小明的方案是否公平?(2)用树状图或列表法列举小华设计方案中可能出现的所有结果,计算小华获得门票的概率,并说明小华的方案是否公平?五、解答题(每小题10分,共20分)19、如图,已知一次函数y=kx+b的图象交反比例函数y=错误! (x>0)的图象于点A、B,交x轴于点C.(1)求m的取值范围;(2)若点A的坐标是(2,-4),且BCAB=13,求m的值和一次函数的解析式.20、在直角梯形ABCD中,AB∥CD,∠ABC=90°,AB=2BC=2CD,对角线AC与BD相交于点O,线段OA,OB的中点分别为点E,F.(1)求证:△FOE≌ △DOC;(2)求sin∠OEF的值;(3)若直线EF与线段AD,BC分别相交于点G,H,求AB CDGH的值.①②③……B 卷(共50分)一、填空题。
成都高新世纪城南路学校初三数学九年级上册期末模拟试题(卷)与答案解析
成都高新世纪城南路学校初三数学九年级上册期末模拟试题(卷)与答案解析一、选择题1.在平面直角坐标系中,O 的直径为10,若圆心O 为坐标原点,则点()8,6P -与O的位置关系是( ) A .点P 在O 上B .点P 在O 外C .点P 在O 内 D .无法确定2.如图,矩形ABCD 中,3AB =,8BC =,点P 为矩形内一动点,且满足PBC PCD ∠=∠,则线段PD 的最小值为( )A .5B .1C .2D .33.已知3sin α=,则α∠的度数是( ) A .30°B .45°C .60°D .90°4.将一副学生常用的三角板如下图摆放在一起,组成一个四边形ABCD ,连接AC ,则tan ACD ∠的值为( )A 3B 31C 31D .235.分别写有数字﹣4,0,﹣1,6,9,2的六张卡片,除数字外其它均相同,从中任抽一张,则抽到偶数的概率是( ) A .16B .13C .12D .236.已知⊙O 的半径为1,点P 到圆心的距离为d ,若关于x 的方程x 2-2x+d=0有实数根,则点P ( )A .在⊙O 的内部B .在⊙O 的外部C .在⊙O 上D .在⊙O 上或⊙O 内部7.为了考察某种小麦的长势,从中抽取了5株麦苗,测得苗高(单位:cm)为:10、16、8、17、19,则这组数据的极差是( ) A .8B .9C .10D .118.已知二次函数y =x 2+mx +n 的图像经过点(―1,―3),则代数式mn +1有( ) A .最小值―3 B .最小值3 C .最大值―3 D .最大值39.点P 1(﹣1,1y ),P 2(3,2y ),P 3(5,3y )均在二次函数22y x x c =-++的图象上,则1y ,2y ,3y 的大小关系是( ) A .321y y y >>B .312y y y >=C .123y y y >>D .123y y y =>10.已知二次函数y =ax 2+bx +c 的图像如图所示,则下列结论正确的个数有( ) ①c >0;②b 2-4ac <0;③ a -b +c >0;④当x >-1时,y 随x 的增大而减小.A .4个B .3个C .2个D .1个 11.有一组数据:4,6,6,6,8,9,12,13,这组数据的中位数为( ) A .6 B .7 C .8 D .9 12.二次函数y =x 2﹣2x +1与x 轴的交点个数是( )A .0B .1C .2D .313.袋中装有5个白球,3个黑球,除颜色外均相同,从中一次任摸出一个球,则摸到黑球的概率是( ) A .35B .38C .58D .3414.已知函数2y x bx c =-++的部分图像如图所示,若0y >,则的取值范围是( )A .41x -<<B .21x -<<C .31x -<<D .31x x <->或 15.一组数据10,9,10,12,9的平均数是( )A .11B .12C .9D .10二、填空题16.若方程2410x x -+=的两根12,x x ,则122(1)x x x 的值为__________.17.如图所示,在正方形ABCD 中,G 为CD 边中点,连接AG 并延长交BC 边的延长线于E 点,对角线BD 交AG 于F 点.已知FG =2,则线段AE 的长度为_____.18.一个不透明的袋中原装有2个白球和1个红球,搅匀后从中任意摸出一个球,要使摸出红球的概率为23,则袋中应再添加红球____个(以上球除颜色外其他都相同). 19.已知关于x 的一元二次方程x 2+mx+n=0的两个实数根分别为x 1=-1,x 2=2 ,则二次函数y=x 2+mx+n 中,当y <0时,x 的取值范围是________;20.已知实数,,a b c 满足0a ≠,且0a b c -+=,930a b c ++=,则抛物线2y ax bx c =++图象上的一点(2,4)-关于抛物线对称轴对称的点为__________.21.如图,△ABC 的顶点A 、B 、C 都在边长为1的正方形网格的格点上,则sinA 的值为________.22.在平面直角坐标系中,抛物线2yx 的图象如图所示.已知A 点坐标为()1,1,过点A 作1AA x ∕∕轴交抛物线于点1A ,过点1A 作12A A OA ∕∕交抛物线于点2A ,过点2A 作23A A x ∕∕轴交抛物线于点3A ,过点3A 作34A A OA ∕∕交抛物线于点4A ……,依次进行下去,则点2019A 的坐标为_____.23.如图,飞镖游戏板中每一块小正方形除颜色外都相同.若某人向游戏板投掷飞镖一次(假设飞镖落在游戏板上),则飞镖落在阴影部分的概率是_________.24.如图,点O 是△ABC 的内切圆的圆心,若∠A =100°,则∠BOC 为_____.25.某电视台招聘一名记者,甲应聘参加了采访写作、计算机操作和创意设计的三项素质测试得分分别为70、60、90,三项成绩依次按照5:2:3计算出最后成绩,那么甲的成绩为__.26.如图,抛物线214311515y x x =--与x 轴交于A 、B 两点,与y 轴交于C 点,⊙B 的圆心为B ,半径是1,点P 是直线AC 上的动点,过点P 作⊙B 的切线,切点是Q ,则切线长PQ 的最小值是__.27.一元二次方程x 2﹣3x+2=0的两根为x 1,x 2,则x 1+x 2﹣x 1x 2=______.28.已知关于x 的一元二次方程(m ﹣1)x 2+x+1=0有实数根,则m 的取值范围是 . 29.某计算机程序第一次算得m 个数据的平均数为x ,第二次算得另外n 个数据的平均数为y ,则这m n 个数据的平均数等于______.30.如图,在□ABCD 中,E 、F 分别是AD 、CD 的中点,EF 与BD 相交于点M ,若△DEM 的面积为1,则□ABCD 的面积为________.三、解答题31.某校九年级(2)班A 、B 、C 、D 四位同学参加了校篮球队选拔. (1)若从这四人中随杋选取一人,恰好选中B 参加校篮球队的概率是______; (2)若从这四人中随机选取两人,请用列表或画树状图的方法求恰好选中B 、C 两位同学参加校篮球队的概率.32.在平面直角坐标系中,二次函数 y =ax 2+bx +2 的图象与 x 轴交于 A (﹣3,0),B (1,0)两点,与 y 轴交于点C .(1)求这个二次函数的关系解析式,x 满足什么值时y﹤0 ?(2)点p 是直线AC 上方的抛物线上一动点,是否存在点P,使△ACP 面积最大?若存在,求出点P的坐标;若不存在,说明理由(3)点M 为抛物线上一动点,在x 轴上是否存在点Q,使以A、C、M、Q 为顶点的四边形是平行四边形?若存在,直接写出点Q 的坐标;若不存在,说明理由.33.国庆期间,某风景区推出两种旅游观光活动付费方式:若人数不超过20人,人均缴费500元;若人数超过20人,则每增加一位旅客,人均收费降低10元,但是人均收费不低于350元.现在某单位在国庆期间组织一批贡献突出的职工到该景区旅游观光,支付了12000元观光费,请问:该单位一共组织了多少位职工参加旅游观光活动?34.如图,在▱ABCD中,点E是边AD上一点,延长CE到点F,使∠FBC=∠DCE,且FB与AD相交于点G.(1)求证:∠D=∠F;(2)用直尺和圆规在边AD上作出一点P,使△BPC∽△CDP,并加以证明.(作图要求:保留痕迹,不写作法.)35.某商店购进一批成本为每件 30 元的商品,经调查发现,该商品每天的销售量 y(件)与销售单价 x(元)之间满足一次函数关系,其图象如图所示.(1)求该商品每天的销售量 y 与销售单价 x 之间的函数关系式;(2)若商店按单价不低于成本价,且不高于 50 元销售,则销售单价定为多少,才能使销售该商品每天获得的利润 w(元)最大?最大利润是多少?(3)若商店要使销售该商品每天获得的利润不低于 800 元,则每天的销售量最少应为多少件?四、压轴题36.如图,⊙O的直径AB=26,P是AB上(不与点A,B重合)的任一点,点C,D为⊙O上的两点.若∠APD=∠BPC,则称∠DPC为直径AB的“回旋角”.(1)若∠BPC=∠DPC=60°,则∠DPC是直径AB的“回旋角”吗?并说明理由;(2)猜想回旋角”∠DPC的度数与弧CD的度数的关系,给出证明(提示:延长CP交⊙O 于点E);(3)若直径AB的“回旋角”为120°,且△PCD的周长为24+133,直接写出AP的长.37.如图,已知矩形ABCD中,BC=2cm,AB=23cm,点E在边AB上,点F在边AD上,点E由A向B运动,连结EC、EF,在运动的过程中,始终保持EC⊥EF,△EFG为等边三角形.(1)求证△AEF∽△BCE;(2)设BE的长为xcm,AF的长为ycm,求y与x的函数关系式,并写出线段AF长的范围;(3)若点H是EG的中点,试说明A、E、H、F四点在同一个圆上,并求在点E由A到B 运动过程中,点H移动的距离.38.已知,如图Rt△ABC中,∠C=90°,AC=6cm,BC=8cm,点P为AC的中点,Q从点A运动到B,点Q运动到点B停止,连接PQ,取PQ的中点O,连接OC,OB.(1)若△ABC∽△APQ,求BQ的长;(2)在整个运动过程中,点O的运动路径长_____;(3)以O为圆心,OQ长为半径作⊙O,当⊙O与AB相切时,求△COB的面积.39.如图1,已知菱形ABCD 的边长为23,点A 在x 轴负半轴上,点B 在坐标原点.点D 的坐标为(−3,3),抛物线y=ax 2+b(a≠0)经过AB 、CD 两边的中点.(1)求这条抛物线的函数解析式;(2)将菱形ABCD 以每秒1个单位长度的速度沿x 轴正方向匀速平移(如图2),过点B 作BE ⊥CD 于点E,交抛物线于点F,连接DF.设菱形ABCD 平移的时间为t 秒(0<t<3.....) ①是否存在这样的t ,使7FB?若存在,求出t 的值;若不存在,请说明理由; ②连接FC,以点F 为旋转中心,将△FEC 按顺时针方向旋转180°,得△FE′C′,当△FE′C′落在x .轴与..抛物线在....x .轴上方的部分围成的图形中............(.包括边界....).时,求t 的取值范围.(直接写出答案即可) 40.如图1(注:与图2完全相同)所示,抛物线212y x bx c =-++经过B 、D 两点,与x 轴的另一个交点为A ,与y 轴相交于点C . (1)求抛物线的解析式.(2)设抛物线的顶点为M ,求四边形ABMC 的面积(请在图1中探索)(3)设点Q 在y 轴上,点P 在抛物线上.要使以点A 、B 、P 、Q 为顶点的四边形是平行四边形,求所有满足条件的点P 的坐标(请在图2中探索)【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】 【分析】求出P 点到圆心的距离,即OP 长,与半径长度5作比较即可作出判断. 【详解】解:∵()8,6P -, ∴228610+= , ∵O 的直径为10,∴r=5, ∵OP>5, ∴点P 在O 外.故选:B. 【点睛】本题考查点和直线的位置关系,当d>r 时点在圆外,当d=r 时,点在圆上,当d<r 时,点在圆内,解题关键是根据点到圆心的距离和半径的关系判断.2.B解析:B 【解析】 【分析】通过矩形的性质和等角的条件可得∠BPC=90°,所以P 点应该在以BC 为直径的圆上,即OP=4,根据两边之差小于第三边及三点共线问题解决.如图,∵四边形ABCD为矩形,∴AB=CD=3,∠BCD=90°,∴∠PCD+∠PCB=90°,∵PBC PCD∠=∠,∴∠PBC+∠PCB=90°,∴∠BPC=90°,∴点P在以BC为直径的圆⊙O上,在Rt△OCD中,OC=118422BC,CD=3,由勾股定理得,OD=5,∵PD≥OD OP ,∴当P,D,O三点共线时,PD最小,∴PD的最小值为OD-OP=5-4=1.故选:B.【点睛】本题考查矩形的性质,勾股定理,线段最小值问题及圆的性质,分析出P点的运动轨迹是解答此题的关键.3.C解析:C【解析】【分析】根据特殊角三角函数值,可得答案.【详解】解:由3sinα=,得α=60°,故选:C.【点睛】本题考查了特殊角三角函数值,熟记特殊角三角函数值是解题关键.4.B解析:B【解析】设AC 、BD 交于点E ,过点C 作CF ⊥BD 于点F ,过点E 作EG ⊥CD 于点G ,则CF ∥AB ,△CDF 和△DEG 都是等腰直角三角形,设AB =2,则易求出CF CEF ∽△AEB ,可得2EF CF BE AB ==,于是设EF ,则2BE x =,然后利用等腰直角三角形的性质可依次用x 的代数式表示出CF 、CD 、DE 、DG 、EG 的长,进而可得CG 的长,然后利用正切的定义计算即得答案. 【详解】解:设AC 、BD 交于点E ,过点C 作CF ⊥BD 于点F ,过点E 作EG ⊥CD 于点G ,则CF ∥AB ,△CDF 和△DEG 都是等腰直角三角形, ∴△CEF ∽△AEB , 设AB =2,∵∠ADB =30°,∴BD =∵∠BDC =∠CBD =45°,CF ⊥BD ,∴CF=DF=BF =12BD =,∴2EF CF BE AB ==,设EF ,则2BE x =,∴(2BF CF DF x ===+,∴(2CD x x ===,((22DE DF EF x x =+=+=+,∴(222EG DG DE x x ===+=,∴(CG CD DG x x =-=-=,∴tan 1x EG ACD CG ∠==.故选:B.【点睛】本题以学生常见的三角板为载体,考查了锐角三角函数和特殊角的三角函数值、30°角的直角三角形的性质、等腰三角形的性质等知识,构图简洁,但有相当的难度,正确添加辅助线、熟练掌握等腰直角三角形的性质和锐角三角函数的知识是解题的关键.5.D解析:D【解析】【分析】根据概率公式直接计算即可.【详解】解:在这6张卡片中,偶数有4张,所以抽到偶数的概率是46=23,故选:D.【点睛】本题主要考查了随机事件的概率,随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数,灵活利用概率公式是解题的关键.6.D解析:D【解析】【分析】先根据条件x 2 -2x+d=0有实根得出判别式大于或等于0,求出d的范围,进而得出d与r 的数量关系,即可判断点P和⊙O的关系..【详解】解:∵关于x的方程x 2 -2x+d=0有实根,∴根的判别式△=(-2) 2 -4×d≥0,解得d≤1,∵⊙O的半径为r=1,∴d≤r∴点P在圆内或在圆上.【点睛】本题考查了点和圆的位置关系,由点到圆心的距离和半径的数量关系对点和圆的位置关系作出判断是解答此题的重要途径,即当d>r 时,点在圆外,当d=r 时,点在圆上,当d<r 时,点在圆内.7.D解析:D【解析】【分析】计算最大数19与最小数8的差即可.【详解】19-8=11,故选:D.【点睛】此题考查极差,即一组数据中最大值与最小值的差.8.A解析:A【解析】【分析】把点(-1,-3)代入y =x 2+mx +n 得n=-4+m ,再代入mn +1进行配方即可.【详解】∵二次函数y =x 2+mx +n 的图像经过点(-1,-3),∴-3=1-m+n ,∴n=-4+m ,代入mn+1,得mn+1=m 2-4m+1=(m-2)2-3.∴代数式mn +1有最小值-3.故选A.【点睛】本题考查了二次函数图象上点的坐标特征,以及二次函数的性质,把函数mn+1的解析式化成顶点式是解题的关键.9.D解析:D【解析】试题分析:∵22y x x c =-++,∴对称轴为x=1,P 2(3,2y ),P 3(5,3y )在对称轴的右侧,y 随x 的增大而减小,∵3<5,∴23y y >,根据二次函数图象的对称性可知,P 1(﹣1,1y )与(3,2y )关于对称轴对称,故123y y y =>,故选D .考点:二次函数图象上点的坐标特征.10.C【解析】【分析】由抛物线的开口方向判断a 与0的关系,由抛物线与y 轴的交点判断c 与0的关系,然后根据抛物线与x 轴交点及x=-1时二次函数的值的情况进行推理,进而对所得结论进行判断.【详解】解:由图象可知,a <0,c >0,故①正确;抛物线与x 轴有两个交点,则b²-4ac>0,故②错误;∵当x=-1时,y>0,即a-b+c>0, 故③正确;由图象可知,图象开口向下,对称轴x >-1,在对称轴右侧, y 随x 的增大而减小,而在对称轴左侧和-1之间,是y 随x 的增大而减小,故④错误.故选:C .【点睛】本题考查了二次函数图象与系数的关系:二次项系数a 决定抛物线的开口方向和大小.当a >0时,抛物线向上开口;当a <0时,抛物线向下开口;一次项系数b 和二次项系数a 共同决定对称轴的位置:当a 与b 同号时,对称轴在y 轴左; 当a 与b 异号时,对称轴在y 轴右.常数项c 决定抛物线与y 轴交点:抛物线与y 轴交于(0,c ).抛物线与x 轴交点个数由判别式确定:△=b 2-4ac >0时,抛物线与x 轴有2个交点;△=b 2-4ac=0时,抛物线与x 轴有1个交点;△=b 2-4ac <0时,抛物线与x 轴没有交点.11.B解析:B【解析】【分析】先把这组数据按顺序排列:4,6,6,6,8,9,12,13,根据中位数的定义可知:这组数据的中位数是6,8的平均数.【详解】∵一组数据:4,6,6,6,8,9,12,13,∴这组数据的中位数是()6821427+÷÷==,故选:B .【点睛】本题考查中位数的计算,解题的关键是熟练掌握中位数的求解方法:先将数据按大小顺序排列,当数据个数为奇数时,最中间的那个数据是中位数,当数据个数为偶数时,居于中间的两个数据的平均数才是中位数.12.B解析:B【解析】由△=b 2-4ac=(-2)2-4×1×1=0,可得二次函数y=x 2-2x+1的图象与x 轴有一个交点.故选B .解析:B【解析】【分析】先求出球的总个数,根据概率公式解答即可.【详解】因为白球5个,黑球3个一共是8个球,所以从中随机摸出1个球,则摸出黑球的概率是38.故选B.【点睛】本题考查了概率公式,明确概率的意义是解答问题的关键,用到的知识点为:概率=所求情况数与总情况数之比.14.C解析:C【解析】【分析】根据抛物线的对称性确定抛物线与x轴的另一个交点为(−3,0),然后观察函数图象,找出抛物线在x轴上方的部分所对应的自变量的范围即可.【详解】∵y=ax2+bx+c的对称轴为直线x=−1,与x轴的一个交点为(1,0),∴抛物线与x轴的另一个交点为(−3,0),∴当−3<x<1时,y>0.故选:C.【点睛】此题主要考查二次函数的图像与性质,解题的关键是根据函数对称轴找到抛物线与x轴的交点.15.D解析:D【解析】【分析】利用平均数的求法求解即可.【详解】这组数据10,9,10,12,9的平均数是1(10910129)10 5++++=故选:D.【点睛】本题主要考查平均数,掌握平均数的求法是解题的关键.二、填空题16.5【解析】【分析】根据根与系数的关系求出,代入即可求解.【详解】∵是方程的两根∴=-=4,==1∴===4+1=5,故答案为:5.【点睛】此题主要考查根与系数的关系,解题的关键是解析:5【解析】【分析】根据根与系数的关系求出12x x +,12x x ⋅代入即可求解.【详解】∵12,x x 是方程2410x x -+=的两根∴12x x +=-b a =4,12x x ⋅=c a=1 ∴122(1)x x x =1122x x x x ++=1212x x x x ++=4+1=5,故答案为:5.【点睛】此题主要考查根与系数的关系,解题的关键是熟知12x x +=-b a ,12x x ⋅=c a的运用. 17.12【解析】【分析】根据正方形的性质可得出AB∥CD,进而可得出△ABF∽△GDF,根据相似三角形的性质可得出2,结合FG=2可求出AF 、AG 的长度,由CG∥AB、AB=2CG 可得出CG 为△E解析:12【解析】【分析】根据正方形的性质可得出AB ∥CD ,进而可得出△ABF ∽△GDF ,根据相似三角形的性质可得出AF ABGF GD==2,结合FG=2可求出AF、AG的长度,由CG∥AB、AB=2CG可得出CG为△EAB的中位线,再利用三角形中位线的性质可求出AE的长度,此题得解.【详解】∵四边形ABCD为正方形,∴AB=CD,AB∥CD,∴∠ABF=∠GDF,∠BAF=∠DGF,∴△ABF∽△GDF,∴AF ABGF GD==2,∴AF=2GF=4,∴AG=6.∵CG∥AB,AB=2CG,∴CG为△EAB的中位线,∴AE=2AG=12.故答案为:12.【点睛】本题考查了相似三角形的判定与性质、正方形的性质以及三角形的中位线,利用相似三角形的性质求出AF的长度是解题的关键.18.3【解析】【分析】首先设应在该盒子中再添加红球x个,根据题意得:,解此分式方程即可求得答案.【详解】解:设应在该盒子中再添加红球x个,根据题意得:,解得:x=3,经检验,x=3是原分解析:3【解析】【分析】首先设应在该盒子中再添加红球x个,根据题意得:12123xx+=++,解此分式方程即可求得答案.【详解】解:设应在该盒子中再添加红球x个,根据题意得:12123xx+=++,解得:x=3,经检验,x=3是原分式方程的解.故答案为:3.【点睛】此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.19.-1<x <2【解析】【分析】根据方程的解确定抛物线与x 轴的交点坐标,即可确定y <0时,x 的取值范围.【详解】由题意得:二次函数y=x2+mx+n 与x 轴的交点坐标为(-1,0),(2,0), 解析:-1<x <2【解析】【分析】根据方程的解确定抛物线与x 轴的交点坐标,即可确定y <0时,x 的取值范围.【详解】由题意得:二次函数y=x 2+mx+n 与x 轴的交点坐标为(-1,0),(2,0),∵a=10>,开口向上,∴y <0时,x 的取值范围是-1<x <2.【点睛】此题考查二次函数与一元二次方程的关系,函数图象与x 轴的交点横坐标即为一元二次方程的解,掌握两者的关系是解此题的关键.20.【解析】【分析】先根据题意确定抛物线的对称轴,再利用抛物线的对称性解答即可.【详解】解:∵,,∴点(-1,0)与(3,0)在抛物线上,∴抛物线的对称轴是直线:x=1,∴点关于直线x=解析:(4,4)【解析】【分析】先根据题意确定抛物线的对称轴,再利用抛物线的对称性解答即可.【详解】解:∵0a b c -+=,930a b c ++=,∴点(-1,0)与(3,0)在抛物线2y ax bx c =++上,∴抛物线的对称轴是直线:x =1, ∴点(2,4)-关于直线x =1对称的点为:(4,4).故答案为:(4,4).【点睛】本题考查了二次函数的性质和二次函数图象上点的坐标特征,属于常考题型,根据题意判断出点(-1,0)与(3,0)在抛物线上、熟练掌握抛物线的对称性是解题的关键.21.【解析】如图,由题意可知∠ADB=90°,BD=,AB=,∴sinA=.解析:5 【解析】如图,由题意可知∠ADB=90°,BD=221+1=2,AB=223+1=10,∴sinA=2510BD AB ==.22.【解析】【分析】根据二次函数性质可得出点的坐标,求得直线为,联立方程求得的坐标,即可求得的坐标,同理求得的坐标,即可求得的坐标,根据坐标的变化找出变化规律,即可找出点的坐标.【详解】解:∵解析:2(1010,1010)-【解析】【分析】根据二次函数性质可得出点1A 的坐标,求得直线12A A 为2y x =+,联立方程求得2A 的坐标,即可求得3A 的坐标,同理求得4A 的坐标,即可求得5A 的坐标,根据坐标的变化找出变化规律,即可找出点2019A 的坐标.【详解】解:∵A 点坐标为()1,1,∴直线OA 为y x =,()11,1A -,∵12A A OA ∕∕,∴直线12A A 为2y x =+,解22y x y x =+⎧⎨=⎩得11x y =-⎧⎨=⎩或24x y =⎧⎨=⎩, ∴()22,4A ,∴()32,4A -,∵34A A OA ∕∕,∴直线34A A 为6y x =+,解26y x y x =+⎧⎨=⎩得24x y =-⎧⎨=⎩或39x y =⎧⎨=⎩, ∴()43,9A ,∴()53,9A -…,∴()220191010,1010A -,故答案为()21010,1010-. 【点睛】本题考查了二次函数图象上点的坐标特征、一次函数的图象以及交点的坐标,根据坐标的变化找出变化规律是解题的关键.23.【解析】【分析】根据几何概率的求法:飞镖落在阴影部分的概率就是阴影区域的面积与总面积的比值.【详解】∵总面积为3×3=9,其中阴影部分面积为4××1×2=4,∴飞镖落在阴影部分的概率是, 解析:49【解析】【分析】根据几何概率的求法:飞镖落在阴影部分的概率就是阴影区域的面积与总面积的比值.【详解】∵总面积为3×3=9,其中阴影部分面积为4×12×1×2=4,∴飞镖落在阴影部分的概率是49,故答案为:49.【点睛】此题考查几何概率,解题关键在于掌握运算法则.24.140°.【解析】【分析】根据内心的定义可知OB、OC为∠ABC和∠ACB的角平分线,根据三角形内角和定理可求出∠OBC+∠OCB的度数,进而可求出∠BOC的度数.【详解】∵点O是△ABC解析:140°.【解析】【分析】根据内心的定义可知OB、OC为∠ABC和∠ACB的角平分线,根据三角形内角和定理可求出∠OBC+∠OCB的度数,进而可求出∠BOC的度数.【详解】∵点O是△ABC的内切圆的圆心,∴OB、OC为∠ABC和∠ACB的角平分线,∴∠OBC=12∠ABC,∠OCB=12∠ACB,∵∠A=100°,∴∠ABC+∠ACB=180°-100°=80°,∴∠OBC+∠OCB=12(∠ABC+∠ACB)=40°,∴∠BOC=180°-40°=140°.故答案为:140°【点睛】本题考查了三角形内心的定义及三角形内角和定理,熟练掌握三角形内切圆的圆心是三角形三条角平分线的交点是解题关键.25.74【解析】【分析】利用加权平均数公式计算.【详解】甲的成绩=,故答案为:74.【点睛】此题考查加权平均数,正确理解各数所占的权重是解题的关键.解析:74【解析】【分析】利用加权平均数公式计算.【详解】甲的成绩=70560290374523,故答案为:74. 【点睛】 此题考查加权平均数,正确理解各数所占的权重是解题的关键.26.【解析】【分析】先根据解析式求出点A 、B 、C 的坐标,求出直线AC 的解析式,设点P 的坐标,根据过点P 作⊙B 的切线,切点是Q 得到PQ 的函数关系式,求出最小值即可.【详解】令中y=0,得x1=【解析】【分析】先根据解析式求出点A 、B 、C 的坐标,求出直线AC 的解析式,设点P 的坐标,根据过点P 作⊙B 的切线,切点是Q 得到PQ 的函数关系式,求出最小值即可.【详解】令21115y x =-中y=0,得x 1x 2∴直线AC 的解析式为1y =-, 设P (x ,31x ), ∵过点P 作⊙B 的切线,切点是Q ,BQ=1∴PQ 2=PB 2-BQ 2,2+(313x )2-1,=242837533x x , ∵43a =0<, ∴PQ 2有最小值24283475()3326443, ∴PQ【点睛】此题考查二次函数最小值的实际应用,求动线段的最小值,需构建关于此线段的函数解析式,利用二次函数顶点坐标公式求最值,此题找到线段PQ 、BQ 、PB 之间的关系式是解题的关键.27.1【解析】【分析】利用根与系数的关系得到x1+x2=3,x1x2=2,然后利用整体代入的方法计算.【详解】解:根据题意得:x1+x2=3,x1x2=2,所以x1+x2-x1x2=3-2=解析:1【解析】【分析】利用根与系数的关系得到x 1+x 2=3,x 1x 2=2,然后利用整体代入的方法计算.【详解】解:根据题意得:x 1+x 2=3,x 1x 2=2,所以x 1+x 2-x 1x 2=3-2=1.故答案为:1.【点睛】本题考查了根与系数的关系:若x 1,x 2是一元二次方程ax 2+bx+c=0(a≠0)的两根时,x 1+x 2=-b a ,x 1x 2=c a. 28.m≤且m≠1.【解析】【分析】【详解】本题考查的是一元二次方程根与系数的关系.有实数根则△=即1-4(-1)(m-1)≥0解得m≥,又一元二次方程所以m-1≠0综上m≥且m≠1.解析:m≤54且m≠1. 【解析】【分析】【详解】本题考查的是一元二次方程根与系数的关系.有实数根则△=240b ac -≥即1-4(-1)(m-1)≥0解得m≥34,又一元二次方程所以m-1≠0综上m≥34且m≠1. 29..【解析】【分析】根据加权平均数的基本求法,平均数等于总和除以个数,即可得到答案.【详解】平均数等于总和除以个数,所以平均数.【点睛】本题考查求加权平均数,解题的关键是掌握加权平均数的 解析:mx ny m n++. 【解析】【分析】 根据加权平均数的基本求法,平均数等于总和除以个数,即可得到答案.【详解】 平均数等于总和除以个数,所以平均数mx ny m n+=+. 【点睛】本题考查求加权平均数,解题的关键是掌握加权平均数的基本求法. 30.16【解析】【分析】【详解】延长EF 交BC 的延长线与H,在平行四边形ABCD 中,∵AD=BC,AD ∥BC∴△DEF ∽△CHF, △DEM ∽△BHM∴ ,∵F是CD的中点∴DF解析:16【解析】【分析】【详解】延长EF交BC的延长线与H,在平行四边形ABCD中,∵AD=BC,AD∥BC∴△DEF∽△CHF, △DEM∽△BHM ∴DE DFCH CF= ,2()DEMBMHS DES BH∆∆=∵F是CD的中点∴DF=CF∴DE=CH∵E是AD中点∴AD=2DE∴BC=2DE∴BC=2CH∴BH=3CH∵1DEMS∆=∴211()3BMHS∆=∴9BMHS∆=∴9CFHBCFMS S∆+=四边形∴9DEFBCFMS S∆+=四边形∴9DME DFMBCFMS S S∆∆++=四边形∴19BCDS∆+=∴8BCDS∆=∵四边形ABCD是平行四边形∴2816ABCDS=⨯=四边形故答案为:16. 三、解答题31.(1)14;(2)P (BC 两位同学参加篮球队)16= 【解析】【分析】(1)根据概率公式P m n=(n 次试验中,事件A 出现m 次)计算即可 (2)用列表法求得全部情况的总数与符合条件的情况数目,二者的比值就是其发生的概率.【详解】解:(1)()1P B 4= 恰好选中B 参加校篮球队的概率是14. (2)列表格如下:∴P (BC 两位同学参加篮球队)21126== 【点睛】 本题考查的是用列表法或树状图法求事件的概率问题,通过题目找出全部情况的总数与符合条件的情况数目与熟记概率公式是解题的关键.32.(1)24233y x x =--+,13x <- 或21>x ;(2)P 35,22⎛⎫- ⎪⎝⎭;(3)1234(5,0),(1,0),(27,0),(27,0)--Q Q Q Q【解析】【分析】(1)将点A (﹣3,0),B (1,0)带入y =ax 2+bx +2得到二元一次方程组,解得即可得出函数解析式;又从图像可以看出x 满足什么值时 y ﹤0;(2)设出P 点坐标224233m m m ⎛⎫--+ ⎪⎝⎭,,利用割补法将△ACP 面积转化为PAC PAO PCO ACO S S SS =+-,带入各个三角形面积算法可得出PAC S 与m 之间的函数关系,分析即可得出面积的最大值;(3)分两种情况讨论,一种是CM 平行于x 轴,另一种是CM 不平行于x 轴,画出点Q 大概位置,利用平行四边形性质即可得出关于点Q 坐标的方程,解出即可得到Q 点坐标.【详解】解:(1)将A (﹣3,0),B (1,0)两点带入y =ax 2+bx +2可得:093202a b a b =-+⎧⎨=++⎩ 解得:2343a b ⎧=-⎪⎪⎨⎪=-⎪⎩∴二次函数解析式为24233y x x =--+. 由图像可知,当x 3<-或x 1>时y ﹤0; 综上:二次函数解析式为24233y x x =--+,当x 3<-或x 1>时y ﹤0; (2)设点P 坐标为224233m m m ⎛⎫--+ ⎪⎝⎭,,如图连接PO ,作PM ⊥x 轴于M ,PN ⊥y 轴于N.PM=224233m m --+,PN=m -,AO=3. 当x 0=时,24y 002233=-⨯-⨯+=,所以OC=2 111222PAC PAO PCO ACO SS S S AO PM CO PN AO CO =+-=+- ()221241132232323322m m m m m ⎛⎫=⨯--++⨯--⨯⨯=-- ⎪⎝⎭, ∵a 10=-<∴函数23PAC S m m =--有最大值,当()33m 212-=-=-⨯-时,PAC S 有最大值,此时35P ,22⎛⎫- ⎪⎝⎭; 所以存在点35P ,22⎛⎫-⎪⎝⎭,使△ACP 面积最大. (3)存在,1234(5,0),(1,0),(27,0),(27,0)--+-Q Q Q Q假设存在点Q 使以 A 、C 、M 、Q 为顶点的四边形是平行四边形①若CM 平行于x 轴,如下图,有符合要求的两个点12Q Q 、,此时1Q A =2.Q A CM =∵CM ∥x 轴,∴点M 、点C (0,2)关于对称轴x 1=-对称,∴M (﹣2,2),∴CM=2.由1Q A =22Q A CM ==,得到12(5,0),(1,0)--Q Q ;②若CM 不平行于x 轴,如下图,过点M 作MG ⊥x 轴于点G ,易证△MGQ ≌△COA ,得QG=OA=3,MG=OC=2,即2M y =-.设M (x ,﹣2),则有242=233--+-x x ,解得:x 17=- 又QG=3,∴327Q G x x =+=∴34(27,0),(27,0)Q Q综上所述,存在点P 使以 A 、C 、M 、Q 为顶点的四边形是平行四边形,Q 点坐标为:1234(5,0),(1,0),(2(2--Q Q Q Q .【点睛】本题考查二次函数与几何综合题目,涉及到用待定系数法求二次函数解析式,通过函数图像得出关于二次函数不等式的解集,平面直角坐标系中三角形面积的计算通常利用割补法,并且将所要求得点的坐标设出来,得出相关方程;在解答(3)的时候注意先画出大概图像再利用平行四边形性质进行计算和分析.33.30【解析】【分析】设该单位一共组织了x 位职工参加旅游观光活动,求出当人数为20时的总费用及人均收费350元时的人数,即可得出20<x <35,再利用总费用=人数×人均收费,即可得出关于x 的一元二次方程,解之取其较小值即可得出结论.【详解】解:设该单位一共组织了x 位职工参加旅游观光活动,∵500×20=10000(元),10000<12000,(500﹣350)=15(人),12000÷350=3427(人),3427不为整数,∴20<x <20+15,即20<x <35.依题意,得:x[500﹣10(x ﹣20)]=12000,整理,得:x 2﹣70x+1200=0,解得:x 1=30,x 2=40(不合题意,舍去).答:该单位一共组织了30位职工参加旅游观光活动.【点睛】本题考查了一元二次方程的应用,正确理解题意,找准题中等量关系列出方程是解题的关键.34.(1)详见解析;(2)详见解析.【解析】【分析】(1)根据四边形ABCD 是平行四边形可得AD ∥BC ,∠FGE =FBC ,再根据已知∠FBC =∠DCE ,进而可得结论;(2)作三角形FBC 的外接圆交AD 于点P 即可证明.【详解】解:(1)∵四边形ABCD 是平行四边形,∴AD ∥BC∴∠FGE =∠FBC∵∠FBC =∠DCE ,∴∠FGE =∠DCE∵∠FEG =∠DEC。
精品解析:四川省成都市2017届九年级上学期期末数学试题(解析版)
四川省成都市金堂县2017-2018学年度上学期九年级期末数学试题一、选择题:1.在实数0、3-、tan 45︒、1-中,最大的是( )A. 0B. 3-C. 0tan 45D. -1【答案】C【解析】【分析】正切值是指是直角三角形中,某一锐角的对边与另一相邻直角边的比值,根据正切的定义计算tan 45︒=1,然后进行比较.【详解】tan45︒=1, 则:-3<-1<0<tan45︒答案选:C【点睛】本题主要考查直角三角形中特殊角的三角函数值的大小以及实数的大小比较.2. 一个几何体的三视图如图所示,这个几何体是( )A. 棱柱B. 圆柱C. 圆锥D. 球【答案】B【解析】 试题分析:由于主视图和左视图为长方形可得此几何体为柱体,由俯视图为圆可得为圆柱体.故选B .考点:三视图来判断几何体【此处有视频,请去附件查看】3.据不完全统计,我国常年参加志愿者服务活动的志愿者超过65000000人,把65000000用科学计数法表示为( )A. 66510⨯B. 565010⨯C. 90.6510⨯D. 76.510⨯【答案】D【解析】【分析】把一个数表示成a 与10的n 次幂相乘的形式(1≤a <10,n 为整数),这种记数法叫做科学记数法.【详解】根据科学计数法的规定1≤a <10,则65000000=6.5×710.答案选D【点睛】本题主要考查科学计数法,解决问题的关键在于明确a 的取值范围:1≤a <10.4.下列计算正确的是( )A. 321x x -=B. 257x x x +=C. 246x x x ∙=D. 44()xy xy = 【答案】C【解析】【分析】根据合并同类项、同底数幂的乘法、积的乘方进行判断即可.【详解】A:根据合并同类项法则应为3x -2x=x;B 选项不是同类项,不能合并;D:根据积的乘方法则应为()4xy =44x y ;答案为C.【点睛】本题主要考查了,同底数幂的乘法法则、合并同类项、积的乘方法则,熟练掌握运算法则才可以避免出错,这类题目也是中考的常考题目之一.5.如图,在已知的△ABC 中,按以下步骤作图:①分别以B ,C 为圆心,以大于12BC 的长为半径作弧,两弧相交于两点M ,N ;②作直线MN 交AB 于点D ,连接CD.若CD=AC ,∠A=58°,则∠ABC 的度数为( )A. 29°B. 30°C. 31°D. 32°【答案】A【解析】【分析】 依次连接CM 、MB 、BN 、NC,则四边形CMBN 为菱形,由此得出:∠BND=∠CND ,根据全等三角形的判定定理,证明BND ≌△CND ,则BD=CD ,故:△BDC 是等腰三角形.CD=AC 且∠A=58°,则∠CDA=58°,根据外角性质得出结果. 【详解】依次连接CM 、MB 、BN 、NC,则四边形CMBN 为菱形,则∠BND=∠CND.在△BND 和△CND 中,BN NC BND CND ND ND =⎧⎪∠=∠⎨⎪=⎩,△BND ≌△CND ,则BD=CD ,∴△BDC 是等腰三角形,∠ABC=∠DCB ,在△ACD 中,CD=AC 且∠A=58°,则∠CDA=58°,由三角形外角性质:∠CDA=∠ABC+∠DCB=2∠ABC ,即58°=2∠ABC , 则∠ABC=29°【点睛】本题主要考查全等三角形的判定、等腰三角形角的特征、三角形外角的性质,作出辅助线证明BD=DC 是解决本题的关键.6.实数a b c d ,,,在数轴上的对应点的位置如图所示,则错误..的结论是( )A. 4a <-B. b c b c +=--C. c b d c -<-D. 0ac >【答案】D【解析】【分析】 在数轴这条直线上的两个数,右边上点表示的数总大于左边上点表示的数,适用于A.非负数(正数和0)的绝对值是它本身,非正数(负数)的绝对值是它的相反数,适用于B.右边的数减去左边的数为数轴上两点间的距离,适用于C.在数轴上通常正数在原点的右边,负数在原点的左边,适用于D.【详解】数轴上右边上点表示的数总大于左边上点表示的数,故a <﹣4,A 正确.﹣2<b<﹣1、0<c<1,则b+c<0,b c+=﹣(b+c)=﹣b-c,B正确.c-b表示c、b两点间的距离,d-c表示d、c两点间的距离,由图像可知c b d c-<-,故C正确.a<0,c>0,则ac<0.故D错误.【点睛】本题主要考查数轴的性质、数轴两点间的距离、绝对值,题目难度不大.7.某班体育委员对本班学生一周锻炼时间(单位:小时)进行了统计,绘制了如图所示的折线统计图,则该班这些学生一周锻炼时间..的中位数是()小时.A. 9B. 10C. 11D. 12【答案】C【解析】【分析】中位数:如果数据的个数是奇数,则中间那个数据就是这群数据的中位数;如果数据的个数是偶数,则中间那2个数据的算术平均值就是这群数据的中位数;也就是选取中间的数,中位数是一种衡量集中趋势的方法.【详解】学生一周锻炼时间为6个9小时,9个10小时,10个11小时,8个12小时,7个13小时.一共有6+9+10+8+7=40个数据,则中位数为20212+第个数据第个数据=11112+=11.【点睛】本题主要考查中位数的意义,并且能根据中位数的意义找到中位数.8.关于x 的一元二次方程mx 2+3x+1=0有两个不相等的实数根,则m 的取值范围为( )A. m<94B. m<94且m≠0C. m≤49D. m≤49且m≠0 【答案】B【解析】【分析】利用一元二次方程根的判别式( △=2b -4ac )可以判断方程的根的情况,一元二次方程a 2x +b x+c=0(a ≠0)的根与根的判别式有如下关系:△=2b -4ac① △>0,方程有两个不相等的实数根;② △=0时,方程有两个相等的实数根;③ △<0时,方程无实数根;根据根与根的判别式的关系即可判断.【详解】mx 2+3x+1=0为一元二次方程,则m≠0,一元二次方程m 2x +3x +1=0有两个不相等的实数根,则△=2b -4ac=9-4m >0, 4m <9,故 m <9 4;综上所述: m <9 4且m ≠0.【点睛】本题主要考查利用一元二次方程根的判别式( △=2b -4ac )判断方程的根的情况,本题需要特别注意二次项系数m ≠0.9.将抛物线y=﹣3x 2+1向右平移1个单位,再向上平移2个单位后所得到的抛物线为( ) A. 23(1)1y x =-+-B. 23(1)3y x =-++ C. 23(1)1y x =--+D. 23(1)3y x =--+ 【答案】D【解析】【分析】计算出抛物线y=﹣3x 2+1的顶点坐标(0,1),根据题目信息得出平移后抛物线的顶点坐标为(1,3),根据顶点式即可得出平移后抛物线的解析式.【详解】抛物线y=﹣3x 2+1的顶点坐标为(0,1),将抛物线向右平移1个单位,再向上平移2个单位,则平移后抛物线的顶点为(1,3),则y=-321x ()+3. 【点睛】本题主要考查了抛物线的平移.一般有两种方法得出平移后抛物线的解析式:① 针对顶点式抛物线的解析式是“左加右减(括号内),上加下减”.② 需要注意的是如果知道了顶点,则顶点坐标在移动时是“左减右加”.10.正方形ABCD 在坐标系中的位置如图所示,将正方形ABCD 绕C 点逆时针方向旋转090后,A 点的坐标为( ).A. (2,-1)B. (2,0)C. (1,-1)D. (-1,0)【答案】A【解析】【分析】 正方形ABCD 绕C 点逆时针方向旋转90°,则点C 的对应点C 1的坐标为(3,2),因为四边形ABCD 为正方形,则线段CB 绕点C 逆时针旋转90°至C 1B 1和原四边形的边CD 重合,即B 1的坐标为(1,1),CD 旋转至下图C 1D 1,旋转前后图形形状不变,即可做出正方形A 1B 1C 1D 1,则旋转后A 的坐标为(2,-1).【详解】【点睛】本题主要考查图形的旋转,图形旋转的三要素:旋转中心、旋转方向、旋转角.认真观察图形的特点是解决本题的关键.二、填空题11.因式分解34x x -= .【答案】()()x x 2x 2-+-【解析】试题分析:要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方公式或平方差公式,若是就考虑用公式法继续分解因式。
四川省成都市九年级(上)期末数学试卷(含解析)
四川省成都市九年级(上)期末数学试卷一、选择题(本大题共小10题,每小题3分,共30分) 1.(3分)下列各数中与4相等的是( ) A .22-B .2(2)-C .|4|--D .(4)-+2.(3分)2017年成都市经济呈现活力增强,稳重向好的发展态势,截止2017年12月,全市实现地区总值约13900亿元,将13900亿元用科学记数法表示是( )亿元. A .213910⨯B .313.910⨯C .41.3910⨯D .51.3910⨯3.(3分)下列计算正确的是( ) A .326a a a ⨯=B .32a a a -=C .22a b ab +=D .123--=-4.(3分)下列说法不正确的是( )A .两组对边分别相等的四边形是平行四边形B .当a c b +=时,一元二次方程20ax bx c ++=必有一根为1C .若点P 是线段AB 的黄金分割点()PA PB >,则512PA AB -= D .23410x x -+=的两根之和为435.(3分)已知52x y =,则x y y-的值为( ) A .35B .32C .23 D .35-6.(3分)如图,线段AB 两个端点的坐标分别为(2,2)A 、(3,1)B ,以原点O 为位似中心,在第一象限内将线段AB 扩大为原来的2倍后得到线段CD ,则端点C 的坐标分别为( )A .(3,1)B .(3,3)C .(4,4)D .(4,1)7.(3分)如图,在菱形ABCD 中,2AB =,120ABC ∠=︒,则对角线BD 等于( )A .2B .4C .6D .88.(3分)如图,A 、B 、C 三点在正方形网格线的交点处,若将ABC ∆绕着点A 逆时针旋转得到△AC B '',则tan B '的值为( )A .12B .13C .14D .249.(3分)关于x 的一元二次方程220x x m ++=有实数根,则m 的取值范围是( ) A .1m <B .1m <且0m ≠C .1m …D .1m … 且0m ≠10.(3分)如图,菱形OBAC 的边OB 在x 轴上,点(8,4)A ,4tan 3COB ∠=,若反比例函数(0)ky k x=≠的图象经过点C ,则k 的值为( )A .6B .12C .24D .32二、填空题(本大题共4小题,每小题4分,共16分)11.(4分)已知a 为锐角,且满足tan(10)3a +︒=,则a 为 度.12.(4分)已知关于x 的一元二次方程20x x m -+=有一个根为2,则m 的值为 ,它的另一个根为 .13.(4分)反比例函数||2m y mx -=,当0x >时,y 随x 的增大而增大,则m = 14.(4分)如图,AB 和DE 是直立在地面上的两根立柱,5AB =米,某一时刻AB 在阳光下的投影3BC =米,在测量AB 的投影时,同时测量出DE 在阳光下的投影长为6米,则DE 的长为 .三、解答题(本大题共6小题,共54分) 15.(12分)计算(1)计算:03(3)(1)3tan 3027π--+--⨯︒+ (2)解方程:(3)2x x x -=16.(6分)先化简再求值:213(1)22a a a a +++--,其中12a =17.(8分)如图,大楼AD 高50米,和大楼AD 相距90米的C 处有一塔BC ,某人在楼顶D 处测得塔顶B 的仰角30BDE ∠=︒,求塔高.(结果保留整数,参考数据:2 1.41,3 1.73)≈≈18.(8分)某班为了解学生一学期做义工的时间情况,对全班50名学生进行调查,按做义工的时间t (单位:小时),将学生分成五类:A 类(02)t 剟,B 类(24)t <…,C 类(46)t <…,D 类(68)t <…,E 类(8)t >.绘制成尚不完整的条形统计图如图.根据以上信息,解答下列问题: (1)E 类学生有 人,补全条形统计图; (2)D 类学生人数占被调查总人数的 %;(3)从该班做义工时间在04t 剟的学生中任选2人,求这2人做义工时间都在24t <…中的概率.19.(10分)如图,在平面直角坐标系xOy中,一次函数y kx b=+的图象与反比例函数6 yx =的图象相交于点(,3)A m,(6,1)B--,与x轴交于点(,0)C n (1)求一次函数y kx b=+的关系式;(2)求BOC∆的面积;(3)若点P在x轴上,且32ACP BOCS S∆∆=,求点P的坐标20.(10分)在平行四边形ABCD 中,6AB =,8BC =,点E 、F 分别为AB 、BC 的两点.(1)如图1,若90B ∠=︒,且2BF CE ==,连接EF 、DE ,判断EF 和DE 的数量关系及位置关系,并说明理由;(2)如图2,60B FED ∠=∠=︒,求证:EF BEED CD=; (3)如图3,若90ABC ∠=︒,点C 关于BD 的对称点为点C ',点O 为平行四边形ABCD 对角线BD 的中点,连接OC 交AD 于点G ,求GD 的长.B 卷一、填空题:(每小题4分,共20分)21.(4分)已知m ,n 是方程2240x x --=的两实数根,则22m mn n ++= . 22.(4分)有三张正面分别写有数字2-,1-, 1 的卡片, 它们的背面完全相同, 将这三张卡片的背面朝上洗匀后随机抽取一张, 以其正面的数字作为x 的值, 放回卡片洗匀, 再从三张卡片中随机抽取一张, 以其正面的数字作为y 的值, 两次结果记为(,)x y . 则使分式2223x xy yx y x y-+--有意义的(,)x y 出现的概率是 . 23.(4分)如图,点A 是反比例函数5(0)y x x=>图象上的一点,点B 是反比例函数1(0)y x x=-<图象上的点,连接OA 、OB 、AB ,若90AOB ∠=︒,则sin A ∠=24.(4分)如图,在ABC ∆中,5AB =,12AC =,13BC =,ABD ∆、ACE ∆、BCF ∆都是等边三角形,则四边形AEFD 的面积S = .25.(4分)如图,直线l 经过正方形ABCD 的顶点A ,先分别过此正方形的顶点B 、D 作BE l ⊥于点E 、DF l ⊥于点F .然后再以正方形对角线的交点O 为端点,引两条相互垂直的射线分别与AD ,CD 交于G ,H 两点.若25EF =,2ABE S ∆=,则线段GH 长度的最小值是 .二、解答题:(26题8分,27题10分,28题12分,共计30分)26.(8分)成都市中心城区“小游园,微绿地”规划已经实施,武侯区某街道有一块矩形空地进入规划试点.如图,已知该矩形空地长为90m ,宽为60m ,按照规划将预留总面积为24536m 的四个小矩形区域(阴影部分)种植花草,并在花草周围修建三条横向通道和三条纵向通道,各通道的宽度相等. (1)求各通道的宽度;(2)现有一工程队承接了对这24536m 的区域(阴影部分)进行种植花草的绿化任务,该工程队先按照原计划进行施工,在完成了2536m 的绿化任务后,将工作效率提高25%,结果提前2天完成任务,求该工程队原计划每天完成多少平方米的绿化任务?27.(10分)如图,正方形ABCD中,4AB=,点E是对角线AC上的一点,连接DE.过点E作EF ED⊥,交AB于点F,以DE、EF为邻边作矩形DEFG,连接AG.(1)求证:矩形DEFG是正方形;(2)求AG AE+的值;(3)若F恰为AB中点,连接DF交AC于点M,请直接写出ME的长.28.(12分)如图1,已知点(,0)A a,(0,)B b,且a、b满足21(3)0a a b++++=,ABCDY的边AD与y轴交于点E,且E为AD中点,双曲线kyx=经过C、D两点.(1)求k的值;(2)点P在双曲线kyx=上,点Q在y轴上,若以点A、B、P、Q为顶点的四边形是平行四边形,试求满足要求的所有点P、Q的坐标;(3)以线段AB为对角线作正方形AFBH(如图3),点T是边AF上一动点,M是HT的中点,MN HT⊥,交AB于N,当T在AF上运动时,MNHT的值是否发生改变?若改变,求出其变化范围;若不改变,请求出其值,并给出你的证明.参考答案与试题解析一、选择题(本大题共小10题,每小题3分,共30分) 1.(3分)下列各数中与4相等的是( ) A .22-B .2(2)-C .|4|--D .(4)-+【考点】1E :有理数的乘方;14:相反数;15:绝对值 【分析】各项计算得到结果,即可做出判断. 【解答】解:A 、原式4=-,不相同; B 、原式4=,相同; C 、原式4=-,不相同;D 、原式4=-,不相同,故选:B .【点评】此题考查了有理数的乘方,绝对值,相反数,熟练掌握有理数的乘方,绝对值,相反数的意义是解本题的关键.2.(3分)2017年成都市经济呈现活力增强,稳重向好的发展态势,截止2017年12月,全市实现地区总值约13900亿元,将13900亿元用科学记数法表示是( )亿元. A .213910⨯B .313.910⨯C .41.3910⨯D .51.3910⨯【考点】1I :科学记数法-表示较大的数【分析】科学记数法的表示形式为10n a ⨯的形式,其中1||10a <…,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值1>时,n 是正数;当原数的绝对值1<时,n 是负数. 【解答】解:13900亿41.3910=⨯亿, 故选:C .【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为10n a ⨯的形式,其中1||10a <…,n 为整数,表示时关键要正确确定a 的值以及n 的值.3.(3分)下列计算正确的是( ) A .326a a a ⨯=B .32a a a -=C .22a b ab +=D .123--=-【考点】46:同底数幂的乘法;1A :有理数的减法;35:合并同类项【分析】分别根据同底数幂的乘法法则,合并同类项的法则,有理数的加减法法则逐一判断即可.【解答】解:325a a a ⨯=,故选项A 不合题意;3a 与2a 不是同类项,故不能合并,故选项B 不合题意;2a 与b 不是同类项,故不能合并,故选项C 不合题意;123--=-,正确,故选项D 符合题意.故选:D .【点评】本题主要考查了幂的运算以及有理数的加减法,熟练掌握运算法则是解答本题的关键.4.(3分)下列说法不正确的是( )A .两组对边分别相等的四边形是平行四边形B .当a c b +=时,一元二次方程20ax bx c ++=必有一根为1C .若点P 是线段AB 的黄金分割点()PA PB >,则PA AB =D .23410x x -+=的两根之和为43 【考点】3A :一元二次方程的解;AB :根与系数的关系;3S :黄金分割;6L :平行四边形的判定【分析】A 、根据平行四边形的判定判断即可;B 、根据一元二次方程的根解答即可;C 、根据黄金分割点的概念解答即可;D 、根据一元二次方程的根解答即可.【解答】解:A 、两组对边分别相等的四边形是平行四边形,正确;B 、当a c b +=-时,一元二次方程20ax bx c ++=必有一根为1,错误;C 、若点P 是线段AB 的黄金分割点()PA PB >,则PA AB =,正确;D 、23410x x -+=的两根之和为为43,正确; 故选:B .【点评】此题考查黄金分割,关键是根据黄金分割、平行四边形的判定和一元二次方程的根解答.5.(3分)已知52x y =,则x y y-的值为( )A .35B .32C .23D .35- 【考点】1S :比例的性质【分析】直接利用已知表示出x ,y 的值,进而代入原式求出答案.【解答】解:设5x k =,2(0)y k k =≠,则52322x y k k y k --==, 故选:B .【点评】此题主要考查了比例式,正确表示出各未知数是解题关键.6.(3分)如图,线段AB 两个端点的坐标分别为(2,2)A 、(3,1)B ,以原点O 为位似中心,在第一象限内将线段AB 扩大为原来的2倍后得到线段CD ,则端点C 的坐标分别为( )A .(3,1)B .(3,3)C .(4,4)D .(4,1)【考点】5D :坐标与图形性质;SC :位似变换【分析】利用位似图形的性质结合对应点坐标与位似比的关系得出C 点坐标.【解答】解:Q 以原点O 为位似中心,在第一象限内将线段AB 扩大为原来的2倍后得到线段CD ,A ∴点与C 点是对应点,C Q 点的对应点A 的坐标为(2,2),位似比为:1:2,∴点C 的坐标为:(4,4)故选:C .【点评】此题主要考查了位似变换,正确把握位似比与对应点坐标的关系是解题关键.7.(3分)如图,在菱形ABCD 中,2AB =,120ABC ∠=︒,则对角线BD 等于( )A .2B .4C .6D .8【考点】8L :菱形的性质【分析】由菱形的性质可证得ABD ∆为等边三角形,则可求得答案.【解答】解:Q 四边形ABCD 为菱形,//AD BC ∴,AD AB =,180A ABC ∴∠+∠=︒,18012060A ∴∠=︒-︒=︒,ABD ∴∆为等边三角形,2BD AB ∴==,故选:A .【点评】本题主要考查菱形的性质,利用菱形的性质证得ABD ∆为等边三角形是解题的关键.8.(3分)如图,A 、B 、C 三点在正方形网格线的交点处,若将ABC ∆绕着点A 逆时针旋转得到△AC B '',则tan B '的值为( )A .12B .13C .14D 2 【考点】2R :旋转的性质;1T :锐角三角函数的定义【分析】过C 点作CD AB ⊥,垂足为D ,根据旋转性质可知,B B ∠'=∠,把求tan B '的问题,转化为在Rt BCD ∆中求tan B .【解答】解:过C 点作CD AB ⊥,垂足为D .根据旋转性质可知,B B ∠'=∠.在Rt BCD ∆中,1tan 3CD B BD ==, 1tan tan 3B B ∴'==. 故选:B .【点评】本题考查了旋转的性质,旋转后对应角相等;三角函数的定义及三角函数值的求法.9.(3分)关于x 的一元二次方程220x x m ++=有实数根,则m 的取值范围是( )A .1m <B .1m <且0m ≠C .1m …D .1m … 且0m ≠【考点】AA :根的判别式【分析】由方程根的情况,根据根的判别式,可得到关于m 的不等式,则可求得m 的取值范围.【解答】解:Q 一元二次方程220x x m ++=有实数根,∴△0…,即2240m -…,解得1m …, 故选:C .【点评】本题主要考查根的判别式,熟练掌握一元二次方程根的个数与根的判别式的关系是解题的关键.10.(3分)如图,菱形OBAC 的边OB 在x 轴上,点(8,4)A ,4tan 3COB ∠=,若反比例函数(0)k y k x =≠的图象经过点C ,则k 的值为( )A .6B .12C .24D .32【考点】6G :反比例函数图象上点的坐标特征;7T :解直角三角形;8L :菱形的性质【分析】作AH x ⊥轴于H ,如图,利用菱形的性质得到//OC AB ,//AC OB ,OB AB AC ==,所以ABH COB ∠=∠,在Rt ABH ∆中,利用正切的定义得到3BH =,则5OB =,从而得到(3,4)C ,然后根据反比例函数图象上点的坐标特征求出k 的值.【解答】解:作AH x ⊥轴于H ,如图,(8,4)A Q ,8OH ∴=,4AH =,Q 四边形ABOC 为菱形,//OC AB ∴,//AC OB ,OB AB AC ==,ABH COB ∴∠=∠,在Rt ABH ∆中,4tan 3AH ABH BH ∠==, 334BH AH ∴==, 5OB ∴=,(3,4)C ∴,Q 反比例函数(0)k y k x=≠的图象经过点C , 3412k ∴=⨯=. 故选:B .【点评】本题考查了反比例函数图象上点的坐标特征:反比例函数(k y k x=为常数,0)k ≠的图象是双曲线,图象上的点(,)x y 的横纵坐标的积是定值k ,即xy k =.也考查了菱形的性质.二、填空题(本大题共4小题,每小题4分,共16分)11.(4分)已知a 为锐角,且满足tan(10)3a +︒=,则a 为 50 度.【考点】5T :特殊角的三角函数值【分析】直接利用特殊角的三角函数值进而得出答案.【解答】解:tan(10)3a +︒=Q ,1060α∴+︒=︒,故50α=︒.故答案为:50.【点评】此题主要考查了特殊角的三角函数值,正确记忆相关数据是解题关键.12.(4分)已知关于x 的一元二次方程20x x m -+=有一个根为2,则m 的值为 2- ,它的另一个根为 .【考点】3A :一元二次方程的解;8A :解一元二次方程-因式分解法【分析】代入根先求出m 的值,然后根据方程求出另一个根.【解答】解:Q 有一个根为2,420m ∴-+=2m =-.220x x --=(2)(1)0x x -+=2x =或1x =-.所以另一个根为1-.故答案为:2-;1-.【点评】本题考查解一元二次方程,用到因式分解的方法.13.(4分)反比例函数||2m y mx -=,当0x >时,y 随x 的增大而增大,则m = 1-【考点】4G :反比例函数的性质;1G :反比例函数的定义【分析】根据反比例函数的一般形式,可以得到x 的次数是1-;根据当0x >时,y 随x 的增大而增大,可以得到比例系数是负数,即可求得.【解答】解:根据题意得:||210m m -=-⎧⎨<⎩, 解得:1m =-.故答案为:1-.【点评】本题考查了反比例函数的一般形式以及反比例函数的性质,正确理解函数的性质是关键.14.(4分)如图,AB 和DE 是直立在地面上的两根立柱,5AB =米,某一时刻AB 在阳光下的投影3BC =米,在测量AB 的投影时,同时测量出DE 在阳光下的投影长为6米,则DE 的长为 10m .【考点】SA :相似三角形的应用;5U :平行投影【分析】根据平行的性质可知ABC DEF ∆∆∽,利用相似三角形对应边成比例即可求出DE 的长.【解答】解:如图,在测量AB 的投影时,同时测量出DE 在阳光下的投影长为6m , ABC DEF ∆∆Q ∽,5AB m =,3BC m =,6EF m = ∴AB DE BC EF = ∴536DE = 10()DE m ∴=故答案为10m .【点评】本题通过投影的知识结合图形相似的性质巧妙地求出灯泡离地面的距离,是平行投影性质在实际生活中的应用.三、解答题(本大题共6小题,共54分)15.(12分)计算(1)计算:03(3)(1)3tan 3027π--+--⨯︒+(2)解方程:(3)2x x x -=【考点】5T :特殊角的三角函数值;6E :零指数幂;8A :解一元二次方程-因式分解法;6F :负整数指数幂;2C :实数的运算【分析】(1)根据零指数幂的意义、负整数指数幂的意义和特殊角的三角函数值进行计算;(2)先移项得到(3)20x x x --=,然后利用因式分解法解方程.【解答】解:(1)原式113=--+11=-+=;(2)(3)20x x x --=,(32)0x x --=,0x =或320x --=,所以10x =,25x =.【点评】本题考查了解一元二次方程-因式分解法:因式分解法就是利用因式分解求出方程的解的方法,这种方法简便易用,是解一元二次方程最常用的方法.也考查了实数的运算.16.(6分)先化简再求值:213(1)22a a a a +++--,其中12a = 【考点】6D :分式的化简求值【分析】分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序;先乘方,再乘除,然后加减,有括号的先算括号里面的.【解答】解:原式123(2)2a a a a a +-+=+-- 21(2)(2)a a a a a a a ++=+-- 221(2)a a a a ++=- 2(1)(2)a a a +=- 当12a =时, 原式21(1)2311(2)22+==-- 【点评】本题考查了分式的化简,熟练分解因式是解题的关键.17.(8分)如图,大楼AD 高50米,和大楼AD 相距90米的C 处有一塔BC ,某人在楼顶D 处测得塔顶B 的仰角30BDE ∠=︒,求塔高.(结果保留整数,参考数据:1.73)≈≈【考点】TA :解直角三角形的应用-仰角俯角问题【分析】过点D 作DE BC ⊥于点E ,在直角三角形BDE 中,根据30BDE ∠=︒,求出BE 的长度,然后即可求得塔高.【解答】解:过点D 作DE BC ⊥于点E ,在Rt BDE ∆中,30BDE ∠=︒Q ,90DE =米,3tan 3090303BE DE ∴=︒==g ), 350102BC BE EC BE AD ∴=+=+=+≈(米). 答:塔高约为102米.【点评】本题考查的是解直角三角形的应用,解答本题的关键是根据仰角构造出直角三角形,利用三角函数的知识求解.18.(8分)某班为了解学生一学期做义工的时间情况,对全班50名学生进行调查,按做义工的时间t (单位:小时),将学生分成五类:A 类(02)t 剟,B 类(24)t <…,C 类(46)t <…,D 类(68)t <…,E 类(8)t >.绘制成尚不完整的条形统计图如图.根据以上信息,解答下列问题:(1)E 类学生有 5 人,补全条形统计图;(2)D 类学生人数占被调查总人数的 %;(3)从该班做义工时间在04t 剟的学生中任选2人,求这2人做义工时间都在24t <…中的概率.【考点】VC :条形统计图;6X :列表法与树状图法【分析】(1)根据总人数等于各类别人数之和可得E 类别学生数;(2)用D 类别学生数除以总人数即可得;(3)列举所有等可能结果,根据概率公式求解可得.【解答】解:(1)E 类学生有50(232218)5-+++=(人), 补全图形如下:故答案为:5;(2)D 类学生人数占被调查总人数的18100%36%50⨯=, 故答案为:36;(3)记02t 剟内的两人为甲、乙,24t <…内的3人记为A 、B 、C , 从中任选两人有:甲乙、甲A 、甲B 、甲C 、乙A 、乙B 、乙C 、AB 、AC 、BC 这10种可能结果,其中2人做义工时间都在24t <…中的有AB 、AC 、BC 这3种结果, ∴这2人做义工时间都在24t <…中的概率为310. 【点评】本题考查了列表法或树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.也考查条形统计图.19.(10分)如图,在平面直角坐标系xOy中,一次函数y kx b=+的图象与反比例函数6 yx=的图象相交于点(,3)A m,(6,1)B--,与x轴交于点(,0)C n(1)求一次函数y kx b=+的关系式;(2)求BOC∆的面积;(3)若点P在x轴上,且32ACP BOCS S∆∆=,求点P的坐标【考点】8G:反比例函数与一次函数的交点问题【分析】(1)利用待定系数法解决问题即可.(2)求出点C的坐标即可解决问题.(3)设(,0)P m,利用三角形的面积公式构建方程即可解决问题.【解答】解:(1)Q反比例函数6yx=的图象相交于点(,3)A m,2m∴=,把(2,3)A,(6,1)B--代入y kx b=+,则有2361k bk b+=⎧⎨-+=-⎩,解得122kb⎧=⎪⎨⎪=⎩,∴一次函数的解析式为122y x=+.(2)连接OB.Q 一次函数的解析式为122y x =+交x 轴于C , (4,0)C ∴-,4OC ∴=,(6,1)B --Q ,14122OBC S ∆∴=⨯⨯=,(3)设(,0)P m ,由题意:13|4|3222m +=⨯g g ,6m ∴=-或2-.【点评】本题考查反比例函数与一次函数的交点问题,解题的关键是熟练掌握待定系数法,学会利用参数构建方程解决问题,属于中考常考题型.20.(10分)在平行四边形ABCD 中,6AB =,8BC =,点E 、F 分别为AB 、BC 的两点.(1)如图1,若90B ∠=︒,且2BF CE ==,连接EF 、DE ,判断EF 和DE 的数量关系及位置关系,并说明理由;(2)如图2,60B FED ∠=∠=︒,求证:EF BEED CD=; (3)如图3,若90ABC ∠=︒,点C 关于BD 的对称点为点C ',点O 为平行四边形ABCD 对角线BD 的中点,连接OC 交AD 于点G ,求GD 的长.【考点】SO :相似形综合题【分析】(1)根据平行四边形的性质结合AB 、BC 、BF 、CE 的长度,即可证出()BEF CDE SAS ∆≅∆,利用全等三角形的性质可得出EF DE =、BEF CDE ∠=∠,再通过角的计算即可找出90DEF ∠=︒,即EF DE ⊥;(2)在AB 上取点G ,使BG BE =,连接EG ,则BEG ∆为等边三角形,根据平行四边形的性质结合角的计算可找出C EGF ∠=∠、CDE GEF ∠=∠,进而可证出CDE GEF ∆∆∽,根据相似三角形的性质可得出EF GEDE CD=,等量替换后可得出EF BEED CD=; (3)连接AC 、CC '、AC ',设CC '交BD 于点M ,利用面积法及勾股定理可求出OM 的长度,易知OM 为中位线,根据中位线的性质可得出AC '的长度及//AC BD ',进而可得出AGC DGO ∆'∆∽,利用相似三角形的性质可得出14145525AG AC DG DO '===,结合AD 的长度即可求出DG 的长度.【解答】(1)解:EF DE =,EF DE ⊥.理由如下:Q 四边形ABCD 为平行四边形,90B ∠=︒,90C B ∴∠=∠=︒.6AB =Q ,8BC =,2BF CE ==, 6BE BC CE CD ∴=-==. 在BEF ∆和CDE ∆中,BF CEB C BE CD =⎧⎪∠=∠⎨⎪=⎩,()BEF CDE SAS ∴∆≅∆, EF DE ∴=,BEF CDE ∠=∠.90CDE CED ∠+∠=︒Q , 90BEF CED ∴∠+∠=︒, 90DEF ∴∠=︒,即EF DE ⊥.(2)证明:如图2,在AB 上取点G ,使BG BE =,连接EG ,则BEG ∆为等边三角形,60BGE BEG ∴∠=∠=︒, 180120EGF BGE ∴∠=︒-∠=︒.Q 四边形ABCD 为平行四边形,60B ∠=︒,120C EGF∴∠=︒=∠,60CED CDE∴∠+∠=︒.60DEF∠=︒Q,60BEG∠=︒,180606060 GEF CED∴∠+∠=︒-︒-︒=︒,CDE GEF∴∠=∠,CDE GEF∴∆∆∽,∴EF GEDE CD=,即EF BEED CD=.(3)解:连接AC、CC'、AC',设CC'交BD于点M,如图3所示,则BD为线段CC'的垂直平分线.90ABC∠=︒Q,∴平行四边形ABCD为矩形,2210BD BC CD∴=+=,11522OC AC BD===,245BC CDCMBD==g,2275OM OC CM∴=-=.Q点O为AC的中点,点M为CC'的中点,1425AC OM∴'==,且//AC BD',AGC DGO∴∆'∆∽,∴14145525AG ACDG DO'===,25200142539DG AD∴==+.【点评】本题考查了全等三角形的判定与性质、相似三角形的判定与性质、等边三角形的判定与性质、平行四边形的性质、三角形的面积以及勾股定理,解题的关键是:(1)通过BEF CDE∆≅∆找出相等的边角关系;(2)利用构造相似三角形找出EF GEDE CD=;(3)利用相似三角形的性质找251425DG AD =+.B 卷一、填空题:(每小题4分,共20分)21.(4分)已知m ,n 是方程2240x x --=的两实数根,则22m mn n ++= 4 . 【考点】AB :根与系数的关系【分析】先根据一元二次方程根的定义得到224m m =+,则22m mn n ++可变形为2()4m n mn +++,再根据根与系数的关系得到2m n +=,4mn =-,然后利用整体代入的方法计算代数式的值.【解答】解:m Q 是方程2240x x --=的实数根, 2240m m ∴--=, 224m m ∴=+,222422()4m mn n m mn n m n mn ∴++=+++=+++,m Q ,n 是方程2240x x --=的两实数根,2m n ∴+=,4mn =-,2222444m mn n ∴++=⨯-+=.故答案为4.【点评】本题考查了根与系数的关系:若1x ,2x 是一元二次方程20(0)ax bx c a ++=≠的两根时,12b x x a +=-,12c x x a=.22.(4分)有三张正面分别写有数字2-,1-, 1 的卡片, 它们的背面完全相同, 将这三张卡片的背面朝上洗匀后随机抽取一张, 以其正面的数字作为x 的值, 放回卡片洗匀, 再从三张卡片中随机抽取一张, 以其正面的数字作为y 的值, 两次结果记为(,)x y . 则使分式2223x xy y x y x y -+--有意义的(,)x y 出现的概率是 9. 【考点】62 :分式有意义的条件;6X :列表法与树状图法【分析】首先列表得出所有等可能的情况数, 再找出能使分式有意义的(,)x y 情况数, 即可求出所求的概率 . 【解答】解: 列表如下:2- (2,2)-- (1,2)-- (1,2)- 1-(2,1)-- (1,1)-- (1,1)- 1(2,1)-(1,1)-(1,1)所有等可能的情况有 9 种,Q 分式的最简公分母为()()x y x y +-,x y ∴≠-且x y ≠时, 分式有意义,∴能使分式有意义的(,)x y 有 4 种,则49P =. 故答案为:49.【点评】此题考查了列表法与树状图法, 用到的知识点为: 概率=所求情况数与总情况数之比, 注意此题是放回实验还是不放回实验是解题关键 .23.(4分)如图,点A 是反比例函数5(0)y x x=>图象上的一点,点B 是反比例函数1(0)y x x=-<图象上的点,连接OA 、OB 、AB ,若90AOB ∠=︒,则sin A ∠=66【考点】2G :反比例函数的图象;6G :反比例函数图象上点的坐标特征;7T :解直角三角形【分析】如图作AE x ⊥轴于E ,BF x ⊥轴于F .设5(,)A a a ,1(,)B b b-,由BOF OAE ∆∆∽,可得AE OEOF BF=,推出225a b =,想办法求出OB 、AB (用b 表示),再根据三角函数的定义即可解决问题;【解答】解:如图作AE x ⊥轴于E ,BF x ⊥轴于F .设5(,)A a a ,1(,)B b b -,90AOB OFB AEO ∠=∠=∠=︒Q ,90BOF AOE∴∠+∠=︒,90AOE OAE∠+∠=︒,BOF OAE∴∠=∠,BOF OAE∴∆∆∽,∴AE OEOF BF=,∴51aabb=--,225a b∴=,22222222212566AB OB OA b a bb a b=+=+++=+Q,2216()AB bb∴=+,221OB bb=+,222216sin616()bOB bAABbb+∴∠===+,故答案为66.【点评】本题考查反比例函数图象上点的特征、反比例函数的图象、解直角三角形等知识,解题的关键是学会利用参数解决问题,属于中考填空题中的压轴题.24.(4分)如图,在ABC∆中,5AB=,12AC=,13BC=,ABD∆、ACE∆、BCF∆都是等边三角形,则四边形AEFD的面积S=30.【考点】KD:全等三角形的判定与性质;KK:等边三角形的性质;KQ:勾股定理;KS:勾股定理的逆定理【分析】根据题中的等式关系可推出两组对边分别相等,从而可判断四边形AEFD 为平行四边形.由勾股定理的逆定理判定90BAC ∠=︒,则150DAE ∠=︒,故易求30FDA ∠=︒.所以由平行四边形的面积公式即可解答.【解答】解:Q 在ABC ∆中,5AB =,12AC =,13BC =, 222BC AB AC ∴=+, 90BAC ∴∠=︒,ABD ∆Q ,ACE ∆都是等边三角形, 60DAB EAC ∴∠=∠=︒, 150DAE ∴∠=︒.ABD ∆Q 和FBC ∆都是等边三角形, 60DBF FBA ABC ABF ∴∠+∠=∠+∠=︒, DBF ABC ∴∠=∠.在ABC ∆与DBF ∆中, BD BA DBF ABC BF BC =⎧⎪∠=∠⎨⎪=⎩()ABC DBF SAS ∴∆≅∆, 12AC DF AE ∴===,同理可证ABC EFC ∆≅∆, 5AB EF AD ∴===,∴四边形DAEF 是平行四边形(两组对边分别相等的四边形是平行四边形). 18030FDA DAE ∴∠=︒-∠=︒,()130512302AEFD S AD DF sin ⎛⎫∴=⋅⋅︒=⨯⨯= ⎪⎝⎭Y ,即四边形AEFD 的面积是30, 故答案为:30.【点评】本题综合考查了勾股定理的逆定理,平行四边形的判定与性质,全等三角形的判定与性质以及等边三角形的性质.综合性比较强,难度较大,有利于培养学生综合运用知识进行推理和计算的能力.25.(4分)如图,直线l 经过正方形ABCD 的顶点A ,先分别过此正方形的顶点B 、D 作BE l ⊥于点E 、DF l ⊥于点F .然后再以正方形对角线的交点O 为端点,引两条相互垂直的射线分别与AD ,CD 交于G ,H 两点.若25EF =,2ABE S ∆=,则线段GH 长度的最小值是6 .【考点】KD :全等三角形的判定与性质;KQ :勾股定理;LE :正方形的性质【分析】根据正方形的性质可得AB AD =,90BAD ∠=︒,然后利用同角的余角相等求出BAE ADF ∠=∠,再利用“角角边”证明ABE ∆和DAF ∆全等,根据全等三角形对应边相等可得BE AF =,设AE x =,BE y =,然后列出方程组求出x 、y 的值,再利用勾股定理列式求出正方形的边长AB ,根据正方形的对角线平分一组对角可得45OAG ODH ∠=∠=︒,根据同角的余角相等求出AOG DOH ∠=∠,然后利用“角边角”证明AOG ∆和DOH ∆全等,根据全等三角形对应边相等可得OG OH =,判断出OGH ∆是等腰直角三角形,再根据垂线段最短和等腰直角三角形的性质可得OH CD ⊥时GH 最短,然后求解即可.【解答】解:在正方形ABCD 中,AB AD =,90BAD ∠=︒, 90BAE DAF ∴∠+∠=︒, DF l ⊥Q ,90DAF ADF ∴∠+∠=︒,BAE ADF ∴∠=∠,在ABE ∆和DAF ∆中, 90BAE ADF AFD BEA AB AD ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩, ()ABE DAF AAS ∴∆≅∆,BE AF ∴=,设AE x =,BE y =, 25EF =Q ,2ABE S ∆=,∴122x y xy ⎧+=⎪⎨=⎪⎩, 消掉y并整理得,240x -+=,解得11x =-,21x =+,当11x =,11y =+,当21x =,21y =-,∴由勾股定理得,AB ==,在正方形ABCD 中,45OAG ODH ∠=∠=︒,OA OD =,90AOD ∠=︒, 90AOG DOG ∴∠+∠=︒, OG OH ⊥Q ,90DOH DOG ∴∠+∠=︒, AOG DOH ∴∠=∠,在AOG ∆和DOH ∆中, AOG DOH OA ODOAG ODH ∠=∠⎧⎪=⎨⎪∠=∠⎩, ()AOG DOH ASA ∴∆≅∆, OG OH ∴=,OGH ∴∆是等腰直角三角形,由垂线段最短可得,OH CD ⊥时OH 最短,GH 也最短, 此时,GH=.【点评】本题考查了正方形的性质,全等三角形的判定与性质,勾股定理,等腰直角三角形的判定与性质,难点在于多次证明三角形全等并判断出GH 长度最小时的情况. 二、解答题:(26题8分,27题10分,28题12分,共计30分)26.(8分)成都市中心城区“小游园,微绿地”规划已经实施,武侯区某街道有一块矩形空地进入规划试点.如图,已知该矩形空地长为90m ,宽为60m ,按照规划将预留总面积为24536m的四个小矩形区域(阴影部分)种植花草,并在花草周围修建三条横向通道和三条纵向通道,各通道的宽度相等.(1)求各通道的宽度;(2)现有一工程队承接了对这24536m的区域(阴影部分)进行种植花草的绿化任务,该工程队先按照原计划进行施工,在完成了2536m的绿化任务后,将工作效率提高25%,结果提前2天完成任务,求该工程队原计划每天完成多少平方米的绿化任务?【考点】AD:一元二次方程的应用;7B:分式方程的应用【分析】(1)设各通道的宽度为x米,四块小矩形区域可合成长为(903)x-米、宽为(603)x-米的大矩形,根据草地的面积,即可得出关于x的一元二次方程,解之取其较小值即可得出结论;(2)设该工程队原计划每天完成y平方米的绿化任务,根据工作时间=工作总量÷工作效率结合提前2 天完成任务,即可得出关于y的分式方程,解之经检验后即可得出结论.【解答】解:(1)设各通道的宽度为x米,根据题意得:(903)(603)4536x x--=,解得:12x=,248x=(不合题意,舍去).答:各通道的宽度为2米.(2)设该工程队原计划每天完成y平方米的绿化任务,根据题意得:453653645365362(125%)y y---=+,解得:400y=,经检验,400y=是原方程的解,且符合题意.答:该工程队原计划每天完成400平方米的绿化任务.【点评】本题考查了分式方程的应用以及一元二次方程的应用,解题的关键是:(1)找准等量关系,正确列出一元二次方程;(2)找准等量关系,正确列出分式方程.27.(10分)如图,正方形ABCD中,4AB=,点E是对角线AC上的一点,连接DE.过。
2016~2017学年四川成都高新区初三上学期期末数学试卷
选择题(本大题共15个小题,每小题3分,共45分.)1.A.B.C.D.如图是由四个相同的小正方体组成的几何体,则它的主视图为( ).2.A.$$(-2,3)$$ B.$$(1,5)$$ C.$$(1,6)$$ D.$$(1,-6)$$若点$$(2,3)$$在反比例函数$$y=\frac{k}{x}(k\ne 0)$$的图象上,那么下列各点在此图象上的是( ).3.A.$$\dfrac{1}{2}$$ B.$$\dfrac{1}{4}$$ C.$$\dfrac{1}{3}$$ D.$$\dfrac{1}{6}$$在一个布口袋里装有白、红、黑三种颜色的小球,它们除颜色外没有任何区别,其中白球$$2$$只、红球$$6$$只、黑球$$4$$只.将袋中的球搅匀,闭上眼睛随机从袋中取出$$1$$只球,则取出黑球的概率是( ).4.A.$$\frac{1}{2}$$ B.$$\frac{\sqrt{2}}{2}$$ C.$$\frac{\sqrt{3}}{2}$$ D.$$\frac{\sqrt{3}}{3}$$在正方形网格中,$$\triangle ABC$$的位置如图所示,则$$\text{cos }B$$的值为( ).5.A.$$x=4$$ B.$$x=-4$$ C.$$x=2$$ D.$$x=-2$$二次函数$$y={{x}^{2}}+4x-5$$的图象的对称轴为( ). 6.如图$$A$$,$$B$$,$$C$$是圆$$\text{O}$$上的三个点,若$$\angle AOC=100{}^\circ $$,则$$\angle ABC$$等于( ).已知关于$$x$$的方程$${{x}^{2}}-kx-5=0$$的一个根为$$x=5$$,则另一个根是( ).B.$$4$$如图,在菱形$$ABCD$$中,$$M$$,$$N$$分别在$$AB$$,$$CD$$上,且$$AM=CN$$,$$MN$$与$$AC$$交于C.D.12.A.逐渐增大 B.不变 C.逐渐减小 D.先增大后减小如图,在平面直角坐标系中,点$$A$$是$$x$$轴正半轴上的一个定点,点$$P$$是双曲线$$y=\frac{3}{x}$$($$x>0$$)上的一个动点,$$PB\bot y$$轴于点$$B$$,当点$$P$$的横坐标逐渐增大时,则四边形$$OAPB$$的面积将会( ).13.A.B. C.D.如图,矩形$$ABCD$$中,$$AB=3$$,$$BC=5$$,点$$P$$是$$BC$$边上的一个动点(点$$P$$与点$$B$$,$$C$$都不重合),现将$$\triangle PCD$$沿直线$$PD$$折叠,使点$$C$$落到点$$F$$处;过点$$P$$作$$\angle BPF$$的角平分线交$$AB$$于点$$E$$.设$$BP=x$$,$$BE=y$$,则下列图象中,能表示$$y$$与$$x$$的函数关系的图象大致是( ).14.如图,在矩形$$ABCD$$中,$$E$$是$$AD$$边的中点,$$BE\bot AC$$,垂足为点$$F$$,连接$$DF$$,分析下列四个结论:①$$\triangle AEF\backsim \triangle CAB$$;②$$CF=2AF$$;③$$DF=DC$$;④$$\text{tan }\angleCAD=\sqrt{2}$$.其中正确的结论有( ).($$5$$)若方程$$a(x+1)(x-5)=-3$$的两根为$${{x}_{1}}$$和$${{x}_{2}}$$,且$${{x}_{1}}<{}{{x}_{2}}$$,则$${{x}_{1}} <{}-1<{}5<{}{{x}_{2}}$$.其中正确的结论有( ).16.如图,河堤横断面迎水坡$$AB$$的坡比是$$1\sqrt{3}$$,堤高$$BC=\text{5cm}$$,坡面$$AB$$的长度是 $$\text{m}$$.$${{S}_{\triangle CDE}}$$的比是 .21.如图,$$A$$,$$B$$两点在反比例函数$$y=\frac{{{k}_{1}}}{x}$$的图象上,$$C$$、$$D$$两点在反比例函数$$y=\frac{{{k}_{2}}}{x}$$的图象上,$$AC\bot x$$轴于点$$E$$,$$BD\bot x$$轴于点$$F$$,$$AC=2$$,$$BD=3$$,$$EF=\frac{10}{3}$$,则$${{k}_{2}}-{{k}_{1}}=$$ .1求证:$$BF=DF$$.2连接$$CF$$,请直接写出$$BE:CF$$的值.底座厚度为$$2\text{cm}$$,灯臂与底座构成的$$\angle BAD=60{}^\circ $$.使用发现,光线最佳时灯罩$$BC$$与水平线所成的角为$$30{}^\circ $$,此时灯罩顶端$$C$$到桌面的高度$$CE$$是多少厘米?(结果精确到$$01$$厘米)24.农场要建一座长方形养鸡场,鸡场的一边靠墙,墙长$$19$$米,另三边用木栏围成,木栏长$$38$$米,鸡场的面积能达到$$180{{\text{m}}^{2}}$$吗?若能,请求出长与宽;若不能,请说明理由.25.(1)求获得一等奖的学生人数.(2)在本次知识竞赛活动中,$$A$$,$$B$$,$$C$$,$$D$$四所学校表现突出,现决定从这四所学校中随机选取两所学校举行一场足球友谊赛,请用树状图或列表的方法求恰好达到$$A$$,$$B$$两所学校的概率.国务院办公厅在$$2015$$年$$3$$月$$16$$日发布了《中国足球发展改革总体方案》,这是中国足球史上的重大改革,为进一步普及足球知识,传播足球文化,我市某区在中小学举行了足球在身边知识竞赛活动,各类获奖学生人数的比例情况如图所示,其中获得三等奖的学生共$$50$$名,请结合图中信息,解答下列问题:$$Q$$的坐标.若$${{S}_{\triangle ABP}}=12$$,求点$$P$$的坐标.如图$$1$$,$$\triangle ABC$$是等腰直角三角形,$$\angle BAC=90{}^\circ $$,$$AB=AC$$,四边形$$ADEF$$是正方形,点$$B$$、$$C$$分别在边$$AD$$、$$AF$$上,此时$$BD=CF$$,$$BD\bot CF$$成立.28.(1)求抛物线的解析式.(2)若点$$F$$是直线$$BC$$上方的抛物线上的一个动点,是否存在点$$F$$使四边形$$ABFC$$的面积为$$17$$,若存在,求出点$$F$$的坐标,若不存在,请说明理由.(3)平行于$$DE$$的一条动直线$$l$$与直线$$BC$$相交于点$$P$$,与抛物线相交于点$$Q$$,若以$$D$$、$$E$$、$$P$$、$$Q$$为顶点的四边形是平行四边形,求点$$P$$的坐标.如图,抛物线$$y=a{{x}^{2}}+bx+c(a\ne 0)$$与$$y$$轴交于点$$C(0,4)$$,与$$x$$轴交于点$$A$$和点$$B$$,其中点$$A$$的坐标为$$(-2,0)$$,抛物线的对称轴$$x=1$$与抛物线交于点$$D$$,与直线$$BC$$交于点$$E$$.。
四川省成都市九年级(上)期末数学试卷(含解析)
四川省成都市九年级(上)期末数学试卷一、选择題(每小题3分,共30分)1.在Rt△ABC中,∠C=90°,若AC=3,BC=2,则tan A的值是()A.B.C.D.2.方程x(x+2)=0的解是()A.x=0B.x=2C.x=0或x=2D.x=0或x=﹣23.如图是由5个相同的小正方体搭成的一个几何体,它的俯视图是()A.B.C.D.4.如图,随机闭合开关S1、S2、S3中的两个,则能让灯泡⊗发光的概率是()A.B.C.D.5.若反比例函数(k≠0)的图象过点(﹣2,1),则这个函数的图象一定过()A.(2,﹣1)B.(2,1)C.(﹣2,﹣1)D.(1,2)6.某种品牌运动服经过两次降价,每件零售价由460元降为215,已知两次降价的百分率相同,求每次降价的百分率.设每次降价的百分率为x,下面所列的方程中正确的是()A.460(1+x)2=215B.460(1﹣x)2=215C.460(1﹣2x)2=215D.460(1﹣x2)=2157.如图,利用标杆BE测量建筑物的高度.已知标杆BE高1.2m,AB:AC=1:9,则建筑物CD的高是()A.96m B.10.8m C.12m D.14m8.如图,点A,B,C均在⊙O上,若∠A=66°,则∠OCB的度数是()A.24°B.28°C.33°D.48°9.如图,在菱形ABCD中,对角线AC、BD相交于点O,BD=8,tan∠ABD=,则菱形ABCD 的边长为()A.5B.6C.7D.810.对于抛物线y=﹣2(x+1)2+3,下列结论:①抛物线的开口向下;②对称轴为直线x=1:③顶点坐标为(﹣1,3);④x>﹣1时,y随x的增大而减小,其中正确结论的个数为()A.1B.2C.3D.4二、填空题(每小题4分,共16分)11.(4分)如果,那么=12.(4分)若x=﹣2是一元二次方程x2+3x+k=0的一个根,则k的值为13.(4分)已知A(x1,y1),B(x2,y2)都在反比例函数的图象y=﹣上,且x1<0<x2,则y1与y2大小关系是.14.(4分)如图,△ABC内接于圆O,AB为圆O直径,∠CAB=60°,弦AD平分∠CAB,若AD =3,则BD=.三、解答题(本大题共6个小题,共54分)15.(12分)(1)计算:﹣2sin60°+|1﹣tan60°|+(2019﹣π)0(2)解方程:4x(x+3)=x2﹣916.(6分)若关于x的一元二次方程(m﹣2)x2+2x+1=0有两个实根,求m的取值范围.17.(8分)《基础教育课程改革纲要》要求每位学生每学年都要参加社会实践活动.某学校组织了一次户外攀岩活动,如图,攀岩墙体近似看作垂直于地面,一学生攀到D点时,距离地面B 点3.6米,该学生继续向上很快就攀到顶点E.在A处站立的带队老师拉着安全绳,分别在点D 和点E测得点C的俯角是45°和60°,带队老师的手C点距离地面1.6米,请求出攀岩的顶点E距离地面的高度为多少米?(结果可保留根号)18.(8分)我区正在进行《中学学科核心素养理念下渗透数学美育教育的研究为了了解我区课堂教学中渗透数学美育的情况,在200名学生中随机抽取了部分学生进行调查调查,调查结果分为非常了解、了解”、了解较少、“不了解四类,并将调查结果绘制出以下两幅不完整的统计图,请根据统计图回答下列问题(1)本次抽取调查的学生共有人,估计该校200名学生中不了解的人数约有人;(2)“非常了解”的4人中有A1,A2两名男生,B1,B2两名女生,若从中随机抽取两人去参加中心数学知识竞赛,请用树状图或列表的方法,求恰好抽到2名同学一男一女的概率.19.(10分)如图,正比例函数y=kx与反比例函数y=(x>0)的图象有个交点A,AB⊥x轴于点B.平移正比例函数y=kx的图象,使其经过点B(2,0),得到直线l,直线l与y轴交于点C(0,﹣3)(1)求k和m的值;(2)点M是直线OA上一点过点M作MN∥AB,交反比例函数y=(x>0)的图象于点N,若线段MN=3,求点M的坐标.20.(10分)如图,已知Rt△ACE中,∠AEC=90°,CB平分∠ACE交AE于点B,AC边上一点O,⊙O经过点B、C,与AC交于点D,与CE交于点F,连结BF.(1)求证:AE是⊙O的切线;(2)若cos∠CBF=,AE=8,求⊙O的半径;(3)在(2)条件下,求BF的长.一、填空题(每小题4分,共20分)21.(4分)关于x的方程(m﹣1)x|m|+1+3x﹣2=0是一元二次方程,则m的值为.22.(4分)现有三张分别标有数字2、3、4的卡片,它们除了数字外完全相同,把卡片背面朝上洗匀,从中任意抽取一张,将上面的数字记为a(不放回);从剩下的卡片中再任意抽取一张,将上面的数字记为b,则点(a,b)在直线y=图象上的概率为.23.(4分)如图,矩形ABCD的对角线AC、BD交于点O,点E是BC边上的一动点,连结OE,将△BOC分成了两个三角形,若BE=OB,且OC2=CE•BC,则∠BOC的度数为.24.(4分)如图,在△ABC中,AB=AC,以AC为直径的⊙O与边BC相交于点E,过点E作EF ⊥AB于点F,延长FE、AC相交于点D,若CD=4,AF=6,则BF的长为.25.(4分)平面直角坐标系中,点A在反比例函数y1=(x>0)的图象上,点A'与点A关于点O对称,直线AA'的解析式为y2=mx,将直线AA'绕点A′顺时针旋转,与反比例函数图象交于点B,直线A′B的解析式为y3=x+n,若△AA'B的面积为3,则k的值为.二、解答题(本大题共3小题,共30分)26.(8分)经过市场调查得知,某种商品的销售期为100天,设该商品销量单价为y(万元/kg),y与时间t(天)函数关系如图所示,其中线段AB表示前50天销售单价y万元/kg与时间t天的函数关系;线段BC的函数关系式为y=t+m该商品在销售期内的销量如下表时间(t)0<t≤5050<t≤100销量(kg)200t+150(1)分别求出当0<t≤50和50<t≤100时y与t的函数关系式;(2)设每天的销售收入为w(万元),则当t为何值时,w的值最大?求出最大值;27.(10分)在矩形ABCD中,E是AD的中点,以点E为直角顶点的直角三角形EFG的两边EF、EG始终与矩形AB、BC两边相交,AB=2,FG=8,(1)如图1,当EF、EG分别过点B、C时,求∠EBC的大小;(2)在(1)的条件下,如图2,将△FFG绕点E按顺时针方向旋转,当旋转到EF与AD重合时停止转动.若EF、EG分别与AB、BC相交于点M、N,①在△EFG旋转过程中,四边形BMEN的面积是否发生变化?若不变,求四边形BMEN的面积;若要变,请说明理由.②如图3,设点O为FG的中点,连结OB、OE,若∠F=30°,当OB的长度最小时,求tan∠EBG的值.28.(12分)在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)与x轴的两个交点分别为A(﹣3,0)、B(1,0),与y轴交于点D(0,3),过顶点C作CH⊥x轴于点H(1)求抛物线的解析式和顶点C的坐标;(2)连结AD、CD,若点E为抛物线上一动点(点E与顶点C不重合),当△ADE与△ACD面积相等时,求点E的坐标;(3)若点P为抛物线上一动点(点P与顶点C不重合),过点P向CD所在的直线作垂线,垂足为点Q,以P、C、Q为顶点的三角形与△ACH相似时,求点P的坐标.参考答案与试题解析一、选择題(每小题3分,共30分)1.在Rt△ABC中,∠C=90°,若AC=3,BC=2,则tan A的值是()A.B.C.D.【分析】根据正切的定义计算即可.【解答】解:tan A==,故选:B.【点评】本题考查的是锐角三角函数的定义,锐角A的对边a与邻边b的比叫做∠A的正切.2.方程x(x+2)=0的解是()A.x=0B.x=2C.x=0或x=2D.x=0或x=﹣2【分析】利用因式分解的方法得到x=0或x+2=0,然后解两个一次方程即可.【解答】解:x=0或x+2=0,所以x1=0,x2=﹣2.故选:D.【点评】本题考查了解一元二次方程﹣因式分解法:就是先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).3.如图是由5个相同的小正方体搭成的一个几何体,它的俯视图是()A.B.C.D.【分析】根据俯视图是从上面看到的图形结合几何体判定则可.【解答】解:从上面看,左边是2个正方形,中间和右上角都是1个正方形.故选:D.【点评】本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.4.如图,随机闭合开关S1、S2、S3中的两个,则能让灯泡⊗发光的概率是()A.B.C.D.【分析】采用列表法列出所有情况,再根据能让灯泡发光的情况利用概率公式进行计算即可求解.【解答】解:列表如下:共有6种情况,必须闭合开关S3灯泡才亮,即能让灯泡发光的概率是=.故选:C.【点评】本题考查了列表法与画树状图求概率,用到的知识点为:概率=所求情况数与总情况数之比.5.若反比例函数(k≠0)的图象过点(﹣2,1),则这个函数的图象一定过()A.(2,﹣1)B.(2,1)C.(﹣2,﹣1)D.(1,2)【分析】先把点(﹣2,1)代入反比例函数y=(k≠0),求出k的值,再对各选项进行逐一判断即可.【解答】解:∵反比例函数y=(k≠0)的图象过点(﹣2,1),∴k=﹣2×1=﹣2.A、∵2×(﹣1)=﹣2,∴此点在函数图象上,故本选项符合题意;B、∵2×1=2≠﹣2,∴此点不在函数图象上,故本选项不合题意;C、∵(﹣2)×(﹣1)=2,∴此点不在函数图象上,故本选项不合题意;D、∵1×2=2≠﹣2,∴此点不在函数图象上,故本选项不合题意.故选:A.【点评】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上点的坐标一定适合此函数的解析式是解答此题的关键.6.某种品牌运动服经过两次降价,每件零售价由460元降为215,已知两次降价的百分率相同,求每次降价的百分率.设每次降价的百分率为x,下面所列的方程中正确的是()A.460(1+x)2=215B.460(1﹣x)2=215C.460(1﹣2x)2=215D.460(1﹣x2)=215【分析】设每次降价的百分率为x,根据该运动服的原价及经过两次降价后的价格,即可得出关于x的一元二次方程,此题得解.【解答】解:设每次降价的百分率为x,根据题意得:460(1﹣x)2=215.故选:B.【点评】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.7.如图,利用标杆BE测量建筑物的高度.已知标杆BE高1.2m,AB:AC=1:9,则建筑物CD的高是()A.96m B.10.8m C.12m D.14m【分析】先证明△ABE∽△ACD,则利用相似三角形的性质进行解答即可.【解答】解:∵EB∥CD,∴△ABE∽△ACD,∴,即,解得:CD=10.8m,故选:B.【点评】本题考查了相似三角形的应用:借助标杆或直尺测量物体的高度.利用杆或直尺测量物体的高度就是利用杆或直尺的高(长)作为三角形的边,利用视点和盲区的知识构建相似三角形,用相似三角形对应边的比相等的性质求物体的高度.8.如图,点A,B,C均在⊙O上,若∠A=66°,则∠OCB的度数是()A.24°B.28°C.33°D.48°【分析】首先利用圆周角定理可得∠COB的度数,再根据等边对等角可得∠OCB=∠OBC,进而可得答案.【解答】解:∵∠A=66°,∴∠COB=132°,∵CO=BO,∴∠OCB=∠OBC=(180°﹣132°)=24°,故选:A.【点评】此题主要考查了圆周角定理,关键是掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.9.如图,在菱形ABCD中,对角线AC、BD相交于点O,BD=8,tan∠ABD=,则菱形ABCD 的边长为()A.5B.6C.7D.8【分析】根据菱形的性质求出BO=4,AC⊥BD,解直角三角形求出AO,根据勾股定理求出AB 即可.【解答】解:∵四边形ABCD是菱形,BD=8,∴AC⊥BD,BO=DO,∴∠AOB=90°,OB=OD=4,∵tan∠ABD==,∴AO=3,由勾股定理得:AB==5,即菱形ABCD的边长为5,故选:A.【点评】本题考查了菱形的性质和解直角三角形,能熟记菱形的性质是解此题的关键,注意:菱形的对角线互相平分且垂直.10.对于抛物线y=﹣2(x+1)2+3,下列结论:①抛物线的开口向下;②对称轴为直线x=1:③顶点坐标为(﹣1,3);④x>﹣1时,y随x的增大而减小,其中正确结论的个数为()A.1B.2C.3D.4【分析】根据题目中的函数解析式和二次函数的性质,可以判断各个小题中的结论是否正确.【解答】解:∵抛物线y=﹣2(x+1)2+3,a=﹣2<0,∴抛物线的开口向下,故①正确,对称轴是直线x=﹣1,故②错误,顶点坐标为(﹣1,3),故③正确,x>﹣1时,y随x的增大而减小,故④正确,故选:C.【点评】本题考查二次函数的性质,解答本题的关键是明确题意,利用二次函数的性质解答.二、填空题(每小题4分,共16分)11.(4分)如果,那么=【分析】依据比例的性质,即可得到4a=7b,进而得出=.【解答】解:∵,∴4a﹣4b=3b,∴4a=7b,∴=,故答案为:.【点评】本题主要考查了比例的性质,解题时注意:内项之积等于外项之积.12.(4分)若x=﹣2是一元二次方程x2+3x+k=0的一个根,则k的值为2【分析】把x=﹣2代入方程x2+3x+k=0得4﹣6+k=0,然后解关于k的方程即可.【解答】解:把x=﹣2代入方程x2+3x+k=0得4﹣6+k=0,解得k=2.故答案为2.【点评】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.13.(4分)已知A(x1,y1),B(x2,y2)都在反比例函数的图象y=﹣上,且x1<0<x2,则y1与y2大小关系是y1>y2.【分析】将点A,点B坐标代入解析式,可求y1,y2,由x1<0<x2,可得y1>0,y2<0,即可得y1与y2大小关系.【解答】解:∵A(x1,y1),B(x2,y2)都在反比例函数的图象y=﹣上,∴y1=,y2=,∵x1<0<x2,∴y1>0>y2,故答案为:y1>y2【点评】本题考查了反比例函数图象上点的坐标特征,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.14.(4分)如图,△ABC内接于圆O,AB为圆O直径,∠CAB=60°,弦AD平分∠CAB,若AD =3,则BD=.【分析】解:连接BD,如图,先计算出∠BAD=30°,再根据圆周角定理得到∠ADB=90°,然后利用含30度的直角三角形三边的关系计算BD的长.【解答】解:如图,∵AD平分∠CAB,∴∠BAD=×60°=30°,∵AB为圆O直径,∴∠ADB=90°,∴BD=AD=.故答案为:.【点评】本题考查了三角形的外接圆与外心:三角形外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心.也考查了圆周角定理.三、解答题(本大题共6个小题,共54分)15.(12分)(1)计算:﹣2sin60°+|1﹣tan60°|+(2019﹣π)0(2)解方程:4x(x+3)=x2﹣9【分析】(1)先计算负整数指数幂和零指数幂并代入特殊锐角的三角函数值,再计算乘法、取绝对值符号,继而计算加减可得;(2)先将方程整理成一般式,再利用因式分解法求解可得.【解答】解:(1)原式=2﹣2×+|1﹣|+1=2﹣+﹣1+1=2;(2)4x2+12x=x2﹣9,4x2+12x﹣x2+9=0,3x2+12x+9=0,x2+4x+3=0,(x+1)(x+3)=0,则x+1=0或x+3=0,解得x1=﹣1,x2=﹣3.【点评】本题主要考查解一元二次方程和实数的混合运算,能选择适当的方法解一元二次方程并熟练掌握实数的混合运算是解此题的关键.16.(6分)若关于x的一元二次方程(m﹣2)x2+2x+1=0有两个实根,求m的取值范围.【分析】首先根据题意可知△=b2﹣4ac≥0,然后,即可推出4﹣4(m﹣2)≥0,通过解不等式即可推出结果,注意m≠2.【解答】解:∵(m﹣2)x2+2x+1=0有两个实数根,∴△=b2﹣4ac≥0,∴4﹣4(m﹣2)≥0,∴m≤3,又知(m﹣2)x2+2x+1=0是一元二次方程,即m﹣2≠0,解得m≠2,故m≤3且m≠2.【点评】本题主要考查根的判别式,关键在于推出△≥0,注意一元二次方程二次系数不能为0,此题基础题,比较简单.17.(8分)《基础教育课程改革纲要》要求每位学生每学年都要参加社会实践活动.某学校组织了一次户外攀岩活动,如图,攀岩墙体近似看作垂直于地面,一学生攀到D点时,距离地面B 点3.6米,该学生继续向上很快就攀到顶点E.在A处站立的带队老师拉着安全绳,分别在点D 和点E测得点C的俯角是45°和60°,带队老师的手C点距离地面1.6米,请求出攀岩的顶点E距离地面的高度为多少米?(结果可保留根号)【分析】作CF⊥BE于F,根据矩形的性质求出BF,根据正切的概念计算即可.【解答】解:作CF⊥BE于F,则四边形ABFC为矩形,∴BF=AC=1.6,∴DF=DB﹣FB=2,由题意得,∠DCF=45°,∠ECF=60°,∴CF=DF=2,在Rt△ECF中,EF=CF×tan∠ECF=2,∴EB=EF+BF=2+1.6,答:攀岩的顶点E距离地面的高度为(2+1.6)米.【点评】本题考查的是解直角三角形的应用﹣仰角俯角问题,掌握锐角三角函数的定义,仰角俯角的概念是解题的关键.18.(8分)我区正在进行《中学学科核心素养理念下渗透数学美育教育的研究为了了解我区课堂教学中渗透数学美育的情况,在200名学生中随机抽取了部分学生进行调查调查,调查结果分为非常了解、了解”、了解较少、“不了解四类,并将调查结果绘制出以下两幅不完整的统计图,请根据统计图回答下列问题(1)本次抽取调查的学生共有50人,估计该校200名学生中不了解的人数约有60人;(2)“非常了解”的4人中有A1,A2两名男生,B1,B2两名女生,若从中随机抽取两人去参加中心数学知识竞赛,请用树状图或列表的方法,求恰好抽到2名同学一男一女的概率.【分析】(1)由“非常了解”的人数及其所占百分比求得总人数,根据各了解程度的百分比之和等于1求得“不了解”的百分比,再用总人数乘以样本中“不了解”人数所占比例可得;(2)分别用树状图或列表的方法表示出所有等可能结果,从中找到恰好抽到2名同学一男一女的结果数,利用概率公式计算可得.【解答】解:(1)本次抽取调查的学生共有4÷8%=50(人),∵“不了解”对应的百分比为1﹣(40%+22%+8%)=30%,∴估计该校200名学生中不了解的人数约有200×30%=60(人),故答案为:50,60;(2)列表如下:A1A2B1B2A1(A2,A1)(B1,A1)(B2,A1)A2(A1,A2)(B1,A2)(B2,A2)B1(A1,B1)(A2,B1)(B2,B1)B2(A1,B2)(A2,B2)(B1,B2)由表可知共有12种可能的结果,恰好抽到2名同学一男一女的结果有8个,所以恰好抽到2名同学一男一女的概率为=.【点评】本题考查了列表法与树状图法、扇形统计图、条形统计图;通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.19.(10分)如图,正比例函数y=kx与反比例函数y=(x>0)的图象有个交点A,AB⊥x轴于点B.平移正比例函数y=kx的图象,使其经过点B(2,0),得到直线l,直线l与y轴交于点C(0,﹣3)(1)求k和m的值;(2)点M是直线OA上一点过点M作MN∥AB,交反比例函数y=(x>0)的图象于点N,若线段MN=3,求点M的坐标.【分析】(1)由直线l与y轴交于点C(0,﹣3)知直线l的解析式为y=kx﹣3,根据点B坐标可得k的值,再根据平移知AB=OC=3,从而得出点A坐标,从而得出m的值;(2)先得出正比例函数和反比例函数解析式,再设点M(a,a),则N(a,),由MN=3得出关于a的方程,解之可得答案.【解答】解:(1)∵平移正比例函数y=kx的图象,得到直线l,直线l与y轴交于点C(0,﹣3),∴直线l的解析式为y=kx﹣3,∵点B(2,0)在直线l上,∴2k﹣3=0,解得k=,由题意知AB=OC=3,则点A(2,3),∴m=2×3=6;(2)由题意知直线OA解析式为y=x,反比例函数解析式为y=,设点M(a,a),则N(a,),∴|a﹣|=3,解得:a=1+或a=﹣1(负值舍去),则点M坐标为(1+,)或(﹣1,).【点评】本题考查了反比例函数与一次函数的交点问题,待定系数法求函数的解析式,函数图象上点的坐标特征,体现了数形结合的思想.20.(10分)如图,已知Rt△ACE中,∠AEC=90°,CB平分∠ACE交AE于点B,AC边上一点O,⊙O经过点B、C,与AC交于点D,与CE交于点F,连结BF.(1)求证:AE是⊙O的切线;(2)若cos∠CBF=,AE=8,求⊙O的半径;(3)在(2)条件下,求BF的长.【分析】(1)连接OB,根据等腰三角形的性质得到∠OCB=∠OBC,根据角平分线的定义得到∠OCB=∠BCF,得到∠OBC=∠BCF,求得∠ABO=∠AEC=90°,于是得到结论;(2)连接DF交OB于G,根据圆周角定理得到∠CFD=90°,得到∠CFD=∠CEA,推出cos ∠CBF=cos∠CEF=,设BE=2x,则DF=4x,CD=5x,得到OC=OB=2.5x,根据勾股定理得到x=(负值舍去),于是得到⊙O的半径=;(3)由(2)知BE=2x=3,根据切线的性质得到∠BCE=∠EBF,根据相似三角形的性质得到EF=,根据勾股定理得到BF==.【解答】(1)证明:连接OB,∵OB=OC,∴∠OCB=∠OBC,∵CB平分∠ACE,∴∠OCB=∠BCF,∴∠OBC=∠BCF,∴∠ABO=∠AEC=90°,∴OB⊥AE,∴AE是⊙O的切线;(2)解:连接DF交OB于G,∵CD是⊙O的直径,∴∠CFD=90°,∴∠CFD=∠CEA,∴DF∥AE,∴∠CDF=∠CAB,∵∠CDF=∠CBF,∴∠A=∠CBF,∴cos∠CBF=cos∠CEF=,∵AE=8,∴AC=10,∴CE=6,∵DF∥AE,∴DF⊥OB,∴DG=GF=BE,设BE=2x,则DF=4x,CD=5x,∴OC=OB=2.5x,∴AO=10﹣2.5x,AB=8﹣2x,∵AO2=AB2+OB2,∴(10﹣2.5x)2=(8﹣2x)2+(2.5x)2,解得:x=(负值舍去),∴⊙O的半径=;(3)解:由(2)知BE=2x=3,∵AE是⊙O的切线;∴∠BCE=∠EBF,∵∠E=∠E,∴△BEF∽△CEB,∴,∴=,∴EF=,∴BF==.【点评】本题考查了切线的性质和判定,勾股定理,平行线的判定和性质,相似三角形的判定和性质,正确的作出辅助线是解题的关键.一、填空题(每小题4分,共20分)21.(4分)关于x的方程(m﹣1)x|m|+1+3x﹣2=0是一元二次方程,则m的值为﹣1.【分析】利用一元二次方程的定义判断即可确定出m的值.【解答】解:∵关于x的方程(m﹣1)x|m|+1+3x﹣2=0是一元二次方程,∴|m|+1=2,且m﹣1≠0,解得:m=﹣1,故答案为:﹣1【点评】此题考查了一元二次方程的定义,以及绝对值,熟练掌握一元二次方程的定义是解本题的关键.22.(4分)现有三张分别标有数字2、3、4的卡片,它们除了数字外完全相同,把卡片背面朝上洗匀,从中任意抽取一张,将上面的数字记为a(不放回);从剩下的卡片中再任意抽取一张,将上面的数字记为b,则点(a,b)在直线y=图象上的概率为.【分析】列表得出所有等可能的情况数,找出点(a,b)在直线y=图象上的情况数,即可求出所求的概率.【解答】解:列表得:2342(3,2)(4,2)3(2,3)(4,3)4(2,4)(3,4)得到所有等可能的情况有6种,其中点(a,b)在直线y=图象上的只有(3,2)这1种情况,所以点(a,b)在直线y=图象上的概率为,故答案为:.【点评】此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.23.(4分)如图,矩形ABCD的对角线AC、BD交于点O,点E是BC边上的一动点,连结OE,将△BOC分成了两个三角形,若BE=OB,且OC2=CE•BC,则∠BOC的度数为108°.【分析】由△OCE∽△BCO,推出∠COE=∠CBO,由四边形ABCD是矩形,推出OB=OC,推出∠OBC=∠OCB=∠COE,设∠OBC=∠OCB=∠COE=x,构建方程即可解决问题.【解答】解:∵OC2=CE•BC,∴=,∵∠OCE=∠OCB,∴△OCE∽△BCO,∴∠COE=∠CBO,∵四边形ABCD是矩形,∴OB=OC,∴∠OBC=∠OCB=∠COE,设∠OBC=∠OCB=∠COE=x,∵BE=BO,∴∠BOE=∠BEO=∠COE+∠ECO=2x,∵∠OBC+∠OCB+∠BOC=180°,∴x+x+3x=180°,∴x=36°,∴∠BOC=3x=108°,故答案为108°【点评】本题考查相似三角形的判定和性质,矩形的性质,三角形内角和定理等知识,解题的关键是正确寻找相似三角形解决问题,学会利用参数解决问题,属于中考常考题型.24.(4分)如图,在△ABC中,AB=AC,以AC为直径的⊙O与边BC相交于点E,过点E作EF ⊥AB于点F,延长FE、AC相交于点D,若CD=4,AF=6,则BF的长为2.【分析】如图,连接AE,OE.设BF=x.首先证明OE∥AB,可得=,由此构建方程即可解决问题;【解答】解:如图,连接AE,OE.设BF=x.∵AC是直径,∴∠AEC=90°,∴AE⊥BC,∵AB=AC,∴∠EAB=∠EAC,∵OA=OE,∴∠OAE=∠OEA,∴∠EAB=∠AEO,∴OE∥AB,∴=,∴AF=6,CD=4,BF=x,∴AC=AB=x+6,∴OE=OA=OD=,∴=,整理得:x2+10x﹣24=0,解得x=2或﹣12(舍弃),经检验x=2是分式方程的解,∴BF=2.故答案为2.【点评】本题考查圆周角定理,等腰三角形的性质,平行线分线段成比例定理等知识,解题的关键是学会利用参数,构建方程解决问题.25.(4分)平面直角坐标系中,点A在反比例函数y1=(x>0)的图象上,点A'与点A关于点O 对称,直线AA '的解析式为y 2=mx ,将直线AA '绕点A ′顺时针旋转,与反比例函数图象交于点B ,直线A ′B 的解析式为y 3=x +n ,若△AA 'B 的面积为3,则k 的值为 ±2 .【分析】设点A (a ,),根据对称性以及直线上点的坐标特点分别用含有k 的代数式表示出点A '、B 的坐标,然后根据三角形的面积公式解答即可. 【解答】解:∵设点A (a ,). ∵A 和点A '关于原点对称, ∴点A '的坐标为(﹣a ,﹣), ∵点A '在y 2=mx 的图象上, ∴点A '的坐标为(﹣a ,﹣am ). ∴﹣=﹣am , a 2m =k .∵直线AA '绕点A ′顺时针旋转,与反比例函数图象交与点B ,∴,∴点B 的坐标为(2a ,),过点A 作AD ⊥x 轴,交A 'B 于点D ,连BO ,∵O 为AA ′中点 S △AOB =S △ABA ′=, ∵点A 、B 在双曲线上, ∴S △AOC =S △BOD ,∴S △AOB =S 四边形ACDB =,由已知点A 、B 坐标都表示(a ,)、(2a ,),∴,∴k =2.当双曲线在二、四象限时,k =﹣2. 故答案为:±2【点评】本题综合考查反比例函数、一次函数图象及其性质,解答过程中,涉及到了面积转化方法、待定系数法和数形结合思想. 二、解答题(本大题共3小题,共30分)26.(8分)经过市场调查得知,某种商品的销售期为100天,设该商品销量单价为y (万元/kg ),y 与时间t (天)函数关系如图所示,其中线段AB 表示前50天销售单价y 万元/kg 与时间t 天的函数关系;线段BC 的函数关系式为y =t +m 该商品在销售期内的销量如下表 时间(t ) 0<t ≤50 50<t ≤100 销量(kg )200t +150(1)分别求出当0<t ≤50和50<t ≤100时y 与t 的函数关系式;(2)设每天的销售收入为w (万元),则当t 为何值时,w 的值最大?求出最大值;【分析】(1)设y =kt +b ,利用待定系数法即可解决问题;(2)日利润=日销售量×每公斤利润,据此分别表示当0<t ≤50和50<t ≤100时,根据函数性质求最大值后比较得结论.【解答】解:(1)当0<t ≤50时,设y 与t 的函数关系式为y =kt +b , ∴,解得:k =,b =15, ∴y =t +15;当50<t≤100时,把(100,20)代入y=t+m得,20=﹣×100+m,∴m=30,∴线段BC的函数关系式为y=t+30;(2)当0<t≤50时,w=200(t+15)=40t+3000,∴当t=50时,w最大=5000(万元),当50<t≤100时,w=(t+150)(t+30)=﹣t2+15t+4500,∵w=﹣t2+15t+4500=﹣(t﹣75)2+5062.5,∴当t=75时,w最大=5062.5(万元),∴当t=75时,w的值最大,w最大=5062.5万元.【点评】此题主要考查了二次函数的应用,熟练掌握各函数的性质和图象特征,针对所给条件作出初步判断后需验证其正确性,最值问题需由函数的性质求解时,正确表达关系式是关键.27.(10分)在矩形ABCD中,E是AD的中点,以点E为直角顶点的直角三角形EFG的两边EF、EG始终与矩形AB、BC两边相交,AB=2,FG=8,(1)如图1,当EF、EG分别过点B、C时,求∠EBC的大小;(2)在(1)的条件下,如图2,将△FFG绕点E按顺时针方向旋转,当旋转到EF与AD重合时停止转动.若EF、EG分别与AB、BC相交于点M、N,①在△EFG旋转过程中,四边形BMEN的面积是否发生变化?若不变,求四边形BMEN的面积;若要变,请说明理由.②如图3,设点O为FG的中点,连结OB、OE,若∠F=30°,当OB的长度最小时,求tan∠EBG的值.【分析】(1)证明△AEB≌△DEC(SAS),可得EB=EC,根据等腰直角三角形的性质即可解决问题.(2)①四边形BMEN的面积不变.证明△MEB≌△NEC(ASA),推出S△MEB =S△ENC,可得S四边形EMBN=S △EBC .②如图当E ,B ,O 共线时,OB 的值最小,作GH ⊥OE 于H .想办法求出BH ,GH 即可解决问题.【解答】解:(1)如图1中,∵四边形ABCD 是矩形, ∴AB =DC ,∠A =∠D =90°, ∵AE =DE ,∴△AEB ≌△DEC (SAS ), ∴EB =EC , ∵∠BEC =90°, ∴∠EBC =45°.(2)①结论:四边形BMEN 的面积不变.理由:由(1)可知:∠EBM =∠ECN =45°, ∵∠MEN =∠BEC =90°, ∴∠BEM =∠CEN , ∵EB =EC ,∴△MEB ≌△NEC (ASA ), ∴S △MEB =S △ENC ,∴S 四边形EMBN =S △EBC =×4×2=4.②如图当E,B,O共线时,OB的值最小,作GH⊥OE于H.∵OF=OG,∠FEG=90°,∴OE=OF=OG=4,∵∠F=30°,∴∠EGF=60°,∴△EOG是等边三角形,∵GH⊥OE,∴GH=2,OH=EH=2,∵BE=2,∴OB=4﹣2,∴BH=2﹣(4﹣2)=2﹣2,∴tan∠EBG===+.【点评】本题属于四边形综合题,考查了矩形的性质,旋转变换,全等三角形的判定和性质,等边三角形的判定和性质,锐角三角函数等知识,解题的关键是正确寻找全等三角形解决问题,属于中考压轴题.28.(12分)在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)与x轴的两个交点分别为A(﹣3,0)、B(1,0),与y轴交于点D(0,3),过顶点C作CH⊥x轴于点H(1)求抛物线的解析式和顶点C的坐标;(2)连结AD、CD,若点E为抛物线上一动点(点E与顶点C不重合),当△ADE与△ACD面积相等时,求点E的坐标;(3)若点P为抛物线上一动点(点P与顶点C不重合),过点P向CD所在的直线作垂线,垂足为点Q,以P、C、Q为顶点的三角形与△ACH相似时,求点P的坐标.【分析】(1)把点A、B、D的坐标代入二次函数表达式,即可求解;(2)①过点C作CE∥AD交抛物线于点E,则△ADE与△ACD面积相等;②过点H′作直线E′E″∥AD,则△ADE′、△ADE′′与△ACD面积相等,分别求解即可.(3)分△ACH∽△CPQ、△ACH∽△PCQ两种情况,求解即可.【解答】解:(1)把点A、B、D的坐标代入二次函数表达式得:,解得:,则抛物线的表达式为:y=﹣x2﹣2x+3…①,函数的对称轴为:x=﹣=﹣1,则点C的坐标为(﹣1,4);(2)过点C作CE∥AD交抛物线于点E,交y轴于点H,则△ADE与△ACD面积相等,直线AD过点D,则其表达式为:y=mx+3,将点A的坐标代入上式得:0=﹣3m+3,解得:m=1,则直线AD的表达式为:y=x+3,CE∥AD,则直线CE表达式的k值为1,设直线CE的表达式为:y=x+n,。
《试卷3份集锦》成都市2017-2018年九年级上学期数学期末经典试题
九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.方程x 2=3x 的解为( )A .x =3B .x =0C .x 1=0,x 2=﹣3D .x 1=0,x 2=3【答案】D【分析】根据因式分解法解一元二次方程,即可求解.【详解】∵x 2﹣1x =0,∴x (x ﹣1)=0,∴x =0或x ﹣1=0,解得:x 1=0,x 2=1.故选:D .【点睛】本题主要考查一元二次方程的解法,掌握因式分解法解方程,是解题的关键.2.已知抛物线()20y ax bx c a =++≠的对称轴为直线2x =,与x 轴的一个交点坐标()4,0,其部分图象如图所示,下列结论:①抛物线过原点;0a b c -+<②;40a b c ++=③;④抛物线的顶点坐标为()2,b ;⑤当1x <时,y 随x 增大而增大.其中结论正确的是A .①②③B .①④⑤C .①③④D .③④⑤【答案】C 【解析】∵抛物线y=ax 2+bx+c (a≠0)的对称轴为直线x=2,与x 轴的一个交点坐标(4,0), ∴抛物线与x 轴的另一个交点为(0,0),故①正确,当x=﹣1时,y=a ﹣b+c >0,故②错误, ∵b 22a -=,得4a+b=0,b=﹣4a , ∵抛物线过点(0,0),则c=0,∴4a+b+c=0,故③正确,∴y=ax 2+bx=a (x+2b a )2﹣24b a =a (x+42a a -)2﹣2(4)4a a -=a (x ﹣2)2﹣4a=a (x ﹣2)2+b ,∴此函数的顶点坐标为(2,b ),故④正确,当x <1时,y 随x 的增大而减小,故⑤错误,故选C .点睛:本题考查二次函数的图象和性质.熟练应用二次函数的图象和性质进推理判断是解题的关键. 3.已知在Rt ABC 中,90C ∠=︒,1sin 3A =,那么下列说法中正确的是( ) A .1cos 3B =B .1cot 3A = C.tan 3A = D.cot 3B = 【答案】A【分析】利用同角三角函数的关系解答.【详解】在Rt △ABC 中,∠C=90°,1sin 3A =,则== A 、cosB=sinA=13,故本选项符合题意. B 、cotA=313cosA sinA == .故本选项不符合题意. C 、tanA=13sinA cosA == .故本选项不符合题意.D 、.故本选项不符合题意. 故选:A .【点睛】 此题考查同角三角函数关系,解题关键在于掌握(1)平方关系:sin 2A+cos 2A=1;(2)正余弦与正切之间的关系(积的关系):一个角的正切值等于这个角的正弦与余弦的比.4.下列对二次函数y=x 2﹣x 的图象的描述,正确的是( )A .开口向下B .对称轴是y 轴C .经过原点D .在对称轴右侧部分是下降的 【答案】C【解析】根据抛物线的开口方向、对称轴公式以及二次函数性质逐项进行判断即可得答案.【详解】A 、∵a=1>0,∴抛物线开口向上,选项A 不正确;B 、∵﹣221b a =,∴抛物线的对称轴为直线x=12,选项B 不正确; C 、当x=0时,y=x 2﹣x=0,∴抛物线经过原点,选项C 正确; D 、∵a >0,抛物线的对称轴为直线x=12,∴当x >12时,y 随x 值的增大而增大,选项D 不正确, 故选C . 【点睛】本题考查了二次函数的性质:二次函数y=ax 2+bx+c (a≠0),对称轴直线x=-2b a,当a >0时,抛物线y=ax 2+bx+c (a≠0)的开口向上,当a <0时,抛物线y=ax 2+bx+c (a≠0)的开口向下,c=0时抛物线经过原点,熟练掌握相关知识是解题的关键. 5.某经济技术开发区今年一月份工业产值达50亿元,且第一季度的产值为175亿元.若设平均每月的增长率为x ,根据题意可列方程为( )A .50(1+x)2=175B .50+50(1+x)2=175C .50(1+x)+50(1+x)2=175D .50+50(1+x)+50(1+x)2=175【答案】D【分析】增长率问题,一般为:增长后的量=增长前的量×(1+增长率),本题可先用x 表示出二月份的产值,再根据题意表示出三月份的产值,然后将三个月的产值相加,即可列出方程.【详解】解:二月份的产值为:50(1+x ),三月份的产值为:50(1+x )(1+x )=50(1+x )2,故根据题意可列方程为:50+50(1+x )+50(1+x )2=1.故选D .【点睛】本题考查的是一元二次方程的运用,解此类题目时常常要按顺序列出接下来几年的产值,再根据题意列出方程即可.6.如图,网格中小正方形的边长为1个单位长度,△ABC 的顶点均在小正方形的顶点上,若将△ABC 绕着点A 逆时针旋转得到△AB′C′,点C 在AB′上,则'BB 的长为( )A .πB .2πC .7πD .6π【答案】A 【分析】根据图示知∠BAB′=45°,所以根据弧长公式l =180n r π求得BB '的长. 【详解】根据图示知,∠BAB′=45°, BB '的长l =454180π⋅=π, 故选:A .【点睛】此题考查了弧长的计算、旋转的性质.解答此题时采用了“数形结合”是数学思想.7.如果23x y =,那么下列比例式中正确的是( )A .23x y =B .23x y =C .32x y = D .23xy=【答案】C【分析】根据比例的性质,若acb d =,则ad bc =判断即可.【详解】解:23x y =32xy ∴=故选:C.【点睛】本题主要考查了比例的性质,灵活的利用比例的性质进行比例变形是解题的关键.8.如图,四边形ABCD 是圆内接四边形,E 是BC 延长线上一点,若∠BAD =105°,则∠DCE 的大小是()A .115°B .105°C .100°D .95° 【答案】B【分析】根据圆内接四边形的对角互补得到∠BAD+∠BCD=180°,而∠BCD 与∠DEC 为邻补角,得到∠DCE=∠BAD=105°.【详解】解:∵四边形ABCD 是圆内接四边形,∴∠BAD+∠BCD=180°,而∠BCD+∠DCE=180°,∴∠DCE=∠BAD ,而∠BAD=105°,∴∠DCE=105°.故选B .9.下列二次根式是最简二次根式的是( )A 18B 13C 10 D 0.3【答案】C【解析】根据最简二次根式的定义逐项分析即可.【详解】A. 18=32,故不是最简二次根式;B. 13=133,故不是最简二次根式;C. 10,是最简二次根式;D. 0.3=13010,故不是最简二次根式; 故选C.【点睛】 本题考查了最简二次根式的识别,如果二次根式的被开方式中都不含分母,并且也都不含有能开的尽方的因式,象这样的二次根式叫做最简二次根式.10.关于x 的方程22370x x +-=的根的情况,正确的是( ).A .有两个不相等的实数根B .有两个相等的实数根C .只有一个实数根D .没有实数根 【答案】A【分析】根据一元二次方程根的判别式,即可得到方程根的情况.【详解】解:∵22370x x +-=,∴2342(7)956650∆=-⨯⨯-=+=>,∴原方程有两个不相等的实数根;故选择:A.【点睛】本题考查了一元二次方程根的判别式,解题的关键是熟练掌握根的判别式.11.已知Rt △ABC 中,∠C=900,AC=2,BC=3,则下列各式中,正确的是( )A .2sin 3B =; B .2cos 3B =; C .2tan 3B =; D .以上都不对;【答案】C【分析】根据勾股定理求出AB ,根据锐角三角函数的定义求出各个三角函数值,即可得出答案.【详解】如图:由勾股定理得:22222133AC BC ++==,所以cosB=313BC AB =sinB=21233AC AC tanB AB BC ==,= ,所以只有选项C 正确;故选:C.【点睛】此题考查锐角三角函数的定义的应用,能熟记锐角三角函数的定义是解此题的关键.12.下列一元二次方程中,两个实数根之和为2的是()A.2x2+x﹣2=0 B.x2+2x﹣2=0 C.2x2﹣x﹣1=0 D.x2﹣2x﹣2=0 【答案】D【分析】利用根与系数的关系进行判断即可.【详解】方程1x1+x﹣1=0的两个实数根之和为12 -;方程x1+1x﹣1=0的两个实数根之和为﹣1;方程1x1﹣x﹣1=0的两个实数根之和为12;方程x1﹣1x﹣1=0的两个实数根之和为1.故选D.【点睛】本题考查了根与系数的关系:若x1,x1是一元二次方程ax1+bx+c=0(a≠0)的两根时,x1+x1ba=-,x1x1ca=.二、填空题(本题包括8个小题)13.将抛物线y=-5x2先向左平移2个单位长度,再向下平移3个单位长度后,得到新的抛物线的表达式是________.【答案】y=-5(x+2)2-1【分析】根据向左平移横坐标减,向下平移纵坐标减求出新抛物线的顶点坐标,再利用顶点式解析式写出即可.【详解】解:∵抛物线y=-5x2先向左平移2个单位长度,再向下平移1个单位长度,∴新抛物线顶点坐标为(-2,-1),∴所得到的新的抛物线的解析式为y=-5(x+2)2-1.故答案为:y=-5(x+2)2-1.【点睛】本题考查了二次函数图象与几何变换,掌握平移的规律:左加右减,上加下减是关键.14.反比例函数y=﹣3x的图象与一次函数y=﹣x+5的图象相交,其中一个交点坐标为(a,b),则11a b+=_____.【答案】﹣5 3【分析】根据函数图象上点的坐标特征得到ab=﹣3,a+b=5,把原式变形,代入计算即可.【详解】∵反比例函数3yx=-的图象与一次函数y=﹣x+5的图象相交,其中一个交点坐标为(a,b),∴ab=﹣3,b+a=5,则115533b aa b ab++===--,故答案为:﹣53.【点睛】本题考查了反比例函数与一次函数的交点问题,掌握函数图象上点的坐标特征是解题的关键.15.在一个不透明的袋子中装有3个除颜色外完全相同的小球,其中绿球1个,红球2个,摸出一个球放回,混合均匀后再摸出一个球,两次都摸到红球的概率是___________.【答案】4 9【分析】首先根据题意画出树状图,由树状图求得所有等可能的结果与两次都摸到红球的情况,然后利用概率公式求解即可求得答案.注意此题属于放回实验.【详解】解:画树状图得:∵共有9种等可能的结果,两次都摸到红球的只有4种情况,∴两次都摸到红球的概率是:49.故答案为49.【点睛】此题考查的是用列表法或树状图法求概率的知识.正确的列出树状图是解决问题的关键.16.小杰在楼下点A处看到楼上点B处的小明的仰角是42度,那么点B处的小明看点A处的小杰的俯角等于_____度.【答案】1【解析】根据题意画出图形,然后根据平行线的性质可以求得点B处的小明看点A处的小杰的俯角的度数,本题得以解决.【详解】解:由题意可得,∠BAO=1°,∵BC∥AD,∴∠BAO=∠ABC,∴∠ABC=1°,即点B处的小明看点A处的小杰的俯角等于1度,故答案为:1.【点睛】本题考查解直角三角形的应用﹣仰角俯角问题,解答本题的关键是明确题意,利用数形结合的思想解答.17.如图,正方形ABEF与正方形BCDE有一边重合,那么正方形BCDE可以看成是由正方形ABEF绕点O 旋转得到的,则图中点O的位置为_____.【答案】点B或点E或线段BE的中点.【分析】由旋转的性质分情况讨论可求解;【详解】解:∵正方形BCDE可以看成是由正方形ABEF绕点O旋转得到的,∴若点A与点E是对称点,则点B是旋转中心是点B;若点A与点D是对称点,则点B是旋转中心是BE的中点;若点A与点E是对称点,则点B是旋转中心是点E;故答案为:点B或点E或线段BE的中点.【点睛】本题考查了旋转的性质,正方形的性质,利用分类讨论是本题的关键.18.如图,在平面直角坐标系中,已知点E(﹣4,2),F(﹣1,﹣1).以原点O为位似中心,把△EFO扩大到原来的2倍,则点E的对应点E'的坐标为_____.【答案】(﹣8,4),(8,﹣4)【分析】根据在平面直角坐标系中,位似变换的性质计算即可.【详解】解:以原点O为位似中心,把△EFO扩大到原来的2倍,点E(﹣4,2),∴点E的对应点E'的坐标为(﹣4×2,2×2)或(4×2,﹣2×2),即(﹣8,4),(8,﹣4),故答案为:(﹣8,4),(8,﹣4).【点睛】本题考查的是位似变换的性质,在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或-k.三、解答题(本题包括8个小题)19.小明投资销售一种进价为每件20元的护眼台灯.销售过程中发现:每月的销售量y(件)与销售单价x(元/件)之间的关系可近似地看作一次函数y=-10x+500,在销售过程中销售单价不低于成本价,而每件的利润不高于成本价的60%.(1)设小明每月获得利润为w(元),求每月获得利润w(元)与销售单价x(元/件)之间的函数表达式,并确定自变量x的取值范围;(2)当销售单价定为多少元/件时,每月可获得最大利润?每月的最大利润是多少?【答案】(1)w=-10x2+700x-10000(20≤x≤32);(2)当销售单价定为32元/件时,每月可获得最大利润,最大利润是2160元.【解析】分析:(1)由题意得,每月销售量与销售单价之间的关系可近似看作一次函数,利润=(定价-进价)×销售量,从而列出关系式;(2)首先确定二次函数的对称轴,然后根据其增减性确定最大利润即可;详解:(1)由题意,得:w=(x-20)•y=(x-20)•(-10x+500)=-10x2+700x-10000,即w=-10x2+700x-10000(20≤x≤32).(2)w=-10x2+700x-10000=-10(x-35)2+2250.对称轴为:x=35,又∵a=-10<0,抛物线开口向下,∴当20≤x≤32时,w随着x的增大而增大,∴当x=32时,w最大=2160.答:当销售单价定为32元/件时,每月可获得最大利润,最大利润是2160元.点睛:二次函数的应用.重点在于根据题意列出函数关系式.20.如图,已知△ABC中,AB=BC,以AB为直径的⊙O交AC于点D,过D作DE⊥BC,垂足为E,连结OE,3,∠ACB=30°.(1)求证:DE是⊙O的切线;(2)分别求AB,OE的长.【答案】(1)证明见解析;(2)AB=2,OE=7.【分析】(1)根据AB是直径即可求得∠ADB=90°,再根据题意可求出OD⊥DE,即得出结论;(2)根据三角函数的定义,即可求得BC,进而得到AB,再在Rt△CDE中,根据直角三角形的性质,可求得DE,再由勾股定理求出OE即可.【详解】(1)连接BD,OD.∵AB是直径,∴∠ADB=90°.又∵AB=BC,∴AD=CD.∵OA=OB,∴OD∥BC.∵DE⊥BC,∴∠DEC=90°.∵OD∥BC,∴∠ODE=∠DEC=90°,∴OD⊥DE,∴DE是⊙O的切线.(2)在Rt△CBD中CD3ACB=30°,∴BC3303CDcos===︒2,∴AB=2,∴OD12=AB=1.在Rt△CDE中,CD3=,∠ACB=30°,∴DE12=CD1332=⨯=.在Rt△ODE中,OE2222371()22OD DE=+=+=.【点睛】本题考查了切线的判定、勾股定理、圆周角定理以及解直角三角形,是一道综合题,难度不大.21.某兴趣小组想借助如图所示的直角墙角ADC(两边足够长),用20m长的篱笆围成一个矩形ABCD 花园(篱笆只围AB、BC两边).(1)若围成的花园面积为291m,求花园的边长;(2)在点P处有一颗树与墙CD,AD的距离分别为12m和6m,要能将这棵树围在花园内(含边界,不考虑树的粗细),又使得花园面积有最大值,求此时花园的边长.【答案】(1)花园的边长为:13m和7m;(2)当8x=或12时,y有最大值为96,此时花园的边长为8cm 或12cm.【分析】(1)根据等量关系:矩形的面积为91,列出方程即可求解;(2)由在P处有一棵树与墙CD,AD的距离分别是12m和6m,列出不等式组求出x的取值范围,根据二次函数的性质求解即可.【详解】(1)设AB长为xm.由题意得:()2091x x-=解得:113x=27x=答:花园的边长为:13m和7m.(2)设花园的一边长为x ,面积为y .()()22202010100y x x x x x =-=-+=--+ 由题意:62012x x ≥⎧⎨-≥⎩或12206x x ≥⎧⎨-≥⎩ 解得:68x ≤≤,或1214x ≤≤.当8x =或12时,y 有最大值为96,此时花园的边长为8cm 或12cm .【点睛】本题考查了方程的应用,二次函数的应用以及不等式组的应用,认真审题准确找出等量关系是解题的关键. 22.(1)已知如图1,在ABC 中,AB BC =,90ABC ∠=︒,点D 在ABC 内部,点E 在ABC 外部,满足BD BE ⊥,且BD BE =.求证:ABD CBE ≌.(2)已知如图2,在等边ABC 内有一点P ,满足5PA =,4PB =,3PC =,求BPC ∠的度数.【答案】(1)详见解析;(2)150°【分析】(1)先证∠ABD =∠CBE ,根据SAS 可证△ABD ≌△CBE ;(2)把线段PC 以点C 为中心顺时针旋转60°到线段CQ 处,连结AQ .根据旋转性质得△PCQ 是等边三角形,根据等边三角形性质证△BCP ≌△ACQ (SAS ),得BP=AQ=4,∠BPC=∠AQC ,根据勾股定理逆定理可得∠AQP=90°,进一步推出∠BPC=∠AQC=∠AQP+∠PQC=90°+60°.【详解】(1)证明:∵∠ABC=90°,BD ⊥BE∴∠ABC=∠DBE=90°即∠ABD+∠DBC=∠DBC+∠CBE∴∠ABD =∠CBE .又∵AB=CB ,BD=BE∴△ABD ≌△CBE (SAS ).(2)如图,把线段PC 以点C 为中心顺时针旋转60°到线段CQ 处,连结AQ .由旋转知识可得:∠PCQ =60°,CP=CQ=1,∴△PCQ 是等边三角形,∴CP=CQ=PQ=1.又∵△ABC 是等边三角形,∴∠ACB=60°=∠PCQ ,BC=AC ,∴∠BCP+∠PCA=∠PCA+∠ACQ ,即∠BCP=∠ACQ .在△BCP 与△ACQ 中CP CQ BCP ACQ BC AC =⎧⎪∠=∠⎨⎪=⎩∴△BCP ≌△ACQ (SAS )∴BP=AQ=4,∠BPC=∠AQC .又∵PA=5,∴222224325PB PC PA +=+==.∴∠AQP=90°又∵△PCQ 是等边三角形,∴∠PQC=60°∴∠BPC=∠AQC=∠AQP+∠PQC=90°+60°=150°∴∠BPC=150°.【点睛】考核知识点:等边三角形,全等三角形,旋转,勾股定理.根据旋转性质和全等三角形判定和性质求出边和角的关系是关键.23.如图,某实践小组为测量某大学的旗杆BH 和教学楼CG 的高,先在A 处用高1米的测角仪测得旗杆顶端H 的仰角30HDE ∠=︒,此时教学楼顶端G 恰好在视线DH 上,再向前走15米到达B 处,又测得教学楼顶端G 的仰角45GEF ∠=︒,点、、A B C 三点在同一水平线上,(参考数据:3 1.7≈)(1)计算旗杆BH 的高;(2)计算教学楼CG 的高.【答案】(1)旗杆BH 的高约为9.5米;(2)教学楼CG 的高约为21.25米.【分析】(1)根据题意可得15DE AB ==,1AD BE CF ===,在Rt DEH ∆中,利用∠HDE 的正切函数可求出HE 的长,根据BH=BE+HE 即可得答案;(2)设GF x =米,由45GEF ∠=︒可得EF=GF=x ,利用∠GDF 的正切函数列方程可求出x 的值,根据CG=GF+CF 即可得答案.【详解】(1)由已知得,15DE AB ==,1AD BE CF ===,∵在Rt DEH ∆中,30HDE ∠=︒, ∴tan HE HDE DE ∠=, ∴3tan tan 301553HE DE HDE DE =⋅∠=⋅∠︒=⨯=, ∴15315 1.79.5BH BE HE =+=+≈+⨯=,∴旗杆BH 的高约为9.5米.(2)设GF x =米,在Rt GEF ∆中,45GEF ∠=︒,∴GF EF x ==,在Rt GDF ∆中,30GDF ∠=︒,∴tan GF GDF DF∠=,tan GF DF GDF =⋅∠, ∴()tan30DE EF GF +⋅︒=,即()315x x +⨯=, 解得:15(31)x +=, ∴CG=CF+FG=1+15(31)2+=153172+≈21.25, ∴教学楼CG 的高约为21.25米.【点睛】本题考查解直角三角形的应用,熟练掌握三角函数的定义是解题关键.24.如图,双曲线11k y x=(0x >)与直线22y k x b =+交于点(2,4)A 和(,2)B a ,连接OA 和OB .(1)求双曲线和直线的函数关系式.(2)观察图像直接写出:当12y y >时,x 的取值范围.(3)求AOB ∆的面积.【答案】(1)18y x =,26yx =-+;(2)02x <<或4x >;(3)6 【分析】(1)把点A 坐标代入11k y x =可求出双曲线的关系式,进而可得点B 坐标,再利用待定系数法即可求出直线的解析式;(2)找出图象上双曲线比直线高的部分对应的x 的取值范围即可;(3)过点A 作x 轴平行线交y 轴于点C ,过点B 作y 轴平行线交x 轴于点D ,所作两直线相交于E ,如图,利用AOB ODEC AOC BOD ABE S S S S S =---代入数据计算即可.【详解】解(1)∵点()2,4A 在双曲线上11k y x =上, ∴1248k =⨯=,∴18y x=, ∵点(),2B a 也在双曲线18y x =, ∴4a =,∵点()2,4A 和点()4,2B 在直线22y k x b =+上,∴222442k b k b +=⎧⎨+=⎩,解得:216k b =-⎧⎨=⎩, ∴直线关系式为26y x =-+;(2)当12y y >时,x 的取值范围是:02x <<或4x >;(3)过点A 作x 轴平行线,交y 轴于点C ,过点B 作y 轴平行线,交x 轴于点D ,所作两直线相交于E ,如图,则点E (4,4),∴AOB ODEC AOC BOD ABE S S S S S =---111442424226222=⨯-⨯⨯-⨯⨯-⨯⨯=.【点睛】本题考查了待定系数法求一次函数和反比例函数的解析式、函数图象上点的坐标特征和三角形的面积等知识,属于常考题型,熟练掌握一次函数与反比例函数的基本知识是解题的关键.25.先化简,再求值:2224x x x +-÷(1+x+222x x +-),其中x =tan60°﹣tan45°.【答案】11x +,3. 【分析】先根据分式混合运算的法则把原式进行化简,再求出x 的值代入进行计算即可.【详解】原式()()()()()21222222x x x x x x x x +--++=÷+--()122x x x x x +=÷-- 2x x =-•()21x x x -+ 11x =+. 当x=tan60°﹣tan45°3=-1时, 原式33113===-+. 【点睛】本题考查了分式的化简求值,熟知分式混合运算的法则是解答此题的关键.26.如图,AC 为圆O 的直径,弦AD 的延长线与过点C 的切线交于点B ,E 为BC 中点,AC= 43,BC=4.(1)求证:DE 为圆O 的切线;(2)求阴影部分面积.【答案】(1)证明见解析;(2)S 阴影32π【分析】(1)根据斜边中线等于斜边一半得到DE=CE,再利用切线的性质得到∠BCO=90°,最后利用等量代换即可证明,(2)根据S 阴影=2S △ECO -S 扇形COD 即可求解.【详解】(1)连接DC 、DO.因为AC为圆O直径,所以∠ADC=90°,则∠BDC=90°,因为E为Rt△BDC斜边BC中点,所以DE=CE=BE=12 BC,所以∠DCE=∠EDC,因为OD=OC,所以∠DCO=∠CDO.因为BC为圆O 切线,所以BC⊥AC,即∠BCO=90°,所以∠ODE=∠ODC+∠EDC=∠OCD+∠DCE=∠BCO=90°,所以ED⊥OD,所以DE为圆O的切线.(2)S阴影=2S△ECO-S扇形COD=32π【点睛】本题主要考查切线的性质和判定及扇形面积的计算,掌握切线的判定定理及扇形的面积公式是解题的关键.27.某水果商场经销一种高档水果,原价每千克50元.(1)连续两次降价后每千克32元,若每次下降的百分率相同.求每次下降的百分率;(2)若每千克盈利10元,每天可售出500千克,经市场调查发现,在进货价不变的情况下,商场决定采取适当的涨价措施,但商场规定每千克涨价不能超过8元,若每千克涨价1元,日销售量将减少20千克,现该商场要保证每天盈利6000元,那么每千克应涨价多少元?【答案】(1)20%;(2)每千克应涨价5元.【分析】(1)设每次下降的百分率为x,根据相等关系列出方程,可求每次下降的百分率;(2)设涨价y元(0<y≤8),根据总盈余=每千克盈余×数量,可列方程,可求解.【详解】解:(1)设每次下降的百分率为x根据题意得:50(1﹣x)2=32解得:x1=0.2,x2=1.8(不合题意舍去)答:每次下降20%(2)设涨价y元(0<y≤8)6000=(10+y)(500﹣20y)解得:y1=5,y2=10(不合题意舍去)答:每千克应涨价5元.【点睛】此题主要考查了一元二次方程应用,关键是根据题意找到蕴含的相等关系,列出方程,解答即可.九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.国家实施“精准扶贫”政策以来,很多贫困人口走向了致富的道路.某地区2017年底有贫困人口25万人,通过社会各界的努力,2019年底贫困人口减少至9万人.设2017年底至2019年底该地区贫困人口的年平均下降率为x ,根据题意可列方程( )A .25(1﹣2x )=9B .225(1)9x -=C .9(1+2x )=25D .225(1)9x += 【答案】B【分析】根据2017年贫困人口数×(1-平均下降率为)2=2019年贫困人口数列方程即可.【详解】设年平均下降率为x ,∵2017年底有贫困人口25万人,2019年底贫困人口减少至9万人,∴25(1-x)2=9,故选:B.【点睛】本题考查由实际问题抽象出一元二次方程,即一元二次方程解答有关平均增长率问题.对于平均增长率问题,在理解的基础上,可归结为a (1+x )2=b (a<b );平均降低率问题,在理解的基础上,可归结为a (1-x )2=b (a>b ).2.二次函数y =3(x+4)2﹣5的图象的顶点坐标为( )A .(4,5)B .(﹣4,5)C .(4,﹣5)D .(﹣4,﹣5) 【答案】D【分析】根据二次函数的顶点式即可直接得出顶点坐标.【详解】∵二次函数()2345y x +=-∴该函数图象的顶点坐标为(﹣4,﹣5),故选:D .【点睛】本题考查二次函数的顶点坐标,解题的关键是掌握二次函数顶点式()2y a x h k =-+的顶点坐标为(h ,k ).3.如图,是二次函数y =ax 2+bx+c 图象的一部分,其对称轴是x =﹣1,且过点(﹣3,0),下列说法:①abc <0;②2a ﹣b =0;③若(﹣5,y 1),(3,y 2)是抛物线上两点,则y 1=y 2;④4a+2b+c <0,其中说法正确的( )A .①②B .①②③C .①②④D .②③④【答案】B 【分析】根据题意和函数图象,利用二次函数的性质可以判断各个小题中的结论是否正确,从而可以解答本题.【详解】由图象可得,0a > ,0b > ,0c < ,则0abc < ,故①正确;∵该函数的对称轴是1x =- , ∴12b a-=-,得20a b -= ,故②正确; ∵()154---=,()314--=,∴若(﹣5,y 1),(3,y 2)是抛物线上两点,则12y y = ,故③正确;∵该函数的对称轴是1x =- ,过点(﹣3,0),∴2x = 和4x =- 时的函数值相等,都大于0,∴420a b c ++> ,故④错误;故正确是①②③,故选:B .【点睛】本题考查了二次函数的性质,掌握二次函数的图像和性质是解题的关键.4.在△ABC 中,若tanA =1,sinB =,你认为最确切的判断是( ) A .△ABC 是等腰三角形B .△ABC 是等腰直角三角形 C .△ABC 是直角三角形D .△ABC 是一般锐角三角形 【答案】B【分析】试题分析:由tanA=1,sinB=22结合特殊角的锐角三角函数值可得∠A 、∠B 的度数,即可判断△ABC 的形状.【详解】∵tanA=1,2 ∴∠A=45°,∠B=45°∴△ABC 是等腰直角三角形故选B.考点:特殊角的锐角三角函数值点评:本题是特殊角的锐角三角函数值的基础应用题,在中考中比较常见,一般以选择题、填空题形式出现,难度一般.5.已知反比例函数kyx=,当x>0时,y随x的增大而增大,则k的取值范围是()A.k>0 B.k<0 C.k≥1 D.k≤1【答案】B【分析】根据反比例函数的性质,当x>0时,y随x的增大而增大得出k的取值范围即可.【详解】解:∵反比例函数kyx=中,当x>0时,y随x的增大而增大,∴k<0,故选:B.【点睛】本题考查的是反比例函数的性质,反比例函数kyx=(k≠0)中,当k>0时,双曲线的两支分别位于第一、三象限,在每一象限内y随x的增大而减小;当k<0时,双曲线的两支分别位于第二、四象限,在每一象限内y随x的增大而增大.6.如图,在△ABC中,AB=10,AC=8,BC=6,以边AB的中点O为圆心,作半圆与AC相切,点P、Q分别是边BC和半圆上的动点,连接PQ,则PQ长的最大值与最小值的和是()A.3B.2131C.9D.10【答案】C【解析】如图,设⊙O与AC相切于点E,连接OE,作OP1⊥BC垂足为P1交⊙O于Q1,此时垂线段OP1最短,P1Q1最小值为OP1﹣OQ1,求出OP1,如图当Q2在AB边上时,P2与B重合时,P2Q2最大值=5+3=8,由此不难解决问题.【详解】如图,设⊙O与AC相切于点E,连接OE,作OP1⊥BC垂足为P1,交⊙O于Q1,此时垂线段OP1最短,P1Q1最小值为OP1﹣OQ1.∵AB=10,AC=8,BC=6,∴AB2=AC2+BC2,∴∠C=20°.∵∠OP1B=20°,∴OP1∥AC.∵AO =OB ,∴P 1C =P 1B ,∴OP 112=AC =4,∴P 1Q 1最小值为OP 1﹣OQ 1=1,如图,当Q 2在AB 边上时,P 2与B 重合时,P 2Q 2经过圆心,经过圆心的弦最长,P 2Q 2最大值=5+3=8,∴PQ 长的最大值与最小值的和是2.故选C .【点睛】本题考查了切线的性质、三角形中位线定理等知识,解题的关键是正确找到点PQ 取得最大值、最小值时的位置,属于中考常考题型.7.已知3x =4y (x ≠0),则下列比例式成立的是( )A .34x y =B .34y x =C .34x y =D .34x y = 【答案】B【解析】根据比例的基本性质:内项之积等于外项之积,逐项判断即可.【详解】A 、由3x =4y 得4x =3y ,故本选项错误; B 、由3y =4x得3x =4y ,故本选项正确; C 、由3y =4x 得xy =12,故本选项错误; D 、由x y =34得4x =3y ,故本选项错误; 故选:B .【点睛】本题考查了比例的基本性质,熟练掌握内项之积等于外项之积是解题的关键.8.如图,热气球的探测器显示,从热气球A 看一栋高楼顶部B 的仰角为300,看这栋高楼底部C 的俯角为600,热气球A 与高楼的水平距离为120m ,这栋高楼BC 的高度为( )A.403m B.803m C.1203m D.1603m【答案】D【分析】过A作AD⊥BC,垂足为D,在直角△ABD与直角△ACD中,根据三角函数的定义求得BD和CD,再根据BC=BD+CD即可求解.【详解】解:过A作AD⊥BC,垂足为D.在Rt△ABD中,∵∠BAD=30°,AD=120m,∴BD=AD•tan30°=120×333=,在Rt△ACD中,∵∠CAD=60°,AD=120m,∴33,∴BC=BD+CD=40312031603=.故选D.【点睛】本题考查解直角三角形的应用-仰角俯角问题.9.-4的相反数是()A.14B.14-C.4 D.-4【答案】C【分析】根据相反数的定义即可求解.【详解】-4的相反数是4,故选C.【点晴】此题主要考查相反数,解题的关键是熟知相反数的定义.10.如图,四边形ABCD中,∠A=90°,AB=8,AD=6,点M,N分别为线段BC,AB上的动点(含端点,但点M不与点B重合),点E,F分别为DM,MN的中点,则EF长度的最大值为()A.8 B.6 C.4 D.5 【答案】D【分析】根据三角形中位线定理可知EF=12DN,求出DN的最大值即可.【详解】解:如图,连结DN,∵DE=EM,FN=FM,∴EF=12 DN,当点N与点B重合时,DN的值最大即EF最大,在Rt△ABD中,∵∠A=90°,AD=6,AB=8,∴22228610BD AD AB+=+=,∴EF的最大值=12BD=1.故选:D.【点睛】本题考查了三角形中位线定理、勾股定理等知识,解题的关键是中位线定理的灵活应用,学会转化的思想,属于中考常考题型.11.去年某果园随机从甲、乙、丙、丁四个品种的葡萄树中各采摘了10棵,每棵产量的平均数x(单位:千克)及方差2S(单位:千克2)如下表所示:甲乙丙丁x24 24 23 202S 2.1 1.9 2 1.9今年准备从四个品种中选出一种产量既高又稳定的葡萄树进行种植,应选的品种是()A.甲B.乙C.丙D.丁【答案】B【分析】先比较平均数得到甲组和乙组产量较好,然后比较方差得到乙组的状态稳定.【详解】因为甲组、乙组的平均数丙组比丁组大,而乙组的方差比甲组的小,所以乙组的产量比较稳定,所以乙组的产量既高又稳定,故选B.【点睛】本题考查了方差:一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差.方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.也考查了平均数的意义.12.下列说法中正确的是()A.必然事件发生的概率是0B.“任意画一个等边三角形,其内角和是180°”是随机事件C.投一枚图钉,“钉尖朝上”的概率不能用列举法求得D.如果明天降水的概率是50%,那么明天有半天都在下雨【答案】C【分析】根据必然事件、随机事件的概念以及概率的求解方法依次判断即可.【详解】解:A、必然事件发生的概率为1,故选项错误;B、“任意画一个等边三角形,其内角和是180°”是必然事件,故选项错误;C、投一枚图钉,“钉尖朝上”和“钉尖朝下”不是等可能事件,因此概率不能用列举法求得,选项正确;D、如果明天降水的概率是50%,是表示降水的可能性,与下雨时长没关系,故选项错误.故选:C.【点睛】本题考查了必然事件、随机事件和概率的理解,掌握概率的有关知识是解题的关键.二、填空题(本题包括8个小题)13.如图,在平面直角坐标系中,等腰Rt△OA1B1的斜边OA1=2,且OA1在x轴的正半轴上,点B1落在第一象限内.将Rt△OA1B1绕原点O逆时针旋转45°,得到Rt△OA2B2,再将Rt△OA2B2绕原点O逆时针旋转45°,又得到Rt△OA3B3,……,依此规律继续旋转,得到Rt△OA2019B2019,则点B2019的坐标为_____.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2016-2017市高新区九年级上期末数学试题A卷(100分)一.选择题(共10小题,每小题3分,共30分)1.下列四个几何体中,左视图与主视图不同的是()A. B. C.D.2.抛物线y=x2﹣4x+3与y轴的交点为()A.(1,1)B.(0,3)C.(﹣1,2)D.(2,-1)3.下列函数中,图象过(2,﹣3)的反比例函数关系式是()A.3yx=- B.2yx= C.6yx= D.6yx=-4.三角尺A在灯泡O的照射下在墙上形成的影子如图所示,若OA=20cm,OA'=50cm,则这个三角尺的周长与它在墙上的影子的周长的比是()A.2:5 B.5:13 C.1:12 D.7:45.用配方法解一元二次方程x2-6x+2=0,配方正确的是()A.(x+3)2=9 B.(x﹣3)2=9 C.(x+3)2=6 D.(x﹣3)2=76.如图,∆ABC接于⊙O,若∠OBA=40°,则∠ACB=()A.40° B.50° C.60° D.80°7.下列命题正确的是()A.对角线互相垂直的四边形是菱形; B.一组对边平行,另一组对边相等的四边形是平行四边形;C.对角线相等的四边形是矩形; D.对角线互相垂直平分且相等的四边形是正方形.8.抛物线y=2x2向右平移1个单位,再向上平移5个单位,平移后的抛物线的解析式是()A.y=2(x+1)2+5 B.y=2(x+1)2﹣5 C.y=2(x﹣1)2﹣5 D.y=2(x﹣1)2+59.某市2015年国生产总值(GDP)比2014年增长12%,预计2016年比2015年增长7%.若这两年GDP平均增长率为x%,则x应满足的关系是()A.12%﹣7%=x% B.(1+12%)(1+7%)=2(1+x%)C.(1+12%)(1+7%)=(1+x%)2 D.12%+7%=2x%10.若二次函数y=ax2+bx+c的图象如图所示,则反比例函数ayx=与一次函数y=bx+c在同一坐标系中的大致图象可能是()A .B .C .D .二.填空题(共4小题,每小题4分,共16分)11.如果23a b b -=,那么a b= . 12.如图,已知⊙O 的半径为6,OA 与弦AB 长的夹角为30°,则弦AB 长的是 .13.阿华是一位非常爱读书的学生,他制作了五材质和外观完全一样的书签,每书签上写有一本书的名称和作者,分别是:《海底两万里》(作者:凡尔纳,法国)、《三国演义》(作者:罗贯中)、《西游记》(作者:吴承恩)、《骆驼祥子》(作者:老舍)、《钢铁是怎样炼成的》(作者:尼·奥斯特洛夫斯基,前联),从这五书签中随机抽取一,则抽到书签上的作者是中国人的概率是 .14.点A (-3,y 1)和点B (2,y 2)在抛物线y =x 2-5x 上,则y 1 y 2(填“<”、“>”或“=”)三.解答题(共6小题)15.(共2小题,每小题6分,共12分)计算:(1)0212)6tan 30()12--++- (2)解方程:x (x ﹣3)+2x ﹣6=0.16.(6分)如图:在平行四边形ABCD 中,用直尺和圆规作∠BAD 的平分线交BC 于点E (尺规作图的痕迹保留在图中),连接EF .(1)求证:四边形ABEF 为菱形;(2)AE ,BF 相交于点O ,若BF =6,AB =5,求AE 的长.17.(8分)如图,某测量员测量公园一棵树DE 的高度,他们在这棵树左侧一斜坡上端点A 处测得树顶端D 的仰角为30°,朝着这棵树的方向走到台阶下的点C 处,测得树顶端D 的仰角为60°.已知A 点的高度AB 为3米,台阶AC 的坡度为1:(即AB :BC =1:),且B 、C 、E 三点在同一条直线上.(1)求斜坡AC 的长;(2)请根据以上条件求出树DE的高度(侧倾器的高度忽略不计).18.(8分)小王调查了初三年级部分同学在感恩节当天将以何种方式对帮助过自己的人表达了感,他将调查结果分为如下四类:A类﹣﹣当面表示感、B类﹣﹣打表示感、C类﹣﹣发短信表示感、D类﹣﹣写书信表示感.他将调查结果绘制成了如图所示的扇形统计图和条形统计图.请你根据图中提供的信息完成下列各题:(1)补全条形统计图;(2)在A类的同学中,有4人来自同一班级,其中有2人主持过班会.现准备从他们4人中随机抽出两位同学主持以“感恩”为主题的班会课,请用树状图或列表法求抽出1人主持过班会而另一人没主持过班会的概率.19.(10分)如图,已知一次函数y1=kx+b(k≠0)的图象与反比例函数28yx=-的图象交于A、B两点,且点A的横坐标和点B的纵坐标都是-2.求:(1)求一次函数的表达式;(2)求△AOB的面积;(3)观察图象,直接写出y1>y2时x的取值围.20.(10分)已知:⊙O上两个定点A、B和两个动点C、D,AC、BD交于E.(1)如图1,求证:EA•EC=EB•ED;(2)如图2,若,AD是⊙O的直径,求证:AD•AC=2BD•BC;(3)如图3,若AC⊥BD,BC=4,圆O的半径为4,求AD的长.B卷(50分)一、填空题(共5小题,每小题4分,共20分)21.已知⊙O的半径为4,A、B是⊙O上的两点,∠AOB=120°,C是弧AB的中点.则四边形OABC的面积为.22.已知a<1<b,a、b为相邻两个整数,且a、b为方程x2﹣px+q=0的两根,则p﹣q的值为.23.如图,已知双曲线y=(k≠0)与正比例函数y=mx(m≠0)交于A、C两点,以AC为边作等边三角形ACD,且S△ACD=20,再以AC为斜边作直角三角形ABC,使AB∥y轴,连接BD.若△ABD的周长比△BCD的周长多4,则k= .24.如图,在三角形ABC中,∠A=90°,AB=AC=8,将△ABC折叠,使点B落在边AC上点D(不与点A重合)处,折痕为PQ,当重叠部分△PQD为等腰三角形时,则AD的长为.25.设点Q到图形W上每一个点的距离的最小值称为点Q到图形W的距离.例如正方形ABCD满足A(1,0),B(2,0),C(2,1),D(1,1),那么点O(0,0)到正方形ABCD的距离为1.①如果点N(0,a)到直线y=2x+1的距离为3(a>1),那么a的值是;②如果点G(0,b)到抛物线y=x2的距离为3,b的值是.二、解答题(共3题,共30分)26.(8分)某商店经营儿童益智玩具,已知成批购进时的单价是20元.调查发现:销售单价是30元时,月销售量是230件,而销售单价每上涨1元,月销售量就减少10件,但每件玩具售价不能高于40元.设每件玩具的销售单价上涨了x元时(x为正整数),月销售利润为y元.(1)求y与x的函数关系式并直接写出自变量x的取值围.(2)每件玩具的售价定为多少元时,月销售利润恰为2520元?(3)每件玩具的售价定为多少元时可使月销售利润最大?最大的月利润是多少?27.(10分)在四边形ABCD中,对角线AC与BD交于点O,E是OC上任意一点,AG⊥BE于点G,交直线BD于点F.(1)如图1,若四边形ABCD是正方形,对角线AC与BD交于点O,E是OC上任意一点,AG⊥BE于点G,交直线BD于点F,判断AF与BE的数量关系;(2)如图2,若四边形ABCD是菱形,∠ABC=120°,对角线AC与BD交于点O,E是OC上任意一点,AG⊥BE 于点G,交直线BD于点F,求的值;(3)在(2)中,如果∠ABC=2α,是OC延长线上一点,其它条件不变.如图3,含α的式子表示值(直接写出答案).28.(12分)如图1,在平面直角坐标系中,O为坐标原点.直线y=kx+b与抛物线y=mx2﹣x+n同时经过A (0,3)、B(4,0).(1)求m,n的值.(2)点M是二次函数图象上一点,(点M在AB下方),过M作MN⊥x轴,与AB交于点N,与x轴交于点Q.求MN的最大值.(3)在(2)的条件下,是否存在点N,使△AOB和△NOQ相似?若存在,求出N点坐标,不存在,说明理由.1.B.2.B.3.D.4.A.5.D.6.B.7.D.8.D.9.C.10.D.11.53.12.35.14.>.15.(1)0212)6tan 30()12--++ (2)解方程:x (x ﹣3)+2x ﹣6=0.解:(1)原式=1-6 (2)x (x ﹣3)+2(x ﹣3)=0(x ﹣3)(x+2)=0x 1=3;x 2=﹣216.证明:(1)由作图知:AB=AF,∠BAE=∠FAE∴AE ⊥BF,BO=FO∴AE 垂直平分BF∴BE=FE又∵AF ∥BE∴∠BEA=∠FAE=∠BAE∴AB=BE∴AB=AF=BE=EF∴四边形ABCD 为菱形.(2)解:∵四边形ABEF 为菱形,∴AE⊥BF,BO=FB=3,AE=2AO ,在Rt△AOB 中,AO==4,∴AE=2AO=8.17.解:(1)如图,过点A 作AF⊥DE 于F ,则四边形ABEF 为矩形,∴AF=BE,EF=AB=3米,设DE=x ,在Rt△CDE 中,CE==x ,在Rt△ABC 中,∵=,AB=3,∴BC=3,AC===6(米).(2)在Rt△AFD中,DF=DE﹣EF=x﹣3,∴AF==(x﹣3),∵AF=BE=BC+CE,∴(x﹣3)=3+x,解得x=9.答:树高为9米.18.解:(1)调查的学生总数为5÷10%=50(人),C类人数为50×=15(人),D类人数为50﹣5﹣15﹣12=18(人),条形统计图为:(2)设主持过班会的两人分别为A1、A2,另两人分别为B1、B2,填表如下:由列表可知,共有12种等可能情况,其中有8种符合题意,所以P(抽出1人主持过班会而另一人没主持过班会)=.19.解:(1)A、B两点在反比例函数的图象上,A的横坐标是2,则纵坐标为﹣4, A点的坐标(2,﹣4),B的纵坐标为2,则横坐标为﹣4,B点的坐标(-4,2),设一次函数解析式为y=kx+b,.故直线AB的解析式为y=﹣x+2.(2)设直线AB与y轴的交点为N,则点N的坐标为(0,2),S△AOB=S△AO N+S△BO N=×2×2+×2×4=6.(3)当x>4或-2<x<0时,y1>y2.20.(1)根据同弧所对的圆周角相等得到角相等,从而证得三角形相似,于是得到结论;(2)如图2,连接CD,OB交AC于点F,由B是弧AC的中点得到∠BAC=∠ADB=∠ACB,且AF=CF=0.5AC.证得△CBF∽△ABD.即可得到结论;(3)如图3,连接AO并延长交⊙O于F,连接DF得到AF为⊙O的直径于是得到∠ADF=90°,过O作OH⊥AD 于H,根据三角形的中位线定理得到DF=2OH=4,通过△ABE∽△ADF,得到1=∠2,于是结论可得.(1)证明:∵∠EAD=∠EBC,∠BCE=∠ADE,∴△AED∽△BEC,∴=,∴EA•EC=EB•ED;(2)证明:如图2,连接CD,OB交AC于点F∵B是弧AC的中点,∴∠BAC=∠ADB=∠ACB,且AF=CF=0.5AC.又∵AD为⊙O直径,∴∠ABC=90°,又∠CFB=90°.∴△CBF∽△ABD.∴=,故CF•AD=BD•BC.∴AC•AD=2BD•BC;(3)解:如图3,连接AO并延长交⊙O于F,连接DF,∴AF为⊙O的直径,∴∠ADF=90°,过O作OH⊥AD于H,∴AH=DH,OH∥DF,∵AO=OF,∴DF=2OH=4,∵AC⊥BD,∴∠AEB=∠ADF=90°,∵∠ABD=∠F,∴△ABE∽△ADF,∴∠BAE=∠FAD,∴=,∴BC=DF=4.21.83. 22.-5. 23.8. 24. 8或828 .25.①1+35;②-3或374. ①N 在F 点的上边,如图2,过点N 作NG⊥l,垂足为点G ,∵△EOF∽△NGF,∴=,即=,∴a=1+3;N 在F 点的下边,同理可得a=1﹣3;故.②点G 在原点下面,b=﹣3;点G 在原点上面,=3,x 4+(1﹣2b )x 2+b 2﹣9=0,△=(1﹣2b )2﹣4(b 2﹣9)=﹣4b+37=0,解得.故b 的值是﹣3或.故答案为:4;1+3.26.解:(1)根据题意得:y=(30+x﹣20)(230﹣10x)=﹣10x2+130x+2300,自变量x的取值围是:0<x≤10且x为正整数;(2)当y=2520时,得﹣10x2+130x+2300=2520,解得x1=2,x2=11(不合题意,舍去)当x=2时,30+x=32(元)答:每件玩具的售价定为32元时,月销售利润恰为2520元.(3)根据题意得:y=﹣10x2+130x+2300=﹣10(x﹣6.5)2+2722.5,∵a=﹣10<0,∴当x=6.5时,y有最大值为2722.5,∵0<x≤10且x为正整数,∴当x=6时,30+x=36,y=2720(元),当x=7时,30+x=37,y=2720(元),答:每件玩具的售价定为36元或37元时,每个月可获得最大利润,最大的月利润是2720元.27.解:(1)AF=BE;∵四边形ABCD是正方形,∴∠AOB=∠BOC=90°,AO=BO,∵AG⊥BE,∠AFO=∠BFG,∴∠FAO=∠FBG,在△AFO与△BFO中,,∴△AFO≌△BFO,∴AF=BE;故答案为:AF=BE;(2)∵四边形ABCD是菱形,∠ABC=120°,∴AC⊥BD,∠ABO=60°,∴∠FAO+∠AFO=90°,∵AG⊥BE,∴∠EAG+∠BEA=90°,∴∠AFO=∠BEA,又∵∠AOF=∠BOE=90°,∴△AOF∽△BOE,∴=,∵∠ABO=60°,AC⊥BD,∴=tan60°=,∴=;28.解:(1)∵抛物线y=mx2﹣x+n经过A(0,3)、B(4,0),∴,解得.∴二次函数的表达式为y=x2﹣x+3.(2)∵直线y=kx+b经过A(0,3)、B(4,0),则,解得.∴经过AB两点的一次函数的解析式为y=﹣x+3.MN=﹣x+3﹣(x2﹣x+3)=﹣x2+4x=﹣(x﹣2)2+4,∵0≤x≤4,∴当x=2时,MN取得最大值为4.(3)存在.①当ON⊥AB时,(如图1)可证:∠NOQ=∠OAB,∠OQN=∠AOB=90°,∴△AOB∽△OQN.∴==,∴OA=3,OB=4,∴AB=5,∵ON•AB=OA•OB,∴ON=,∴NQ=,OQ=.∴N(,);②当N为AB中点时,(如图2)∠NOQ=∠B,∠AOB=∠NQO=90°,∴△AOB∽△NQO.此时N(2,).∴满足条件的N(,)或N(2,).。