《直线与圆的位置关系》数学试卷
2020年高中数学必修二《直线与圆的位置关系》
第 1 页 共 3 页 2020年高中数学必修二《直线与圆的位置关系》1.直线x -y +4=0被圆x 2+y 2+4x -4y +6=0截得的弦长等于( )A .122B .2 2C .3 2D .4 2答案 B解析 x 2+y 2+4x -4y +6=0,即(x +2)2+(y -2)2=2,∴圆心(-2,2)到x -y +4=0的距离d =0.∴弦长等于直径2 2.故选B.2.经过点M(2,1)作圆x 2+y 2=5的切线,则切线方程为( ) A.2x +y =5 B.2x +y +5=0 C .2x +y =5D .2x +y +5=0 答案 C解析 ∵M(2,1)在圆上,∴切线与MO 垂直,∵k MO =12,∴切线斜率为-2.又过(2,1),∴y -1=-2(x -2),即y +2x =5.故选C.3.以点P(-4,3)为圆心的圆与直线2x +y -5=0没有公共点,则圆的半径r 的取值范围为( )A .(0,2)B .(0,5)C .(0,25)D .(0,10) 答案 C解析 圆心到直线的距离为d ,则d =|-8+3-5|5=2 5. ∵没有公共点,∴d>r ,∴选C.4.圆x 2+y 2+2x +4y -3=0上到直线x +y +1=0的距离为2的点共有( )A .1个B .2个C .3个D .4个 答案 C解析 ∵x 2+y 2+2x +4y -3=0,∴(x +1)2+(y +2)2=8,圆心(-1,-2)到x +y +1=0的距离为d =|-1-2+1|2=2=r 2,∴有三个点.故选C. 5.由点P(1,3)引圆x 2+y 2=9的切线的长是( )A .2B.19 C .1D .4 答案 C。
2022-2023学年北师大版九年级数学下册《3-6直线和圆的位置关系关系》同步练习题(附答案)
2022-2023学年北师大版九年级数学下册《3.6直线和圆的位置关系关系》同步练习题(附答案)一.选择题1.下列说法正确的是()A.三点确定一个圆B.任何三角形有且只有一个内切圆C.相等的圆心角所对的弧相等D.正多边形一定是中心对称图形2.如图,半⊙O的半径为2,点P是⊙O直径AB延长线上的一点,PT切⊙O于点T,M 是OP的中点,射线TM与半⊙O交于点C.若∠P=20°,则图中阴影部分面积为()A.1+B.1+C.2sin20°+D.3.如图,△ABC中,∠A=90°,AC=3,AB=4,半圆的圆心O在BC上,半圆与AB、AC分别相切于点D、E,则半圆的半径为()A.B.C.D.4.在Rt△ABC中,AB=6,BC=8,则这个三角形的内切圆的半径是()A.5B.2C.5或2D.2或﹣1 5.如图,⊙O的半径为4,A、B、C、D是⊙O上的四点,过点C,D的切线CH,DG相交于点M,点P在弦AB上,PE∥BC交AC于点E,PF∥AD于点F,当∠ADG=∠BCH =30°时,PE+PF的值是()A.4B.2C.4D.值不确定6.如图,P A,PB分别与⊙O相切于点A,B,连接OP,则下列判断错误的是()A.∠P AO=∠PBO=90°B.OP平分∠APBC.P A=PB D.∠AOB=7.如图,在Rt△ABC中,AC⊥BC,过C作CD⊥AB,垂足为D,若AD=3,BC=2,则△ABC的内切圆的面积为()A.πB.(4﹣2)πC.()πD.2π8.已知:如图,AB是⊙O的直径,点P在BA的延长线上,弦CD交AB于E,连接OD、PC、BC,∠AOD=2∠ABC,∠P=∠D,过E作弦GF⊥BC交圆与G、F两点,连接CF、BG.则下列结论:①CD⊥AB;②PC是⊙O的切线;③OD∥GF;④弦CF的弦心距等于BG.则其中正确的是()A.①②④B.③④C.①②③D.①②③④9.如图将△ABC沿着直线DE折叠,点A恰好与△ABC的内心I重合,若∠DIB+∠EIC=195°,则∠BAC的大小是()A.40°B.50°C.60°D.70°10.如图:P A切⊙O于A,PB切⊙O于B,OP交⊙O于C,下列结论中错误的是()A.∠APO=∠BPO B.P A=PBC.AB⊥OP D.C是PO的中点二.填空题11.如图,P A,PB是⊙O的两条切线,切点分别为A,B.连接OA,OB,AB,PO,PO与AB交于点C.若∠APB=60°,OC=1,则△P AB的周长为.12.如图,正方形ABCD的边长为4,M为AB的中点,P是BC边上的动点,连接PM,以点P为圆心,PM长为半径作圆P,当圆P与正方形ABCD的边相切时,CP的长为.13.如图,AB是⊙O的直径,AD、BC是⊙O的切线,P是⊙O上一动点,若AD=3,AB =4,BC=6,则△PDC的面积的最小值是.14.已知正方形ABCD边长为2,DE与以AB的中点为圆心的圆相切交BC于点E,求三角形DEC的面积.15.平面直角坐标系xOy中,以O为圆心,1为半径画圆,平面内任意点P(m,n2﹣9),且实数m,n满足m﹣n2+5=0,过点P作⊙O的切线,切点为A,当P A长最小时,点P 到原点O的距离为.16.如图,I为△ABC的内心,有一直线经过点I且分别与AB、AC相交于点D、点E.若AD=DE=5,AE=6,则点I到BC的距离为.三.解答题17.如图,在四边形ABCD中,AB=AD,CB=CD,圆心在四边形对角线AC上的⊙O与CD边相切于点E.(1)求证:BC是ʘO的切线;(2)若O是AC的中点,点E是CD的中点,∠CAD=30°,⊙O的半径R=3,求CD 的长.18.已知:如图,AB是⊙O的直径,AB⊥AC,BC交⊙O于点D,点E是AC的中点,ED 与AB的延长线交于点F.(1)求证:DE是⊙O的切线;(2)若∠F=30°,BF=2,求△ABC外接圆的半径.19.如图,△ABC内接于⊙O,AB是⊙O的直径,过⊙O外一点D作DG∥BC,DG交线段AC于点G,交AB于点E,交⊙O于点F,连接DB,CF,∠A=∠D.(1)求证:BD与⊙O相切;(2)若AE=OE,CF平分∠ACB,BD=12,求DE的长.20.△ABC内接于⊙O,∠BAC的平分线交⊙O于D,交BC于E(BE>EC),过点D作⊙O 的切线DF,交AB的延长线于F.(1)求证:DF∥BC;(2)连接OF,若tan∠BAC=,BD=,DF=8,求OF的长.21.如图,在Rt△ABC中,∠C=90°,在AC上取一点D,以AD为直径作⊙O,与AB 相交于点E,作线段BE的垂直平分线MN交BC于点N,连接EN.(1)求证:EN是⊙O的切线;(2)若AC=3,BC=4,⊙O的半径为1.求线段EN与线段AE的长.22.如图,AB、AC分别是半⊙O的直径和弦,OD⊥AC于点D,过点A作半⊙O的切线AP,AP与OD的延长线交于点P,连接PC并延长与AB的延长线交于点F.(1)求证:PC是半⊙O的切线;(2)若∠CAB=30°,AB=6,求由劣弧AC、线段AC所围成图形的面积S.23.如图,AB是⊙O的直径,四边形ABCD内接于⊙O,D是的中点,DE⊥BC交BC 的延长线于点E.(1)求证:DE是⊙O的切线;(2)若AB=10,BC=8,求BD的长.参考答案一.选择题1.解:A.不在同一条直线上的三个点确定一个圆,故A不符合题意;B.任何三角形有且只有一个内切圆,故B符合题意;C.在同圆或等圆中,相等的圆心角所对的弧相等,故C不符合题意;D.正多边形一定是轴对称图形,不一定是中心对称图形,故D不符合题意;故选:B.2.解:连接OT、OC,∵PT切⊙O于点T,∴∠OTP=90°,∵∠P=20°,∴∠POT=70°,∵M是OP的中点,∴TM=OM=PM,∴∠MTO=∠POT=70°,∵OT=OC,∴∠MTO=∠OCT=70°,∴∠TOC=180°﹣2×70°=40°,∴∠COM=30°,作CH⊥AP,垂足为H,则CH=OC=1,S阴影=S△AOC+S扇形OCB=+=1+,故选:A.3.解:连接OE,OD,∵圆O切AC于E,圆O切AB于D,∴∠OEA=∠ODA=90°,∵∠A=90°,∴∠A=∠ODA=∠OEA=90°,∵OE=OD,∴四边形ADOE是正方形,∴AD=AE=OD=OE,设OE=AD=AE=OD=R,∵∠A=90°,∠OEC=90°,∴OE∥AB,∴△CEO∽△CAB,同理△BDO∽△BAC,∴△CEO∽△ODB,∴=,即=,解得:R=,故选:A.4.解:设直角三角形ABC内切圆的圆心为点I,半径为r,三边上的切点分别为D、E、F,连接ID、IE、IF,得正方形,则正方形的边长即为r,如图所示:当BC为直角边时,AC==10,根据切线长定理,得AD=AF=AB﹣BD=6﹣r,CE=CF=BC﹣BE=8﹣r,∴AF+FC=AC=10,即6﹣r+8﹣r=10,解得r=2;当BC为斜边时,AC==2,根据切线长定理,得BD=BF=6﹣r,CE=CF=2﹣r,∴BC=BF+CF=6﹣r+2﹣r=8,解得r=﹣1.答:这个三角形的内切圆的半径是2或﹣1.故选:D.5.解:当∠ADG=∠BCH=30°时,PE+PF是定值.理由:连接OA、OB、OC、OD,如图:∵DG与⊙O相切,∴∠GDA=∠ABD.∵∠ADG=30°,∴∠ABD=30°.∴∠AOD=2∠ABD=60°.∵OA=OD,∴△AOD是等边三角形.∴AD=OA=4.同理可得:BC=4.∵PE∥BC,PF∥AD,∴△AEP∽△ACB,△BFP∽△BDA.∴=,=.∴+=+=1.∴+=1.∴PE+PF=4.∴当∠ADG=∠BCH=30°时,PE+PF=4.故选:A.6.解:∵P A,PB分别与⊙O相切于点A,B,∴∠P AO=∠PBO=90°,OP平分∠APB,P A=PB,则A、B、C正确,不符合题意;∠AOB的度数与的度数相等,D错误,符合题意;故选:D.7.解:∵在Rt△ABC中,AC⊥BC,过C作CD⊥AB ∴△ADC∽△CDB∴CD2=AD•DB∴CD2=3DBRt△CDB中,CB2=CD2+DB2∴4=3DB+DB2解得DB=1或DB=﹣4(舍去)∴CB=2∴AC=2设△ABC内切圆半径为r,内心为O,连OA、OB、OC由面积法可知S△ABC=S△AOC+S△BOC+S△AOB∴∴r==∴内切圆半径为π()2=(4﹣2)π故选:B.8.解:连接BD、OC、AG,过O作OQ⊥CF于Q,OZ⊥BG于Z,∵OD=OB,∴∠ABD=∠ODB,∵∠AOD=∠OBD+∠ODB=2∠OBD,∵∠AOD=2∠ABC,∴∠ABC=∠ABD,∴弧AC=弧AD,∵AB是直径,∴CD⊥AB,∴①正确;∵CD⊥AB,∴∠P+∠PCD=90°,∵OD=OC,∴∠OCD=∠ODC=∠P,∴∠PCD+∠OCD=90°,∴∠PCO=90°,∴PC是切线,∴②正确;假设OD∥GF,则∠AOD=∠FEB=2∠ABC,∴3∠ABC=90°,∴∠ABC=30°,已知没有给出∠B=30°,∴③错误;∵AB是直径,∴∠ACB=90°,∵EF⊥BC,∴AC∥EF,∴弧CF=弧AG,∴AG=CF,∵OQ⊥CF,OZ⊥BG,∴CQ=AG,OZ=AG,BZ=BG,∴OZ=CQ,∵OC=OB,∠OQC=∠OZB=90°,∴△OCQ≌△BOZ,∴OQ=BZ=BG,∴④正确.故选:A.9.解:∵I是△ABC的内心,∴∠IBC=∠ABC,∠ICB=∠BCA,∵∠DIB+∠EIC=195°,∴∠DIE+∠BIC=165°,由折叠过程知∠BAC=∠DIE,∴∠BAC+∠BIC=165°∵∠BAC+∠ABC+∠ACB=180°,∴∠ABC+∠ACB=180°﹣∠BAC,∴∠IBC+∠ICB=90°﹣∠BAC,又∵∠BIC+(∠IBC+∠ICB)=180°,∠BIC+(90°﹣∠BAC)=180°,∴∠BIC=90°+∠BAC,∴∠BAC+90°+∠BAC=165°,∴∠BAC=50°故选:B.10.解:∵P A、PB是⊙O的切线,切点是A、B,∴P A=PB,∠BPO=∠APO,∴选项A、B错误;∵P A=PB,∠BPO=∠APO,∴OP⊥AB,∴选项C错误;根据已知不能得出C是PO的中点,故选项D正确;故选:D.二.填空题11.解:∵P A、PB是⊙O的两条切线,∴OA⊥P A,OB⊥PB,OP平分∠APB,P A=PB,∵∠APB=60°,∴△P AB是等边三角形,AB=2AC,PO⊥AB,∴∠P AB=60°,∴∠OAC=∠P AO﹣∠P AB=90°﹣60°=30°,∴AO=2OC,∵OC=1,∴AO=2,∴AC=,∴AB=2AC=2,∴△P AB的周长=6.故答案为:6.12.解:如图1中,当⊙P与直线CD相切时,设PC=PM=x.在Rt△PBM中,∵PM2=BM2+PB2,∴x2=22+(4﹣x)2,∴x=2.5,∴CP=2.5;如图2中当⊙P与直线AD相切时.设切点为K,连接PK,则PK⊥AD,四边形PKDC 是矩形.∴PM=PK=CD=2BM,∴BM=2,PM=4,在Rt△PBM中,PB==2,∴CP=BC﹣PB=4﹣2.综上所述,CP的长为2.5或4﹣2.故答案是:2.5或4﹣2.13.解:由CD是固定的,所以当P到CD的距离最小时△PCD的面积最小,如图,过P 作EF∥CD,交AD于点E,交BC于点F,当EF与⊙O相切时,P到CD的距离最短,连接OP并延长交CD于点Q,过O作OH∥BC,交EF于点G,交CD于点H,则可知OH为梯形ABCD的中位线,OG为梯形ABFE的中位线,∴OH=(AD+BC)=4.5,过D作DM⊥BC于点M,则DM=AB=4,MC=BC﹣AD=3,∴CD=EF=5,由切线长定理可知AE=EP,BF=PF,∴AE+BF=EF=5,∴OG=(AE+BF)=2.5,∴GH=OH﹣OG=4.5﹣2.5=2,又∵OP=2,且=,∴=,∴PQ=1.6,∴S△PCD=PQ•CD=×1.6×5=4,故答案为:4.14.解:设∴DE与圆O相切于点F,∵四边形ABCD是正方形,∴∠OAD=∠OBC=∠C=90°,AB=BC=AD=CD=2,∵OA、OB是圆O的半径,∴DA与圆O相切于点A,EB与圆O相切于点B,∵DE与圆O相切于点F,∴DA=DF=2,EB=EF,设EB=EF=x,则EC=BC﹣EB=2﹣x,DE=DF+EF=2+x,在Rt△DEC中,DC2+CE2=DE2,∴22+(2﹣x)2=(2+x)2,解得:x=,∴EC=BC﹣EB=2﹣x=,∴三角形DEC的面积=EC•DC=××2=1.5,故答案为:1.5.15.解:如图,连接OA,∵m﹣n2+5=0,∴n2=m+5,∴n2﹣9=m+5﹣9=m﹣4,∴点P的坐标为(m,m﹣4),即点P在直线y=x﹣4上,当x=0时,y=﹣4,当y=0时,x=4,∴OB=OC=4,∴BC=4,∵P A与⊙O相切于点A,∴OA⊥AP,∵OA=1,∴当OP最小时,P A最小,当OP⊥BC时,OP最小,此时OP=BC=2,答:当P A长最小时,点P到原点O的距离为2.故答案为:2.16.解:根据题意点I在DE上,连接AI,作IG⊥AB于点G,IJ⊥BC于点J,作IH⊥AC 于点H,作DF⊥AE于点F,如右图所示:∵AD=DE=5,AE=6,DF⊥AE,∴AF=3,∠AFD=90°,∴DF===4,设IH=x,∵I为△ABC的内心,∴IG=IJ=IH=x,∵S△ADE=S△ADI+S△AEI,∴=+,解得x=,∴IJ=,即I点到BC的距离是.故答案为:.三.解答题17.(1)证明:连接OE,过点O作OF⊥BC,垂足为F,∵CD与⊙O相切于点E,∴OE⊥CD,∵AB=AD,CB=CD,AC=AC,∴△ABC≌△ADC(SSS),∴∠BCA=∠DCA,∴OF=OE,∵OE是⊙O的半径,∴BC是ʘO的切线;(2)解:∵O是AC的中点,点E是CD的中点,∴OE是△ACD的中位线,∴OE∥AD,∴∠COE=∠CAD=30°,在Rt△OCE中,OE=3,∴CE=OE tan30°=3×=,∴CD=2CE=2.18.(1)证明:连接OD,∵AB⊥AC,∴∠CAB=90°,∴∠CAD+∠DAO=90°,∵AB是⊙O的直径,∴∠ADB=90°,∴∠ADC=180°﹣∠ADB=90°,∵点E是AC的中点,∴EA=ED=AC,∴∠EAD=∠EDA,∵OA=OD,∴∠OAD=∠ODA,∴∠EDA+∠ODA=90°,∴∠ODE=90°,∵OD是⊙O的半径,∴DE是⊙O的切线;(2)解:∵∠F=30°,BF=2,∠ODF=90°,∴OF=2OD,∴OB+2=2OD,∵OD=OB,∴OD=OB=2,∵∠DOF=90°﹣∠F=60°,∴△DOB是等边三角形,∴∠OBD=60°,在Rt△ABC中,AB=2OB=4,∴BC===8,∵△ABC外接圆的半径=BC=4,∴△ABC外接圆的半径为:4.19.(1)证明:如图1,延长DB至H,∵DG∥BC,∴∠CBH=∠D,∵∠A=∠D,∴∠A=∠CBH,∵AB是⊙O的直径∴∠ACB=90°,∴∠A+∠ABC=90°,∴∠CBH+∠ABC=90°,∴∠ABD=90°,∴BD与⊙O相切;(2)解:解法一:如图2,连接OF,∵CF平分∠ACB,∴∠ACF=∠BCF,∴,∴OF⊥AB,∵BD⊥AB,∴OF∥BD,∴△EFO∽△EDB,∴,∵AE=OE,∴,∴=,∴OF=4,∴BE=OE+OB=2+4=6,∴DE===6.解法二:如图2,连接OF,∵AE=OE,∴OA=OF=2OE,Rt△OEF中,tan∠OEF==2,Rt△BED中,tan∠OEF===2,∴BE=6,由勾股定理得:DE===6.20.(1)证明:连接OD,∵DF是⊙O的切线,∴OD⊥DF,∵AD平分∠BAC,∴∠BAD=∠CAD,∴,∴OD⊥BC,∴DF∥BC;(2)解:连接OB,∵,∴∠BOD=∠BAC,由(1)知OD⊥BC,∴tan∠BOD=,∵tan∠BAC=2,∴,设ON=x,BN=2x,由勾股定理得:OB=3x,∴OD=3x,∴DN=3x﹣x=2x,Rt△BDN中,BN2+DN2=BD2,∴,x=2或﹣2(舍),∴OB=OD=3x=6,Rt△OFD中,由勾股定理得:OF===10.21.解:(1)证明:如图,连接OE,∵NM是BE的垂直平分线,BN=EN,∴∠B=∠NEB,∵OA=OE∴∠A=∠OEA,∵∠C=90°,∴∠A+∠B=90°,∴∠OEN=90°,即OE⊥EN,∵OE是半径,∴EN是⊙O的切线;(2)如图,连接ON,设EN长为x,则BN=EN=x∵AC=3,BC=4,⊙O的半径为1,∴CN=4﹣x,OC=AC﹣OA=3﹣1=2,∴OE2+EN2=OC2+CN2,∴12+x2=22+(4﹣x)2,解得x=,∴EN=.连接ED,DB,设AE=y,∵AC=3,BC=4,∴AB=5,∵⊙O的半径为1.∴AD=2,则DE2=AD2﹣AE2=22﹣y2,∵CD=AC﹣AD=3﹣2=1,∴DB2=CD2+BC2=17,∵AD为直径,∴∠AED=∠DEB=90°,∴DE2+EB2=DB2,即22﹣y2+(5﹣y)2=17,解得y=,∴EN=,AE=.22.(1)证明:连接OC,∵P A是半⊙O的切线,A为切点,∴∠OAP=90°,∵OD⊥AC,OD经过圆心O,∴CD=AD,∴OP是AC的垂直平分线,∴PC=P A,∵OC=OA,OP=OP,∴△OCP≌△OAP(SSS),∴∠OCP=∠OAP=90°,∵OC是⊙O的半径,∴PC是⊙O的切线;(2)解:∵AB是⊙O的直径,AB=6,∴OA=OB=3,∵∠ADO=90°,∠CAB=30°,∴OD=OA=,∴AC=2AD=,∴S△AOC=AC•OD=,∵∠CAB=30°,∴∠COB=2∠CAB=60°,∴∠AOC=180°﹣60°=120°,∴S扇形AOC=,∴S=S扇形AOC﹣S△AOC=.23.(1)证明:连接OD,∵DE⊥BC,∴∠DEC=90°,∵D是的中点,∴=,∴∠ABD=∠CBD,∵OD=OB,∴∠ODB=∠OBD,∴∠ODB=∠CBD,∴OD∥BC,∴∠ODE=180°﹣∠DEC=90°,∴OD⊥DE,∵OD是⊙O的半径,∴DE是⊙O的切线;(2)解:过点D作DF⊥AB,垂足为F,由(1)得:∠ABD=∠CBD,∴BD平分∠ABC,∵DF⊥AB,DE⊥BC,∴DF=DE,∵四边形ABCD内接于⊙O,∴∠A+∠DCB=180°,∵∠DCB+∠DCE=180°,∴∠A=∠DCE,∵∠DF A=∠DEC=90°,∴△ADF≌△CDE(AAS),∴AF=EC,∵∠DFB=∠DEC=90°,BD=BD,∴△BDF≌△BDE(AAS),∴BF=BE,设AF=EC=x,则BE=BF=8+x,∵AB=10,∴AF+BF=10,∴x+8+x=10,∴x=1,∴BF=9,∵AB是⊙O的直径,∴∠ADB=90°,∵∠ABD=∠DBF,∴△BFD∽△BDA,∴BD2=BF•BA,∴BD2=90,∴BD=3.。
浙教新版九年级下册数学《第2章 直线与圆的位置关系》单元测试卷(有答案)
浙教新版九年级下册数学《第2章直线与圆的位置关系》单元测试卷一.选择题(共8小题,满分24分)1.如图,⊙O内切于四边形ABCD,AB=10,BC=7,CD=8,则AD的长度为()A.8B.9C.10D.112.如图,若⊙O的直径为6,点O到某条直线的距离为6,则这条直线可能是()A.l1B.l2C.l3D.l43.如图所示,直线l与半径为5cm的⊙O相交于A、B两点,且与半径OC垂直,垂足为H,AB =8cm,若要使直线l与⊙O相切,则l应沿OC方向向下平移()A.1cm B.2cm C.3cm D.4cm4.如图,△ABC内接于⊙O,BD切⊙O于点B,AB=AC,若∠CBD=40°,则∠ABC等于()A.40°B.50°C.60°D.70°5.如图,四边形ABCD是圆的内接四边形,AB、DC的延长线交于点P,若C是PD的中点,且PD=6,PB=2,那么AB的长为()A.9B.7C.3D.6.如图,PA、PB是圆O的切线,切点分别为A、B,若OA=2,∠P=60°,则的长为()A.B.πC.D.7.如图,⊙O的半径为2,弦AB向上平移得到CD(AB与CD位于点O两侧),且CD与⊙O 相切于点E.若的度数为120°,则AD的长为()A.4B.2C.D.38.如图,⊙O内切于△ABC,若∠AOC=110°,则∠B的度数为()A.40°B.60°C.80°D.100°二.填空题(共8小题,满分24分)9.如图,P是圆O外的一点,点B、D在圆上,PB、PD分别交圆O于点A、C,如果AP=4,AB=2,PC=CD,那么PD=.10.如图,PA、PB、DE分别切⊙O于A、B、C,DE分别交PA,PB于D、E,已知P到⊙O的切线长为8cm,那么△PDE的周长为.11.已知:如图,在⊙O中,AB是直径,四边形ABCD内接于⊙O,∠BCD=130°,过D点的切线PD与直线AB交于点P,则∠ADP的度数为.12.如图,已知⊙P的半径是1,圆心P在抛物线y=x2﹣x﹣上运动,当⊙P与x轴相切时,圆心P的坐标为.13.如图,在△ABC中,∠A=60°,BC=6,△ABC的周长为19.若⊙O与BC,AC,AB三边分别相切于点E,F,D,则DF的长为.14.Rt△ABC的斜边为13,其内切圆的半径等于2,则Rt△ABC的周长等于.15.在下图中,AB是⊙O的直径,要使得直线AT是⊙O的切线,需要添加的一个条件是.(写一个条件即可)16.如图,在Rt△ABC中,∠C=90°,AC=5,BC=12,⊙O的半径为3,当圆心O与点C重合时,⊙O与直线AB的位置关系为;若⊙O从点C开始沿直线CA移动,当OC=时,⊙O与直线AB相切?三.解答题(共7小题,满分72分)17.已知AB是⊙O的直径,BD为⊙O的切线,切点为B.过⊙O上的点C作CD∥AB,交BD 点D.连接AC,BC.(Ⅰ)如图①,若DC为⊙O的切线,切点为C.求∠BCD和∠DBC的大小;(Ⅱ)如图②,当CD与⊙O交于点E时,连接BE.若∠EBD=30°,求∠BCD和∠DBC的大小.18.如图,AB是⊙O的直径,点M是△ABC的内心,连接BM并延长交AC于点F交⊙O于点E,连接OE与AC相交于点D.(1)求证:OD=BC;(2)求证:EM=EA.19.如图,PA,PB分别与⊙O相切于点A,B,AC为弦,BC为⊙O的直径,若∠P=60°,PB=2cm.(1)求证:△PAB是等边三角形;(2)求AC的长.20.如图,在△ABC中,AB=BC,D是AC中点,BE平分∠ABD交AC于点E,点O是AB上一点,⊙O过B、E两点,交BD于点G,交AB于点F.(1)判断直线AC与⊙O的位置关系,并说明理由;(2)若EB⊥BC,ED=3,求BG的长.21.已知:AB是⊙O的直径,BD是⊙O的弦,延长BD到点C,使AB=AC,连结AC,过点D作DE⊥AC,垂足为E.求证:DE为⊙O的切线.22.如图,AB是⊙O的直径,点C、点D在⊙O上,AC=CD,AD与BC相交于点E,点F在BC 的延长线上,且∠FAC=∠D.(1)求证:AF是⊙O的切线;(2)若EF=12,sin D=,求⊙O的半径.23.如图,给定锐角三角形ABC,BC<CA,AD,BE是它的两条高,过点C作△ABC的外接圆的切线l,过点D,E分别作l的垂线,垂足分别为F,G.试比较线段DF和EG的大小,并证明你的结论.参考答案与试题解析一.选择题(共8小题,满分24分)1.解:∵⊙O内切于四边形ABCD,∴AD+BC=AB+CD,∵AB=10,BC=7,CD=8,∴AD+7=10+8,解得:AD=11.故选:D.2.解:∵若⊙O的直径为6,∴圆O的半径为3,∵点O到某条直线的距离为6,∴这条直线与圆相离,故选:A.3.解:连接OB,∴OB=5cm,∵直线l⊙O相交于A、B两点,且与AB⊥OC,AB=8cm,∴HB=4cm,∴OH=3cm,∴HC=2cm.故选:B.4.解:∵BD切⊙O于点B,∴∠DBC=∠A=40°,∵AB=AC,∴∠ABC=∠C,∴∠ABC=(180°﹣40°)÷2=70°.故选:D.5.解:∵C是PD的中点,PD=6,∴PC=CD=PD=3,由切割线定理得,PC•PD=PB•PA,即3×6=2×PB,解得,PB=9,∴AB=PA﹣PB=7,故选:B.6.解:连接AB,∵PA、PB是圆O的切线,∴OB⊥BP,OA⊥PA,∵∠P=60°,∴∠AOB=360°﹣90°﹣90°﹣60°=120°,∴的长==,故选:C.7.解:∵的度数为120°,∴∠AOB=120°,连接OE,OE的反向延长线交AB于F,连接OA,OB,如图,∵CD与⊙O相切于点E,∴EF⊥CD,由平移的性质得:CD∥AB,CD=AB,∴EF⊥AB,∵OA=OB,∴∠AOF=∠BOF=∠AOB=60°,AF=BF=AB=DE,∴∠OAF=30°,四边形BDEF是矩形,∴OF=OA=×2=1,BD=EF,∴EF=2+1=3,∴BD=3,在Rt△AOF中,OA=2,OF=1,∴AF===,∴AB=2,∴AD===,故选:C.8.解:∵⊙O内切于△ABC,∴AO,CO分别平分∠BAC,∠BCA,∠AOC=110°,∴∠BAC+∠BCA=2(∠OAC+∠OCA)=2(180°﹣∠AOC)=140°,∴∠B=180°﹣(∠BAC+∠BCA)=40°.故选:A.二.填空题(共8小题,满分24分)9.解:如图,∵AP=4,AB=2,PC=CD,∴PB=AP+AB=6,PC=PD.又∵PA•PB=PC•PD,∴4×6=PD2,则PD=4.故答案是:4.10.解:∵PA、PB、DE分别切⊙O于A、B、C,∴PA=PB,DA=DC,EC=EB;∴C=PD+DE+PE=PD+DA+EB+PE=PA+PB=8+8=16cm;△PDE∴△PDE的周长为16cm.故答案为16cm.11.解:连接BD,则∠ADB=90°,又∠BCD=130°,故∠DAB=50°,所以∠DBA=40°;又因为PD为切线,故∠PDA=∠ABD=40°,即∠PDA=40°.12.解:设点P(x,y),∵⊙P与x轴相切,∴|y|=1,∴y=±1,当y=1时,1=x2﹣x﹣,解得:x1=3,x2=﹣1,∴点P(3,1),(﹣1,1),当y=﹣1时,﹣1=x2﹣x﹣,解得:x1=x2=1,∴点P(1,﹣1),故答案为:(3,1)或(﹣1,1)或(1,﹣1).13.解:∵⊙O与BC,AC,AB三边分别相切于点E,F,D,∴AD=AF,BD=BE,CE=CF,∵△ABC的周长为19.∴AD+BD+BE+CE+CF+AF=19,即2AD+2BE+2CE=19,∴AD+BC=9.5,而BC=6,∴AD=9.5﹣6=3.5,∵∠A=60°,AD=AF,∴△ADF为等边三角形,∴DF=AD=3.5.故答案为:3.5.14.解:如图,Rt△ABC三边分别切圆O于点D,E,F,得四边形ODBE是正方形,∴BE=BD=OD=OE,∴AF=AD=AB﹣2,CF=CE=BC﹣2,∴AC=AF+CF=AB﹣2+BC﹣2=AB+BC﹣4,∴AB+BC=AC+4=13+4=17,∴AB+BC+AC=17+13=30.∴Rt△ABC的周长等于30.故答案为:30.15.解:∵AB是⊙O的直径,∴∠ACB=90°,∴∠B+∠BAC=90°,当∠TAC=∠B时,∠TAC+∠BAC=90°,即∠OAT=90°,∵OA是圆O的半径,∴直线AT是⊙O的切线,故答案为:∠TAC=∠B(答案不唯一).16.解:如图1,过O作OD⊥AB于D,由勾股定理得:AB===13,由三角形的面积公式得:AC×BC=AB×CD,∴5×12=13×CD,∴CD=>3,∴⊙O与AB的位置关系是相离.①如图2,过O作OD⊥AB于D,当OD=3时,⊙O与AB相切,∵OD⊥AB,∠C=90°,∴∠ODA=∠C=90°,∵∠A=∠A,∴△ADO∽△ACB,∴=,即=,∴AO=,∴OC=5﹣=,②如图3,过O作OD⊥BA交BA延长线于D,则∠C=∠ODA=90°,∠BAC=∠OAD,∴△BCA∽△ODA,∴,∴,∴OA=,∴OC=5+=,答:若点O沿射线CA移动,当OC等于或时,⊙O与AB相切.故答案为:相离,或.三.解答题(共7小题,满分72分)17.解:(Ⅰ)∵AB是⊙O的直径,DB为⊙O的切线,切点为B,∴DB⊥AB,∴∠DBA=90°,∵DC为⊙O的切线,切点为C,∴DC=DB,∵CD∥AB,∴∠D+∠DBA=180°,∴∠D=90°,∴∠BCD=∠DBC=45°;(Ⅱ)∵AB是⊙O的直径,DB为⊙O的切线,切点为B,∴DB⊥AB,∴∠DBA=90°,∵CD∥AB,∴∠D+∠DBA=180°,∴∠D=90°,∴∠DEB=∠EBA,∵∠EBD=30°,∴∠DEB=60°,∴∠EBA=60°,∴∠ACE=120°,∵AB是⊙O的直径,∴∠BCA=90°,∴∠BCD=30°,∴∠DBC=60°.18.(1)证明:∵点M是△ABC的内心,∴∠ABE=∠CBE,∴,∴CD=DA,又∵OA=OB,∴OD=BC;(2)证明:连接AM,∵M是△ABC的内心,∴∠BAM=∠CAM,∠ABE=∠CBE,∵∠EMA=∠ABE+∠BAM,∠EAM=∠CAE+∠CAM,∠CBE=∠CAE,∴∠EMA=∠EAM.∴EM=EA.19.解:(1)∵PA,PB分别与⊙O相切于点A,B,∴PA=PB,且∠P=60°,∴△PAB是等边三角形;(2)∵△PAB是等边三角形;∴PB=AB=2cm,∠PBA=60°,∵BC是直径,PB是⊙O切线,∴∠CAB=90°,∠PBC=90°,∴∠ABC=30°,∴tan∠ABC==,∴AC=2×=cm.20.解:(1)AC与⊙O相切.理由如下:连接OE,如图,∵AB=BC,D是AC中点,∴BD⊥AC,∵BE平分∠ABD,∴∠OBE=∠DBE,∵OB=OE,∴∠OBE=∠OEB,∴∠OEB=∠DBE,∴OE∥BD,∴OE⊥AC,而OE为⊙O的半径,∴AC为⊙O的切线;(2)过O作OM⊥BD于M,则四边形OBEM是矩形,∴OM=ED=3,BM=BG,∵EB⊥BC,∴∠C+∠CEB=90°,同理∠2+∠CEB=90°,∴∠2=∠C,∵AB=BC,∴∠2=∠A,∴∠1=∠2=∠A=30°,在Rt△OBM中,tan∠OBM=,∴=,∴BM=,∴BG=2BM=2.21.证明:如图,连接OD.∵AB是⊙O的直径,∴∠ADB=90°,∵AB=AC,∴CD=BD,∵OA=OB,∴OD∥AC.∴∠ODE=∠CED.∵DE⊥AC,∴∠CED=90°.∴∠ODE=90°,∴OD⊥DE,∵OD是⊙O的半径,∴DE是⊙O的切线.22.(1)证明:∵AB是⊙O的直径,∴∠ACB=90°,∴∠B+∠CAB=90°,∵∠FAC=∠D.∵∠D=∠B,∴∠FAC=∠B,∴∠FAC+∠CAB=90°∴AF是⊙O的切线;(2)解:∵AC=CD,∴∠D=∠CAD,∴∠FAC=∠CAD,又∵∠ACB=90°,∴FC=CE,∵EF=12,∴CE=6,∴,∴AE=10,AC=8,∵在Rt△ACB中,,∴,∴,∴⊙O的半径长为.23.解:结论是DF=EG.∵∠FCD=∠EAB,∠DFC=∠BEA=90°,∴Rt△FCD∽Rt△EAB,∴=,∴,同理可得,又∵,∴BE•CD=AD•CE,∴DF=EG.。
九年级数学苏科版上册课时练第2单元《2.5直线与圆的位置关系》(1) 练习试题试卷 含答案
课时练2.5直线与圆的位置关系一、选择题1.圆的直径为13cm,如果圆心与直线的距离是d,则()A.当d=8cm时,直线与圆相交B.当d=4.5cm时,直线与圆相离C.当d=6.5cm时,直线与圆相切D.当d=13cm时,直线与圆相切2.已知在直角坐标平面内,以点P(﹣2,3)为圆心,2为半径的圆P与x轴的位置关系是()A.相离B.相切C.相交D.相离、相切、相交都有可能3.直线l上的一点到圆心的距离等于半径,则直线与圆的位置关系一定是()A.相离B.相切C.相交D.相切或相交4.如图,△ABC中,AB=3,AC=4,BC=5,D、E分别是AC、AB的中点,则以DE为直径的圆与BC的位置关系是()A.相切B.相交C.相离D.无法确定5.已知⊙O的半径为4,点O到直线m的距离为3,则直线m与⊙O公共点的个数为()A.0个B.1个C.2个D.3个6.如图,两个圆的圆心都是点O,AB是大圆的直径,大圆的弦BC所在直线与小圆相切于点D.则下列结论不一定成立的是()A.BD=CDB.AC⊥BCC.AB=2ACD.AC=2OD7.如图,⊙O的半径OC=5cm,直线l⊥OC,垂足为H,且l交⊙O于A,B两点,AB=8cm,若l沿OC所在直线平移后与⊙O相切,则平移的距离是()A.1cmB.2cmC.8cmD.2cm或8cm8.如图,CD是⊙O的直径,弦AB⊥CD于点G,直线EF与⊙O相切于点D,则下列结论中不一定正确的是()A.AG=BGB.AB∥EFC.AD∥BCD.∠ABC=∠ADC9.如图,等腰直角三角形ABC中,AB=AC=8,O为BC的中点,以O为圆心作半圆,使它与AB,AC都相切,切点分别为D,E,则⊙O的半径为()A.8B.6C.5D.410.如图,△ABC是一张三角形纸片,⊙O是它的内切圆,点D、E是其中的两个切点,已知CD=6cm,小明准备用剪刀沿着与⊙O相切的一条直线MN剪下一块三角形(△CMN),则剪下的△CMN的周长是()A.9cmB.12cmC.15cmD.18cm二、填空题11.在平面直角坐标系中,⊙C的圆心为C(a,0),半径长为2,若y轴与⊙C相离,则a 的取值范围为.12.如图,已知Rt△ABC的斜边AB=8,AC=4.以点C为圆心作圆,当⊙C与边AB只有一个交点时,则⊙C的半径的取值范围是.13.已知圆O的半径为5,AB是圆O的直径,D是AB延长线上一点,DC是圆O的切线,C是切点,连接AC,若∠CAB=30°,则BD的长为.14.如图,若以平行四边形一边AB为直径的圆恰好与对边CD相切于点D,则∠C=____度.15.如图,在⊙O中,弦AB=OA,P是半径OB的延长线上一点,且PB=OB,则PA与⊙O的位置关系是_________.16.如图,直线AB、CD相交于点O,∠AOC=30°,半径为1cm的⊙P的圆心在射线OA上,开始时,PO=6cm.如果⊙P以1cm/s的速度沿由A向B的方向移动,那么当⊙P的运动时间t(秒)满足条件时,⊙P与直线CD相交.三、解答题17.如图,已知∠APB=30°,OP=3cm,⊙O的半径为1cm,若圆心O沿着BP的方向在直线BP 上移动.(1)当圆心O移动的距离为1cm时,则⊙O与直线PA的位置关系是什么?(2)若圆心O的移动距离是d,当⊙O与直线PA相交时,则d的取值范围是什么?18.如图,AB为⊙O直径,E为⊙O上一点,∠EAB的平分线AC交⊙O于C点,过C点作CD ⊥AE的延长线于D点,直线CD与射线AB交于P点.(1)判断直线DP与⊙O的位置关系,并说明理由;(2)若DC=4,⊙O的半径为5,求PB的长.19.如图,△ABD是⊙O的内接三角形,E是弦BD的中点,点C是⊙O外一点且∠DBC=∠A,连接OE延长与圆相交于点F,与BC相交于点C.(1)求证:BC是⊙O的切线;(2)若⊙O的半径为6,BC=8,求弦BD的长.20.已知:△ABC内接于⊙O,过点A作直线EF.(1)如图①,AB为直径,要使EF为⊙O的切线,还需添加的条件是(只需写出三种情况):①;②;③.(2)如图②,AB是非直径的弦,∠CAE=∠B,求证:EF是⊙O的切线.(3)如图③,AB是非直径的弦,∠CAE=∠ABC,EF还是⊙O的切线吗?若是,请说明理由;若不是,请解释原因.参考答案1.C.2. A.3. D.4. B.5. C.6.C.7.D.8.C9.D10.B11.a<﹣2或a>2.12.r=2或4<r≤4.13.5.14.4515.相切16.4<t<8.17.解:(1)如图,当点O向左移动1cm时,PO′=PO﹣O′O=3﹣1=2cm,作O′C⊥PA于C,∵∠P=30度,∴O′C=PO′=1cm,∵圆的半径为1cm,∴⊙O与直线PA的位置关系是相切;(2)如图:当点O由O′向右继续移动时,PA与圆相交,当移动到C″时,相切,此时C″P=PO′=2,∵OP=3,∴OO'=1,OC''=OP+C''P=3+2=5∴点O移动的距离d的范围满足1cm<d<5cm时相交,故答案为::1cm<d<5cm.18.解:(1)直线DP与⊙O相切.理由如下:连接OC,如图,∵AC是∠EAB的平分线,∴∠EAC=∠OAC∵OA=OC,∴∠ACO=∠OAC,∴∠ACO=∠DAC,∴OC∥AD,∵CD⊥AE,∴OC⊥CD,∴DP是⊙O的切线;(2)作CH⊥AB于H,如图,∵AC是∠EAB的平分线,CD⊥AD,CH⊥AB,∴CH=CD=4,∴OH==3,∵OC⊥CP,∴∠OCP=∠CHO=90°,而∠COP=∠POC,∴△OCH∽△OPC,∴OC:OP=OH:OC,∴OP==,∴PB=OP﹣OB=﹣5=.19.(1)证明:连接OB,如图所示:∵E是弦BD的中点,∴BE=DE,OE⊥BD,=,∴∠BOE=∠A,∠OBE+∠BOE=90°,∵∠DBC=∠A,∴∠BOE=∠DBC,∴∠OBE+∠DBC=90°,∴∠OBC=90°,即BC⊥OB,∴BC是⊙O的切线;(2)解:∵OB=6,BC=8,BC⊥OB,∴OC==10,∵△OBC的面积=OC•BE=OB•BC,∴BE===4.8,∴BD=2BE=9.6,即弦BD的长为9.6.20.(1)当AB⊥EF或∠BAE=90°可判断EF为⊙O的切线;当∠ABC=∠EAC,∵AB为直径,∴∠ACB=90°,∴∠ABC+∠CAB=90°,∴∠EAC+∠CAB=90°,∴AB⊥EF,∴EF为⊙O的切线;故答案为AB⊥EF、∠BAE=90°、∠ABC=∠EAC;(2)证明:如图2,作直径AD,连结CD,∵AD为直径,∴∠ACD=90°,∴∠D+∠CAD=90°,∵∠D=∠B,∠CAE=∠B,∴∠CAE=∠D,∴∠EAC+∠CAD=90°,∴AD⊥EF,∴EF为⊙O的切线;(3)如图3,作直径AD,连结CD,BD,∵AD为直径,∴∠ABD=90°,∵∠CAE=∠ABC,∴∠DAE+∠DAC=∠ABD+∠DBC,而∠DAC=∠DBC,∴∠DAE=∠ABD=90°,∴AD⊥EF,∴EF为⊙O的切线.。
高考数学专题《直线与圆的位置关系》习题含答案解析
专题9.2 直线与圆的位置关系1.(福建高考真题(理))直线:1l y kx =+与圆22:1O x y +=相交于,A B 两点,则"1"k =是“OAB ∆的面积为12”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分又不必要条件【答案】A 【解析】由1k =时,圆心到直线:1l y x =+的距离d =..所以1122OAB S ∆==.所以充分性成立,由图形的对成性当1k =-时,OAB ∆的面积为12.所以不要性不成立.故选A.2.(2018·北京高考真题(理))在平面直角坐标系中,记d 为点()cos ,sin P θθ到直线20x my --=的距离,当θ、m 变化时,d 的最大值为( )A .1B .2C .3D .4【答案】C 【解析】22cos sin 1θθ+=∴Q ,P 为单位圆上一点,而直线20x my --=过点()2,0A ,所以d 的最大值为1213OA +=+=,选C.3.(2021·全国高二单元测试)已知直线l 与直线1y x =+垂直,且与圆221x y +=相切,切点位于第一象限,则直线l 的方程是( ).A.0x y +=B .10x y ++=C .10x y +-=D.0x y +=【答案】A 【分析】根据垂直关系,设设直线l 的方程为()00x y c c ++=<,利用直线与圆相切得到参数值即可.【详解】由题意,设直线l 的方程为()00x y c c ++=<.练基础圆心()0,0到直线0x y c ++=1,得c =c =,故直线l 的方程为0x y +=.故选:A4.(2020·北京高考真题)已知半径为1的圆经过点(3,4),则其圆心到原点的距离的最小值为( ).A .4B .5C .6D .7【答案】A 【分析】求出圆心C 的轨迹方程后,根据圆心M 到原点O 的距离减去半径1可得答案.【详解】设圆心(),C x y 1=,化简得()()22341x y -+-=,所以圆心C 的轨迹是以(3,4)M 为圆心,1为半径的圆,所以||1||OC OM +≥5==,所以||514OC ≥-=,当且仅当C 在线段OM 上时取得等号,故选:A.5.【多选题】(2021·吉林白城市·白城一中高二月考)若直线0x y m ++=上存在点P ,过点P 可作圆O :221x y +=的两条切线PA ,PB ,切点为A ,B ,且60APB ∠=︒,则实数m 的取值可以为( )A .3B .C .1D .-【答案】BCD 【分析】先由题意判断点P 在圆224x y +=上,再联立直线方程使判别式0∆≥解得参数范围,即得结果.【详解】点P 在直线0x y m ++=上,60APB ∠=︒,则30APO OPB ∠=∠=︒,由图可知,Rt OPB V 中,22OP OB ==,即点P 在圆224x y +=上,故联立方程224x y x y m ⎧+=⎨++=⎩,得222240x mx m ++-=,有判别式0∆≥,即()2244240m m -⨯-≥,解得m -≤≤A 错误,BCD 正确.故选:BCD.6.(2022·江苏高三专题练习)已知大圆1O 与小圆2O 相交于(2,1)A ,(1,2)B 两点,且两圆都与两坐标轴相切,则12O O =____【答案】【分析】由题意可知大圆1O 与小圆2O 都在第一象限,进而设圆的圆心为(,)(0)a a a >,待定系数得5a =或1a =,再结合两点间的距离求解即可.【详解】由题知,大圆1O 与小圆2O 都在第一象限,设与两坐标轴都相切的圆的圆心为(,)(0)a a a >,其方程为222()()x a y a a -+-=,将点(1,2)或(2,1)代入,解得5a =或1a =,所以221:(5)(5)25O x y -+-=,222:(1)(1)1O x y -+-=,可得1(5,5)O ,2(1,1)O ,所以12||O O ==故答案为:7.(江苏高考真题)在平面直角坐标系xOy 中,圆C 的方程为228150x y x +-+=,若直线2y kx =-上至少存在一点,使得以该点为圆心,1为半径的圆与圆C 有公共点,则k 的最大值为__________.【答案】43【解析】∵圆C 的方程为x 2+y 2-8x+15=0,整理得:(x-4)2+y 2=1,即圆C 是以(4,0)为圆心,1为半径的圆;又直线y=kx-2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C 有公共点,∴只需圆C ′:(x-4)2+y 2=4与直线y=kx-2有公共点即可.设圆心C (4,0)到直线y=kx-2的距离为d,2d 即3k 2≤4k,∴0≤k≤43,故可知参数k 的最大值为43.8.(2018·全国高考真题(文))直线1y x =+与圆22230x y y ++-=交于A B ,两点,则AB =________.【答案】【解析】根据题意,圆的方程可化为22(1)4x y ++=,所以圆的圆心为(0,1)-,且半径是2,根据点到直线的距离公式可以求得d ==,结合圆中的特殊三角形,可知AB ==,故答案为.9.(2021·湖南高考真题)过圆2240x y x +-=的圆心且与直线20x y +=垂直的直线方程为___________【答案】220x y --=【分析】根据圆的方程求出圆心坐标,再根据两直线垂直斜率乘积为1-求出所求直线的斜率,再由点斜式即可得所求直线的方程.【详解】由2240x y x +-=可得()2224x y -+=,所以圆心为()2,0,由20x y +=可得2y x =-,所以直线20x y +=的斜率为2-,所以与直线20x y +=垂直的直线的斜率为12,所以所求直线的方程为:()1022y x -=-,即220x y --=,故答案为:220x y --=.10.(2020·浙江省高考真题)设直线:(0)l y kx b k =+>与圆221x y +=和圆22(4)1x y -+=均相切,则k =_______;b =______.【解析】设221:1C x y +=,222:(4)1C x y -+=,由题意,12,C C到直线的距离等于半径,即1=1=,所以||4b k b =+,所以0k =(舍)或者2b k =-,解得k b ==.1.(2020·全国高考真题(理))若直线l 与曲线y和x 2+y 2=15都相切,则l 的方程为()A .y =2x +1B .y =2x +12C .y =12x +1D .y =12x +12【答案】D 【分析】根据导数的几何意义设出直线l 的方程,再由直线与圆相切的性质,即可得出答案.【详解】设直线l在曲线y =(0x ,则00x >,函数y =y '=l的斜率k =,设直线l的方程为)0y x x =-,即00x x -+=,由于直线l 与圆2215x y +==两边平方并整理得2005410x x --=,解得01x =,015x =-(舍),则直线l 的方程为210x y -+=,即1122y x =+.练提升故选:D.2.【多选题】(2021·全国高考真题)已知点P 在圆()()225516x y -+-=上,点()4,0A 、()0,2B ,则( )A .点P 到直线AB 的距离小于10B .点P 到直线AB 的距离大于2C .当PBA ∠最小时,PB =D .当PBA ∠最大时,PB =【答案】ACD 【分析】计算出圆心到直线AB 的距离,可得出点P 到直线AB 的距离的取值范围,可判断AB 选项的正误;分析可知,当PBA ∠最大或最小时,PB 与圆M 相切,利用勾股定理可判断CD 选项的正误.【详解】圆()()225516x y -+-=的圆心为()5,5M ,半径为4,直线AB 的方程为142xy+=,即240x y +-=,圆心M 到直线AB 4=>,所以,点P 到直线AB 42-<,410<,A 选项正确,B 选项错误;如下图所示:当PBA ∠最大或最小时,PB 与圆M 相切,连接MP 、BM ,可知PM PB ⊥,=,4MP =CD 选项正确.故选:ACD.3.【多选题】(2021·肥城市教学研究中心高三月考)已知圆22:230A x y x +--=,则下列说法正确的是()A .圆A 的半径为4B .圆A 截y 轴所得的弦长为C .圆A 上的点到直线34120x y -+=的最小距离为1D .圆A 与圆22:88230B x y x y +--+=相离【答案】BC 【分析】将圆的一般方程转化为标准方程即可得半径可判断A ;利用几何法求出弦长可判断B ;求出圆心A 到直线的距离再减去半径可判断C ;求出圆B 的圆心和半径,比较圆心距与半径之和的大小可判断D ,进而可得正确选项.【详解】对于A :由22230x y x +--=可得()2214x y -+=,所以A 的半径为2r =,故选项A 不正确;对于B :圆心为()1,0到y 轴的距离为1d =,所以圆A 截y 轴所得的弦长为==B 正确;对于C :圆心()1,0到直线34120x y -+=3,所以圆A 上的点到直线34120x y -+=的最小距离为3321r -=-=,故选项C 正确;对于D :由2288230x y x y +--+=可得()()22449x y -+-=,所以圆心()4,4B ,半径3R =,因为5AB r R ===+,所以两圆相外切,故选项D 不正确;故选:BC.4.(2021·全国高三专题练习)在平面直角坐标系xOy 中,圆C 的方程为228150x y x +-+=,若直线2y kx =-上至少存在一点,使得以该点为圆心,1为半径的圆与圆C 有公共点,则k 的取值范围是_______.【答案】403k ≤≤【分析】求出圆C 的圆心和半径,由题意可得圆心到直线的距离小于或等于两圆的半径之和即可求解.【详解】由228150x y x +-+=可得22(4)1x y -+=,因此圆C 的圆心为(4,0)C ,半径为1,若直线2y kx =-上至少存在一点,使得以该点为圆心,1为半径的圆与圆C 有公共点,只需点(4,0)C 到直线2y kx =-的距离112d =≤+=,即22(21)1k k -≤+,所以2340k k -≤,解得403k ≤≤,所以k 的取值范围是403k ≤≤,故答案为:403k ≤≤.5.(2021·富川瑶族自治县高级中学高一期中(理))直线()20y kx k =+>被圆224x y +=截得的弦长为________.【答案】60 【分析】由已知求得圆心到直线的距离,再由点到直线的距离公式列式求得k ,然后利用斜率等于倾斜角的正切值求解.【详解】直线()20y kx k =+>被圆224x y +=截得的弦长为所以,圆心()0,0O 到直线20kx y -+=的距离1d ==,1=,解得)0k k =>.设直线的倾斜角为()0180θθ≤<,则tan θ=,则60θ= .因此,直线()20y kx k =+>的倾斜角为60 .故答案为:60 .6.(2021·昆明市·云南师大附中高三月考(文))已知圆O : x 2+y 2=4, 以A (1,为切点作圆O 的切线l 1,点B 是直线l 1上异于点A 的一个动点,过点B 作直线l 1的垂线l 2,若l 2与圆O 交于D , E 两点,则V AED 面积的最大值为_______.【答案】2【分析】由切线性质得2//OA l ,O 到直线2l 的距离等于A 到2l 的距离,因此ADEODE S S =!!,设O 到2l 距离为d ,把面积用d 表示,然后利用导数可得最大值.【详解】根据题意可得图,1OA l ⊥,所以2//OA l ,因此O 到直线2l 的距离等于A 到2l 的距离,ADEODE S S =!!,过点(00)O ,作直线2l 的垂线,垂足为F ,记||(20)OF d d =>>,则弦||DE =角形ADE 的面积为S ,所以12S d =g g ,将S 视为d 的函数,则S '=+ 1(2)2d d -当0d <<时,0S '>,函数()S d 2d <<时,0S '<,函数()S d 单调递减,所以函数()S d 有最大值,当d =max ()2S d =,故AED V 面积的最大值为2.故答案为:2.7.(2021·全国高三专题练习)已知ABC V 的三个顶点的坐标满足如下条件:向量(2,0)OB →=,(2,2)OC →=,,CA α→=)α,则AOB ∠的取值范围是________【答案】5,1212ππ⎡⎤⎢⎥⎣⎦【分析】先求出点A 的轨迹是以(2,2)C . 过原点O 作此圆的切线,切点分别为M 、N ,如图所示,连接CM ,CN ,得到MOB NOB θ∠∠…….所以15BOM ∠=︒,75BON ∠=︒,即得解.【详解】由题得||CA →=所以点A 的轨迹是以(2,2)C .过原点O 作此圆的切线,切点分别为M 、N ,如图所示,连接CM ,CN ,则向量OA →与OB →的夹角θ的范围是MOB NOB θ∠∠…….由图可知45COB ∠=︒.∵||OC →=1||||||2CM CN OC →→→==知30COM CON ∠=∠=︒,∴453015BOM ∠=︒-︒=︒,453075BON ∠=︒+︒=︒.∴1575θ︒︒…….故AOB ∠的取值范围为{}1575θθ︒≤≤︒丨.故答案为:{}π5π15751212θθ⎡⎤︒≤≤︒⎢⎥⎣⎦丨或,8.(2021·全国高三专题练习)已知x 、y R ∈,2223x x y -+=时,求x y +的最大值与最小值.【答案】最小值是1,最大值是1+【分析】根据2223x x y -+=表示圆()2214x y -+=,设x y b +=表示关于原点、x 轴、y 轴均对称的正方形,然后由直线与圆的位置关系求解.【详解】2223x x y -+=的图形是圆()2214x y -+=,既是轴对称图形,又是中心对称图形.设x y b +=,由式子x y +的对称性得知x y b +=的图形是关于原点、x 轴、y 轴均对称的正方形.如图所示:当b 变化时,图形是一个正方形系,每个正方形四个顶点均在坐标轴上,问题转化为正方形系中的正方形与圆有公共点时,求b 的最值问题.当1b <时,正方形与圆没有公共点;当1b =时,正方形与圆相交于点()1,0-,若令直线y x b =-+与圆()2214x y -+=相切,2,解得1b =±所以当1b =+当1b >+故x y +的最小值是1,最大值是1+.9.(2021·黑龙江哈尔滨市·哈尔滨三中)已知ABC V 的内切圆的圆心M 在y 轴正半轴上,半径为1,直线210x y +-=截圆M (1)求圆M 方程;(2)若点C 的坐标为()2,4,求直线AC 和BC 的斜率;(3)若A ,B 两点在x 轴上移动,且AB 4=,求ABC V 面积的最小值.【答案】(1)22(1)1y x +-=;(2)2;(3)163.【分析】(1)设ABC V 的内切圆的圆心()0,M b ,先求得圆心到直线210x y +-=的距离,再根据直线截圆M (2)当直线AC 和BC 的斜率不存在时,设直线方程为2x =,易知不成立;当直线AC 和BC 的斜率存在时,设直线方程为()42y k x -=-,然后由圆心到直线的距离等于半径求解; (3)根据AB 4=,设()()(),0,4,040A t B t t +-<<,进而得到直线AC 和直线 BC 的斜率,写出直线AC 和BC 的方程,联立求得点C 的坐标,进而得到坐标系的最小值求解.【详解】(1)设ABC V 的内切圆的圆心()0,,0M b b >,圆心到直线210x y +-=的距离为d又因为直线截圆M21+=,解得1b =,所以圆M 方程()2211x y +-=;(2)当直线AC 和BC 的斜率不存在时,设直线方程为2x =,则圆心到直线的距离 0221d r =-=≠=,不成立,当直线AC 和BC 的斜率存在时,设直线方程为()42y k x -=-,即 240kx y k --+=,圆心到直线的距离d ,解得2k =(3)因为AB 4=,设()()(),0,4,040A t B t t +-<<,所以直线AC 的斜率为:2222tan 2111ACt t k MAO t t-=∠==---,同理直线BC 的斜率为: ()()222241411BCt t k t t --+==+-- ,所以直线AC 的方程为:()221ty x t t =---,直线BC 的方程为:()()()224441t y x t t -+=--+- ,由()()()()222124441t y x t t t y x t t ⎧=--⎪-⎪⎨-+⎪=--⎪+-⎩,解得 22224412841t x t t t t y t t +⎧=⎪⎪++⎨+⎪=⎪++⎩,即2222428,4141t t t C t t t t ⎛⎫++ ⎪++++⎝⎭,又 ()2222282222414123t t y t t t t t +==-=-+++++-,当2t =-时,点C 的纵坐标取得最小值83,所以ABC V 面积的最小值.18164233ABC S =⨯⨯=V .10.(2021·新疆乌鲁木齐市·乌市八中高二期末(文))已知直线l :43100x y ++=,半径为2的圆C 与l 相切,圆心C 在x 轴上且在直线l 的上方(1)求圆C 的方程;(2)过点()1,0M 的直线与圆C 交于A ,B 两点(A 在x 轴上方),问在x 轴正半轴上是否存在点N ,使得x 轴平分ANB ∠?若存在,请求出点N 的坐标;若不存在,请说明理由.【答案】(1)224x y +=;(2)存在,()4,0N .【分析】(1)设出圆心坐标(),0C a ,根据直线与圆相切可得圆心到直线的距离等于半径,由此求解出a 的值(注意范围),则圆C 的方程可求;(2)当直线AB 的斜率不存在时,直接根据位置关系分析即可,当直线AB 的斜率存在时,设出直线方程并联立圆的方程,由此可得,A B 坐标的韦达定理形式,根据AN BN k k =-结合韦达定理可求点N 的坐标.【详解】解:(1)设圆心(),0C a ,∵圆心C 在l 的上方,∴4100a +>,即52a >-,∵直线l :43100x y ++=,半径为2的圆C 与l 相切,∴d r =,即41025a +=,解得:0a =或5a =-(舍去),则圆C 方程为224x y +=;(2)当直线AB x ⊥轴,则x 轴平分ANB ∠,当直线AB 的斜率存在时,设AB 的方程为()1y k x =-,(),0N t ,()11,A x y ,()22,B x y ,由224(1)x y y k x ⎧+=⎨=-⎩得,()22221240k x k x k +-+-=,所以212221k x x k +=+,212241k x x k -=+若x 轴平分ANB ∠,则AN BN k k =-,即()()1212110k x k x x tx t--+=--,整理得:()()12122120x x t x x t -+++=,即()()222224212011k k t t k k -+-+=++,解得:4t =,当点()4,0N ,能使得ANM BNM ∠=∠总成立.1.(2021·山东高考真题)“圆心到直线的距离等于圆的半径”是“直线与圆相切”的( )A .充分没必要条件B .必要不充分条件C .充要条件D .既不充分也没必要条件【答案】C 【分析】由直线与圆相切的等价条件,易判断【详解】由于“圆心到直线的距离等于圆的半径”⇒“直线与圆相切”,因此充分性成立;“直线与圆相切”⇒“圆心到直线的距离等于圆的半径”,故必要性成立;可得“圆心到直线的距离等于圆的半径”是“直线与圆相切”的充要条件故选:C2.(2021·北京高考真题)已知直线y kx m =+(m 为常数)与圆224x y +=交于点M N ,,当k 变化时,若||MN 的最小值为2,则m = A .±1B.C.D .2±【答案】C 【分析】先求得圆心到直线距离,即可表示出弦长,根据弦长最小值得出m 【详解】由题可得圆心为()0,0,半径为2,则圆心到直线的距离d =则弦长为||MN =则当0k =时,弦长|MN取得最小值为2=,解得m =故选:C.3.(2020·全国高考真题(理))已知⊙M :222220x y x y +---=,直线l :220x y ++=,P 为l 上的动点,过点P 作⊙M 的切线,PA PB ,切点为,A B ,当||||PM AB ⋅最小时,直线AB 的方程为( )练真题A .210x y --=B .210x y +-=C .210x y -+=D .210x y ++=【答案】D 【解析】圆的方程可化为()()22114x y -+-=,点M 到直线l的距离为2d >,所以直线l 与圆相离.依圆的知识可知,四点,,,A P B M 四点共圆,且AB MP ⊥,所以14442PAM PM AB S PA AM PA ⋅==⨯⨯⨯=V,而PA =,当直线MP l ⊥时,min MP =,min 1PA =,此时PM AB ⋅最小.∴()1:112MP y x -=-即1122y x =+,由1122220y x x y ⎧=+⎪⎨⎪++=⎩解得,10x y =-⎧⎨=⎩.所以以MP 为直径的圆的方程为()()()1110x x y y -++-=,即2210x y y +--=,两圆的方程相减可得:210x y ++=,即为直线AB 的方程.故选:D.4.【多选题】(2021·全国高考真题)已知直线2:0l ax by r +-=与圆222:C x y r +=,点(,)A a b ,则下列说法正确的是( )A .若点A 在圆C 上,则直线l 与圆C 相切B .若点A 在圆C 内,则直线l 与圆C 相离C .若点A 在圆C 外,则直线l 与圆C 相离D .若点A 在直线l 上,则直线l 与圆C 相切【答案】ABD 【分析】转化点与圆、点与直线的位置关系为222,a b r +的大小关系,结合点到直线的距离及直线与圆的位置关系即可得解.【详解】圆心()0,0C 到直线l的距离d =若点(),A a b 在圆C 上,则222a b r +=,所以d =则直线l 与圆C 相切,故A 正确;若点(),A a b 在圆C 内,则222a b r +<,所以d =则直线l 与圆C 相离,故B 正确;若点(),A a b 在圆C 外,则222a b r +>,所以d =则直线l 与圆C 相交,故C 错误;若点(),A a b 在直线l 上,则2220a b r +-=即222=a b r +,所以d =l 与圆C 相切,故D 正确.故选:ABD.5.(2021·山东高考真题)已知椭圆的中心在坐标原点,右焦点与圆22670x my m +--=的圆心重合,长轴长等于圆的直径,那么短轴长等于______.【答案】【分析】由于22670x my m +--=是圆,可得1m =,通过圆心和半径计算,,a b c ,即得解【详解】由于22670x my m +--=是圆,1m ∴=即:圆22670x y x +--=其中圆心为()3,0,半径为4那么椭圆的长轴长为8,即3c =,4a =,b ==那么短轴长为故答案为:6.(2019·北京高考真题(文))设抛物线y 2=4x 的焦点为F ,准线为l .则以F 为圆心,且与l 相切的圆的方程为__________.【答案】(x -1)2+y 2=4.【解析】抛物线y 2=4x 中,2p =4,p =2,焦点F (1,0),准线l 的方程为x =-1,以F 为圆心,且与l 相切的圆的方程为 (x -1)2+y 2=22,即为(x -1)2+y 2=4.。
2022年精品解析冀教版九年级数学下册第二十九章直线与圆的位置关系专题训练试卷(精选含答案)
九年级数学下册第二十九章直线与圆的位置关系专题训练考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)OA ,则点A在()1、已知⊙O的半径为4,5A.⊙O内B.⊙O上C.⊙O外D.无法确定2、如图,AB是⊙O的直径,BD与⊙O相切于点B,点C是⊙O上一点,连接AC并延长,交BD于点D,连接OC,BC,若∠BOC=50°,则∠D的度数为()A.50°B.55°C.65°D.75°3、平面内,⊙O的半径为3,若点P在⊙O外,则OP的长可能为()A.4 B.3 C.2 D.14、已知⊙O的半径为3,若PO=2,则点P与⊙O的位置关系是()A.点P在⊙O内B.点P在⊙O上C.点P在⊙O外D.无法判断5、如图,在△ABC中,AB=AC=5,BC=8,以A为圆心作一个半径为2的圆,下列结论中正确的是()A.点B在⊙A内B.点C在⊙A上C.直线BC与⊙A相切D.直线BC与⊙A相离,点O为AB中点.以点C为圆心,CO长为半径作⊙C,则⊙C与AB的位置6、在△ABC中,CA CB关系是()A.相交B.相切C.相离D.不确定7、如图,AB为⊙O的切线,切点为A,连接AO、BO,BO与⊙O交于点C,延长BO与⊙O交于点D,连接AD.若∠ABO=36°,则∠ADC的度数为()A.54°B.36°C.32°D.27°8、在ABC中,∠B=45°,AB=6;①AC=4;②AC=8;③外接圆半径为4.请在给出的3个条件中选取一个,使得BC的长唯一.可以选取的是()A .①B .②C .③D .①或③9、若O 是ABC 的内心,当80A ∠=︒时,BOC ∠=( )A .130°B .160°C .100°D .110°10、如图,已知O 的内接正六边形ABCDEF 的边心距OM ( ).A .12πB .23πC .3π-D .4π-第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,半圆O 的直径DD =12cm ,在Rt ABC ∆中,90ACB ∠=︒,30ABC ∠=︒,12cm BC =.半圆O 以2cm/s 的速度从左向右运动,当圆心O 运动到点B 时停止,点D 、E 始终在直线BC 上.设运动时间为t (s ),运动开始时,半圆O 在ABC 的左侧,8cm OC =.当t =______时,Rt ABC 的一边所在直线与半圆O 所在的圆相切.2、为了落实“双减”政策,朝阳区一些学校在课后服务时段开设了与冬奥会项目冰壶有关的选修课.如图,在冰壶比赛场地的一端画有一些同心圆作为营垒,其中有两个圆的半径分别约为60cm 和180 cm ,小明掷出一球恰好沿着小圆的切线滑行出界,则该球在大圆内滑行的路径MN 的长度为______cm .3、《九章算术》是我国古代的数学名著,书中有这样的一个问题:“今有勾八步,股十五步,问勾中容圆径几何?”.其意思是:“如图,现有直角三角形,勾(短直角边)长为 8 步,股(长直角边)长为 15 步,问该直角三角形所能容纳的最大圆的直径是多少?”答:该直角三角形所能容纳的最大圆的直径..是______步.4、如图,已知P 的半径为1,圆心P 在抛物线2112y x =-+上运动,当P 与x 轴相切时,圆心P 的横坐标为______.5、半径为3cm 的圆内有长为的弦,则此弦所对的圆周角的度数为______.三、解答题(5小题,每小题10分,共计50分)1、如图,在ABC 中,90C ∠=︒,AD 平分BAC ∠交BC 于点D ,点O 在AB 上,以点O 为圆心,OA 为半径的圆恰好经过点D ,分别交AC 、AB 于点E 、F .(1)试判断直线BC 与O 的位置关系,并说明理由;(2)若30B ∠=︒,4OB =,求阴影部分的面积(结果保留π).2、如图,在平面直角坐标系xOy 中,点A 与点B 的坐标分别是(1,0),(7,0).(1)对于坐标平面内的一点P ,给出如下定义:如果∠APB =45°,那么称点P 为线段AB 的“完美点”.①设A 、B 、P 三点所在圆的圆心为C ,则点C 的坐标是 ,⊙C 的半径是 ;②y 轴正半轴上是否有线段AB 的“完美点”?如果有,求出“完美点”的坐标;如果没有,请说明理由;(2)若点P 在y 轴负半轴上运动,则当∠APB 的度数最大时,点P 的坐标为 .3、如图,点A 在y 轴正半轴上,1OA =,点B 是第一象限内的一点,以AB 为直径的圆交x 轴于D ,C 两点,D ,C 两点的横坐标是方程2430x x -+=的两个根,OC OD >,连接BC .(1)如图(1),连接BD.①求ABD∠的正切值;②求点B的坐标.⊥于点F,连接EB,ED,EC,求证:(2)如图(2),若点E是DAB的中点,作EF BC=+.2CF BC CD4、如图,△ABC内接于⊙O,AB是⊙O的直径,直线l与⊙O相切于点A,在l上取一点D使得DA=DC,线段DC,AB的延长线交于点E.(1)求证:直线DC是⊙O的切线;(2)若BC=4,∠CAB=30°,求图中阴影部分的面积(结果保留π).5、如图,AB是ΘO的直径,弦AD平分∠BAC,过点D作DE⊥AC,垂足为E.(1)判断DE所在直线与ΘO的位置关系,并说明理由;(2)若AE=4,ED=2,求ΘO的半径.-参考答案-一、单选题1、C【解析】【分析】根据⊙O的半径r=4,且点A到圆心O的距离d=5知d>r,据此可得答案.【详解】解:∵⊙O的半径r=4,且点A到圆心O的距离d=5,∴d>r,∴点A在⊙O外,故选:C.【点睛】本题主要考查点与圆的位置关系,点与圆的位置关系有3种.设⊙O的半径为r,点P到圆心的距离OP=d,则有:①点P在圆外⇔d>r;②点P在圆上⇔d=r;③点P在圆内⇔d<r.2、C【分析】首先证明∠ABD=90°,由∠BOC=50°,根据圆周角定理求出∠A的度数即可解决问题.【详解】解:∵BD是切线,∴BD⊥AB,∴∠ABD=90°,∵∠BOC=50°,∴∠A=1∠BOC=25°,2∴∠D=90°﹣∠A=65°,故选:C.【点睛】本题考查的是切线的性质、圆周角定理,解题的关键是灵活应用所学知识解决问题,属于中考常考题型.3、A【解析】【分析】根据点与圆的位置关系得出OP>3即可.【详解】解:∵⊙O的半径为3,点P在⊙O外,∴OP>3,故选:A.本题考查点与圆的位置关系,解答的关键是熟知点与圆的位置关系:设平面内的点与圆心的距离为d,圆的半径为r,则点在圆外⇔d>r,点在圆上⇔d=r,点在圆内⇔d<r.4、A【解析】【分析】已知圆O的半径为r,点P到圆心O的距离是d,①当r>d时,点P在⊙O内,②当r=d时,点P在⊙O上,③当r<d时,点P在⊙O外,根据以上内容判断即可.【详解】∵⊙O的半径为3,若PO=2,∴2<3,∴点P与⊙O的位置关系是点P在⊙O内,故选:A.【点睛】本题考查了点与圆的位置关系的应用,注意:已知圆O的半径为r,点P到圆心O的距离是d,①当r>d时,点P在⊙O内,②当r=d时,点P在⊙O上,③当r<d时,点P在⊙O外.5、D【解析】【分析】过A点作AH⊥BC于H,如图,利用等腰三角形的性质得到BH=CH=12BC=4,则利用勾股定理可计算出AH=3,然后根据点与圆的位置关系的判定方法对A选项和B选项进行判断;根据直线与圆的位置关系对C选项和D选项进行判断.【详解】解:过A点作AH⊥BC于H,如图,∵AB=AC,∴BH=CH=12BC=4,在Rt△ABH中,AH=,∵AB=5>3,∴B点在⊙A外,所以A选项不符合题意;∵AC=5>3,∴C点在⊙A外,所以B选项不符合题意;∴AH⊥BC,AH=3>半径,∴直线BC与⊙A相离,所以C选项不符合题意,D选项符合题意.故选:D.【点睛】本题考查了直线与圆的位置关系:设⊙O的半径为r,圆心O到直线l的距离为d,若直线l和⊙O相交⇔d<r;直线l和⊙O相切⇔d=r;直线l和⊙O相离⇔d>r.也考查了点与圆的位置关系和等腰三角形的性质.6、B【解析】【分析】根据等腰三角形的性质,三线合一即可得CO AB⊥,根据三角形切线的判定即可判断AB是C的切线,进而可得⊙C与AB的位置关系【详解】解:连接CO,=,点O为AB中点.CA CB∴⊥CO ABCO为⊙C的半径,∴是C的切线,AB∴⊙C与AB的位置关系是相切故选B【点睛】本题考查了三线合一,切线的判定,直线与圆的位置关系,掌握切线判定定理是解题的关键.7、D【解析】【分析】由切线的性质得出∠OAB=90°,由直角三角形的性质得出∠AOB=90°-∠ABO=54°,由等腰三角形的性质得出∠ADC=∠OAD,再由三角形的外角性质即可得出答案.【详解】解:∵AB为⊙O的切线,∴∠OAB=90°,∵∠ABO=36°,∴∠AOB=90°﹣∠ABO=54°,∵OA=OD,∴∠ADC=∠OAD,∵∠AOB=∠ADC+∠OAD,∠AOB=27°;∴∠ADC=12故选:D.【点睛】本题考查了切线的性质、直角三角形的性质、等腰三角形的性质以及三角形的外角性质;熟练掌握切线的性质和等腰三角形的性质是解题的关键.8、B【解析】【分析】作AD⊥BC于D,求出AD的长,根据直线和圆的位置关系判断即可.【详解】解:作AD⊥BC于D,∵∠B=45°,AB=6;∴AD DB==设三角形ABC1的外接圆为O,连接OA、OC1,∵∠B=45°,∴∠O=90°,∵外接圆半径为4,AC=∴1∵468<<∴以点A为圆心,AC为半径画圆,如图所示,当AC=4时,圆A与射线BD没有交点;当AC=8时,圆A与射线BD只有一个交点;当AC= A与射线BD有两个交点;故选:B.【点睛】本题考查了直角三角形的性质和射线与圆的交点,解题关键是求出AC长和点A到BC的距离.9、A【解析】【分析】由三角形内角和以及内心定义计算即可【详解】∵180A ABC ACB ∠+∠+∠=︒∴100ABC ACB ∠+∠=︒又∵O 是ABC 的内心∴OB 、OC 为ABC ACB ∠∠、角平分线,∴OBC OCB ∠+∠1()502ABC ACB =∠+∠=︒ ∴BOC ∠=180°()OBC OCB -∠+∠=180°-50°=130°故选:A .【点睛】本题考查了三角形内心的定义,与三角形各边都相切的圆叫做三角形的内切圆.三角形的内切圆的圆心叫做三角形的内心,这个三角形叫做圆的外切三角形.10、D【解析】【分析】连接正六边形的相邻的两个顶点与圆心,构造扇形和等边三角形,则可得到弓形的面积,阴影部分的面积等于弓形的6倍.【详解】解:连接OD 、OE ,OM =O 的内接正六边形ABCDEF ,60,DOE OD OE ∴∠=︒=,∴△DOE 是等边三角形,∴∠DOM =30°,设MD x =,则2OD x =2234x x ∴+=,解得:1x =,2OD ∴=,根据图可得:()6ODE ODE S S S =-阴影部分扇形正三角形,26026(3)360π=-,4π=-故选:D .【点睛】本题考查了正多边形与圆及扇形的面积的计算,解题的关键是知道阴影部分的面积等于三个弓形的面积.二、填空题1、1或4或7【解析】【分析】Rt ABC 的一边所在直线与半圆O 所在的圆相切有三种情况:当点C 与点E 重合、点O 与点C 重合以及点D 与点C 重合,分别找出点O 运动的路程,即可求出答案.【详解】如图,当点C 与点E 重合时,AC 与半圆O 所在的圆相切,∵12cm DE =,∴6cm OE =,∴862(cm)CD =-=,即点O 运动了2cm , ∴21(s)2t ==, 当AB 与半圆O 所在的圆相切时,过点C 作CF AB ⊥交于点F ,∵2cm BC =,30ABC ∠=︒, ∴16cm 2CF BC ==, ∴CF OE OD ==,即点O 与点C 重合,∴点O运动了8cm,∴84(s)2t==,当点C与点D重合时,AC与半圆O所在的圆相切,6814(cm)DC=+=,即点O运动了14cm,∴147(s)2t==,故答案为:1或4或7.【点睛】考查了直线与圆的位置关系和点与圆的位置关系.并能根据圆心到直线的距离来判断直线与圆的位置关系.2、【解析】【分析】如图,设小圆的切线MN与小圆相切于点D,与大圆交于M、N,连接OD、OM,根据切线的性质定理和垂径定理求解即可.【详解】解:如图,设小圆的切线MN与小圆相切于点D,与大圆交于M、N,连接OD、OM,则OD⊥MN,∴MD=DN,在Rt△ODM中,OM=180cm,OD=60cm,∴MD=,∴2MN MD==,即该球在大圆内滑行的路径MN的长度为,故答案为:【点睛】本题考查切线的性质定理、垂径定理、勾股定理,熟练掌握切线的性质和垂径定理是解答的关键.3、6【解析】【分析】依题意,直角三角形性质,结合题意能够容纳的最大为内切圆,结合内切圆半径,利用等积法求解即可;【详解】设直角三角形中能容纳最大圆的半径为:r;17=依据直角三角形面积公式:12S ah=,即为1815602S=⨯⨯=;内切圆半径面积公式:1()2S r a b c=++,即为1(81517)2S r=⨯++;所以160(81517)2r=++,可得:3r=,所以直径为:26d r==;故填:6;【点睛】本题主要考查直角三角形及其内切圆的性质,重点在理解题意和利用内切圆半径求解面积;4、2或2-或0【解析】【分析】当⊙P与x轴相切时,圆心P的纵坐标为1或-1,根据圆心P在抛物线上,所以当y为±1时,可以求出点P的横坐标.【详解】x2+1,x=0.解:当y=1时,有1=-12x2+1,x=2±.当y=-1时,有-1=-12故答案是:2或2-或0.【点睛】本题考查的是二次函数的综合题,利用圆与x轴相切得到点P的纵坐标,然后代入抛物线求出点P的横坐标.5、60°或120°【解析】【分析】如下图所示,分两种情况考虑:D点在优弧CDB上或E点在劣弧BC上时,根据三角函数可求出∠OCF 的大小,进而求出∠BOC的大小,再由圆周角定理可求出∠D、∠E大小,进而得到弦BC所对的圆周角.【详解】解:分两种情况考虑:D在优弧CDB上或E在劣弧BC上时,可得弦BC所对的圆周角为∠D或∠E,如下图所示,作OF ⊥BC ,由垂径定理可知,F 为BC 的中点,∵BC =∴CF =BF =12BC =12× 又因为半径为3,∵OC =3,在Rt△FOC 中,cos∠OCF =CF CO ∴∠OCF =30°,∵OC =OB ,∴∠OCF =∠OBF =30°,∴∠COB =120°, ∴∠D =12∠COB =12×120°=60°,又圆内接四边形的对角互补,∴∠E =120°,则弦BC 所对的圆周角为60°或120°.故答案为:60°或120°.【点睛】此题考查了圆周角定理,圆内接四边形的性质,锐角三角函数定义,以及特殊角的三角函数值,熟练掌握圆周角定理是解本题的关键.三、解答题1、 (1)BC与⊙O相切,理由见详解(2)2 3π【解析】【分析】(1)根据题意先证明OD∥AC,即可证得∠ODB=90°,从而证得BC是圆的切线;(2)由题意直接根据三角形和扇形的面积公式进行计算即可得到结论.(1)解:BC与⊙O相切.证明:∵AD是∠BAC的平分线,∴∠BAD=∠CAD.又∵OD=OA,∴∠OAD=∠ODA.∴∠CAD=∠ODA.∴OD∥AC.∴∠ODB=∠C=90°,即OD⊥BC.又∵BC过半径OD的外端点D,∴BC与⊙O相切;(2)∵30B∠=︒,∠ODB=90°,4OB=,∴122OD OB==,在Rt △OBD 中,由勾股定理得:BD =∴S △OBD = 12OD •BD = S 扇形ODF = 260223603ππ⋅⨯=,∴阴影部分的面积=23π. 【点睛】本题考查切线的判定和扇形面积以及勾股定理,熟练掌握切线的判定是解答本题的关键.2、 (1)①(4,3)或C(4,−3),(0,3,(0,3(2)(0,P【解析】【分析】(1)①在x 轴的上方,作以AB 为斜边的等腰直角三角形△ACB ,易知A ,B ,P 三点在⊙C 上,圆心C的坐标为(4,3),半径为,根据对称性可知点C (4,−3)也满足条件;②当圆心为C (4,3)时,过点C 作CD ⊥y 轴于D ,则D (0,3),CD =4,根据⊙C 的半径得⊙C 与y 轴相交,设交点为1P ,2P ,此时1P ,2P 在y 轴的正半轴上,连接1CP 、2CP 、CA ,则1CP =2CP=CA =r ,得2DP = (2)如果点P 在y 轴的负半轴上,设此时圆心为E ,则E 在第四象限,在y 轴的负半轴上任取一点M (不与点P 重合),连接MA ,MB ,PA ,PB ,设MB 交于⊙E 于点N ,连接NA ,则∠APB =∠ANB ,∠ANB 是△MAN 的外角,∠ANB >∠AMB ,即∠APB >∠AMB ,过点E 作EF ⊥x 轴于F ,连接EA ,EP ,则AF =12AB =3,OF =4,四边形OPEF 是矩形,OP =EF ,PE =OF =4,得EF =OP(1)①如图1中,在x轴的上方,作以AB为斜边的等腰直角三角形△ACB,易知A,B,P三点在⊙C上,圆心C的坐标为(4,3),半径为根据对称性可知点C(4,−3)也满足条件,故答案是:(4,3)或C(4,−3),②y轴的正半轴上存在线段AB的“等角点”。
专题2.3 直线与圆的位置关系(专项拔高卷)学生版-2024-2025学年九年级数学上册真题汇编章节
2024-2025学年苏科版数学九年级上册同步专题热点难点专项练习专题2.3 直线与圆的位置关系(专项拔高卷)考试时间:90分钟试卷满分:100分难度:0.52姓名:___________班级:___________考号:___________题号一二三总分得分评卷人得分一.选择题(共10小题,满分20分,每小题2分)1.(2分)(2022秋•金华期末)AB为⊙O的直径,延长AB到点P,过点P作⊙O的切线,切点为C,连接AC,∠P=40°,D为圆上一点,则∠D的度数为()A.20°B.25°C.30°D.40°2.(2分)(2022秋•阳谷县期末)如图是“光盘行动”的宣传海报,图中餐盘与筷子可看成直线和圆的位置关系是()A.相切B.相交C.相离D.平行3.(2分)(2022秋•河西区校级期末)如图,AB是⊙O的切线,B为切点,AO与⊙O交于点C,若∠BAO=35°,则∠OCB的度数为()A.42.5°B.55.5°C.62.5°D.75°4.(2分)(2023春•青山区校级月考)如图,不等边△ABC内接于⊙O,I是其内心,BI⊥OI,AC=14,BC =13,△ABC内切圆半径为()A.4 B.C.D.5.(2分)(2022秋•大荔县期末)如图,点O是△ABC的内心,也是△DBC的外心.若∠A=84°,则∠D的度数为()A.42°B.66°C.76°D.82°6.(2分)(2023•沙坪坝区校级模拟)如图,AB是⊙O的直径,E为⊙O上一点,BD垂直平分OE交⊙O于点D,过点D的切线与BE的延长线交于点C.若,则AB的长为()A.4 B.2 C.D.7.(2分)(2023•哈尔滨)如图,AB是⊙O的切线,A为切点,连接OA,点C在⊙O上,OC⊥OA,连接BC并延长,交⊙O于点D,连接OD,若∠B=65°,则∠DOC的度数为()A.45°B.50°C.65°D.75°8.(2分)(2023•遵义一模)如图,AB是半圆O的直径,点P为BA延长线上一点,PC是⊙O的切线,切点为C,过点B作BD⊥PC交PC的延长线于点D,连接BC.若CD=2,BD=4,则⊙O的半径为()A.3 B.2 C.2.5 D.29.(2分)(2023•江岸区模拟)如图,AB为⊙O直径,C为圆上一点,I为△ABC内心,AI交⊙O于D,OI ⊥AD于I,若CD=4,则AC为()A.B.C.D.510.(2分)(2022•成县校级模拟)如图,⊙O与∠A=90的Rt△ABC的三边AB、BC、AC分别相切于点D、E、F,若BE=10,CF=3,则⊙O的半径为()A.5 B.4 C.3 D.2评卷人得分二.填空题(共10小题,满分20分,每小题2分)11.(2分)(2023•柯桥区校级模拟)如图AB、AC、BD是圆O的切线,切点分别为P、C、D,若AB=5,BD =2,则AC的长是.12.(2分)(2022秋•启东市校级期末)如图,AB为⊙O的直径,CB为⊙O的切线,AC交⊙O于D,∠C=38°.点E在AB右侧的半圆上运动(不与A、B重合),则∠AED的大小是.13.(2分)(2022秋•河西区校级期末)如图,在Rt△OAB中,∠AOB=90°,OA=8,AB=10,⊙O的半径为4,点P是AB上的一动点,过点P作⊙O的一条切线PQ,Q为切点,则PQ的最小值为.14.(2分)(2023•青海)如图,MN是⊙O的切线,M是切点,连接OM,ON.若∠N=37°,则∠MON的度数是.15.(2分)(2022秋•建昌县期末)如图,点O是△ABC的内心,∠A=60°,OB=3,OC=6,,则⊙O的半径为.16.(2分)(2023•西陵区模拟)木工师傅可以用角尺测量并计算出圆的半径.如图,用角尺的较短边紧靠⊙O于点A,并使较长边与⊙O相切于点C.记角尺的直角顶点为B,量得AB=8cm,BC=16cm,则⊙O的半径等于cm.17.(2分)(2023•安岳县二模)如图,AB、CD是⊙O的两条直径,EA切⊙O于点A,交CD的延长线于点E.若∠ABC=75°,则∠E的度数为.18.(2分)(2022•宜宾)我国古代数学家赵爽的“弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形(如图所示).若直角三角形的内切圆半径为3,小正方形的面积为49,则大正方形的面积为.19.(2分)(2022秋•鼓楼区校级月考)在Rt△ABC中,∠ACB=90°,BC=6,AC=8,直线l经过△ABC的内心O,过点C作CD⊥l,垂足为D,连接AD,则AD的最小值是.20.(2分)(2022秋•滨湖区校级期中)如图,AC是矩形ABCD的对角线,⊙O是△ABC的内切圆,现将矩形ABCD按如图所示的方式折叠,使点D与点O重合,折痕为FG,点F、G分别在AD、BC上,连结OG、DG,若OG⊥DG,且⊙O的半径长为1,则BC﹣AB的值,CD+DF的值.评卷人得分三.解答题(共8小题,满分60分)21.(6分)(2023•鞍山二模)如图,在△ABC中,以AB为直径作⊙O,⊙O恰好经过点C,点D为半圆AB 中点,连接CD,过D作DE∥AB交AC延长线于点E.(1)求证:DE为⊙O切线:(2)若AC=4,,求⊙O的半径长.22.(6分)(2023•槐荫区模拟)如图,AB为⊙O的直径,C为⊙O上一点,⊙O的切线BD交OC的延长线于点D.(1)求证:∠DBC=∠OCA;(2)若∠BAC=30°,AC=2.求CD的长.23.(8分)(2022秋•嘉祥县校级期末)已知BC是⊙O的直径,点D是BC延长线上一点,AB=AD,AE是⊙O的弦,∠AEC=30°.(1)求证:直线AD是⊙O的切线;(2)若AE⊥BC,垂足为M,⊙O的半径为10,求AE的长.24.(8分)(2022秋•平阴县期末)如图,AB为⊙O的直径,PQ切⊙O于E,AC⊥PQ于C,交⊙O于D.(1)求证:AE平分∠BAC;(2)若,∠BAC=60°,求⊙O的半径.25.(8分)(2023•宛城区二模)如图①,中国古代的马车已经涉及很复杂的机械设计(相对当时的生产力),包含大量零部件和工艺,所彰显的智慧让人拜服.如图②是马车的侧面示意图,AB为车轮⊙O的直径,过圆心O的车架AC一端点C着地时,地面CD与车轮⊙O相切于点D,连接AD,BD.(1)徽徽猜想∠C+2∠BDC=90°,徽徽的猜想正确吗?请说明理由;(2)若,BC=2米,求车轮的直径AB的长.26.(8分)(2023•晋安区校级模拟)如图,以AB边为直径的⊙O经过点P,C是⊙O上一点,连接PC交AB 于点E,且∠ACP=60°,PA=PD.(1)证明:PD是⊙O的切线.(2)若点C是弧AB的中点,已知AB=2,求CE•CP的值.27.(8分)(2022秋•惠阳区校级期末)(1)如图1,在菱形ABCD中,点E,F分别为边CD,AD的中点,连接AE,CF.求证:AE=CF.(2)如图2,AB是⊙O的直径,CA与⊙O相切于点A,连接CO交⊙O于点D,CO的延长线交⊙O于点E,连接BE,BD,∠ABD=25°,求∠C的度数.28.(8分)(2023•绥江县二模)如图1,在四边形ABCD中,AD=CD=6,∠B=60°,以AB为直径所作的⊙O经过点C,且与AD相切于A点,连接AC.(1)求证:CD是⊙O的切线;(2)⊙E是△ACD的外接圆,不与A、D重合的点F在⊙E的劣弧AD上运动(如图2所示).若点P、Q 分别为线段AC、CD上的动点(不与端点重合),当点F运动到每一个确定的位置时,△FPQ的周长有最小值m,随着点F的运动,m的值也随之变化,求m的最大值.。
浙教版九年级下《第二章直线与圆的位置关系》单元评估试题附参考答案
A. 15cm B. 20cm C. 30cm D. 60cm
9.一个边长为4的等边三角形ABC的高与⊙O的直径相等,如图放置,⊙O与BC相切于点C,⊙O与AC相交于点E,则CE的长是( )
A. B. C. 2 D. 3
10.(2015•遵义)将正方形ABCD绕点A按逆时针方向旋转30°,得正方形AB1C1D1,B1C1交CD于点E,AB= ,则四边形AB1ED的内切圆半径为( )
A. B. C. D.
二、填空题(共10题;共30分)
11.若⊙O的半径为4cm,圆心O到直线l的距离为5cm,则直线l与⊙O的位置关系是________.
(2)证明:如图所示:
∵∠5=∠1,∠1=∠2;
∴∠5=∠2;
又∵∠D=∠D,
∴△BDE∽△ADB;
∴BD:DE=AD:BD;
∴BD2=AD•DE;
又∵ID=BD,
∴ID2=AD•DE.
27.【答案】证明:连接DO,
∵AO=DO,
∴∠DAO=∠ADO=20°,
∴∠COD=∠A+∠ADO=40°,
∵∠ACD=50°,
24.如图,I是△ABC的内心,∠BAC的平分线与△ABC的外接圆相交于点D,交BC于点E.
(1)求证:BD=ID;
(2)求证:ID2=DE•DA.
25.如图,已知AB是⊙O的直径,锐角∠DAB的平分线AC交⊙O于点C,作CD⊥AD,垂足为D,直线CD与AB的延长线交于点E.
(1)求证:直线CD为⊙O的切线;
浙教版九年级数学下册第二章直线与圆的位置关系单元评估检测试题
一、单选题(共10题;共30分)
九年级数学下册《直线与圆的位置关系》典型例题(含答案)
《直线与圆的位置关系》典型例题例1在R t△ABC中,∠C=90°,AB=4cm,BC=2cm,以C为圆心,r为半径的圆与AB有何种位置关系?为什么?(1)r=1cm;(2)r=cm;(3)r=2.5cm.例2 在R t△ABC中,∠C=90°,AB=4cm,BC=2cm,以C为圆心,r为半径的圆,若直线AB与⊙C,(1)相交;(2)相切;(3)相离.求半径r的取值.例3如图,在直角梯形ABCD中,AD∥BC,∠C=∠D=90°,若AB=6,AD=4,BC=2,试问:DC上是否存在点P,使R t△PBC∽R t△APD?例4如图,直角梯形中,,,,为上的一点,平分,平分.求证:以为直径的圆与相切.例5已知中,,于,,,以为圆心,为半径画圆.求证直线和⊙相离.参考答案例1分析如图,欲判定⊙C与直线AB的关系,只需先求出圆心C到直线AB的距离CD的长,然后再与r比较即可.解:过C点作CD⊥AB于D,在R t△ABC中,∠C=90°,AB=4,BC=2,∴AC=2,∴AB·CD=AC·BC,∴,(1)当r =1cm时CD>r,∴圆C与AB相离;(2)当r=cm时,CD=r,∴圆C与AB相切;(3)当r=2.5cm时,CD<r,∴圆C与AB相交.说明:从“数”到“形”,判定圆与直线位置关系.例2 解:过C点作CD⊥AB于D,在R t△ABC中,∠C=90°,AB=4,BC=2,∴AC=2,∴AB·CD=AC·BC,∴,(1)∵直线AB与⊙C相离,∴0r<CD,即0<r<;(2)∵直线AB与⊙C相切,∴r =CD,即r=;(3)∵直线AB与⊙C相交,∴r>CD,即r>.说明:从“形”到“数”,由圆与直线位置关系来确定半径.例3 分析:若R t△PBC∽R t△APD,则∠APD+∠BPC=90°,可知∠APB=90°,所以P点为以AB为直径的圆O与DC的交点,由条件可知为⊙O与DC相切,所以存在一点P,使R t△PBC∽R t△APD.解:设以AB为直径的圆为⊙O,OP⊥DC,则:OP为直角梯形ABCD的中位线,∴OP=(AD+BC)/2=(4+2)/2=3,又∵OA=OB=AB/2=3,∴OP=OA,∴⊙O与DC相切,∴∠APB=90°,∴∠APD+∠BPC=90°.又∵∠PBC+∠BPC=90°,∴∠APD=∠PBC,又∵∠C=∠D=90°,∴R t△PBC∽R t△APD.因此,DC上存在点P,使R t△PBC∽R t△APD.说明:①直线与圆位置关系的应用;②此题目可以变动数值,使DC与⊙O 相交、相离.例4 分析:要证以为直径的圆与相切,只需证明的中点到的距离等于.证明:过点作于,同理可证:为的中点,即:以为直径的圆与相切.说明:在判定直线是圆的切线时,若条件没有告诉它们有公共点,常用的方法就是“距离判定”法,即先由圆心到该直线作垂线,证明圆心到该直线的距离恰好等于半径,从而得出直线是圆的切线的结论.例5 分析:欲证直线和⊙相离,只需计算点到的距离的长,若,则判定与⊙相离(如图)证明于,是圆心到的距离∽.又⊙的半径为,故与⊙相离.。
最新人教版高中数学必修二《直线与圆的位置关系》(含答案解析)
最新人教版高中数学必修二《直线与圆的位置关系》(含答案解析)一、选择题(每小题5分,共40分)1.如果a2+b2=c2,那么直线ax+by+c=0与圆x2+y2=1的位置关系是( )A.相交B.相切C.相离D.相交或相切2.设直线过点(a,0),其斜率为-1,且与圆x2+y2=2相切,则a的值为( )A.±B.±2C.±2D.±43.直线x+2y-5+=0被圆x2+y2-2x-4y=0截得的弦长为( )A.1B.2C.4D.44.过点P(-2,4)作圆O:(x-2)2+(y-1)2=25的切线l,直线m:ax-3y=0与直线l平行,则直线l与m间的距离为( )A.4B.2C.D.5.过原点的直线与圆x2+y2+4x+3=0相切,若切点在第三象限,则该直线的方程是( )A.y=xB.y=-xC.y=xD.y=-x6.已知圆C:(x-a)2+(y-2)2=4(a>0)及直线l:x-y+3=0,当直线l被圆C 截得的弦长为2时,a等于( )A. B.2-C.-1D.+17.由直线y=x+1上的一点向圆(x-3)2+y2=1引切线,则切线长的最小值为( )A.1B.2C.D.38.过点P(-,-1)的直线l与圆x2+y2=1有公共点,则直线l的倾斜角α的取值范围是( )A.0°<α<30°B.0°<α≤60°C.0°≤α≤30°D.0°≤α≤60°二、填空题(每小题5分,共10分)9.过点A(1,)的直线l将圆(x-2)2+y2=4分成两段弧,当劣弧所对的圆心角最小时,直线l的斜率k=________.10.已知直线l:mx+y+3m-=0与圆x2+y2=12交于A,B两点,过A,B分别作l的垂线与x轴交于C,D两点,若|AB|=2,则|CD|= .三、解答题(每小题10分,共20分)11.已知圆的方程为(x-1)2+(y-1)2=1,P点坐标为(2,3),求圆的过P 点的切线方程以及切线长.12.已知过点A(-1,0)的动直线l与圆C:x2+(y-3)2=4相交于P,Q两点,M是PQ的中点,l与直线m:x+3y+6=0相交于N.(1)求证:当l与m垂直时,l必过圆心C.(2)当|PQ|=2时,求直线l的方程.参考答案与解析1选C.圆的半径r=1,圆心(0,0)到直线ax+by+c=0的距离d===>1.2选B.因为切线的方程是y=-(x-a),即x+y-a=0,所以=,a=±2.3选C.由(x-1)2+(y-2)2=5得圆心(1,2),半径r=,圆心到直线x+2y-5+=0的距离d==1,在半径、弦心距、半弦长组成的直角三角形中,弦长l=2=2=4.4选A.根据题意,知点P在圆上,所以切线l的斜率k=-=-=.所以直线l的方程为y-4=(x+2).即4x-3y+20=0.又直线m与l平行,所以直线m的方程为4x-3y=0.故直线l与m间的距离为d==4.5选C.设切线方程为y=kx,圆的方程化为(x+2)2+y2=1,而圆心(-2,0)到直线y=kx 的距离为1,所以=1.所以k=±.又因为切点在第三象限,所以k=.6选C.因为圆的半径为2,且截得弦长的一半为,所以圆心到直线的距离为1,即=1,解得a=±-1,因为a>0,所以a=-1.7选C.设圆心为C(3,0),P为直线上一动点,过P向圆引切线,切点设为N,所以(PN)min=()min=,又(PC)min==2,所以(PN)min=.8选D.设过点P与圆相切的直线方程为y+1=k(x+),则圆心到该直线的距离d= =1,解得k1=0,k2=,画出图形可得直线l的倾斜角的取值范围是0°≤α≤60°.9点A(1,)在圆(x-2)2+y2=4内,当劣弧所对的圆心角最小时,l垂直于过点A(1,)和圆心M(2,0)的直线.所以k=-=-=.答案:10取AB的中点E,连接OE,过点C作BD的垂线,垂足为F,圆心到直线的距离d= ,所以在Rt△OBE中,BE2=OB2-d2=3,所以d==3,得m=-,又在△CDF中,△FCD=30°,所以CD==4.答案:411如图,此圆的圆心C为(1,1),CA=CB=1,则切线长|PA|===2.(1)若切线的斜率存在,可设切线的方程为y-3=k(x-2),即kx-y-2k+3=0,则圆心到切线的距离d==1,解得k=,故切线的方程为3x-4y+6=0.(2)若切线的斜率不存在,切线方程为x=2,此时直线也与圆相切.综上所述,过P点的切线的方程为3x-4y+6=0和x=2.12(1)因为l与m垂直,且k m=-,所以k l=3,故直线l的方程为y=3(x+1),即3x-y+3=0.因为圆心坐标为(0,3)满足直线l的方程,所以当l与m垂直时,l必过圆心C.(2)当直线l与x轴垂直时,易知x=-1符合题意.当直线l与x轴不垂直时,设直线l的方程为y=k(x+1),即kx-y+k=0,因为|PQ|=2,所以|CM|==1,则由|CM|==1,得k=,所以直线l:4x-3y+4=0.故直线l的方程为x=-1或4x-3y+4=0.。
高中数学必修二直线与圆、圆与圆的位置关系练习题
1.已知直线和圆有两个交点,则的取值范围是() A. B.C. D.2.圆x2+y2-2acos x-2bsin y-a2sin=0在x轴上截得的弦长是()A.2a B.2|a| C.|a| D.4|a|3.过圆x2+y2-2x+4y- 4=0内一点M(3,0)作圆的割线,使它被该圆截得的线段最短,则直线的方程是()A.x+y-3=0 B.x-y-3=0C.x+4y-3=0 D.x-4y-3=04.若直线(1+a)x+y+1=0与圆x2+y2-2x=0相切,则a的值为()A.1或-1 B.2或-2 C.1 D.-1 5.若直线3x+4y+c=0与圆(x+1)2+y2=4相切,则c的值为()A.17或-23 B.23或-17 C.7或-13 D.-7或13 6.若P(x,y)在圆 (x+3)2+(y-3)2=6上运动,则的最大值等于()A.-3+2 B.-3+ C.-3-2 D.3-2 7.圆x2+y2+6x-7=0和圆x2+y2+6y-27=0的位置关系是()A.相切 B.相交 C.相离 D.内含8.若圆x2+y2=4和圆x2+y2+4x-4y+4=0关于直线对称,则直线的方程是()A.x+y=0 B.x+y-2=0 C.x-y-2=0 D.x-y+2=01.9.圆的方程x2+y2+2kx+k2-1=0与x2+y2+2(k+1)y+k2+2k=0的圆心之间的最短距离是()A. B.2 C.1 D.10.已知圆x2+y2+x+2y=和圆(x-sin)2+(y-1)2=, 其中0900, 则两圆的位置关系是()A.相交B.外切 C.内切 D.相交或外切11.与圆(x-2)2+(y+1)2=1关于直线x-y+3=0成轴对称的曲线的方程是()A.(x-4)2+(y+5)2=1 B.(x-4)2+(y-5)2=1C.(x+4)2+(y+5)2=1 D.(x+4)2+(y-5)2=112.圆x2+y2-ax+2y+1=0关于直线x-y=1对称的圆的方程为x2+y2=1, 则实数a 的值为()A.0 B.1 C. 2 D.213.已知圆方程C1:f(x,y)=0,点P1(x1,y1)在圆C1上,点P2(x2,y2)不在圆C1上,则方程:f(x,y)- f(x1,y1)-f(x2,y2)=0表示的圆C2与圆C1的关系是()A.与圆C1重合 B.与圆C1同心圆C.过P1且与圆C1同心相同的圆 D.过P2且与圆C1同心相同的圆14.自直线y=x上一点向圆x2+y2-6x+7=0作切线,则切线的最小值为___________.15.如果把直线x-2y+=0向左平移1个单位,再向下平移2个单位,便与圆x2+y2+2x-4y=0相切,则实数的值等于__________.16.若a2+b2=4, 则两圆(x-a)2+y2=1和x2+(y-b)2=1的位置关系是____________.17.过点(0,6)且与圆C: x2+y2+10x+10y=0切于原点的圆的方程是____________.18.已知圆C:(x-1)2+(y-2)2=25, 直线:(2m+1)x+(m+1)y-7m-4=0(m R),证明直线与圆相交;(2) 求直线被圆C截得的弦长最小时,求直线的方程.19.求过直线x+3y-7=0与已知圆x2+y2+2x-2y-3=0的交点,且在两坐标轴上的四个截距之和为-8的圆的方程.20.已知圆满足:(1)截y轴所得弦长为2,(2)被x轴分成两段弧,其弧长的比为3:1,(3)圆心到直线:x-2y=0的距离为,求这个圆方程.21.求与已知圆x2+y2-7y+10=0相交,所得公共弦平行于已知直线2x-3y-1=0且过点(-2,3),(1,4)的圆的方程.参考答案:经典例题:解:设圆C圆心为C(x, y), 半径为r,由条件圆C1圆心为C1(0, 0);圆C2圆心为C2(1, 0);两圆半径分别为r1=1, r2=4,∵圆心与圆C1外切∴|CC1|=r+r1,又∵圆C与圆C2内切,∴|CC2|=r2-r (由题意r2>r),∴|CC1|+|CC2|=r1+r2,即 , 化简得24x2+25y2-24x-144=0, 即为动圆圆心轨迹方程.当堂练习:1.D;2.B;3.A;4.D;5.D;6.A;7.B;8.D;9.A; 10.D; 11.D; 12.D; 13.D; 14.; 15. 13或3; 16. 外切; 17. (x-3)2+(y-3)3=18;18. 证明:(1)将直线的方程整理为(x+y-4)+m(2x+y-7)=0,由,直线过定点A(3,1),(3-1)2+(1-2)2=5<25,点A在圆C的内部,故直线恒与圆相交.(2)圆心O(1,2),当截得的弦长最小时,AO,由kAO= -, 得直线的方程为y-1=2(x-3),即2x-y-5=0.19. 解:过直线与圆的交点的圆方程可设为x2+y2+2x-2y-3+(x+3y-7)=0,整理得x2+y2+(2+)x+(3-2)y-3-7=0,令y=0,得x2+y2+(2+)x -3-7 =0圆在x轴上的两截距之和为x1+x2= -2-,同理,圆在y轴上的两截距之和为2-3,故有-2-+2-3=-8,=2,所求圆的方程为x2+y2+4x+4y-17=0.20. 解:设所求圆圆心为P(a,b),半径为r,则点P到x轴、y轴的距离分别为|b|、|a|,由题设知圆P截x轴所对劣弧对的圆心角为900,知圆P截x轴所得弦长为r,故r2=2b2, 又圆P被 y轴所截提的弦长为2,所以有r2=a2+1,从而2b2-a2=1. 又因为P(a,b)到直线x-2y=0的距离为,所以d==,即|a-2b|=1, 解得a-2b=1,由此得,于是r2=2b2=2, 所求圆的方程是(x+1)2+(y+1)2=2或(x-1)2+(y-1)2=2.21. 解:公共弦所在直线斜率为,已知圆的圆心坐标为(0,),故两圆连心线所在直线方程为y-=-x, 即3x+2y-7=0,设所求圆的方程为x2+y2+Dx+Ey+F=0,由, 所求圆的方程为x2+y2+2x-10y+21=0.。
最新人教版高中数学选修一第二单元《直线和圆的方程》测试卷(含答案解析)
一、选择题1.若圆22220x y x y k +---=上的点到直线100x y +-=的最大距离为k 的值是( )A .2-B .2C .2-或2D .2-或02.若直线1y kx =-与曲线y =有公共点,则k 的取值范围是( ) A .4(0,]3B .14[,]33C .1[0,]2D .[0,1]3.若圆22:60,(0,0)M x y ax by ab a b +++--=>>平分圆22:4240N x y x y +--+=的周长,则2a b +的最小值为( )A .8B .9C .16D .204.圆C :x 2+y 2-6x -8y +9=0被直线l :ax +y -1-2a =0截得的弦长取得最小值时,此时a 的值为( ) A .3B .-3C .13D .-135.直线0x y +=被圆226240x y x y +-++=截得的弦长等于( )A .4B .2C .D6.在平面直角坐标系中,定义1212(,)||||d A B x x y y =-+-为两点11(,)A x y 、22(,)B x y 的“切比雪夫距离”,又设点P 及直线l 上任意一点Q ,称(,)d P Q 的最小值为点P 到直线l 的“切比雪夫距离”,记作(,)d P l ,给出下列三个命题: ①对任意三点A 、B 、C ,都有(,)(,)(,)d C A d C B d A B +≥; ②已知点(3,1)P 和直线:210l x y --=,则4(,)3d P l =; ③定义(0,0)O ,动点(,)P x y 满足(,)1d P O =,则动点P 的轨迹围成平面图形的面积是4;其中真命题的个数( ) A .0B .1C .2D .37.已知圆22:(2)2C x y ++=,则在x 轴和y 轴上的截距相等且与圆C 相切的直线有几条( ) A .1条 B .2条 C .3条 D .4条 8.若圆x 2+y 2+ax -by =0的圆心在第二象限,则直线x +ay -b =0一定不经过( )A .第一象限B .第二象限C .第三象限D .第四象限9.过点(0,2)P 的直线l 与以(1,1)A ,(2,3)B -为端点的线段有公共点,则直线l 的斜率k的取值范围是( ) A .5[,3]2-B .5(,][3,)2-∞-⋃+∞C .3[,1]2-D .1(,1][,)2-∞-⋃-+∞ 10.已知直线1l :(4)10kx k y +-+=与2l :2230kx y -+=平行,则k 的值是( ) A .1或0B .5C .0或5D .1或511.抛物线2?y x =上一点到直线240x y --=的距离最短的点的坐标是( ) A .()2,4B .11,24⎛⎫ ⎪⎝⎭C .39,24⎛⎫⎪⎝⎭D .()1,112.若直线220++=ax y 与直线840x ay ++=平行,则a 的值为( ) A .4B .4-C .4-或4D .2-二、填空题13.已知三条直线的方程分别为0y =0y -+=0y +-,那么到三条直线的距离相等的点的坐标为___________.14.已知点(),P x y 是直线240x y -+=上一动点,直线PA ,PB 是圆22:20C x y y ++=的两条切线,A ,B 为切点,C 为圆心,则四边形PACB 面积的最小值是______.15.经过点(2,1)M ,并且与圆2268240x y x y +--+=相切的直线方程是________. 16.已知点M 是直线l :22y x =--上的动点,过点M 作圆C :()()22114x y -+-=的切线MA ,MB ,切点为A ,B ,则当四边形MACB 的面积最小时,直线AB 的方程为______.17.已知直线l 经过点(1,2)P -,且垂直于直线2310x y ,则直线l 的方程是________.18.在直角坐标系xoy 中,已知圆C :()222824580x y m x my m m +---+-=,直线l 经过点()2,1,若对任意的实数m ,直线l 被圆C 截得弦长为定值,则直线l 方程为______.19.定义点()00,P x y 到直线()22:00l Ax By C A B ++=+≠的有向距离d =.已知点12,P P 到直线l 的有向距离分别是12,d d ,给出以下命题:①若120-=d d ,则直线12PP 与直线l 平行;②若120d d +=,则直线12PP 与直线l 平行;③若120d d +=,则直线12PP 与直线l 垂直;④若120<d d ,则直线12PP 与直线l 相交.其中正确命题的个数是_______.20.已知点M 为直线1:20l x y a +-=与直线2:210l x y -+=在第一象限的交点,经过点M 的直线l 分别交x ,y 轴的正半轴于A ,B 两点,O 为坐标原点,则当AOBS 取得最小值为1425时,a 的值为________.三、解答题21.已知圆221:2440C x y x y ++--=.(1)在下列两个条件中任选一个作答.注:如果选择两个条件分别解答,按第一个解答计分.①已知不过原点的直线l 与圆1C 相切,且在x 轴、y 轴上的截距相等,求直线l 的方程; ②从圆外一点(2,1)P 向圆引切线,求切线方程.(2)若圆222:4C x y +=与圆1C 相交与D 、E 两点,求线段DE 的长.22.已知圆C 的圆心在直线l :20x y -=上,且过点()0,0O 和()2,6A . (1)求圆C 的方程.(2)求证:直线1l :()130m x y m -+-=,m ∈R 与圆C 恒相交. (3)求1l 与圆C 相交所得弦的弦长的最小值及此时对应的直线方程.23.已知直线l :43100x y ++=,半径为2的圆C 与l 相切,圆心C 在x 轴上且在直线l 的右上方.(1)求圆C 的方程;(2)直线4y kx =-与圆C 交于不同的M ,N 两点,且120MCN ∠=︒,求直线l 的斜率;(3)过点()1,0M 的直线与圆C 交于A ,B 两点(A 在x 轴上方),问在x 轴正半轴上是否存在定点N ,使得x 轴平分ANB ∠?若存在,请求出点N 的坐标;若不存在,请说明理由.24.已知圆C 经过点()1,0A -和()3,4B ,且圆心C 在直线3150x y +-=上. (1)求圆C 的标准方程;(2)设点()()1,0Q m m ->在圆C 上,求△QAB 的面积. 25.△ABC 中∠C 的平分线所在直线方程为y x =,且A (-1,52),B (4,0).(1)求直线AB 的截距式...方程; (2)求△ABC 边AB 的高所在直线的一般式...方程. 26.从圆外一点()4,4P -作圆22:1O x y +=的两条切线,切点分别为A ,B . (1)求以OP 为直径的圆的方程; (2)求线段AB 的长度.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】将圆的方程化成标准方程,求出圆心及半径r ,圆心到直线的距离为d ,则圆上的点到直线的最大距离为d r + 【详解】圆22220x y x y k +---=化成标准形式()()22112x y k -+-=+,圆心()1,1,半径r =2k >-;圆心()1,1到直线100x y +-=的距离===d圆上的点到直线的最大距离为+==d r=,解得:2k =或2k =-(舍去) 故选:B 【点睛】结论点睛:本题考查直线与圆的位置关系,求圆上点到直线的最大距离与最小距离常用的结论:设圆的半径r ,圆心到直线的距离为d , (1)当dr 时,圆上的点到直线的最大距离为d r +,最小距离为d r -;(2)当d r ≤时,圆上的点到直线的最大距离为d r +,最小距离为0; 2.D解析:D 【分析】1y kx =-是过定点()0,1-的直线,曲线表示以()2,0为圆心,半径为1的圆的下半部分,画出两函数图像,找出两图像有公共点时k 的范围即可. 【详解】解:根据题意可得:1y kx =-是过定点()0,1-的直线,曲线表示以()2,0为圆心,半径为1的圆的下半部分,画出函数图像,如图所示: 当直线与曲线相切时:0k =,当()1,0在直线上时,代入可得1k =,所以两函数图像有公共点的k 的范围是[]0,1. 故选:D.【点睛】本题考查直线与圆的位置关系,利用了数形结合的思想,属于中档题. 方法点睛:(1)画出函数图像;(2)根据图像找到有公共点的相切或相交的情况; (3)根据公式计算,得到结果.3.A解析:A 【分析】由两圆的相交弦是圆N 的直径得出,a b 的关系,然后由基本不等式求得最小值. 【详解】两圆方程相减得,(4)(2)100a x b y ab +++--=,此为相交弦所在直线方程, 圆N 的标准方程是22(2)(1)1x y -+-=,圆心为(2,1)N , ∴2(4)2100a b ab +++--=,121a b+=, ∵0,0a b >>,∴12442(2)()4428b a b aa b a b a b a b a b+=++=++≥+⨯=,当且仅当4b a a b =即2,4a b ==时等号成立.故选:A . 【点睛】本题考查圆的方程,考查基本不等式求最值.圆的性质:(1)圆的直径平分圆;(2)相交两圆方程相减所得一次方程是两圆公共弦所在直线方程.4.C解析:C 【分析】先判断直线l 恒过点(2,1)P ,可得直线l 垂直于直线PC 时,截得的弦长最短,利用直线垂直的性质可得答案. 【详解】直线:120+--=l ax y a 可化为:(2)(1)0-+-=l a x y , 故直线l 恒过点(2,1)P .圆22:6890+--+=C x y x y 的圆心为(3,4)C ,半径为4. 当直线l 垂直于直线PC 时,截得的弦长最短, 因为直线PC 的斜率41332PC k -==-, ax +y -1-2a =0的斜率为a -, 此时1313PC l k k a a ⋅=-=-⇒=.故选:C . 【点睛】方法点睛:判断直线过定点主要形式有: (1)斜截式,0y kx y =+,直线过定点()00,y ; (2)点斜式()00,y y k x x -=-直线过定点()00,x y ; (3)化为()(),,0tf x y g x y +=的形式,根据()(),0,0f x y g x y ⎧=⎪⎨=⎪⎩ 求解.5.A解析:A 【分析】先将圆化成标准方程,求出圆心与半径,再求圆心到直线的距离,然后解弦长即可. 【详解】因为226240x y x y +-++= 所以22(3)(1)6x y -++=, 圆心到直线的距离为22d ==直线0x y +=被圆226240x y x y +-++=截得的弦长()222(6)24l =-;故选:A . 【点睛】计算圆的弦长通常使用几何法简捷.也可使用代数法计算.6.B解析:B 【分析】由新定义表示出三点,,A B C 两两之间的“切比雪夫距离”,然后根据绝对值的性质判断①,由新定义计算出(,)d P l ,判断②,根据新定义求出P 的轨迹方程,确定其轨迹,求得轨迹围成的图形面积判断③. 【详解】①设112233(,),(,),(,)A x y B x y C x y ,则1212(,)d A B x x y y =-+-,13132323(,)(,)d A C d B C x x y y x x y y +=-+-+-+-,显然1323132312()()x x x x x x x x x x -+-≥---=-,同理132312y y y y y y -+-≥-,∴(,)(,)(,)d C A d C B d A B +≥,①正确; ②设(,)P x y 是直线l 上任一点,则21y x =-,(,)31322d P l x y x x =-+-=-+-35,31,1353,1x x x x x x -≥⎧⎪=+≤<⎨⎪-<⎩,易知(,)d P l 在[1,)+∞上是增函数,在(,1)-∞上是减函数,∴1x =时,min (,)13222d P l =-+-=,②错; ③由(,)1d P O =得1x y +=,易知此曲线关于x 轴,y 轴,原点都对称,它是以(1,0),(0,1),(1,0),(0,1)--为顶点的正方形,其转成图形面积为12222S =⨯⨯=,③错.故选:B . 【点睛】关键点点睛:本题考查新定义,解题关键是理解新定义,解题方法是把新概念转化为绝对值的问题,利用绝对值的性质求解.7.C解析:C 【分析】先看直线不过原点的情况,设出直线的方程,斜率为1-,则可知这样的直线有2条,再看直线过原点的情况,把原点代入即可知原点在圆外,则这样的直线也应该有2条,最后验证以上4条中有一条是重复,最后综合得到结论. 【详解】若直线不过原点,其斜率为1-,设其方程为y x m =-+,则d ==0m =或4-,当0m =时,直线过原点;若过原点,把()0,0代入()2200242++=>,即原点在圆外,所以过原点有2条切线,综上,一共有3条, 故选:C . 【点睛】本题主要考查了直线与圆的位置关系,考查了学生数形结合的思想和对基本知识的理解,属于中档题.8.C解析:C【分析】由圆心位置确定a ,b 的正负,再结合一次函数图像即可判断出结果. 【详解】因为圆22+0x y ax by +-=的圆心坐标为,22a b ⎛⎫-⎪⎝⎭, 由圆心在第二象限可得0,0a b >>,所以直线0x ay b +-=的斜率10a -<,y 轴上的截距为0b a>,所以直线不过第三象限. 故选:C9.D解析:D 【分析】画出图形,设直线l 的斜率为k ,求出PA k 和PB k ,由直线l 与线段AB 有交点,可知PA k k ≤或PB k k ≥,即可得出答案.【详解】直线过定点(0,2)P ,设直线l 的斜率为k , ∵12110PA k -==--,321202PB k -==---, ∴要使直线l 与线段AB 有交点,则k 的取值范围是1k ≤-或12k ≥-, 即1(,1][,)2k ∈-∞-⋃-+∞.故选:D. 【点睛】方法点睛:求直线的斜率(或取值范围)的方法:(1)定义法:已知直线的倾斜角为α,且90α︒≠,则斜率tan k α=; (2)公式法:若直线过两点()11,A x y ,()22,B x y ,且12x x ≠,则斜率2121y y k x x -=-;(3)数形结合方法:该法常用于解决下面一种题型:已知线段AB 的两端点及线段外一点P ,求过点P 且与线段AB 有交点的直线l 斜率的取值范围.若直线,PA PB 的斜率都存在,解题步骤如下: ①连接,PA PB ; ②由2121y y k x x -=-,求出PA k 和PB k ; ③结合图形写出满足条件的直线l 斜率的取值范围.10.C解析:C 【分析】由两直线平行得出()224k k k -=-,解出k 的值,然后代入两直线方程进行验证. 【详解】 解:直线1l :(4)10kx k y +-+=与2l :2230kx y -+=平行,()224k k k ∴-=-,整理得()50k k -=,解得0k =或5.当0k =时,直线11:4l y =-,23:2l y =,两直线平行;当5k =时,直线1:510l x y -+=,23:502l x y -+=,两直线平行. 因此,0k =或5. 故选:C. 【点睛】方法点睛:本题考查直线的一般方程与平行关系,在求出参数后还应代入两直线方程进行验证.(1)若111:l y k x b =+,222:l y k x b =+ ①121212||,l l k k b b ⇔=≠; ②12121l l k k ⊥⇔=-.(2)若1111:0l A x B y C ++=,2222:0l A x B y C ++=,且A1、A2、B1、B2都不为零, ①11112222||A B C l l A B C ⇔=≠; ②2112210A A l B B l +⇔=⊥;11.D解析:D 【分析】设抛物线y=x 2上一点为A (x 0,x 02),点A (x 0,x 02)到直线2x-y-4=0的距离d ==由此能求出抛物线y=x 2上一点到直线2x-y-4=0的距离最短的点的坐标. 【详解】设抛物线y=x 2上一点为A (x 0,x 02), 点A (x 0,x 02)到直线2x-y-4=0的距离d ==∴当x 0=1时,即当A (1,1)时,抛物线y=x 2上一点到直线2x-y-4=0的距离最短. 故选D . 【点睛】本题考查抛物线上的点到直线的距离最短的点的坐标的求法,是基础题.解题时要认真审题,仔细解答.12.B解析:B 【分析】根据两直线平行,列出方程组,即可求解. 【详解】由题意,直线220++=ax y 与直线840x ay ++=平行,可得2802240a a a ⨯-⨯=⎧⎨-⨯≠⎩,解得4a =-.故选: B. 【点睛】本题主要考查了两直线的位置关系的应用,其中解答中熟记两直线的平行的条件是解答的关键,着重考查运算与求解能力.二、填空题13.【分析】先画出图形求出再分四种情况讨论得解【详解】如图所示由题得的平分线:和的平分线:的交点到三条直线的距离相等联立两直线的方程解方程组得交点为;的外角平分线:和的外角平分线:的交点到三条直线的距离解析:(0,30,3(-【分析】先画出图形,求出(1,0),(1,0)A B C -,再分四种情况讨论得解. 【详解】 如图所示,由题得(1,0),(1,0)A B C -,CAB ∠的平分线AO :0x =和ACB ∠的平分线CD :(1)3y x =+的交点到三条直线的距离相等,联立两直线的方程解方程组3(1)3xy x=⎧⎪⎨=+⎪⎩得交点为3(0,)3;ACB∠的外角平分线CE:3(1)y x=-+和ABC∠的外角平分线BF:3(1)y x=-的交点到三条直线的距离相等,联立两直线的方程解方程组3(1)3(1)y xy x⎧=-+⎪⎨=-⎪⎩得交点为(0,3)-;ACB∠的外角平分线CG:3(1)y x=-+和CAB∠的外角平分线AG:3y=的交点到三条直线的距离相等,联立两直线的方程解方程组3(1)3y xy⎧=-+⎪⎨=⎪⎩得交点为(2,3)-;ABC∠的外角平分线BH:3(1)y x=-和CAB∠的外角平分线AG:3y=的交点到三条直线的距离相等,联立两直线的方程解方程组3(1)3y xy⎧=-⎪⎨=⎪⎩得交点为(2,3).故答案为:(0,3)-、30,3、(2,3)、(2,3)-【点睛】关键点睛:解答本题的关键是利用平面几何的知识分析找到四个点,再利用直线的知识解答即可.14.2【分析】根据切线的性质可将面积转化为求出的最小值即到直线的距离【详解】圆化为可得圆心为半径为1如图可得则当取得最小值时最小点是直线上一动点到直线的距离即为的最小值故答案为:2【点睛】关键点睛:本题解析:2【分析】根据切线的性质可将面积转化为21PACBS PC=-PC的最小值即()0,1C-到直线240x y -+=的距离. 【详解】圆22:20C x y y ++=化为()2211x y ++=,可得圆心为()0,1-,半径为1,如图,可得22221PA PC AC PC =-=-,212212PACB PACS SPA AC PA PC ==⨯⨯⨯==-则当PC 取得最小值时,PACB S 最小, 点(),P x y 是直线240x y -+=上一动点,()0,1C ∴-到直线240x y -+=的距离即为PC 的最小值,()min 222014521PC ⨯++∴==+-()min 512PACB S ∴=-=.故答案为:2. 【点睛】关键点睛:本题考查直线与圆相切问题,解题的关键是利用切线性质将面积转化为21PACB S PC =-PC 的最小值即可.15.或【分析】求出圆心和半径判断斜率不存在的直线是否是切线斜率存在时设出直线方程由圆心到切线距离等于半径求得参数值得切线方程【详解】圆标准方程是圆心为半径为1易知直线与圆相切设斜率存在的切线方程为即由解解析:2x =或4350x y --= 【分析】求出圆心和半径,判断斜率不存在的直线是否是切线,斜率存在时设出直线方程,由圆心到切线距离等于半径求得参数值得切线方程. 【详解】圆标准方程是22(3)(4)1x y -+-=,圆心为(3,4),半径为1. 易知直线2x =与圆相切,设斜率存在的切线方程为1(2)y k x -=-,即210kx y k --+=,1=,解得43k =,切线方程为481033x y --+=,即4350x y --=.故答案为:2x =或4350x y --=. 【点睛】本题考查求圆的切线方程,解题方法是由圆心到切线的距离等于半径求解.但解题时要注意过定点斜率不存在的直线是否是切线,否则由方程求不出此直线方程.如果所过的点在圆上,由可由过切点的半径与切线垂直得出切线斜率后得直线方程.16.【分析】由已知结合四边形面积公式可得四边形MACB 面积要使四边形MACB 面积最小则需最小此时CM 与直线垂直求得以CM 为直径的圆的方程再与圆C 的方程联立可得AB 所在直线方程【详解】由圆的标准方程可知圆 解析:210x y ++=【分析】由已知结合四边形面积公式可得四边形MACB面积2||||2||CAM S S CA AM MA ==⋅==△要使四边形MACB 面积最小,则需||CM 最小,此时CM 与直线l 垂直,求得以CM 为直径的圆的方程,再与圆C 的方程联立可得AB 所在直线方程. 【详解】由圆的标准方程可知,圆心C (1,1) ,半径r =2.因为四边形MACB的面积2||||2||CAM S S CA AM MA ==⋅==△ 要使四边形MACB 面积最小,则需||CM 最小,此时CM 与直线l 垂直. 直线CM 的方程为11(x 1)2y -=- ,即11.22y x =+联立112222y x y x ⎧=+⎪⎨⎪=--⎩,解得(1,0)M -则以CM 为直径的圆的方程为2215()24x y +-=, 联立222215(),24(1)(1)4x y x y ⎧+-=⎪⎨⎪-+-=⎩消去二次项可得直线AB 的方程为210x y ++=, 故答案为:210x y ++=【点睛】关键点点睛:根据四边形的面积表达式可以看出要使四边形MACB 面积最小,则需||CM 最小,此时CM 与直线l 垂直,此时所做圆的直径为CM ,写出圆的方程,两圆方程相减即可求出过AB 的直线方程.17.【分析】根据题意设直线的方程是代入点求得的值即可求解【详解】由题意所求直线垂直于直线设直线的方程是又由直线过点代入可得解得故的方程是【点睛】与直线平行的直线方程可;与直线垂直的直线方程可 解析:3270x y -+=【分析】根据题意,设直线l 的方程是320x y c -+=,代入点(1,2)P -,求得c 的值,即可求解. 【详解】由题意,所求直线l 垂直于直线2310x y , 设直线l 的方程是320x y c -+=,又由直线l 过点(1,2)P -,代入可得340c --+=,解得7c =, 故l 的方程是3270x y -+=. 【点睛】与直线220(0)Ax By C A B ++=+≠平行的直线方程可0()Ax By n n c ++=≠;与直线220(0)Ax By C A B ++=+≠垂直的直线方程可0Bx Ay M -+=。
高中数学-《直线与圆的位置关系》单元测试题
高中数学-《直线与圆的位置关系》单元测试题高中数学-《直线与圆的位置关系》单元测试题班级:__________姓名:__________成绩:__________ 一.选择题(每题5分,共12题,共60分)1.直线3x + 4y + 12 = 0 与圆(x + 1)^2 + (y + 1)^2 = 9的位置关系是A。
过圆心 B。
相切 C。
相离 D。
相交2.直线l将圆x^2 + y^2 - 2x - 4y = 0 平分,且与直线x + 2y = 0 垂直,则直线l的方程为A。
y = 2x B。
y = 2x - 2 C。
y = x + 1 D。
y = x - 13.若圆C半径为1,圆心在第一象限,且与直线4x - 3y = 0 和x轴都相切,则该圆的标准方程是A。
(x - 2)^2 + (y - 1)^2 = 1 B。
(x - 2)^2 + (y + 1)^2 = 1 C。
(x + 2)^2 + (y - 1)^2 = 1 D。
(x - 3)^2 + (y - 1)^2 = 14.若直线ax + by = 1与圆x^2 + y^2 = 1相交,则点P(a,b)的位置是A。
在圆上 B。
在圆外 C。
在圆内 D。
都有可能5.由直线y = x + 1上的一点向圆(x - 3)^2 + y^2 = 1引切线,则切线长的最小值为A。
1 B。
2 C。
3 D。
46.圆x^2 + y^2 + 2x + 4y - 3 = 0 上到直线l:x + y + 1 = 0的距离为2的点有A。
1个 B。
2个 C。
3个 D。
4个7.两圆x^2 + y^2 - 6x = 0 和x^2 + y^2 + 8y + 12 = 0 的位置关系是A。
相离 B。
外切 C。
相交 D。
内切8.两圆x + y = r,(x-3)+(y+1)=r外切,则正实数r的值是A。
10 B。
5 C。
2 D。
229.半径为6的圆与x轴相切,且与圆x+(y-3)^2=1内切,则此圆的方程是A。
2022年精品解析冀教版九年级数学下册第二十九章直线与圆的位置关系课时练习试卷(含答案解析)
九年级数学下册第二十九章直线与圆的位置关系课时练习考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,一把宽为2cm的刻度尺(单位:cm),放在一个圆形茶杯的杯口上,刻度尺的一边与杯口外沿相切,另一边与杯口外沿两个交点处的读数恰好是2和10,茶杯的杯口外沿半径为()A.10cm B.8cm C.6cm D.5cm2、如图,AB是⊙O的直径,点M在BA的延长线上,MA=AO,MD与⊙O相切于点D,BC⊥AB交MD的延长线于点C,若⊙O的半径为2,则BC的长是()A .4B .C .D .33、如图,BE 是⊙O 的直径,点A 和点D 是⊙O 上的两点,过点A 作O 的切线交BE 延长线于点C ,若∠ADE =36°,则∠C 的度数是( )A .18°B .28°C .36°D .45°4、矩形ABCD 中,AB =8,BC =4,点P 在边AB 上,且AP =3,如果⊙P 是以点P 为圆心,PD 为半径的圆,那么下列判断正确的是( )A .点B 、C 均在⊙P 内B .点B 在⊙P 上、点C 在⊙P 内 C .点B 、C 均在⊙P 外D .点B 在⊙P 上、点C 在⊙P 外5、如图,面积为18的正方形ABCD 内接于⊙O ,则⊙O 的半径为( )A .32 BC .3D .6、下列四个命题中,真命题是( )A .相等的圆心角所对的两条弦相等B .三角形的内心是到三角形三边距离相等的点C .平分弦的直径一定垂直于这条弦D .等弧就是长度相等的弧7、下面四个结论正确的是( )A .度数相等的弧是等弧B .三点确定一个圆C .在同圆或等圆中,圆心角是圆周角的2倍D .三角形的外心到三角形的三个顶点的距离相等8、在Rt ABC 中,90C ∠=︒,3AC =cm ,4BC =cm .以C 为圆心,r 为半径的C 与直线AB 相切.则r 的取值正确的是( )A .2cmB .2.4cmC .3cmD .3.5cm9、如图,P 为正六边形ABCDEF 边上一动点,点P 从点D 出发,沿六边形的边以1cm/s 的速度按逆时针方向运动,运动到点C 停止.设点P 的运动时间为()s x ,以点P 、C 、D 为顶点的三角形的面积是()2cm y ,则下列图像能大致反映y 与x 的函数关系的是( )A .B .C .D .10、已知O 是正六边形ABCDEF 的外接圆,正六边形ABCDEF 扇形OAC 围成一个圆锥的侧面,则该圆锥的底面圆的半径为( )A.1 B.13C.23D.43第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在△ABC中,AB=AC BC=2,以点A为圆心作圆弧,与BC相切于点D,且分别交边AB,AC于点EF,则扇形AEF的面积为 _____.(结果保留π)2、如图,在矩形ABCD中,F是边AD上的点,经过A,B,F三点的O与CD相切于点E.若6AB=,2FD=,则O的半径是__________.3、如图,点A,B,C均在66⨯的正方形网格格点上,过A,B,C三点的外接圆除经过A,B,C 三点外还能经过的格点数为_________.4、如图,在ABC 中,90ACB ∠=︒,BE 平分ABC ∠,CF 平分ACB ∠,CF ,BE 交于点P ,4AC =cm ,3BC =cm ,5AB =cm ,则CPB △的面积为_______cm 2.5、⊙O 的半径为3cm ,如果圆心O 到直线l 的距离为d ,且d =5cm ,那么⊙O 和直线l 的位置关系是____________.三、解答题(5小题,每小题10分,共计50分)1、如图,点E 是ABC 的内心,AE 的延长线交BC 于点F ,交ABC 的外接圆O 点D .过D 作直线DM BC ∥.(1)求证:DM 是O 的切线;(2)求证:DE BD =;(3)若DE =8BC =,求O 的半径.2、如图,已知AB是O的直径,点C在O上,点E在O外.(1)动手操作:作ACB∠的角平分线CD,与圆交于点D(要求:尺规作图,不写作法,保留作图痕迹)∠=∠,求证:AE是O的切线.(2)综合运用,在你所作的图中.若EAC ADC3、如图,⊙O是ABC的外接圆,∠ABC=45°,OC∥AD,AD交BC的延长线于D,AB交OC于E.(1)求证:AD是⊙O的切线;(2)若AE=CE=2,求⊙O的半径和线段BC的长.4、苏科版教材八年级下册第94页第19题,小明在学过圆之后,对该题进行重新探究,请你和他一起完成问题探究.【问题探究】小明把原问题转化为动点问题,如图1,在边长为6cm的正方形ABCD中,点E从点A 出发,沿边AD向点D运动,同时,点F从点B出发,沿边BA向点A运动,它们的运动速度都是2cm/s,当点E运动到点D时,两点同时停止运动,连接CF、BE交于点M,设点E,F运动时问为t 秒.(1)【问题提出】如图1,点E ,F 分别在方形ABCD 中的边AD 、AB 上,且BE CF =,连接BE 、CF 交于点M ,求证:BE CF ⊥.请你先帮小明加以证明.(2)如图1,在点E 、F 的运动过程中,点M 也随之运动,请直接写出点M 的运动路径长 cm .(3)如图2,连接CE ,在点E 、F 的运动过程中.①试说明点D 在△CME 的外接圆O 上; ②若①中的O 与正方形的各边共有6个交点,请直接写出t 的取值范围.5、如图,在Rt ABC △中,90ACB ∠=︒,BO 平分ABC ∠,交AC 于点O ,以点O 为圆心,OC 长为半径画O .(1)求证:AB 是O 的切线;(2)若3AO =,1tan 3OBC ∠=,求O 的半径.-参考答案-一、单选题1、D【解析】【分析】作OD ⊥AB 于C ,OC 的延长线交圆于D ,其中点O 为圆心,OA OB ,为半径,2CD =cm ,8AB =cm ;设茶杯的杯口外沿半径为r ,在Rt AOC △中,由勾股定理知r =【详解】解:作OD ⊥AB 于C ,OC 的延长线交圆于D ,其中点O 为圆心,OA OB ,为半径,由题意可知2CD =cm ,8AB =cm ;∵⊥OD AB∴AC =BC =4cm ,设茶杯的杯口外沿半径为r则在Rt AOC △中,由勾股定理知r =解得=5r故选D .【点睛】本题考查了垂径定理,切线的性质,勾股定理的应用.解题的关键在于将已知线段长度转化到一个直角三角形中求解计算.2、B【解析】【分析】连接OD,求出BC是⊙O的切线,根据切线长定理得出CD=BC,根据切线的性质求出∠ODM=90°,根据勾股定理求出MD,再根据勾股定理求出BC即可.【详解】解:连接OD,∵MD切⊙O于D,∴∠ODM=90°,∵⊙O的半径为2,MA=AO,AB是⊙O的直径,∴MO=2+2=4,MB=4+2=6,OD=2,由勾股定理得:MD∵BC⊥AB,∴BC切⊙O于B,∵DC切⊙O于D,∴CD=BC,设CD=CB=x,在Rt△MBC中,由勾股定理得:MC2=MB2+BC2,即(x)2=62+x2,解得:x=即BC=故选:B.【点睛】本题考查了切线的性质和判定,圆周角定理,勾股定理等知识点,能综合运用定理进行推理是解此题的关键.3、A【解析】【分析】连接OA,DE,利用切线的性质和角之间的关系解答即可.【详解】解:连接OA,DE,如图,∵AC是O的切线,OA是O的半径,∴OA⊥AC∴∠OAC=90°∠ADE=36°∴∠AOE=2∠ADE=72°∴∠C=90°-∠AOE=90°-72°=18°故选:A.本题考查了圆周角定理,切线的性质,能求出∠OAC和∠AOC是解题的关键.4、D【解析】【分析】如图所示,连接DP,CP,先求出BP的长,然后利用勾股定理求出PD的长,再比较PC与PD的大小,PB与PD的大小即可得到答案.【详解】解:如图所示,连接DP,CP,∵四边形ABCD是矩形,∴∠A=∠B=90°,∵AP=3,AB=8,∴BP=AB-AP=5,∵5PD==,∴PB=PD,>=,∴PC PB PD∴点C在圆P外,点B在圆P上,故选D.本题主要考查了点与圆的位置关系,勾股定理,矩形的性质,熟知用点到圆心的距离与半径的关系去判断点与圆的位置关系是解题的关键.5、C【解析】【分析】连接OA 、OB ,则OAB 为等腰直角三角形,由正方形面积为18,可求边长为2=18AB ,进而通过勾股定理,可得半径为3.【详解】解:如图,连接OA ,OB ,则OA =OB ,∵四边形ABCD 是正方形,∴90AOB ∠=︒,∴OAB 是等腰直角三角形,∵正方形ABCD 的面积是18,∴2=18AB ,∴222+18OA OB AB ==,即:2218OA =∴3OA =故选C .【点睛】本题考查了正多边形和圆、正方形的性质等知识,构造等腰直角三角形是解题的关键.6、B【解析】【分析】利用圆的有关性质及定理、三角形的内心的性质、垂径定理等知识分别判断后即可确定正确的选项.【详解】解:A、同圆或等圆中,相等的圆心角所对的两条弦相等,则原命题是假命题,故本选项不符合题意;B、三角形的内心是到三角形三边距离相等的点,是真命题,故本选项符合题意;C、平分弦(不是直径)的直径一定垂直于这条弦,则原命题是假命题,故本选项不符合题意;D、等弧是能够完全重合的弧,长度相等的弧不一定是等弧,则原命题是假命题,故本选项不符合题意;故选:B【点睛】本题主要考查了命题与定理的知识,解题的关键是了解圆的有关性质及定理、三角形的内心的性质、垂径定理等知识,难度不大.7、D【解析】【分析】根据圆的有关概念、确定圆的条件、圆周角定理及三角形的外心的性质解得即可.【详解】解:A、在同圆或等圆中,能完全重合的弧才是等弧,故错误;B、不在同一直线上的三点确定一个圆,故错误;C、在同圆或等圆中,同弧或等弧所对的圆心角是圆周角的2倍,故错误;D、三角形的外心到三角形的三个顶点的距离相等,故正确;故选D.【点睛】本题考查了圆的有关的概念,属于基础知识,必须掌握.8、B【解析】【分析】如图所示,过C作CD⊥AB,交AB于点D,在直角三角形ABC中,由AC与BC的长,利用勾股定理求出AB的长,利用面积法求出CD的长,即为所求的r.【详解】解:如图所示,过C作CD⊥AB,交AB于点D,在Rt△ABC中,AC=3cm,BC=4cm,根据勾股定理得:AB(cm),∵S△ABC=12BC•AC=12AB•CD,∴12×3×4=12×10×CD,解得:CD=2.4,则r=2.4(cm).故选:B .【点睛】此题考查了切线的性质,勾股定理,以及三角形面积求法,熟练掌握切线的性质是解本题的关键.9、A【解析】【分析】设正六边形ABCDEF 的边长为1,当P 在DE 上时,过P 作PH CD ⊥于,H 而120,,CDP PD x 求解此时的函数解析式,当P 在EF 上时,延长,CD FE 交于点,M 过P 作PQ CD ⊥于,Q 并求解此时的函数解析式,当P 在AF 上时,连接,,AC CF 并求解此时的函数解析式,由正六边形的对称性可得:P 在AB 上的图象与P 在EF 上的图象是对称的,P 在BC 上的图象与P 在DE 上的图象是对称的,从而可得答案.【详解】解:设正六边形ABCDEF 的边长为1,当P 在DE 上时,过P 作PH CD ⊥于,H 而120,,CDP PD x60,PDH 3sin 60,2PH PD x11331,2224y CD PH x x 当P 在EF 上时,延长,CD FE 交于点,M 过P 作PQ CD ⊥于,Q同理:120,CDE FED60,EDM DEM则DEM△为等边三角形,60,1,, EMD EM ED PM PE EM PE ED x3sin60,2PQ PM x11331,2224y CD PQ x x当P在AF上时,连接,,AC CF由正六边形的性质可得:120,,ABC BAF AFE BA BC118012030,1203090,2BAC CAF由正六边形的对称性可得:160,2AFC AFE而1,AFtan603,AC AF11313,222y CD AC由正六边形的对称性可得:P在AB上的图象与P在EF上的图象是对称的,P在BC上的图象与P在DE上的图象是对称的,所以符合题意的是A,故选A【点睛】本题考查的是动点问题的函数图象,锐角三角函数的应用,正多边形的性质,清晰的分类讨论是解本题的关键.10、C【解析】【分析】根据边心距求得外接圆的半径为2,根据圆锥的底面圆周长等于扇形的弧长,计算圆锥的半径即可.【详解】如图,过点O作OG⊥AF,垂足为G,∵正六边形ABCDEF∴∠AOG=30°,OG∴OA=2AG,∴2243-=,GA GA解得GA=1,∴OA=2,设圆锥的半径为r ,根据题意,得2πr =1202180π⨯⨯, 解得r =23,故选C .【点睛】本题考查了扇形的弧长公式,圆锥的侧面积,熟练掌握弧长公式,圆锥的侧面积公式是解题的关键.二、填空题1、4π##14π 【解析】【分析】先判断出△ABC 是等腰直角三角形,从而连接AD ,可得出AD =1,直接代入扇形的面积公式进行运算即可.【详解】解:∵AB =AC BC =2,∴AB 2+AC 2=BC 2,∴△ABC 是等腰直角三角形,∴∠BAC =90°,连接AD ,则AD =12BC =1,则S 扇形AEF =29013604ππ⨯=. 故答案为:4π.【点睛】本题考查了扇形的面积计算、勾股定理的逆定理及等腰直角三角形的性质,直角三角形斜边上的中线等于斜边的一半,难度一般,解答本题的关键是得出AD的长度及∠BAC的度数.2、134##134【解析】【分析】连接EO,并延长交圆于点G,在Rt△DEF中求出EF的值,再证明△DEF∽△FGE,然后根据相似三角形的性质即可求解.【详解】解:连接EO,并延长交圆于点G,∵四边形ABCD是矩形,∴CD=6AB ,∠D=90°,∵O与CD相切于点E,∴OE⊥CD,再结合矩形的性质可得:∴DE=CE=3.∵2FD=,∴EF∵O与CD相切于点E,∴∠GED=90°.∵GE是直径,∴∠GFE=90°,∴∠DEF+∠GEF=90°,∠EGF+∠GEF=90°,∴∠DEF=∠EGF.∵∠D=∠∠GFE=90°,∴△DEF∽△FGE,∴DF EFEF GE=,,∴GE=132,∴O的半径是134,故答案为;134.【点睛】本题考查了矩形的性质,勾股定理,切线的性质,以及相似三角形的判定与性质,熟练掌握相似三角形的判定与性质是解答本题的关键.3、5【解析】【分析】根据圆的确定方法做出过A ,B ,C 三点的外接圆,从而得出答案.【详解】如图,分别作AB 、BC 的中垂线,两直线的交点为O ,以O 为圆心、OA 为半径作圆,则⊙O 即为过A ,B ,C 三点的外接圆,由图可知,⊙O 还经过点D 、E 、F 、G 、H 这5个格点,故答案为5.【点睛】此题考查了确定圆的方法,三角形的外接圆,解题的关键是根据题意确定三角形ABC 外接圆的圆心. 4、1.5【解析】【分析】根据BE 平分ABC ∠,CF 平分ACB ∠,CF ,BE 交于点P ,得出点P 是ABC ∆的内心,并画出ABC ∆的内切圆,再根据切线长定理列出方程组,求出BCP ∆的边BC 上的高,进而求出其面积.【详解】解:BE 平分ABC ∠,CF 平分ACB ∠,CF ,BE 交于点P ,∴点P 是ABC ∆的内心.如图,画出ABC ∆的内切圆,与BC 、AC 、AB 分别相切于点G 、M 、N ,且连接PG ,设CG x =,BG y =,AF z =,得方程组:354x y y z z x +=⎧⎪+=⎨⎪+=⎩解得:123x y z =⎧⎪=⎨⎪=⎩, 1PG x ∴==,CPB ∴∆的面积21131 1.5()22BC PG cm =⨯⨯=⨯⨯=. 故答案为:1.5.【点睛】此题主要考查三角形内切圆的应用,解题的关键是熟知三角形内切圆的性质,根据其性质列出方程组求解.5、相离【解析】【分析】根据直线和圆的位置关系的判定方法判断即可.【详解】解:∵⊙O 的半径为3cm ,圆心O 到直线l 的距离为d =5cm ,∴d >r ,∴直线l 与⊙O 的位置关系是相离,故答案为:相离.【点睛】本题考查了直线和圆的位置关系的应用,注意:已知⊙O的半径为r,如果圆心O到直线l的距离是d,当d>r时,直线和圆相离,当d=r时,直线和圆相切,当d<r时,直线和圆相交.三、解答题1、 (1)见解析(2)见解析(3)⊙O的半径为5.【解析】【分析】(1)连接OD交BC于H,根据圆周角定理和切线的判定即可证明;(2)连接BD,由点E是△ABC的内心,得到∠ABE=∠CBE,∠DBC=∠BAD,推出∠BED=∠DBE,根据等角对等边得到BD=DE;(3)根据垂径定理和勾股定理即可求出结果.(1)证明:连接OD交BC于H,如图,∵点E是△ABC的内心,∴AD平分∠BAC,即∠BAD=∠CAD,∴BD CD=,∴OD⊥BC,BH=CH,∵DM∥BC,∴OD⊥DM,∴DM是⊙O的切线;(2)证明:∵点E是△ABC的内心,∴∠ABE=∠CBE,∵BD CD=,∴∠DBC=∠BAD,∴∠DEB=∠BAD+∠ABE=∠DBC+∠CBE=∠DBE,即∠BED=∠DBE,∴BD=DE;(3)解:设⊙O的半径为r,连接OD,OB,如图,由(1)得OD⊥BC,BH=CH,∵BC=8,∴BH=CH=4,∵DE BD=DE,∴BD在Rt△BHD中,BD2=BH2+HD2,∴(2=42+HD2,解得:HD=2,在Rt△BHO中,r2=BH2+(r-2)2,解得:r=5.∴⊙O的半径为5.【点睛】本题考查了三角形的内心,切线的判定与性质,三角形的外接圆与外心,圆周角定理,垂径定理,解决本题的关键是综合运用以上知识.2、 (1)作图见解析(2)证明见解析【解析】【分析】(1)如图,以点C为圆心BC为半径画弧交AC于点M;以B、M为圆心,大于1BM为半径画弧,交点2为N,连接CN交O于点D即可.∠=∠,(2)连接AD,9090,,,EAC ADC∠=∠∠=︒∠+∠=︒ADC ABC ACB ABC BACBAE∠=︒,AB为直径,进而可得AE是O的切线.,,90EAC ABC EAC BAC90∠=∠∠+∠=︒(1)解:如图,以点C为圆心BC为半径画弧交AC于点M;以B、M为圆心,大于1BM为半径画弧,交点2为N,连接CN交O于点D.(2)解:连接AD,如图∵AC AC AB=,为直径∴9090,,ADC ABC ACB ABC BAC∠=∠∠=︒∠+∠=︒∠=∠∵EAC ADC∴90EAC ABC EAC BAC ∠=∠∠+∠=︒,∴90BAE ∠=︒又∵AB 为直径∴AE 是O 的切线.【点睛】本题考查了角平分线的画法,圆周角,切线的判定等知识.解题的关键在于对知识的灵活熟练的运用.3、 (1)见解析(2)4 【解析】【分析】(1)连接OA .由AD OC ∥及圆周角定理求出∠OAD =90°,即可得到结论;(2)设⊙O 的半径为R ,在Rt △OAE 中,勾股定理求出R , 延长CO 交⊙O 于F ,连接AF ,证明△CEB ∽△AEF ,得到AE AF CE BC=,由此求出⊙O 的半径和线段BC 的长. (1)证明:连接OA .∵AD OC ∥,∴∠AOC +∠OAD =180°,∵∠AOC =2∠ABC =2×45°=90°,∴∠OAD =90°,∴OA ⊥AD ,∵OA 是半径,∴AD 是⊙O 的切线.(2)解:设⊙O 的半径为R ,则OA =R ,OE =R -2.在Rt △OAE 中,222AO OE AE +=,∴222(2)R R +-=,解得14R =或22R =-(不合题意,舍去),延长CO 交⊙O 于F ,连接AF ,∵∠AEF =∠CEB ,∠B =∠AFE ,∴△CEB ∽△AEF , ∴AE AF CE BC=, ∵CF 是直径,∴CF =8,∠CAF =90°,又∵∠F =∠ABC =45°,∴∠F =∠ACF =45°,∴AF =BC=∴BC . .【点睛】此题考查了证明直线是圆的切线,勾股定理,相似三角形的判定及性质,直径所对的圆周角是直角的性质,等腰直角三角形的性质,正确作出辅助线解题是解题的关键.4、 (1)见解析 (2)32π (3)①见解析;②304t <<【解析】【分析】 (1)根据正方形的性质以及动点的路程相等,证明BAE CBF ≌△△,根据同角的余角相等,即可证明90MBC ∠=︒,即BE CF ⊥;(2)当t =0时,点M 与点B 重合,当3t =时,M 点随之停止,求得运动轨迹为14圆,根据弧长公式进行计算即可;(3)①根据(2)可得△CME 的外接圆的圆心O 是斜边CE 的中点,继而判断点D 、C 、M 、E 在同一个圆(O )上;②当O 与AB 相切时,O 与正方形的各边共有5个交点,如图5则有6个交点,所以“当O 与AB 相切时”是临界情况.如图4,当O 与AB 相切(切点为G ),连接OG ,并延长GO 交CD 于点H ,在Rt △CHO 中求得半径R ,进而勾股定理求得3t 4=,即可求得当304t <<时,O 与正方形的各边共有6个交点. (1)四边形ABCD是正方形,AB BC∴=,BAE CBF∠=∠又,E F的运动速度都是2cm/s,2AE BF t∴==BAE CBF∴≌BCF ABE∴∠=∠90ABE EBC ABC∠+∠=∠=︒90BCF EBC∴∠+∠=︒90MBC∴∠=︒即BE CF⊥(2)∵90CMB∠=.∴点M在以CB为直径的圆上,如图1,当t=0时,点M与点B重合;如图2,当t=3时,点M为正方形对角线的交点.点M的运动路径为14圆,其路径长13642ππ⨯=.故答案为:3 2π(3)①如图3.由前面结论可知:90CME∠=∴△CME的外接圆的圆心O是斜边CE的中点,则12OM OC OE CE ===在Rt △CDE 中,90D ∠=,O 是CE 的中点. ∴12OD CE =,∴OM OC OE OD ===∴点D 、C 、M 、E 在同一个圆(O )上,即点D 在△CME 的外接圆O 上;. ②304t <<.如图4,当O 与AB 相切时,O 与正方形的各边共有5个交点,如图5则有6个交点,所以“当O 与AB 相切时”是临界情况. 如图4,当O 与AB 相切(切点为G ),连接OG ,并延长GO 交CD 于点H .∵AB 与O 相切,∴OG AB ⊥,又∵AB CD ∥,∴OH CD ⊥,132CH DC ∴== 设O 的半径为R .由题意得:在Rt △CHO 中,2223(6)R R +-=,解得154R =∴159,22CE DE === ∴32AE =,即3t 4= ∴如图5,当304t <<时,O 与正方形的各边共有6个交点.【点睛】本题考查了求弧长,切线的性质,直径所对的圆周角是直角,三角形的外心,正方形的性质,全等三角形的性质与判定,分类讨论是解题的关键.5、 (1)见解析(2)2.4.【解析】【分析】(1)过O 作OD ⊥AB 交AB 于点D ,先根据角平分线的性质求出DO =CO ,再根据切线的判定定理即可得出答案;(2)设圆O 的半径为r ,即OC =r ,由1tan 3OBC ∠=得BC =3r ,由勾股定理求得AD ,AB =3r +222(3(3)(3)r r r =++求解即可.(1)如图所示:过O 作OD ⊥AB 交AB 于点D .∵OC ⊥BC ,且BO 平分∠ABC ,∴OD =OC ,∵OC 是圆O 的半径∴AB 与圆O 相切.(2)设圆O 的半径为r ,即OC =r , ∵1tan 3OBC ∠= ∴13OC r BC BC == ∴=3BC r∵OC ⊥BC ,且OC 是圆O 的半径∴BC 是圆O 的切线,又AB 是圆O 的切线,∴BD =BC =3r在Rt OAD ∆中,3OD r AO ==,∴AD =∴3AB r =在Rt ABC ∆中,222AB BC AC =+∴222(3(3)(3)r r r =++整理得,253360r r +-=解得,1 2.4r =,23r =-(不合题意,舍去)∴O 的半径为2.4【点睛】此题主要考查了复杂作图以及切线的判定等知识,正确把握切线的判定定理是解题关键.。
数学人教版九年级上册直线和圆的位置关系第1课时练习
直线和圆的位置关系(一)练习姓名1.如图,∠AOB =30°,P 为射线OA 上的点,且OP =5,若以P 为圆心,r 为半径的圆与射线OB 有唯一一个公共点,则⊙P 的半径r 的取值范围是( ).A 、r =5B 、r =2.5C 、2.5≤r <5D 、r =2.5或r >52.直线l 与半径为r 的⊙O 相交,且点O 到直线l 的距离为5,则r 的取值范围是( ).A 、r >5B 、r =5C 、0<r <5D 、0<r ≤53.OA 平分∠BOC ,P 是OA 上任意一点(O 除外),若以P 为圆心的⊙P 与OC 相离,那么⊙P 与OB 的位置关系是( ).A 、相离B 、相切C 、相交D 、相交或相切 4.⊙O 在直径是8,直线l 和⊙O 有公共点,圆心O 到直线l 的距离是d ,则d的取值范围是( ).A 、d >8B 、4<d <8C 、0≤d ≤4D 、d >05. 菱形对角线的交点为O ,以O 为圆心,以点O 到菱形一边的距离为半径的圆与其它几边的关系为( ).A 、相交B 、相离C 、相切D 、不能确定6.已知⊙O 的面积为9πcm 2,若点O 到直线l 的距离为πcm ,则直线l 与⊙O 的位置关系是( ). A 、相交 B 、相离 C 、相切 D 、不能确定7.如图,⊙O 的圆心O 到直线l 的距离为3cm ,⊙O 的半径为1cm ,将直线l 向右(垂直于l 的方向)平移,使l 与⊙O 相切,则直线l 平移的距离是( ).A 、1cmB 、2cmC 、4cmD 、2cm 或4cm 8.如图,在平面直角坐标系中,⊙O 的半径为1,则直线y x =O 的位置关系是( ).A 、相交B 、相离C 、相切D 、以上三种都有可能9.一条直线到半径为3的圆的圆心的距离是方程2430x x -+=的一个解,那么这条直线与这个圆的位置关系是 .10.已知⊙O 的圆心O 到直线l 的距离为d ,⊙O 的半径为r ,若d 与r 是方程260x x k -+=的两个根,当直线l 与⊙O 相切时,k 的值是 .11.将下题的解答过程补充完整,并进行小结.题目:在Rt △ABC 中,AC =3cm ,BC =4cm ,∠ACB =90°.以C 为圆心,r 为半径作圆.当r 分别取下列各值时,所作的⊙C 分别与AB 有什么样的位置关系?为什么?(1)r =2cm ;(2)r =2.4cm ;(3)r =3cm.解:如图,过点C 作CD ⊥AB 于点D.在Rt △ABC 中,∵AC =3cm ,BC =4cm ,∴由勾股定理,可得AB = cm.又∵ABC 11S AB CD AC BC 22∆=⋅=⋅, ∴AC BC CD AB ⋅== ,即圆心C 到AB 的距离d = cm. (1)当r =2cm 时,有 ,∴AB 与⊙C ;(2)当r =2.4cm 时,有 ,∴AB 与⊙C ;(3)当r =3cm 时,有 ,∴AB 与⊙C .方法总结:确定直线与圆的位置的关键在于求 .D C B A12.如图,在△ABC 中,AB =AC =4cm ,∠BAC =120°,以底边BC 的中点O 为圆心,下列r 为半径的⊙O 与AB 有怎样的位置关系?说明理由.13.如图,⊙P 的半径为2,圆心P 在函数6y x(x >0)的图象上运动. (1)当⊙P 与x 轴相切时,求点P 的坐标;(2)当⊙P 与坐标轴相离时,点P 的横坐标x 的取值范围是什么?。
人教版九年级数学上册《直线和圆的位置关系》同步练习
积相等,得 AB·CD=AC·BC.
∴CD= 6 8 =4.8. 10
答案:D 4.⊙O 内最长弦长为 m,直线 l 与⊙O 相离,设点 O 到 l 的距离为 d,则 d 与 m 的关系
是()
A.d=m
B.d>m
C.d> m 2
D.d< m 2
思路解析:最长弦即为直径,所以⊙O 的半径为 m ,故 d> m .
图 24-2-2-9 思路分析:从圆外一点引圆的两条切线,可证切线长相等,则可将四边形 CDFP 的周长转化 为正方形边长的 3 倍. 解:∵四边形 ABCD 是正方形,∴∠A=∠B=90°. ∴AF、BP 都是⊙O 的切线. 又∵PF 是⊙O 的切线, ∴FE=FA,PE=PB. ∴四边形 CDFP 的周长为 AD+DC+CB=2×3=6. 6.如图 24-2-2-10 所示,已知 AB 为半圆 O 的直径,直线 MN 切半圆于点 C,AD⊥MN 于点 D, BE⊥MN 于点 E,BE 交半圆于点 F,AD=3 cm,BE=7 cm, (1)求⊙O 的半径; (2)求线段 DE 的长.
2
2
答案:C
5.以三角形的一边长为直径的圆切三角形的另一边,则该三角形为( )
A.锐角三角形
B.直角三角形
C.钝角三角形
D.等边三角形
思路解析:直径边必垂直于相切边.
答案:B
6.(北京模拟)如图 24-2-2-2,PA、PB 是⊙O 的两条切线,切点是 A、B.如
果 OP=4,PA=23,那么∠AOB 等于( )
图 24-2-2-3 观察上述图形,连结图 24-2-2-3(2)中已标明字母的某两点,得到一条新线段,证明它与线
段 CE 相等;
连结
第2章 直线与圆的位置关系 单元测试卷 2021-2022学年浙教版数学九年级下册( 含答案)
2021-2022学年浙教新版九年级下册数学《第2章直线与圆的位置关系》单元测试卷一.选择题(共10小题,满分30分)1.已知⊙O的半径为3,圆心O到直线l的距离为2,则直线l与⊙O的位置关系是()A.相交B.相切C.相离D.不能确定2.在Rt△ABC中,∠C=90°,AC=3cm,BC=4cm,以C为圆心,2.4cm长为半径的圆与AB的位置关系是()A.相切B.相交C.相离D.不能确定3.如图,在平面直角坐标系xOy中,直线AB过点A(﹣3,0),B(0,3),⊙O 的半径为1(O为坐标原点),点P在直线AB上,过点P作⊙O的一条切线PQ,Q为切点,则切线长PQ的最小值为()A.B.2C.3D.4.如图,已知AB、AC分别为⊙O的直径和弦,D为弧BC的中点,DE垂直于AC,交AC 的延长线于E,连接BC,若DE=6cm,CE=2cm,下列结论正确的是()①DE是⊙O的切线;②直径AB长为20cm;③弦AC长为15cm;④C为弧AD的中点.A.①②④B.①③④C.①②D.②③5.如图,AB为⊙O的直径,C、D为⊙O上的点,直线MN切⊙O于C点,图中与∠BCN 互余的角有()A.1个B.2个C.3个D.4个6.如图,PA,PB切⊙O于A、B两点,CD切⊙O于点E,交PA,PB于C,D.若△PCD 的周长等于3,则PA的值是()A.B.C.D.7.如图,PA、PB切⊙O于点A、B,直线FG切⊙O于点E,交PA于F,交PB于点G,若PA=8cm,则△PFG的周长是()A.8cm B.12cm C.16cm D.20cm8.如图,P为⊙O的直径BA延长线上的一点,PC与⊙O相切,切点为C,点D是⊙O上一点,连接PD.已知PC=PD=BC.下列结论:(1)PD与⊙O相切;(2)四边形PCBD是菱形;(3)PO=AB;(4)∠PDB=120°.其中正确的个数为()A.4个B.3个C.2个D.1个9.如图,已知AB、AC分别为⊙O的直径和弦,D为的中点,DE垂直于AC的延长线于E,连接BC,若DE=6cm,CE=2cm,下列结论一定错误的是()A.DE是⊙O的切线B.直径AB长为20cmC.弦AC长为16cm D.C为的中点10.已知⊙O的半径为5cm,点O到同一平面内直线l的距离为6cm,则直线l与⊙O的位置关系是()A.相交B.相切C.相离D.无法判断二.填空题(共10小题,满分30分)11.已知⊙O半径为5,点O到直线l的距离为3,则直线l与⊙O的位置关系为.12.⊙O的直径为8,圆心O到直线l的距离为4,则直线l与⊙O的位置关系是.13.如图,AB与⊙O相切于点B,AO的延长线交⊙O于点C,连接BC,若∠ABC=120°,OC=3,则弧BC的长为(结果保留π).14.如图,点A、B、D在⊙O上,∠A=25°,OD的延长线交直线BC于点C,且∠OCB =40°,直线BC与⊙O的位置关系为.15.如图,已知半径为1的⊙M经过直角坐标系的原点O,且与x轴、y轴分别交于点A、B,点A的坐标为(,0),⊙M的切线OC与直线AB交于点C.则∠ACO=度.16.如图,小明同学测量一个光盘的直径,他只有一把直尺和一块三角板,他将直尺、光盘和三角板如图放置于桌面上,并量出AB=3cm,则此光盘的直径是cm.17.如图,半圆O的直径AB=10cm,PO=8cm,DC=2PC,则PC=cm.18.如图,在Rt△ABC中,∠C=90°,BC=3,AC=4,D、E分别是AC、BC上的一点,且DE=3,若以DE为直径的圆与斜边AB相交于M、N,则MN的最大值为.19.如图,PA,PB是⊙O的切线,A,B为切点,∠OAB=38°,则∠P=°.20.如图,在平面直角坐标系xOy中,一次函数y=﹣2x+4的图象与x轴、y轴分别交于A、B两点,点P在线段AB上,⊙P与x轴交于A、C两点,当⊙P与y轴相切时,AC的长度是.三.解答题(共7小题,满分60分)21.AB是⊙O的弦,D为半径OA的中点,过D作CD⊥OA交弦AB于点E,交⊙O于点F,且CE=CB.(1)求证:BC是⊙O的切线;(2)连接AF,BF,求∠ABF的度数.22.如图,△ABC内接于⊙O,∠B=60°,点E在直径CD的延长线上,且AE=AC.(1)试判断AE与⊙O的位置关系,并说明理由;(2)若AC=6,求阴影部分的面积.23.如图,AB为⊙O的直径,C为⊙O上一点,AD和过C点的直线互相垂直,垂足为D,且AC平分∠DAB(1)求证:DC为⊙O的切线;(2)若∠DAB=60°,⊙O的半径为3,求线段AC的长24.如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于点D,过点D作DE⊥AC,垂足为点E.(1)求证:△ABD≌△ACD;(2)判断直线DE与⊙O的位置关系,并说明理由.25.如图,PA,PB是⊙O的切线,A,B为切点,AC是⊙O的直径,∠BAC=25°.求∠P的度数.26.如图,OA和OB是⊙O的半径,并且OA⊥OB,P是OA上任一点,BP的延长线交⊙O 于点Q,过点Q的⊙O的切线交OA延长线于点R.(Ⅰ)求证:RP=RQ;(Ⅱ)若OP=PA=1,试求PQ的长.27.如图,已知△ABC,以AB为直径的⊙O交AC于点D,连接BD,∠CBD的平分线交⊙O于点E,交AC于点F,且AF=AB.(1)判断BC所在直线与⊙O的位置关系,并说明理由;(2)若tan∠FBC=,DF=2,求⊙O的半径.参考答案与试题解析一.选择题(共10小题,满分30分)1.解:∵⊙O的半径为3,圆心O到直线l的距离为2,∵3>2,即:d<r,∴直线l与⊙O的位置关系是相交.故选:A.2.解:过C作CD⊥AB于D,在Rt△ACB中,由勾股定理得:AB==5,由三角形面积公式得:×3×4=×5×CD,CD=2.4,即C到AB的距离等于⊙C的半径长,∴⊙C和AB的位置关系是相切,故选:A.3.解:连接OP、OQ.∵PQ是⊙O的切线,∴OQ⊥PQ;根据勾股定理知PQ2=OP2﹣OQ2,∵当PO⊥AB时,线段PQ最短;又∵A(﹣3,0),B(0,3),∴OA=OB=3,∴AB==6,∴OP=AB=3,∴PQ==2.故选:B.4.解:如图,连接OD,交BC于点F,连接OC,∵D为弧BC的中点,∴OD⊥BC,且CF=BF,又∵AB为⊙O的直径,DE⊥AE,∴∠BCE=∠DEC=∠CFD=90°,∴四边形CEDF为矩形,∴OD⊥DE,∴DE为⊙O的切线,故①正确;∴DF=CE=2cm,CF=DE=6cm,∴BC=2CF=12cm,设半径为rcm,则OF=(r﹣2)cm,在Rt△OCF中,由勾股定理可得OC2=OF2+CF2,即r2=(r﹣2)2+62,解得r=10cm,∴AB=20cm,故②正确;在Rt△ABC中,BC=12cm,AB=20cm,∴AC===16(cm),故③不正确;若C为弧AD的中点,则AC=CD,在Rt△CDE中,CE=2cm,DE=6cm,由勾股定理可求得CD=2cm≠AC,故④不正确;综上可知正确的为①②,故选:C.5.解:∵直线MN切⊙O于C点,∴∠BCN=∠BAC,∠ACM=∠D=∠B,∵AB为⊙O的直径,∴∠ACB=90°,∴∠BCN+∠ACM=90°,∠B+∠BCN=90°,∠D+∠BCN=90°.故选:C.6.解:∵PA,PB切⊙O于A、B两点,CD切⊙O于点E,交PA,PB于C,D,∴AC=EC,DE=DB,PA=PB∵△PCD的周长等于3,∴PA+PB=3,∴PA=.故选:A.7.解:根据切线长定理可得:PA=PB,FA=FE,GE=GB;所以△PFG的周长=PF+FG+PG,=PF+FE+EG+PG,=PF+FA+GB+PG,=PA+PB=16cm,故选:C.8.解:(1)连接CO,DO,∵PC与⊙O相切,切点为C,∴∠PCO=90°,在△PCO和△PDO中,,∴△PCO≌△PDO(SSS),∴∠PCO=∠PDO=90°,∴PD与⊙O相切,故(1)正确;(2)由(1)得:∠CPB=∠BPD,在△CPB和△DPB中,,∴△CPB≌△DPB(SAS),∴BC=BD,∴PC=PD=BC=BD,∴四边形PCBD是菱形,故(2)正确;(3)连接AC,∵PC=CB,∴∠CPB=∠CBP,∵AB是⊙O直径,∴∠ACB=90°,在△PCO和△BCA中,,∴△PCO≌△BCA(ASA),∴PO=AB,故(3)正确;(4)∵四边形PCBD是菱形,∠CPO=30°,∴DP=DB,则∠DPB=∠DBP=30°,∴∠PDB=120°,故(4)正确;正确个数有4个,故选:A.9.解:连接OD,OC∵D是弧BC的中点,则OD⊥BC,∴DE是圆的切线.故A正确;∴DE2=CE•AE(连接CD,AD,延长DO交⊙O于T,连接CT,先证明∠EDC=∠T,再证明∠EAD=∠T,可得∠EDC=∠EAD,由∠E=∠E,∠EDC=∠EAD,可得△EDC ∽△EAD,可得结论),即:36=2AE,∴AE=18,则AC=AE﹣CE=18﹣2=16cm.故C正确;∵AB是圆的直径.∴∠ACB=90°,∵DE垂直于AC的延长线于E.D是弧BC的中点,则OD⊥BC,∴四边形CFDE是矩形.∴CF=DE=6cm.BC=2CF=12cm.在直角△ABC中,根据勾股定理可得:AB===20cm.故B正确;在直角△ABC中,AC=16,AB=20,则∠ABC≠30°,而D是弧BC的中点.∴弧AC≠弧CD.故D错误.故选:D.10.解:设圆的半径为r,点O到直线l的距离为d,∵d=6,r=5,∴d>r,∴直线l与圆相离.故选:C.二.填空题(共10小题,满分30分)11.解:∵⊙O的半径为5,圆心O到直线L的距离为3,∵5>3,即:d<r,∴直线L与⊙O的位置关系是相交.故答案为:相交.12.解:∵⊙O的直径为8,∴半径=4,∵圆心O到直线l的距离为4,∴圆心O到直线l的距离=半径∴直线l与⊙O相切.故答案为:相切.13.解:连接OB,∵AB与⊙O相切于点B,∴∠OBA=90°,∴∠OBC=∠ABC﹣∠ABO=30°,∵OB=OC,∴∠C=∠B=30°,∴∠BOC=120°,∴弧BC的长==2π,故答案为:2π.14.解:∵∠BOC=2∠A=50°,∠OCB=40°,∴在△OBC中,∠OBC=180°﹣50°﹣40°=90度.∴直线BC与⊙O相切.15.解:∵AB=2,OA=,∴cos∠BAO==,∴∠OAB=30°,∠OBA=60°;∵OC是⊙M的切线,∴∠BOC=∠BAO=30°,∴∠ACO=∠OBA﹣∠BOC=30°.故答案为:30.16.解:∵∠CAD=60°,∴∠CAB=120°,∵AB和AC与⊙O相切,∴∠OAB=∠OAC,∴∠OAB=∠CAB=60°∵AB=3cm,∴OA=6cm,∴由勾股定理得OB=3cm,∴光盘的直径是6cm.故答案为:6.17.解:∵AB=10cm,∴OA=5cm,∴PA=PO﹣OA=3cm;设PC=x,则DC=2x,PD=3x;根据割线定理得PC•PD=PA•PB,即x•3x=39,x=cm;故PC=cm.18.解:如图,连接OM,作OH⊥AB于H,CK⊥AB于K.∵OH⊥MN,∴MH=HN,∴MN=2MH=2,∵∠DCE=90°,OD=OE,∴OC=OD=OE=OM=,∴欲求MN的最大值,只要求出OH的最小值即可,∵OC=,∴点O的运动轨迹是以C为圆心为半径的圆,在Rt△ACB中,∵BC=3,AC=4,∴AB=5,∵•AB•CK=•AC•BC,∴CK=,当C,O,H共线,且与CK重合时,OH的值最小,∴OH的最小值为﹣=,∴MN的最大值=2=,故答案为.19.解:∵PA,PB是⊙O的切线,∴PA=PB,PA⊥OA,∴∠PAB=∠PBA,∠OAP=90°,∴∠PBA=∠PAB=90°﹣∠OAB=90°﹣38°=52°,∴∠P=180°﹣52°﹣52°=76°;故答案为:76.20.解:∵一次函数y=﹣2x+4的图象与x轴、y轴分别交于A、B两点,∴A(2,0),B(0,4),∴OA=2,OB=4,如图,设⊙P与y轴相切于点D,连接PD,∴PD⊥OB,∵OA⊥OB,∴PD∥OA,∴==,设PD=PC=x,则BD=2x,∴OD=OB﹣BD=4﹣2x,作PE⊥OA于点E,∴四边形OEPD是矩形,∴PD=OE=x,PE=OD=4﹣2x,∴AE=CE=OA﹣OE=2﹣x,∴PC2=PE2+CE2,∴x2=(4﹣2x)2+(2﹣x)2,解得x=,∵>2,不符合题意舍去,∴x=,∵PE⊥AC,根据垂径定理,得AC=2AE=2(2﹣x)=4﹣(5﹣)=﹣1.故答案为:﹣1.三.解答题(共7小题,满分60分)21.(1)证明:连接OB∵OB=OA,CE=CB,∴∠A=∠OBA,∠CEB=∠ABC又∵CD⊥OA∴∠A+∠AED=∠A+∠CEB=90°∴∠OBA+∠ABC=90°∴OB⊥BC∴BC是⊙O的切线.(2)解:连接OF,AF,BF,∵DA=DO,CD⊥OA,∴AF=OF,∵OA=OF,∴△OAF是等边三角形,∴∠AOF=60°∴∠ABF=∠AOF=30°22.(1)证明:连接OA、AD,如图,∵CD为⊙O的直径,∴∠DAC=90°,又∵∠ADC=∠B=60°,∴∠ACE=30°,又∵AE=AC,OA=OD,∴△ADO为等边三角形,∴∠AEC=30°,∠ADO=∠DAO=60°,∴∠EAD=30°,∴∠EAD+∠DAO=90°,∴∠EAO=90°,即OA⊥AE,∴AE为⊙O的切线;(2)解:由(1)可知△AEO为直角三角形,且∠E=30°,∴OA=2,AE=6,∴阴影部分的面积为×6×2﹣=6﹣2π.故阴影部分的面积为6﹣2π.23.(1)证明:连接CO,∵AO=CO,∴∠OAC=∠OCA,∵AC平分∠DAB,∴∠OAC=∠DAC,∴∠DAC=∠OCA,∴CO∥AD,AD⊥CD,∴CO⊥CD,∴DC为⊙O的切线;(2)连接BC,∵AB为⊙O的直径,∴∠ACB=90°,∵∠DAB=60°,AC平分∠DAB,∴∠BAC=∠DAB=30°,∵⊙O的半径为3,∴AB=6,∴AC=AB=3.24.(1)证明:∵AB为⊙O的直径,∴AD⊥BC,在Rt△ADB和Rt△ADC中,∴Rt△ABD≌Rt△ACD(HL);(2)直线DE与⊙O相切,理由如下:连接OD,如图所示:由△ABD≌△ACD知:BD=DC,又∵OA=OB,∴OD为△ABC的中位线,∴OD∥AC,∵DE⊥AC,∴OD⊥DE,∵OD为⊙O的半径,∴DE与⊙O相切.25.解:∵PA、PB是⊙O的切线,∴PA=PB,∴∠PAB=∠PBA,∵AC是⊙O的直径,PA是⊙O的切线,∴AC⊥AP,∴∠CAP=90°,∵∠BAC=25°,∴∠PBA=∠PAB=90°﹣25°=65°,∴∠P=180°﹣∠PAB﹣∠PBA=180°﹣65°﹣65°=50°.26.(Ⅰ)证法一:连接OQ;∵RQ是⊙O的切线,∴∠OQB+∠BQR=90°.∵OA⊥OB,∴∠OPB+∠B=90°.又∵OB=OQ,∴∠OQB=∠B.∴∠PQR=∠BPO=∠RPQ.∴RP=RQ.证法二:作直径BC,连接CQ;∵BC是⊙O的直径,∴∠B+∠C=90°.∵OA⊥OB,∴∠B+∠BPO=90°.∴∠C=∠BPO.又∠BPO=∠RPQ,∴∠C=∠RPQ.又∵RQ为⊙O的切线,∴∠PQR=∠C.∴∠PQR=∠RPQ.∴RP=RQ.(Ⅱ)解法一:作直径AC,∵OP=PA=1,∴PC=3.由勾股定理,得BP==由相交弦定理,得PQ•PB=PA•PC.即PQ×=1×3,∴PQ=.解法二:作直径AE,过R作RF⊥BQ,垂足为F,设RQ=RP=x;由切割线定理,得:x2=(x﹣1),(x+3)解得:x=,又由△BPO∽△RPF得:,∴PF=,由等腰三角形性质得:PQ=2PF=.27.解:(1)BC所在直线与⊙O相切;理由:∵AB为⊙O的直径,∴∠ADB=90°,∵AB=AF,∴∠ABF=∠AFB,∵BF平分∠DBC,∴∠DBF=∠CBF,∴∠ABD+∠DBF=∠CBF+∠C,∴∠ABD=∠C,∵∠A+∠ABD=90°,∴∠A+∠C=90°,∴∠ABC=90°,∴AB⊥BC,∴BC是⊙O的切线;(2)∵BF平分∠DBC,∴∠DBF=∠CBF,∴tan∠FBC=tan∠DBF==,∵DF=2,∴BD=6,设AB=AF=x,∴AD=x﹣2,∵AB2=AD2+BD2,∴x2=(x﹣2)2+62,解得:x=10,∴AB=10,∴⊙O的半径为5.。
浙教版九年级数学下 第二章同步练习 2.1 直线与圆的位置关系
浙教版九年级数学下第二章直线与圆的位置关系同步练习2.1直线与圆的位置关系切线的判定第Ⅰ卷(选择题)一.选择题(共10小题,3*10=30)1. 下列直线中可以判定为圆的切线的是(A)A.与圆有且仅有一个公共点的直线B.经过半径外端的直线C.垂直于圆的半径的直线D.与圆心的距离等于直径的直线2.⊙O的半径是6,点O到直线a的距离为5,则直线a与⊙O的位置关系为()A.相离B.相切C.相交D.内含3.如果一个圆的半径是8cm,圆心到一条直线的距离也是8cm,那么这条直线和这个圆的位置关系是()A.相交B.相切C.相离D.无法确定4. ⊙O的半径r=5 cm,直线l到圆心O的距离d=4,则l与⊙O的位置关系是()A.相离B.相切C.相交D.重合5.已知⊙O的半径为3,直线l上有一点P满足PO=3,则直线l与⊙O的位置关系是() A.相切B.相离C.相离或相切D.相切或相交6. ⊙O的半径为R,直线l和⊙O有公共点,若圆心到直线l的距离是d,则d与R的大小关系是()A.d>R B.d<R C.d≥R D.d≤R7.已知点P(3,4),以点P为圆心,r为半径的圆P与坐标轴有四个交点,则r的取值范围是() A.r>4 B.r>4且r≠5 C.r>3 D.r>3且r≠5OP ,直线l与⊙O的位置关系是()8. 已知⊙O的半径为5,点P在直线l上,且5A.相切B.相交C.相离D.相切或相交9.如图,以点O为圆心的两个同心圆,半径分别为5和3,若大圆的弦AB与小圆相交,则弦长AB 的取值范围是()A.8≤AB≤10B.AB≥8C.8<AB≤10D.8<AB<1010. 若⊙O的半径为R,点O到直线l的距离为d,且d与R是方程x²-4x+m=0的两根,且直线l与⊙O相切,则m的值为()A.1B.2C.3D.4第Ⅱ卷(非选择题)二.填空题(共8小题,3*8=24)11.在Rt△ABC中,∠C=90°,AC=12cm,BC=5cm,以点C为圆心、6cm长为半径作圆,则圆与直线AB的位置关系是________.12. 已知O,圆心O到直线l的距离为1.4cm,则直线l与O的公共点的个数为.13.如图,已知∠AOB=30°,C是射线OB上的一点,且OC=4.若以C为圆心,r为半径的圆与射线OA有两个不同的交点,则r的取值范围是____________.14. 在平面直角坐标内,⊙P的圆心P的坐标为(8,0),半径是6,那么直线y=x与⊙P的位置关系是.15.如图,已知∠AOB=30°,M为OB边上一点,以M为圆心、2 cm为半径作⊙M.若点M在OB 边上运动,则当OM= cm时,⊙M与OA相切.16. 如图,P为正比例函数y=32x图像上的一个动点,⊙P的半径为3,设点P的坐标为(x,y).当⊙P与直线x=2相交时x的取值范围为____________.17.如图,在Rt△ABC中,∠C=90°,斜边AB=8cm,AC=4cm.以点C为圆心作圆,半径为______cm 时,AB与⊙C相切18.在Rt△ABC中,∠C=90°,AC=3,BC=4.若以A为圆心、R为半径所作的圆与线段BC只有一个公共点,则R的取值范围是.三.解答题(共7小题,46分)19.(6分) 如图,CB是⊙O的直径,P是CB延长线上一点,PB=2,PA切⊙O于A点,PA=4.求⊙O的半径.20.(6分) 如图,在以点O为圆心的两个同心圆中,大圆的弦AB=CD,且AB与小圆相切.求证:CD与小圆也相切.21. (6分)如图, 已知等腰三角形的腰长为6 cm ,底边长4 cm ,以等腰三角形的顶角的顶点为圆心5 cm 为半径画圆,那么该圆与底边的位置关系是怎样的?22.(6分) 如图,正方形ABCD 中,点P 是对角线AC 上的任意一点(不包括端点),以P 为圆心的圆与AB 相切,求AD 与⊙P 的位置关系.23. (6分) 如图,某货船以24海里/时的速度将一批重要物资从A 处运往正东方向的M 处,在点A 处测得某岛C 在北偏东60的方向上.该货船航行30分钟后到达B 处,此时再测得该岛在北偏东30的方向上,已知在C 岛周围9海里的区域内有暗礁.若继续向正东方向航行,该货船有无触礁危险?试说明理由.CA24.(8分) 如图,在平面直角坐标系中,直线l:y=-2x-8分别与x轴,y轴相交于A,B两点,点P(0,k)是y轴的负半轴上的一个动点,以点P为圆心,3为半径作⊙P,连结PA,若PA=PB,试判断⊙P与x轴的位置关系,并说明理由.25. (8分) 如图,在平行四边形ABCD中,AB=10,AD=m,∠D=60°,以AB为直径作⊙O.(1)求圆心O到CD的距离(用含m的代数式表示);(2)当m取何值时,CD与⊙O相切?参考答案 1-5 BCBCD 6-10 DBDCD 11. 相交 12. 2 13. 2<r≤4 14. 相交 15. 416. -1<x <5 17. 2 3 18. 3≤R ≤419. 解:如图,连接OA ,∵PA 切⊙O 于A 点,∴OA ⊥PA ,设OA=x ,∴OP=x+2,在Rt △OPA 中:x 2+42=(x+2)2 , ∴x=3 ∴⊙O 的半径为3.20. 证明:过点O 分别作AB ,CD 的垂线段OE ,OF.设小圆的半径为r.∵AB 与小圆相切,∴OE =r ,∵AB =CD ,且AB ,CD 为大圆的弦,∴OE =OF ,∴OF =r ,∴CD 与小圆也相切.21.解: 如图,在等腰三角形ABC 中,作AD ⊥BC 于D ,则BD =CD =12BC =2,∴AD =AB 2-BD 2=62-22=42>5,即d >r ,∴该圆与底边的位置关系是相离.22. 解:如图, 作PE ⊥AB 于E , PF ⊥AD 于F . 设⊙P 的半径为R .. ∵⊙P 与AB 相切, ∴PE=R .又∵ABCD 是正方形, ∴AC 平分∠DAB , ∴PE=PF , ∴PF=R . ∴AD 与⊙P 相切.23. 解:作CD ⊥AB 于D , 设CD=x .在Rt △ACD 中, ∠CAD =30°, ∴AD . 在Rt △BCD 中,∠BCD =30°, ∴BD x .∵AD-BD=AB =24×0.5=12海里, =12, 解得x =>9. ∴货船不会有触礁危险.24. 解:⊙P 与x 轴相切,理由:直线y =-2x -8与x 轴交于A (-4,0),与y 轴交于B (0,-8),∴OA =4,OB =8,由题意OP =-k ,∴PB =PA =8+k ,在Rt △AOP 中,k 2+42=(8+k )2,∴k =-3,∴OP 等于⊙P 的半径,∴⊙P 与x 轴相切25. 解:(1)作AH ⊥CD 于点H.因为∠D =60°,则∠DAH =30°,DH =AD 2=m2,所以AH =AD 2-DH 2=m 2-(m 2)2=32m ,即圆心O 到CD 的距离为32m ; (2)当32m =5,即m =1033时,CD 与⊙O 相切.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《直线与圆的位置关系》数学试卷
《直线与圆的位置关系》数学试卷
一、解答题
已知直线方程,圆的方程 .当为何值时,圆与直线.
有两个公共点;
只有一个公共点;
没有公共点.
若直线与圆有如下关系:①相交;②相切;③相离.试分别求实数的取值范围.
二、填空题
直线与圆的位置关系是________.
若直线与圆有公共点,则实数的取值范围是________.
对任意的实数,直线与圆的位置关系一定是________.
已知点在圆外,则直线与圆的位置关系是________.
若直线平分圆,则的值为________.
已知,则直线与圆的位置关系________.
已知直线都是正数)与圆相切,则以为三边长的三角形是________ 三角形.
三、解答题
当为何值时,直线与圆有两个公共点?有一个公共点?无公共
点?
四、填空题
若直线与圆相切,则实数的值等于________.
圆心为且与直线相切的圆的方程为________.
直线与圆相切,则实数等于________.
直线与圆相切,则________.
平行于直线且与圆相切的直线的方程是________.
过点作圆的切线,且直线与平行,则与间的距离是________.
过点,作圆的切线,则切线的条数为________条.
过点的圆与直线相切于点,则圆的方程为________.
五、解答题
过点作圆的切线,求此切线的方程.
圆与直线相切于点,且与直线也相切,求圆的方程.
六、填空题
平行于直线且与圆相切的直线的方程是________.
由直线上的一点向圆引切线,则切线长的最小值为_____________.
七、解答题
求满足下列条件的圆的切线方程:
经过点;
斜率为;
过点.
已知圆的方程为,求过的`圆的切线方程.
八、填空题
直线被圆截得的弦长等于________.
直线被圆截得的弦长等于________.
直线被圆所截得的弦长为________.
圆截直线所得弦的长度为4,则实数的值是________.
设直线与圆相交于两点,若,则圆的面积为________.
直线被圆截得的弦长为________.
直线被圆所截得的弦长为________.
圆心坐标为的圆在直线上截得的弦长为,那么这个圆的方程为________.
过点的直线被圆截得的弦长为,则直线的斜率为________.
过原点的直线与圆相交所得弦的长为2,则该直线的方程为________.
九、解答题
圆心在直线上,圆过点,且截直线所得弦长为,求圆的方程.
已知圆满足以下条件:①圆上一点关于直线的对称点仍在圆上,②圆心在直线上,③与直线相交截得的弦长为,求圆的方程.
十、填空题
过点作圆的弦,其中最短弦的长为________.
十一、解答题
已知圆,直线.
求证:对,直线与圆总有两个不同的交点;
若直线与圆交于两点,当时,求的值.
设圆上的点关于直线的对称点仍在圆上,且直线被圆截得的弦长为,求圆的方程.
已知圆,直线.
证明:不论取什么实数,直线与圆恒交于两点
求直线被圆截得的弦长最小时的方程,并求此时的弦长
十二、填空题
圆上到直线的距离等于1的点有________个.
在平面直角坐标系中,已知圆上有且仅有四个点到直线的距离为1,则实数的取值范围是________.
设圆上有且仅有两个点到直线的距离等于1,则圆半径的取值范围是________.
直线与曲线有且只有一个公共点,则b的取值范围是_________ 若直线与圆恒有两个交点,则实数的取值范围为________.
已知点满足,则的取值范围是________.
若过点的直线与曲线有公共点,则直线的斜率的取值范围为。