【真卷】2017年海南省海口市琼山区大华中学中考数学一模试卷及解析PDF
2017年海南省中考数学试卷及答案(可修改)
2017年海南省中考数学试卷参考答案与试题解析一、选择题(本大题共14小题,每小题3分,共42分)1.(3分)(2017•海南)2017的相反数是()A.﹣2017 B.2017 C.﹣D.【解答】解:∵2017+(﹣2017)=0,∴2017的相反数是(﹣2017),故选A.2.(3分)(2017•海南)已知a=﹣2,则代数式a+1的值为()A.﹣3 B.﹣2 C.﹣1 D.1【解答】解:当a=﹣2时,原式=﹣2+1=﹣1,故选C3.(3分)(2017•海南)下列运算正确的是()A.a3+a2=a5B.a3÷a2=a C.a3•a2=a6D.(a3)2=a9【解答】解:A、不是同底数幂的乘法指数不能相加,故A不符合题意;B、同底数幂的除法底数不变指数相减,故B符合题意;C、同底数幂的乘法底数不变指数相加,故C不符合题意;D、幂的乘方底数不变指数相乘,故D不符合题意;故选:B.4.(3分)(2017•海南)如图是一个几何体的三视图,则这个几何体是()A.三棱柱B.圆柱 C.圆台 D.圆锥【解答】解:根据俯视图为圆的有球,圆锥,圆柱等几何体,主视图和左视图为三角形的只有圆锥,则这个几何体的形状是圆锥.故选:D.5.(3分)(2017•海南)如图,直线a∥b,c⊥a,则c与b相交所形成的∠1的度数为()A.45°B.60°C.90°D.120°【解答】解:∵c⊥a,∴∠2=90°,∵a∥b,∴∠2=∠1=90°.故选:C.6.(3分)(2017•海南)如图,在平面直角坐标系中,△ABC位于第二象限,点A的坐标是(﹣2,3),先把△ABC向右平移4个单位长度得到△A1B1C1,再作与△A1B1C1关于x轴对称的△A2B2C2,则点A的对应点A2的坐标是()A.(﹣3,2)B.(2,﹣3)C.(1,﹣2)D.(﹣1,2)【解答】解:如图所示:点A的对应点A2的坐标是:(2,﹣3).故选:B.7.(3分)(2017•海南)海南省是中国国土面积(含海域)第一大省,其中海域面积约为2000000平方公里,数据2000000用科学记数法表示为2×10n,则n的值为()A.5 B.6 C.7 D.8【解答】解:∵2000000=2×106,∴n=6.故选:B.8.(3分)(2017•海南)若分式的值为0,则x的值为()A.﹣1 B.0 C.1 D.±1【解答】解:∵分式的值为0,。
2017年海南省中考数学仿真试卷(一)(解析)(解析版)
2017年海南省中考数学仿真试卷(一)一、选择题(共14小题,每小题3分,满分42分)1. ﹣3的绝对值是()A. B. ﹣ C. 3 D. ﹣3【答案】C【解析】|﹣3|=3,故选:C.2. 当x=1时,代数式4﹣3x的值是()A. 1B. 2C. 3D. 4【答案】A【解析】试题分析:把x=1代入代数式4−3x即可得原式=4-3=1.故答案选A.考点:代数式求值.视频3. 下列计算正确的是()A. (2a)2=2a2B. a6÷a3=a3C. a3•a2=a6D. 3a2+2a3=5a5【答案】B【解析】A、(2a)2=4a2,故本选项错误.B、a6÷a3=a3,故本选项正确.C、a3•a2=a5,故本选项错误.D、3a2与2a3,不能合并同类项故本选项错误.故选:B.4. 为了方便市民出行,提倡低碳交通,近几年某市大力发展公共自行车系统,根据规划,全市公共自行车总量明年将达75000辆,用科学记数法表示75000是()A. 0.75×105B. 7.5×104C. 7.5×105D. 75×103【答案】B【解析】用科学记数法表示75000是7.5×104,故选:B.5. 一组数据:2,5,4,3,2的中位数是()A. 4B. 3.2C. 3D. 2【答案】C【解析】试题分析:中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数,将数据由小到大排列2,2,3,4,5,所以中位数是3,故选C.考点:中位数.6. 化简+的结果是()A. 1B. ﹣1C. 8D. ﹣8【答案】A【解析】原式=﹣==1,故选:A.7. 如图是由6个相同的小立方块搭成的几何体,这个几何体的左视图是()A. B. C. D.【答案】A【解析】试题分析:从左面看易得第一层有4个正方形,第二层最左边有一个正方形.故选A.考点:简单组合体的三视图.8. 若反比例函数y=的图象经过点(),则这个函数的图象一定经过点()A. (2,﹣1)B. (﹣,2)C. (﹣2,﹣1)D. (,2)【答案】A【解析】∵反比例函数y=的图象经过点(),∴k=(﹣)×3=﹣2,A、∵2×(﹣1)=﹣2,∴此点在反比例函数的图象上,故本选项正确;B、∵(﹣)×2=﹣1≠﹣2,∴此点不在反比例函数的图象上,故本选项错误;C、∵(﹣2)×(﹣1)=2≠﹣2,∴此点不在反比例函数的图象上,故本选项错误;D、∵()×2=1≠﹣2,∴此点不在反比例函数的图象上,故本选项错误.故选:A.9. 已知边长为a的正方形的面积为8,则下列说法中,错误的是()A. a是无理数B. a是方程x2﹣8=0的解C. a是8的算术平方根D. 3<a<4【答案】B........... ..........10. 如图,CA⊥BE于A,AD∥BC,若∠1=54°,则∠C等于()A. 30°B. 36°C. 45°D. 54°【答案】B【解析】∵AD∥BC,∠1=54°,∴∠B=∠1=54°.∵CA⊥BE于A,∴∠BAC=90°,∴∠C=90°﹣∠B=90°﹣54°=36°.故选:B.11. 在Rt△ABC中,∠A=90°,∠ABC的平分线BD交AC于点D,AD=3,AB=4,则D到BC的距离是()A. 3B. 4C. 5D. 6【答案】A【解析】过D作DE⊥BC,∵BD是∠ABC的平分线,∠A=90°,∴AD=DE=3,∴D到BC的距离是3,故选:A.点睛:此题考查了角平分线的性质,关键是掌握角的平分线上的点到角的两边距离相等.12. 在一个口袋中有4个完全相同的小球,把它们分别标号为1,2,3,4,随机地摸出一个小球然后放回,再随机地摸出一个小球,则两次摸出的小球的标号之和等于5的概率是()A. B. C. D.【答案】C【解析】解:画树状图得:∵共有16种等可能的结果,两次摸出的小球的标号之和等于5的有4种情况,∴两次摸出的小球的标号之和等于5的概率是:.故选C.13. 如图,以AB为直径的⊙O,与BC切于点B,AC与⊙O交于点D,E是⊙O上的一点,若∠E=40°,则∠C等于()A. 30°B. 35°C. 40°D. 50°【答案】C【解析】连接BD,如图所示:∵BC为切线,AB为直径,∴AB⊥BC,∴∠ABC=90°,∵AB为直径,∴∠ADB=90°,∵∠ABD=∠E=40°,∴∠BAD=90°﹣40°=50°,∴∠C=90°﹣∠BAC=40°.故选:C.14. 如图,在矩形ABCD中,AB=4,BC=8,对角线AC的垂直平分线分别交AD、AC于点E、O,连接CE,则CE的长为()A. 3B. 3.5C. 5D. 5.5【答案】C【解析】∵四边形ABCD是矩形,∴CD=AB=4,AD=BC=8,∵EO是AC的垂直平分线,∴AE=CE,设CE=x,则ED=AD﹣AE=8﹣x,在Rt△CDE中,CE2=CD2+ED2,即x2=42+(8﹣x)2,解得:x=5,即CE的长为5.故选:C.【点睛】考查了矩形的性质、勾股定理、线段垂直平分线上的点到线段两端点的距离相等的性质;熟练掌握勾股定理,把相应的边转化为同一个直角三角形的边是解题的关键.二、填空题(共4小题,每小题4分,满分16分)15. 因式分解:m2﹣4n2=_____.【答案】(m+2n)(m﹣2n)【解析】m2﹣4n2,=m2﹣(2n)2,=(m+2n)(m﹣2n).16. 方程﹣=0的解是_____.【答案】x=6【解析】﹣=0去分母得:3(x﹣2)﹣2x=0,去括号得:3x﹣6﹣2x=0,整理得:x=6,经检验得x=6是方程的根.故答案为:x=6.17. 如图,⊙O的半径OD⊥弦AB于点C,连结AO并延长交⊙O于点E,连结EC.若AB=8,CD=2,则EC的长为_____.【答案】218. 菱形OACB在平面直角坐标系中的位置如图所示,点C的坐标是(6,0),点A的纵坐标是1,则点B 的坐标为_____.【答案】(3,﹣1)【解析】因为OACB是菱形,点C的坐标是(6,0),所以对角线互相垂直平分,则点B的横坐标为3,因为点A的纵坐标为1,所以点B的纵坐标为-1,故点B(3,-1)三、解答题(共6小题,满分62分)19. (1)计算:×+|﹣6|×(﹣1)3﹣(﹣)﹣2;(2)解不等式组:.【答案】(1)﹣9;(2)不等式组的解集为2<x<3.【解析】试题分析:(1)根据运算顺序依次计算;(2)先求得每个不等式的解,再求公共解即可.试题解析:(1)原式=+6×(﹣1)﹣9=6﹣6﹣9=﹣9;(2)解①得x>2,解②得x<3,所以不等式组的解集为2<x<3.20. 某电器商场销售A,B两种型号计算器,两种计算器的进货价格分别为每台30元,40元,商场销售5台A型号和1台B型号计算器,可获利润76元;销售6台A型号和3台B型号计算器,可获利润120元.求商场销售A,B两种型号计算器的销售价格分别是多少元?(利润=销售价格﹣进货价格)【答案】A型号计算器的销售价格是42元,B型号计算器的销售价格是56元.【解析】试题分析:设A种型号计算器的销售价格是x元,B种型号计算器的销售价格是y元,根据题意可等量关系:①5台A型号和1台B型号计算器,可获利润76元;②销售6台A型号和3台B型号计算器,可获利润120元,根据等量关系列出方程组,再解即可.试题解析:设A种型号计算器的销售价格是x元,B种型号计算器的销售价格是y元,由题意得:,解得:,答:A种型号计算器的销售价格是42元,B种型号计算器的销售价格是56元.21. 在大课间活动中,同学们积极参加体育锻炼,小明就本班同学“我最喜爱的体育项目”进行了一次调查统计,下面是他通过收集数据后,绘制的两幅不完整的统计图(图1,图2).请你根据图中提供的信息,解答以下问题:(1)该班共有名学生;(2)补全条形统计图;(3)在扇形统计图中,“乒乓球”部分所对应的圆心角度数为;(4)若全校有2000名学生,则“其他”部分的学生人数为.【答案】(1)50;(2)补全条形图见解析;(3)115.2°;(4)400.【解析】试题分析:(1)用最喜欢篮球的人数除以它所占的百分比可得总共的学生数;(2)用学生的总人数乘以各部分所占的百分比,可得最喜欢足球的人数和其他的人数,即可把条形统计图补充完整;(3)圆心角的度数=360°×它所占的百分比;(4)首先计算出抽查的学生中“其他”所占的比例,乘以总人数2000即可.试题解析:(1)学生数=15÷30%=50人;故答案为:50;(2)最喜欢足球的人数50×18%=9,喜欢其他的人数有50﹣15﹣9﹣16=10人;条形图如下:(3)“乒乓球”部分所对应的圆心角度数为:360°×=115.2°;故答案为:115.2°;(4)“其他”部分的学生人数:2000×=400名,故答案为:400.22. 如图,某数学兴趣小组在活动课上测量学校旗杆的高度.已知小亮站着测量,眼睛与地面的距离(AB)是1.7米,看旗杆顶部E的仰角为30°;小敏蹲着测量,眼睛与地面的距离(CD)是0.7米,看旗杆顶部E 的仰角为45°.两人相距5米且位于旗杆同侧(点B、D、F在同一直线上).(1)求小敏到旗杆的距离DF.(结果保留根号)(2)求旗杆EF的高度.(结果保留整数,参考数据:≈1.4,≈1.7)【答案】(1)DF=(4+3)米;(2)旗杆的高度约为10米.【解析】试题分析:过点A作AM⊥EF于M,过点C作CN⊥EF于N,设CN=x,则EN=x,AM=5+x,可求EM,在RtΔAEM中利用三角函数关系可求出DF的长.(2)由EM+FM可求出EF的长.试题解析:(1)过点A作AM⊥EF于点M,过点C作CN⊥EF于点N.设CN= x在RtΔECN中,∵∠ECN=45°∴EN=CN=x∴EM=x+0.7-1.7=x-1∵BD=5∴AM=BF=5+x在RtΔAEM中,∵∠EAM=30°∴∴解得即DF= 4+(米)(2)EF=x +0.7="4+"+0.7=4+3×1.7+0.7=9.8≈10(米)考点:解直角三角形的应用-仰角俯角问题.23. 如图①,A D为等腰直角△ABC的高,点A和点C分别在正方形DEFG的边DG和DE上,连接BG、AE.(1)求证:BG=AE;(2)将正方形DEFG绕点D旋转,当线段EG经过点A时,(如图②所示)①求证:BG⊥GE;②设DG与AB交于点M,若AG=6,AE=8,求DM的长.【答案】(1)证明见解析;(2)①证明见解析;②DM=,【解析】试题分析:(1)如图①,根据等腰直角三角形的性质得AD=BD,再根据正方形的性质得∠GDE=90°,DG=DE,则可根据“SAS“判断△BDG≌△ADE,于是得到BG=AE;(2)①如图②,先判断△DEG为等腰直角三角形得到∠1=∠2=45°,再由△BDG≌△ADE得到∠3=∠2=45°,则可得∠BGE=90°,所以BG⊥GE;②由AG=6,则AE=8,即GE=14,利用等腰直角三角形的性质得DG=GE=7,由(1)的结论得BG=AE=8,则根据勾股定理得AB=10,接着由△ABD为等腰直角三角形得到∠4=45°,BD=AB=5,然后证明△DBM∽△DGB,则利用相似比可计算出DM;试题解析:(1)证明:如图①,∵AD为等腰直角△ABC的高,∴AD=BD,∵四边形DEFG为正方形,∴∠GDE=90°,DG=DE,在△BDG和△ADE中,∴△BDG≌△ADE,∴BG=AE;(2)①证明:如图②,∵四边形DEFG为正方形,∴△DEG为等腰直角三角形,∴∠1=∠2=45°,由(1)得△BDG≌△ADE,∴∠3=∠2=45°,∴∠1+∠3=45°+45°=90°,即∠BGE=90°,∴BG⊥GE;②解:∵AG=6,则AE=8,即GE=14,∴DG=GE=7,∵△BDG≌△ADE,∴BG=AE=8,在Rt△BGA中,AB==10,∵△ABD为等腰直角三角形,∴∠4=45°,BD=AB=5,∴∠3=∠4,而∠BDM=∠GDB,∴△DBM∽△DGB,∴BD:DG=DM:BD,即5:7=DM:5,∴DM=,【点睛】考查了四边形的综合题:熟练掌握等腰直角三角形的性质和正方形的性质;会运用全等三角形的知识解决线段相等的问题;利用代数式表示线段可较好得表示线段之间的关系;会运用相似比求线段的长.24. 如图,抛物线y=ax2+bx+c(a≠0)与x轴交于点A(﹣1,0),B(3,0)两点,与y轴交于点C(0,﹣3).(1)求该抛物线的解析式及顶点M坐标;(2)求△BCM面积与△ABC面积的比;(3)若P是x轴上一个动点,过P作射线PQ∥AC交抛物线于点Q,随着P点的运动,在抛物线上是否存在这样的点Q,使以A,P,Q,C为顶点的四边形为平行四边形?若存在,请求出Q点坐标;若不存在,请说明理由.【答案】(1)抛物线解析式为y=x2﹣2x﹣3,M(1,﹣4);(2)S△BCM:S△ABC=3:6=1:2.(3)存在Q点为(2,﹣3)或(1+,3)或(1﹣,3)【解析】试题分析:(1)有抛物线与x轴交于点A(﹣1,0),B(3,0)两点,则可设抛物线解析式为y=a (x+1)(x﹣3).由与y轴交于点C(0,﹣3),则代入易得解析式,顶点易知.(2)求△BCM面积与△ABC面积的比,由两三角形不为同高或同底,所以考虑求解求出两三角形面积再作比即可.因为S△BCM=S梯形OCMD+S△BMD﹣S△BOC,S△ABC=•AB•OC,则结论易得.(3)由四边形为平行四边形,则对边PQ、AC平行且相等,过Q点作x轴的垂线易得Q到x轴的距离=OC=3,又(1)得抛物线解析式,代入即得Q点横坐标,则Q点可求.解:(1)设抛物线解析式为y=a(x+1)(x﹣3),∵抛物线过点(0,﹣3),∴﹣3=a(0+1)(0﹣3),∴a=1,∴抛物线解析式为y=(x+1)(x﹣3)=x2﹣2x﹣3,∵y=x2﹣2x﹣3=(x﹣1)2﹣4,∴M(1,﹣4).(2)如图1,连接BC、BM、CM,作MD⊥x轴于D,∵S△BCM=S梯形OCMD+S△BMD﹣S△BOC=•(3+4)•1+•2×4﹣•3•3=+﹣=3S△ABC=•AB•OC=•4•3=6,∴S△BCM:S△ABC=3:6=1:2.(3)存在,理由如下:①如图2,当Q在x轴下方时,作QE⊥x轴于E,∵四边形ACQP为平行四边形,∴PQ平行且相等AC,∴△PEQ≌△AOC,∴EQ=OC=3,∴﹣3=x2﹣2x﹣3,解得x=2或x=0(与C点重合,舍去),∴Q(2,﹣3).②如图3,当Q在x轴上方时,作QF⊥x轴于F,∵四边形ACPQ为平行四边形,∴QP平行且相等AC,∴△PFQ≌△AOC,∴FQ=OC=3,∴3=x2﹣2x﹣3,解得x=1+或x=1﹣,∴Q(1+,3)或(1﹣,3).综上所述,Q点为(2,﹣3)或(1+,3)或(1﹣,3)考点:二次函数综合题;平行四边形的性质.视频。
2017年海南省中考数学试卷[解析版]
海南省2017年初中毕业生学业考试数学科试题(考试时间:100分钟满分:120分)一、选择题(本大题共14小题,每小题3分,共42分)1.(2017海南)2017的相反数是()A.﹣2017 B.2017 C.﹣ D.【分析】根据相反数特性:若a.b互为相反数,则a+b=0即可解题.【解答】解:∵2017+(﹣2017)=0,∴2017的相反数是(﹣2017),故选 A.【点评】本题考查了相反数之和为0的特性,熟练掌握相反数特性是解题的关键.2.(2017海南)已知a=﹣2,则代数式a+1的值为()A.﹣3 B.﹣2 C.﹣1 D.1【分析】把a的值代入原式计算即可得到结果.【解答】解:当a=﹣2时,原式=﹣2+1=﹣1,故选C【点评】此题考查了代数式求值,熟练掌握运算法则是解本题的关键.3.(2017海南)下列运算正确的是()A.a3+a2=a5 B.a3÷a2=a C.a3a2=a6D.(a3)2=a9【分析】根据同底数幂的乘法,同底数幂的除法底数不变指数相减,幂的乘方底数不变指数相乘,可得答案.【解答】解:A、不是同底数幂的乘法指数不能相加,故A不符合题意;B、同底数幂的除法底数不变指数相减,故B符合题意;C、同底数幂的乘法底数不变指数相加,故C不符合题意;D、幂的乘方底数不变指数相乘,故D不符合题意;故选:B.【点评】本题考查了同底数幂的除法,熟记法则并根据法则计算是解题关键.4.(2017海南)如图是一个几何体的三视图,则这个几何体是()A.三棱柱B.圆柱C.圆台D.圆锥【分析】根据主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形,再根据几何体的特点即可得出答案.【解答】解:根据俯视图为圆的有球,圆锥,圆柱等几何体,主视图和左视图为三角形的只有圆锥,则这个几何体的形状是圆锥.故选:D.【点评】此题考查了由三视图判断几何体,关键是对三视图能熟练掌握和灵活运用,体现了对空间想象能力的考查.5.(2017海南)如图,直线a∥b,c⊥a,则c与b相交所形成的∠1的度数为()A.45°B.60°C.90°D.120°【分析】根据垂线的定义可得∠2=90°,再根据两直线平行,同位角相等可得∠2=∠1=90°.【解答】解:∵c⊥a,∴∠2=90°,∵a∥b,∴∠2=∠1=90°.故选:C.【点评】本题考查了平行线的性质,垂线的定义,熟记两直线平行,同位角相等是解题的关键.6.(2017海南)如图,在平面直角坐标系中,△ABC位于第二象限,点A的坐标是(﹣2,3),先把△ABC向右平移4个单位长度得到△A1B1C1,再作与△A1B1C1关于x轴对称的△A2B2C2,则点A的对应点A2的坐标是()A.C.【分析】首先利用平移的性质得到△A1B1C1,进而利用关于x轴对称点的性质得到△A2B2C2,即可得出答案.【解答】解:如图所示:点A的对应点A2的坐标是:(2,﹣3).故选:B.【点评】此题主要考查了平移变换以及轴对称变换,正确掌握变换规律是解题关键.7.(2017海南)海南省是中国国土面积(含海域)第一大省,其中海域面积约为2000000平方公里,数据2000000用科学记数法表示为2×10n,则n的值为()A.5 B.6 C.7 D.8【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:∵2000000=2×106,∴n=6.故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.8.(2017海南)若分式的值为0,则x的值为()A.﹣1 B.0 C.1 D.±1【分析】直接利用分式的值为零则分子为零,分母不等于零,进而而得出答案.【解答】解:∵分式的值为0,∴x2﹣1=0,x﹣1≠0,解得:x=﹣1.故选:A.【点评】此题主要考查了分式的值为零,正确把握相关定义是解题关键.9.(2017海南)今年3月12日,某学校开展植树活动,某植树小组20名同学的年龄情况如下表:则这20名同学年龄的众数和中位数分别是()A.15,14 B.15,15 C.16,14 D.16,15【分析】众数即为出现次数最多的数,所以从中找到出现次数最多的数即可;中位数是排序后位于中间位置的数,或中间两数的平均数.【解答】解:∵12岁有1人,13岁有4人,14岁有3人,15岁有5人,16岁有7人,∴出现次数最多的数据是16,∴同学年龄的众数为16岁;∵一共有20名同学,∴因此其中位数应是第10和第11名同学的年龄的平均数,∴中位数为(15+15)÷2=15,故中位数为15.故选D.【点评】此题考查了众数和中位数,众数是一组数据中出现次数最多的数,中位数是将一组数据从小(或到大从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.10.(2017海南)如图,两个转盘分别自由转动一次,当停止转动时,两个转盘的指针都指向2的概率为()A.B.C.D.【分析】首先根据题意列出表格,然后由表格即可求得所有等可能的结果与都指向2的情况数,继而求得答案.【解答】解:列表如下:∵共有16种等可能的结果,两个转盘的指针都指向2的只有1种结果,∴两个转盘的指针都指向2的概率为,故选:D.【点评】此题考查了树状图法与列表法求概率.用到的知识点为:概率=所求情况数与总情况数之比.11.(2017海南)如图,在菱形ABCD中,AC=8,BD=6,则△ABC的周长是()A.14 B.16 C.18 D.20【分析】利用菱形的性质结合勾股定理得出AB的长,进而得出答案.【解答】解:∵在菱形ABCD中,AC=8,BD=6,∴AB=BC,∠AOB=90°,AO=4,BO=3,∴BC=AB==5,∴△ABC的周长=AB+BC+AC=5+5+8=18.故选:C.【点评】此题主要考查了菱形的性质、勾股定理,正确把握菱形的性质,由勾股定理求出AB是解题关键.12.(2017海南)如图,点A、B、C在⊙O上,AC∥OB,∠BAO=25°,则∠BOC 的度数为()A.25°B.50°C.60°D.80°【分析】先根据OA=OB,∠BAO=25°得出∠B=25°,再由平行线的性质得出∠B=∠CAB=25°,根据圆周角定理即可得出结论.【解答】解:∵OA=OB,∠BAO=25°,∴∠B=25°.∵AC∥OB,∴∠B=∠CA B=25°,∴∠BOC=2∠CAB=50°.故选B.【点评】本题考查的是圆周角定理,熟知在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解答此题的关键.13.(2017海南)已知△ABC的三边长分别为4、4、6,在△ABC所在平面内画一条直线,将△ABC分割成两个三角形,使其中的一个是等腰三角形,则这样的直线最多可画()条.A.3 B.4 C.5 D.6【分析】根据等腰三角形的性质,利用4作为腰或底边得出符合题意的图形即可.【解答】解:如图所示:当AC=CD,AB=BG,AF=CF,AE=BE时,都能得到符合题意的等腰三角形.故选B.【点评】此题主要考查了等腰三角形的判定以及应用设计与作图等知识,正确利用图形分类讨论得出是解题关键.14.(2017海南)如图,△ABC的三个顶点分别为A(1,2),B(4,2),C(4,4).若反比例函数y=在第一象限内的图象与△ABC有交点,则k的取值范围是()A.1≤k≤4 B.2≤k≤8 C.2≤k≤16 D.8≤k≤16【分析】由于△ABC是直角三角形,所以当反比例函数y=经过点A时k最小,进过点C时k最大,据此可得出结论.【解答】解:∵△ABC是直角三角形,∴当反比例函数y=经过点A时k最小,经过点C时k最大,∴k最小=1×2=2,k最大=4×4=16,∴2≤k≤16.故选C.【点评】本题考查的是反比例函数的性质,熟知反比例函数图象上点的坐标特点是解答此题的关键.二、填空题(本大题共4小题,每小题4分,共16分)15.(2017海南)不等式2x+1>0的解集是x>﹣.【分析】利用不等式的基本性质,将两边不等式同时减去1再除以2,不等号的方向不变;即可得到不等式的解集.【解答】解:原不等式移项得,2x>﹣1,系数化1得,x>﹣.故本题的解集为x>﹣.【点评】本题考查了解简单不等式的能力,解答这类题学生往往在解题时不注意移项要改变符号这一点而出错.解不等式要依据不等式的基本性质,在不等式的两边同时加上或减去同一个数或整式不等号的方向不变;在不等式的两边同时乘以或除以同一个正数不等号的方向不变;在不等式的两边同时乘以或除以同一个负数不等号的方向改变.16.(2017海南)在平面直角坐标系中,已知一次函数y=x﹣1的图象经过P1(x1,y1)、P2(x2,y2)两点,若x1<x2,则y1<y2(填“>”,“<”或“=”)【分析】根据k=1结合一次函数的性质即可得出y=x﹣1为单调递增函数,再根据x1<x2即可得出y1<y2,此题得解.【解答】解:∵一次函数y=x﹣1中k=1,∴y随x值的增大而增大.∵x1<x2,∴y1<y2.故答案为:<.【点评】本题考查了一次函数的性质,熟练掌握“k>0,y随x的增大而增大,函数从左到右上升.”是解题的关键.17.(2017海南)如图,在矩形ABCD中,AB=3,AD=5,点E在DC上,将矩形ABCD沿AE折叠,点D恰好落在BC边上的点F处,那么cos∠EFC的值是.【分析】根据翻转变换的性质得到∠AFE=∠D=90°,AF=AD=5,根据矩形的性质得到∠EFC=∠BAF,根据余弦的概念计算即可.【解答】解:由翻转变换的性质可知,∠AFE=∠D=90°,AF=AD=5,∴∠EFC+∠AFB=90°,∵∠B=90°,∴∠BAF+∠AFB=90°,∴∠EFC=∠BAF,cos∠BAF==,∴cos∠EFC=,故答案为:.【点评】本题考查的是翻转变换的性质、余弦的概念,掌握翻转变换是一种对称变换,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等是解题的关键.18.(2017海南)如图,AB是⊙O的弦,AB=5,点C是⊙O上的一个动点,且∠ACB=45°,若点M、N分别是AB、AC的中点,则MN长的最大值是.【分析】根据中位线定理得到MN的最大时,BC最大,当BC最大时是直径,从而求得直径后就可以求得最大值.【解答】解:如图,∵点M,N分别是AB,AC的中点,∴MN=BC,∴当BC取得最大值时,MN就取得最大值,当BC是直径时,BC最大,连接BO并延长交⊙O于点C′,连接AC′,∵BC′是⊙O的直径,∴∠BAC′=90°.∵∠ACB=45°,AB=5,∴∠AC′B=45°,∴BC′===5,=.∴MN最大故答案为:.【点评】本题考查了三角形的中位线定理、等腰直角三角形的性质及圆周角定理,解题的关键是了解当什么时候MN的值最大,难度不大.三、解答题(本大题共62分)19.(2017海南)计算;(1)﹣|﹣3|+(﹣4)×2﹣1;(2)(x+1)2+x(x﹣2)﹣(x+1)(x﹣1)【分析】(1)原式利用算术平方根定义,绝对值的代数意义,负整数指数幂法则计算即可得到结果;(2)原式利用完全平方公式,平方差公式,以及单项式乘以多项式法则计算即可得到结果.【解答】解:(1)原式=4﹣3﹣4×=4﹣3﹣2=﹣1;(2)原式=x2+2x+1+x2﹣2x﹣x2+1=x2+2.【点评】此题考查了整式的混合运算,以及实数的运算,熟练掌握运算法则是解本题的关键.20.(2017海南)在某市“棚户区改造”建设工程中,有甲、乙两种车辆参加运土,已知5辆甲种车和2辆乙种车一次共可运土64立方米,3辆甲种车和1辆乙种车一次共可运土36立方米,求甲、乙两种车每辆一次分别可运土多少立方米.【分析】设甲种车辆一次运土x立方米,乙车辆一次运土y立方米,根据题意所述的两个等量关系得出方程组,解出即可得出答案.【解答】解:设甲种车辆一次运土x立方米,乙车辆一次运土y立方米,由题意得,,解得:.答:甲种车辆一次运土8立方米,乙车辆一次运土12立方米.【点评】此题考查了二元一次方程组的应用,属于基础题,仔细审题,根据题意的等量关系得出方程是解答本题的关键.21.(2017海南)某校开展“我最喜爱的一项体育活动”调查,要求每名学生必选且只能选一项,现随机抽查了m名学生,并将其结果绘制成如下不完整的条形图和扇形图.请结合以上信息解答下列问题:(1)m= 150 ;(2)请补全上面的条形统计图;(3)在图2中,“乒乓球”所对应扇形的圆心角的度数为36°;(4)已知该校共有1200名学生,请你估计该校约有240 名学生最喜爱足球活动.【分析】(1)根据图中信息列式计算即可;(2)求得“足球“的人数=150×20%=30人,补全上面的条形统计图即可;(3)360°×乒乓球”所占的百分比即可得到结论;(4)根据题意计算计算即可.【解答】解:(1)m=21÷14%=150,(2)“足球“的人数=150×20%=30人,补全上面的条形统计图如图所示;(3)在图2中,“乒乓球”所对应扇形的圆心角的度数为360°×=36°;(4)1200×20%=240人,答:估计该校约有240名学生最喜爱足球活动.故答案为:150,36°,240.【点评】本题考查了条形统计图,观察条形统计图、扇形统计图获得有效信息是解题关键.22.(2017海南)为做好防汛工作,防汛指挥部决定对某水库的水坝进行加高加固,专家提供的方案是:水坝加高2米(即CD=2米),背水坡DE的坡度i=1:1(即DB:EB=1:1),如图所示,已知AE=4米,∠EAC=130°,求水坝原来的高度BC.(参考数据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.2)【分析】设BC=x米,用x表示出AB的长,利用坡度的定义得到BD=BE,进而列出x的方程,求出x的值即可.【解答】解:设BC=x米,在Rt△ABC中,∠CAB=180°﹣∠EAC=50°,AB=≈==x,在Rt△EBD中,∵i=DB:EB=1:1,∴BD=BE,∴CD+BC=AE+AB,即2+x=4+x,解得x=12,即BC=12,答:水坝原来的高度为12米.【点评】本题考查了解直角三角形的应用,解答本题的关键是理解坡度、坡比的含义,构造直角三角形,利用三角函数表示相关线段的长度,难度一般.23.(2017海南)如图,四边形ABCD是边长为1的正方形,点E在AD边上运动,且不与点A和点D重合,连结CE,过点C作CF⊥CE交AB的延长线于点F,EF交BC于点G.(1)求证:△CDE≌△CBF;(2)当DE=时,求CG的长;(3)连结AG,在点E运动过程中,四边形CEAG能否为平行四边形?若能,求出此时DE的长;若不能,说明理由.【分析】(1)先判断出∠CBF=90°,进而判断出∠1=∠3,即可得出结论;(2)先求出AF,AE,再判断出△GBF∽△EAF,可求出BG,即可得出结论;(3)假设是平行四边形,先判断出DE=BG,进而判断出△GBF和△ECF是等腰直角三角形,即可得出∠GFB=∠CFE=45°,即可得出结论.【解答】解:(1)如图,在正方形ABCD中,DC=BC,∠D=∠ABC=∠DCB=90°,∴∠CBF=180°﹣∠ABC=90°,∠1+∠2=∠DCB=90°,∵CF⊥CE,∴∠ECF=90°,∴∠3+∠2=∠ECF=90°,∴∠1=∠3,在△CDE和△CBF中,,∴△CDE≌△CBF,(2)在正方形ABCD中,AD∥BC,∴△GBF∽△EAF,∴,由(1)知,△CDE≌△CBF,∴BF=DE=,∵正方形的边长为1,∴AF=AB+BF=,AE=AD﹣DE=,∴,∴BG=,∴CG=BC﹣BG=;(3)不能,理由:若四边形CEAG是平行四边形,则必须满足AE∥CG,AE=CG,∴AD﹣AE=BC﹣CG,∴DE=BG,由(1)知,△CDE≌△ECF,∴DE=BF,CE=CF,∴△GBF和△ECF是等腰直角三角形,∴∠GFB=45°,∠CFE=45°,∴∠CFA=∠GFB+∠CFE=90°,此时点F与点B重合,点D与点E重合,与题目条件不符,∴点E在运动过程中,四边形CEAG不能是平行四边形.【点评】此题是四边形综合题,主要考查了正方形的性质,全等三角形的判定和性质,相似三角形的判定和性质,平行四边形的性质,等腰直角三角形的判定,解(1)的关键是判定∠1=∠3,解(2)的关键是判断出△GBF∽△EAF,解(3)的关键是判断出∠CFA=90°,是一道基础题目.24.(2017海南)抛物线y=ax2+bx+3经过点A(1,0)和点B(5,0).(1)求该抛物线所对应的函数解析式;(2)该抛物线与直线y=x+3相交于C、D两点,点P是抛物线上的动点且位于x轴下方,直线PM∥y轴,分别与x轴和直线CD交于点M、N.①连结PC、PD,如图1,在点P运动过程中,△PCD的面积是否存在最大值?若存在,求出这个最大值;若不存在,说明理由;②连结PB,过点C作CQ⊥PM,垂足为点Q,如图2,是否存在点P,使得△CNQ 与△PBM相似?若存在,求出满足条件的点P的坐标;若不存在,说明理由.【分析】(1)由A 、B 两点的坐标,利用待定系数法可求得抛物线解析式;(2)①可设出P 点坐标,则可表示出M 、N 的坐标,联立直线与抛物线解析式可求得C 、D 的坐标,过C 、D 作PN 的垂线,可用t 表示出△PCD 的面积,利用二次函数的性质可求得其最大值;②当△CNQ 与△PBM 相似时有=或=两种情况,利用P 点坐标,可分别表示出线段的长,可得到关于P 点坐标的方程,可求得P 点坐标.【解答】解:(1)∵抛物线y=ax 2+bx+3经过点A (1,0)和点B (5,0),∴,解得,∴该抛物线对应的函数解析式为y=x 2﹣x+3;(2)①∵点P 是抛物线上的动点且位于x 轴下方,∴可设P (t , t 2﹣t+3)(1<t <5),∵直线PM ∥y 轴,分别与x 轴和直线CD 交于点M 、N ,∴M (t ,0),N (t , t+3),∴PN=t+3﹣(t 2﹣t+3)=﹣(t ﹣)2+联立直线CD 与抛物线解析式可得,解得或,∴C (0,3),D (7,),分别过C 、D 作直线PN 的直线,垂足分别为E 、F ,如图1,则CE=t ,DF=7﹣t ,∴S △PCD =S △PCN +S △PDN =PNCE+PNDF=PN= [﹣(t ﹣)2+]=﹣(t ﹣)2+,∴当t=时,△PCD 的面积有最大值,最大值为; ②存在.∵∠CQN=∠PMB=90°,∴当△CNQ 与△PBM 相似时,有=或=两种情况,∵CQ ⊥PM ,垂足为Q ,∴Q (t ,3),且C (0,3),N (t , t+3),∴CQ=t ,NQ=t+3﹣3=t ,∴=,∵P (t , t 2﹣t+3),M (t ,0),B (5,0),∴BM=5﹣t ,PM=0﹣(t 2﹣t+3)=﹣t 2+t ﹣3,当=时,则PM=BM ,即﹣t 2+t ﹣3=(5﹣t ),解得t=2或t=5(舍去),此时P (2,);当=时,则BM=PM ,即5﹣t=(﹣t 2+t ﹣3),解得t=或t=5(舍去),此时P (,﹣);综上可知存在满足条件的点P ,其坐标为(2,)或(,﹣). 【点评】本题为二次函数的综合应用,涉及待定系数法、函数图象的交点、二次函数的性质、相似三角形的判定和性质、方程思想及分类讨论思想等知识.在(1)中注意待定系数法的应用,在(2)①中用P 点坐标表示出△PCD 的面积是解题的关键,在(2)②中利用相似三角形的性质确定出相应线段的比是解题的关键.本题考查知识点较多,综合性较强,难度较大.。
【中考模拟2017】海南海口市 2017年九年级数学 中考模拟测试卷 五(含答案)
2017年九年级数学中考模拟试卷一、选择题:1.下列各对数互为相反数的是()A.4和﹣(﹣4)B.﹣3和C.﹣2和﹣D.0和02.已知等式3a=2b+5,则下列等式中不一定成立的是()A.3a﹣5=2bB.3a+1=2b+6C.3ac=2bc+5D.a=3.如图是一个正方体展开图,把展开图折叠成正方体后,“我”字一面的相对面上的字是( )A.的 B.中 C.国 D.梦4.某小组7位学生的中考体育测试成绩(满分60分)依次为57,60,59,57,60,58,60,则这组数据的众数与中位数分别是()A.60,59 B.60,57 C.59,60 D.60,585.若3×9m×27m=321,则m的值为()A.3B.4C.5D.66.由四舍五入法得到的近似数8.8×103,下列说法中正确的是( )A.精确到十分位,有2个有效数字B.精确到个位,有2个有效数字C.精确到百位,有2个有效数字D.精确到千位,有4个有效数字7.下列等式成立的是()8.下列运算正确的是( )A. B. C. D.9.一个圆柱的侧面展开图是一个面积为10的矩形,这个圆柱的高为L与这个圆柱的底面半径r之间的函数关系为()A.正比例函数B.反比例函数C.一次函数D.二次函数10.如图,在△ABC中,∠CAB=65°,将△ABC在平面内绕点A旋转到△AB′C′的位置,使CC′∥AB,则旋转角的度数为( )A.35° B.40° C.50° D.65°11.下列事件中,不是必然事件的是()A.对顶角相等B.内错角相等C.三角形内角和等于180°D.等腰梯形是轴对称图形12.有四个命题,其中正确的命题是( )①经过三点一定可以作一个圆;②任意一个三角形有且只有一外接圆;③三角形的外心到三角形的三个顶点的距离相等;④在圆中,平分弦的直径一定垂直于这条弦A.①②③④B.①②③C.②③④D.②③13.如图,已知a∥b,三角形直角顶点在直线a上,已知∠1=25°18/27//,则∠2度数是()A.25°18/27//B.640 41/33//C.74°4133//D.64°41/43//14.小明是我校手工社团的一员,他在做折纸手工,如图所示在矩形ABCD中,AB=6,BC=8,点E是BC的中点,点F是边CD上的任意一点,△AEF的周长最小时,则DF的长为()A.1B.2C.3D.4二、填空题:15.分解因式:a3﹣25a= .16.某玩具店今年3月份售出某种玩具2500个,5月份售出该玩具3600个,每月平均增长率为.17.半径为6cm的圆中,垂直平分半径OA的弦长为 cm.18.如图,在矩形ABCD中,AB=6,BC=8,P为AD上任一点,过点P作PE⊥AC于点E,PF⊥BD于点F,则PE+PF= .三、计算题:19.计算:﹣0.52+20.解不等式组:,并把解集在数轴上表示出来.四、解答题:21.学校分配学生住宿,如果每室住8人,还少12个床位,如果每室住9人,则空出两个房间。
2017海南省中考数学试卷
海南省2017年初中毕业生学业水平考试数学科试题一、选择题(本大题满分42分,每小题3分)在下列各题的四个备选答案中,有且只有一个是正确的,请在答题卡上把你认为正确的 答案的字母代号按要求用2B 铅笔涂黑. 1。
2017的相反数是( ) A. -2017 B. 2017 C. 12017-D. 120172.已知2a =-,则代数式1a +的值为( ) A. -3 B. -2 C. -1 D. 1 3。
下列运算正确的是( )A. 325a a a +=B. 32a a a ÷=C. 326a a a =D. ()239a a =4。
下图是一个几何体的三视图,则这个几何体是( )A. 三棱柱B. 圆柱C. 圆台D. 圆锥5.如图1,直线,则与相交所形成的的度数为( )A. 45°B. 60°C. 90°D. 120°6.如图2,在平面直角坐标系中,ABC ∆位于第二象限,点A 的坐标是()2,3-,先把ABC ∆向右平移4个单位长度得到111A B C ∆,再作与111A B C ∆关于x 轴对称的222A B C ∆,则点A 的对应点2A 的坐标是( )A. ()3,2-B. ()2,3-C. ()1,2-D. ()1,2-7.海南省是中国国土面积(含海域)第一大省,其中海域面积约为2000000平方公里。
数据2000000用科学记数法表示为210n⨯,则的值为( )A. 5 B. 6 C. 7 D. 88.若分式211x x --的值为0,则x 的值为( )A. -1 B. 0 C. 1 D. 1±9. 今年3月12 日,某学校开展植树活动,某植树小组20名同学的年龄情况如下表: 年龄(岁) 12 13 14 15 16 人数14357则这20名同学年龄的众数和中位数分别是( ) A. 15,14 B. 15,15 C. 16,14 D. 16,1510.如图3,两个转盘分别自由转动一次,当停止转动时,两个转盘的指针都指向2的概率为( )A. 12B. 14C. 18D. 11611.如图4,在菱形ABCD 中,8,6AC BD ==,则ABC ∆的周长为( )A. 14B. 16C. 18D. 2012.如图5,点A B C 、、在O 上,0//,25AC OB BAO ∠=,则BOC ∠的度数为( )A. 25°B. 50°C. 60°D. 80°13.已知ABC ∆的三边长分别为4、4、6,在ABC ∆所在平面内画一条直线,将ABC ∆分割成两个三角形,使其中的一个是等腰三角形,则这样的直线最多可画( )条 A. 3 B. 4 C. 5 D. 614.如图6,ABC ∆的三个顶点分别为()()()1,24,24,4A B C 、、。
2017年海南省中考数学试卷和解析答案
2017年海南省中考数学试卷一、选择题(本大题共14小题,每小题3分,共42分)1.(3分)2017的相反数是()A.﹣2017 B.2017 C.﹣D.2.(3分)已知a=﹣2,则代数式a+1的值为()A.﹣3 B.﹣2 C.﹣1 D.13.(3分)下列运算正确的是()A.a3+a2=a5B.a3÷a2=a C.a3•a2=a6D.(a3)2=a94.(3分)如图是一个几何体的三视图,则这个几何体是()A.三棱柱 B.圆柱 C.圆台 D.圆锥5.(3分)如图,直线a∥b,c⊥a,则c与b相交所形成的∠1的度数为()A.45°B.60° C.90° D.120°6.(3分)如图,在平面直角坐标系中,△ABC位于第二象限,点A的坐标是(﹣2,3),先把△ABC向右平移4个单位长度得到△A1B1C1,再作与△A1B1C1关于x轴对称的△A2B2C2,则点A的对应点A2的坐标是()A.(﹣3,2)B.(2,﹣3)C.(1,﹣2)D.(﹣1,2)7.(3分)海南省是中国国土面积(含海域)第一大省,其中海域面积约为2000000平方公里,数据2000000用科学记数法表示为2×10n,则n的值为()A.5 B.6 C.7 D.88.(3分)若分式的值为0,则x的值为()A.﹣1 B.0 C.1 D.±19.(3分)今年3月12日,某学校开展植树活动,某植树小组20名同学的年龄情况如下表:则这20名同学年龄的众数和中位数分别是()A.15,14 B.15,15 C.16,14 D.16,1510.(3分)如图,两个转盘分别自由转动一次,当停止转动时,两个转盘的指针都指向2的概率为()A. B.C.D.11.(3分)如图,在菱形ABCD中,AC=8,BD=6,则△ABC的周长是()A.14 B.16 C.18 D.2012.(3分)如图,点A、B、C在⊙O上,AC∥OB,∠BAO=25°,则∠BOC的度数为()A.25°B.50° C.60° D.80°13.(3分)已知△ABC的三边长分别为4、4、6,在△ABC所在平面内画一条直线,将△ABC分割成两个三角形,使其中的一个是等腰三角形,则这样的直线最多可画()条.A.3 B.4 C.5 D.614.(3分)如图,△ABC的三个顶点分别为A(1,2),B(4,2),C(4,4).若反比例函数y=在第一象限内的图象与△ABC有交点,则k的取值范围是()A.1≤k≤4 B.2≤k≤8 C.2≤k≤16 D.8≤k≤16二、填空题(本大题共4小题,每小题4分,共16分)15.(4分)不等式2x+1>0的解集是.16.(4分)在平面直角坐标系中,已知一次函数y=x﹣1的图象经过P1(x1,y1)、P2(x2,y2)两点,若x1<x2,则y1y2(填“>”,“<”或“=”)17.(4分)如图,在矩形ABCD中,AB=3,AD=5,点E在DC上,将矩形ABCD沿AE折叠,点D 恰好落在BC边上的点F处,那么cos∠EFC的值是.18.(4分)如图,AB是⊙O的弦,AB=5,点C是⊙O上的一个动点,且∠ACB=45°,若点M、N 分别是AB、AC的中点,则MN长的最大值是.三、解答题(本大题共62分)19.(10分)计算;(1)﹣|﹣3|+(﹣4)×2﹣1;(2)(x+1)2+x(x﹣2)﹣(x+1)(x﹣1)20.(8分)在某市“棚户区改造”建设工程中,有甲、乙两种车辆参加运土,已知5辆甲种车和2辆乙种车一次共可运土64立方米,3辆甲种车和1辆乙种车一次共可运土36立方米,求甲、乙两种车每辆一次分别可运土多少立方米.21.(8分)某校开展“我最喜爱的一项体育活动”调查,要求每名学生必选且只能选一项,现随机抽查了m名学生,并将其结果绘制成如下不完整的条形图和扇形图.请结合以上信息解答下列问题:(1)m= ;(2)请补全上面的条形统计图;(3)在图2中,“乒乓球”所对应扇形的圆心角的度数为;(4)已知该校共有1200名学生,请你估计该校约有名学生最喜爱足球活动.22.(8分)为做好防汛工作,防汛指挥部决定对某水库的水坝进行加高加固,专家提供的方案是:水坝加高2米(即CD=2米),背水坡DE的坡度i=1:1(即DB:EB=1:1),如图所示,已知AE=4米,∠EAC=130°,求水坝原的高度BC.(参考数据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.2)23.(12分)如图,四边形ABCD是边长为1的正方形,点E在AD边上运动,且不与点A和点D 重合,连结CE,过点C作CF⊥CE交AB的延长线于点F,EF交BC于点G.(1)求证:△CDE≌△CBF;(2)当DE=时,求CG的长;(3)连结AG,在点E运动过程中,四边形CEAG能否为平行四边形?若能,求出此时DE的长;若不能,说明理由.24.(16分)抛物线y=ax2+bx+3经过点A(1,0)和点B(5,0).(1)求该抛物线所对应的函数解析式;(2)该抛物线与直线y=x+3相交于C、D两点,点P是抛物线上的动点且位于x轴下方,直线PM∥y轴,分别与x轴和直线CD交于点M、N.①连结PC、PD,如图1,在点P运动过程中,△PCD的面积是否存在最大值?若存在,求出这个最大值;若不存在,说明理由;②连结PB,过点C作CQ⊥PM,垂足为点Q,如图2,是否存在点P,使得△CNQ与△PBM相似?若存在,求出满足条件的点P的坐标;若不存在,说明理由.2017年海南省中考数学试卷参考答案与试题解析一、选择题(本大题共14小题,每小题3分,共42分)1.(3分)(2017•黔南州)2017的相反数是()A.﹣2017 B.2017 C.﹣D.【分析】根据相反数特性:若a.b互为相反数,则a+b=0即可解题.【解答】解:∵2017+(﹣2017)=0,∴2017的相反数是(﹣2017),故选 A.【点评】本题考查了相反数之和为0的特性,熟练掌握相反数特性是解题的关键.2.(3分)(2017•海南)已知a=﹣2,则代数式a+1的值为()A.﹣3 B.﹣2 C.﹣1 D.1【分析】把a的值代入原式计算即可得到结果.【解答】解:当a=﹣2时,原式=﹣2+1=﹣1,故选C【点评】此题考查了代数式求值,熟练掌握运算法则是解本题的关键.3.(3分)(2017•海南)下列运算正确的是()A.a3+a2=a5B.a3÷a2=a C.a3•a2=a6D.(a3)2=a9【分析】根据同底数幂的乘法,同底数幂的除法底数不变指数相减,幂的乘方底数不变指数相乘,可得答案.【解答】解:A、a3与a2不是同类项,不能合并,故A不符合题意;B、同底数幂的除法底数不变指数相减,故B符合题意;C、同底数幂的乘法底数不变指数相加,故C不符合题意;D、幂的乘方底数不变指数相乘,故D不符合题意;故选:B.【点评】本题考查了同底数幂的除法,熟记法则并根据法则计算是解题关键.4.(3分)(2017•海南)如图是一个几何体的三视图,则这个几何体是()A.三棱柱 B.圆柱 C.圆台 D.圆锥【分析】根据主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形,再根据几何体的特点即可得出答案.【解答】解:根据俯视图为圆的有球,圆锥,圆柱等几何体,主视图和左视图为三角形的只有圆锥,则这个几何体的形状是圆锥.故选:D.【点评】此题考查了由三视图判断几何体,关键是对三视图能熟练掌握和灵活运用,体现了对空间想象能力的考查.5.(3分)(2017•海南)如图,直线a∥b,c⊥a,则c与b相交所形成的∠1的度数为()A.45°B.60° C.90° D.120°【分析】根据垂线的定义可得∠2=90°,再根据两直线平行,同位角相等可得∠2=∠1=90°.【解答】解:∵c⊥a,∴∠2=90°,∵a∥b,∴∠2=∠1=90°.故选:C.【点评】本题考查了平行线的性质,垂线的定义,熟记两直线平行,同位角相等是解题的关键.6.(3分)(2017•海南)如图,在平面直角坐标系中,△ABC位于第二象限,点A的坐标是(﹣2,3),先把△ABC向右平移4个单位长度得到△A1B1C1,再作与△A1B1C1关于x轴对称的△A2B2C2,则点A的对应点A2的坐标是()A.(﹣3,2)B.(2,﹣3)C.(1,﹣2)D.(﹣1,2)【分析】首先利用平移的性质得到△A1B1C1,进而利用关于x轴对称点的性质得到△A2B2C2,即可得出答案.【解答】解:如图所示:点A的对应点A2的坐标是:(2,﹣3).故选:B.【点评】此题主要考查了平移变换以及轴对称变换,正确掌握变换规律是解题关键.7.(3分)(2017•海南)海南省是中国国土面积(含海域)第一大省,其中海域面积约为2000000平方公里,数据2000000用科学记数法表示为2×10n,则n的值为()A.5 B.6 C.7 D.8【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n是非负数;当原数的绝对值<1时,n是负数.【解答】解:∵2000000=2×106,∴n=6.故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.8.(3分)(2017•海南)若分式的值为0,则x的值为()A.﹣1 B.0 C.1 D.±1【分析】直接利用分式的值为零则分子为零,分母不等于零,进而得出答案.【解答】解:∵分式的值为0,∴x2﹣1=0,x﹣1≠0,解得:x=﹣1.故选:A.【点评】此题主要考查了分式的值为零,正确把握相关定义是解题关键.9.(3分)(2017•海南)今年3月12日,某学校开展植树活动,某植树小组20名同学的年龄情况如下表:则这20名同学年龄的众数和中位数分别是()A.15,14 B.15,15 C.16,14 D.16,15【分析】众数即为出现次数最多的数,所以从中找到出现次数最多的数即可;中位数是排序后位于中间位置的数,或中间两数的平均数.【解答】解:∵12岁有1人,13岁有4人,14岁有3人,15岁有5人,16岁有7人,∴出现次数最多的数据是16,∴同学年龄的众数为16岁;∵一共有20名同学,∴因此其中位数应是第10和第11名同学的年龄的平均数,∴中位数为(15+15)÷2=15,故中位数为15.故选D.【点评】此题考查了众数和中位数,众数是一组数据中出现次数最多的数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.10.(3分)(2017•海南)如图,两个转盘分别自由转动一次,当停止转动时,两个转盘的指针都指向2的概率为()A. B.C.D.【分析】首先根据题意列出表格,然后由表格即可求得所有等可能的结果与都指向2的情况数,继而求得答案.【解答】解:列表如下:∵共有16种等可能的结果,两个转盘的指针都指向2的只有1种结果,∴两个转盘的指针都指向2的概率为,故选:D.【点评】此题考查了树状图法与列表法求概率.用到的知识点为:概率=所求情况数与总情况数之比.11.(3分)(2017•海南)如图,在菱形ABCD中,AC=8,BD=6,则△ABC的周长是()A.14 B.16 C.18 D.20【分析】利用菱形的性质结合勾股定理得出AB的长,进而得出答案.【解答】解:∵在菱形ABCD中,AC=8,BD=6,∴AB=BC,∠AOB=90°,AO=4,BO=3,∴BC=AB==5,∴△ABC的周长=AB+BC+AC=5+5+8=18.故选:C.【点评】此题主要考查了菱形的性质、勾股定理,正确把握菱形的性质,由勾股定理求出AB是解题关键.12.(3分)(2017•海南)如图,点A、B、C在⊙O上,AC∥OB,∠BAO=25°,则∠BOC的度数为()A.25°B.50° C.60° D.80°【分析】先根据OA=OB,∠BAO=25°得出∠B=25°,再由平行线的性质得出∠B=∠CAB=25°,根据圆周角定理即可得出结论.【解答】解:∵OA=OB,∠BAO=25°,∴∠B=25°.∵AC∥OB,∴∠B=∠CAB=25°,∴∠BOC=2∠CAB=50°.(同弧所对的圆心角等于圆周角的2倍)故选B.【点评】本题考查的是圆周角定理,熟知在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解答此题的关键.13.(3分)(2017•海南)已知△ABC的三边长分别为4、4、6,在△ABC所在平面内画一条直线,将△ABC分割成两个三角形,使其中的一个是等腰三角形,则这样的直线最多可画()条.A.3 B.4 C.5 D.6【分析】根据等腰三角形的性质,利用4作为腰或底边得出符合题意的图形即可.【解答】解:如图所示:当AC=CD,AB=BG,AF=CF,AE=BE时,都能得到符合题意的等腰三角形.故选B.【点评】此题主要考查了等腰三角形的判定以及应用设计与作图等知识,正确利用图形分类讨论得出是解题关键.14.(3分)(2017•海南)如图,△ABC的三个顶点分别为A(1,2),B(4,2),C(4,4).若反比例函数y=在第一象限内的图象与△ABC有交点,则k的取值范围是()A.1≤k≤4 B.2≤k≤8 C.2≤k≤16 D.8≤k≤16【分析】由于△ABC是直角三角形,所以当反比例函数y=经过点A时k最小,经过点C时k最大,据此可得出结论.【解答】解:∵△ABC是直角三角形,∴当反比例函数y=经过点A时k最小,经过点C时k最大,∴k最小=1×2=2,k最大=4×4=16,∴2≤k≤16.故选C.【点评】本题考查的是反比例函数的性质,熟知反比例函数图象上点的坐标特点是解答此题的关键.二、填空题(本大题共4小题,每小题4分,共16分)15.(4分)(2017•海南)不等式2x+1>0的解集是x>﹣.【分析】利用不等式的基本性质,将不等式两边同时减去1再除以2,不等号的方向不变;即可得到不等式的解集.【解答】解:原不等式移项得,2x>﹣1,系数化为1,得,x>﹣.故答案为x>﹣.【点评】本题考查了解简单不等式的能力,解答这类题学生往往在解题时不注意移项要改变符号这一点而出错.解不等式要依据不等式的基本性质,在不等式的两边同时加上或减去同一个数或整式不等号的方向不变;在不等式的两边同时乘以或除以同一个正数不等号的方向不变;在不等式的两边同时乘以或除以同一个负数不等号的方向改变.16.(4分)(2017•海南)在平面直角坐标系中,已知一次函数y=x﹣1的图象经过P1(x1,y1)、P2(x2,y2)两点,若x1<x2,则y1<y2(填“>”,“<”或“=”)【分析】根据k=1结合一次函数的性质即可得出y=x﹣1为单调递增函数,再根据x1<x2即可得出y1<y2,此题得解.【解答】解:∵一次函数y=x﹣1中k=1,∴y随x值的增大而增大.∵x1<x2,∴y1<y2.故答案为:<.【点评】本题考查了一次函数的性质,熟练掌握“k>0,y随x的增大而增大,函数从左到右上升.”是解题的关键.17.(4分)(2017•海南)如图,在矩形ABCD中,AB=3,AD=5,点E在DC上,将矩形ABCD沿AE折叠,点D恰好落在BC边上的点F处,那么cos∠EFC的值是.【分析】根据翻折变换的性质得到∠AFE=∠D=90°,AF=AD=5,根据矩形的性质得到∠EFC=∠BAF,根据余弦的概念计算即可.【解答】解:由翻折变换的性质可知,∠AFE=∠D=90°,AF=AD=5,∴∠EFC+∠AFB=90°,∵∠B=90°,∴∠BAF+∠AFB=90°,∴∠EFC=∠BAF,cos∠BAF==,∴cos∠EFC=,故答案为:.【点评】本题考查的是翻折变换的性质、余弦的概念,掌握翻折变换是一种对称变换,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等是解题的关键.18.(4分)(2017•海南)如图,AB是⊙O的弦,AB=5,点C是⊙O上的一个动点,且∠ACB=45°,若点M、N分别是AB、AC的中点,则MN长的最大值是.【分析】根据中位线定理得到MN的长最大时,BC最大,当BC最大时是直径,从而求得直径后就可以求得最大值.【解答】解:如图,∵点M,N分别是AB,AC的中点,∴MN=BC,∴当BC取得最大值时,MN就取得最大值,当BC是直径时,BC最大,连接BO并延长交⊙O于点C′,连接AC′,∵BC′是⊙O的直径,∴∠BAC′=90°.∵∠ACB=45°,AB=5,∴∠AC′B=45°,∴BC′===5,∴MN最大=.故答案为:.【点评】本题考查了三角形的中位线定理、等腰直角三角形的性质及圆周角定理,解题的关键是了解当什么时候MN的值最大,难度不大.三、解答题(本大题共62分)19.(10分)(2017•海南)计算;(1)﹣|﹣3|+(﹣4)×2﹣1;(2)(x+1)2+x(x﹣2)﹣(x+1)(x﹣1)【分析】(1)原式利用算术平方根定义,绝对值的代数意义,负整数指数幂法则计算即可得到结果;(2)原式利用完全平方公式,平方差公式,以及单项式乘以多项式法则计算即可得到结果.【解答】解:(1)原式=4﹣3﹣4×=4﹣3﹣2=﹣1;(2)原式=x2+2x+1+x2﹣2x﹣x2+1=x2+2.【点评】此题考查了整式的混合运算,以及实数的运算,熟练掌握运算法则是解本题的关键.20.(8分)(2017•海南)在某市“棚户区改造”建设工程中,有甲、乙两种车辆参加运土,已知5辆甲种车和2辆乙种车一次共可运土64立方米,3辆甲种车和1辆乙种车一次共可运土36立方米,求甲、乙两种车每辆一次分别可运土多少立方米.【分析】设甲种车辆一次运土x立方米,乙种车辆一次运土y立方米,根据题意所述的两个等量关系得出方程组,解出即可得出答案.【解答】解:设甲种车辆一次运土x立方米,乙种车辆一次运土y立方米,由题意得,,解得:.答:甲种车辆一次运土8立方米,乙种车辆一次运土12立方米.【点评】此题考查了二元一次方程组的应用,属于基础题,仔细审题,根据题意的等量关系得出方程是解答本题的关键.21.(8分)(2017•海南)某校开展“我最喜爱的一项体育活动”调查,要求每名学生必选且只能选一项,现随机抽查了m名学生,并将其结果绘制成如下不完整的条形图和扇形图.请结合以上信息解答下列问题:(1)m= 150 ;(2)请补全上面的条形统计图;(3)在图2中,“乒乓球”所对应扇形的圆心角的度数为36°;(4)已知该校共有1200名学生,请你估计该校约有240 名学生最喜爱足球活动.【分析】(1)根据图中信息列式计算即可;(2)求得“足球“的人数=150×20%=30人,补全上面的条形统计图即可;(3)360°×乒乓球”所占的百分比即可得到结论;(4)根据题意计算即可.【解答】解:(1)m=21÷14%=150,(2)“足球“的人数=150×20%=30人,补全上面的条形统计图如图所示;(3)在图2中,“乒乓球”所对应扇形的圆心角的度数为360°×=36°;(4)1200×20%=240人,答:估计该校约有240名学生最喜爱足球活动.故答案为:150,36°,240.【点评】本题考查了条形统计图,观察条形统计图、扇形统计图获得有效信息是解题关键.22.(8分)(2017•海南)为做好防汛工作,防汛指挥部决定对某水库的水坝进行加高加固,专家提供的方案是:水坝加高2米(即CD=2米),背水坡DE的坡度i=1:1(即DB:EB=1:1),如图所示,已知AE=4米,∠EAC=130°,求水坝原的高度BC.(参考数据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.2)【分析】设BC=x米,用x表示出AB的长,利用坡度的定义得到BD=BE,进而列出x的方程,求出x的值即可.【解答】解:设BC=x米,在Rt△ABC中,∠CAB=180°﹣∠EAC=50°,AB=≈==x,在Rt△EBD中,∵i=DB:EB=1:1,∴BD=BE,∴CD+BC=AE+AB,即2+x=4+x,解得x=12,即BC=12,答:水坝原的高度为12米.【点评】本题考查了解直角三角形的应用,解答本题的关键是理解坡度、坡比的含义,构造直角三角形,利用三角函数表示相关线段的长度,难度一般.23.(12分)(2017•海南)如图,四边形ABCD是边长为1的正方形,点E在AD边上运动,且不与点A和点D重合,连结CE,过点C作CF⊥CE交AB的延长线于点F,EF交BC于点G.(1)求证:△CDE≌△CBF;(2)当DE=时,求CG的长;(3)连结AG,在点E运动过程中,四边形CEAG能否为平行四边形?若能,求出此时DE的长;若不能,说明理由.【分析】(1)先判断出∠CBF=90°,进而判断出∠1=∠3,即可得出结论;(2)先求出AF,AE,再判断出△GBF∽△EAF,可求出BG,即可得出结论;(3)假设是平行四边形,先判断出DE=BG,进而判断出△GBF和△ECF是等腰直角三角形,即可得出∠GFB=∠CFE=45°,即可得出结论.【解答】解:(1)如图,在正方形ABCD中,DC=BC,∠D=∠ABC=∠DCB=90°,∴∠CBF=180°﹣∠ABC=90°,∠1+∠2=∠DCB=90°,∵CF⊥CE,∴∠ECF=90°,∴∠3+∠2=∠ECF=90°,∴∠1=∠3,在△CDE和△CBF中,,∴△CDE≌△CBF,(2)在正方形ABCD中,AD∥BC,∴△GBF∽△EAF,∴,由(1)知,△CDE≌△CBF,∴BF=DE=,∵正方形的边长为1,∴AF=AB+BF=,AE=AD﹣DE=,∴,∴BG=,∴CG=BC﹣BG=;(3)不能,理由:若四边形CEAG是平行四边形,则必须满足AE∥CG,AE=CG,∴AD﹣AE=BC﹣CG,∴DE=BG,由(1)知,△CDE≌△CBF,∴DE=BF,CE=CF,∴△GBF和△ECF是等腰直角三角形,∴∠GFB=45°,∠CFE=45°,∴∠CFA=∠GFB+∠CFE=90°,此时点F与点B重合,点D与点E重合,与题目条件不符,∴点E在运动过程中,四边形CEAG不能是平行四边形.【点评】此题是四边形综合题,主要考查了正方形的性质,全等三角形的判定和性质,相似三角形的判定和性质,平行四边形的性质,等腰直角三角形的判定,解(1)的关键是判定∠1=∠3,解(2)的关键是判断出△GBF∽△EAF,解(3)的关键是判断出∠CFA=90°,是一道常考题.24.(16分)(2017•海南)抛物线y=ax2+bx+3经过点A(1,0)和点B(5,0).(1)求该抛物线所对应的函数解析式;(2)该抛物线与直线y=x+3相交于C、D两点,点P是抛物线上的动点且位于x轴下方,直线PM∥y轴,分别与x轴和直线CD交于点M、N.①连结PC、PD,如图1,在点P运动过程中,△PCD的面积是否存在最大值?若存在,求出这个最大值;若不存在,说明理由;②连结PB,过点C作CQ⊥PM,垂足为点Q,如图2,是否存在点P,使得△CNQ与△PBM相似?若存在,求出满足条件的点P的坐标;若不存在,说明理由.【分析】(1)由A、B两点的坐标,利用待定系数法可求得抛物线解析式;(2)①可设出P点坐标,则可表示出M、N的坐标,联立直线与抛物线解析式可求得C、D的坐标,过C、D作PN的垂线,可用t表示出△PCD的面积,利用二次函数的性质可求得其最大值;②当△CNQ与△PBM相似时有或=两种情况,利用P点坐标,可分别表示出线段的长,可得到关于P点坐标的方程,可求得P点坐标.【解答】解:(1)∵抛物线y=ax2+bx+3经过点A(1,0)和点B(5,0),∴,解得,∴该抛物线对应的函数解析式为y=x2﹣x+3;(2)①∵点P是抛物线上的动点且位于x轴下方,∴可设P(t,t2﹣t+3)(1<t<5),∵直线PM∥y轴,分别与x轴和直线CD交于点M、N,∴M(t,0),N(t,t+3),∴PN=t+3﹣(t2﹣t+3)=﹣(t﹣)2+联立直线CD与抛物线解析式可得,解得或,∴C(0,3),D(7,),分别过C、D作直线PN的直线,垂足分别为E、F,如图1,则CE=t,DF=7﹣t,∴S△PCD=S△PCN+S△PDN=PN•CE+PN•DF=PN=[﹣(t﹣)2+]=﹣(t﹣)2+,∴当t=时,△PCD的面积有最大值,最大值为;②存在.∵∠CQN=∠PMB=90°,∴当△CNQ与△PBM相似时,有或=两种情况,∵CQ⊥PM,垂足为Q,∴Q(t,3),且C(0,3),N(t,t+3),∴CQ=t,NQ=t+3﹣3=t,∴=,∵P(t,t2﹣t+3),M(t,0),B(5,0),∴BM=5﹣t,PM=0﹣(t2﹣t+3)=﹣t2+t﹣3,当时,则PM=BM,即﹣t2+t﹣3=(5﹣t),解得t=2或t=5(舍去),此时P(2,);当=时,则BM=PM,即5﹣t=(﹣t2+t﹣3),解得t=或t=5(舍去),此时P(,﹣);综上可知存在满足条件的点P,其坐标为(2,)或(,﹣).【点评】本题为二次函数的综合应用,涉及待定系数法、函数图象的交点、二次函数的性质、相似三角形的判定和性质、方程思想及分类讨论思想等知识.在(1)中注意待定系数法的应用,在(2)①中用P点坐标表示出△PCD的面积是解题的关键,在(2)②中利用相似三角形的性质确定出相应线段的比是解题的关键.本题考查知识点较多,综合性较强,难度较大.。
2017年海南省中考数学模拟试卷带答案解析(三)
2017年海南省中考数学模拟试卷(三)一、选择题(本大题满分42分,每小题3分)在下列各题的四个备选答案中,只有一个是正确的,请在答题卡上把你认为正确的答案的字母代号按要求用2B 铅笔涂黑.1.(3分)如果a的绝对值是2,那么a是()A.2 B.﹣2 C.±2 D.2.(3分)下列运算正确的是()A.(a+b)2=a2+b2B.a3a2=a5C.a6÷a3=a2D.2a+3b=5ab3.(3分)笔盒里有3支笔芯为黑色与2支笔芯为红色的笔,每支笔的笔芯除颜色外均相同.从中任意拿出一支笔,则恰好拿出红色笔芯的笔的概率是()A.B.C.D.4.(3分)如图,是一个正方体的表面展开图,则原正方体中“梦”字所在的面相对的面上标的字是()A.大B.伟C.国D.的5.(3分)函数y=的自变量x的取值范围在数轴上可表示为()A.B.C.D.6.(3分)函数y=的图象经过点A(1,﹣5),则k的值为()A.B.﹣ C.5 D.﹣57.(3分)方程=﹣1的解是()A.x=﹣2 B.x=2 C.x=0 D.无解8.(3分)如图,△ABC在平面直角坐标系中第二象限内,顶点A的坐标是(﹣2,3),先把△ABC向右平移4个单位得到△A1B1C1,再作△A1B1C1关于x轴对称图形△A2B2C2,则顶点A2的坐标是()A.(﹣3,2)B.(2,﹣3)C.(1,﹣2)D.(3,﹣1)9.(3分)某企业去年的年产值为a亿元,今年比去年增长了10%.若明年还能按这个速度增长,则该企业明年的年产值将能达到()A.(0.2+a)亿元B.0.2a亿元C.1.1a亿元D.1.21a亿元10.(3分)如图,△ABC中,已知AB=8,∠C=90°,∠A=30°,DE是中位线,则DE的长为()A.4 B.3 C.D.211.(3分)如图,⊙O是△ABC的外接圆,AD是⊙O的直径,连接CD,若⊙O 的半径r=5,AC=8,则cosB的值是()A.B.C.D.12.(3分)如图,△DEF是由△ABC经过位似变换得到的,点O是位似中心,D、E、F分别是OA、OB、OC的中点,则△DEF与△ABC的面积比是()A.1:2 B.1:4 C.1:5 D.1:613.(3分)如图,将边长为4cm的正方形ABCD沿其对角线AC剪开,再把△ABC 沿AD方向平移,得到△A′B′C′,若两个三角形重叠部分的面积是4cm2,则它移动的距离AA′等于()A.3cm B.2.5cm C.1.5cm D.2cm14.(3分)如图,在直角坐标系中,点A、B的坐标分别为(1,4)和(3,0),点C是y轴上的一个动点,且A、B、C三点不在同一条直线上,当△ABC的周长最小时,点C的坐标是()A.(0,0) B.(0,1) C.(0,2) D.(0,3)二、填空题(本大题满分16分,每小题4分)15.(4分)分解因式:2x3﹣8x=.16.(4分)不等式组的解集为.17.(4分)如图,OD是⊙O的半径,弦AB⊥OD于E,若∠O=70°,则∠A+∠C=度.18.(4分)如图所示,在完全重合放置的两张矩形纸片ABCD中,AB=4,BC=8,将上面的矩形纸片折叠,使点C与点A重合,折痕为EF,点D的对应点为G,连接DG,则图中阴影部分的面积为.三、解答题(本大题满分62分)19.(10分)(1)计算:4sin60°+|﹣4|﹣﹣()﹣1;(2)化简:•(1﹣).20.(8分)今年“五•一”黄金周期间,河池市某旅行社接待一日游和三日游的旅客共1600人,收取旅游费129万元,其中一日游每人收费150元,三日游每人收费1200元.该旅行社接待的一日游和三日游旅客各多少人?21.(8分)学校为了解学生参加体育活动的情况,对学生“平均每天参加体育活动的时间”进行了随机抽样调查,图是根据调查结果绘制的两幅不完整的统计图.请你根据统计图提供的信息,解答以下问题:(1)本次一共调查了名学生;(2)将条形统计图补充完整;(3)平均每天参加体育活动的时间为“0.5~1小时”部分所对应扇形的圆心角是度;(4)若该校有3000名学生,请你估计全校有名学生平均每天参加体育活动的时间不超1小时.22.(8分)如图,小明同学用仪器测量一棵大树AB的高度,在C处测得∠ADG=30°,在E处测得∠AFG=60°,CE=8米,仪器高度CD=1.4米.(精确到个位,参考数据:≈1.41,≈1.73,≈2.23)(1)求AF的长度;(2)求这棵树AB的高度.23.(13分)如图(图1),点M、N分别是正方形ABCD的边AB、AD的中点,连接CN、DM.(1)求证:△ADM≌△DCN;(2)如图(图2),设CN、DM的交点为H,连接BH,求证:BC=BH;(3)将△ADM沿DM翻折得到△A′DM,延长MA′交DC的延长线于点E,如图(图3),求tan∠DEM.24.(15分)如图1,直线与x轴、y轴分别交于B、C两点,经过B、C两点的抛物线与x轴的另一交点坐标为A(﹣1,0).(1)求B、C两点的坐标及该抛物线所对应的函数关系式;(2)P在线段BC上的一个动点(与B、C不重合),过点P作直线a∥y轴,交抛物线于点E,交x轴于点F,设点P的横坐标为m,△BCE的面积为S.①求S与m之间的函数关系式,并写出自变量m的取值范围;②求S的最大值,并判断此时△OBE的形状,说明理由;(3)过点P作直线b∥x轴(图2),交AC于点Q,那么在x轴上是否存在点R,使得△PQR为等腰直角三角形?若存在,请求出点R的坐标;若不存在,请说明理由.2017年海南省中考数学模拟试卷(三)参考答案与试题解析一、选择题(本大题满分42分,每小题3分)在下列各题的四个备选答案中,只有一个是正确的,请在答题卡上把你认为正确的答案的字母代号按要求用2B 铅笔涂黑.1.(3分)如果a的绝对值是2,那么a是()A.2 B.﹣2 C.±2 D.【解答】解:2的绝对值是2,﹣2的绝对值也是2,所以a的值应该是±2.故选C.2.(3分)下列运算正确的是()A.(a+b)2=a2+b2B.a3a2=a5C.a6÷a3=a2D.2a+3b=5ab【解答】解:A、应为(a+b)2=a2+b2+2ab,故本选项错误;B、a3a2=a5,正确;C、应为a6÷a3=a3,故本选项错误;D、2a与3b不是同类项,不能合并,故本选项错误.故选:B.3.(3分)笔盒里有3支笔芯为黑色与2支笔芯为红色的笔,每支笔的笔芯除颜色外均相同.从中任意拿出一支笔,则恰好拿出红色笔芯的笔的概率是()A.B.C.D.【解答】解:恰好拿出红色笔芯的笔的概率==.故选C.4.(3分)如图,是一个正方体的表面展开图,则原正方体中“梦”字所在的面相对的面上标的字是()A.大B.伟C.国D.的【解答】解:这是一个正方体的平面展开图,共有六个面,其中面“伟”与面“国”相对,面“大”与面“中”相对,“的”与面“梦”相对.故选D.5.(3分)函数y=的自变量x的取值范围在数轴上可表示为()A.B.C.D.【解答】解:∵函数y=有意义,∴2x﹣2>0,解得:x>1,故在数轴上可表示为:.故选:B.6.(3分)函数y=的图象经过点A(1,﹣5),则k的值为()A.B.﹣ C.5 D.﹣5【解答】解:∵函数y=的图象经过点A(1,﹣5),∴,得k=﹣5,故选D.7.(3分)方程=﹣1的解是()A.x=﹣2 B.x=2 C.x=0 D.无解【解答】解:去分母得:x+2=﹣x+2,移项合并得:2x=0,解得:x=0,经检验x=0是分式方程的解.故选C8.(3分)如图,△ABC在平面直角坐标系中第二象限内,顶点A的坐标是(﹣2,3),先把△ABC向右平移4个单位得到△A1B1C1,再作△A1B1C1关于x轴对称图形△A2B2C2,则顶点A2的坐标是()A.(﹣3,2)B.(2,﹣3)C.(1,﹣2)D.(3,﹣1)【解答】解:∵将△ABC向右平移4个单位得△A1B1C1,∴A1的横坐标为﹣2+4=2;纵坐标不变为3;∵把△A1B1C1以x轴为对称轴作轴对称图形△A2B2C2,∴A2的横坐标为2,纵坐标为﹣3;∴点A2的坐标是(2,﹣3).故选B.9.(3分)某企业去年的年产值为a亿元,今年比去年增长了10%.若明年还能按这个速度增长,则该企业明年的年产值将能达到()A.(0.2+a)亿元B.0.2a亿元C.1.1a亿元D.1.21a亿元【解答】解:∵去年的年产值为a亿元,今年比去年增长了10%.∴今年的年产值=a×(1+10%),∴明年的年产值=a×(1+10%)×(1+10%)=(1+10%)2a=1.21a亿元,故选D10.(3分)如图,△ABC中,已知AB=8,∠C=90°,∠A=30°,DE是中位线,则DE的长为()A.4 B.3 C.D.2【解答】解:∵∠C=90°,∠A=30°,∴BC=AB=4,又∵DE是中位线,∴DE=BC=2.故选D.11.(3分)如图,⊙O是△ABC的外接圆,AD是⊙O的直径,连接CD,若⊙O 的半径r=5,AC=8,则cosB的值是()A.B.C.D.【解答】解:∵AD是⊙O的直径,∴∠ACD=90°.Rt△ACD中,AD=2r=10,AC=8.根据勾股定理,得:CD=.∴cosD=.∵∠B=∠D,∴cosB=cosD=,故选B12.(3分)如图,△DEF是由△ABC经过位似变换得到的,点O是位似中心,D、E、F分别是OA、OB、OC的中点,则△DEF与△ABC的面积比是()A.1:2 B.1:4 C.1:5 D.1:6【解答】解:∵D、F分别是OA、OC的中点,∴DF=AC,∴△DEF与△ABC的相似比是1:2,∴△DEF与△ABC的面积比是1:4.故选:B.13.(3分)如图,将边长为4cm的正方形ABCD沿其对角线AC剪开,再把△ABC 沿AD方向平移,得到△A′B′C′,若两个三角形重叠部分的面积是4cm2,则它移动的距离AA′等于()A.3cm B.2.5cm C.1.5cm D.2cm【解答】解:如图,设A′B′交AC于点E,由题意可知∠A=45°,∴AA′=AE,设AA′=xcm,则A′E=xcm,A′D=(4﹣x)cm,∵两个三角形重叠部分的面积是4cm2,∴x(4﹣x)=4,解得x=2,即平移的距离为2cm,故选D.14.(3分)如图,在直角坐标系中,点A、B的坐标分别为(1,4)和(3,0),点C是y轴上的一个动点,且A、B、C三点不在同一条直线上,当△ABC的周长最小时,点C的坐标是()A.(0,0) B.(0,1) C.(0,2) D.(0,3)【解答】解:作B点关于y轴对称点B′点,连接AB′,交y轴于点C′,此时△ABC的周长最小,∵点A、B的坐标分别为(1,4)和(3,0),∴B′点坐标为:(﹣3,0),AE=4,则B′E=4,即B′E=AE,∵C′O∥AE,∴B′O=C′O=3,∴点C′的坐标是(0,3),此时△ABC的周长最小.故选:D.二、填空题(本大题满分16分,每小题4分)15.(4分)分解因式:2x3﹣8x=2x(x﹣2)(x+2).【解答】解:2x3﹣8x,=2x(x2﹣4),=2x(x+2)(x﹣2).16.(4分)不等式组的解集为﹣3<x<1.【解答】解:,解①得:x<1,解②得:x>﹣3,则不等式组的解集是:﹣3<x<1.故答案是:﹣3<x<1.17.(4分)如图,OD是⊙O的半径,弦AB⊥OD于E,若∠O=70°,则∠A+∠C= 55度.【解答】解:如图,连接OB,∵OA=OB,∴∠A=∠ABO.又∵OD是⊙O的半径,弦AB⊥OD于E,∠O=70°,∴=,∠AOB=140°,∴∠C=∠AOD=35°,∠A=∠ABO=20°,∴∠A+∠C=55°.故答案是:55.18.(4分)如图所示,在完全重合放置的两张矩形纸片ABCD中,AB=4,BC=8,将上面的矩形纸片折叠,使点C与点A重合,折痕为EF,点D的对应点为G,连接DG,则图中阴影部分的面积为.【解答】解:由题意知,AF=FC,AB=CD=AG=4,BC=AD=8在Rt△ABF中,由勾股定理知AB2+BF2=AF2,即42+(8﹣AF)2=AF2,解得AF=5,∵∠BAF+∠FAE=∠FAE+∠EAG=90°,∴∠BAF=∠EAG,∵∠B=∠AGE=90°,AB=AG,∴△BAF≌△GAE(AAS),∴AE=AF=5,ED=GE=3过G作GH⊥AD,垂足为H=AG•GE=AE•GH∵S△GAE∴4×3=5×GH∴GH=,=ED•GH=×3×=.∴S△GED故答案为:.三、解答题(本大题满分62分)19.(10分)(1)计算:4sin60°+|﹣4|﹣﹣()﹣1;(2)化简:•(1﹣).【解答】解:(1)原式=4×+4﹣2﹣3=1;(2)原式=•=20.(8分)今年“五•一”黄金周期间,河池市某旅行社接待一日游和三日游的旅客共1600人,收取旅游费129万元,其中一日游每人收费150元,三日游每人收费1200元.该旅行社接待的一日游和三日游旅客各多少人?【解答】解:设接待1日游旅客x人,接待3日游旅客y,根据题意得解这个方程组得答:该旅行社接待1日游旅客600人,接待3日游旅客1000人.21.(8分)学校为了解学生参加体育活动的情况,对学生“平均每天参加体育活动的时间”进行了随机抽样调查,图是根据调查结果绘制的两幅不完整的统计图.请你根据统计图提供的信息,解答以下问题:(1)本次一共调查了200名学生;(2)将条形统计图补充完整;(3)平均每天参加体育活动的时间为“0.5~1小时”部分所对应扇形的圆心角是54度;(4)若该校有3000名学生,请你估计全校有600名学生平均每天参加体育活动的时间不超1小时.【解答】解:(1)由题意可得,本次一共调查了:10÷5%=200(名),故答案为:200;(2)1.5小时以上的有:200×30%=60(名),0.5~1小时的有:200﹣10﹣100﹣60=30(名),补全的条形统计图如右图所示;(3)平均每天参加体育活动的时间为“0.5~1小时”部分所对应扇形的圆心角是:360°×=54°,故答案为:54;(4)∵3000×=600,∴全校有600名学生平均每天参加体育活动的时间不超1小时,故答案为:600.22.(8分)如图,小明同学用仪器测量一棵大树AB的高度,在C处测得∠ADG=30°,在E处测得∠AFG=60°,CE=8米,仪器高度CD=1.4米.(精确到个位,参考数据:≈1.41,≈1.73,≈2.23)(1)求AF的长度;(2)求这棵树AB的高度.【解答】解:根据题意得,四边形DCEF、DCBG是矩形,∴GB=EF=CD=1.5米,DF=CE=8米,设AG=x米,GF=y米,在Rt△AFG中,tan∠AFG=tan60°===,在Rt△ADG中,tan∠ADG=tan30°===,∴x=4,y=4,即AG=4米,FG=4米.(1)AF==8(米);(2)则AB=AG+GB=4+1.4≈8(米).答:这棵树AB的高度约为8米.23.(13分)如图(图1),点M、N分别是正方形ABCD的边AB、AD的中点,连接CN、DM.(1)求证:△ADM≌△DCN;(2)如图(图2),设CN、DM的交点为H,连接BH,求证:BC=BH;(3)将△ADM沿DM翻折得到△A′DM,延长MA′交DC的延长线于点E,如图(图3),求tan∠DEM.【解答】证明:(1)∵点M、N分别是正方形ABCD的边AB、AD的中点,∴AM=DN.AD=DC.∠A=∠CDN,在△AMD和△DNC中,,∴△AMD≌△DNC(SAS);(2)如图2,延长DM、CB交于点P,∵AD∥BC,MA=MB,∴BP=AD=BC.∵由(1)可得∠CHP=90°,∴∠PHC=90°,∴BH=PC=BC;(3)∵将△ADM沿DM翻折得到△A′DM,∴∠AMD=∠DME,∵AB∥DC,∴∠EDM=∠AMD=∠DME,∴EM=ED.设AD=A′D=4a,则A′M=AM=2a,∴DE=ME=EA′+2a.在Rt△DA′E中,A′D2+A′E2=DE2,∴(4a)2+A′E2=(EA′+2a)2,解得A′E=3a,∴在直角△A′DE中,tan∠DEM=A′D:A′E=.24.(15分)如图1,直线与x轴、y轴分别交于B、C两点,经过B、C两点的抛物线与x轴的另一交点坐标为A(﹣1,0).(1)求B、C两点的坐标及该抛物线所对应的函数关系式;(2)P在线段BC上的一个动点(与B、C不重合),过点P作直线a∥y轴,交抛物线于点E,交x轴于点F,设点P的横坐标为m,△BCE的面积为S.①求S与m之间的函数关系式,并写出自变量m的取值范围;②求S的最大值,并判断此时△OBE的形状,说明理由;(3)过点P作直线b∥x轴(图2),交AC于点Q,那么在x轴上是否存在点R,使得△PQR为等腰直角三角形?若存在,请求出点R的坐标;若不存在,请说明理由.【解答】解:(1)在y=﹣x+2中,令y=0,得﹣x+2=0,解得x=3,令x=0,得y=2,∴B(3,0),C(0,2),设抛物线y=ax2+bx+c(a≠0),∵抛物线经过点A(﹣1,0)、B(3,0)、C(0,2),∴,解得,∴抛物线解析式为,y=﹣x2+x+2;(2)①∵点P的横坐标为m,过点P作直线a∥y轴,∴EP=﹣m2+m+2﹣(﹣m+2)=﹣m2+2m,∴△BCE的面积为S=EP•|x B﹣x C|=×(﹣m2+2m)×|3﹣0|=﹣m2+3m,∵P在线段BC上的一个动点(与B、C不重合),∴0<m<3,∴S与m之间的函数关系式为:S=﹣m2+3m(0<m<3);②∵S=﹣m2+3m=﹣(m﹣)2+,=,∴当m=时,S最大值当m=时,P是BC的中点,OE=BE,EF=,∴△OBE是等腰三角形;(3)令y=0,则﹣x2+x+2=0,整理得,x2﹣2x﹣3=0,解得x1=﹣1,x2=3,∴点A(﹣1,0),易得直线AC的解析式为y=2x+2,∵点P的横坐标为m,∴点P的纵坐标为﹣m+2,∴点Q的纵坐标为﹣m+2,代入直线AC得,2x+2=﹣m+2,解得x=﹣m,∴PQ=m﹣(﹣m)=m,①当PQ是等腰直角三角形△PQR的直角边时,m=﹣m+2,解得m=1,∴QR是直角边时,点R1(﹣,0),PQ是直角边时,点R2(1,0),②PQ是等腰直角三角形△PQR的斜边时,×m=﹣m+2,解得m=,∴PQ=m=×=2,OR=m﹣PQ=﹣×2=,∴点R3(,0),综上所述,x轴上存在点R(﹣,0)或(1,0)或(,0),使得△PQR为等腰直角三角形.赠送:初中数学几何模型举例【模型四】 几何最值模型: 图形特征:P ABl运用举例:1. △ABC中,AB=6,AC=8,BC=10,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,M为AP的中点,则MF的最小值为B2.如图,在边长为6的菱形ABCD中,∠BAD=60°,E为AB的中点,F为AC上一动点,则EF+BF的最小值为_________。
2017年海南省中考数学试卷附详细答案(原版+解析版)
2017年海南省中考数学试卷一、选择题(本大题共14小题,每小题3分,共42分)1.(3分)2017的相反数是()A.﹣2017 B.2017 C.﹣ D.2.(3分)已知a=﹣2,则代数式a+1的值为()A.﹣3 B.﹣2 C.﹣1 D.13.(3分)下列运算正确的是()A.a3+a2=a5 B.a3÷a2=a C.a3•a2=a6 D.(a3)2=a94.(3分)如图是一个几何体的三视图,则这个几何体是()A.三棱柱B.圆柱C.圆台D.圆锥5.(3分)如图,直线a∥b,c⊥a,则c与b相交所形成的∠1的度数为()A.45°B.60°C.90°D.120°6.(3分)如图,在平面直角坐标系中,△ABC位于第二象限,点A的坐标是(﹣2,3),先把△ABC向右平移4个单位长度得到△A1B1C1,再作与△A1B1C1关于x轴对称的△A2B2C2,则点A的对应点A2的坐标是()A.(﹣3,2)B.(2,﹣3)C.(1,﹣2)D.(﹣1,2)7.(3分)海南省是中国国土面积(含海域)第一大省,其中海域面积约为2000000平方公里,数据2000000用科学记数法表示为2×10n,则n的值为()A.5 B.6 C.7 D.88.(3分)若分式的值为0,则x的值为()A.﹣1 B.0 C.1 D.±19.(3分)今年3月12日,某学校开展植树活动,某植树小组20名同学的年龄情况如下表:则这20名同学年龄的众数和中位数分别是()A.15,14 B.15,15 C.16,14 D.16,1510.(3分)如图,两个转盘分别自由转动一次,当停止转动时,两个转盘的指针都指向2的概率为()A.B.C.D.11.(3分)如图,在菱形ABCD中,AC=8,BD=6,则△ABC的周长是()A .14B .16C .18D .2012.(3分)如图,点A 、B 、C 在⊙O 上,AC ∥OB ,∠BAO=25°,则∠BOC 的度数为( )A .25°B .50°C .60°D .80°13.(3分)已知△ABC 的三边长分别为4、4、6,在△ABC 所在平面内画一条直线,将△ABC 分割成两个三角形,使其中的一个是等腰三角形,则这样的直线最多可画( )条. A .3B .4C .5D .614.(3分)如图,△ABC 的三个顶点分别为A (1,2),B (4,2),C (4,4).若反比例函数y=在第一象限内的图象与△ABC 有交点,则k 的取值范围是( )A .1≤k ≤4B .2≤k ≤8C .2≤k ≤16D .8≤k ≤16二、填空题(本大题共4小题,每小题4分,共16分) 15.(4分)不等式2x+1>0的解集是 .16.(4分)在平面直角坐标系中,已知一次函数y=x ﹣1的图象经过P 1(x 1,y 1)、P 2(x 2,y 2)两点,若x 1<x 2,则y 1 y 2(填“>”,“<”或“=”) 17.(4分)如图,在矩形ABCD 中,AB=3,AD=5,点E 在DC 上,将矩形ABCD 沿AE 折叠,点D 恰好落在BC 边上的点F 处,那么cos ∠EFC 的值是 .18.(4分)如图,AB是⊙O的弦,AB=5,点C是⊙O上的一个动点,且∠ACB=45°,若点M、N分别是AB、AC的中点,则MN长的最大值是.三、解答题(本大题共62分)19.(10分)计算;(1)﹣|﹣3|+(﹣4)×2﹣1;(2)(x+1)2+x(x﹣2)﹣(x+1)(x﹣1)20.(8分)在某市“棚户区改造”建设工程中,有甲、乙两种车辆参加运土,已知5辆甲种车和2辆乙种车一次共可运土64立方米,3辆甲种车和1辆乙种车一次共可运土36立方米,求甲、乙两种车每辆一次分别可运土多少立方米.21.(8分)某校开展“我最喜爱的一项体育活动”调查,要求每名学生必选且只能选一项,现随机抽查了m名学生,并将其结果绘制成如下不完整的条形图和扇形图.请结合以上信息解答下列问题:(1)m= ;(2)请补全上面的条形统计图;(3)在图2中,“乒乓球”所对应扇形的圆心角的度数为;(4)已知该校共有1200名学生,请你估计该校约有名学生最喜爱足球活动.22.(8分)为做好防汛工作,防汛指挥部决定对某水库的水坝进行加高加固,专家提供的方案是:水坝加高2米(即CD=2米),背水坡DE的坡度i=1:1(即DB:EB=1:1),如图所示,已知AE=4米,∠EAC=130°,求水坝原来的高度BC.(参考数据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.2)23.(12分)如图,四边形ABCD是边长为1的正方形,点E在AD边上运动,且不与点A和点D重合,连结CE,过点C作CF⊥CE交AB的延长线于点F,EF交BC于点G.(1)求证:△CDE≌△CBF;(2)当DE=时,求CG的长;(3)连结AG,在点E运动过程中,四边形CEAG能否为平行四边形?若能,求出此时DE的长;若不能,说明理由.24.(16分)抛物线y=ax2+bx+3经过点A(1,0)和点B(5,0).(1)求该抛物线所对应的函数解析式;(2)该抛物线与直线y=x+3相交于C、D两点,点P是抛物线上的动点且位于x轴下方,直线PM∥y轴,分别与x轴和直线CD交于点M、N.①连结PC、PD,如图1,在点P运动过程中,△PCD的面积是否存在最大值?若存在,求出这个最大值;若不存在,说明理由;②连结PB,过点C作CQ⊥PM,垂足为点Q,如图2,是否存在点P,使得△CNQ 与△PBM相似?若存在,求出满足条件的点P的坐标;若不存在,说明理由.2017年海南省中考数学试卷参考答案与试题解析一、选择题(本大题共14小题,每小题3分,共42分)1.(3分)(2017•海南)2017的相反数是()A.﹣2017 B.2017 C.﹣ D.【分析】根据相反数特性:若a.b互为相反数,则a+b=0即可解题.【解答】解:∵2017+(﹣2017)=0,∴2017的相反数是(﹣2017),故选 A.【点评】本题考查了相反数之和为0的特性,熟练掌握相反数特性是解题的关键.2.(3分)(2017•海南)已知a=﹣2,则代数式a+1的值为()A.﹣3 B.﹣2 C.﹣1 D.1【分析】把a的值代入原式计算即可得到结果.【解答】解:当a=﹣2时,原式=﹣2+1=﹣1,故选C【点评】此题考查了代数式求值,熟练掌握运算法则是解本题的关键.3.(3分)(2017•海南)下列运算正确的是()A.a3+a2=a5 B.a3÷a2=a C.a3•a2=a6 D.(a3)2=a9【解答】解:A、不是同底数幂的乘法指数不能相加,故A不符合题意;B、同底数幂的除法底数不变指数相减,故B符合题意;C、同底数幂的乘法底数不变指数相加,故C不符合题意;D、幂的乘方底数不变指数相乘,故D不符合题意;故选:B.【点评】本题考查了同底数幂的除法,熟记法则并根据法则计算是解题关键.4.(3分)(2017•海南)如图是一个几何体的三视图,则这个几何体是()A.三棱柱B.圆柱C.圆台D.圆锥【解答】解:根据俯视图为圆的有球,圆锥,圆柱等几何体,主视图和左视图为三角形的只有圆锥,则这个几何体的形状是圆锥.故选:D.【点评】此题考查了由三视图判断几何体,关键是对三视图能熟练掌握和灵活运用,体现了对空间想象能力的考查.5.(3分)(2017•海南)如图,直线a∥b,c⊥a,则c与b相交所形成的∠1的度数为()A.45°B.60°C.90°D.120°【解答】解:∵c⊥a,∴∠2=90°,∵a∥b,∴∠2=∠1=90°.故选:C.【点评】本题考查了平行线的性质,垂线的定义,熟记两直线平行,同位角相等是解题的关键.6.(3分)(2017•海南)如图,在平面直角坐标系中,△ABC位于第二象限,点A的坐标是(﹣2,3),先把△ABC向右平移4个单位长度得到△A1B1C1,再作与△A1B1C1关于x轴对称的△A2B2C2,则点A的对应点A2的坐标是()A.(﹣3,2)B.(2,﹣3)C.(1,﹣2)D.(﹣1,2)【解答】解:如图所示:点A的对应点A2的坐标是:(2,﹣3).故选:B.【点评】此题主要考查了平移变换以及轴对称变换,正确掌握变换规律是解题关键.7.(3分)(2017•海南)海南省是中国国土面积(含海域)第一大省,其中海域面积约为2000000平方公里,数据2000000用科学记数法表示为2×10n,则n 的值为()A.5 B.6 C.7 D.8【解答】解:∵2000000=2×106,故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.8.(3分)(2017•海南)若分式的值为0,则x的值为()A.﹣1 B.0 C.1 D.±1【分析】直接利用分式的值为零则分子为零,分母不等于零,进而得出答案.【解答】解:∵分式的值为0,∴x2﹣1=0,x﹣1≠0,解得:x=﹣1.故选:A.【点评】此题主要考查了分式的值为零,正确把握相关定义是解题关键.9.(3分)(2017•海南)今年3月12日,某学校开展植树活动,某植树小组20名同学的年龄情况如下表:则这20名同学年龄的众数和中位数分别是()A.15,14 B.15,15 C.16,14 D.16,15【解答】解:∵12岁有1人,13岁有4人,14岁有3人,15岁有5人,16岁有7人,∴出现次数最多的数据是16,∴同学年龄的众数为16岁;∵一共有20名同学,∴因此其中位数应是第10和第11名同学的年龄的平均数,∴中位数为(15+15)÷2=15,故中位数为15.10.(3分)(2017•海南)如图,两个转盘分别自由转动一次,当停止转动时,两个转盘的指针都指向2的概率为()A.B.C.D.【分析】首先根据题意列出表格,然后由表格即可求得所有等可能的结果与都指向2的情况数,继而求得答案.【解答】解:列表如下:∵共有16种等可能的结果,两个转盘的指针都指向2的只有1种结果,∴两个转盘的指针都指向2的概率为,故选:D.【点评】此题考查了树状图法与列表法求概率.用到的知识点为:概率=所求情况数与总情况数之比.11.(3分)(2017•海南)如图,在菱形ABCD中,AC=8,BD=6,则△ABC的周长是()A.14 B.16 C.18 D.20【分析】利用菱形的性质结合勾股定理得出AB的长,进而得出答案.【解答】解:∵在菱形ABCD中,AC=8,BD=6,∴AB=BC,∠AOB=90°,AO=4,BO=3,∴BC=AB==5,∴△ABC的周长=AB+BC+AC=5+5+8=18.故选:C.【点评】此题主要考查了菱形的性质、勾股定理,正确把握菱形的性质,由勾股定理求出AB是解题关键.12.(3分)(2017•海南)如图,点A、B、C在⊙O上,AC∥OB,∠BAO=25°,则∠BOC的度数为()A.25°B.50°C.60°D.80°【解答】解:∵OA=OB,∠BAO=25°,∴∠B=25°.∵AC∥OB,∴∠B=∠CAB=25°,∴∠BOC=2∠CAB=50°.(同弧所对的圆心角等于圆周角的2倍)故选B.【点评】本题考查的是圆周角定理,熟知在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解答此题的关键.13.(3分)(2017•海南)已知△ABC的三边长分别为4、4、6,在△ABC所在平面内画一条直线,将△ABC分割成两个三角形,使其中的一个是等腰三角形,则这样的直线最多可画()条.A.3 B.4 C.5 D.6【分析】根据等腰三角形的性质,利用4作为腰或底边得出符合题意的图形即可.【解答】解:如图所示:当AC=CD,AB=BG,AF=CF,AE=BE时,都能得到符合题意的等腰三角形.故选B.【点评】此题主要考查了等腰三角形的判定以及应用设计与作图等知识,正确利用图形分类讨论得出是解题关键.14.(3分)(2017•海南)如图,△ABC的三个顶点分别为A(1,2),B(4,2),C(4,4).若反比例函数y=在第一象限内的图象与△ABC有交点,则k的取值范围是()A.1≤k≤4 B.2≤k≤8 C.2≤k≤16 D.8≤k≤16【分析】由于△ABC是直角三角形,所以当反比例函数y=经过点A时k最小,经过点C时k最大,据此可得出结论.【解答】解:∵△ABC是直角三角形,∴当反比例函数y=经过点A时k最小,经过点C时k最大,∴k最小=1×2=2,k最大=4×4=16,∴2≤k≤16.故选C.【点评】本题考查的是反比例函数的性质,熟知反比例函数图象上点的坐标特点是解答此题的关键.二、填空题(本大题共4小题,每小题4分,共16分)15.(4分)(2017•海南)不等式2x+1>0的解集是 x >﹣ .【分析】利用不等式的基本性质,将不等式两边同时减去1再除以2,不等号的方向不变;即可得到不等式的解集. 【解答】解:原不等式移项得, 2x >﹣1, 系数化1得, x >﹣.故本题的解集为x >﹣.16.(4分)(2017•海南)在平面直角坐标系中,已知一次函数y=x ﹣1的图象经过P 1(x 1,y 1)、P 2(x 2,y 2)两点,若x 1<x 2,则y 1 < y 2(填“>”,“<”或“=”)【分析】根据k=1结合一次函数的性质即可得出y=x ﹣1为单调递增函数,再根据x 1<x 2即可得出y 1<y 2,此题得解. 【解答】解:∵一次函数y=x ﹣1中k=1, ∴y 随x 值的增大而增大. ∵x 1<x 2, ∴y 1<y 2. 故答案为:<.【点评】本题考查了一次函数的性质,熟练掌握“k >0,y 随x 的增大而增大,函数从左到右上升.”是解题的关键.17.(4分)(2017•海南)如图,在矩形ABCD 中,AB=3,AD=5,点E 在DC 上,将矩形ABCD 沿AE 折叠,点D 恰好落在BC 边上的点F 处,那么cos ∠EFC 的值是.【分析】根据翻转变换的性质得到∠AFE=∠D=90°,AF=AD=5,根据矩形的性质得到∠EFC=∠BAF,根据余弦的概念计算即可.【解答】解:由翻转变换的性质可知,∠AFE=∠D=90°,AF=AD=5,∴∠EFC+∠AFB=90°,∵∠B=90°,∴∠BAF+∠AFB=90°,∴∠EFC=∠BAF,cos∠BAF==,∴cos∠EFC=,故答案为:.【点评】本题考查的是翻转变换的性质、余弦的概念,掌握翻转变换是一种对称变换,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等是解题的关键.18.(4分)(2017•海南)如图,AB是⊙O的弦,AB=5,点C是⊙O上的一个动点,且∠ACB=45°,若点M、N分别是AB、AC的中点,则MN长的最大值是.【分析】根据中位线定理得到MN的长最大时,BC最大,当BC最大时是直径,从而求得直径后就可以求得最大值.【解答】解:如图,∵点M,N分别是AB,AC的中点,∴MN=BC,∴当BC取得最大值时,MN就取得最大值,当BC是直径时,BC最大,连接BO并延长交⊙O于点C′,连接AC′,∵BC′是⊙O的直径,∴∠BAC′=90°.∵∠ACB=45°,AB=5,∴∠AC′B=45°,∴BC′===5,∴MN=.最大故答案为:.【点评】本题考查了三角形的中位线定理、等腰直角三角形的性质及圆周角定理,解题的关键是了解当什么时候MN的值最大,难度不大.三、解答题(本大题共62分)19.(10分)(2017•海南)计算;(1)﹣|﹣3|+(﹣4)×2﹣1;(2)(x+1)2+x(x﹣2)﹣(x+1)(x﹣1)【解答】解:(1)原式=4﹣3﹣4×=4﹣3﹣2=﹣1;(2)原式=x2+2x+1+x2﹣2x﹣x2+1=x2+2.【点评】此题考查了整式的混合运算,以及实数的运算,熟练掌握运算法则是解本题的关键.20.(8分)(2017•海南)在某市“棚户区改造”建设工程中,有甲、乙两种车辆参加运土,已知5辆甲种车和2辆乙种车一次共可运土64立方米,3辆甲种车和1辆乙种车一次共可运土36立方米,求甲、乙两种车每辆一次分别可运土多少立方米.【分析】设甲种车辆一次运土x立方米,乙车辆一次运土y立方米,根据题意所述的两个等量关系得出方程组,解出即可得出答案.【解答】解:设甲种车辆一次运土x立方米,乙车辆一次运土y立方米,由题意得,,解得:.答:甲种车辆一次运土8立方米,乙车辆一次运土12立方米.【点评】此题考查了二元一次方程组的应用,属于基础题,仔细审题,根据题意的等量关系得出方程是解答本题的关键.21.(8分)(2017•海南)某校开展“我最喜爱的一项体育活动”调查,要求每名学生必选且只能选一项,现随机抽查了m名学生,并将其结果绘制成如下不完整的条形图和扇形图.请结合以上信息解答下列问题:(1)m= 150 ;(2)请补全上面的条形统计图;(3)在图2中,“乒乓球”所对应扇形的圆心角的度数为36°;(4)已知该校共有1200名学生,请你估计该校约有240 名学生最喜爱足球活动.【分析】(1)根据图中信息列式计算即可;(2)求得“足球“的人数=150×20%=30人,补全上面的条形统计图即可;(3)360°×乒乓球”所占的百分比即可得到结论;(4)根据题意计算即可.【解答】解:(1)m=21÷14%=150,(2)“足球“的人数=150×20%=30人,补全上面的条形统计图如图所示;(3)在图2中,“乒乓球”所对应扇形的圆心角的度数为360°×=36°;(4)1200×20%=240人,答:估计该校约有240名学生最喜爱足球活动.故答案为:150,36°,240.【点评】本题考查了条形统计图,观察条形统计图、扇形统计图获得有效信息是解题关键.22.(8分)(2017•海南)为做好防汛工作,防汛指挥部决定对某水库的水坝进行加高加固,专家提供的方案是:水坝加高2米(即CD=2米),背水坡DE的坡度i=1:1(即DB:EB=1:1),如图所示,已知AE=4米,∠EAC=130°,求水坝原来的高度BC.(参考数据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.2)【分析】设BC=x米,用x表示出AB的长,利用坡度的定义得到BD=BE,进而列出x的方程,求出x的值即可.【解答】解:设BC=x米,在Rt△ABC中,∠CAB=180°﹣∠EAC=50°,AB=≈==x,在Rt△EBD中,∵i=DB:EB=1:1,∴BD=BE,∴CD+BC=AE+AB,即2+x=4+x,解得x=12,即BC=12,答:水坝原来的高度为12米.【点评】本题考查了解直角三角形的应用,解答本题的关键是理解坡度、坡比的含义,构造直角三角形,利用三角函数表示相关线段的长度,难度一般.23.(12分)(2017•海南)如图,四边形ABCD是边长为1的正方形,点E在AD 边上运动,且不与点A和点D重合,连结CE,过点C作CF⊥CE交AB的延长线于点F,EF交BC于点G.(1)求证:△CDE≌△CBF;(2)当DE=时,求CG的长;(3)连结AG,在点E运动过程中,四边形CEAG能否为平行四边形?若能,求出此时DE的长;若不能,说明理由.【解答】解:(1)如图,在正方形ABCD中,DC=BC,∠D=∠ABC=∠DCB=90°,∴∠CBF=180°﹣∠ABC=90°,∠1+∠2=∠DCB=90°,∵CF⊥CE,∴∠ECF=90°,∴∠3+∠2=∠ECF=90°,∴∠1=∠3,在△CDE和△CBF中,,∴△CDE≌△CBF,(2)在正方形ABCD中,AD∥BC,∴△GBF∽△EAF,∴,由(1)知,△CDE≌△CBF,∴BF=DE=,∵正方形的边长为1,∴AF=AB+BF=,AE=AD﹣DE=,∴,∴BG=,∴CG=BC﹣BG=;(3)不能,理由:若四边形CEAG是平行四边形,则必须满足AE∥CG,AE=CG,∴AD﹣AE=BC﹣CG,∴DE=BG,由(1)知,△CDE≌△ECF,∴DE=BF,CE=CF,∴△GBF和△ECF是等腰直角三角形,∴∠GFB=45°,∠CFE=45°,∴∠CFA=∠GFB+∠CFE=90°,此时点F与点B重合,点D与点E重合,与题目条件不符,∴点E在运动过程中,四边形CEAG不能是平行四边形.24.(16分)(2017•海南)抛物线y=ax2+bx+3经过点A(1,0)和点B(5,0).(1)求该抛物线所对应的函数解析式;(2)该抛物线与直线y=x+3相交于C、D两点,点P是抛物线上的动点且位于x轴下方,直线PM∥y轴,分别与x轴和直线CD交于点M、N.①连结PC、PD,如图1,在点P运动过程中,△PCD的面积是否存在最大值?若存在,求出这个最大值;若不存在,说明理由;②连结PB,过点C作CQ⊥PM,垂足为点Q,如图2,是否存在点P,使得△CNQ 与△PBM相似?若存在,求出满足条件的点P的坐标;若不存在,说明理由.【分析】(1)由A、B两点的坐标,利用待定系数法可求得抛物线解析式;(2)①可设出P点坐标,则可表示出M、N的坐标,联立直线与抛物线解析式可求得C、D的坐标,过C、D作PN的垂线,可用t表示出△PCD的面积,利用二次函数的性质可求得其最大值;②当△CNQ与△PBM相似时有或=两种情况,利用P点坐标,可分别表示出线段的长,可得到关于P点坐标的方程,可求得P点坐标.【解答】解:(1)∵抛物线y=ax2+bx+3经过点A(1,0)和点B(5,0),∴,解得,∴该抛物线对应的函数解析式为y=x2﹣x+3;(2)①∵点P是抛物线上的动点且位于x轴下方,∴可设P(t,t2﹣t+3)(1<t<5),∵直线PM∥y轴,分别与x轴和直线CD交于点M、N,∴M(t,0),N(t,t+3),∴PN=t+3﹣(t2﹣t+3)=﹣(t﹣)2+联立直线CD与抛物线解析式可得,解得或,∴C(0,3),D(7,),分别过C、D作直线PN的直线,垂足分别为E、F,如图1,则CE=t,DF=7﹣t,∴S△PCD =S△PCN+S△PDN=PN•CE+PN•DF=PN=[﹣(t﹣)2+]=﹣(t﹣)2+,∴当t=时,△PCD的面积有最大值,最大值为;②存在.∵∠CQN=∠PMB=90°,∴当△CNQ与△PBM相似时,有或=两种情况,∵CQ⊥PM,垂足为Q,∴Q(t,3),且C(0,3),N(t,t+3),∴CQ=t,NQ=t+3﹣3=t,∴=,∵P(t,t2﹣t+3),M(t,0),B(5,0),∴BM=5﹣t,PM=0﹣(t2﹣t+3)=﹣t2+t﹣3,当时,则PM=BM,即﹣t2+t﹣3=(5﹣t),解得t=2或t=5(舍去),此时P(2,);当=时,则BM=PM,即5﹣t=(﹣t2+t﹣3),解得t=或t=5(舍去),此时P(,﹣);综上可知存在满足条件的点P,其坐标为(2,)或(,﹣).【点评】本题为二次函数的综合应用,涉及待定系数法、函数图象的交点、二次函数的性质、相似三角形的判定和性质、方程思想及分类讨论思想等知识.在(1)中注意待定系数法的应用,在(2)①中用P点坐标表示出△PCD的面积是解题的关键,在(2)②中利用相似三角形的性质确定出相应线段的比是解题的关键.本题考查知识点较多,综合性较强,难度较大.。
2017年海南省中考数学试卷及答案
数学试卷 第1页(共26页) 数学试卷 第2页(共26页)绝密★启用前海南省2017年初中毕业生学业水平考试数学 ...................................................................... 1 海南省2017年初中毕业生学业水平考试数学答案解析 (5)海南省2017年初中毕业生学业水平考试数学(本试卷满分120分,考试时间100分钟)第Ⅰ卷(选择题 共42分)一、选择题(本大题共14小题,每小题3分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.2017的相反数是( ) A .2017-B .2017C .12017- D .120172.已知 =2a -,则代数式+1a 的值为( ) A .3-B .2-C .1-D .1 3.下列运算正确的是( ) A .325a a a += B .32a a a ÷= C .326aa a =D .329()a a =4.下图是一个几何体的三视图,则这个几何体是( )A .三棱柱B .圆柱C .圆台D .圆锥5.如图,直线a b ∥,c a ⊥,则c 与b 相交所形成的1∠的度数为( )A .45B .60C .90D .1206.如图,在平面直角坐标系中,ABC △位于第二象限,点A 的坐标是(2,3)-,先把ABC △向右平移4个单位长度得到111A B C △,再作与111A B C △关于x 轴对称的222A B C △,则点A 的对应点2A 的坐标是 ( ) A .(3,2)-B .(2,3)-C .(1,2)-D .(1,2)-7.海南省是中国国土面积(含海域)第一大省,其中海域面积约为2000000平方公里.数据2000000用科学记数法表示为210n⨯,则n 的值为( ) A .5B .6C .7D .8 8.若分式211x x --的值为0,则x 的值为( ) A .1-B .0C .1D .1±9.则这20名同学年龄的众数和中位数分别是( ) A .15,14B .15,15C .16,14D .16,1510.如图,两个转盘分别自由转动一次,当停止转动时,两个转盘的指针都指向2的概率为( )A .12B .14C .18 D .11611.如图,在菱形ABCD 中,8, 6AC BD ==,则ABC △的周长为( )A .14毕业学校_____________ 姓名________________ 考生号________________________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共26页) 数学试卷 第4页(共26页)B .16C .18D .2012.如图,点,,A B C 在O 上,,25,AC OB BAO =∥∠则BOC ∠的度数为( ) A .25 B .50 C .60D .8013.已知ABC △的三边长分别为4,4,6,在ABC △所在平面内画一条直线,将ABC △分割成两个三角形,使其中的一个是等腰三角形,则这样的直线最多可画 条( ) A .3B .4C .5D .614.如图,ABC △的三个顶点分别为(1,2),(4,2A B ,(4,4).C 若反比例函数ky x=在第一象限内的图象与ABC △有交点,则k 的取值范围是( )A .14k ≤≤B .28k ≤≤C .216k ≤≤D .8k ≤≤16第Ⅱ卷(非选择题 共78分)二、填空题(本大题共4小题,每小题4分,共16分.请把答案填在题中的横线上) 15.不等式2+ 10x >的解集是 .16.在平面直角坐标系中,已知一次函数1y x =-的图象经过111222(, (, P x y P x y ),)两点.若12x x <,则1y 2y (填“>”“<”或“=”).17.如图,在矩形ABCD 中,3,5AB AD ==,点E 在DC 上.将矩形ABCD 沿AE 折叠,点D 恰好落在BC 边上的点F 处,那么cos EFC ∠的值是 .18.如图,AB 是O 的弦,5AB =,点C 是O 上的一个动点,且45ACB ∠=.若点,M N 分别是,AB AC 的中点,则MN 长的最大值是 .三、解答题(本大题共6小题,共62分.解答应写出必要的文字说明、证明过程或演算步骤) 19.(本小题满分10分,每题5分) 计算:(11|3|(4)2--+-⨯;(2)2(1)(2)(1)(1).x x x x x ++--+-20.(本小题满分8分)在某市“棚户区改造”建设工程中,有甲、乙两种车辆参加运土.已知5辆甲种车和2辆乙种车一次共可运土64立方米,3辆甲种车和1辆乙种车一次共可运土36立方米.求甲、乙两种车每辆一次分别可运土多少立方米.21.(本小题满分8分)数学试卷 第5页(共26页) 数学试卷 第6页(共26页)某校开展“我最喜爱的一项体育活动”调查,要求每名学生必选且只能选一项.现随机抽查了m 名学生,并将其结果绘制成如下不完整的条形图和扇形图.请结合以上信息解答下列问题: (1)m = ;(2)请补全上面的条形统计图;(3)在图2中,“乒乓球”所对应扇形的圆心角的度数为 ;(4)已知该校共有1200名学生,请你估计该校约有 名学生最喜爱足球活动.22.(本小题满分8分)为做好防汛工作,防汛指挥部决定对某水库的水坝进行加高加固,专家提供的方案是:水坝加高2米(即2CD =米),背水坡DE 的坡度 =1:1i (即:1:1DB EB =),如图所示.已知4AE =米,130EAC ∠=,求水坝原来的高度BC . (参考数据:sin500.77,cos500.64,tan50 1.2≈≈≈)23.(本小题满分12分)如图,四边形ABCD 是边长为1的正方形,点E 在AD 边上运动,且不与点A 和点D 重合,连接CE ,过点C 作CF CE ⊥交AB 的延长线于点,F EF 交BC 于点G . (1)求证:CDE CBF △≌△; (2)当12DE =时,求CG 的长; (3)连接AG ,在点E 运动过程中,四边形CEAG 能否为平行四边形?若能,求出此时DE 的长;若不能,请说明理由.24.(本小题满分16分)抛物线23y ax bx =++经过点(1,0)A 和点(5,0)B . (1)求该抛物线所对应的函数解析式;(2)该抛物线与直线335y x =+相交于,C D 两点,点P 是抛物线上的动点且位于x 轴下方.直线PM y ∥轴,分别与x 轴和直线CD 交于点,M N .①连接,PC PD ,如图1.在点P 运动过程中,PCD △的面积是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由;②连接PB ,过点C 作CQ PM ⊥,垂足为点Q ,如图2.是否存在点P ,使得CNQ△与PBM △相似?若存在,求出满足条件的点P 的坐标;若不存在,说明理由. 毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------。
2017年海南省中考数学试卷(解析版)
2017年海南省中考数学试卷一、选择题(本大题共14小题,每小题3分,共42分)1.(3分)2017的相反数是()A.﹣2017B.2017C.﹣D.2.(3分)已知a=﹣2,则代数式a+1的值为()A.﹣3B.﹣2C.﹣1D.13.(3分)下列运算正确的是()A.a3+a2=a5B.a3÷a2=a C.a3•a2=a6D.(a3)2=a9 4.(3分)如图是一个几何体的三视图,则这个几何体是()A.三棱柱B.圆柱C.圆台D.圆锥5.(3分)如图,直线a∥b,c⊥a,则c与b相交所形成的∠1的度数为()A.45°B.60°C.90°D.120°6.(3分)如图,在平面直角坐标系中,△ABC位于第二象限,点A的坐标是(﹣2,3),先把△ABC向右平移4个单位长度得到△A1B1C1,再作与△A1B1C1关于x轴对称的△A2B2C2,则点A的对应点A2的坐标是()A.(﹣3,2)B.(2,﹣3)C.(1,﹣2)D.(﹣1,2)7.(3分)海南省是中国国土面积(含海域)第一大省,其中海域面积约为2000000平方公里,数据2000000用科学记数法表示为2×10n,则n的值为()A.5B.6C.7D.88.(3分)若分式的值为0,则x的值为()A.﹣1B.0C.1D.±19.(3分)今年3月12日,某学校开展植树活动,某植树小组20名同学的年龄情况如下表:则这20名同学年龄的众数和中位数分别是()A.15,14B.15,15C.16,14D.16,1510.(3分)如图,两个转盘分别自由转动一次,当停止转动时,两个转盘的指针都指向2的概率为()A.B.C.D.11.(3分)如图,在菱形ABCD中,AC=8,BD=6,则△ABC的周长是()A.14B.16C.18D.2012.(3分)如图,点A、B、C在⊙O上,AC∥OB,∠BAO=25°,则∠BOC的度数为()A.25°B.50°C.60°D.80°13.(3分)已知△ABC的三边长分别为4、4、6,在△ABC所在平面内画一条直线,将△ABC分割成两个三角形,使其中的一个是等腰三角形,则这样的直线最多可画()条.A.3B.4C.5D.614.(3分)如图,△ABC的三个顶点分别为A(1,2),B(4,2),C(4,4).若反比例函数y=在第一象限内的图象与△ABC有交点,则k的取值范围是()A.1≤k≤4B.2≤k≤8C.2≤k≤16D.8≤k≤16二、填空题(本大题共4小题,每小题4分,共16分)15.(4分)不等式2x+1>0的解集是.16.(4分)在平面直角坐标系中,已知一次函数y=x﹣1的图象经过P1(x1,y1)、P2(x2,y2)两点,若x1<x2,则y1y2(填“>”,“<”或“=”)17.(4分)如图,在矩形ABCD中,AB=3,AD=5,点E在DC上,将矩形ABCD沿AE 折叠,点D恰好落在BC边上的点F处,那么cos∠EFC的值是.18.(4分)如图,AB是⊙O的弦,AB=5,点C是⊙O上的一个动点,且∠ACB=45°,若点M、N分别是AB、AC的中点,则MN长的最大值是.三、解答题(本大题共62分)19.(10分)计算;(1)﹣|﹣3|+(﹣4)×2﹣1;(2)(x+1)2+x(x﹣2)﹣(x+1)(x﹣1)20.(8分)在某市“棚户区改造”建设工程中,有甲、乙两种车辆参加运土,已知5辆甲种车和2辆乙种车一次共可运土64立方米,3辆甲种车和1辆乙种车一次共可运土36立方米,求甲、乙两种车每辆一次分别可运土多少立方米.21.(8分)某校开展“我最喜爱的一项体育活动”调查,要求每名学生必选且只能选一项,现随机抽查了m名学生,并将其结果绘制成如下不完整的条形图和扇形图.请结合以上信息解答下列问题:(1)m=;(2)请补全上面的条形统计图;(3)在图2中,“乒乓球”所对应扇形的圆心角的度数为;(4)已知该校共有1200名学生,请你估计该校约有名学生最喜爱足球活动.22.(8分)为做好防汛工作,防汛指挥部决定对某水库的水坝进行加高加固,专家提供的方案是:水坝加高2米(即CD=2米),背水坡DE的坡度i=1:1(即DB:EB=1:1),如图所示,已知AE=4米,∠EAC=130°,求水坝原来的高度BC.(参考数据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.2)23.(12分)如图,四边形ABCD是边长为1的正方形,点E在AD边上运动,且不与点A 和点D重合,连结CE,过点C作CF⊥CE交AB的延长线于点F,EF交BC于点G.(1)求证:△CDE≌△CBF;(2)当DE=时,求CG的长;(3)连结AG,在点E运动过程中,四边形CEAG能否为平行四边形?若能,求出此时DE的长;若不能,说明理由.24.(16分)抛物线y=ax2+bx+3经过点A(1,0)和点B(5,0).(1)求该抛物线所对应的函数解析式;(2)该抛物线与直线y=x+3相交于C、D两点,点P是抛物线上的动点且位于x轴下方,直线PM∥y轴,分别与x轴和直线CD交于点M、N.①连结PC、PD,如图1,在点P运动过程中,△PCD的面积是否存在最大值?若存在,求出这个最大值;若不存在,说明理由;②连结PB,过点C作CQ⊥PM,垂足为点Q,如图2,是否存在点P,使得△CNQ与△PBM相似?若存在,求出满足条件的点P的坐标;若不存在,说明理由.2017年海南省中考数学试卷参考答案与试题解析一、选择题(本大题共14小题,每小题3分,共42分)1.【解答】解:∵2017+(﹣2017)=0,∴2017的相反数是(﹣2017),故选:A.2.【解答】解:当a=﹣2时,原式=﹣2+1=﹣1,故选:C.3.【解答】解:A、a3与a2不是同类项,不能合并,故A不符合题意;B、同底数幂的除法底数不变指数相减,故B符合题意;C、同底数幂的乘法底数不变指数相加,故C不符合题意;D、幂的乘方底数不变指数相乘,故D不符合题意;故选:B.4.【解答】解:根据俯视图为圆的有球,圆锥,圆柱等几何体,主视图和左视图为三角形的只有圆锥,则这个几何体的形状是圆锥.故选:D.5.【解答】解:∵c⊥a,∴∠2=90°,∵a∥b,∴∠2=∠1=90°.故选:C.6.【解答】解:如图所示:点A的对应点A2的坐标是:(2,﹣3).故选:B.7.【解答】解:∵2000000=2×106,∴n=6.故选:B.8.【解答】解:∵分式的值为0,∴x2﹣1=0,x﹣1≠0,解得:x=﹣1.故选:A.9.【解答】解:∵12岁有1人,13岁有4人,14岁有3人,15岁有5人,16岁有7人,∴出现次数最多的数据是16,∴同学年龄的众数为16岁;∵一共有20名同学,∴因此其中位数应是第10和第11名同学的年龄的平均数,∴中位数为(15+15)÷2=15,故中位数为15.故选:D.10.【解答】解:列表如下:∵共有16种等可能的结果,两个转盘的指针都指向2的只有1种结果,∴两个转盘的指针都指向2的概率为,故选:D.11.【解答】解:∵在菱形ABCD中,AC=8,BD=6,∴AB=BC,∠AOB=90°,AO=4,BO=3,∴BC=AB==5,∴△ABC的周长=AB+BC+AC=5+5+8=18.故选:C.12.【解答】解:∵OA=OB,∠BAO=25°,∴∠B=25°.∵AC∥OB,∴∠B=∠CAB=25°,∴∠BOC=2∠CAB=50°.(同弧所对的圆心角等于圆周角的2倍)故选:B.13.【解答】解:如图所示:当AC=CD,AB=BG,AF=CF,AE=BE时,都能得到符合题意的等腰三角形(AD,AE,AF,AG分别为分割线).故选:B.14.【解答】解:∵△ABC是直角三角形,∴当反比例函数y=经过点A时k最小,经过点C时k最大,∴k最小=1×2=2,k最大=4×4=16,∴2≤k≤16.故选:C.二、填空题(本大题共4小题,每小题4分,共16分)15.【解答】解:原不等式移项得,2x>﹣1,系数化为1,得,x>﹣.故答案为x>﹣.16.【解答】解:∵一次函数y=x﹣1中k=1,∴y随x值的增大而增大.∵x1<x2,∴y1<y2.故答案为:<.17.【解答】解:由翻折变换的性质可知,∠AFE=∠D=90°,AF=AD=5,∴∠EFC+∠AFB=90°,∵∠B=90°,∴∠BAF+∠AFB=90°,∴∠EFC=∠BAF,cos∠BAF==,∴cos∠EFC=,故答案为:.18.【解答】解:如图,∵点M,N分别是AB,AC的中点,∴MN=BC,∴当BC取得最大值时,MN就取得最大值,当BC是直径时,BC最大,连接BO并延长交⊙O于点C′,连接AC′,∵BC′是⊙O的直径,∴∠BAC′=90°.∵∠ACB=45°,AB=5,∴∠AC′B=45°,∴BC′===5,∴MN最大=.故答案为:.三、解答题(本大题共62分)19.【解答】解:(1)原式=4﹣3﹣4×=4﹣3﹣2=﹣1;(2)原式=x2+2x+1+x2﹣2x﹣x2+1=x2+2.20.【解答】解:设甲种车辆一次运土x立方米,乙种车辆一次运土y立方米,由题意得,,解得:.答:甲种车辆一次运土8立方米,乙种车辆一次运土12立方米.21.【解答】解:(1)m=21÷14%=150,(2)“足球“的人数=150×20%=30人,补全上面的条形统计图如图所示;(3)在图2中,“乒乓球”所对应扇形的圆心角的度数为360°×=36°;(4)1200×20%=240人,答:估计该校约有240名学生最喜爱足球活动.故答案为:150,36°,240.22.【解答】解:设BC=x米,在Rt△ABC中,∠CAB=180°﹣∠EAC=50°,AB=≈==x,在Rt△EBD中,∵i=DB:EB=1:1,∴BD=BE,∴CD+BC=AE+AB,即2+x=4+x,解得x=12,即BC=12,答:水坝原来的高度为12米.23.【解答】解:(1)如图,在正方形ABCD中,DC=BC,∠D=∠ABC=∠DCB=90°,∴∠CBF=180°﹣∠ABC=90°,∠1+∠2=∠DCB=90°,∵CF⊥CE,∴∠ECF=90°,∴∠3+∠2=∠ECF=90°,∴∠1=∠3,在△CDE和△CBF中,,∴△CDE≌△CBF,(2)在正方形ABCD中,AD∥BC,∴△GBF∽△EAF,∴,由(1)知,△CDE≌△CBF,∴BF=DE=,∵正方形的边长为1,∴AF=AB+BF=,AE=AD﹣DE=,∴,∴BG=,∴CG=BC﹣BG=;(3)不能,理由:若四边形CEAG是平行四边形,则必须满足AE∥CG,AE=CG,∴AD﹣AE=BC﹣CG,∴DE=BG,由(1)知,△CDE≌△CBF,∴DE=BF,CE=CF,∴△GBF和△ECF是等腰直角三角形,∴∠GFB=45°,∠CFE=45°,∴∠CF A=∠GFB+∠CFE=90°,此时点F与点B重合,点D与点E重合,与题目条件不符,∴点E在运动过程中,四边形CEAG不能是平行四边形.24.【解答】解:(1)∵抛物线y=ax2+bx+3经过点A(1,0)和点B(5,0),∴,解得,∴该抛物线对应的函数解析式为y=x2﹣x+3;(2)①∵点P是抛物线上的动点且位于x轴下方,∴可设P(t,t2﹣t+3)(1<t<5),∵直线PM∥y轴,分别与x轴和直线CD交于点M、N,∴M(t,0),N(t,t+3),∴PN=t+3﹣(t2﹣t+3)=﹣(t﹣)2+联立直线CD与抛物线解析式可得,解得或,∴C(0,3),D(7,),分别过C、D作直线PN的直线,垂足分别为E、F,如图1,则CE=t,DF=7﹣t,∴S△PCD=S△PCN+S△PDN=PN•CE+PN•DF=PN=[﹣(t﹣)2+]=﹣(t﹣)2+,∴当t=时,△PCD的面积有最大值,最大值为;②存在.∵∠CQN=∠PMB=90°,∴当△CNQ与△PBM相似时,有或=两种情况,∵CQ⊥PM,垂足为Q,∴Q(t,3),且C(0,3),N(t,t+3),∴CQ=t,NQ=t+3﹣3=t,∴=,∵P(t,t2﹣t+3),M(t,0),B(5,0),∴BM=5﹣t,PM=0﹣(t2﹣t+3)=﹣t2+t﹣3,当时,则PM=BM,即﹣t2+t﹣3=(5﹣t),解得t=2或t=5(舍去),此时P(2,﹣);当=时,则BM=PM,即5﹣t=(﹣t2+t﹣3),解得t=或t=5(舍去),此时P(,﹣);综上可知存在满足条件的点P,其坐标为(2,﹣)或(,﹣).。
【精编】2017年海南省海口市琼山区大华中学数学中考一模试卷与解析
2017年海南省海口市琼山区大华中学中考数学模拟试卷一、选择题:1.(3分)若数轴上的点A、B分别与有理数a、b对应,则下列关系正确的是()A.a<b B.﹣a<b C.|a|<|b|D.﹣a>﹣b2.(3分)下列方程的变形正确的是()A.由2x﹣3=4x,得:2x=4x﹣3B.由7x﹣4=3﹣2x,得:7x+2x=3﹣4C.由x﹣=3x+4得﹣﹣4=3x+xD.由3x﹣4=7x+5得:3x﹣7x=5+43.(3分)如图是由几个相同的小正方体搭成的一个几何体,它的俯视图是()A.B.C.D.4.(3分)为筹备学校元旦联欢晚会,在准备工作中,班长对全班同学爱吃什么水果作了民意调查,再决定最终买哪种水果,下面的调查数据中,他最关注的是()A.中位数B.平均数C.加权平均数D.众数5.(3分)下列运算正确的是()A.a﹣2a=a B.(﹣2a2)3=﹣8a6 C.a6+a3=a2 D.(a+b)2=a2+b26.(3分)为了响应中央号召,2012年某市加大财政支农力度,全市农业支出累计约达到53000万元,其中53000万元(保留三位有效数字)用科学记数法可表示为()A.5.3×107元B.5.30×107元 C.530×108元D.5.30×108元7.(3分)化简,可得()A.B.C.D.8.(3分)下列说法正确的是()A.任何非负数都有两个平方根B.一个正数的平方根仍然是正数C.只有正数才有平方根D.负数没有平方根9.(3分)若点M(﹣3,a),N(4,﹣6)在同一个反比例函数的图象上,则a 的值为()A.8 B.﹣8 C.﹣7 D.510.(3分)如图,在方格纸上△DEF是由△ABC绕定点P顺时针旋转得到的.如果用(2,1)表示方格纸上A点的位置,(1,2)表示B点的位置,那么点P的位置为()A.(5,2) B.(2,5) C.(2,1) D.(1,2)11.(3分)下列事件中是必然事件的是()A.打开电视机,正在播广告B.从一个只装有白球的缸里摸出一个球,摸出的球是白球C.明天,涿州的天气一定是晴天D.从一定高度落下的图钉,落地后针尖朝上12.(3分)已知⊙O的半径为6,A为线段PO的中点,当OP=10时,点A与⊙O的位置关系为()A.在圆上B.在圆外C.在圆内D.不确定13.(3分)如图,直线a,b被直线c所截,a∥b,∠1=∠2,若∠3=40°,则∠4等于()A.40°B.50°C.70°D.80°14.(3分)将一张宽为6的长方形纸片(足够长)折叠成如图所示图形.重叠部分是一个三角形ABC,则三角形ABC面积的最小值是()A.9 B.18 C.18D.36二、填空题:15.(3分)分解因式:xy﹣x﹣y+1=.16.(3分)某初中毕业班的每一个同学都将自己的照片向全班其他同学各送一张作为纪念,全班共送了2550张照片,如果全班有x名学生,根据题意,可列方程.17.(3分)如图,四边形ABCD内接于⊙O,∠DAB=130°,连接OC,点P是半径OC上任意一点,连接DP,BP,则∠BPD可能为度(写出一个即可).18.(3分)直线l1∥l2∥l3,正方形ABCD的三个顶点A、B、C分别在l1、l2,l3上,l1、l2之间的距离是4,l2,l3之间的距离是5,则正方形ABCD的面积是.三、计算题:19.计算:(﹣)2÷(﹣)2×(1)2﹣(﹣4)2﹣42.20.解不等式组,并将它的解集在数轴上表示出来.四、解答题:21.将一批工业最新动态信息输入管理储存网络,甲独做需6小时,乙独做需4小时,甲先做30分钟,然后甲、乙一起做,则甲、乙一起做还需多少小时才能完成工作?22.国务院办公厅在2015年3月16日发布了《中国足球发展改革总体方案》,这是中国足球史上的重大改革,为进一步普及足球知识,传播足球文化,我市某区在中小学举行了“足球在身边”知识竞赛,各类获奖学生人数的比例情况如图所示,其中获得三等奖的学生共50名,请结合图中信息,解答下列问题:(1)获得一等奖的学生人数;(2)在本次知识竞赛活动中,A,B,C,D四所学校表现突出,现决定从这四所学校中随机选取两所学校举行一场足球友谊赛,请用画树状图或列表的方法求恰好选到A,B两所学校的概率.23.如图,某办公楼AB的后面有一建筑物CD,当光线与地面的夹角是22°时,办公楼在建筑物的墙上留下高2米的影子CE,而当光线与地面夹角是45°时,办公楼顶A在地面上的影子F与墙角C有25米的距离(B,F,C在一条直线上).(1)求办公楼AB的高度;(2)若要在A,E之间挂一些彩旗,请你求出A,E之间的距离.(参考数据:sin22°≈,cos22°,tan22)五、综合题:24.如图,矩形AEFG的顶点E,G分别在正方形ABCD的AB,AD边上,连接B,交EF于点M,交FG于点N,设AE=a,AG=b,AB=c(b<a<c).(1)求证:=;(2)求△AMN的面积(用a,b,c的代数式表示);(3)当∠MAN=45°时,求证:c2=2ab.25.如图,抛物线y=ax2+bx+c与x轴交于点A和点B(1,0),与y轴交于点C (0,3),其对称轴l为x=﹣1.(1)求抛物线的解析式并写出其顶点坐标;(2)若动点P在第二象限内的抛物线上,动点N在对称轴l上.①当PA⊥NA,且PA=NA时,求此时点P的坐标;②当四边形PABC的面积最大时,求四边形PABC面积的最大值及此时点P的坐标.2017年海南省海口市琼山区大华中学中考数学模拟试卷参考答案与试题解析一、选择题:1.(3分)若数轴上的点A、B分别与有理数a、b对应,则下列关系正确的是()A.a<b B.﹣a<b C.|a|<|b|D.﹣a>﹣b【解答】解:∵b<a,∴选项A不正确;∵b<a<0,∴﹣a>0,∴﹣a>b,∴选项B不正确;∵b<a<0,∴|a|<|b|,∴选项C正确;∵b<a<0,∴﹣b>﹣a>0,∴选项D不正确.故选:C.2.(3分)下列方程的变形正确的是()A.由2x﹣3=4x,得:2x=4x﹣3B.由7x﹣4=3﹣2x,得:7x+2x=3﹣4C.由x﹣=3x+4得﹣﹣4=3x+xD.由3x﹣4=7x+5得:3x﹣7x=5+4【解答】解:A、由2x﹣3=4x,得:2x=4x+3,不符合题意;B、由7x﹣4=3﹣2x,得:7x+2x=3+4,不符合题意;C、由x﹣=3x+4,得:﹣﹣4=3x﹣x,不符合题意;D、由3x﹣4=7x+5得:3x﹣7x=5+4,符合题意,故选D3.(3分)如图是由几个相同的小正方体搭成的一个几何体,它的俯视图是()A.B.C.D.【解答】解:根据题意它的俯视图是:故选D.4.(3分)为筹备学校元旦联欢晚会,在准备工作中,班长对全班同学爱吃什么水果作了民意调查,再决定最终买哪种水果,下面的调查数据中,他最关注的是()A.中位数B.平均数C.加权平均数D.众数【解答】解:吃哪种水果的人最多,就决定最终买哪种水果,而一组数据中出现次数最多的一个数是这组数据的众数.故选D.5.(3分)下列运算正确的是()A.a﹣2a=a B.(﹣2a2)3=﹣8a6 C.a6+a3=a2 D.(a+b)2=a2+b2【解答】解:A、a﹣2a=﹣a,故本选项错误;B、(﹣2a2)3=﹣8a6,故本选项正确;C、a6和a3不能合并,故本选项错误;D、(a+b)2=a2+2ab+b2,故本选项错误;故选B.6.(3分)为了响应中央号召,2012年某市加大财政支农力度,全市农业支出累计约达到53000万元,其中53000万元(保留三位有效数字)用科学记数法可表示为()A.5.3×107元B.5.30×107元 C.530×108元D.5.30×108元【解答】解:53000万元(保留三位有效数字)用科学记数法可表示为5.30×108元,故选:D.7.(3分)化简,可得()A.B.C.D.【解答】解:==.故选B.8.(3分)下列说法正确的是()A.任何非负数都有两个平方根B.一个正数的平方根仍然是正数C.只有正数才有平方根D.负数没有平方根【解答】解:A、非负数0的平方根是0,只有一个,故本选项错误;B.一个正数有两个平方根,它们互为相反数,故本选项错误;C.因0的平方根是0,故本选项错误;D.负数没有平方根,故本选项正确;故选D.9.(3分)若点M(﹣3,a),N(4,﹣6)在同一个反比例函数的图象上,则a 的值为()A.8 B.﹣8 C.﹣7 D.5【解答】解:设反比例函数解析式为y=,根据题意得k═﹣3a=4×(﹣6),解得a=8.故选A.10.(3分)如图,在方格纸上△DEF是由△ABC绕定点P顺时针旋转得到的.如果用(2,1)表示方格纸上A点的位置,(1,2)表示B点的位置,那么点P的位置为()A.(5,2) B.(2,5) C.(2,1) D.(1,2)【解答】解:如图,分别连接AD、CF,然后作它们的垂直平分线,它们交于P 点,则它们旋转中心为P,根据图形知道△ABC绕P点顺时针旋转90°得到△DEF,∴P的坐标为(5,2).故选A.11.(3分)下列事件中是必然事件的是()A.打开电视机,正在播广告B.从一个只装有白球的缸里摸出一个球,摸出的球是白球C.明天,涿州的天气一定是晴天D.从一定高度落下的图钉,落地后针尖朝上【解答】解:A,C,D三项都是可能发生,也可能不发生,属于不确定事件.是必然事件的是:从一个只装有白球的缸里摸出一个球,摸出的球是白球.故选B.12.(3分)已知⊙O的半径为6,A为线段PO的中点,当OP=10时,点A与⊙O的位置关系为()A.在圆上B.在圆外C.在圆内D.不确定【解答】解:∵OP=10,A是线段OP的中点,∴OA=5,小于圆的半径6,∴点A在圆内.故选C.13.(3分)如图,直线a,b被直线c所截,a∥b,∠1=∠2,若∠3=40°,则∠4等于()A.40°B.50°C.70°D.80°【解答】解:∵∠1=∠2,∠3=40°,∴∠1=×(180°﹣∠3)=×(180°﹣40°)=70°,∵a∥b,∴∠4=∠1=70°.故选:C.14.(3分)将一张宽为6的长方形纸片(足够长)折叠成如图所示图形.重叠部分是一个三角形ABC,则三角形ABC面积的最小值是()A.9 B.18 C.18D.36【解答】解:如图,当AC⊥AB时,三角形面积最小,∵∠BAC=90°∠ACB=45°∴AB=AC=6,=×6×6=18,∴S△ABC故选B.二、填空题:15.(3分)分解因式:xy﹣x﹣y+1=(x﹣1)(y﹣1).【解答】解:xy﹣x﹣y+1,=x(y﹣1)﹣(y﹣1),=(x﹣1)(y﹣1).16.(3分)某初中毕业班的每一个同学都将自己的照片向全班其他同学各送一张作为纪念,全班共送了2550张照片,如果全班有x名学生,根据题意,可列方程x(x﹣1)=2550.【解答】解:全班有x名学生,那么每名学生送照片x﹣1张;全班应该送照片x(x﹣1),则可列方程为:x(x﹣1)=2550.故答案为x(x﹣1)=2550.17.(3分)如图,四边形ABCD内接于⊙O,∠DAB=130°,连接OC,点P是半径OC上任意一点,连接DP,BP,则∠BPD可能为80度(写出一个即可).【解答】解:连接OB、OD,∵四边形ABCD内接于⊙O,∠DAB=130°,∴∠DCB=180°﹣130°=50°,由圆周角定理得,∠DOB=2∠DCB=100°,∴∠DCB≤∠BPD≤∠DOB,即50°≤∠BPD≤100°,∴∠BPD可能为80°,故答案为:80.18.(3分)直线l1∥l2∥l3,正方形ABCD的三个顶点A、B、C分别在l1、l2,l3上,l1、l2之间的距离是4,l2,l3之间的距离是5,则正方形ABCD的面积是41.【解答】解:过点A作AE⊥l1,过点C作CF⊥l2,∴∠CBF+∠BCF=90°,四边形ABCD是正方形,∴AB=BC=CD=AD,∴∠DAB=∠ABC=∠BCD=∠CDA=90°,∴∠ABE+∠CBF=90°,∵l1∥l2∥l3,∴∠ABE=∠BCF,在△ABE和△BCF中,∴△ABE≌△BCF(AAS)(画出L1到L2,L2到L3的距离,分别交L2,L3于E,F),∴BF=AE,∴BF2+CF2=BC2,∴BC2=42+52=41.故答案为:41.三、计算题:19.计算:(﹣)2÷(﹣)2×(1)2﹣(﹣4)2﹣42.【解答】解:(﹣)2÷(﹣)2×(1)2﹣(﹣4)2﹣42=÷×﹣16﹣16=16﹣32=﹣1620.解不等式组,并将它的解集在数轴上表示出来.【解答】解:,由①得:x>2.5由②得:x≤4,∴不等式组的解集为:2.5<x≤4,四、解答题:21.将一批工业最新动态信息输入管理储存网络,甲独做需6小时,乙独做需4小时,甲先做30分钟,然后甲、乙一起做,则甲、乙一起做还需多少小时才能完成工作?【解答】解:设甲、乙一起做还需x小时才能完成工作.根据题意,得×+(+)x=1,解这个方程,得x=,小时=2小时12分,答:甲、乙一起做还需2小时12分才能完成工作.22.国务院办公厅在2015年3月16日发布了《中国足球发展改革总体方案》,这是中国足球史上的重大改革,为进一步普及足球知识,传播足球文化,我市某区在中小学举行了“足球在身边”知识竞赛,各类获奖学生人数的比例情况如图所示,其中获得三等奖的学生共50名,请结合图中信息,解答下列问题:(1)获得一等奖的学生人数;(2)在本次知识竞赛活动中,A,B,C,D四所学校表现突出,现决定从这四所学校中随机选取两所学校举行一场足球友谊赛,请用画树状图或列表的方法求恰好选到A,B两所学校的概率.【解答】解:(1)∵三等奖所在扇形的圆心角为90°,∴三等奖所占的百分比为25%,∵三等奖为50人,∴总人数为50÷25%=200人,∴一等奖的学生人数为200×(1﹣20%﹣25%﹣40%)=30人;(2)列表:∵共有12种等可能的结果,恰好选中A、B的有2种,∴P(选中A、B)==.23.如图,某办公楼AB的后面有一建筑物CD,当光线与地面的夹角是22°时,办公楼在建筑物的墙上留下高2米的影子CE,而当光线与地面夹角是45°时,办公楼顶A在地面上的影子F与墙角C有25米的距离(B,F,C在一条直线上).(1)求办公楼AB的高度;(2)若要在A,E之间挂一些彩旗,请你求出A,E之间的距离.(参考数据:sin22°≈,cos22°,tan22)【解答】解:(1)如图,过点E作EM⊥AB,垂足为M.设AB为x.Rt△ABF中,∠AFB=45°,∴BF=AB=x,∴BC=BF+FC=x+25,在Rt△AEM中,∠AEM=22°,AM=AB﹣BM=AB﹣CE=x﹣2,tan22°=,则=,解得:x=20.即教学楼的高20m.(2)由(1)可得ME=BC=x+25=20+25=45.在Rt△AME中,cos22°=.∴AE=≈=48m,即A、E之间的距离约为48m五、综合题:24.如图,矩形AEFG的顶点E,G分别在正方形ABCD的AB,AD边上,连接B,交EF于点M,交FG于点N,设AE=a,AG=b,AB=c(b<a<c).(1)求证:=;(2)求△AMN的面积(用a,b,c的代数式表示);(3)当∠MAN=45°时,求证:c2=2ab.【解答】(1)证明:过点N作NH⊥AB于点H,过点M作MI⊥AD于点I,∵四边形ABCD是正方形,∴∠ADB=∠ABD=45°,∴△NHB和△DIM是等腰直角三角形,四边形AGNH和四边形AEMI是矩形,∴BN=NH=AG=b,DM=MI=AE=a,∴:=;(2)S=S△ABD﹣S△ABM﹣S△ADN△AMN=AB•AD﹣AB•ME﹣AD•NG=c2﹣c(c﹣a)﹣c(c﹣b)=c(c﹣c+a﹣c+b)=c(a+b﹣c);(3)∵∠DMA=∠ABD+∠MAB=∠MAB+45°,∠BAN=∠MAB+∠MAN=∠MAB+45°,∴∠DMA=∠BAN,∵∠ABD=∠ADB=45°,∴△ADM∽△NBA,∴=,∵DM=a,BN=b,∴c2=2ab.25.如图,抛物线y=ax2+bx+c与x轴交于点A和点B(1,0),与y轴交于点C (0,3),其对称轴l为x=﹣1.(1)求抛物线的解析式并写出其顶点坐标;(2)若动点P在第二象限内的抛物线上,动点N在对称轴l上.①当PA⊥NA,且PA=NA时,求此时点P的坐标;②当四边形PABC的面积最大时,求四边形PABC面积的最大值及此时点P的坐标.【解答】解:(1)∵抛物线y=ax2+bx+c与x轴交于点A和点B(1,0),与y轴交于点C(0,3),其对称轴l为x=﹣1,∴,解得:.∴二次函数的解析式为y=﹣x2﹣2x+3=﹣(x+1)2+4,∴顶点坐标为(﹣1,4);(2)令y=﹣x2﹣2x+3=0,解得x=﹣3或x=1,∴点A(﹣3,0),B(1,0),作PD⊥x轴于点D,∵点P在y=﹣x2﹣2x+3上,∴设点P(x,﹣x2﹣2x+3)①∵PA⊥NA,且PA=NA,∴△PAD≌△ANQ,∴AQ=PD,即y=﹣x2﹣2x+3=2,解得x=﹣1(舍去)或x=﹣﹣1,∴点P(﹣﹣1,2);②设P(x,y),则y=﹣x2﹣2x+3,由于P在第二象限,所以其横坐标满足:﹣3<x<0,∵S=S△OBC+S△APO+S△OPC,四边形PABCS△OBC=OB•OC=×3×1=,S△APO=AO•|y|=×3•y=y=(﹣x2﹣2x+3)=﹣x2﹣3x+,S△OPC=CO•|x|=×3•(﹣x)=﹣x,=﹣x2﹣3x+﹣x=6﹣x﹣x2=﹣(x+)2+,∴S四边形PABC=,此时y=﹣x2﹣2x+3=,∴当x=﹣时,S四边形PABC最大值所以P(﹣,).。
2017年海南省中考数学试卷(解析版)-(27558)
海南省2017年初中毕业生学业考试数学科试题(考试时间:100分钟满分:120分)一、选择题(本大题共14小题,每小题3分,共42分)1.(2017海南)2017的相反数是()A.﹣2017 B.2017 C.﹣D.【分析】根据相反数特性:若a.b互为相反数,则a+b=0即可解题.【解答】解:∵2017+(﹣2017)=0,∴2017的相反数是(﹣2017),故选A.【点评】本题考查了相反数之和为0的特性,熟练掌握相反数特性是解题的关键.2.(2017海南)已知a=﹣2,则代数式a+1的值为()A.﹣3 B.﹣2 C.﹣1 D.1【分析】把a的值代入原式计算即可得到结果.【解答】解:当a=﹣2时,原式=﹣2+1=﹣1,故选C【点评】此题考查了代数式求值,熟练掌握运算法则是解本题的关键.3.(2017海南)下列运算正确的是()A.a3+a2=a5B.a3÷a2=a C.a3a2=a6 D.(a3)2=a9【分析】根据同底数幂的乘法,同底数幂的除法底数不变指数相减,幂的乘方底数不变指数相乘,可得答案.【解答】解:A、不是同底数幂的乘法指数不能相加,故A不符合题意;B、同底数幂的除法底数不变指数相减,故B 符合题意;C、同底数幂的乘法底数不变指数相加,故C 不符合题意;D、幂的乘方底数不变指数相乘,故D不符合题意;故选:B.【点评】本题考查了同底数幂的除法,熟记法则并根据法则计算是解题关键.4.(2017海南)如图是一个几何体的三视图,则这个几何体是()A.三棱柱 B.圆柱C.圆台 D.圆锥【分析】根据主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形,再根据几何体的特点即可得出答案.【解答】解:根据俯视图为圆的有球,圆锥,圆柱等几何体,主视图和左视图为三角形的只有圆锥,则这个几何体的形状是圆锥.故选:D.【点评】此题考查了由三视图判断几何体,关键是对三视图能熟练掌握和灵活运用,体现了对空间想象能力的考查.5.(2017海南)如图,直线a∥b,c⊥a,则c与b相交所形成的∠1的度数为()A.45°B.60°C.90°D.120°【分析】根据垂线的定义可得∠2=90°,再根据两直线平行,同位角相等可得∠2=∠1=90°.【解答】解:∵c⊥a,∴∠2=90°,∵a∥b,∴∠2=∠1=90°.故选:C.【点评】本题考查了平行线的性质,垂线的定义,熟记两直线平行,同位角相等是解题的关键.6.(2017海南)如图,在平面直角坐标系中,△ABC位于第二象限,点A的坐标是(﹣2,3),先把△ABC向右平移4个单位长度得到△A1B1C1,再作与△A1B1C1关于x轴对称的△A2B2C2,则点A的对应点A2的坐标是()A. C.【分析】首先利用平移的性质得到△A1B1C1,进而利用关于x轴对称点的性质得到△A2B2C2,即可得出答案.【解答】解:如图所示:点A的对应点A2的坐标是:(2,﹣3).故选:B.【点评】此题主要考查了平移变换以及轴对称变换,正确掌握变换规律是解题关键.7.(2017海南)海南省是中国国土面积(含海域)第一大省,其中海域面积约为2000000平方公里,数据2000000用科学记数法表示为2×10n,则n的值为()A.5 B.6 C.7 D.8【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:∵2000000=2×106,∴n=6.故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.8.(2017海南)若分式的值为0,则x的值为()A.﹣1 B.0 C.1 D.±1【分析】直接利用分式的值为零则分子为零,分母不等于零,进而而得出答案.【解答】解:∵分式的值为0,∴x2﹣1=0,x﹣1≠0,解得:x=﹣1.故选:A.【点评】此题主要考查了分式的值为零,正确把握相关定义是解题关键.9.(2017海南)今年3月12日,某学校开展植树活动,某植树小组20名同学的年龄情况如下表:()A.15,14 B.15,15 C.16,14 D.16,15 【分析】众数即为出现次数最多的数,所以从中找到出现次数最多的数即可;中位数是排序后位于中间位置的数,或中间两数的平均数.【解答】解:∵12岁有1人,13岁有4人,14岁有3人,15岁有5人,16岁有7人,∴出现次数最多的数据是16,∴同学年龄的众数为16岁;∵一共有20名同学,∴因此其中位数应是第10和第11名同学的年龄的平均数,∴中位数为(15+15)÷2=15,故中位数为15.故选D.【点评】此题考查了众数和中位数,众数是一组数据中出现次数最多的数,中位数是将一组数据从小(或到大从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.10.(2017海南)如图,两个转盘分别自由转动一次,当停止转动时,两个转盘的指针都指向2的概率为()A.B.C.D.【分析】首先根据题意列出表格,然后由表格即可求得所有等可能的结果与都指向2的情况数,继而求得答案.【解答】解:列表如下:都指向2的只有1种结果,∴两个转盘的指针都指向2的概率为,故选:D.【点评】此题考查了树状图法与列表法求概率.用到的知识点为:概率=所求情况数与总情况数之比.11.(2017海南)如图,在菱形ABCD中,AC=8,BD=6,则△ABC的周长是()A.14 B.16 C.18 D.20【分析】利用菱形的性质结合勾股定理得出AB的长,进而得出答案.【解答】解:∵在菱形ABCD中,AC=8,BD=6,∴AB=BC,∠AOB=90°,AO=4,BO=3,∴BC=AB==5,∴△ABC的周长=AB+BC+AC=5+5+8=18.故选:C.【点评】此题主要考查了菱形的性质、勾股定理,正确把握菱形的性质,由勾股定理求出AB是解题关键.12.(2017海南)如图,点A、B、C在⊙O 上,AC∥OB,∠BAO=25°,则∠BOC的度数为()A.25°B.50°C.60°D.80°【分析】先根据OA=OB,∠BAO=25°得出∠B=25°,再由平行线的性质得出∠B=∠CAB=25°,根据圆周角定理即可得出结论.【解答】解:∵OA=OB,∠BAO=25°,∴∠B=25°.∵AC∥OB,∴∠B=∠CA B=25°,∴∠BOC=2∠CAB=50°.故选B.【点评】本题考查的是圆周角定理,熟知在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解答此题的关键.13.(2017海南)已知△ABC的三边长分别为4、4、6,在△ABC所在平面内画一条直线,将△ABC分割成两个三角形,使其中的一个是等腰三角形,则这样的直线最多可画()条.A.3 B.4 C.5 D.6【分析】根据等腰三角形的性质,利用4作为腰或底边得出符合题意的图形即可.【解答】解:如图所示:当AC=CD,AB=BG,AF=CF,AE=BE时,都能得到符合题意的等腰三角形.故选B.【点评】此题主要考查了等腰三角形的判定以及应用设计与作图等知识,正确利用图形分类讨论得出是解题关键.14.(2017海南)如图,△ABC的三个顶点分别为A(1,2),B(4,2),C(4,4).若反比例函数y=在第一象限内的图象与△ABC 有交点,则k的取值范围是()A.1≤k≤4 B.2≤k≤8 C.2≤k≤16 D.8≤k≤16【分析】由于△ABC是直角三角形,所以当反比例函数y=经过点A时k最小,进过点C时k最大,据此可得出结论.【解答】解:∵△ABC是直角三角形,∴当反比例函数y=经过点A时k最小,经过点C时k最大,∴k最小=1×2=2,k最大=4×4=16,∴2≤k≤16.故选C.【点评】本题考查的是反比例函数的性质,熟知反比例函数图象上点的坐标特点是解答此题的关键.二、填空题(本大题共4小题,每小题4分,共16分)15.(2017海南)不等式2x+1>0的解集是x>﹣.【分析】利用不等式的基本性质,将两边不等式同时减去1再除以2,不等号的方向不变;即可得到不等式的解集.【解答】解:原不等式移项得,2x>﹣1,系数化1得,x>﹣.故本题的解集为x>﹣.【点评】本题考查了解简单不等式的能力,解答这类题学生往往在解题时不注意移项要改变符号这一点而出错.解不等式要依据不等式的基本性质,在不等式的两边同时加上或减去同一个数或整式不等号的方向不变;在不等式的两边同时乘以或除以同一个正数不等号的方向不变;在不等式的两边同时乘以或除以同一个负数不等号的方向改变.16.(2017海南)在平面直角坐标系中,已知一次函数y=x﹣1的图象经过P1(x1,y1)、P2(x2,y2)两点,若x1<x2,则y1<y2(填“>”,“<”或“=”)【分析】根据k=1结合一次函数的性质即可得出y=x﹣1为单调递增函数,再根据x1<x2即可得出y1<y2,此题得解.【解答】解:∵一次函数y=x﹣1中k=1,∴y随x值的增大而增大.∵x1<x2,∴y1<y2.故答案为:<.【点评】本题考查了一次函数的性质,熟练掌握“k>0,y随x的增大而增大,函数从左到右上升.”是解题的关键.17.(2017海南)如图,在矩形ABCD中,AB=3,AD=5,点E在DC上,将矩形ABCD沿AE折叠,点D恰好落在BC边上的点F处,那么cos∠EFC的值是.【分析】根据翻转变换的性质得到∠AFE=∠D=90°,AF=AD=5,根据矩形的性质得到∠EFC=∠BAF,根据余弦的概念计算即可.【解答】解:由翻转变换的性质可知,∠AFE=∠D=90°,AF=AD=5,∴∠EFC+∠AFB=90°,∵∠B=90°,∴∠BAF+∠AFB=90°,∴∠EFC=∠BAF,cos∠BAF==,∴cos∠EFC=,故答案为:.【点评】本题考查的是翻转变换的性质、余弦的概念,掌握翻转变换是一种对称变换,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等是解题的关键.18.(2017海南)如图,AB是⊙O的弦,AB=5,点C是⊙O上的一个动点,且∠ACB=45°,若点M、N分别是AB、AC的中点,则MN长的最大值是.【分析】根据中位线定理得到MN的最大时,BC最大,当BC最大时是直径,从而求得直径后就可以求得最大值.【解答】解:如图,∵点M,N分别是AB,AC的中点,∴MN=BC,∴当BC取得最大值时,MN就取得最大值,当BC是直径时,BC最大,连接BO并延长交⊙O于点C′,连接AC′,∵BC′是⊙O的直径,∴∠BAC′=90°.∵∠ACB=45°,AB=5,∴∠AC′B=45°,∴BC′===5,∴MN最大=.故答案为:.【点评】本题考查了三角形的中位线定理、等腰直角三角形的性质及圆周角定理,解题的关键是了解当什么时候MN的值最大,难度不大.三、解答题(本大题共62分)19.(2017海南)计算;(1)﹣|﹣3|+(﹣4)×2﹣1;(2)(x+1)2+x(x﹣2)﹣(x+1)(x﹣1)【分析】(1)原式利用算术平方根定义,绝对值的代数意义,负整数指数幂法则计算即可得到结果;(2)原式利用完全平方公式,平方差公式,以及单项式乘以多项式法则计算即可得到结果.【解答】解:(1)原式=4﹣3﹣4×=4﹣3﹣2=﹣1;(2)原式=x2+2x+1+x2﹣2x﹣x2+1=x2+2.【点评】此题考查了整式的混合运算,以及实数的运算,熟练掌握运算法则是解本题的关键.20.(2017海南)在某市“棚户区改造”建设工程中,有甲、乙两种车辆参加运土,已知5辆甲种车和2辆乙种车一次共可运土64立方米,3辆甲种车和1辆乙种车一次共可运土36立方米,求甲、乙两种车每辆一次分别可运土多少立方米.【分析】设甲种车辆一次运土x立方米,乙车辆一次运土y立方米,根据题意所述的两个等量关系得出方程组,解出即可得出答案.【解答】解:设甲种车辆一次运土x立方米,乙车辆一次运土y立方米,由题意得,,解得:.答:甲种车辆一次运土8立方米,乙车辆一次运土12立方米.【点评】此题考查了二元一次方程组的应用,属于基础题,仔细审题,根据题意的等量关系得出方程是解答本题的关键.21.(2017海南)某校开展“我最喜爱的一项体育活动”调查,要求每名学生必选且只能选一项,现随机抽查了m名学生,并将其结果绘制成如下不完整的条形图和扇形图.请结合以上信息解答下列问题:(1)m= 150 ;(2)请补全上面的条形统计图;(3)在图2中,“乒乓球”所对应扇形的圆心角的度数为36°;(4)已知该校共有1200名学生,请你估计该校约有240 名学生最喜爱足球活动.【分析】(1)根据图中信息列式计算即可;(2)求得“足球“的人数=150×20%=30人,补全上面的条形统计图即可;(3)360°×乒乓球”所占的百分比即可得到结论;(4)根据题意计算计算即可.【解答】解:(1)m=21÷14%=150,(2)“足球“的人数=150×20%=30人,补全上面的条形统计图如图所示;(3)在图2中,“乒乓球”所对应扇形的圆心角的度数为360°×=36°;(4)1200×20%=240人,答:估计该校约有240名学生最喜爱足球活动.故答案为:150,36°,240.【点评】本题考查了条形统计图,观察条形统计图、扇形统计图获得有效信息是解题关键.22.(2017海南)为做好防汛工作,防汛指挥部决定对某水库的水坝进行加高加固,专家提供的方案是:水坝加高2米(即CD=2米),背水坡DE的坡度i=1:1(即DB:EB=1:1),如图所示,已知AE=4米,∠EAC=130°,求水坝原来的高度BC.(参考数据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.2)【分析】设BC=x米,用x表示出AB的长,利用坡度的定义得到BD=BE,进而列出x的方程,求出x的值即可.【解答】解:设BC=x米,在Rt△ABC中,∠CAB=180°﹣∠EAC=50°,AB=≈==x,在Rt△EBD中,∵i=DB:EB=1:1,∴BD=BE,∴CD+BC=AE+AB,即2+x=4+x,解得x=12,即BC=12,答:水坝原来的高度为12米.【点评】本题考查了解直角三角形的应用,解答本题的关键是理解坡度、坡比的含义,构造直角三角形,利用三角函数表示相关线段的长度,难度一般.23.(2017海南)如图,四边形ABCD是边长为1的正方形,点E在AD边上运动,且不与点A和点D重合,连结CE,过点C作CF⊥CE交AB的延长线于点F,EF交BC于点G.(1)求证:△CDE≌△CBF;(2)当DE=时,求CG的长;(3)连结AG,在点E运动过程中,四边形CEAG能否为平行四边形?若能,求出此时DE的长;若不能,说明理由.【分析】(1)先判断出∠CBF=90°,进而判断出∠1=∠3,即可得出结论;(2)先求出AF,AE,再判断出△GBF∽△EAF,可求出BG,即可得出结论;(3)假设是平行四边形,先判断出DE=BG,进而判断出△GBF和△ECF是等腰直角三角形,即可得出∠GFB=∠CFE=45°,即可得出结论.【解答】解:(1)如图,在正方形ABCD中,DC=BC,∠D=∠ABC=∠DCB=90°,∴∠CBF=180°﹣∠ABC=90°,∠1+∠2=∠DCB=90°,∵CF⊥CE,∴∠ECF=90°,∴∠3+∠2=∠ECF=90°,∴∠1=∠3,在△CDE和△CBF中,,∴△CDE≌△CBF,(2)在正方形ABCD中,AD∥BC,∴△GBF∽△EAF,∴,由(1)知,△CDE≌△CBF,∴BF=DE=,∵正方形的边长为1,∴AF=AB+BF=,AE=AD﹣DE=,∴,∴BG=,∴CG=BC﹣BG=;(3)不能,理由:若四边形CEAG是平行四边形,则必须满足AE∥CG,AE=CG,∴AD﹣AE=BC﹣CG,∴DE=BG,由(1)知,△CDE≌△ECF,∴DE=BF,CE=CF,∴△GBF和△ECF是等腰直角三角形,∴∠GFB=45°,∠CFE=45°,∴∠CFA=∠GFB+∠CFE=90°,此时点F与点B重合,点D与点E重合,与题目条件不符,∴点E在运动过程中,四边形CEAG不能是平行四边形.【点评】此题是四边形综合题,主要考查了正方形的性质,全等三角形的判定和性质,相似三角形的判定和性质,平行四边形的性质,等腰直角三角形的判定,解(1)的关键是判定∠1=∠3,解(2)的关键是判断出△GBF∽△EAF,解(3)的关键是判断出∠CFA=90°,是一道基础题目.24.(2017海南)抛物线y=ax2+bx+3经过点A(1,0)和点B(5,0).(1)求该抛物线所对应的函数解析式;(2)该抛物线与直线y=x+3相交于C、D两点,点P是抛物线上的动点且位于x轴下方,直线PM∥y轴,分别与x轴和直线CD交于点M、N.①连结PC、PD,如图1,在点P运动过程中,△PCD的面积是否存在最大值?若存在,求出这个最大值;若不存在,说明理由;②连结PB,过点C作CQ⊥PM,垂足为点Q,如图2,是否存在点P,使得△CNQ与△PBM 相似?若存在,求出满足条件的点P的坐标;若不存在,说明理由.【分析】(1)由A、B两点的坐标,利用待定系数法可求得抛物线解析式;(2)①可设出P点坐标,则可表示出M、N 的坐标,联立直线与抛物线解析式可求得C、D的坐标,过C、D作PN的垂线,可用t表示出△PCD的面积,利用二次函数的性质可求得其最大值;②当△CNQ与△PBM相似时有=或=两种情况,利用P点坐标,可分别表示出线段的长,可得到关于P点坐标的方程,可求得P点坐标.【解答】解:(1)∵抛物线y=ax2+bx+3经过点A(1,0)和点B(5,0),∴,解得,∴该抛物线对应的函数解析式为y=x2﹣x+3;(2)①∵点P是抛物线上的动点且位于x轴下方,∴可设P(t,t2﹣t+3)(1<t<5),∵直线PM∥y轴,分别与x轴和直线CD交于点M、N,∴M(t,0),N(t,t+3),∴PN=t+3﹣(t2﹣t+3)=﹣(t﹣)2+联立直线CD与抛物线解析式可得,解得或,∴C(0,3),D(7,),分别过C、D作直线PN的直线,垂足分别为E、F,如图1,则CE=t,DF=7﹣t,∴S△PCD=S△PCN+S△PDN=PNCE+PNDF=PN=[﹣(t﹣)2+]=﹣(t﹣)2+,∴当t=时,△PCD的面积有最大值,最大值为;②存在.∵∠CQN=∠PMB=90°,∴当△CNQ 与△PBM 相似时,有=或=两种情况,∵CQ ⊥PM ,垂足为Q ,∴Q (t ,3),且C (0,3),N (t , t+3),∴CQ=t ,NQ=t+3﹣3=t ,∴=,∵P (t , t 2﹣t+3),M (t ,0),B (5,0),∴BM=5﹣t ,PM=0﹣(t 2﹣t+3)=﹣t 2+t ﹣3,当=时,则PM=BM ,即﹣t 2+t ﹣3=(5﹣t ),解得t=2或t=5(舍去),此时P (2,);当=时,则BM=PM ,即5﹣t=(﹣t 2+t ﹣3),解得t=或t=5(舍去),此时P (,﹣);--WORD 格式--专业资料--可编辑----- 综上可知存在满足条件的点P ,其坐标为(2,)或(,﹣).【点评】本题为二次函数的综合应用,涉及待定系数法、函数图象的交点、二次函数的性质、相似三角形的判定和性质、方程思想及分类讨论思想等知识.在(1)中注意待定系数法的应用,在(2)①中用P 点坐标表示出△PCD 的面积是解题的关键,在(2)②中利用相似三角形的性质确定出相应线段的比是解题的关键.本题考查知识点较多,综合性较强,难度较大.。
2017年海南省中考数学试卷和答案解析
请结合以上信息解答下列问题: (1) m ;
B. 2 B. a a a
3 2
C. 1 C. a
3
(
上
--------------------Leabharlann a a26
D. ( a ) a
3 2
9
4.下图是一个几何体的三视图,则这个几何体是
(
A.
1 2
B.
1 4
C.
1 8
( )
D.
1 16
11. 如图 , 在菱形 ABCD 中 , AC 8 , BD 6 , 则 △ABC 的周长为 A.三棱柱 B.圆柱 C.圆台 D.圆锥 5.如图,直线 a∥b , c⊥a ,则 c 与 b 相交所形成的∠ 1 的度数为 ( A. 45 B. 60 C. 90 D. 120 6.如图,在平面直角坐标系中, △ABC 位于第二象限,点 A 的坐标是 (2 , 3) ,先把 △ABC 向右平移 4 个单位长度得 到 △A1 B1C1 , 再 作 与 △A1 B1 C1 关于 x 轴对称的 △A2 B2 C , ( ) 2则点 A 的对应点 A2 的坐标是 A. (3 , 2) C. (1, 2) B. (2 , 3) D. (1, 2) 数学试卷 第 1 页(共 6 页) )
y2 (填“ > ”“ < ”或“ ”).
17. 如图 , 在矩形 ABCD 中 , AB 3 , AD 5 , 点 E 在 DC 上 . 将矩形 ABCD 沿 AE 折 叠,点 D 恰好落在 BC 边上的点 F 处,那么 cosEFC 的值是 .
21.(本小题满分 8 分) 18.如图, AB 是
n
在
海南省 2017 年初中毕业生学业水平考试
2017年海南省中考数学试卷含答案
2017年海南省中考数学试卷一、选择题(本大题共14小题,每小题3分,共42分)1.(3分)2017的相反数是()A.﹣2017 B.2017 C.﹣D.2.(3分)已知a=﹣2,则代数式a+1的值为()A.﹣3 B.﹣2 C.﹣1 D.13.(3分)下列运算正确的是()A.a3+a2=a5 B.a3÷a2=a C.a3•a2=a6 D.(a3)2=a94.(3分)如图是一个几何体的三视图,则这个几何体是()A.三棱柱B.圆柱C.圆台D.圆锥5.(3分)如图,直线a∥b,c⊥a,则c与b相交所形成的∠1的度数为()A.45°B.60°C.90°D.120°6.(3分)如图,在平面直角坐标系中,△ABC位于第二象限,点A的坐标是(﹣2,3),先把△ABC向右平移4个单位长度得到△A1B1C1,再作与△A1B1C1关于x 轴对称的△A2B2C2,则点A的对应点A2的坐标是()A.(﹣3,2)B.(2,﹣3)C.(1,﹣2)D.(﹣1,2)7.(3分)海南省是中国国土面积(含海域)第一大省,其中海域面积约为2000000平方公里,数据2000000用科学记数法表示为2×10n,则n的值为()A.5 B.6 C.7 D.88.(3分)若分式的值为0,则x的值为()A.﹣1 B.0 C.1 D.±19.(3分)今年3月12日,某学校开展植树活动,某植树小组20名同学的年龄情况如下表:年龄(岁)1213141516人数14357则这20名同学年龄的众数和中位数分别是()A.15,14 B.15,15 C.16,14 D.16,1510.(3分)如图,两个转盘分别自由转动一次,当停止转动时,两个转盘的指针都指向2的概率为()A .B .C .D .11.(3分)如图,在菱形ABCD中,AC=8,BD=6,则△ABC的周长是()A.14 B.16 C.18 D.2012.(3分)如图,点A、B、C在⊙O上,AC∥OB,∠BAO=25°,则∠BOC的度数为()A.25°B.50°C.60°D.80°13.(3分)已知△ABC的三边长分别为4、4、6,在△ABC所在平面内画一条直线,将△ABC分割成两个三角形,使其中的一个是等腰三角形,则这样的直线最多可画()条.A.3 B.4 C.5 D.614.(3分)如图,△ABC的三个顶点分别为A(1,2),B(4,2),C(4,4).若反比例函数y=在第一象限内的图象与△ABC有交点,则k的取值范围是()A.1≤k≤4 B.2≤k≤8 C.2≤k≤16 D.8≤k≤16二、填空题(本大题共4小题,每小题4分,共16分)15.(4分)不等式2x+1>0的解集是.16.(4分)在平面直角坐标系中,已知一次函数y=x﹣1的图象经过P1(x1,y1)、P2(x2,y2)两点,若x1<x2,则y1y2(填“>”,“<”或“=”)17.(4分)如图,在矩形ABCD中,AB=3,AD=5,点E在DC上,将矩形ABCD 沿AE折叠,点D恰好落在BC边上的点F处,那么cos∠EFC的值是.18.(4分)如图,AB是⊙O的弦,AB=5,点C是⊙O上的一个动点,且∠ACB=45°,若点M、N分别是AB、AC的中点,则MN长的最大值是.三、解答题(本大题共62分)19.(10分)计算;(1)﹣|﹣3|+(﹣4)×2﹣1;(2)(x+1)2+x(x﹣2)﹣(x+1)(x﹣1)20.(8分)在某市“棚户区改造”建设工程中,有甲、乙两种车辆参加运土,已知5辆甲种车和2辆乙种车一次共可运土64立方米,3辆甲种车和1辆乙种车一次共可运土36立方米,求甲、乙两种车每辆一次分别可运土多少立方米.21.(8分)某校开展“我最喜爱的一项体育活动”调查,要求每名学生必选且只能选一项,现随机抽查了m名学生,并将其结果绘制成如下不完整的条形图和扇形图.请结合以上信息解答下列问题:(1)m=;(2)请补全上面的条形统计图;(3)在图2中,“乒乓球”所对应扇形的圆心角的度数为;(4)已知该校共有1200名学生,请你估计该校约有名学生最喜爱足球活动.22.(8分)为做好防汛工作,防汛指挥部决定对某水库的水坝进行加高加固,专家提供的方案是:水坝加高2米(即CD=2米),背水坡DE的坡度i=1:1(即DB:EB=1:1),如图所示,已知AE=4米,∠EAC=130°,求水坝原来的高度BC.(参考数据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.2)23.(12分)如图,四边形ABCD是边长为1的正方形,点E在AD边上运动,且不与点A和点D重合,连结CE,过点C作CF⊥CE交AB的延长线于点F,EF 交BC于点G.(1)求证:△CDE≌△CBF;(2)当DE=时,求CG的长;(3)连结AG,在点E运动过程中,四边形CEAG能否为平行四边形?若能,求出此时DE的长;若不能,说明理由.24.(16分)抛物线y=ax2+bx+3经过点A(1,0)和点B(5,0).(1)求该抛物线所对应的函数解析式;(2)该抛物线与直线y=x+3相交于C、D两点,点P是抛物线上的动点且位于x轴下方,直线PM∥y轴,分别与x轴和直线CD交于点M、N.①连结PC、PD,如图1,在点P运动过程中,△PCD的面积是否存在最大值?若存在,求出这个最大值;若不存在,说明理由;②连结PB,过点C作CQ⊥PM,垂足为点Q,如图2,是否存在点P,使得△CNQ 与△PBM相似?若存在,求出满足条件的点P的坐标;若不存在,说明理由.2017年海南省中考数学试卷参考答案与试题解析一、选择题(本大题共14小题,每小题3分,共42分)1.(3分)(2017•黔南州)2017的相反数是()A.﹣2017 B.2017 C.﹣D.【分析】根据相反数特性:若a.b互为相反数,则a+b=0即可解题.【解答】解:∵2017+(﹣2017)=0,∴2017的相反数是(﹣2017),故选A.【点评】本题考查了相反数之和为0的特性,熟练掌握相反数特性是解题的关键.2.(3分)(2017•海南)已知a=﹣2,则代数式a+1的值为()A.﹣3 B.﹣2 C.﹣1 D.1【分析】把a的值代入原式计算即可得到结果.【解答】解:当a=﹣2时,原式=﹣2+1=﹣1,故选C【点评】此题考查了代数式求值,熟练掌握运算法则是解本题的关键.3.(3分)(2017•海南)下列运算正确的是()A.a3+a2=a5 B.a3÷a2=a C.a3•a2=a6 D.(a3)2=a9【分析】根据同底数幂的乘法,同底数幂的除法底数不变指数相减,幂的乘方底数不变指数相乘,可得答案.【解答】解:A、a3与a2不是同类项,不能合并,故A不符合题意;B、同底数幂的除法底数不变指数相减,故B符合题意;C、同底数幂的乘法底数不变指数相加,故C不符合题意;D、幂的乘方底数不变指数相乘,故D不符合题意;故选:B.【点评】本题考查了同底数幂的除法,熟记法则并根据法则计算是解题关键.4.(3分)(2017•海南)如图是一个几何体的三视图,则这个几何体是()A.三棱柱B.圆柱C.圆台D.圆锥【分析】根据主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形,再根据几何体的特点即可得出答案.【解答】解:根据俯视图为圆的有球,圆锥,圆柱等几何体,主视图和左视图为三角形的只有圆锥,则这个几何体的形状是圆锥.故选:D.【点评】此题考查了由三视图判断几何体,关键是对三视图能熟练掌握和灵活运用,体现了对空间想象能力的考查.5.(3分)(2017•海南)如图,直线a∥b,c⊥a,则c与b相交所形成的∠1的度数为()A.45°B.60°C.90°D.120°【分析】根据垂线的定义可得∠2=90°,再根据两直线平行,同位角相等可得∠2=∠1=90°.【解答】解:∵c⊥a,∴∠2=90°,∵a∥b,∴∠2=∠1=90°.故选:C.【点评】本题考查了平行线的性质,垂线的定义,熟记两直线平行,同位角相等是解题的关键.6.(3分)(2017•海南)如图,在平面直角坐标系中,△ABC位于第二象限,点A的坐标是(﹣2,3),先把△ABC向右平移4个单位长度得到△A1B1C1,再作与△A1B1C1关于x轴对称的△A2B2C2,则点A的对应点A2的坐标是()A.(﹣3,2)B.(2,﹣3)C.(1,﹣2)D.(﹣1,2)【分析】首先利用平移的性质得到△A1B1C1,进而利用关于x轴对称点的性质得到△A2B2C2,即可得出答案.【解答】解:如图所示:点A的对应点A2的坐标是:(2,﹣3).故选:B.【点评】此题主要考查了平移变换以及轴对称变换,正确掌握变换规律是解题关键.7.(3分)(2017•海南)海南省是中国国土面积(含海域)第一大省,其中海域面积约为2000000平方公里,数据2000000用科学记数法表示为2×10n,则n 的值为()A.5 B.6 C.7 D.8【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n是非负数;当原数的绝对值<1时,n 是负数.【解答】解:∵2000000=2×106,∴n=6.故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.8.(3分)(2017•海南)若分式的值为0,则x的值为()A.﹣1 B.0 C.1 D.±1【分析】直接利用分式的值为零则分子为零,分母不等于零,进而得出答案.【解答】解:∵分式的值为0,∴x2﹣1=0,x﹣1≠0,解得:x=﹣1.故选:A.【点评】此题主要考查了分式的值为零,正确把握相关定义是解题关键.9.(3分)(2017•海南)今年3月12日,某学校开展植树活动,某植树小组20名同学的年龄情况如下表:年龄(岁)1213141516人数14357则这20名同学年龄的众数和中位数分别是()A.15,14 B.15,15 C.16,14 D.16,15【分析】众数即为出现次数最多的数,所以从中找到出现次数最多的数即可;中位数是排序后位于中间位置的数,或中间两数的平均数.【解答】解:∵12岁有1人,13岁有4人,14岁有3人,15岁有5人,16岁有7人,∴出现次数最多的数据是16,∴同学年龄的众数为16岁;∵一共有20名同学,∴因此其中位数应是第10和第11名同学的年龄的平均数,∴中位数为(15+15)÷2=15,故中位数为15.故选D.【点评】此题考查了众数和中位数,众数是一组数据中出现次数最多的数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.10.(3分)(2017•海南)如图,两个转盘分别自由转动一次,当停止转动时,两个转盘的指针都指向2的概率为()A.B.C.D.【分析】首先根据题意列出表格,然后由表格即可求得所有等可能的结果与都指向2的情况数,继而求得答案.【解答】解:列表如下:1234 1(1,1)(2,1)(3,1)(4,1)2(1,2)(2,2)(3,2)(4,2)3(1,3)(2,3)(3,3)(4,3)4(1,4)(2,4)(3,4)(4,4)∵共有16种等可能的结果,两个转盘的指针都指向2的只有1种结果,∴两个转盘的指针都指向2的概率为,故选:D.【点评】此题考查了树状图法与列表法求概率.用到的知识点为:概率=所求情况数与总情况数之比.11.(3分)(2017•海南)如图,在菱形ABCD中,AC=8,BD=6,则△ABC的周长是()A.14 B.16 C.18 D.20【分析】利用菱形的性质结合勾股定理得出AB的长,进而得出答案.【解答】解:∵在菱形ABCD中,AC=8,BD=6,∴AB=BC,∠AOB=90°,AO=4,BO=3,∴BC=AB==5,∴△ABC的周长=AB+BC+AC=5+5+8=18.故选:C.【点评】此题主要考查了菱形的性质、勾股定理,正确把握菱形的性质,由勾股定理求出AB是解题关键.12.(3分)(2017•海南)如图,点A、B、C在⊙O上,AC∥OB,∠BAO=25°,则∠BOC的度数为()A.25°B.50°C.60°D.80°【分析】先根据OA=OB,∠BAO=25°得出∠B=25°,再由平行线的性质得出∠B=∠CAB=25°,根据圆周角定理即可得出结论.【解答】解:∵OA=OB,∠BAO=25°,∴∠B=25°.∵AC∥OB,∴∠B=∠CAB=25°,∴∠BOC=2∠CAB=50°.(同弧所对的圆心角等于圆周角的2倍)故选B.【点评】本题考查的是圆周角定理,熟知在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解答此题的关键.13.(3分)(2017•海南)已知△ABC的三边长分别为4、4、6,在△ABC所在平面内画一条直线,将△ABC分割成两个三角形,使其中的一个是等腰三角形,则这样的直线最多可画()条.A.3 B.4 C.5 D.6【分析】根据等腰三角形的性质,利用4作为腰或底边得出符合题意的图形即可.【解答】解:如图所示:当AC=CD,AB=BG,AF=CF,AE=BE时,都能得到符合题意的等腰三角形.故选B.【点评】此题主要考查了等腰三角形的判定以及应用设计与作图等知识,正确利用图形分类讨论得出是解题关键.14.(3分)(2017•海南)如图,△ABC的三个顶点分别为A(1,2),B(4,2),C(4,4).若反比例函数y=在第一象限内的图象与△ABC有交点,则k的取值范围是()A.1≤k≤4 B.2≤k≤8 C.2≤k≤16 D.8≤k≤16【分析】由于△ABC是直角三角形,所以当反比例函数y=经过点A时k最小,经过点C时k最大,据此可得出结论.【解答】解:∵△ABC是直角三角形,∴当反比例函数y=经过点A时k最小,经过点C时k最大,∴k最小=1×2=2,k最大=4×4=16,∴2≤k≤16.故选C.【点评】本题考查的是反比例函数的性质,熟知反比例函数图象上点的坐标特点是解答此题的关键.二、填空题(本大题共4小题,每小题4分,共16分)15.(4分)(2017•海南)不等式2x+1>0的解集是x>﹣.【分析】利用不等式的基本性质,将不等式两边同时减去1再除以2,不等号的方向不变;即可得到不等式的解集.【解答】解:原不等式移项得,2x>﹣1,系数化为1,得,x>﹣.故答案为x>﹣.【点评】本题考查了解简单不等式的能力,解答这类题学生往往在解题时不注意移项要改变符号这一点而出错.解不等式要依据不等式的基本性质,在不等式的两边同时加上或减去同一个数或整式不等号的方向不变;在不等式的两边同时乘以或除以同一个正数不等号的方向不变;在不等式的两边同时乘以或除以同一个负数不等号的方向改变.16.(4分)(2017•海南)在平面直角坐标系中,已知一次函数y=x﹣1的图象经过P1(x1,y1)、P2(x2,y2)两点,若x1<x2,则y1<y2(填“>”,“<”或“=”)【分析】根据k=1结合一次函数的性质即可得出y=x﹣1为单调递增函数,再根据x1<x2即可得出y1<y2,此题得解.【解答】解:∵一次函数y=x﹣1中k=1,∴y随x值的增大而增大.∵x1<x2,∴y1<y2.故答案为:<.【点评】本题考查了一次函数的性质,熟练掌握“k>0,y随x的增大而增大,函数从左到右上升.”是解题的关键.17.(4分)(2017•海南)如图,在矩形ABCD中,AB=3,AD=5,点E在DC上,将矩形ABCD沿AE折叠,点D恰好落在BC边上的点F处,那么cos∠EFC的值是.【分析】根据翻折变换的性质得到∠AFE=∠D=90°,AF=AD=5,根据矩形的性质得到∠EFC=∠BAF,根据余弦的概念计算即可.【解答】解:由翻折变换的性质可知,∠AFE=∠D=90°,AF=AD=5,∴∠EFC+∠AFB=90°,∵∠B=90°,∴∠BAF+∠AFB=90°,∴∠EFC=∠BAF,cos∠BAF==,∴cos∠EFC=,故答案为:.【点评】本题考查的是翻折变换的性质、余弦的概念,掌握翻折变换是一种对称变换,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等是解题的关键.18.(4分)(2017•海南)如图,AB是⊙O的弦,AB=5,点C是⊙O上的一个动点,且∠ACB=45°,若点M、N分别是AB、AC的中点,则MN长的最大值是.【分析】根据中位线定理得到MN的长最大时,BC最大,当BC最大时是直径,从而求得直径后就可以求得最大值.【解答】解:如图,∵点M,N分别是AB,AC的中点,∴MN=BC,∴当BC取得最大值时,MN就取得最大值,当BC是直径时,BC最大,连接BO并延长交⊙O于点C′,连接AC′,∵BC′是⊙O的直径,∴∠BAC′=90°.∵∠ACB=45°,AB=5,∴∠AC′B=45°,∴BC′===5,∴MN=.最大故答案为:.【点评】本题考查了三角形的中位线定理、等腰直角三角形的性质及圆周角定理,解题的关键是了解当什么时候MN的值最大,难度不大.三、解答题(本大题共62分)19.(10分)(2017•海南)计算;(1)﹣|﹣3|+(﹣4)×2﹣1;(2)(x+1)2+x(x﹣2)﹣(x+1)(x﹣1)【分析】(1)原式利用算术平方根定义,绝对值的代数意义,负整数指数幂法则计算即可得到结果;(2)原式利用完全平方公式,平方差公式,以及单项式乘以多项式法则计算即可得到结果.【解答】解:(1)原式=4﹣3﹣4×=4﹣3﹣2=﹣1;(2)原式=x2+2x+1+x2﹣2x﹣x2+1=x2+2.【点评】此题考查了整式的混合运算,以及实数的运算,熟练掌握运算法则是解本题的关键.20.(8分)(2017•海南)在某市“棚户区改造”建设工程中,有甲、乙两种车辆参加运土,已知5辆甲种车和2辆乙种车一次共可运土64立方米,3辆甲种车和1辆乙种车一次共可运土36立方米,求甲、乙两种车每辆一次分别可运土多少立方米.【分析】设甲种车辆一次运土x立方米,乙种车辆一次运土y立方米,根据题意所述的两个等量关系得出方程组,解出即可得出答案.【解答】解:设甲种车辆一次运土x立方米,乙种车辆一次运土y立方米,由题意得,,解得:.答:甲种车辆一次运土8立方米,乙种车辆一次运土12立方米.【点评】此题考查了二元一次方程组的应用,属于基础题,仔细审题,根据题意的等量关系得出方程是解答本题的关键.21.(8分)(2017•海南)某校开展“我最喜爱的一项体育活动”调查,要求每名学生必选且只能选一项,现随机抽查了m名学生,并将其结果绘制成如下不完整的条形图和扇形图.请结合以上信息解答下列问题:(1)m=150;(2)请补全上面的条形统计图;(3)在图2中,“乒乓球”所对应扇形的圆心角的度数为36°;(4)已知该校共有1200名学生,请你估计该校约有240名学生最喜爱足球活动.【分析】(1)根据图中信息列式计算即可;(2)求得“足球“的人数=150×20%=30人,补全上面的条形统计图即可;(3)360°×乒乓球”所占的百分比即可得到结论;(4)根据题意计算即可.【解答】解:(1)m=21÷14%=150,(2)“足球“的人数=150×20%=30人,补全上面的条形统计图如图所示;(3)在图2中,“乒乓球”所对应扇形的圆心角的度数为360°×=36°;(4)1200×20%=240人,答:估计该校约有240名学生最喜爱足球活动.故答案为:150,36°,240.【点评】本题考查了条形统计图,观察条形统计图、扇形统计图获得有效信息是解题关键.22.(8分)(2017•海南)为做好防汛工作,防汛指挥部决定对某水库的水坝进行加高加固,专家提供的方案是:水坝加高2米(即CD=2米),背水坡DE的坡度i=1:1(即DB:EB=1:1),如图所示,已知AE=4米,∠EAC=130°,求水坝原来的高度BC.(参考数据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.2)【分析】设BC=x米,用x表示出AB的长,利用坡度的定义得到BD=BE,进而列出x的方程,求出x的值即可.【解答】解:设BC=x米,在Rt△ABC中,∠CAB=180°﹣∠EAC=50°,AB=≈==x,在Rt△EBD中,∵i=DB:EB=1:1,∴BD=BE,∴CD+BC=AE+AB,即2+x=4+x,解得x=12,即BC=12,答:水坝原来的高度为12米.【点评】本题考查了解直角三角形的应用,解答本题的关键是理解坡度、坡比的含义,构造直角三角形,利用三角函数表示相关线段的长度,难度一般.23.(12分)(2017•海南)如图,四边形ABCD是边长为1的正方形,点E在AD 边上运动,且不与点A和点D重合,连结CE,过点C作CF⊥CE交AB的延长线于点F,EF交BC于点G.(1)求证:△CDE≌△CBF;(2)当DE=时,求CG的长;(3)连结AG,在点E运动过程中,四边形CEAG能否为平行四边形?若能,求出此时DE的长;若不能,说明理由.【分析】(1)先判断出∠CBF=90°,进而判断出∠1=∠3,即可得出结论;(2)先求出AF,AE,再判断出△GBF∽△EAF,可求出BG,即可得出结论;(3)假设是平行四边形,先判断出DE=BG,进而判断出△GBF和△ECF是等腰直角三角形,即可得出∠GFB=∠CFE=45°,即可得出结论.【解答】解:(1)如图,在正方形ABCD中,DC=BC,∠D=∠ABC=∠DCB=90°,∴∠CBF=180°﹣∠ABC=90°,∠1+∠2=∠DCB=90°,∵CF⊥CE,∴∠ECF=90°,∴∠3+∠2=∠ECF=90°,∴∠1=∠3,在△CDE和△CBF中,,∴△CDE≌△CBF,(2)在正方形ABCD中,AD∥BC,∴△GBF∽△EAF,∴,由(1)知,△CDE≌△CBF,∴BF=DE=,∵正方形的边长为1,∴AF=AB+BF=,AE=AD﹣DE=,∴,∴BG=,∴CG=BC﹣BG=;(3)不能,理由:若四边形CEAG是平行四边形,则必须满足AE∥CG,AE=CG,∴AD﹣AE=BC﹣CG,∴DE=BG,由(1)知,△CDE≌△CBF,∴DE=BF,CE=CF,∴△GBF和△ECF是等腰直角三角形,∴∠GFB=45°,∠CFE=45°,∴∠CFA=∠GFB+∠CFE=90°,此时点F与点B重合,点D与点E重合,与题目条件不符,∴点E在运动过程中,四边形CEAG不能是平行四边形.【点评】此题是四边形综合题,主要考查了正方形的性质,全等三角形的判定和性质,相似三角形的判定和性质,平行四边形的性质,等腰直角三角形的判定,解(1)的关键是判定∠1=∠3,解(2)的关键是判断出△GBF∽△EAF,解(3)的关键是判断出∠CFA=90°,是一道常考题.24.(16分)(2017•海南)抛物线y=ax2+bx+3经过点A(1,0)和点B(5,0).(1)求该抛物线所对应的函数解析式;(2)该抛物线与直线y=x+3相交于C、D两点,点P是抛物线上的动点且位于x轴下方,直线PM∥y轴,分别与x轴和直线CD交于点M、N.①连结PC、PD,如图1,在点P运动过程中,△PCD的面积是否存在最大值?若存在,求出这个最大值;若不存在,说明理由;②连结PB,过点C作CQ⊥PM,垂足为点Q,如图2,是否存在点P,使得△CNQ 与△PBM相似?若存在,求出满足条件的点P的坐标;若不存在,说明理由.【分析】(1)由A、B两点的坐标,利用待定系数法可求得抛物线解析式;(2)①可设出P点坐标,则可表示出M、N的坐标,联立直线与抛物线解析式可求得C、D的坐标,过C、D作PN的垂线,可用t表示出△PCD的面积,利用二次函数的性质可求得其最大值;②当△CNQ与△PBM相似时有或=两种情况,利用P点坐标,可分别表示出线段的长,可得到关于P点坐标的方程,可求得P点坐标.【解答】解:(1)∵抛物线y=ax2+bx+3经过点A(1,0)和点B(5,0),∴,解得,∴该抛物线对应的函数解析式为y=x2﹣x+3;(2)①∵点P是抛物线上的动点且位于x轴下方,∴可设P(t,t2﹣t+3)(1<t<5),∵直线PM∥y轴,分别与x轴和直线CD交于点M、N,∴M(t,0),N(t,t+3),∴PN=t+3﹣(t2﹣t+3)=﹣(t﹣)2+联立直线CD 与抛物线解析式可得,解得或, ∴C (0,3),D (7,),分别过C 、D 作直线PN 的直线,垂足分别为E 、F ,如图1,则CE=t ,DF=7﹣t ,∴S △PCD =S △PCN +S △PDN =PN•CE +PN•DF=PN=[﹣(t ﹣)2+]=﹣(t ﹣)2+,∴当t=时,△PCD 的面积有最大值,最大值为; ②存在.∵∠CQN=∠PMB=90°,∴当△CNQ 与△PBM 相似时,有或=两种情况,∵CQ ⊥PM ,垂足为Q ,∴Q(t,3),且C(0,3),N(t,t+3),∴CQ=t,NQ=t+3﹣3=t,∴=,∵P(t,t2﹣t+3),M(t,0),B(5,0),∴BM=5﹣t,PM=0﹣(t2﹣t+3)=﹣t2+t﹣3,当时,则PM=BM,即﹣t2+t﹣3=(5﹣t),解得t=2或t=5(舍去),此时P(2,);当=时,则BM=PM,即5﹣t=(﹣t2+t﹣3),解得t=或t=5(舍去),此时P(,﹣);综上可知存在满足条件的点P,其坐标为(2,)或(,﹣).【点评】本题为二次函数的综合应用,涉及待定系数法、函数图象的交点、二次函数的性质、相似三角形的判定和性质、方程思想及分类讨论思想等知识.在(1)中注意待定系数法的应用,在(2)①中用P点坐标表示出△PCD的面积是解题的关键,在(2)②中利用相似三角形的性质确定出相应线段的比是解题的关键.本题考查知识点较多,综合性较强,难度较大.。
2017中考数学一模测试卷(含答案)
2017中考数学一模测试卷(含答案)中考数学是历年“拉分”科目,很多学生与自己心仪的高中失之交臂,主要原因就是数学“失手”。
下文为大家准备了中考数学一模测试卷的内容。
A级基础题1.在数0,2,-3,-1.2中,属于负整数的是( )A.0B.2C.-3D.-1.22.下列四个实数中,绝对值最小的数是( )A.-5B.-2C.1D.43.-2是2的( )A.相反数B.倒数C.绝对值D.算术平方根4.-3的倒数是( )A.3B.-3C.13D.-135.下列各式,运算结果为负数的是( )A.-(-2)-(-3)B.(-2)×(-3)C.(-2)2D.(-3)-36.计算:12-7×(-4)+8÷(-2)的结果是( )A.-24B.-20C.6D.367.如果+30m表示向东走30m,那么向西走40m表示为______________.8.计算:-(-3)=______,|-3|=______,(-3)-1=______,(-3)2=______.9.若a=1.9×105,b=9.1×104,则a______b(填“”).10.计算:|-5|-(2-3)0+6×13-12+(-1)2.B级中等题11.实数a,b在数轴上的位置如图1-1-4所示,以下说法正确的是( )图1-1-4A.a+b=0B.b0D.|b| 12.北京时间2011年3月11日,日本近海发生9.0级强烈地震.本次地震导致地球当天自转快了0.0000016秒.这里的0.0000016秒用科学记数法表示__________秒.13.观察下列顺序排列的等式:a1=1-13,a2=12-14,a3=13-15,a4=14-16……试猜想第n个等式(n为正整数):an=__________.14.计算:|1-3|+-12-3-2cos30°+(π-3)0.C级拔尖题15.在数轴上,点A(表示整数a)在原点的左侧,点B(表示整数b)在原点的右侧.若|a-b|=2013,且AO=2BO,则a+b的值为________.16.观察下列等式:第1个等式:a1=11×3=12×1-13;第2个等式:a2=13×5=12×13-15;第3个等式:a3=15×7=12×15-17;第4个等式:a4=17×9=12×17-19;……请解答下列问题:(1)按以上规律列出第5个等式:a5=__________________=__________________;(2)用含有n的代数式表示第n个等式:an=__________________=__________________(n为正整数);(3)求a1+a2+a3+a4+…+a100的值.1.C2.C3.A4.D5.D6.D7.-40m 8.3 3 -13 9 9.>10.解:原式=5-1+(2-3)+1=4.11.D 12.1.6×10-6 13.1n-1n+214.解:原式=3-1-8-2×32+1=-8.15.-67116.解:(1)19×1112×19-111(2)12n-1×2n+112×12n-1-12n+1(3)a1+a2+a3+a4+...+a100=12×1-13+12×13-15+12×15-17+...+12×1199-1201=12×1-13+13-15+15-17+ (1199)1201=12×1-1201=12×200201=100201.精心整理,仅供学习参考。
海口市大华中学初中毕业数学科模拟试卷及答案
海南省海口市大华中学初中毕业数学科模拟试卷姓名 座号一、选择题(本大题满分42分,每小题3分)1、如果零上4℃记 +4℃,那么零下4℃记作A. –4B. –6C. –4℃D. –6℃ 2、下列各点中,在第一象限的点是A. (4,3)B.(2,-3)C. (-2,3)D. (-2,-3)3、海南的富铁矿是国内少有的富铁矿之一,储量居全国第六位,其储量约为237000000吨,用科学记数法表示应为A. 237×106 吨B. 2.37×107 吨C. 2.37×108 吨D. 0.237×109吨 4、一次函数12+=x y 的图像经过A. 第二、三、四象限B. 第一、三、四象限C. 第一、二、四象限D. 第一、二、三象限 5.不等式组⎩⎨⎧>->-04203x x 的解集是A .3>xB .2<xC .32<<xD .2>x 或3-<x 6、下列图形中,既是轴对称图形又是中心对称图形的是7、方程0132=++x x 的根的情况是 A. 没有实数根 B. 有一个实数根 C. 有两个相等的实数根 D. 有两个不相等的实数根 8、化简()22-的结果是A. –2B. ±2C. 2D. 4 9、已知一个正六边形的半径是r ,则此正六边形的周长是A. 3rB. 6rC. 12rD. 24r 10、在△ABC 中,∠C=90°, BC=3 , AB=5 ,则sinA 的值是 A. 53 B. 54 C. 34 D. 4311、如图1,在 △ABC 中,∠A=36°,∠C=72°,∠ABC 的平分线 交AC 于D ,则图中共有等腰三角形A. 0 个B. 1个C. 2 个D. 3 个12如图2,要在离地面5米处引拉线固定电线杆,使拉线和地面成60°角,若考虑既要符合设计要求又要节省材料,则在库存的 ,2.51m l =,2.62m l =,8.73m l =m l 104=的四图1ABCD 560°D B Cm图2图2种备用拉线材料中,拉线AC 最好选用A. 1lB. 2lC. 3lD. 4l13、由几个大小相同的小正方体积木搭成的立体图形的左视图如图3所示,则所搭成的立体图形不可能...是14、在等式()82a a a =⋅⋅中,括号内所填的代数式应当是A. 6aB. 5aC. 4aD. 3a二、 填空题(本大题满分16分,每小题4分) 15. 计算: =-283 .16. 如图4, A 、B 、C 、D 在同一直线上, AB=CD,DE ∥AF, 若要使△ACF ≌△DBE ,则还需要补充一个..条件: .17. 已知反比例函数xy 6-= 的图像经过点 P(2,)则= .18. 如图5,AB 是⊙O 的直径,C 是BA 的廷长线上的一点,CD 切 ⊙O 于点D ,CD=4,CA=2,则⊙O 的半径为 .三、解答下列各题(本大题满分62分)19.(1)(5分)已知:,1,3-==y x 求xy y x -+222的值.(2)(5分)解方程:11222=-++x x .图4 AB CDF E图45DC A OBABDC左视图图320(8分)、在当地农业技术部门指导下,小明家增加种植菠萝的,使今年的菠萝喜获丰收. 下面是小明爸爸、妈妈的一段对话.请用学过的知识帮助小明算出他们家今年菠萝的收入。
海口市中考数学一模考试试卷
海口市中考数学一模考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)(2017·岳阳模拟) 实数a,b,c,d在数轴上的对应点的位置如图所示,这四个数中,绝对值最大的是()A . aB . bC . cD . d2. (2分)长城总长约为6700010米,用科学记数法表示是().(保留两个有效数字)A . 6.7×105米B . 6.7×106米C . 6.7×107米D . 6.7×108米3. (2分)如图,正三棱柱的主视图为()A .B .C .D .4. (2分)(2018·成都) 在平面直角坐标系中,点关于原点对称的点的坐标是()A .B .C .D .5. (2分)下面的计算正确的是().A . 3x2·4x2=12x2B . x3·x5=x15C . x4÷x=x3D . (x5)2=x76. (2分)如图,梯形ABCD中,AD∥BC,点M是AD的中点,且MB=MC,若AD=4,AB=6,BC=8,则梯形ABCD 的周长为()A . 22B . 24C . 26D . 287. (2分) 2012年4月份,某市市区一周空气质量报告中某项污染指数的数据是:31,35,31,33,30,33,31,则下列表述错误的是()A . 众数是31B . 中位数是30C . 平均数是32D . 极差是58. (2分)(2014·来宾) 将分式方程 = 去分母后得到的整式方程,正确的是()A . x﹣2=2xB . x2﹣2x=2xC . x﹣2=xD . x=2x﹣49. (2分)(2017·黑龙江模拟) 如图,四边形ABCD内接于⊙O,若∠BOD=138°,则它的一个外角∠DCE等于()A . 69°B . 42°C . 48°D . 38°10. (2分) (2017九上·岑溪期中) 已知反比例函数y= 的图象如图所示,则二次函数y=2kx2﹣x+k2的图象大致为()A .B .C .D .二、填空题 (共4题;共4分)11. (1分) (2017·广东模拟) 因式分解: =________12. (1分) (2016八上·重庆期中) 如图,△ABC中,AB=AC,AD⊥BC,垂足为D,若∠BAC=70°,则∠BAD=________°.13. (1分)(2017·资中模拟) 如图,点A的坐标为(﹣5,0),直线y= x+t与坐标轴交于点B,C,连结AC,如果∠ACD=90°,则t=________.14. (1分) (2016八上·抚宁期中) 在△ABC中,AB=AC,∠A=40°,则∠B的度数为________°.三、计算题 (共2题;共15分)15. (10分)计算: +()﹣2﹣(π﹣2)0+(﹣)2﹣| ﹣3|16. (5分)已知关于x的一元二次方程x2+2x+m=0.(1)当m=3时,判断方程的根的情况;(2)当m=-3时,求方程的根.四、综合题 (共12题;共77分)17. (7分)(2018·惠山模拟) 为弘扬中华传统文化,百年书院-----“安阳书院”近期举办了中小学生“国学经典大赛”.比赛项目为:A.唐诗;B.宋词;C.论语;D.三字经.比赛形式分“单人组”和“双人组”.(1)小红和小明组成一个小组参加“双人组”比赛,比赛规则是:同一小组的两名队员的比赛项目不能相同,且每人只能随机抽取一次,则小红和小明一个抽中“唐诗”一个抽中“宋词”的概率是多少?(请用“画树状图”或“列表”等方法写出分析过程)(2)九年级一班班委会有2名男生和若干名女生,班级准备选派2名班委会成员参加学校举办的诗词比赛,若选派一名男生和一名女生的概率为,则班委会女生有________人.18. (5分)如图E为正方形ABCD边BC延长线上一点,AE交DC于F,FG∥BE交DE于G(1)求证:FG=FC;(2)若FG=1,AD=3,求tan∠GFE的值.19. (10分) (2019八上·常州期末) 请你用学习“一次函数”时积累的经验和方法研究函数的图象和性质,并解决问题.(1)完成下列步骤,画出函数的图象;①列表、填空;x 0123y31123②描点:③连线(2)观察图象,当x________时,y随x的增大而增大;(3)结合图象,不等式的解集为________.20. (15分) (2018八上·丽水期中) 在▱ABCD中,E是AD上一点,AE=AB,过点E作直线EF,在EF上取一点G,使得∠EGB=∠EAB,连接AG.(1)如图1,当EF与AB相交时,若∠EAB=60°,求证:EG=AG+BG;(2)如图2,当EF与AB相交时,若∠EAB=α(0°<α<90°),请你直接写出线段EG、AG、BG之间的数量关系(用含α的式子表示);(3)如图3,当EF与CD相交时,且∠EAB=90°,请你写出线段EG、AG、BG之间的数量关系,并证明你的结论.21. (1分)如图,过点A(1,0)的直线与轴平行,且分别与正比例函数 , 和反比例函数但在第一象限相交,则的大小关系是________.22. (1分) (2016九上·朝阳期末) 如图,正六边形ABCDEF内接于⊙O,⊙O的半径为1,则的长为________.23. (1分) (2020九下·信阳月考) 不等式组的解集为________.24. (1分) (2017七下·通辽期末) 把一张长方形纸片ABCD沿EF折叠后ED与BC的交点为G,D、C分别在M、N的位置上,若∠EFG=55°,则∠2=________.25. (1分) (2018九上·成都期中) 如图,直线,且相邻两条平行线的距离都相等,若等腰的三个顶点都在直线上,则 ________.26. (10分) (2019九上·延安期中) 如图,二次函数的图象与x轴相较于A.B两点,与y 轴相交于点C(0,-3),抛物线的对称轴为直线x=1.(1)求二次函数的解析式;(2)若抛物线的顶点为D,点E在抛物线上,且与点C关于抛物线的对称轴对称,直线AE交对称轴于点F,试判断四边形CDEF的形状,并说明理由;(3)若点M在x轴上,点P在抛物线上,是否存在以点A,E,M,P为顶点且以AE为一边的平行四边形?若存在,请求出所有满足要求的点P的坐标;若不存在,请说明理由.27. (10分)(2019·南陵模拟) 如图,在△ABC中,以AC为直径的⊙O与边AB交于点D ,点E为⊙O上一点,连接CE并延长交AB于点F ,连接ED .(1)若BC是⊙O的切线,求证:∠B+∠FED=90°;(2)若FC=6,DE=3,FD=2.求⊙O的直径.28. (15分) (2018九上·北京期末) 抛物线y=ax+bx+c上部分点的横坐标x,纵坐标y的对应值如下表:(1)根据上表填空:①抛物线与x轴的交点坐标是________和________;②抛物线经过点(-3,________);(2)试确定抛物线y=ax2+bx+c的解析式.参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共4题;共4分)11-1、12-1、13-1、14-1、三、计算题 (共2题;共15分)15-1、16-1、四、综合题 (共12题;共77分)17-1、17-2、18-1、19-1、19-2、19-3、20-1、20-2、20-3、21-1、22-1、23-1、24-1、25-1、26-1、26-2、26-3、27-1、27-2、28-1、28-2、。
海口市数学中考一模试卷
海口市数学中考一模试卷姓名:________ 班级:________ 成绩:________一、填空题 (共6题;共7分)1. (1分)(2019·东台模拟) 的倒数是________.2. (1分)(2017·渠县模拟) 234 610 000用科学记数法表示为________.(保留三个有效数字)3. (1分) ________ 叫做因式分解.4. (2分)圆内接三角形三个内角所对的弧长为3:4:5,那么这个三角形内角的度数分别为________ .5. (1分) (2016八上·无锡期末) 如图,AB=AC,AD=AE,∠BAC=∠DAE,∠1=24°,∠2=30°,∠3=________°.6. (1分) (2017七上·慈溪期中) 瑞士的一位中学教师巴尔末从光谱数据中,成功地发现了其规律,从而得到了巴尔末公式,继而打开了光谱奥妙的大门.请你根据这个规律写出第6个数为________二、选择题 (共8题;共16分)7. (2分)下列图形中既是轴对称图形又是中心对称图形的是()A . 正六边形B . 正五边形C . 平行四边形D . 等腰三角形8. (2分) (2019九下·兴化月考) 有15位学生参加学校组织的“爱我中华”演讲比赛,比赛结束后根据每位学生的最后得分计算出平均数、中位数、众数、方差.如果修改规则:先去掉一个最高分,去掉一个最低分,再进行统计,则上述四个统计量中,一定不会发生变化的是()A . 平均数B . 中位数C . 众数D . 方差9. (2分)(2018·济宁) 的值是()A . 1B . ﹣1C . 3D . ﹣310. (2分)用不等式表示图中的解集,其中正确的是()A . x≥-2B . x>-2C . x<-2D . x≤-211. (2分)关于x的一元二次方程x2+2x-k=0有两个实根,则k的取值范围是()A . k≥-1B . k≥1C . k>-1D . k>112. (2分) (2018九上·安定期末) 如图,已知点A在反比例函数y=的图像上,点B在x轴的正半轴上,且△OAB是面积为的等边三角形,那么这个反比例函数的解析式是()A .B .C .D .13. (2分)(2018·临沂) 新能源汽车环保节能,越来越受到消费者的喜爱.各种品牌相继投放市场.一汽贸公司经销某品牌新能源汽车.去年销售总额为5000万元,今年1~5月份,每辆车的销售价格比去年降低1万元.销售数量与去年一整年的相同.销售总额比去年一整年的少20%,今年1﹣5月份每辆车的销售价格是多少万元?设今年1﹣5月份每辆车的销售价格为x万元.根据题意,列方程正确的是()A . =B . =C . =D . =14. (2分) (2017八上·西湖期中) 如图,在中,点,在上,连接、,如果只添加一个条件使,则添加的条件不能为()A .B .C .D .三、解答题 (共9题;共78分)15. (5分)(2012·桂林) 计算:(﹣1)2012﹣+2cos45°+|﹣ |.16. (5分) (2016八上·宁城期末) 如图,已知:EC=AC,∠BCE=∠DCA,∠A=∠E.求证:∠B=∠D.17. (5分) (2016八上·宁阳期中) 如图,牧童在A处放牛,其家在B处,若牧童在A处放牛,牵到河边饮水后再回家,试问在何处饮水所走路程最短?请在图上作出来.18. (15分)在学校组织的社会实践活动中,甲、乙两人参加了射击比赛,每人射击七次,命中的环数如表:序号一二三四五六七甲命中的环数(环)78869810乙命中的环数(环)5106781010根据以上信息,解决以下问题:(1)写出甲、乙两人命中环数的众数;(2)已知通过计算器求得 =8,≈1.43,试比较甲、乙两人谁的成绩更稳定?19. (6分)(2017·建昌模拟) 某县教育局为了丰富初中学生的大课间活动,要求各学校开展形式多样的阳光体育活动.某中学就“学生体育活动兴趣爱好”的问题,随机调查了本校某班的学生,并根据调查结果绘制成如下的不完整的扇形统计图和条形统计图:(1)在这次调查中,喜欢篮球项目的同学有________人,在扇形统计图中,“乒乓球”的百分比为________ %,如果学校有800名学生,估计全校学生中有________人喜欢篮球项目.(2)请将条形统计图补充完整.(3)在被调查的学生中,喜欢篮球的有2名女同学,其余为男同学.现要从中随机抽取2名同学代表班级参加校篮球队,请直接写出所抽取的2名同学恰好是1名女同学和1名男同学的概率.20. (10分)(2012·内江) 已知△ABC为等边三角形,点D为直线BC上的一动点(点D不与B、C重合),以AD为边作菱形ADEF(A、D、E、F按逆时针排列),使∠DAF=60°,连接CF.(1)如图1,当点D在边BC上时,求证:①BD=CF;②AC=CF+CD;(2)如图2,当点D在边BC的延长线上且其他条件不变时,结论AC=CF+CD是否成立?若不成立,请写出AC、CF、CD之间存在的数量关系,并说明理由;(3)如图3,当点D在边CB的延长线上且其他条件不变时,补全图形,并直接写出AC、CF、CD之间存在的数量关系.21. (15分) (2016九上·越秀期末) 某工厂生产的某种产品按质量分为10个档次,第1档次(最低档次)的产品一天能生产95件,每件利润6元.每提高一个档次,每件利润增加2元,但一天产量减少5件.(1)若生产第x档次的产品一天的总利润为y元(其中x为正整数,且1≤x≤10),求出y关于x的函数关系式;(2)若生产第x档次的产品一天的总利润为1120元,求该产品的质量档次.22. (2分)(2017·抚顺) 如图,AB为⊙O直径,AC为⊙O的弦,过⊙O外的点D作DE⊥OA于点E,交AC于点F,连接DC并延长交AB的延长线于点P,且∠D=2∠A,作CH⊥AB于点H.(1)判断直线DC与⊙O的位置关系,并说明理由;(2)若HB=2,cosD= ,请求出AC的长.23. (15分) (2016九上·延庆期末) 如图,已知矩形的边长.某一时刻,动点从点出发沿方向以的速度向点匀速运动;同时,动点从点出发沿方向以的速度向点匀速运动,问:(1)经过多少时间,的面积等于矩形面积的?(2)是否存在时刻t,使以A,M,N为顶点的三角形与相似?若存在,求t的值;若不存在,请说明理由.参考答案一、填空题 (共6题;共7分)1-1、2-1、3-1、4-1、5-1、6-1、二、选择题 (共8题;共16分)7-1、8-1、9-1、10-1、11-1、12-1、13-1、14-1、三、解答题 (共9题;共78分)15-1、16-1、17-1、18-1、18-2、19-1、19-2、19-3、20-1、20-2、20-3、21-1、21-2、22-1、22-2、23-1、23-2、第11 页共11 页。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017年海南省海口市琼山区大华中学中考数学模拟试卷一、选择题:1.(3分)若数轴上的点A、B分别与有理数a、b对应,则下列关系正确的是()A.a<b B.﹣a<b C.|a|<|b|D.﹣a>﹣b2.(3分)下列方程的变形正确的是()A.由2x﹣3=4x,得:2x=4x﹣3B.由7x﹣4=3﹣2x,得:7x+2x=3﹣4C.由x﹣=3x+4得﹣﹣4=3x+xD.由3x﹣4=7x+5得:3x﹣7x=5+43.(3分)如图是由几个相同的小正方体搭成的一个几何体,它的俯视图是()A.B.C.D.4.(3分)为筹备学校元旦联欢晚会,在准备工作中,班长对全班同学爱吃什么水果作了民意调查,再决定最终买哪种水果,下面的调查数据中,他最关注的是()A.中位数B.平均数C.加权平均数D.众数5.(3分)下列运算正确的是()A.a﹣2a=a B.(﹣2a2)3=﹣8a6 C.a6+a3=a2 D.(a+b)2=a2+b26.(3分)为了响应中央号召,2012年某市加大财政支农力度,全市农业支出累计约达到53000万元,其中53000万元(保留三位有效数字)用科学记数法可表示为()A.5.3×107元B.5.30×107元 C.530×108元D.5.30×108元7.(3分)化简,可得()8.(3分)下列说法正确的是()A.任何非负数都有两个平方根B.一个正数的平方根仍然是正数C.只有正数才有平方根D.负数没有平方根9.(3分)若点M(﹣3,a),N(4,﹣6)在同一个反比例函数的图象上,则a 的值为()A.8 B.﹣8 C.﹣7 D.510.(3分)如图,在方格纸上△DEF是由△ABC绕定点P顺时针旋转得到的.如果用(2,1)表示方格纸上A点的位置,(1,2)表示B点的位置,那么点P的位置为()A.(5,2) B.(2,5) C.(2,1) D.(1,2)11.(3分)下列事件中是必然事件的是()A.打开电视机,正在播广告B.从一个只装有白球的缸里摸出一个球,摸出的球是白球C.明天,涿州的天气一定是晴天D.从一定高度落下的图钉,落地后针尖朝上12.(3分)已知⊙O的半径为6,A为线段PO的中点,当OP=10时,点A与⊙O的位置关系为()A.在圆上B.在圆外C.在圆内D.不确定13.(3分)如图,直线a,b被直线c所截,a∥b,∠1=∠2,若∠3=40°,则∠4等于()A.40°B.50°C.70°D.80°14.(3分)将一张宽为6的长方形纸片(足够长)折叠成如图所示图形.重叠部分是一个三角形ABC,则三角形ABC面积的最小值是()A.9 B.18 C.18D.36二、填空题:15.(3分)分解因式:xy﹣x﹣y+1=.16.(3分)某初中毕业班的每一个同学都将自己的照片向全班其他同学各送一张作为纪念,全班共送了2550张照片,如果全班有x名学生,根据题意,可列方程.17.(3分)如图,四边形ABCD内接于⊙O,∠DAB=130°,连接OC,点P是半径OC上任意一点,连接DP,BP,则∠BPD可能为度(写出一个即可).18.(3分)直线l1∥l2∥l3,正方形ABCD的三个顶点A、B、C分别在l1、l2,l3上,l1、l2之间的距离是4,l2,l3之间的距离是5,则正方形ABCD的面积是.三、计算题:19.计算:(﹣)2÷(﹣)2×(1)2﹣(﹣4)2﹣42.20.解不等式组,并将它的解集在数轴上表示出来.四、解答题:21.将一批工业最新动态信息输入管理储存网络,甲独做需6小时,乙独做需4小时,甲先做30分钟,然后甲、乙一起做,则甲、乙一起做还需多少小时才能完成工作?22.国务院办公厅在2015年3月16日发布了《中国足球发展改革总体方案》,这是中国足球史上的重大改革,为进一步普及足球知识,传播足球文化,我市某区在中小学举行了“足球在身边”知识竞赛,各类获奖学生人数的比例情况如图所示,其中获得三等奖的学生共50名,请结合图中信息,解答下列问题:(1)获得一等奖的学生人数;(2)在本次知识竞赛活动中,A,B,C,D四所学校表现突出,现决定从这四所学校中随机选取两所学校举行一场足球友谊赛,请用画树状图或列表的方法求恰好选到A,B两所学校的概率.23.如图,某办公楼AB的后面有一建筑物CD,当光线与地面的夹角是22°时,办公楼在建筑物的墙上留下高2米的影子CE,而当光线与地面夹角是45°时,办公楼顶A在地面上的影子F与墙角C有25米的距离(B,F,C在一条直线上).(1)求办公楼AB的高度;(2)若要在A,E之间挂一些彩旗,请你求出A,E之间的距离.(参考数据:sin22°≈,cos22°,tan22)五、综合题:24.如图,矩形AEFG的顶点E,G分别在正方形ABCD的AB,AD边上,连接B,交EF于点M,交FG于点N,设AE=a,AG=b,AB=c(b<a<c).(1)求证:=;(2)求△AMN的面积(用a,b,c的代数式表示);(3)当∠MAN=45°时,求证:c2=2ab.25.如图,抛物线y=ax2+bx+c与x轴交于点A和点B(1,0),与y轴交于点C (0,3),其对称轴l为x=﹣1.(1)求抛物线的解析式并写出其顶点坐标;(2)若动点P在第二象限内的抛物线上,动点N在对称轴l上.①当PA⊥NA,且PA=NA时,求此时点P的坐标;②当四边形PABC的面积最大时,求四边形PABC面积的最大值及此时点P的坐标.2017年海南省海口市琼山区大华中学中考数学模拟试卷参考答案与试题解析一、选择题:1.(3分)若数轴上的点A、B分别与有理数a、b对应,则下列关系正确的是()A.a<b B.﹣a<b C.|a|<|b|D.﹣a>﹣b【解答】解:∵b<a,∴选项A不正确;∵b<a<0,∴﹣a>0,∴﹣a>b,∴选项B不正确;∵b<a<0,∴|a|<|b|,∴选项C正确;∵b<a<0,∴﹣b>﹣a>0,∴选项D不正确.故选:C.2.(3分)下列方程的变形正确的是()A.由2x﹣3=4x,得:2x=4x﹣3B.由7x﹣4=3﹣2x,得:7x+2x=3﹣4C.由x﹣=3x+4得﹣﹣4=3x+xD.由3x﹣4=7x+5得:3x﹣7x=5+4【解答】解:A、由2x﹣3=4x,得:2x=4x+3,不符合题意;B、由7x﹣4=3﹣2x,得:7x+2x=3+4,不符合题意;C、由x﹣=3x+4,得:﹣﹣4=3x﹣x,不符合题意;D、由3x﹣4=7x+5得:3x﹣7x=5+4,符合题意,故选D3.(3分)如图是由几个相同的小正方体搭成的一个几何体,它的俯视图是()A.B.C.D.【解答】解:根据题意它的俯视图是:故选D.4.(3分)为筹备学校元旦联欢晚会,在准备工作中,班长对全班同学爱吃什么水果作了民意调查,再决定最终买哪种水果,下面的调查数据中,他最关注的是()A.中位数B.平均数C.加权平均数D.众数【解答】解:吃哪种水果的人最多,就决定最终买哪种水果,而一组数据中出现次数最多的一个数是这组数据的众数.故选D.5.(3分)下列运算正确的是()A.a﹣2a=a B.(﹣2a2)3=﹣8a6 C.a6+a3=a2 D.(a+b)2=a2+b2【解答】解:A、a﹣2a=﹣a,故本选项错误;B、(﹣2a2)3=﹣8a6,故本选项正确;C、a6和a3不能合并,故本选项错误;D、(a+b)2=a2+2ab+b2,故本选项错误;故选B.6.(3分)为了响应中央号召,2012年某市加大财政支农力度,全市农业支出累计约达到53000万元,其中53000万元(保留三位有效数字)用科学记数法可表示为()A.5.3×107元B.5.30×107元 C.530×108元D.5.30×108元【解答】解:53000万元(保留三位有效数字)用科学记数法可表示为5.30×108元,故选:D.7.(3分)化简,可得()A.B.C.D.【解答】解:==.故选B.8.(3分)下列说法正确的是()A.任何非负数都有两个平方根B.一个正数的平方根仍然是正数C.只有正数才有平方根D.负数没有平方根【解答】解:A、非负数0的平方根是0,只有一个,故本选项错误;B.一个正数有两个平方根,它们互为相反数,故本选项错误;C.因0的平方根是0,故本选项错误;D.负数没有平方根,故本选项正确;故选D.9.(3分)若点M(﹣3,a),N(4,﹣6)在同一个反比例函数的图象上,则a 的值为()A.8 B.﹣8 C.﹣7 D.5【解答】解:设反比例函数解析式为y=,根据题意得k═﹣3a=4×(﹣6),解得a=8.故选A.10.(3分)如图,在方格纸上△DEF是由△ABC绕定点P顺时针旋转得到的.如果用(2,1)表示方格纸上A点的位置,(1,2)表示B点的位置,那么点P的位置为()A.(5,2) B.(2,5) C.(2,1) D.(1,2)【解答】解:如图,分别连接AD、CF,然后作它们的垂直平分线,它们交于P 点,则它们旋转中心为P,根据图形知道△ABC绕P点顺时针旋转90°得到△DEF,∴P的坐标为(5,2).故选A.11.(3分)下列事件中是必然事件的是()A.打开电视机,正在播广告B.从一个只装有白球的缸里摸出一个球,摸出的球是白球C.明天,涿州的天气一定是晴天D.从一定高度落下的图钉,落地后针尖朝上【解答】解:A,C,D三项都是可能发生,也可能不发生,属于不确定事件.是必然事件的是:从一个只装有白球的缸里摸出一个球,摸出的球是白球.故选B.12.(3分)已知⊙O的半径为6,A为线段PO的中点,当OP=10时,点A与⊙O的位置关系为()A.在圆上B.在圆外C.在圆内D.不确定【解答】解:∵OP=10,A是线段OP的中点,∴OA=5,小于圆的半径6,∴点A在圆内.故选C.13.(3分)如图,直线a,b被直线c所截,a∥b,∠1=∠2,若∠3=40°,则∠4等于()A.40°B.50°C.70°D.80°【解答】解:∵∠1=∠2,∠3=40°,∴∠1=×(180°﹣∠3)=×(180°﹣40°)=70°,∵a∥b,∴∠4=∠1=70°.故选:C.14.(3分)将一张宽为6的长方形纸片(足够长)折叠成如图所示图形.重叠部分是一个三角形ABC,则三角形ABC面积的最小值是()A.9 B.18 C.18D.36【解答】解:如图,当AC⊥AB时,三角形面积最小,∵∠BAC=90°∠ACB=45°∴AB=AC=6,=×6×6=18,∴S△ABC故选B.二、填空题:15.(3分)分解因式:xy﹣x﹣y+1=(x﹣1)(y﹣1).【解答】解:xy﹣x﹣y+1,=x(y﹣1)﹣(y﹣1),=(x﹣1)(y﹣1).16.(3分)某初中毕业班的每一个同学都将自己的照片向全班其他同学各送一张作为纪念,全班共送了2550张照片,如果全班有x名学生,根据题意,可列方程x(x﹣1)=2550.【解答】解:全班有x名学生,那么每名学生送照片x﹣1张;全班应该送照片x(x﹣1),则可列方程为:x(x﹣1)=2550.故答案为x(x﹣1)=2550.17.(3分)如图,四边形ABCD内接于⊙O,∠DAB=130°,连接OC,点P是半径OC上任意一点,连接DP,BP,则∠BPD可能为80度(写出一个即可).【解答】解:连接OB、OD,∵四边形ABCD内接于⊙O,∠DAB=130°,∴∠DCB=180°﹣130°=50°,由圆周角定理得,∠DOB=2∠DCB=100°,∴∠DCB≤∠BPD≤∠DOB,即50°≤∠BPD≤100°,∴∠BPD可能为80°,故答案为:80.18.(3分)直线l1∥l2∥l3,正方形ABCD的三个顶点A、B、C分别在l1、l2,l3上,l1、l2之间的距离是4,l2,l3之间的距离是5,则正方形ABCD的面积是41.【解答】解:过点A作AE⊥l1,过点C作CF⊥l2,∴∠CBF+∠BCF=90°,四边形ABCD是正方形,∴AB=BC=CD=AD,∴∠DAB=∠ABC=∠BCD=∠CDA=90°,∴∠ABE+∠CBF=90°,∵l1∥l2∥l3,∴∠ABE=∠BCF,在△ABE和△BCF中,∴△ABE≌△BCF(AAS)(画出L1到L2,L2到L3的距离,分别交L2,L3于E,F),∴BF=AE,∴BF2+CF2=BC2,∴BC2=42+52=41.故答案为:41.三、计算题:19.计算:(﹣)2÷(﹣)2×(1)2﹣(﹣4)2﹣42.【解答】解:(﹣)2÷(﹣)2×(1)2﹣(﹣4)2﹣42=÷×﹣16﹣16=16﹣32=﹣1620.解不等式组,并将它的解集在数轴上表示出来.【解答】解:,由①得:x>2.5由②得:x≤4,∴不等式组的解集为:2.5<x≤4,四、解答题:21.将一批工业最新动态信息输入管理储存网络,甲独做需6小时,乙独做需4小时,甲先做30分钟,然后甲、乙一起做,则甲、乙一起做还需多少小时才能完成工作?【解答】解:设甲、乙一起做还需x小时才能完成工作.根据题意,得×+(+)x=1,解这个方程,得x=,小时=2小时12分,答:甲、乙一起做还需2小时12分才能完成工作.22.国务院办公厅在2015年3月16日发布了《中国足球发展改革总体方案》,这是中国足球史上的重大改革,为进一步普及足球知识,传播足球文化,我市某区在中小学举行了“足球在身边”知识竞赛,各类获奖学生人数的比例情况如图所示,其中获得三等奖的学生共50名,请结合图中信息,解答下列问题:(1)获得一等奖的学生人数;(2)在本次知识竞赛活动中,A,B,C,D四所学校表现突出,现决定从这四所学校中随机选取两所学校举行一场足球友谊赛,请用画树状图或列表的方法求恰好选到A,B两所学校的概率.【解答】解:(1)∵三等奖所在扇形的圆心角为90°,∴三等奖所占的百分比为25%,∵三等奖为50人,∴总人数为50÷25%=200人,∴一等奖的学生人数为200×(1﹣20%﹣25%﹣40%)=30人;(2)列表:∵共有12种等可能的结果,恰好选中A、B的有2种,∴P(选中A、B)==.23.如图,某办公楼AB的后面有一建筑物CD,当光线与地面的夹角是22°时,办公楼在建筑物的墙上留下高2米的影子CE,而当光线与地面夹角是45°时,办公楼顶A在地面上的影子F与墙角C有25米的距离(B,F,C在一条直线上).(1)求办公楼AB的高度;(2)若要在A,E之间挂一些彩旗,请你求出A,E之间的距离.(参考数据:sin22°≈,cos22°,tan22)【解答】解:(1)如图,过点E作EM⊥AB,垂足为M.设AB为x.Rt△ABF中,∠AFB=45°,∴BF=AB=x,∴BC=BF+FC=x+25,在Rt△AEM中,∠AEM=22°,AM=AB﹣BM=AB﹣CE=x﹣2,tan22°=,则=,解得:x=20.即教学楼的高20m.(2)由(1)可得ME=BC=x+25=20+25=45.在Rt△AME中,cos22°=.∴AE=≈=48m,即A、E之间的距离约为48m五、综合题:24.如图,矩形AEFG的顶点E,G分别在正方形ABCD的AB,AD边上,连接B,交EF于点M,交FG于点N,设AE=a,AG=b,AB=c(b<a<c).(1)求证:=;(2)求△AMN的面积(用a,b,c的代数式表示);(3)当∠MAN=45°时,求证:c2=2ab.【解答】(1)证明:过点N作NH⊥AB于点H,过点M作MI⊥AD于点I,∵四边形ABCD是正方形,∴∠ADB=∠ABD=45°,∴△NHB和△DIM是等腰直角三角形,四边形AGNH和四边形AEMI是矩形,∴BN=NH=AG=b,DM=MI=AE=a,∴:=;=S△ABD﹣S△ABM﹣S△ADN(2)S△AMN=AB•AD﹣AB•ME﹣AD•NG=c2﹣c(c﹣a)﹣c(c﹣b)=c(c﹣c+a﹣c+b)=c(a+b﹣c);(3)∵∠DMA=∠ABD+∠MAB=∠MAB+45°,∠BAN=∠MAB+∠MAN=∠MAB+45°,∴∠DMA=∠BAN,∵∠ABD=∠ADB=45°,∴△ADM∽△NBA,∴=,∵DM=a,BN=b,∴c2=2ab.25.如图,抛物线y=ax2+bx+c与x轴交于点A和点B(1,0),与y轴交于点C (0,3),其对称轴l为x=﹣1.(1)求抛物线的解析式并写出其顶点坐标;(2)若动点P在第二象限内的抛物线上,动点N在对称轴l上.①当PA⊥NA,且PA=NA时,求此时点P的坐标;②当四边形PABC的面积最大时,求四边形PABC面积的最大值及此时点P的坐标.【解答】解:(1)∵抛物线y=ax2+bx+c与x轴交于点A和点B(1,0),与y轴交于点C(0,3),其对称轴l为x=﹣1,∴,解得:.∴二次函数的解析式为y=﹣x2﹣2x+3=﹣(x+1)2+4,∴顶点坐标为(﹣1,4);(2)令y=﹣x2﹣2x+3=0,解得x=﹣3或x=1,∴点A(﹣3,0),B(1,0),作PD⊥x轴于点D,∵点P在y=﹣x2﹣2x+3上,∴设点P(x,﹣x2﹣2x+3)①∵PA⊥NA,且PA=NA,∴△PAD≌△ANQ,∴AQ=PD,即y=﹣x2﹣2x+3=2,解得x=﹣1(舍去)或x=﹣﹣1,∴点P(﹣﹣1,2);②设P(x,y),则y=﹣x2﹣2x+3,由于P在第二象限,所以其横坐标满足:﹣3<x<0,=S△OBC+S△APO+S△OPC,∵S四边形PABCS△OBC=OB•OC=×3×1=,S△APO=AO•|y|=×3•y=y=(﹣x2﹣2x+3)=﹣x2﹣3x+,S△OPC=CO•|x|=×3•(﹣x)=﹣x,=﹣x2﹣3x+﹣x=6﹣x﹣x2=﹣(x+)2+,∴S四边形PABC=,此时y=﹣x2﹣2x+3=,∴当x=﹣时,S四边形PABC最大值所以P(﹣,).。