安徽省2017版中考数学专项突破一填空选择压轴题课件

合集下载

2017届中考数学专题选择填空压轴题总复习最新版

2017届中考数学专题选择填空压轴题总复习最新版

A.1.5cm C.1.8cm
B.1.2cm D.2cm
首页
末页
6.如图,点G、E、A、B在一条直线上,Rt△EFG 从如图所示的位置出发,沿直线AB向右匀速运动 ,当点G与B重合时停止运动.设△EFG与矩形 ABCD重合部分的面积为S,运动时间为t,则S与t 的图象大致是( D )
首页
末页
二、填空题
专题一 选择填空压轴题
一、选择题
1.二次函数y=ax2+bx+c(a≠0)的部分图象如图,
图象过点(﹣1,0),对称轴为直线x=2,下列结
论:①4a+b=0;②9a+c>3b;③8a+7b+2c>0;④
当x>﹣1时,y的值随x值的增大而增大.其中正 确的结论有( B )
A.1个
B.2个
C.3个
D.4个
7.如图-1,三个正方形的边长分别为2,6,8; 则图中阴影部分的面积为 21 .
8.如图-2,D是△ABC的边BC上任意一点,E、F分 别是线段AD、CE的中点,且△ABC的面积为20cm2 ,则△BEF的面积是 5 cm2.
首页
末页
9.如图-3,在矩形ABCD中,AD=9cm,AB=3cm,
将其折叠,使点D与点B重合,则重叠部分 (△BEF)的面积为 7.5cm2 .
A.
B.
C.
D.
首页
末页
4.如图,一根长5米的竹杆AB斜立于墙AC的右侧 ,底端B与墙角C的距离为3米,当竹杆顶端A下滑x 米时,底端B便随着向右滑行y米,反映y与x变化 关系的大致图象是( A )
首页
末页
5.如图1,在Rt△ABC中,∠ACB=90°,点P以每 秒1cm的速度从点A出发,沿折线AC﹣CB运动,到 点B停止,过点P作PD⊥AB,垂足为D,PD的长y (cm)与点P的运动时间x(秒)的函数图象如图 2所示,当点P运动5秒时,PD的长是( B )

2017年安徽省中考数学试卷

2017年安徽省中考数学试卷

精品文档,名师推荐! 来源网络,造福学生———————欢迎下载,祝您学习进步,成绩提升———————数学试卷 第1页(共16页) 数学试卷 第2页(共16页)绝密★启用前安徽省2017年初中毕业学业水平考试数 学(本试卷满分150分,考试时间120分钟)第Ⅰ卷(选择题 共40分)一、选择题(本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.12的相反数是( )A .12B .12- C .2 D .2- 2.计算32()a -的结果是( ) A .6aB .6a -C .5a -D .5a3.如图,一个放置在水平实验台上的锥形瓶,它的俯视图为( )A B C D4.截至2016年底,国家开发银行对“一带一路”沿线国家累计发放贷款超过1600亿美元.其中1600亿用科学记数法表示为 ( ) A .101610⨯B .101.610⨯C .111.610⨯D .120.1610⨯5.不等式420x ->的解集在数轴上表示为( )A B CD6.直角三角板和直尺如图放置.若120∠=,则2∠的度数为( )A .60B .50C .40D .307.为了解某校学生今年五一期间参加社团活动时间的情况,随机抽查了其中100名学生进行统计,并绘成如图所示的频数直方图.已知该校共有1000名学生,据此估计,该校五一期间参加社团活动时间在8~10小时之间的学生数大约是( ) A .280 B .240 C .300D .2608.一种药品原价每盒25元,经过两次降价后每盒16元.设两次降价的百分率都为x ,则x 满足 ( ) A .16(12)25x += B .25(12)16x -= C .216(1)25x +=D .225(1)16x -=9.已知抛物线2y ax bx c =++与反比例函数by x=的图象在第一象限有一个公共点,其横坐标为1.则一次函数y bx ac =+的图象可能是( )A B CD10.如图,在矩形ABCD 中,5AB =,3AD =,动点P 满足13PAB ABCD S S =△矩形.则点P 到,A B 两点距离之和PA PB +的最小值为( )A .29B .34C .52D .41第Ⅱ卷(非选择题 共110分)二、填空题(本大题共4小题,每小题5分,共20分.把答案填写在题中的横线上) 11.27的立方根是 .毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共16页) 数学试卷 第4页(共16页)12.因式分解:244a b ab b -+= .13.如图,已知等边ABC △的边长为6,以AB 为直径的O 与边,AC BC 分别交于,D E 两点,则劣弧DE 的长为 .14.在三角形纸片ABC 中,90A ∠=,30C ∠=,30cm AC =.将该纸片沿过点B 的直线折叠,使点A 落在斜边BC 上的一点E 处,折痕记为BD (如图1),剪去CDE △后得到双层BDE △(如图2),再沿着过BDE △某顶点的直线将双层三角形剪开,使得展开后的平面图形中有一个是平行四边形.则所得平行四边形的周长为 cm .三、解答题(本大题共9小题,共90分.解答应写出文字说明、证明过程或演算步骤) 15.(本小题满分8分)计算:11|2|cos60()3--⨯-.16.(本小题满分8分)《九章算术》中有一道阐述“盈不足术”的问题,原文如下:今有人共买物,人出八,盈三;人出七,不足四.问人数,物价各几何? 译文为:现有一些人共同买一个物品,每人出8元,还盈余3元;每人出7元,则还差4元.问共有多少人?这个物品的价格是多少? 请解答上述问题.17.(本小题满分8分)如图,游客在点A 处坐缆车出发,沿A B D --的路线可至山顶D 处.假设AB 和BD都是直线段,且600m AB BD ==,75α=,45β=,求DE 的长. (参考数据:sin 750.97,cos750.26,2 1.41≈≈≈)18.(本小题满分8分)如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点ABC △和DEF △(顶点为网格线的交点),以及过格点的直线l .(1)将ABC △向右平移两个单位长度,再向下平移两个单位长度,画出平移后的三角形;(2)画出DEF △关于直线l 对称的三角形; (3)填空:C E ∠+∠= .19.(本小题满分10分) 【阅读理解】我们知道,(1)1232n n n ++++⋅⋅⋅+=,那么2222123n +++⋅⋅⋅+结果等于多少呢? 在图1所示三角形数阵中,第1行圆圈中的数为1,即21;第2行两个圆圈中数的和为22+,即22;……;第n 行n 个圆圈中数的和为n nn n n ++⋅⋅⋅+个,即2n .这样,该三角形数阵中共有(1)2n n +个圆圈,所有圆圈中数的和为2222123n +++⋅⋅⋅+.图1【规律探究】将三角形数阵经两次旋转可得如图2所示的三角形数阵,观察这三个三角形数阵各行同一位置圆圈中的数(如第1n -行的第一个圆圈中的数分别为1,2,n n -),发现每个位置上三个圆圈中数的和均为 .由此可得,这三个三角形数阵所有圆圈中数的总和为:22223(123)n +++⋅⋅⋅+= .因此,2222123n +++⋅⋅⋅+= .精品文档,名师推荐! 来源网络,造福学生———————欢迎下载,祝您学习进步,成绩提升———————数学试卷 第5页(共16页) 数学试卷 第6页(共16页)【解决问题】根据以上发现,计算222212320171232017+++⋅⋅⋅++++⋅⋅⋅+的结果为 .20.(本小题满分10分)如图,在四边形ABCD 中,AD BC =,B D ∠=∠,AD 不平行于BC ,过点C 作CE AD ∥交ABC △的外接圆O 于点E ,连接AE .(1)求证:四边形AECD 为平行四边形; (2)连接CO ,求证:CO 平分BCE ∠.21.(本小题满分12分)甲、乙、丙三位运动员在相同条件下各射靶10次,每次射靶的成绩如下: 甲:9,10,8,5,7,8,10,8,8,7; 乙:5,7,8,7,8,9,7,9,10,10; 丙:7,6,8,5,4,7,6,3,9,5. (1)(2依据表中数据分析,哪位运动员的成绩最稳定,并简要说明理由; (3)比赛时三人依次出场,顺序由抽签方式决定.求甲、乙相邻出场的概率.22.(本小题满分12分)某超市销售一种商品,成本每千克40元,规定每千克售价不低于成本,且不高于80元.经市场调查,每天的销售量y (千克)与每千克售价x (元)满足一次函数关系,部分数(1)求y 与之间的函数表达式;(2)设商品每天的总利润为W 元),求W 与x 之间的函数表达式(利润=收入-成本);(3)试说明(2)中总利润W 随售价x 的变化而变化的情况,并指出售价为多少元时获得最大利润,最大利润是多少?23.(本小题满分14分)已知正方形ABCD ,点M 为边AB 的中点.(1)如图1,点G 为线段CM 上的一点,且90AGB ∠=,延长,AG BG 分别与边-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________数学试卷 第7页(共16页) 数学试卷 第8页(共16页),BC CD 交于点,E F .①求证:BE CF =;②求证:2BE BC CE =;(2)如图2,在边BC 上取一点E ,满足2BE BC CE =,连接AE 交CM 于点G ,连接BG并延长交CD 于点F ,求tan CBF ∠的值.安徽省2017年初中学业水平考试数学答案解析第Ⅰ卷一、选择题 1.【答案】B【解析】12的相反数是12-,添加一个负号即可,故选:B 。

中考数学压轴题重难点突破一 规律探索 类型二:图形规律

中考数学压轴题重难点突破一 规律探索 类型二:图形规律

10.★(2022·大庆)观察下列“蜂窝图”,按照这样的规律,则第 16 个 图案中的“ ”的个数是 4949 .

11.★(2022·十堰)如图,某链条每节长为 2.8 cm,每两节链条相连接
部分重叠的圆的直径为 1 cm,按这种连接方式,50 节链条总长度为 991 cm. 1
12.★(2022·牡丹江)如图,下列图形是将正三角形按一定规律排列, 则第 5 个图形中所有正三角形的个数是 48485 个.
16.★(2022·遂宁)“勾股树”是以正方形一边为斜边向外作直角三角 形,再以该直角三角形的两直角边分别向外作正方形,重复这一过程所 画出来的图形,因为重复数次后的形状好似一棵树而得名.假设如图分 别是第一代勾股树、第二代勾股树、第三代勾股树,按照勾股树的作图 原理作图,则第六代勾股树中正方形的个数为 12127.
对于图形个数变化规律探索题,解决的一般步骤: 1.标序号:记每个(组)图形的序数为“1,2,3,…,n”; 2.数图形个数:对应的图形个数用 a1, a2, a3,…,an 表示;
3.观察:a1,a2,a3,…,an 与对应序数之间的关系; ①图形个数与图序数是倍数或平方关系; ②图形个数与图序数关系不明确时,按照以下步骤找寻关系: 步骤一:列表表示 an-an-1 的值; 步骤二:将所列等式左右相加,得到(a2-a1)+(a3-a2)+…+(an-an-1) =an-a1 的值; 步骤三:表示 an; 4.验证:代入序号检验所得式子是否正确.
类型二:图形规律 (省卷 2017T18;天水 2017T16)
(一题多设问)
(1) ★如图,用火柴棍拼成一个由三角形组成的图形,拼第一个图形共需
要 3 根火柴棍;拼第二个图形共需要 5 根火柴棍;…,照这样拼图,则 第 n 个图形需要 ((22n+n+1) 根火柴棍;

2017年安徽省中考数学解析版

2017年安徽省中考数学解析版

2017年安徽省中考数学试卷一、选择题(本大题共10小题,每小题4分,满分40分)1.12 的相反数是( )A .12B .-12C .2D .﹣2 【解析】相反数的概念,主要考查有理数的相关概念,主要有有理数的倒数,有理数的绝对值,有理数的相反数,有理数在数轴上的表示.是中考考试中的必考考点.本题考查了相反数的意义,根据相反数的概念解答即可.一个数的相反数就是在这个数前面添上“﹣”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.12的相反数是−12,添加一个负号即可,故选:B. 2.计算(﹣a 3)2的结果是( )A .a 6B .﹣a 6C .﹣a 5D .a 5 【解析】本题考查整式的运算,解题的关键是熟练运用幂的乘方公式,本题属于基础题型.幂的乘方与积的乘方.根据整式的运算法则即可求出答案. 解:原式=a 6,故选A.3.如图,一个放置在水平实验台上的锥形瓶,它的俯视图为( )A .B .C .D .【解析】本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.简单组合体的三视图.俯视图是分别从物体的上面看,所得到的图形.一个放置在水平实验台上的锥形瓶,它的俯视图为两个同心圆.故选B.4.截至2016年底,国家开发银行对“一带一路”沿线国家累计发放贷款超过1600亿美元,其中1600亿用科学记数法表示为()A.16×1010 B.1.6×1010C.1.6×1011 D.0.16×1012【解析】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.科学记数法—表示较大的数.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n是非负数;当原数的绝对值<1时,n是负数.1600亿用科学记数法表示为1.6×1011,故选:C.5.不等式4﹣2x>0的解集在数轴上表示为()A.B.C.D.【解析】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.解一元一次不等式;在数轴上表示不等式的解集.根据解一元一次不等式基本步骤:移项、系数化为1可得.移项,得:﹣2x>﹣4,系数化为1,得:x<2,故选:D.6.直角三角板和直尺如图放置,若∠1=20°,则∠2的度数为()。

2017年安徽省中考数学试卷(含答案解析版)

2017年安徽省中考数学试卷(含答案解析版)

2017年安徽省中考数学试卷一、选择题(每题4分,共40分)1.(4分)的相反数是()A. B.﹣C.2 D.﹣22.(4分)计算(﹣a3)2的结果是()A.a6B.﹣a6 C.﹣a5D.a53.(4分)如图,一个放置在水平实验台上的锥形瓶,它的俯视图为()A.B.C.D.4.(4分)截至2016年底,国家开发银行对“一带一路"沿线国家累计发放贷款超过1600亿美元,其中1600亿用科学记数法表示为( )A.16×1010B.1。

6×1010C.1。

6×1011D.0。

16×10125.(4分)不等式4﹣2x>0的解集在数轴上表示为()A. B.C. D.6.(4分)直角三角板和直尺如图放置,若∠1=20°,则∠2的度数为( )A.60° B.50° C.40° D.30°7.(4分)为了解某校学生今年五一期间参加社团活动时间的情况,随机抽查了其中100名学生进行统计,并绘制成如图所示的频数直方图,已知该校共有1000名学生,据此估计,该校五一期间参加社团活动时间在8~10小时之间的学生数大约是()A.280 B.240 C.300 D.2608.(4分)一种药品原价每盒25元,经过两次降价后每盒16元.设两次降价的百分率都为x,则x满足( )A.16(1+2x)=25 B.25(1﹣2x)=16 C.16(1+x)2=25 D.25(1﹣x)2=169.(4分)已知抛物线y=ax2+bx+c与反比例函数y=的图象在第一象限有一个公共点,其横坐标为1,则一次函数y=bx+ac的图象可能是()A.B.C.D.10.(4分)如图,在矩形ABCD中,AB=5,AD=3,动点P满足S△PAB=S矩形ABCD,则点P到A、B 两点距离之和PA+PB的最小值为()A. B. C.5 D.二、填空题(每题5分,共20分)11.(5分)27的立方根为.12.(5分)因式分解:a2b﹣4ab+4b= .13.(5分)如图,已知等边△ABC的边长为6,以AB为直径的⊙O与边AC、BC分别交于D、E两点,则劣弧的长为.14.(5分)在三角形纸片ABC中,∠A=90°,∠C=30°,AC=30cm,将该纸片沿过点B的直线折叠,使点A落在斜边BC上的一点E处,折痕记为BD(如图1),减去△CDE后得到双层△BDE(如图2),再沿着过△BDE某顶点的直线将双层三角形剪开,使得展开后的平面图形中有一个是平行四边形,则所得平行四边形的周长为cm.三、(每题8分,共16分)15.(8分)计算:|﹣2|×cos60°﹣()﹣1.16.(8分)《九章算术》中有一道阐述“盈不足术”的问题,原文如下:今有人共买物、人出八,盈三;人出七,不足四,问人数,物价各几何?译文为:现有一些人共同买一个物品,每人出8元,还盈余3元;每人出7元,则还差4元,问共有多少人?这个物品的价格是多少?请解答上述问题.四、(每题8分,共16分)17.(8分)如图,游客在点A处坐缆车出发,沿A﹣B﹣D的路线可至山顶D处,假设AB和BD都是直线段,且AB=BD=600m,α=75°,β=45°,求DE的长.(参考数据:sin75°≈0。

最新-2017年安徽中考数学压轴题集

最新-2017年安徽中考数学压轴题集

精品文档2008-2017年安徽省初中学业水平考试数学压轴题集(本卷收录近10年安徽省中考的第10、14、22、23题)一、选择题每小题都给出A、B、C、D四个选项,其中只有一个是正确的.1 .则点P到A=3.动点P满足,B两点距离之和1.如图,在矩形ABCD中,AB=5,AD S S PAB矩形ABCD3)A+PB的最小值为(P3429 A. D.B. C.4125,则∠PBCPAB=,2.如图,Rt△ABC,AB⊥BC,AB=6BC=4,P是△ABC内部的一个动点,且满足∠)CP线段长的最小值为(12131383A. D. B.2 C. 13132题图第2 第1题图22xy?c1)x??ax?(b?yc?bx?ax+y两点,则函数Q和二次函数图象相交于3.如图,一次函数P,12)的图象可能是(D.C. B. A.第3题图l满足:的对角线BD长为,若直线4.如图,正方形ABCD223的距离为;到直线①点Dl.两点到直线l距离相等A②,C )l则符合题意的直线的条数是(D.4C.3 A.1 B.2)ABC.5如图,点P是等边三角形外接圆⊙O上点,在以下判断中,不正确的是(APC当弦A.PB最长时,△是等腰三角形⊥POAC 是等腰三角形时,△B.当APC POC.当⊥=30°ACPAC时,∠精品文档.精品文档D.当∠ACP=30°时,△BPC是直角三角形题图第5 第4题图分别沿斜边中点与这两点的连线6.在一张直角三角形纸片的两直角边上各取一点,,、4、3剪去两个三角形,剩下的部分是如图所示的直角梯形,其中三边长分别为2 )则原直角三角形纸片的斜边长是(1725454或 B. C.10 或D.10A.106题图第、的边于M上一点,过P垂直于AC的直线交菱形ABCD7.如图所示,P是菱形ABCD的对角线ACx的函数图象的大致形状是的面积为y,则y关于=2,BD=1,AP=x,△AMNN两点,设ACB.A.第7题图D. C.,6m/s甲、乙跑步的速度分别为4m/s和米的笔直公路上进行跑步,8.甲、乙两个准备在一段长为1200则两人从起跑至其中一人先到达终点的过程中,若同时起跑,起跑前乙在起点,甲在乙前面100米处,)m甲、乙两之间的距离y()与时间t(s)的函数图象是(D. C. A. B.的度数AIBACD的内切圆圆心,则∠为中,9.△ABCAB=AC,∠A为锐角,CDAB 边上的高,I为△是 C.135° D.150° B.125° A.120°于点N,则MN等于MNM,AB如图,在10.△ABC中,=AC=5BC=6,点为BC中点,⊥AC691212 B. A. C. D.5555精品文档.精品文档第10题图第11题图二、填空题11.在三角形纸片ABC中,∠A=90°,∠C=30°,AC=30cm,将该纸片沿过点B的直线折叠,使点A落在斜边BC上的一点E处,折痕记为BD(如图1),剪去△CDE后得到双层△BDE(如图2),再沿着过△BDE某顶点的直线将双层三角形剪开,使得展开后的平面图形中有一个是平行四边形,则所得平行四边形的周长为__________cm.12.如图,在矩形纸片ABCD中,AB=6,BC=10,点E在CD上,将△BCE沿BE折叠,点C恰落在边AD上的点F处;点G在AF上,将△ABG沿BG折叠,点A恰落在线段BF 上的点H处,有下列3的正确FG.其中;③;④AG+DF=∠结论:①EBG=45°;②△DEF∽△ABG S=S FGH△△ABG2(把所有正确结论的序号都选上).是14题图第第12题图11ca?b?ab?;=9b+c则有下列结论:①若c≠0,满足13.已知实数a、b、c;②若a=3,则,1??ba把.(其中正确的是bb=c,则abc=0;④若a、、c中只有两个数相等,则a+b+c=8.③若a=所有正确结论的序号都选上)、EFAD的中点,作CE⊥AB,垂足E在线段AB上,连接如图,在14.?ABCD中,AD=2AB,F是.(把所有正确结论的序号都填在横线上)CF,则下列结论中一定成立的是1S=2S.∠AEF;④∠=①;②EFCF;③DFE=3BCD??DCF?CEFBEC△△2,A不经过点(E15.已知矩形纸片ABCD中,AB=1,BC=2,将该纸片折叠成一个平面图形,折痕EF为正方形时,给出以下判断:A'CDF①当四边形F是该矩形边界上的点),折叠后点A落在点A'处,为等腰梯形;④当四边BA'CD=5时,四边EF=2;②当EF=2时,四边形A'CDF为正方形;③当EF (把所有正确结论的序号都填在横线上)EF=5. 其中正确的是.形BA'CD为等腰梯形时,,AB、△PBC、△PDAPCD、△△、如图,16.P是矩形ABCD内的任意一点,连接PAPB、PC、PD,得到P,;③若SS=2S+S,给出如下结论:①、设它们的面积分别是SS、S、SS+S=+S;②SS= S+14142333412132(把所有正确.点在矩形的对角线上其中正确的结论的序号是.,则SS则S=2 ④若=SP2214结论的序号都填在横线上)16 15第题图第题图题图第18精品文档.精品文档a?b?b?a;定义运算,下面给出了关于这种运算的几个结论:①;②17.62?(??b)2)?a?b?a(1a?b?0a?b?0,则a=0.其中正确结论的序号是③若,则;④若.(填ab2)?b(a?a)?(?b上你认为所有正确结论的序号)18.如图,AD是△ABC的边BC上的高,由下列条件中的某一个就能推出△ABC 是等腰三角形的是________ _.(把所有正确答案的序号都填写在横线上)①∠BAD=∠ACD;②∠BAD=∠CAD;③AB+BD=AC+CD;④AB-BD=AC-CD.11,则该x轴的另一交点到原点的距离为1,且图象与19.已知二次函数的图象经过原点及点),?(?42.二次函数的解析式为2c?ax?bx?y的根是a;②方程c20.如图为二次函数<0的图象,在下列说法中:①20?cax??bx x??1x?3a?b?c>0;④当x>1时,y随x,的增大而增大.;③正确的说法有__________.(把正12确的答案的序号都填在横线上)20题图第三、解答题经市场调查,.元,规定每千克不低于成本,且不高于80元21.某超市销售一种商品,成本每千克40(千克)与每千克售价x(元)满足一次函数关系,部分数据如下表:每天的(2)设商品每天的总利润为W(元),求W与x之间的函数表达式(利润=收入-成本);(3)试说明(2)中总利润W随售价x的变化而变化的情况,并指出售价为多少元时获得最大利润,最大利润是多少?精品文档.精品文档22.已知正方形ABCD,点M为AB的中点.(1)如图1,点G为线段CM上的一点,且∠AGB=90°,延长AG、BG分别与边BC、CD交于点E、F.①求证:BE=CF;②求证:. 2CE?BCBE?(2)如图2,在边BC上取一点E,满足,连接AE交CM 于点G,连接BG并延长2CEBE??BC交CD于点F,求tan∠CBF的值.2 22 题图第 1 第22题图2bxy ax+ 23.如图,二次函数的图象经过点与.(6,0)A(2,4)B的值;1()求a,bOACB,写出四边形<(两点之间的一动点,横坐标为x2<x6)BAC)(2点是该二次函数图象上,.S的最大值的函数表达式,并求的横坐标关于点的面积SCx精品文档.精品文档24.如图,A,B分别在射线OA,ON上,且∠MON为钝角,现以线段OA,OB 为斜边向∠MON的外侧作等腰直角三角形,分别是△OAP,△OBQ,点C,D,E分别是OA,OB,AB的中点.(1)求证:△PCE≌△EDQ;(2)延长PC,QD交于点R.①如图1,若∠MON=150°,求证:△ABR为等边三角形;AB②如图3,若△ARB∽△PEQ,求∠MON大小和的值.PQ第24题图 1第题第24 2 图3 24题图精品文档.精品文档25.为了节省材料,某水产养殖户利用水库的岸堤(岸堤足够长)为一边,用总长为80m的围网在水库中围成了如图所示的①②③三块矩形区域,而且这三块矩形区域的面积相等.设BC的长度为xm,2.的面积为ym矩形区域ABCD(1)求y与x之间的函数关系式,并注明自变量x的取值范围;(2)x为何值时,y有最大值?最大值是多少?题图第25作F作AB的垂线,过点AB、CD的中点,过点E,在四边形26.如图1ABCD 中,点E、F分别是BGC.、DG,且∠AGD=∠CD的垂线,两垂线交于点G,连接AG、BG、CG BC;1)求证:AD=(EGF;AGD)求证:△∽△(2AD.的值、BC所在直线互相垂直,求(3)如图2,若AD EF2 26题图第题图第261精品文档.精品文档27.若两个二次函数图象的顶点、开口方向都相同,则称这两个二次函数为“同簇二次函数”.(1)请写出两个为“同簇二次函数”的函数;222y1?2m?y?2x?4mx5ax?bx?y?,已知关于x的二次函数其中的图象经过点,和2()(1,1)A112y?yyyy的最大值. ≤3时,”,求函数0若的表达式,并求出当≤与x 为“同簇二次函数2121228.如图1,正六边形ABCDEF的边长为a,P是BC边上一动点,过P作PM∥AB交AF于M,作PN∥CD交DE于N.(1)①∠MPN= ;②求证:PM+PN=3a;(2)如图2,点O是AD的中点,连接OM、ON,求证:OM=ON;(3)如图3,点O是AD的中点,OG平分∠MON,判断四边形OMGN是否为特殊四边形?并说明理由.3第28题图 2 28 1 28第题图第题图精品文档.精品文档29.某大学生利用暑假40天社会实践参与了一家网店的经营,了解到一种成本为(2)求该网店第x天获得的利润y关于x的函数关系式;(3)这40天中该网店第几天获得的利润最大?最大利润是多少?30.我们把由不平行于底边的直线截等腰三角形的两腰所得的四边形称为“准等腰梯形”;如图1,四边形ABCD即为“准等腰梯形”;其中∠B=∠C.(1)在图1所示的“准等腰梯形”ABCD中,选择合适的一个顶点引一条直线将四边形ABCD分割成一个等腰梯形和一个三角形或分割成一个等腰三角形和一个梯形;(画出一种示意图即可)(2)如图2,在“准等腰梯形”ABCD中∠B=∠C.E为边BC上一点,若AB ∥DE,AE∥DC,求证:ABBE;?DCEC(3)在由不平行于BC的直线AD截△PBC所得的四边形ABCD中,∠BAD与∠ADC的平分线交于点E.若EB=EC,请问当点E在四边形ABCD内部时(即图3所示情形),四边形ABCD 是不是“准等腰梯形”,为什么?若点E不在四边形ABCD内部时,情况又将如何?写出你的结论.(不必说明理由)第30题图1 第30题图2 第30题图3精品文档.精品文档31.如图1,在△ABC中,D、E、F分别为三边的中点,G点在边AB上,△BDG 与四边形ACDG的周长相等,设BC=a、AC=b、AB=c.(1)求线段BG的长;(2)求证:DG平分∠EDF;(3)连接CG,如图2,若△BDG与△DFG相似,求证:BG⊥CG.2 题图第31 第31题图1处发出,把球看成点,其运2m的A.如图,排球运动员站在点O处练习发球,将球从O点正上方322h?(x?6)y?a点的水平距离为)满足关系式(m.已知球网与O)与运行的水平距离行的高度y(mx O点的水平距离为18m. 2.43m9m,高度为,球场的边界距(不要求写出自变量与x的关系式;x的取值范围)y)当(1h=2.6时,求h)当=2.6时,球能否越过球网?球会不会出界?请说明理由;(2. )若球一定能越过球网,又不出边界,求h的取值范围(3题图第32精品文档.精品文档33.在△ABC中,∠ACB=90°,∠ABC=30°,将△ABC绕顶点C顺时针旋转,旋转角为. △A'B'C',得到?? )180(0?<?<.3 第33题图第33题图2 第33题图1CD相交于点D,证明:△CDA是等边三角形;时,设(1)如图(1),当AB∥BCBA与SS求证:.ACA'和△BCB'的面积分别为和)如图((22),连接A'A、B'B,设△'BCB'ACA1:3S?S: . ''BCBACA长P °时,E θ= a'3(3)如图(),设AC中点为E,BA'中点为P,AC=,连接EP,当. 度最大,最大值为上,这四条直线中相邻两条之间l、l如图,正方形ABCD的四个顶点分别在四条平行线l、l、.344312. )0,h>0>(的距离依次为h、h、hh>0,h313122 h)求证h=;(13122h??(hh)?S(2)设正方形ABCD求证;的面积为S.1233. 随S)若(3h的变化情况的面积变化时,说明正方形h,当ABCD1hh??11212精品文档.精品文档第34题图35.春节期间某水库养殖场为适应市场需求,连续用20天时间,采用每天降低水位以减少捕捞成本的办法,对水库中某种鲜鱼进行捕捞、销售.九(1)班数学建模兴趣小组根据调查,整理出第x天(1≤x≤20且x为整数)的捕捞与销售的相关信息如下:鲜鱼销售单价(元/kg)20x?5 /kg)单位捕捞成本(元5950?x kg)捕捞量((1)在此期间该养殖场每天的捕捞量与前一天的捕劳量相比是如何变化的?(2)假定该养殖场每天捕捞和销售的鲜鱼没有损失,且能在当天全部售出,求第x天的收入(y元)与x(天)之间的函数关系式;(当天收入=日销售额-日捕捞成本)(3)试说明(2)中的函数y随x的变化情况,并指出在第几天y取得最大值,最大值是多少?36.如图,已知△ABC∽△ABC,相似比为k(k>1),且△ABC的三边长分别为a、b、c(a>b>c),111△ABC的三边长分别为a、b、c. 111111(1)若c=a,求证:a=kc1(2)若c=a,试给出符合条件的一对△ABC和△ABC,使得a、b、c和a、b、c都是正整数,1111111并加以说明;(3)若b=a,c=b,是否存在△ABC和△ABC,使得k=2?请说明理由. 11111精品文档.精品文档第36题图37.如图,M为线段AB的中点,AE与BD交于点C,∠DME=∠A=∠B=α,且DM交AC于F,ME交BC于G.(1)写出图中三对相似三角形,并证明其中的一对;(2)连结FG,如果α=45°,AB=,AF=3,求FG的长.24题图37 第)所示.138.已知某种水果的批发单价与批发量的函数关系如图(1)请说明图中①、②两段函数图象的实际意义.(函数关系式;在下图的坐)之间的kg (元)与批发量(2)写出批发该种水果的资金金额wm(么范围内,以同样的资金可以批发到较多数量的该种水果.标系中画出该函数图象;指出金额在什)所示,该2 3()经调查,某经销商销售该种水果的日最高销量与零售价之间的函数关系如图(精品文档.精品文档经销商拟每日售出60kg以上该种水果,且当日零售价不变,请你帮助该经销商设计进货和销售的方案,使得当日获得的利润最大.2 第38题图第38题图1OC. OB的两边AB、AC所在直线的距离相等,且=到39.已知:点O△ABC ;AC在BC上,求证:AB=1(1)如图,若点O ;的内部,求证:AB=ACO(2)如图2,若点在△ABC. =AC成立吗?请画图表示ABC(3)若点O在△的外部,AB21 39 第题图题图第39精品文档.精品文档40.刚回营地的两个抢险分队又接到救灾命令:一分队立即出发往30千米的A镇;二分队因疲劳可在营地休息a(0≤a≤3)小时再往A镇参加救灾.一分队了发后得知,唯一通往A镇的道路在离营地10千米处发生塌方,塌方地形复杂,必须由一分队用1小时打通道路,已知一分队的行进速度为5千米/时,二分队的行进速度为(4+a)千米/时.(1)若二分队在营地不休息,问二分队几小时能赶到A镇?(2)若二分队和一分队同时赶到A镇,二分队应在营地休息几小时?(3)下列图象中,①②分别描述一分队和二分队离A镇的距离y(千米)和时间x(小时)的函数关系,请写出你认为所有可能合理的代号,并说明它们的实际意义.d)( c b )( a ()()第40题图精品文档.。

2017年挑战中考数学压轴题(全套含答案)

2017年挑战中考数学压轴题(全套含答案)

第一部分函数图象中点的存在性问题§1.1 因动点产生的相似三角形问题例1 2014年衡阳市中考第28题例2 2014年益阳市中考第21题例3 2015年湘西州中考第26题例4 2015年张家界市中考第25题例5 2016年常德市中考第26题例6 2016年岳阳市中考第24题例7 2016年上海市崇明县中考模拟第25题例8 2016年上海市黄浦区中考模拟第26题§1.2 因动点产生的等腰三角形问题例9 2014年长沙市中考第26题例10 2014年张家界市第25题例11 2014年邵阳市中考第26题例12 2014年娄底市中考第27题例13 2015年怀化市中考第22题例14 2015年长沙市中考第26题例15 2016年娄底市中考第26题例16 2016年上海市长宁区金山区中考模拟第25题例17 2016年河南省中考第23题例18 2016年重庆市中考第25题§1.3 因动点产生的直角三角形问题例19 2015年益阳市中考第21题例20 2015年湘潭市中考第26题例21 2016年郴州市中考第26题例22 2016年上海市松江区中考模拟第25题例23 2016年义乌市绍兴市中考第24题§1.4 因动点产生的平行四边形问题例24 2014年岳阳市中考第24题例25 2014年益阳市中考第20题例26 2014年邵阳市中考第25题例27 2015年郴州市中考第25题例28 2015年黄冈市中考第24题例29 2016年衡阳市中考第26题例30 2016年上海市嘉定区宝山区中考模拟中考第24题例31 2016年上海市徐汇区中考模拟第24题§1.5 因动点产生的面积问题例32 2014年常德市中考第25题例33 2014年永州市中考第25题例34 2014年怀化市中考第24题例35 2015年邵阳市中考第26题例36 2015年株洲市中考第23题例37 2015年衡阳市中考第28题例38 2016年益阳市中考第22题例39 2016年永州市中考第26题例40 2016年邵阳市中考第26题例41 2016年陕西省中考第25题§1.6 因动点产生的相切问题例42 2014年衡阳市中考第27题例43 2014年株洲市中考第23题例44 2015年湘潭市中考第25题例45 2015年湘西州中考第25题例46 2016年娄底市中考第25题例47 2016年湘潭市中考第26题例48 2016年上海市闵行区中考模拟第24题例49 2016年上海市普陀区中考模拟中考第25题§1.7 因动点产生的线段和差问题例50 2014年郴州市中考第26题例51 2014年湘西州中考第25题例52 2015年岳阳市中考第24题例53 2015年济南市中考第28题例54 2015年沈阳市中考第25题例55 2016年福州市中考第26题例56 2016年张家界市中考第24题例57 2016年益阳市中考第21题第二部分图形运动中的函数关系问题§2.1 由比例线段产生的函数关系问题例1 2014年常德市中考第26题例2 2014年湘潭市中考第25题例3 2014年郴州市中考第25题例4 2015年常德市中考第25题例5 2015年郴州市中考第26题例6 2015年邵阳市中考第25题例7 2015年娄底市中考第26题例8 2016年郴州市中考第25题例9 2016年湘西州中考第26题例10 2016年上海市静安区青浦区中考模拟第25题例11 2016年哈尔滨市中考第27题第三部分图形运动中的计算说理问题§3.1 代数计算及通过代数计算进行说理问题例1 2014年长沙市中考第25题例2 2014年怀化市中考第23题例3 2014年湘潭市中考第26题例4 2014年株洲市中考第24题例5 2015年衡阳市中考第27题例6 2015年娄底市中考第25题例7 2015年永州市中考第26题例8 2015年长沙市中考第25题例9 2015年株洲市中考第24题例10 2016年怀化市中考第22题例11 2016年邵阳市中考第25题例12 2016年株洲市中考第26题例13 2016年长沙市中考第25题例14 2016年长沙市中考第26题§3.2 几何证明及通过几何计算进行说理问题例15 2014年衡阳市中考第26题例16 2014年娄底市中考第26题例17 2014年岳阳市中考第23题例18 2015年常德市中考第26题例19 2015年益阳市中考第20题例20 2015年永州市中考第27题例21 2015年岳阳市中考第23题例22 2016年常德市中考第25题例23 2016年衡阳市中考第25题例24 2016年永州市中考第27题例25 2016年岳阳市中考第23题例26 2016年株洲市中考第25题例27 2016年湘潭市中考第25题第四部分图形的平移、翻折与旋转§4.1 图形的平移例1 2015年泰安市中考第15题例2 2015年咸宁市中考第14题例3 2015年株洲市中考第14题例4 2016年上海市虹口区中考模拟第18题§4.2 图形的翻折例5 2016年上海市奉贤区中考模拟第18题例6 2016年上海市静安区青浦区中考模拟第18题例7 2016年上海市闵行区中考模拟第18题例8 2016年上海市浦东新区中考模拟第18题例8 2016年上海市普陀区中考模拟第18题例10 2016年常德市中考第15题例11 2016年张家界市中考第14题例12 2016年淮安市中考第18题例13 2016年金华市中考第15题例14 2016年雅安市中考第12题§4.3 图形的旋转例15 2016年上海昂立教育中学生三模联考第18题例16 2016年上海市崇明县中考模拟第18题例17 2016年上海市黄浦区中考模拟第18题例18 2016年上海市嘉定区宝山区中考模拟第18题例19 2016年上海市闸北区中考模拟第18题例20 2016年邵阳市中考第13题例21 2016年株洲市中考第4题§4.4 三角形例22 2016年安徽省中考第10题例23 2016年武汉市中考第10题例24 2016年河北省中考第16题例25 2016年娄底市中考第10题例26 2016年苏州市中考第9题例27 2016年台州市中考第10题例28 2016年陕西省中考第14题例29 2016年内江市中考第11题例30 2016年上海市中考第18题§4.5 四边形例31 2016年湘西州中考第11题例32 2016年益阳市中考第4题例33 2016年益阳市中考第6题例34 2016年常德市中考第16题例35 2016年成都市中考第14题例36 2016年广州市中考第13题例37 2016年福州市中考第18题例38 2016年无锡市中考第17题例39 2016年台州市中考第15题§4.6 圆例40 2016年滨州市中考第16题例41 2016年宁波市中考第17题例42 2016年连云港市中考第16题例43 2016年烟台市中考第17题例44 2016年烟台市中考第18题例45 2016年无锡市中考第18题例46 2016年武汉市中考第9题例47 2016年宿迁市中考第16题例48 2016年衡阳市中考第17题例49 2016年邵阳市中考第18题例50 2016年湘西州中考第18题例51 2016年永州市中考第20题§4.7 函数的图象及性质例52 2015年荆州市中考第9题例53 2015年德州市中考第12题例54 2015年烟台市中考第12题例55 2015年中山市中考第10题例56 2015年武威市中考第10题例57 2015年呼和浩特市中考第10题例58 2016年湘潭市中考第18题例59 2016年衡阳市中考第19题例60 2016年岳阳市中考第15题例61 2016年株洲市中考第9题例62 2016年永州市中考第19题例63 2016年岳阳市中考第8题例64 2016年岳阳市中考第16题例65 2016年益阳市中考第14题例66 2016年株洲市中考第10题例67 2016年株洲市中考第17题例68 2016年东营市中考第15题例69 2016年成都市中考第13题例70 2016年泰州市中考第16题例71 2016年宿迁市中考第15题例72 2016年临沂市中考第14题例73 2016年义乌市绍兴市中考第9题例74 2016年淄博市中考第12题例75 2016年嘉兴市中考第16题§1.1 因动点产生的相似三角形问题课前导学相似三角形的判定定理有3个,其中判定定理1和判定定理2都有对应角相等的条件,因此探求两个三角形相似的动态问题,一般情况下首先寻找一组对应角相等.判定定理2是最常用的解题依据,一般分三步:寻找一组等角,分两种情况列比例方程,解方程并检验.如果已知∠A=∠D,探求△ABC与△DEF相似,只要把夹∠A和∠D的两边表示出来,按照对应边成比例,分和两种情况列方程.应用判定定理1解题,先寻找一组等角,再分两种情况讨论另外两组对应角相等.应用判定定理3解题不多见,根据三边对应成比例列连比式解方程(组).还有一种情况,讨论两个直角三角形相似,如果一组锐角相等,其中一个直角三角形的锐角三角比是确定的,那么就转化为讨论另一个三角形是直角三角形的问题.求线段的长,要用到两点间的距离公式,而这个公式容易记错.理解记忆比较好.如图1,如果已知A、B两点的坐标,怎样求A、B两点间的距离呢?我们以AB为斜边构造直角三角形,直角边与坐标轴平行,这样用勾股定理就可以求斜边AB的长了.水平距离BC的长就是A、B两点间的水平距离,等于A、B两点的横坐标相减;竖直距离AC就是A、B两点间的竖直距离,等于A、B两点的纵坐标相减.图1例 1 2014年湖南省衡阳市中考第28题二次函数y=a x2+b x+c(a≠0)的图象与x轴交于A(-3, 0)、B(1, 0)两点,与y轴交于点C(0,-3m)(m >0),顶点为D.(1)求该二次函数的解析式(系数用含m的代数式表示);(2)如图1,当m=2时,点P为第三象限内抛物线上的一个动点,设△APC的面积为S,试求出S与点P的横坐标x之间的函数关系式及S的最大值;(3)如图2,当m取何值时,以A、D、C三点为顶点的三角形与△OBC相似?图1 图2动感体验请打开几何画板文件名“14衡阳28”,拖动点P运动,可以体验到,当点P运动到AC的中点的正下方时,△APC的面积最大.拖动y轴上表示实数m的点运动,抛物线的形状会改变,可以体验到,∠ACD和∠ADC都可以成为直角.思路点拨1.用交点式求抛物线的解析式比较简便.2.连结OP,△APC可以割补为:△AOP与△COP的和,再减去△AOC.3.讨论△ACD与△OBC相似,先确定△ACD是直角三角形,再验证两个直角三角形是否相似.4.直角三角形ACD存在两种情况.图文解析(1)因为抛物线与x轴交于A(-3, 0)、B(1, 0)两点,设y=a(x+3)(x-1).代入点C(0,-3m),得-3m=-3a.解得a=m.所以该二次函数的解析式为y=m(x+3)(x-1)=mx2+2mx-3m.(2)如图3,连结OP.当m=2时,C(0,-6),y=2x2+4x-6,那么P(x, 2x2+4x-6).由于S△AOP==(2x2+4x-6)=-3x2-6x+9,S△COP==-3x,S△AOC=9,所以S=S△APC=S△AOP+S△COP-S△AOC=-3x2-9x=.所以当时,S取得最大值,最大值为.图3 图4 图5(3)如图4,过点D作y轴的垂线,垂足为E.过点A作x轴的垂线交DE于F.由y=m(x+3)(x-1)=m(x+1)2-4m,得D(-1,-4m).在Rt△OBC中,OB∶OC=1∶3m.如果△ADC与△OBC相似,那么△ADC是直角三角形,而且两条直角边的比为1∶3m.①如图4,当∠ACD=90°时,.所以.解得m=1.此时,.所以.所以△CDA∽△OBC.②如图5,当∠ADC=90°时,.所以.解得.此时,而.因此△DCA与△OBC不相似.综上所述,当m=1时,△CDA∽△OBC.考点伸展第(2)题还可以这样割补:如图6,过点P作x轴的垂线与AC交于点H.由直线AC:y=-2x-6,可得H(x,-2x-6).又因为P(x, 2x2+4x-6),所以HP=-2x2-6x.因为△P AH与△PCH有公共底边HP,高的和为A、C两点间的水平距离3,所以S=S△APC=S△APH+S△CPH=(-2x2-6x)=.图6例 2 2014年湖南省益阳市中考第21题如图1,在直角梯形ABCD中,AB//CD,AD⊥AB,∠B=60°,AB=10,BC=4,点P沿线段AB从点A 向点B运动,设AP=x.2·1·c·n·j·y(1)求AD的长;(2)点P在运动过程中,是否存在以A、P、D为顶点的三角形与以P、C、B为顶点的三角形相似?若存在,求出x的值;若不存在,请说明理由;(3)设△ADP与△PCB的外接圆的面积分别为S1、S2,若S=S1+S2,求S的最小值.动感体验图1请打开几何画板文件名“14益阳21”,拖动点P在AB上运动,可以体验到,圆心O的运动轨迹是线段BC的垂直平分线上的一条线段.观察S随点P运动的图象,可以看到,S有最小值,此时点P看上去象是AB的中点,其实离得很近而已.思路点拨1.第(2)题先确定△PCB是直角三角形,再验证两个三角形是否相似.2.第(3)题理解△PCB的外接圆的圆心O很关键,圆心O在确定的BC的垂直平分线上,同时又在不确定的BP的垂直平分线上.而BP与AP是相关的,这样就可以以AP为自变量,求S的函数关系式.图文解析(1)如图2,作CH⊥AB于H,那么AD=CH.在Rt△BCH中,∠B=60°,BC=4,所以BH=2,CH=.所以AD=.(2)因为△APD是直角三角形,如果△APD与△PCB相似,那么△PCB一定是直角三角形.①如图3,当∠CPB=90°时,AP=10-2=8.所以==,而=.此时△APD与△PCB不相似.图2 图3 图4②如图4,当∠BCP=90°时,BP=2BC=8.所以AP=2.所以==.所以∠APD=60°.此时△APD∽△CBP.综上所述,当x=2时,△APD∽△CBP.(3)如图5,设△ADP的外接圆的圆心为G,那么点G是斜边DP的中点.设△PCB的外接圆的圆心为O,那么点O在BC边的垂直平分线上,设这条直线与BC交于点E,与AB 交于点F.设AP=2m.作OM⊥BP于M,那么BM=PM=5-m.在Rt△BEF中,BE=2,∠B=60°,所以BF=4.在Rt△OFM中,FM=BF-BM=4-(5-m)=m-1,∠OFM=30°,所以OM=.所以OB2=BM2+OM2=.在Rt△ADP中,DP2=AD2+AP2=12+4m2.所以GP2=3+m2.于是S=S1+S2=π(GP2+OB2)==.所以当时,S取得最小值,最小值为.图5 图6考点伸展关于第(3)题,我们再讨论个问题.问题1,为什么设AP=2m呢?这是因为线段AB=AP+PM+BM=AP+2BM=10.这样BM=5-m,后续可以减少一些分数运算.这不影响求S的最小值.问题2,如果圆心O在线段EF的延长线上,S关于m的解析式是什么?如图6,圆心O在线段EF的延长线上时,不同的是FM=BM-BF=(5-m)-4=1-m.此时OB2=BM2+OM2=.这并不影响S关于m的解析式.例3 2015年湖南省湘西市中考第26题如图1,已知直线y=-x+3与x轴、y轴分别交于A、B两点,抛物线y=-x2+bx+c经过A、B两点,点P在线段OA上,从点O出发,向点A以每秒1个单位的速度匀速运动;同时,点Q在线段AB上,从点A出发,向点B以每秒个单位的速度匀速运动,连结PQ,设运动时间为t秒.(1)求抛物线的解析式;(2)问:当t为何值时,△APQ为直角三角形;(3)过点P作PE//y轴,交AB于点E,过点Q作QF//y轴,交抛物线于点F,连结EF,当EF//PQ时,求点F的坐标;(4)设抛物线顶点为M,连结BP、BM、MQ,问:是否存在t的值,使以B、Q、M为顶点的三角形与以O、B、P为顶点的三角形相似?若存在,请求出t的值;若不存在,请说明理由.图1动感体验请打开几何画板文件名“15湘西26”,拖动点P在OA上运动,可以体验到,△APQ有两个时刻可以成为直角三角形,四边形EPQF有一个时刻可以成为平行四边形,△MBQ与△BOP有一次机会相似.思路点拨1.在△APQ中,∠A=45°,夹∠A的两条边AP、AQ都可以用t表示,分两种情况讨论直角三角形APQ.2.先用含t的式子表示点P、Q的坐标,进而表示点E、F的坐标,根据PE=QF列方程就好了.3.△MBQ与△BOP都是直角三角形,根据直角边对应成比例分两种情况讨论.图文解析(1)由y=-x+3,得A(3, 0),B(0, 3).将A(3, 0)、B(0, 3)分别代入y=-x2+bx+c,得解得所以抛物线的解析式为y=-x2+2x+3.(2)在△APQ中,∠P AQ=45°,AP=3-t,AQ=t.分两种情况讨论直角三角形APQ:①当∠PQA=90°时,AP=AQ.解方程3-t=2t,得t=1(如图2).②当∠QP A=90°时,AQ=AP.解方程t=(3-t),得t=1.5(如图3).图2 图3(3)如图4,因为PE//QF,当EF//PQ时,四边形EPQF是平行四边形.所以EP=FQ.所以y E-y P=y F-y Q.因为x P=t,x Q=3-t,所以y E=3-t,y Q=t,y F=-(3-t)2+2(3-t)+3=-t2+4t.因为y E-y P=y F-y Q,解方程3-t=(-t2+4t)-t,得t=1,或t=3(舍去).所以点F的坐标为(2, 3).图4 图5(4)由y=-x2+2x+3=-(x-1)2+4,得M(1, 4).由A(3, 0)、B(0, 3),可知A、B两点间的水平距离、竖直距离相等,AB=3.由B(0, 3)、M(1, 4),可知B、M两点间的水平距离、竖直距离相等,BM=.所以∠MBQ=∠BOP=90°.因此△MBQ与△BOP相似存在两种可能:①当时,.解得(如图5).②当时,.整理,得t2-3t+3=0.此方程无实根.考点伸展第(3)题也可以用坐标平移的方法:由P(t, 0),E(t, 3-t),Q(3-t, t),按照P→E方向,将点Q向上平移,得F(3-t, 3).再将F(3-t, 3)代入y=-x2+2x+3,得t=1,或t=3.§1.2 因动点产生的等腰三角形问题课前导学我们先回顾两个画图问题:1.已知线段AB=5厘米,以线段AB为腰的等腰三角形ABC有多少个?顶点C的轨迹是什么?2.已知线段AB=6厘米,以线段AB为底边的等腰三角形ABC有多少个?顶点C的轨迹是什么?已知腰长画等腰三角形用圆规画圆,圆上除了两个点以外,都是顶点C.已知底边画等腰三角形,顶角的顶点在底边的垂直平分线上,垂足要除外.在讨论等腰三角形的存在性问题时,一般都要先分类.如果△ABC是等腰三角形,那么存在①AB=AC,②BA=BC,③CA=CB三种情况.解等腰三角形的存在性问题,有几何法和代数法,把几何法和代数法相结合,可以使得解题又好又快.几何法一般分三步:分类、画图、计算.哪些题目适合用几何法呢?如果△ABC的∠A(的余弦值)是确定的,夹∠A的两边AB和AC可以用含x的式子表示出来,那么就用几何法.①如图1,如果AB=AC,直接列方程;②如图2,如果BA=BC,那么;③如图3,如果CA=CB,那么.代数法一般也分三步:罗列三边长,分类列方程,解方程并检验.如果三角形的三个角都是不确定的,而三个顶点的坐标可以用含x的式子表示出来,那么根据两点间的距离公式,三边长(的平方)就可以罗列出来.图1 图2 图3例 9 2014年长沙市中考第26题如图1,抛物线y =ax 2+bx +c (a 、b 、c 是常数,a ≠0)的对称轴为y 轴,且经过(0,0)和两点,点P 在该抛物线上运动,以点P 为圆心的⊙P 总经过定点A (0, 2).(1)求a 、b 、c 的值;(2)求证:在点P 运动的过程中,⊙P 始终与x 轴相交;(3)设⊙P 与x 轴相交于M (x 1, 0)、N (x 2, 0)两点,当△AMN 为等腰三角形时,求圆心P 的纵坐标.图1动感体验请打开几何画板文件名“14长沙26”,拖动圆心P 在抛物线上运动,可以体验到,圆与x 轴总是相交的,等腰三角形AMN 存在五种情况.思路点拨1.不算不知道,一算真奇妙,原来⊙P 在x 轴上截得的弦长MN =4是定值.2.等腰三角形AMN 存在五种情况,点P 的纵坐标有三个值,根据对称性,MA =MN 和NA =NM 时,点P 的纵坐标是相等的.图文解析(1)已知抛物线的顶点为(0,0),所以y =ax 2.所以b =0,c =0. 将代入y =ax 2,得.解得(舍去了负值).(2)抛物线的解析式为,设点P 的坐标为. 已知A (0, 2),所以>.而圆心P 到x 轴的距离为,所以半径P A >圆心P 到x 轴的距离.所以在点P 运动的过程中,⊙P 始终与x 轴相交.(3)如图2,设MN 的中点为H ,那么PH 垂直平分MN ..4=2MH ,所以,中,PMH △Rt 在 所以MH =2.因此MN =4,为定值.等腰△AMN 存在三种情况:①如图3,当AM =AN 时,点P 为原点O 重合,此时点P 的纵坐标为0.图2 图3.2=OM ,所以4=AM ,2=OA 中,AOM △Rt 时,在MN =MA ,当4②如图 .的纵坐标为P .所以点2=OH =x 此时 .的纵坐标为也为P 时,根据对称性,点NM =NA ,当5如图图4 图5③如图6,当NA=NM=4时,在Rt△AON中,OA=2,AN=4,所以ON=2.此时x=OH=2.所以点P的纵坐标为.如图7,当MN=MA=4时,根据对称性,点P的纵坐标也为.图6 图7考点伸展如果点P在抛物线上运动,以点P为圆心的⊙P总经过定点B(0, 1),那么在点P运动的过程中,⊙P始终与直线y=-1相切.这是因为:设点P的坐标为.已知B(0, 1),所以.而圆心P到直线y=-1的距离也为,所以半径PB=圆心P到直线y=-1的距离.所以在点P 运动的过程中,⊙P始终与直线y=-1相切.例 10 2014年湖南省张家界市中考第25题如图1,在平面直角坐标系中,O为坐标原点,抛物线y=ax2+bx+c(a≠0)过O、B、C三点,B、C 坐标分别为(10, 0)和,以OB为直径的⊙A经过C点,直线l垂直x轴于B点.(1)求直线BC的解析式;(2)求抛物线解析式及顶点坐标;(3)点M是⊙A上一动点(不同于O、B),过点M作⊙A的切线,交y轴于点E,交直线l于点F,设线段ME长为m,MF长为n,请猜想mn的值,并证明你的结论;(4)若点P从O出发,以每秒1个单位的速度向点B作直线运动,点Q同时从B出发,以相同速度向点C作直线运动,经过t(0<t≤8)秒时恰好使△BPQ为等腰三角形,请求出满足条件的t值.图图1动感体验请打开几何画板文件名“14张家界25”,拖动点M在圆上运动,可以体验到,△EAF保持直角三角形的形状,AM是斜边上的高.拖动点Q在BC上运动,可以体验到,△BPQ有三个时刻可以成为等腰三角形.思路点拨1.从直线BC的解析式可以得到∠OBC的三角比,为讨论等腰三角形BPQ作铺垫.2.设交点式求抛物线的解析式比较简便.3.第(3)题连结AE、AF容易看到AM是直角三角形EAF斜边上的高.4.第(4)题的△PBQ中,∠B是确定的,夹∠B的两条边可以用含t的式子表示.分三种情况讨论等腰三角形.图文解析(1)直线BC的解析式为.(2)因为抛物线与x轴交于O、B(10, 0)两点,设y=ax(x-10).代入点C,得.解得.所以.抛物线的顶点为.(3)如图2,因为EF切⊙A于M,所以AM⊥EF.由AE=AE,AO=AM,可得Rt△AOE≌Rt△AME.所以∠1=∠2.同理∠3=∠4.于是可得∠EAF=90°.所以∠5=∠1.由tan∠5=tan∠1,得.所以ME·MF=MA2,即mn=25.图2(4)在△BPQ中,cos∠B=,BP=10-t,BQ=t.分三种情况讨论等腰三角形BPQ:①如图3,当BP=BQ时,10-t=t.解得t=5.②如图4,当PB=PQ时,.解方程,得.③如图5,当QB=QP时,.解方程,得.图3 图4 图5考点伸展在第(3)题条件下,以EF为直径的⊙G与x轴相切于点A.如图6,这是因为AG既是直角三角形EAF斜边上的中线,也是直角梯形EOBF的中位线,因此圆心G 到x轴的距离等于圆的半径,所以⊙G与x轴相切于点A.图6例 11 2014年湖南省邵阳市中考第26题在平面直角坐标系中,抛物线y=x2-(m+n)x+mn(m>n)与x轴相交于A、B两点(点A位于点B的右侧),与y轴相交于点C.(1)若m=2,n=1,求A、B两点的坐标;(2)若A、B两点分别位于y轴的两侧,C点坐标是(0,-1),求∠ACB的大小;(3)若m=2,△ABC是等腰三角形,求n的值.动感体验请打开几何画板文件名“14邵阳26”,点击屏幕左下方的按钮(2),拖动点A在x轴正半轴上运动,可以体验到,△ABC保持直角三角形的形状.点击屏幕左下方的按钮(3),拖动点B在x轴上运动,观察△ABC 的顶点能否落在对边的垂直平分线上,可以体验到,等腰三角形ABC有4种情况.思路点拨1.抛物线的解析式可以化为交点式,用m,n表示点A、B、C的坐标.2.第(2)题判定直角三角形ABC,可以用勾股定理的逆定理,也可以用锐角的三角比.3.第(3)题讨论等腰三角形ABC,先把三边长(的平方)罗列出来,再分类解方程.图文解析(1)由y=x2-(m+n)x+mn=(x-m)(x-n),且m>n,点A位于点B的右侧,可知A(m, 0),B(n, 0).若m=2,n=1,那么A(2, 0),B(1, 0)..(2)如图1,由于C(0, mn),当点C的坐标是(0,-1),mn=-1,OC=1.若A、B两点分别位于y轴的两侧,那么OA·OB=m(-n)=-mn=1.所以OC2=OA·OB.所以.所以tan∠1=tan∠2.所以∠1=∠2.又因为∠1与∠3互余,所以∠2与∠3互余.所以∠ACB=90°.图1 图2 图3(3)在△ABC中,已知A(2, 0),B(n, 0),C(0, 2n).讨论等腰三角形ABC,用代数法解比较方便:由两点间的距离公式,得AB2=(n-2)2,BC2=5n2,AC2=4+4n2.①当AB=AC时,解方程(n-2)2=4+4n2,得(如图2).。

2017年安徽省中考数学 解析版

2017年安徽省中考数学 解析版

2017年安徽省中考数学试卷一、选择题(本大题共10小题,每小题4分,满分40分)1.的相反数是()A. B.- C.2 D.﹣2【解析】相反数的概念,主要考查有理数的相关概念,主要有有理数的倒数,有理数的绝对值,有理数的相反数,有理数在数轴上的表示.是中考考试中的必考考点.本题考查了相反数的意义,根据相反数的概念解答即可.一个数的相反数就是在这个数前面添上“﹣”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.的相反数是,添加一个负号即可,故选:B.2.计算(﹣a3)2的结果是()A.a6 B.﹣a6 C.﹣a5 D.a5【解析】本题考查整式的运算,解题的关键是熟练运用幂的乘方公式,本题属于基础题型.幂的乘方与积的乘方.根据整式的运算法则即可求出答案.解:原式=a6,故选A.3.如图,一个放置在水平实验台上的锥形瓶,它的俯视图为()A.B.C.D.【解析】本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.简单组合体的三视图.俯视图是分别从物体的上面看,所得到的图形.一个放置在水平实验台上的锥形瓶,它的俯视图为两个同心圆.故选B.4.截至2016年底,国家开发银行对“一带一路”沿线国家累计发放贷款超过1600亿美元,其中1600亿用科学记数法表示为()A.16×1010 B.1.6×1010C.1.6×1011 D.0.16×1012【解析】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.科学记数法—表示较大的数.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n是非负数;当原数的绝对值<1时,n是负数.1600亿用科学记数法表示为1.6×1011,故选:C.5.不等式4﹣2x>0的解集在数轴上表示为()A.B.C.D.【解析】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.解一元一次不等式;在数轴上表示不等式的解集.根据解一元一次不等式基本步骤:移项、系数化为1可得.移项,得:﹣2x>﹣4,系数化为1,得:x<2,故选:D.6.直角三角板和直尺如图放置,若∠1=20°,则∠2的度数为()A.60°B.50°C.40°D.30°【解析】本题考查了平行线的性质,熟练掌握平行线的性质定理是解题的关键.平行线的性质.过E作EF∥AB,则AB∥EF∥CD,根据平行线的性质即可得到结论.如图,过E作EF∥AB,则AB∥EF∥CD,∴∠1=∠3,∠2=∠4.∵∠3+∠4=60°,∴∠1+∠2=60°.∵∠1=20°,∴∠2=40°,故选C.7.为了解某校学生今年五一期间参加社团活动时间的情况,随机抽查了其中100名学生进行统计,并绘制成如图所示的频数直方图,已知该校共有1000名学生,据此估计,该校五一期间参加社团活动时间在8~10小时之间的学生数大约是()A.280 B.240 C.300 D.260【解析】本题考查了频数分布直方图以及用样本估计总体,利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.一般来说,用样本去估计总体时,样本越具有代表性、容量越大,这时对总体的估计也就越精确.频数(率)分布直方图;用样本估计总体.用被抽查的100名学生中参加社团活动时间在8~10小时之间的学生所占的百分数乘以该校学生总人数,即可得解.由题可得,抽查的学生中参加社团活动时间在8~10小时之间的学生数为100﹣30﹣24﹣10﹣8=28(人),∴1000×=280(人),即该校五一期间参加社团活动时间在8~10小时之间的学生数大约是280人.故选:A.8.一种药品原价每盒25元,经过两次降价后每盒16元.设两次降价的百分率都为x,则x满足()A.16(1+2x)=25 B.25(1﹣2x)=16C.16(1+x)2=25 D.25(1﹣x)2=16【解析】本题考查求平均变化率的方法.若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.由实际问题抽象出一元二次方程.等量关系为:原价×(1﹣降价的百分率)2=现价,把相关数值代入即可.第一次降价后的价格为:25×(1﹣x);第二次降价后的价格为:25×(1﹣x)2;∵两次降价后的价格为16元,∴25(1﹣x)2=16.故选D.9.已知抛物线y=ax2+bx+c与反比例函数的图象在第一象限有一个公共点,其横坐标为1,则一次函数y=bx+ac的图象可能是()A.B.C.D.【解析】考查了一次函数的图象,反比例函数的性质,二次函数的性质,关键是得到b>0,ac<0.一次函数的图象;反比例函数的性质;二次函数的性质.根据抛物线y=ax2+bx+c与反比例函数的图象在第一象限有一个公共点,可得b>0,根据交点横坐标为1,可得,可得a,c互为相反数,依此可得一次函数y=bx+ac的图象.∵抛物线与反比例函数的图象在第一象限有一个公共点,∴b>0,∵交点横坐标为1,∴a+b+c=b,∴a+c=0,∴ac<0,∴一次函数y=bx+ac 的图象经过第一、三、四象限.故选:B.,则点10.如图,在矩形ABCD中,AB=5,AD=3,动点P满足矩形P到A,B两点距离之和PA+PB的最小值为()A.B.C.D.关S△故选二、填空题(本大题共4小题,每小题5分,满分20分)11. 27的立方根为.【解析】本题考查了求一个数的立方根,用到的知识点为:开方与乘方互为逆运算.立方根.找到立方等于27的数即可.∵33=27,∴27的立方根是3,故答案为:3.12.因式分解:a2b﹣4ab+4b= .【解析】本题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.提公因式法与公式法的综合运用.原式提取b,再利用完全平方公式分解即可.解:原式=b(a2﹣4a+4)=b(a﹣2)2,故答案为:b(a﹣2)2.13.如图,已知等边△ABC的边长为6,以AB为直径的⊙O与边AC,BC分别交于D,E两点,则劣弧的长为.【解析】本题考查了等边三角形的性质与判定、弧长公式;熟练掌握弧长公式,证明三角形是等边三角形是解决问题的关键.连接OD,OE,先证明△AOD,△BOE 是等边三角形,得出∠AOD=∠BOE=60°,求出∠DOE=60°,再由弧长公式即可得出答案.连接OD,OE,如图所示:∵△ABC是等边三角形,∴∠A=∠B=∠C=60°.∵OA=OD,OB=OE,∴△AOD,△BOE是等边三角形,∴∠AOD=∠BOE=60°,∴∠DOE=60°.∵OA=AB=3,∴的长.故答案为: .14.在三角形纸片ABC中,∠A=90°,∠C=30°,AC=30cm,将该纸片沿过点B 的直线折叠,使点A落在斜边BC上的一点E处,折痕记为BD(如图1),减去△CDE后得到双层△BDE(如图2),再沿着过△BDE某顶点的直线将双层三角形剪开,使得展开后的平面图形中有一个是平行四边形,则所得平行四边形的周长为cm.【解析】本题考查了剪纸问题,平行四边形的性质,解直角三角形,正确的理解题意是解题的关键.解直角三角形得到AB=10,∠ABC=60°,根据折叠的性质得到∠ABD=∠EBD=∠ABC=30°,BE=AB=10,求得DE=10,BD=20,如图1,平行四边形的边是DF,BF,如图2,平行四边形的边是DE,EG,于是得到结论.∵∠A=90°,∠C=30°,AC=30cm,∴AB=10,∠ABC=60°,∴三、(本大题共2小题,每小题8分,满分16分)15.计算:|﹣2|×cos60°﹣()﹣1.【解析】本题主要考查了负整数指数幂的性质以及绝对值、特殊角的三角函数值等知识,正确化简各数是解题关键.分别利用负整数指数幂的性质以及绝对值的性质、特殊角的三角函数值化简求出答案.原式=2×﹣3=﹣2.16.《九章算术》中有一道阐述“盈不足术”的问题,原文如下:今有人共买物、人出八,盈三;人出七,不足四,问人数,物价各几何?译文为:现有一些人共同买一个物品,每人出8元,还盈余3元;每人出7元,则还差4元,问共有多少人?这个物品的价格是多少?请解答上述问题.【解析】本题考查了一元一次方程的应用,解题的关键是明确题意,找出合适的等量关系,列出相应的方程.根据这个物品的价格不变,列出一元一次方程进行求解即可.设共有x人,可列方程为:8x﹣3=7x+4.解得x=7,∴8x﹣3=53,答:共有7人,这个物品的价格是53元.四、(本大题共2小题,每题8分,共16分)17.如图,游客在点A处坐缆车出发,沿A﹣B﹣D的路线可至山顶D处,假设AB和BD都是直线段,且AB=BD=600m,α=75°,β=45°,求DE的长.(参考数据:sin75°≈0.97,cos75°≈0.26,≈1.41)【解析】本题考查解直角三角形的应用,锐角三角函数、矩形的性质等知识,解题的关键是学会利用直角三角形解决问题,属于中考常考题型.在,在∴∴答:DE的长为579m.18.如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点△ABC 和△DEF(顶点为网格线的交点),以及过格点的直线l.(1)将△ABC向右平移两个单位长度,再向下平移两个单位长度,画出平移后的三角形.(2)画出△DEF关于直线l对称的三角形.(3)填空:∠C+∠E= .【解析】本题主要考查作图﹣平移变换、轴对称变换,熟练掌握平移变换、轴对称变换及勾股定理逆定理是解题的关键.作图-轴对称变换;作图-平移变换.解:(1)将点,,分别右移2个单位、下移2个单位得到其对应点,顺次连接即可得;(2)分别作出点D,E,F关于直线l的对称点,顺次连接即可得;(3)连接A′F′,利用勾股定理逆定理证△A′C′F′为等腰直角三角形即可得.【答案】解:(1)△A′B′C′即为所求;(2(3五、(本大题共2小题,每题10分,共20分)19.【阅读理解】我们知道,1+2+3+…+n=,那么12+22+32+…+n2结果等于多少呢?在图1所示三角形数阵中,第1行圆圈中的数为1,即12,第2行两个圆圈中数的和为2+2,即22,…;第n行n个圆圈中数的和为,即n2,这样,该三角形数阵中共有个圆圈,所有圆圈中数的和为12+22+32+…+n2.【规律探究】,12规律,并运用规律解决实际问题是解题的关键.解:【规律探究】将同一位置圆圈中的数相加即可,所有圈中的数的和应等于同一位置圆圈中的数的和乘以圆圈个数,据此可得,每个三角形数阵和即为三个三角形数阵和的,从而得出答案;【解决问题】运用以上结论,将原式变形为)(),化简计算即可得.【答案】解:【规律探究】由题意知,每个位置上三个圆圈中数的和均为﹣,3(20∥(1(2【解析】本题考查的是三角形的外接圆与外心,掌握平行四边形的判定定理、垂径定理、圆周角定理是解题的关键.(1)根据圆周角定理得到∠B=∠E,得到∠E=∠D,根据平行线的判定和性质定理得到AE∥CD,证明结论;(2)作OM⊥BC于M,ON⊥CE于N,根据垂径定理、角平分线的判定定理证明.【答案】证明:(1)由圆周角定理得,∠B=∠E,又∠B=∠D,∴∠E=∠D,∵CE∥AD,∴∠D+∠ECD=180°,∴∠E+∠ECD=180°,∴AE∥CD,∴四边形AECD为平行四边形;(2)作OM⊥BC于M,ON⊥CE于N,∵四边形AECD为平行四边形,∴AD=CE,又AD=BC,∴CE=CB,∴OM=ON,又OM⊥BC,ON⊥CE,∴CO平分∠BCE.六、(本题满分12分)21.甲、乙、丙三位运动员在相同条件下各射靶10次,每次射靶的成绩如下:甲:9,10,8,5,7,8,10,8,8,7乙:5,7,8,7,8,9,7,9,10,10【解析】本题考查了方差、平均数、中位数和画树状图法求概率,一般地设n个数据,x1,x2, (x)n的平均数为,则方差S2= [(x1﹣x¯)2+(x2﹣x¯)2+…+(xn﹣x¯)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立;概率=所求情况数与总情况数之比.(1)根据方差公式和中位数的定义分别进行解答即可;(2)根据方差公式先分别求出甲的方差,再根据方差的意义即方差越小越稳定即可得出答案;(3)根据题意先画出树状图,得出所有情况数和甲、乙相邻出场的情况数,再根据概率公式即可得出答案.【答案】解:(1)∵甲的平均数是8,∴甲的方差是: [(9﹣8)2+2(10﹣8)2+4(8﹣8)2+2(7﹣8)2+(5﹣8)2]=2;把丙运动员的射靶成绩从小到大排列为:3,4,5,5,6,6,7,7,8,9,则中位数是=6;故答案为:6,2;(2﹣8);4﹣6∴S(3∵共有6种情况数,甲、乙相邻出场的有4种情况,∴甲、乙相邻出场的概率是=.七、(本题满分12分)22.某超市销售一种商品,成本每千克40元,规定每千克售价不低于成本,且不高于80元,经市场调查,每天的销售量y(千克)与每千克售价x(元)满足一次函数关系,部分数据如下表:(2)设商品每天的总利润为W(元),求W与x之间的函数表达式(利润=收入﹣成本);(3)试说明(2)中总利润W随售价x的变化而变化的情况,并指出售价为多少元时获得最大利润,最大利润是多少?【解析】本题考查二次函数的应用,解答本题的关键是明确题意,求出相应的函数解析式,利用二次函数的性质和二次函数的顶点式解答.(1)根据题意可以设出y与x之间的函数表达式,然后根据表格中的数据即可求得y与x之间的函数表达式;(2)根据题意可以写出W与x之间的函数表达式;(3)根据(2)中的函数解析式,将其化为顶点式,然后根据成本每千克40元,规定每千克售价不低于成本,且不高于80元,即可得到利润W随售价x的变化而变化的情况,以及售价为多少元时获得最大利润,最大利润是多少.【答案】解:(1)设y与x之间的函数解析式为y=kx+b,,,得,即y与x之间的函数表达式是﹣;(2)由题意可得,(﹣)(﹣)﹣﹣,即W与x之间的函数表达式是﹣﹣;(3)∵﹣﹣﹣(﹣),,∴当40≤x≤70时,W随x的增大而增大,当70≤x≤80时,W随x的增大而减小,当x=70时,W取得最大值,此时W=1800,答:当40≤x≤70时,W随x的增大而增大,当70≤x≤80时,W随x的增大而减小,售价为70元时获得最大利润,最大利润是1800元.八、(本题满分14分)23.已知正方形ABCD,点M边AB的中点.(1)如图1,点G为线段CM上的一点,且∠AGB=90°,延长AG,BG分别与边BC,CD交于点E,F.①求证:BE=CF;②求证:BE2=BC•CE.(2)如图2,在边BC上取一点E,满足BE2=BC•CE,连接AE交CM于点G,连接BG并延长CD于点F,求tan∠CBF的值.【解析】本题主要考查相似形的综合问题,熟练掌握正方形与直角三角形的性质、全等三角形的判定与性质、相似三角形的判定与性质是解题的关键.(1)①由正方形的性质知AB=BC、∠ABC=∠BCF=90°、∠ABG+CBF=90°,结合∠ABG+∠BAG=90°可得∠BAG=∠CBF,证△ABE≌△BCF可得;②由RtABG斜边AB中线知MG=MA=MB,即∠GAM=∠AGM,结合∠CGE=∠AGM、∠GAM=∠CBG知∠CGE=∠CBG,从而证△CGE∽△CBG得CG2=BC•CE,由可(2,∴∵AB=BC,∠ABE=∠BCF=90°,∴△ABE≌△BCF,∴BE=CF,②∵∠AGB=90°,点M为AB的中点,∴MG=MA=MB,∴∠GAM=∠AGM,又∵∠CGE=∠AGM,∠GAM=∠CBG,∴∠CGE=∠CBG,又∠ECG=∠GCB,∴△CGE∽△CBG,∴,即CG2=BC•CE,由∠CFG=∠GBM=∠BGM=∠CGF得CF=CG,由①知BE=CF,∴BE=CG,∴BE2=BC•CE;(2)延长AE、DC交于点N,∵四边形ABCD是正方形,∴AB∥CD,∴∠N=∠EAB,又∵∠CEN=∠BEA,∴△CEN∽△BEA,∴,即BE•CN=AB•CE,∵AB=BC,BE2=BC•CE,∴CN=BE,∵AB∥DN,∴,∵AM=MB,。

2017年安徽省中考数学解析版

2017年安徽省中考数学解析版

2017年安徽省中考数学试卷一、选择题(本大题共10小题,每小题4分,满分40分)1.12 的相反数是( )A .12B .-12C .2D .﹣2 【解析】相反数的概念,主要考查有理数的相关概念,主要有有理数的倒数,有理数的绝对值,有理数的相反数,有理数在数轴上的表示.是中考考试中的必考考点.本题考查了相反数的意义,根据相反数的概念解答即可.一个数的相反数就是在这个数前面添上“﹣”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.12的相反数是−12,添加一个负号即可,故选:B. 2.计算(﹣a 3)2的结果是( )A .a 6B .﹣a 6C .﹣a 5D .a 5 【解析】本题考查整式的运算,解题的关键是熟练运用幂的乘方公式,本题属于基础题型.幂的乘方与积的乘方.根据整式的运算法则即可求出答案. 解:原式=a 6,故选A.3.如图,一个放置在水平实验台上的锥形瓶,它的俯视图为( )A .B .C .D .【解析】本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.简单组合体的三视图.俯视图是分别从物体的上面看,所得到的图形.一个放置在水平实验台上的锥形瓶,它的俯视图为两个同心圆.故选B.4.截至2016年底,国家开发银行对“一带一路”沿线国家累计发放贷款超过1600亿美元,其中1600亿用科学记数法表示为()A.16×1010 B.1.6×1010C.1.6×1011 D.0.16×1012【解析】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.科学记数法—表示较大的数.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n是非负数;当原数的绝对值<1时,n是负数.1600亿用科学记数法表示为1.6×1011,故选:C.5.不等式4﹣2x>0的解集在数轴上表示为()A.B.C.D.【解析】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.解一元一次不等式;在数轴上表示不等式的解集.根据解一元一次不等式基本步骤:移项、系数化为1可得.移项,得:﹣2x>﹣4,系数化为1,得:x<2,故选:D.6.直角三角板和直尺如图放置,若∠1=20°,则∠2的度数为()A.60°B.50°C.40°D.30°【解析】本题考查了平行线的性质,熟练掌握平行线的性质定理是解题的关键.平行线的性质.过E作EF∥AB,则AB∥EF∥CD,根据平行线的性质即可得到结论.如图,过E作EF∥AB,则AB∥EF∥CD,∴∠1=∠3,∠2=∠4.∵∠3+∠4=60°,∴∠1+∠2=60°.∵∠1=20°,∴∠2=40°,故选C.7.为了解某校学生今年五一期间参加社团活动时间的情况,随机抽查了其中100名学生进行统计,并绘制成如图所示的频数直方图,已知该校共有1000名学生,据此估计,该校五一期间参加社团活动时间在8~10小时之间的学生数大约是()A.280 B.240 C.300 D.260【解析】本题考查了频数分布直方图以及用样本估计总体,利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.一般来说,用样本去估计总体时,样本越具有代表性、容量越大,这时对总体的估计也就越精确.频数(率)分布直方图;用样本估计总体.用被抽查的100名学生中参加社团活动时间在8~10小时之间的学生所占的百分数乘以该校学生总人数,即可得解.由题可得,抽查的学生中参加社团活动时间在8~10小时之间的学生数为100﹣30﹣24﹣10﹣8=28(人),∴1000×28=280(人),即该校五一100期间参加社团活动时间在8~10小时之间的学生数大约是280人.故选:A.8.一种药品原价每盒25元,经过两次降价后每盒16元.设两次降价的百分率都为x,则x满足()A.16(1+2x)=25 B.25(1﹣2x)=16C.16(1+x)2=25 D.25(1﹣x)2=16【解析】本题考查求平均变化率的方法.若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.由实际问题抽象出一元二次方程.等量关系为:原价×(1﹣降价的百分率)2=现价,把相关数值代入即可.第一次降价后的价格为:25×(1﹣x);第二次降价后的价格为:25×(1﹣x)2;∵两次降价后的价格为16元,∴25(1﹣x)2=16.故选D.的图象在第一象限有一个公共点,9.已知抛物线y=ax2+bx+c与反比例函数 y=bx其横坐标为1,则一次函数y=bx+ac的图象可能是()A.B.C.D.【解析】考查了一次函数的图象,反比例函数的性质,二次函数的性质,关键是得到b>0,ac<0.一次函数的图象;反比例函数的性质;二次函数的性质.根据抛物线y=ax2+bx+c与反比例函数y=b的图象在第一象限有一个公共点,可得xb>0,根据交点横坐标为1,可得a+b+c=b,可得a,c互为相反数,依此可得一次函数y=bx+ac的图象.∵抛物线y=ax2+bx+c与反比例函数y=bx的图象在第一象限有一个公共点,∴b>0,∵交点横坐标为1,∴a+b+c=b,∴a+c=0,∴ac<0,∴一次函数y=bx+ac 的图象经过第一、三、四象限.故选:B.10.如图,在矩形ABCD中,AB=5,AD=3,动点P满足S△PAB=13S矩形ABCD,则点P到A,B两点距离之和PA+PB的最小值为()A.√29B.√34C.5√2D.√41【解析】本题考查了轴对称﹣最短路线问题,三角形的面积,矩形的性质,勾股定理,两点之间线段最短的性质.得出动点P所在的位置是解题的关键.首先由S△PAB =13S矩形ABCD,得出动点P在与AB平行且与AB的距离是2的直线l上,作A关于直线l的对称点E,连接AE,连接BE,则BE的长就是所求的最短距离.然后在直角三角形ABE中,由勾股定理求得BE的值,即PA+PB的最小值.设△ABC中AB边上的高是h.∵S△PAB =13S矩形ABCD,∴12AB•h=13AB•AD,∴h=23AD=2,∴动点P在与AB平行且与AB的距离是2的直线l上,如图,作A关于直线l的对称点E,连接AE,连接BE,则BE的长就是所求的最短距离.在Rt△ABE中,∵AB=5,AE=2+2=4,∴BE=√AB2+AE2=√52+42=√41,即PA+PB的最小值为√41.故选D.二、填空题(本大题共4小题,每小题5分,满分20分)11. 27的立方根为.【解析】本题考查了求一个数的立方根,用到的知识点为:开方与乘方互为逆运算.立方根.找到立方等于27的数即可.∵33=27,∴27的立方根是3,故答案为:3.12.因式分解:a2b﹣4ab+4b= .【解析】本题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.提公因式法与公式法的综合运用.原式提取b,再利用完全平方公式分解即可.解:原式=b(a2﹣4a+4)=b(a﹣2)2,故答案为:b(a﹣2)2.13.如图,已知等边△ABC的边长为6,以AB为直径的⊙O与边AC,BC分别交于D,E两点,则劣弧的长为.【解析】本题考查了等边三角形的性质与判定、弧长公式;熟练掌握弧长公式,证明三角形是等边三角形是解决问题的关键.连接OD,OE,先证明△AOD,△BOE 是等边三角形,得出∠AOD=∠BOE=60°,求出∠DOE=60°,再由弧长公式即可得出答案.连接OD,OE,如图所示:∵△ABC是等边三角形,∴∠A=∠B=∠C=60°.∵OA=OD,OB=OE,∴△AOD,△BOE是等边三角形,∴∠AOD=∠BOE=60°,∴∠DOE=60°.AB=3,∵OA=12∴的长=60π×3=π.180故答案为:π.14.在三角形纸片ABC中,∠A=90°,∠C=30°,AC=30cm,将该纸片沿过点B 的直线折叠,使点A落在斜边BC上的一点E处,折痕记为BD(如图1),减去△CDE后得到双层△BDE(如图2),再沿着过△BDE某顶点的直线将双层三角形剪开,使得展开后的平面图形中有一个是平行四边形,则所得平行四边形的周长为cm.【解析】本题考查了剪纸问题,平行四边形的性质,解直角三角形,正确的理解题意是解题的关键.解直角三角形得到AB=10√3,∠ABC=60°,根据折叠的性质∠ABC=30°,BE=AB=10√3,求得DE=10,BD=20,如图1,平得到∠ABD=∠EBD=12行四边形的边是DF,BF,如图2,平行四边形的边是DE,EG,于是得到结论.∵∠A=90°,∠C=30°,AC=30cm,∴AB=10√3,∠ABC=60°,∵△ADB≌△EDB,∠ABC=30°,BE=AB=10√3,∴∠ABD=∠EBD=12∴DE=10,BD=20.,如图1,平行四边形的边是DF,BF,且DF=BF=20√33∴平行四边形的周长=80√3,3如图2,平行四边形的边是DE,EG,且DF=BF=10,∴平行四边形的周长=40,,综上所述:平行四边形的周长为40或80√33故答案为:40或80√3.3三、(本大题共2小题,每小题8分,满分16分)15.计算:|﹣2|×cos60°﹣(1)﹣1.3【解析】本题主要考查了负整数指数幂的性质以及绝对值、特殊角的三角函数值等知识,正确化简各数是解题关键.分别利用负整数指数幂的性质以及绝对值的﹣3=﹣2.性质、特殊角的三角函数值化简求出答案.原式=2×1216.《九章算术》中有一道阐述“盈不足术”的问题,原文如下:今有人共买物、人出八,盈三;人出七,不足四,问人数,物价各几何?译文为:现有一些人共同买一个物品,每人出8元,还盈余3元;每人出7元,则还差4元,问共有多少人?这个物品的价格是多少?请解答上述问题.【解析】本题考查了一元一次方程的应用,解题的关键是明确题意,找出合适的等量关系,列出相应的方程.根据这个物品的价格不变,列出一元一次方程进行求解即可.设共有x人,可列方程为:8x﹣3=7x+4.解得x=7,∴8x﹣3=53,答:共有7人,这个物品的价格是53元.四、(本大题共2小题,每题8分,共16分)17.如图,游客在点A处坐缆车出发,沿A﹣B﹣D的路线可至山顶D处,假设AB和BD都是直线段,且AB=BD=600m,α=75°,β=45°,求DE的长.(参考数据:sin75°≈0.97,cos75°≈0.26,√2≈1.41)【解析】本题考查解直角三角形的应用,锐角三角函数、矩形的性质等知识,解题的关键是学会利用直角三角形解决问题,属于中考常考题型.在R△ABC中,求出BC=AB•cos75°≈600×0.26≈156m,在Rt△BDF中,求出≈300×1.41≈423,由四边形BCEF是矩形,可得EF=BC,DF=BD•sin45°=600×√22由此即可解决问题.【答案】解:在Rt△ABC中,∵AB=600m,∠ABC=75°,∴BC=AB•cos75°≈600×0.26≈156m,在Rt△BDF中,∵∠DBF=45°,≈300×1.41≈423,∴DF=BD•sin45°=600×√22∵四边形BCEF是矩形,∴EF=BC=156,∴DE=DF+EF=423+156=579m.答:DE的长为579m.18.如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点△ABC 和△DEF(顶点为网格线的交点),以及过格点的直线l.(1)将△ABC向右平移两个单位长度,再向下平移两个单位长度,画出平移后的三角形.(2)画出△DEF关于直线l对称的三角形.(3)填空:∠C+∠E= .【解析】本题主要考查作图﹣平移变换、轴对称变换,熟练掌握平移变换、轴对称变换及勾股定理逆定理是解题的关键.作图-轴对称变换;作图-平移变换.解:(1)将点A,B,C分别右移2个单位、下移2个单位得到其对应点,顺次连接即可得;(2)分别作出点D,E,F关于直线l的对称点,顺次连接即可得;(3)连接A′F′,利用勾股定理逆定理证△A′C′F′为等腰直角三角形即可得.【答案】解:(1)△A′B′C′即为所求;(2)△D′E′F′即为所求;(3)如图,连接A′F′,∵△ABC≌△A′B′C′、△DEF≌△D′E′F′,∴∠C+∠E=∠A′C′B′+∠D′E′F′=∠A′C′F′,∵A′C′=√12+22=√5、A′F′=√12+22=√5,C′F′=√12+32=√10,∴A′C′2+A′F′2=5+5=10=C′F′2,∴△A′C′F′为等腰直角三角形,∴∠C+∠E=∠A′C′F′=45°,故答案为:45°.五、(本大题共2小题,每题10分,共20分)19.【阅读理解】我们知道,1+2+3+…+n=n(n+1),那么12+22+32+…+n2结果等于多少呢?2在图1所示三角形数阵中,第1行圆圈中的数为1,即12,第2行两个圆圈中数的和为2+2,即22,…;第n 行n 个圆圈中数的和为,即n 2,这样,该三角形数阵中共有n(n+1)2个圆圈,所有圆圈中数的和为12+22+32+…+n 2.【规律探究】将三角形数阵经两次旋转可得如图2所示的三角形数阵,观察这三个三角形数阵各行同一位置圆圈中的数(如第n ﹣1行的第一个圆圈中的数分别为n ﹣1,2,n ),发现每个位置上三个圆圈中数的和均为 ,由此可得,这三个三角形数阵所有圆圈中数的总和为3(12+22+32+…+n 2)= ,因此,12+22+32+…+n 2= . 【解决问题】根据以上发现,计算:12+22+32+⋯+201721+2+3+⋯+2017的结果为 .【解析】本题主要考查数字的变化类,阅读材料、理解数列求和的具体方法得出规律,并运用规律解决实际问题是解题的关键.解:【规律探究】将同一位置圆圈中的数相加即可,所有圈中的数的和应等于同一位置圆圈中的数的和乘以圆圈个数,据此可得,每个三角形数阵和即为三个三角形数阵和的13,从而得出答案;【解决问题】运用以上结论,将原式变形为16×2017×(2017+1)×(2×2017+1)12×2017×(2017+1),化简计算即可得. 【答案】 解:【规律探究】由题意知,每个位置上三个圆圈中数的和均为n ﹣1+2+n =2n +1, 由此可得,这三个三角形数阵所有圆圈中数的总和为: 3(12+22+32+…+n 2)=(2n+1)×(1+2+3+…+n )=(2n+1)×n(n+1)2,因此,12+22+32+…+n 2=n (2n+1)(n+1)6;故答案为:2n+1,n (n+1)(2n+1)2,n (n+1)(2n+1)6;【解决问题】原式=16×2017×(2017+1)×(2×2017+1)12×2017×(2017+1)=13×(2017×2+1)=1345,故答案为:1345.20.如图,在四边形ABCD 中,AD=BC ,∠B=∠D ,AD 不平行于BC ,过点C 作CE ∥AD 交△ABC 的外接圆O 于点E ,连接AE . (1)求证:四边形AECD 为平行四边形; (2)连接CO ,求证:CO 平分∠BCE .【解析】本题考查的是三角形的外接圆与外心,掌握平行四边形的判定定理、垂径定理、圆周角定理是解题的关键.(1)根据圆周角定理得到∠B=∠E,得到∠E=∠D,根据平行线的判定和性质定理得到AE∥CD,证明结论;(2)作OM⊥BC于M,ON⊥CE于N,根据垂径定理、角平分线的判定定理证明.【答案】证明:(1)由圆周角定理得,∠B=∠E,又∠B=∠D,∴∠E=∠D,∵CE∥AD,∴∠D+∠ECD=180°,∴∠E+∠ECD=180°,∴AE∥CD,∴四边形AECD为平行四边形;(2)作OM⊥BC于M,ON⊥CE于N,∵四边形AECD为平行四边形,∴AD=CE,又AD=BC,∴CE=CB,∴OM=ON,又OM⊥BC,ON⊥CE,∴CO平分∠BCE.六、(本题满分12分)21.甲、乙、丙三位运动员在相同条件下各射靶10次,每次射靶的成绩如下:甲:9,10,8,5,7,8,10,8,8,7乙:5,7,8,7,8,9,7,9,10,10丙:7,6,8,5,4,7,6,3,9,5(1)根据以上数据完成下表:平均数中位数方差甲 8 8 2乙 8 8**丙 6 6 3(2)根据表中数据分析,哪位运动员的成绩最稳定,并简要说明理由;(3)比赛时三人依次出场,顺序由抽签方式决定,求甲、乙相邻出场的概率.【解析】本题考查了方差、平均数、中位数和画树状图法求概率,一般地设n个数据,x1,x2, (x)n的平均数为,则方差S2=1n[(x1﹣x¯)2+(x2﹣x¯)2+…+(xn﹣x¯)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立;概率=所求情况数与总情况数之比.(1)根据方差公式和中位数的定义分别进行解答即可;(2)根据方差公式先分别求出甲的方差,再根据方差的意义即方差越小越稳定即可得出答案;(3)根据题意先画出树状图,得出所有情况数和甲、乙相邻出场的情况数,再根据概率公式即可得出答案.【答案】解:(1)∵甲的平均数是8,∴甲的方差是:110 [(9﹣8)2+2(10﹣8)2+4(8﹣8)2+2(7﹣8)2+(5﹣8)2]=2; 把丙运动员的射靶成绩从小到大排列为:3,4,5,5,6,6,7,7,8,9,则中位数是6+62=6;故答案为:6,2;(2)∵甲的方差是:110 [(9﹣8)2+2(10﹣8)2+4(8﹣8)2+2(7﹣8)2+(5﹣8)2]=2;乙的方差是:110[2(9﹣8)2+2(10﹣8)2+2(8﹣8)2+3(7﹣8)2+(5﹣8)2]=2.2;丙的方差是:110 [(9﹣6)2+(8﹣6)2+2(7﹣6)2+2(6﹣6)2+2(5﹣6)2+(4﹣6)2+(3﹣6)2]=3; ∴S 甲2<S 乙2<S 丙2, ∴甲运动员的成绩最稳定;(3)根据题意画图如下:∵共有6种情况数,甲、乙相邻出场的有4种情况, ∴甲、乙相邻出场的概率是46=23.七、(本题满分12分)22.某超市销售一种商品,成本每千克40元,规定每千克售价不低于成本,且不高于80元,经市场调查,每天的销售量y(千克)与每千克售价x(元)满足一次函数关系,部分数据如下表:售价x(元/千克)506070销售量y(千克)1008060(1)求y与x之间的函数表达式;(2)设商品每天的总利润为W(元),求W与x之间的函数表达式(利润=收入﹣成本);(3)试说明(2)中总利润W随售价x的变化而变化的情况,并指出售价为多少元时获得最大利润,最大利润是多少?【解析】本题考查二次函数的应用,解答本题的关键是明确题意,求出相应的函数解析式,利用二次函数的性质和二次函数的顶点式解答.(1)根据题意可以设出y与x之间的函数表达式,然后根据表格中的数据即可求得y与x之间的函数表达式;(2)根据题意可以写出W与x之间的函数表达式;(3)根据(2)中的函数解析式,将其化为顶点式,然后根据成本每千克40元,规定每千克售价不低于成本,且不高于80元,即可得到利润W随售价x的变化而变化的情况,以及售价为多少元时获得最大利润,最大利润是多少.【答案】解:(1)设y与x之间的函数解析式为y=kx+b,{50k+b=100,60k+n=80,得{k=−2b=200,即y与x之间的函数表达式是y=﹣2x+200;(2)由题意可得,W=(x﹣40)(﹣2x+200)=﹣2x2+280x﹣8000,即W与x之间的函数表达式是W=﹣2x2+280x﹣8000;(3)∵W=﹣2x2+280x﹣8000=﹣2(x﹣70)2+1800,40≤x≤80,∴当40≤x≤70时,W随x的增大而增大,当70≤x≤80时,W随x的增大而减小,当x=70时,W取得最大值,此时W=1800,答:当40≤x≤70时,W随x的增大而增大,当70≤x≤80时,W随x的增大而减小,售价为70元时获得最大利润,最大利润是1800元.八、(本题满分14分)23.已知正方形ABCD,点M边AB的中点.(1)如图1,点G为线段CM上的一点,且∠AGB=90°,延长AG,BG分别与边BC,CD交于点E,F.①求证:BE=CF;②求证:BE2=BC•CE.(2)如图2,在边BC上取一点E,满足BE2=BC•CE,连接AE交CM于点G,连接BG并延长CD于点F,求tan∠CBF的值.【解析】本题主要考查相似形的综合问题,熟练掌握正方形与直角三角形的性质、全等三角形的判定与性质、相似三角形的判定与性质是解题的关键.(1)①由正方形的性质知AB=BC、∠ABC=∠BCF=90°、∠ABG+CBF=90°,结合∠ABG+∠BAG=90°可得∠BAG=∠CBF,证△ABE≌△BCF可得;②由RtABG斜边AB中线知MG=MA=MB,即∠GAM=∠AGM,结合∠CGE=∠AGM、∠GAM=∠CBG知∠CGE=∠CBG,从而证△CGE∽△CBG得CG2=BC•CE,由BE=CF=CG可得答案;(2)延长AE、DC交于点N,证△CEN∽△BEA得BE•CN=AB•CE,由AB=BC,BE2=BC·CE知CN=BE,再由CNAM =CGGM=CFBM且AM=MB得FC=CN=BE,设正方形的边长为1,BE=x,根据BE2=BC•CE求得BE的长,最后由tan∠CBF=FCBC =BEBC可得答案.【答案】解:(1)①∵四边形ABCD是正方形,∴AB=BC,∠ABC=∠BCF=90°,∴∠ABG+∠CBF=90°,∵∠AGB=90°,∴∠ABG+∠BAG=90°,∴∠BAG=∠CBF,∵AB=BC,∠ABE=∠BCF=90°,∴△ABE≌△BCF,∴BE=CF,②∵∠AGB=90°,点M为AB的中点,∴MG=MA=MB,∴∠GAM=∠AGM,又∵∠CGE=∠AGM,∠GAM=∠CBG,∴∠CGE=∠CBG,又∠ECG=∠GCB,∴△CGE∽△CBG,∴CECG =CGCB,即CG2=BC•CE,由∠CFG=∠GBM=∠BGM=∠CGF得CF=CG,由①知BE=CF,∴BE=CG,∴BE2=BC•CE;(2)延长AE、DC交于点N,∵四边形ABCD是正方形,∴AB∥CD,∴∠N=∠EAB,又∵∠CEN=∠BEA,∴△CEN∽△BEA,∴CEBE =CNBA,即BE•CN=AB•CE,∵AB=BC,BE2=BC•CE,∴CN=BE,∵AB∥DN,∴CNAM =CGGM=CFBM,∵AM=MB,∴FC=CN=BE,不妨设正方形的边长为1,BE=x,由BE2=BC•CE可得x2=1•(1﹣x),解得:x1=√5−12,x2=−√5−12(舍),∴BEBC =√5−12,则tan∠CBF=FCBC =BEBC=√5−12.。

2017年安徽省中考数学解析版

2017年安徽省中考数学解析版

2017年安徽省中考数学试卷一、选择题(本大题共10小题,每小题4分,满分40分)1.12 的相反数是( )A .12B .-12C .2D .﹣2 【解析】相反数的概念,主要考查有理数的相关概念,主要有有理数的倒数,有理数的绝对值,有理数的相反数,有理数在数轴上的表示.是中考考试中的必考考点.本题考查了相反数的意义,根据相反数的概念解答即可.一个数的相反数就是在这个数前面添上“﹣”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.12的相反数是−12,添加一个负号即可,故选:B. 2.计算(﹣a 3)2的结果是( )A .a 6B .﹣a 6C .﹣a 5D .a 5 【解析】本题考查整式的运算,解题的关键是熟练运用幂的乘方公式,本题属于基础题型.幂的乘方与积的乘方.根据整式的运算法则即可求出答案. 解:原式=a 6,故选A.3.如图,一个放置在水平实验台上的锥形瓶,它的俯视图为( )A .B .C .D .【解析】本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.简单组合体的三视图.俯视图是分别从物体的上面看,所得到的图形.一个放置在水平实验台上的锥形瓶,它的俯视图为两个同心圆.故选B.4.截至2016年底,国家开发银行对“一带一路”沿线国家累计发放贷款超过1600亿美元,其中1600亿用科学记数法表示为()A.16×1010 B.1.6×1010C.1.6×1011 D.0.16×1012【解析】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.科学记数法—表示较大的数.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n是非负数;当原数的绝对值<1时,n是负数.1600亿用科学记数法表示为1.6×1011,故选:C.5.不等式4﹣2x>0的解集在数轴上表示为()A.B.C.D.【解析】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.解一元一次不等式;在数轴上表示不等式的解集.根据解一元一次不等式基本步骤:移项、系数化为1可得.移项,得:﹣2x>﹣4,系数化为1,得:x<2,故选:D.6.直角三角板和直尺如图放置,若∠1=20°,则∠2的度数为()A.60°B.50°C.40°D.30°【解析】本题考查了平行线的性质,熟练掌握平行线的性质定理是解题的关键.平行线的性质.过E作EF∥AB,则AB∥EF∥CD,根据平行线的性质即可得到结论.如图,过E作EF∥AB,则AB∥EF∥CD,∴∠1=∠3,∠2=∠4.∵∠3+∠4=60°,∴∠1+∠2=60°.∵∠1=20°,∴∠2=40°,故选C.7.为了解某校学生今年五一期间参加社团活动时间的情况,随机抽查了其中100名学生进行统计,并绘制成如图所示的频数直方图,已知该校共有1000名学生,据此估计,该校五一期间参加社团活动时间在8~10小时之间的学生数大约是()A.280 B.240 C.300 D.260【解析】本题考查了频数分布直方图以及用样本估计总体,利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.一般来说,用样本去估计总体时,样本越具有代表性、容量越大,这时对总体的估计也就越精确.频数(率)分布直方图;用样本估计总体.用被抽查的100名学生中参加社团活动时间在8~10小时之间的学生所占的百分数乘以该校学生总人数,即可得解.由题可得,抽查的学生中参加社团活动时间在8~10小时之间的学生数为100﹣30﹣24﹣10﹣8=28(人),∴1000×28=280(人),即该校五一100期间参加社团活动时间在8~10小时之间的学生数大约是280人.故选:A.8.一种药品原价每盒25元,经过两次降价后每盒16元.设两次降价的百分率都为x,则x满足()A.16(1+2x)=25 B.25(1﹣2x)=16C.16(1+x)2=25 D.25(1﹣x)2=16【解析】本题考查求平均变化率的方法.若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.由实际问题抽象出一元二次方程.等量关系为:原价×(1﹣降价的百分率)2=现价,把相关数值代入即可.第一次降价后的价格为:25×(1﹣x);第二次降价后的价格为:25×(1﹣x)2;∵两次降价后的价格为16元,∴25(1﹣x)2=16.故选D.的图象在第一象限有一个公共点,9.已知抛物线y=ax2+bx+c与反比例函数 y=bx其横坐标为1,则一次函数y=bx+ac的图象可能是()A.B.C.D.【解析】考查了一次函数的图象,反比例函数的性质,二次函数的性质,关键是得到b>0,ac<0.一次函数的图象;反比例函数的性质;二次函数的性质.根据抛物线y=ax2+bx+c与反比例函数y=b的图象在第一象限有一个公共点,可得xb>0,根据交点横坐标为1,可得a+b+c=b,可得a,c互为相反数,依此可得一次函数y=bx+ac的图象.∵抛物线y=ax2+bx+c与反比例函数y=bx的图象在第一象限有一个公共点,∴b>0,∵交点横坐标为1,∴a+b+c=b,∴a+c=0,∴ac<0,∴一次函数y=bx+ac 的图象经过第一、三、四象限.故选:B.10.如图,在矩形ABCD中,AB=5,AD=3,动点P满足S△PAB=13S矩形ABCD,则点P到A,B两点距离之和PA+PB的最小值为()A.√29B.√34C.5√2D.√41【解析】本题考查了轴对称﹣最短路线问题,三角形的面积,矩形的性质,勾股定理,两点之间线段最短的性质.得出动点P所在的位置是解题的关键.首先由S△PAB =13S矩形ABCD,得出动点P在与AB平行且与AB的距离是2的直线l上,作A关于直线l的对称点E,连接AE,连接BE,则BE的长就是所求的最短距离.然后在直角三角形ABE中,由勾股定理求得BE的值,即PA+PB的最小值.设△ABC中AB边上的高是h.∵S△PAB =13S矩形ABCD,∴12AB•h=13AB•AD,∴h=23AD=2,∴动点P在与AB平行且与AB的距离是2的直线l上,如图,作A关于直线l的对称点E,连接AE,连接BE,则BE的长就是所求的最短距离.在Rt△ABE中,∵AB=5,AE=2+2=4,∴BE=√AB2+AE2=√52+42=√41,即PA+PB的最小值为√41.故选D.二、填空题(本大题共4小题,每小题5分,满分20分)11. 27的立方根为.【解析】本题考查了求一个数的立方根,用到的知识点为:开方与乘方互为逆运算.立方根.找到立方等于27的数即可.∵33=27,∴27的立方根是3,故答案为:3.12.因式分解:a2b﹣4ab+4b= .【解析】本题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.提公因式法与公式法的综合运用.原式提取b,再利用完全平方公式分解即可.解:原式=b(a2﹣4a+4)=b(a﹣2)2,故答案为:b(a﹣2)2.13.如图,已知等边△ABC的边长为6,以AB为直径的⊙O与边AC,BC分别交于D,E两点,则劣弧的长为.【解析】本题考查了等边三角形的性质与判定、弧长公式;熟练掌握弧长公式,证明三角形是等边三角形是解决问题的关键.连接OD,OE,先证明△AOD,△BOE 是等边三角形,得出∠AOD=∠BOE=60°,求出∠DOE=60°,再由弧长公式即可得出答案.连接OD,OE,如图所示:∵△ABC是等边三角形,∴∠A=∠B=∠C=60°.∵OA=OD,OB=OE,∴△AOD,△BOE是等边三角形,∴∠AOD=∠BOE=60°,∴∠DOE=60°.AB=3,∵OA=12∴的长=60π×3=π.180故答案为:π.14.在三角形纸片ABC中,∠A=90°,∠C=30°,AC=30cm,将该纸片沿过点B 的直线折叠,使点A落在斜边BC上的一点E处,折痕记为BD(如图1),减去△CDE后得到双层△BDE(如图2),再沿着过△BDE某顶点的直线将双层三角形剪开,使得展开后的平面图形中有一个是平行四边形,则所得平行四边形的周长为cm.【解析】本题考查了剪纸问题,平行四边形的性质,解直角三角形,正确的理解题意是解题的关键.解直角三角形得到AB=10√3,∠ABC=60°,根据折叠的性质∠ABC=30°,BE=AB=10√3,求得DE=10,BD=20,如图1,平得到∠ABD=∠EBD=12行四边形的边是DF,BF,如图2,平行四边形的边是DE,EG,于是得到结论.∵∠A=90°,∠C=30°,AC=30cm,∴AB=10√3,∠ABC=60°,∵△ADB≌△EDB,∠ABC=30°,BE=AB=10√3,∴∠ABD=∠EBD=12∴DE=10,BD=20.,如图1,平行四边形的边是DF,BF,且DF=BF=20√33∴平行四边形的周长=80√3,3如图2,平行四边形的边是DE,EG,且DF=BF=10,∴平行四边形的周长=40,,综上所述:平行四边形的周长为40或80√33故答案为:40或80√3.3三、(本大题共2小题,每小题8分,满分16分)15.计算:|﹣2|×cos60°﹣(1)﹣1.3【解析】本题主要考查了负整数指数幂的性质以及绝对值、特殊角的三角函数值等知识,正确化简各数是解题关键.分别利用负整数指数幂的性质以及绝对值的﹣3=﹣2.性质、特殊角的三角函数值化简求出答案.原式=2×1216.《九章算术》中有一道阐述“盈不足术”的问题,原文如下:今有人共买物、人出八,盈三;人出七,不足四,问人数,物价各几何?译文为:现有一些人共同买一个物品,每人出8元,还盈余3元;每人出7元,则还差4元,问共有多少人?这个物品的价格是多少?请解答上述问题.【解析】本题考查了一元一次方程的应用,解题的关键是明确题意,找出合适的等量关系,列出相应的方程.根据这个物品的价格不变,列出一元一次方程进行求解即可.设共有x人,可列方程为:8x﹣3=7x+4.解得x=7,∴8x﹣3=53,答:共有7人,这个物品的价格是53元.四、(本大题共2小题,每题8分,共16分)17.如图,游客在点A处坐缆车出发,沿A﹣B﹣D的路线可至山顶D处,假设AB和BD都是直线段,且AB=BD=600m,α=75°,β=45°,求DE的长.(参考数据:sin75°≈0.97,cos75°≈0.26,√2≈1.41)【解析】本题考查解直角三角形的应用,锐角三角函数、矩形的性质等知识,解题的关键是学会利用直角三角形解决问题,属于中考常考题型.在R△ABC中,求出BC=AB•cos75°≈600×0.26≈156m,在Rt△BDF中,求出≈300×1.41≈423,由四边形BCEF是矩形,可得EF=BC,DF=BD•sin45°=600×√22由此即可解决问题.【答案】解:在Rt△ABC中,∵AB=600m,∠ABC=75°,∴BC=AB•cos75°≈600×0.26≈156m,在Rt△BDF中,∵∠DBF=45°,≈300×1.41≈423,∴DF=BD•sin45°=600×√22∵四边形BCEF是矩形,∴EF=BC=156,∴DE=DF+EF=423+156=579m.答:DE的长为579m.18.如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点△ABC 和△DEF(顶点为网格线的交点),以及过格点的直线l.(1)将△ABC向右平移两个单位长度,再向下平移两个单位长度,画出平移后的三角形.(2)画出△DEF关于直线l对称的三角形.(3)填空:∠C+∠E= .【解析】本题主要考查作图﹣平移变换、轴对称变换,熟练掌握平移变换、轴对称变换及勾股定理逆定理是解题的关键.作图-轴对称变换;作图-平移变换.解:(1)将点A,B,C分别右移2个单位、下移2个单位得到其对应点,顺次连接即可得;(2)分别作出点D,E,F关于直线l的对称点,顺次连接即可得;(3)连接A′F′,利用勾股定理逆定理证△A′C′F′为等腰直角三角形即可得.【答案】解:(1)△A′B′C′即为所求;(2)△D′E′F′即为所求;(3)如图,连接A′F′,∵△ABC≌△A′B′C′、△DEF≌△D′E′F′,∴∠C+∠E=∠A′C′B′+∠D′E′F′=∠A′C′F′,∵A′C′=√12+22=√5、A′F′=√12+22=√5,C′F′=√12+32=√10,∴A′C′2+A′F′2=5+5=10=C′F′2,∴△A′C′F′为等腰直角三角形,∴∠C+∠E=∠A′C′F′=45°,故答案为:45°.五、(本大题共2小题,每题10分,共20分)19.【阅读理解】我们知道,1+2+3+…+n=n(n+1),那么12+22+32+…+n2结果等于多少呢?2在图1所示三角形数阵中,第1行圆圈中的数为1,即12,第2行两个圆圈中数的和为2+2,即22,…;第n 行n 个圆圈中数的和为,即n 2,这样,该三角形数阵中共有n(n+1)2个圆圈,所有圆圈中数的和为12+22+32+…+n 2.【规律探究】将三角形数阵经两次旋转可得如图2所示的三角形数阵,观察这三个三角形数阵各行同一位置圆圈中的数(如第n ﹣1行的第一个圆圈中的数分别为n ﹣1,2,n ),发现每个位置上三个圆圈中数的和均为 ,由此可得,这三个三角形数阵所有圆圈中数的总和为3(12+22+32+…+n 2)= ,因此,12+22+32+…+n 2= . 【解决问题】根据以上发现,计算:12+22+32+⋯+201721+2+3+⋯+2017的结果为 .【解析】本题主要考查数字的变化类,阅读材料、理解数列求和的具体方法得出规律,并运用规律解决实际问题是解题的关键.解:【规律探究】将同一位置圆圈中的数相加即可,所有圈中的数的和应等于同一位置圆圈中的数的和乘以圆圈个数,据此可得,每个三角形数阵和即为三个三角形数阵和的13,从而得出答案;【解决问题】运用以上结论,将原式变形为16×2017×(2017+1)×(2×2017+1)12×2017×(2017+1),化简计算即可得. 【答案】 解:【规律探究】由题意知,每个位置上三个圆圈中数的和均为n ﹣1+2+n =2n +1, 由此可得,这三个三角形数阵所有圆圈中数的总和为: 3(12+22+32+…+n 2)=(2n+1)×(1+2+3+…+n )=(2n+1)×n(n+1)2,因此,12+22+32+…+n 2=n (2n+1)(n+1)6;故答案为:2n+1,n (n+1)(2n+1)2,n (n+1)(2n+1)6;【解决问题】原式=16×2017×(2017+1)×(2×2017+1)12×2017×(2017+1)=13×(2017×2+1)=1345,故答案为:1345.20.如图,在四边形ABCD 中,AD=BC ,∠B=∠D ,AD 不平行于BC ,过点C 作CE ∥AD 交△ABC 的外接圆O 于点E ,连接AE . (1)求证:四边形AECD 为平行四边形; (2)连接CO ,求证:CO 平分∠BCE .【解析】本题考查的是三角形的外接圆与外心,掌握平行四边形的判定定理、垂径定理、圆周角定理是解题的关键.(1)根据圆周角定理得到∠B=∠E,得到∠E=∠D,根据平行线的判定和性质定理得到AE∥CD,证明结论;(2)作OM⊥BC于M,ON⊥CE于N,根据垂径定理、角平分线的判定定理证明.【答案】证明:(1)由圆周角定理得,∠B=∠E,又∠B=∠D,∴∠E=∠D,∵CE∥AD,∴∠D+∠ECD=180°,∴∠E+∠ECD=180°,∴AE∥CD,∴四边形AECD为平行四边形;(2)作OM⊥BC于M,ON⊥CE于N,∵四边形AECD为平行四边形,∴AD=CE,又AD=BC,∴CE=CB,∴OM=ON,又OM⊥BC,ON⊥CE,∴CO平分∠BCE.六、(本题满分12分)21.甲、乙、丙三位运动员在相同条件下各射靶10次,每次射靶的成绩如下:甲:9,10,8,5,7,8,10,8,8,7乙:5,7,8,7,8,9,7,9,10,10丙:7,6,8,5,4,7,6,3,9,5(1)根据以上数据完成下表:平均数中位数方差甲 8 8 2乙 8 8**丙 6 6 3(2)根据表中数据分析,哪位运动员的成绩最稳定,并简要说明理由;(3)比赛时三人依次出场,顺序由抽签方式决定,求甲、乙相邻出场的概率.【解析】本题考查了方差、平均数、中位数和画树状图法求概率,一般地设n个数据,x1,x2, (x)n的平均数为,则方差S2=1n[(x1﹣x¯)2+(x2﹣x¯)2+…+(xn﹣x¯)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立;概率=所求情况数与总情况数之比.(1)根据方差公式和中位数的定义分别进行解答即可;(2)根据方差公式先分别求出甲的方差,再根据方差的意义即方差越小越稳定即可得出答案;(3)根据题意先画出树状图,得出所有情况数和甲、乙相邻出场的情况数,再根据概率公式即可得出答案.【答案】解:(1)∵甲的平均数是8,∴甲的方差是:110 [(9﹣8)2+2(10﹣8)2+4(8﹣8)2+2(7﹣8)2+(5﹣8)2]=2; 把丙运动员的射靶成绩从小到大排列为:3,4,5,5,6,6,7,7,8,9,则中位数是6+62=6;故答案为:6,2;(2)∵甲的方差是:110 [(9﹣8)2+2(10﹣8)2+4(8﹣8)2+2(7﹣8)2+(5﹣8)2]=2;乙的方差是:110[2(9﹣8)2+2(10﹣8)2+2(8﹣8)2+3(7﹣8)2+(5﹣8)2]=2.2;丙的方差是:110 [(9﹣6)2+(8﹣6)2+2(7﹣6)2+2(6﹣6)2+2(5﹣6)2+(4﹣6)2+(3﹣6)2]=3; ∴S 甲2<S 乙2<S 丙2, ∴甲运动员的成绩最稳定;(3)根据题意画图如下:∵共有6种情况数,甲、乙相邻出场的有4种情况, ∴甲、乙相邻出场的概率是46=23.七、(本题满分12分)22.某超市销售一种商品,成本每千克40元,规定每千克售价不低于成本,且不高于80元,经市场调查,每天的销售量y(千克)与每千克售价x(元)满足一次函数关系,部分数据如下表:售价x(元/千克)506070销售量y(千克)1008060(1)求y与x之间的函数表达式;(2)设商品每天的总利润为W(元),求W与x之间的函数表达式(利润=收入﹣成本);(3)试说明(2)中总利润W随售价x的变化而变化的情况,并指出售价为多少元时获得最大利润,最大利润是多少?【解析】本题考查二次函数的应用,解答本题的关键是明确题意,求出相应的函数解析式,利用二次函数的性质和二次函数的顶点式解答.(1)根据题意可以设出y与x之间的函数表达式,然后根据表格中的数据即可求得y与x之间的函数表达式;(2)根据题意可以写出W与x之间的函数表达式;(3)根据(2)中的函数解析式,将其化为顶点式,然后根据成本每千克40元,规定每千克售价不低于成本,且不高于80元,即可得到利润W随售价x的变化而变化的情况,以及售价为多少元时获得最大利润,最大利润是多少.【答案】解:(1)设y与x之间的函数解析式为y=kx+b,{50k+b=100,60k+n=80,得{k=−2b=200,即y与x之间的函数表达式是y=﹣2x+200;(2)由题意可得,W=(x﹣40)(﹣2x+200)=﹣2x2+280x﹣8000,即W与x之间的函数表达式是W=﹣2x2+280x﹣8000;(3)∵W=﹣2x2+280x﹣8000=﹣2(x﹣70)2+1800,40≤x≤80,∴当40≤x≤70时,W随x的增大而增大,当70≤x≤80时,W随x的增大而减小,当x=70时,W取得最大值,此时W=1800,答:当40≤x≤70时,W随x的增大而增大,当70≤x≤80时,W随x的增大而减小,售价为70元时获得最大利润,最大利润是1800元.八、(本题满分14分)23.已知正方形ABCD,点M边AB的中点.(1)如图1,点G为线段CM上的一点,且∠AGB=90°,延长AG,BG分别与边BC,CD交于点E,F.①求证:BE=CF;②求证:BE2=BC•CE.(2)如图2,在边BC上取一点E,满足BE2=BC•CE,连接AE交CM于点G,连接BG并延长CD于点F,求tan∠CBF的值.【解析】本题主要考查相似形的综合问题,熟练掌握正方形与直角三角形的性质、全等三角形的判定与性质、相似三角形的判定与性质是解题的关键.(1)①由正方形的性质知AB=BC、∠ABC=∠BCF=90°、∠ABG+CBF=90°,结合∠ABG+∠BAG=90°可得∠BAG=∠CBF,证△ABE≌△BCF可得;②由RtABG斜边AB中线知MG=MA=MB,即∠GAM=∠AGM,结合∠CGE=∠AGM、∠GAM=∠CBG知∠CGE=∠CBG,从而证△CGE∽△CBG得CG2=BC•CE,由BE=CF=CG可得答案;(2)延长AE、DC交于点N,证△CEN∽△BEA得BE•CN=AB•CE,由AB=BC,BE2=BC·CE知CN=BE,再由CNAM =CGGM=CFBM且AM=MB得FC=CN=BE,设正方形的边长为1,BE=x,根据BE2=BC•CE求得BE的长,最后由tan∠CBF=FCBC =BEBC可得答案.【答案】解:(1)①∵四边形ABCD是正方形,∴AB=BC,∠ABC=∠BCF=90°,∴∠ABG+∠CBF=90°,∵∠AGB=90°,∴∠ABG+∠BAG=90°,∴∠BAG=∠CBF,∵AB=BC,∠ABE=∠BCF=90°,∴△ABE≌△BCF,∴BE=CF,②∵∠AGB=90°,点M为AB的中点,∴MG=MA=MB,∴∠GAM=∠AGM,又∵∠CGE=∠AGM,∠GAM=∠CBG,∴∠CGE=∠CBG,又∠ECG=∠GCB,∴△CGE∽△CBG,∴CECG =CGCB,即CG2=BC•CE,由∠CFG=∠GBM=∠BGM=∠CGF得CF=CG,由①知BE=CF,∴BE=CG,∴BE2=BC•CE;(2)延长AE、DC交于点N,∵四边形ABCD是正方形,∴AB∥CD,∴∠N=∠EAB,又∵∠CEN=∠BEA,∴△CEN∽△BEA,∴CEBE =CNBA,即BE•CN=AB•CE,∵AB=BC,BE2=BC•CE,∴CN=BE,∵AB∥DN,∴CNAM =CGGM=CFBM,∵AM=MB,∴FC=CN=BE,不妨设正方形的边长为1,BE=x,由BE2=BC•CE可得x2=1•(1﹣x),解得:x1=√5−12,x2=−√5−12(舍),∴BEBC =√5−12,则tan∠CBF=FCBC =BEBC=√5−12.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档