八年级数学下册 第一章 一元一次不等式和一元一次不等式组基础练习 北师大版
2022-2023学年北师大版八年级数学下册《2-4一元一次不等式》知识点分类练习题(附答案)
2022-2023学年北师大版八年级数学下册《2.4一元一次不等式》知识点分类练习题(附答案)一.一元一次不等式的定义1.下列不等式中,是一元一次不等式的是()A.2x﹣1>0B.﹣1<2C.x﹣2y≤﹣1D.y2+3>52.在x>0,<﹣1,2x<﹣2+x,x+y≥﹣3,x+1=0,x2>3中,是一元一次不等式的有()A.1个B.2个C.3个D.4个二.解一元一次不等式3.关于x的一元一次不等式≤﹣2的解集为x≥4,则m的值为()A.14B.7C.﹣2D.24.若3a﹣22和2a﹣3是实数m的两个平方根,且t=,则不等式4(2x﹣t)﹣6(3x﹣t)≥5的解集为()A.x≤B.x≥C.x≤D.x≥5.不等式x﹣1<3x+3的解集在数轴上表示正确的是()A.B.C.D.6.如果关于x的方程=的解是非负数,那么a与b的关系是()A.a>b B.b≥a C.a≥b D.a=b7.阅读理解:我们把称作二阶行列式,规定它的运算法则为=ad﹣bc,例如=1×4﹣2×3=﹣2,如果>0,则x的取值范围为.8.已知点P(2,3﹣2x)在第四象限,则x的取值范围是.三.一元一次不等式的整数解9.不等式3x≤7+x的非负整数解有()A.1个B.2个C.3个D.4个10.关于x的不等式3x﹣m+2>0的最小整数解为2,则实数m的取值范围是()A.5≤m<8B.5<m<8C.5≤m≤8D.5<m≤8 11.不等式2x﹣1≤x+1的正整数解有()A.1个B.2个C.3个D.4个12.已知x=2不是关于x的不等式2x﹣m>4的整数解,x=3是关于x的不等式2x﹣m>4的一个整数解,则m的取值范围为()A.0<m<2B.0≤m<2C.0<m≤2D.0≤m≤2四.由实际问题抽象出一元一次不等式13.某次知识竞赛共20道题,每一题答对得10分,答错或不答都扣5分,小芳得分不低于80分.设她答对了x道题,则根据题意可列出不等式为()A.10x﹣2(20﹣x)≥80B.10x﹣(20﹣x)>80C.10x﹣5(20﹣x)≥80D.10x﹣5(20﹣x)>8014.小丽同学准备用自己节省的零花钱购买一台学生平板电脑,她已存有750元,并计划从本月起每月节省30元,直到她至少存有1080元,设x个月后小丽至少有1080元,则可列计算月数的不等式为()A.30x+750>1080B.30x﹣750≥1080C.30x﹣750≤1080D.30x+750≥108015.用不等式表示:x与5的差不大于x的2倍:.16.“x的2倍与5的和不大于4”,用不等式表示是()A.2x﹣5<4B.2x+5<4C.2x+5≤4D.2x﹣5≤4五.一元一次不等式的应用17.今年六一,小明在超市买一款心爱的玩具,付款时收银员说:玩具成本是80元,定价为120元,今天是儿童节打折优惠卖给小朋友,但利润率不能低于5%,则该玩具最多可以打()折.A.8.5B.8C.7.5D.718.某种商品的进价为400元,出售时标价为500元,商店准备打折出售,但要保证利润率不低于10%,则至多可以打几折()A.8折B.8.5折C.8.8折D.9折19.如图,多边形的各顶点都在方格纸的格点(横竖格子线的交错点)上,这样的多边形称为格点多边形,它的面积S可用公式(a是多边形内的格点数,b是多边形边界上的格点数)计算,这个公式称为“皮克定理”.若有一个格点多边形的面积为9,则b的最大值为()A.17B.18C.19D.2020.某射击运动员在一次比赛中前6次射击共中55环,如果他要打破92环(10次射击)的纪录,第7次射击起码要超过()A.6环B.7环C.8环D.9环参考答案一.一元一次不等式的定义1.解:A、该不等式符合一元一次不等式的定义,故此选项符合题意;B、不含未知数,不是一元一次不等式,故此选项不符合题意;C、该不等式中含有2个未知数,不是一元一次不等式,故此选项不符合题意;D、未知数的次数是2,不是一元一次不等式,故此选项不符合题意;故选:A.2.解:是一元一次不等式的有:x>0,2x<﹣2+x共有2个.故选:B.二.解一元一次不等式3.解:解不等式≤﹣2得:x≥,∵不等式的解集为x≥4,∴=4,解得m=2,故选:D.4.解:由题意知3a﹣22+2a﹣3=0,解得a=5,则m=(3a﹣22)2=(15﹣22)2=(﹣7)2=49,∴t==7,则不等式为4(2x﹣7)﹣6(3x﹣7)≥5,∴8x﹣28﹣18x+42≥5,∴8x﹣18x≥5+28﹣42,∴﹣10x≥﹣9,∴x≤,故选:C.5.解:x﹣1<3x+3,x﹣3x<3+1,﹣2x<4,x>﹣2,在数轴上表示为:;故选:B.6.解:=,5(2x+a)=3(4x+b),10x+5a=12x+3b,10x﹣12x=3b﹣5a,﹣2x=3b﹣5a,x=,∵关于x的方程=的解是非负数,∴≥0,解得:a≥b,b≤a,故选:C.7.解:根据题意得4x﹣3(3﹣x)>0,去括号,得:4x﹣9+3x>0,移项、合并,得:7x>9,系数化为1,得:x>,故答案为:x>.8.解:∵点P(2,3﹣2x)在第四象限,∴3﹣2x<0,解得x.∴x的取值范围是x.故答案为:x.三.一元一次不等式的整数解9.解:解不等式3x≤7+x得,x≤3.5,∴不等式3x≤x+4的非负整数解是0,1,2,3,一共4个.故选:D.10.解:3x﹣m+2>0,3x>m﹣2,,∵不等式的最小整数解为2,∴,解得:5≤m<8,故选:A.11.解:移项得:2x﹣x≤1+1,合并同类项得:x≤2,∴不等式的正整数解是1、2.故选:B.12.解:由2x﹣m>4得x>,∵x=2不是不等式2x﹣m>4的整数解,∴≥2,解得m≥0;∵x=3是关于x的不等式2x﹣m>4的一个整数解,∴<3,解得m<2,∴m的取值范围为0≤m<2,故选:B.四.由实际问题抽象出一元一次不等式13.解:设她答对了x道题,根据题意,得10x﹣5(20﹣x)≥80.故选:C.14.解:根据题意,得30x+750≥1080.故选:D.15.解:由题意得:x﹣5≤2x;故答案为:x﹣5≤2x16.解:“x的2倍与5的和不大于4”,用不等式表示是2x+5≤4,故选:C.五.一元一次不等式的应用17.解:设该玩具打x折销售,依题意得:120×﹣80≥80×5%,解得:x≥7,∴该玩具最多可以打7折.故选:D.18.解:设该商品打x折销售,依题意,得:500×﹣400≥400×10%,解得:x≥8.8.故选:C.19.解:∵格点多边形的面积为9,∴a+b﹣1=9,又∵a≥0,∴b﹣1≤9,∴b≤20,∴b的最大值为20.故选:D.20.解:设第7次射击为x环,∵射击环数最多为10环,∴第8次,第9次,第10次最多射中环数都是10环,∴55+(10﹣6﹣1)×10+x>92,解得x>7,即第7次射击起码要超过7环,故选:B.。
北师大版初中数学八年级下册第二单元《一元一次不等式与一元一次不等式组》(较易)(含答案解析)
北师大版初中数学八年级下册第二单元《一元一次不等式与一元一次不等式组》(较易)(含答案解析)考试范围:第二单元; 考试时间:120分钟;总分:120分,第I 卷(选择题)一、选择题(本大题共12小题,共36.0分。
在每小题列出的选项中,选出符合题目的一项)1. x 与1的和是非负数,用不等式表示为.( ) A. x +1<0B. x +1≤0C. x +1≥0D. x +1>02. 下列式子: ①x +y =1; ②x >y; ③x +2y; ④x −y ≥1; ⑤x <0中,属于不等式的有( )A. 2个B. 3个C. 4个D. 5个3. 由ax >b 得到x <ba ,则a 应满足的条件是.( ) A. a ≤0B. a >0C. a ≥0D. a <04. 已知实数a 、b ,若a >b ,则下列结论正确的是( ) A. a −5<b −5B. 2+a <2+bC. −a4>−b4D. 3a >3b5. 下列不等式的一个解是x =3的是.( ) A. x +3>5B. x +3>6C. x +3>7D. x +3>86. 下列各数中,是不等式2(x −5)<x −8的解的是.( ) A. 4 B. −5C. 3D. 57. 解不等式2+x3>2x−15的过程中,下列错误的一步是.( ) A. 5(2+x)>3(2x −1) B. 10+5x >6x −3 C. 5x −6x >−3−10D. x >138. 不等式4x −a >7x +5的解集是x <−1,则a 的值为.( ) A. −2B. 2C. 5D. 89. 如图,直线y =x +32与y =kx −1相交于点P ,点P 的纵坐标为12,则关于x 的不等式x +32>kx −1的解集是( )A. x >−1B. x <−1C. x>12D. x<1210. 如图是一次函数y1=kx+b与y2=x+a的图象,则不等式kx+b<x+a的解集是( )A. x<3B. x>3C. x>a−bD. x<a−b11. 定义新运算“☆”如下:当a>b时,a☆b=ab+b;当a<b时,a☆b=ab−b.若3☆(x+2)>0,则x的取值范围是.( )A. −1<x<1或x<2B. x<−2或1<x<2C. −2<x<1或x>1D. x<−2或x>212. 一个关于x的一元一次不等式组的解集在数轴上的表示如图所示,则该不等式组的解集是.( )A. x>1B. x≥1C. x>3D. x≥3第II卷(非选择题)二、填空题(本大题共4小题,共12.0分)13. 某生物兴趣小组要在温箱里培养A,B两种菌苗,A种菌苗的生长温度x(℃)的范围是35≤x≤38,B种菌苗的生长温度y(℃)的范围是34≤y≤36.那么温箱里的温度t(℃)的范围是____.14. 若a>b,则ac2_______bc2.15. 如图,函数y=3x+b和y=ax−3的图像交于点P(−2,−5),则不等式3x+b>ax−3的解集是.16. 一元一次不等式组中各个不等式解集的,叫做这个一元一次不等式组的解集.三、解答题(本大题共9小题,共72.0分。
专题04 一元一次不等式与一元一次不等式组【2022春北师大版八下数学压轴题突破专练】(原卷版)
【2022春北师大版八下数学压轴题突破专练】专题04 一元一次不等式与一元一次不等式组一、选择题1.(2021八上·鄞州期末)已知a <b ,下列式子正确的是( )A .a+3>b+3B .a ﹣3<b ﹣3C .﹣3a <﹣3bD .33a b > 2.(2021八上·鄞州期末)若a >b ,则下列各式正确的是( ) A .a ﹣b <0 B .3﹣a <3﹣b C .|a|>|b| D .33a b < 3.(2021八上·瓯海月考)某校在一次外出郊游中,把学生编为9个组,若每组比预定的人数多1人,则学生总数超过200人;若每组比预定的人数少1人,则学生总数不到190人,那么每组预定的学生人数为( )A .24人B .23人C .22人D .不能确定4.(2021八上·秀洲月考)不等式组3x x a >⎧⎨>⎩的解是x >a ,则a 的取值范围是( ) A .a <3 B .a=3 C .a >3 D .a≥35.(2021八上·余杭月考)已知关于x 的不等式(4)4a x a -<-的解集为1x <-,则a 的取值范围是( )A .4a >B .4a ≠C .4a <D .4a6.(2021八上·金东期中)不等式 054ax ≤+≤ 的整数解是1,2,3,4.则实数a 的取值范围是( )A .514a -≤<- B .1a ≤- C .54a ≤- D .54a ≥- 7.(2021八下·郑州期中)如果关于x 的分式方程 2x a x -- =1+ 522x x x -- 有正整数解,且关于y 的一元一次不等式组 33240y y y a -⎧>-⎪⎨⎪-≤⎩ 的解集为y≤a,则所有满足条件的整数a的和为( )A .8B .7C .3D .28.(2020八下·南岸期末)如图,已知直线 3y ax =+ 与 3y bx =- 交点为P ,根据图象有以下3个结论:①0a > ;②0b >③2x > 是不等式 33ax bx +>- 的解集.其中正确的个数是( )A .0B .1C .2D .39.(2020八上·余杭期末)如图,直线 y ax b =+ 与 x 轴交于点 ()4,0A ,与直线 y mx = 交于点 ()2,B n ,则关于 x 的不等式组 0ax b mx <-< 的解为( )A .42x -<<-B .2x <-C .4x >D .24x << 二、填空题 10.(2022八下·长兴开学考)如图,直线y=x+2与直线y=ax+c 相交于点P (m ,3).则关于x 的不等式x+2≥ax+c 的不等式的解为 。
八年级数学北师大版下册 第二章 一元一次不等式与一元一次不等式组 同步单元训练卷(含答案)
北师大版八年级数学下册第二章 一元一次不等式与一元一次不等式组同步单元训练卷一、选择题(共10小题,3*10=30)1.若2a +6的值是正数,则a 的取值范围是( ) A .a >0 B .a >3 C .a >-3 D .a <-32.若关于x 的一元一次方程x -m +2=0的解是负数,则m 的取值范围是( ) A .m≥2 B .m >2 C .m <2 D .m≤23.把某不等式组中两个不等式的解集表示在数轴上,如图所示,则这个不等式组可能是( )A.⎩⎪⎨⎪⎧x >-1,x≤2B.⎩⎪⎨⎪⎧x≥-1,x <2 C.⎩⎪⎨⎪⎧x≥-1,x≤2 D.⎩⎪⎨⎪⎧x <-1,x≥2 4.在数轴上到原点的距离大于2的点对应的x 满足( ) A .x>2 B .x<2C .x>2或x<-2D .-2<x<25.若函数y =kx +b 的图象如图所示,则关于x 的不等式kx +2b <0的解集为( )A .x <3B .x >3C .x <6D .x >66. 不等式组⎩⎪⎨⎪⎧2-x >1,①x +52≥1②中,不等式①和②的解集在数轴上表示正确的是( )7. 三个连续正整数的和小于39,这样的正整数中,最大一组的和是( ) A .39 B .36 C .35 D .348.关于x 的不等式2x +a ≤1只有2个正整数解,则a 的取值范围为( ) A.-5<a <-3 B.-5≤a <-3 C.-5<a ≤-3 D.-5≤a ≤-39.若不等式2x<4的解都能使关于x 的不等式(a -1)x<a +5成立,则a 的取值范围是( ) A .1<a≤7 B .a≤710.某镇有甲,乙两家液化气站,它们每罐液化气的价格,质地和重量都相同.为了促销,甲站的液化气每罐降价25%销售;每个用户购买乙站的液化气,第1罐按照原价销售,若用户继续购买,则从第2罐开始以7折优惠,促销活动都是一年.若小明家每年需购买8罐液化气,则购买液化气最省钱的方法是( ) A .买甲站的 B .买乙站的 C .买两站的都一样D .先买甲站的1罐,以后买乙站的 二.填空题(共8小题,3*8=24) 11. 不等式 2x -1>3的解集是________.12. 已知“x 的3倍大于5,且x 的一半与1的差不大于2”,则x 的取值范围是__________. 13. 不等式组⎩⎪⎨⎪⎧x -3(x -2)≤8,5-12x >2x 的整数解是________.14.已知关于x 的不等式(a -1)x >4的解集是x <4a -1,则a 的取值范围是____________.15.若|5-10x|=10x -5, 则x 的取值范围是________.16.某商场推出一种购物“金卡”,凭卡在该商场购物可按商品价格的八折优惠,但办理金卡时每张要收100元购卡费,设按标价累计购物金额为x(元),当x___________时,办理金卡购物省钱. 17.某中学举办了“汉字听写大会”,准备为获奖的40名同学颁奖(每人一个书包或一本词典),已知每个书包28元,每本词典20元,学校计划用不超过900元钱购买奖品,则最多可以购买________个书包.18. 已知实数x ,y 满足2x -3y =4,并且x≥-1,y <2,现有k =x -y ,则k 的取值范围是____________.三.解答题(7小题,共66分)19.(8分) 解不等式,并把它们的解集在数轴上表示出来:15-9y <10-4y ;20.(8分) 已知不等式3x -a≤0的正整数解是1,2,3.求a 的取值范围.21.(8分) 根据题意列出不等式:(1)某市化工厂现有甲原料290千克,计划用这种原料与另一种足够多的原料配合生产A,B两种产品共50件.已知生产一件A型产品需甲种原料15千克,生产一件B型产品需甲种原料2.5千克,若该化工厂现有的原料能保证生产,试写出满足生产A型产品x(件)的关系式;(2)某厂生产一种机械零件,固定成本为2万元,每件零件成本为3元,零售价为5元,应纳税款为总销售额的10%.若要使该厂盈利,则该零件至少要生产销售x个,试写出x应满足的不等式.22.(10分) 如图,一次函数y1=kx-2和y2=-3x+b的图象相交于点A(2,-1).(1)求k,b的值;(2)利用图象求出:当x取何值时,y1≥y2?(3)利用图象求出:当x取何值时,y1>0且y2<0?23.(10分) 某校九年级有三个班,其中九(一)班和九(二)班共有105名学生,在期末体育测试中,这两个班级共有79名学生满分,其中九(一)班的满分率为70%,九(二)班的满分率为80%.(1)求九(一)班和九(二)班各有多少名学生;(2)该校九(三)班有45名学生,若九年级体育成绩的总满分率超过75%,求九(三)班至少有多少名学生体育成绩是满分.24.(10分) 如图,一次函数y1=kx-2和y2=-3x+b的图象相交于点A(2,-1).(1)求k,b的值.(2)利用图象求出:当x取何值时,y1≥y2.(3)利用图象求出:当x取何值时,y1>0且y2<0.25.(12分) 某区为绿化行车道,计划购买甲、乙两种树苗共计n棵.设买甲种树苗x棵.有关甲、乙两种树苗的信息如图所示.(1)当n=500时.①根据信息填表(用含x的代数式表示):②如果购买甲、乙两种树苗共用25600元,那么甲、乙两种树苗各买了多少棵?参考答案1-5CCACD 6-10BBCAB11. x>2 12.53<x≤6 13.-1,0,1 14.a <1 15. x≥1216.>500 17. 12 18.1≤k <319.解:移项,得-9y +4y <10-15.合并同类项,得-5y <-5.系数化为1,得y >1.不等式的解集在数轴上表示如图所示.20. 解:3x -a≤0,解得x≤a 3,因为它的正整数解为1,2,3,当a 3=3时,a =9;当a3=4时,a =12.当a =12时,x≤4,有4个正整数,舍去,∴9≤a<1221. 解:(1)生产A 型产品x 件,则生产B 型产品(50-x)件,根据题意, 得15x +2.5(50-x)≤290. (2)5x -3x -5x×10%-20 000>0.22. 解:(1)k =12,b =5.(2)当x≥2时,y 1≥y 2.(3)当x >4时,y 1>0且y 2<0.⎩⎪⎨⎪⎧x =50,y =55.答:九(一)班有50名学生,九(二)班有55名学生 (2)设九(三)班有m 名学生体育成绩满分,根据题意得79+m >(105+45)×75%,解得m >33.5,∵m 为整数,∴m 的最小值为34.答:九(三)班至少有34名学生体育成绩是满分24. 解:(1)将A 点的坐标代入y 1=kx -2,得2k -2=-1,即k =12. 将A 点的坐标代入y 2=-3x +b ,得-6+b =-1,即b =5.(2)从图象可以看出:当x≥2时,y 1≥y 2.(3)直线y 1=12x -2与x 轴的交点坐标为(4,0),直线y 2=-3x +5与x 轴的交点坐标为⎝⎛⎭⎫53,0.从图象可以看出:当x >4时,y 1>0;当x >53时,y 2<0,∴当x >4时,y 1>0且y 2<0.25. 解:(1)①500-x 50x 80(500-x)②由题意得50x +80(500-x)=25600,解得x =480,500-x =20.答:甲种树苗买了480棵,乙种树苗买了20棵(2)由题意得90%x +95%(n -x)≥92%×n ,解得x≤35n ,50x +80(n -x)=26000,解得x =8n -26003.∵8n -26003≤35n ,∴n≤4191131.∵n 为正整数,x 为正整数,当n 为419时,x =7523≈250.7不是整数;当n 为418时,x =248,∴n 的最大值为418。
北师大版八年级下册数学《不等关系》一元一次不等式和一元一次不等式组研讨说课复习课件
4. 用“<”或“>”号填空.
(1)-2_<___2;
(2)-3_<___-2;
(3)12_>___6;
(4)0__>__-8;
(5)-a__<__a (a>0); (6)-a__>__a(a<0).
5.用不等式表示下列问题中数量之间的关系.
(1)小陈的体重(x)至少100斤. x≥100
(2)这支铅笔的价钱(y)至多3元. y≤3
(3)一辆轿车在某公路上的行驶速度是 x km/h,已知 x≤100 这辆轿车在该公路上行驶的速度不超过100 km/h. (4)一块正方形的苗圃地,边长为y(m),周长不少于 36 m . 4y≥36 (5)某隧道限速为60km/h,一辆车在隧道中行驶 的速度为v(km/h)的轿车因超速被交警处罚. v>60 (6)山亭3月8日最低气温1oC,最高气温是 13oC,薛城这一天某一时刻的气温是toC . 1oC ≤ toC ≤ 13oC
探究新知
不等式的概念:
观 察 由 上 述 问 题 得 到 的 关 系 式 : x>50 , s>60x , s<100x,a+b+c≤160 ,6+3x>30,它们有什么共同的特点?
结论
一般地,用不等号“>”(或“≥”),“<”(或
“≤”)连接的式子叫做不等式.
探究新知
不等号:
不等号
>
读作
大于
<
第二章 一元一次不等式与一元一次不等式组
不等关系
课件
情景导入
找出下列材料中的不等关系.
2022-2023学年 北师大版数学八年级下册一元一次不等式与一次函数 课时练习(含答案)
北师大版数学八年级下册课时练习《一元一次不等式与一次函数》一、选择题1.一次函数y=kx+b的图像如图所示,则方程kx+b=0的解为( ).A.x=2B.y=2C.x=﹣1D.y=﹣12.如图,直线y=kx+b(k<0)经过点P(1,1),当kx+b≥x时,则x的取值范围为( )A.x≤1B.x≥1C.x<1D.x>13.观察函数y1和y2的图象,当x=0,两个函数值的大小为( )A.y1>y2B.y1<y2C.y1=y2D.y1≥y24.已知一次函数y=kx+b的图象如图,则关于x的不等式k(x﹣4)﹣2b>0的解集为( )A.x>﹣2B.x<﹣2C.x>2D.x<35.已知y1=x﹣5,y2=2x+1.当y1>y2时,x的取值范围是( )A.x>5B.x<12C.x<﹣6D.x>﹣66.如图,直线y=kx+b经过点A(﹣1,﹣2)和点B(﹣2,0),直线y=2x过点A,则不等式2x<kx+b<0的解集为( ).A.x<﹣2B.﹣2<x<﹣1C.﹣2<x<0D.﹣1<x<07.如图,函数y1=-2x与y2=ax+3的图象相交于点A(m,2),则关于x的不等式-2x>ax+3的解集是()A.x>2B.x<2C.x>-1D.x<-18.如图,直线y=x+32与y=kx﹣1相交于点P,点P的纵坐标为12,则关于x的不等式x+32>kx﹣1的解集在数轴上表示正确的是( )二、填空题9.如图所示,一次函数y=ax+b的图象与x轴相交于点(2,0),与y轴相交于点(0,4).结合图象可知,关于x的方程ax+b=0的解是__________.10.已知函数y=kx+b的部分函数值如表所示,则关于x的方程kx+b+3=0的解是_____.x …﹣2 ﹣1 0 1 …y … 5 3 1 ﹣1 …11.如图,直线l是一次函数y=kx+b的图像.观察图像,可知:(1)b=_______,k=_______;(2)当y>2时.x_______.12.如图,平面直角坐标系中,经过点B(﹣4,0)的直线y=kx+b与直线y=mx+2相交于点A(﹣32,﹣1),则不等式mx+2<kx+b<0的解集为.13.如图,一次函数y1=k1x+b1与y2=k2x+b2的图象相交于A(3,2),则不等式(k2﹣k1)x+b2﹣b1>0的解集为_________.14.如图,已知函数y=x+2b和y=12ax+3图象交于点P,则不等式x+2b>12ax+3的解集为_______.三、解答题15.已知一次函数y=2x+4,作出函数图象,并回答以下问题:(1)x取何值时,y>0?(2)当x>8时,求y的取值范围.16.如图,直线y=kx+b经过A(0,﹣3)和B(﹣3,0)两点.(1)求k、b的值;(2)求不等式kx+b<0的解集.17.作出函数y=2﹣x的图象,根据图象回答下列问题:(1)y的值随x的增大而;(2)图象与x轴的交点坐标是;与y轴的交点坐标是;(3)当x 时,y≥0;(4)该函数的图象与坐标轴所围成的三角形的面积是多少?18.如图,根据图中信息解答下列问题:(1)关于x的不等式ax+b>0的解集是________;(2)关于x的不等式mx+n<1的解集是________;(3)当x为何值时,y1≤y2?(4)当x<0时,比较y2与y1的大小关系.19.如图,直线l1:y1=x和直线l2:y2=﹣2x+6相交于点A,直线l2与x轴交于点B,动点P沿路线O→A→B运动.(1)求点A的坐标,并回答当x取何值时y1>y2?(2)求△AOB的面积;(3)当△POB的面积是△AOB的面积的一半时,求出这时点P的坐标.参考答案1.C2.A3.A4.B5.C6.B7.D8.A.9.答案为:x=210.答案为:x=2.11.答案为:(1)3﹣k (2)x<112.答案为:﹣4<x<﹣3 2 .13.答案为:x<314.答案为:x>115.解:(1)如图,当x>﹣2时,y>0;(2)因为x=8时,y=2x+4=20,所以当x>8时,y>20.16.解:(1)将A(0,﹣3)和(﹣3,0)代入y=kx+b得:b=﹣3,﹣3k+b=0,解得:k=﹣1,b=﹣3.(2)x>﹣3.17.解:令x=0,y=2;令y=0,x=2,得到(2,0),(0,2),描出并连接这两个点,如图,(1)由图象可得,y随x的增大而减小;(2)由图象可得图象与x轴的交点坐标是(2,0),与y轴交点的坐标是(0,2);(3)观察图象得,当x≤2时,y≥0,(4)图象与坐标轴围成的三角形的面积为0.5×2×2=2;18.解:(1)∵直线y2=ax+b与x轴的交点是(4,0),∴当x<4时,y2>0,即不等式ax+b>0的解集是x<4;故答案是:x<4;(2)∵直线y1=mx+n与y轴的交点是(0,1),∴当x<0时,y1<1,即不等式mx+n<1的解集是x<0;.故答案是:x<0;(3)由一次函数的图象知,两条直线的交点坐标是(2,18),当函数y1的图象在y 2的下面时,有x≤2,所以当x≤2时,y1≤y2;(4)如图所示,当x<0时,y2>y1.19.解:(1)∵直线l1与直线l2相交于点A,∴y1=y2,即﹣2x+6=x,解得x=2,∴y1=y2=2,∴点A的坐标为(2,2);观察图象可得,当x>2时,y1>y2;(2)由直线l2:y2=﹣2x+6可知,当y=0时,x=3,∴B(3,0),∴S△AOB=0.5×3×2=3;(3)∵△POB的面积是△AOB的面积的一半,∴P的纵坐标为1,∵点P沿路线O→A→B运动,∴P(1,1)或(2.5,1).。
北师大版数学八年级下第一章、一元一次不等式与不等式组培优复习讲义(一)
戴氏西门总校数学资料北师大版八年级下第一章、一元一次不等式与不等式组复习讲义(一)第一部分、要点概况(一)不等关系1、一般地,用符号“<”、“≤”、“>”、“≥”、“≠”连接的式子叫做不等式。
注意:⑴要弄清不等式和等式的区别:等式有等号,而不等式没有。
⑵常用的不等号有:<、≤、>、≥、≠。
⑶列不等式是数学化与符号化的过程,它与列方程类似,列不等式注意找到问题中不等关系的词,如: “正数(>0)”, “负数(<0)”, “非正数(≤0)”, “非负数(≥0)”, “超过(>0)”, “不足(<0)”, “至少(≥0)”, “至多(≤0)”, “不大于(≤0)”, “不小于(≥0)”⑷除了⑶常见不等式所表示的基本语言与含义还有: ①若a -b >0,则a 大于b ; ②若a -b <0,则a 小于b ; ③若a -b ≥0,则a 不小于b ; ④若a -b ≤0,则a 不大于b ;⑤若ab >0或0ab >,则a 、b 同号; ⑥若ab <0或0ab<,则a 、b 异号。
⑸不等号具有方向性,其左右两边不能随意交换:a <b 可转换为b >a ,c ≥d 可转换为d ≤c 。
例1:判断下列哪些式子是不等式,哪些不是不等式。
①32>-; ②21x ≤; ③21x -; ④s vt =; ⑤283m x <-;⑥124x x ->-;⑦38x ≠;⑧5223x x -≈-+;⑨240x +>;⑩230xπ+>。
不等式: 。
变式训练1:已知下列各式:①-1<0,②2+3=5 ③3x>7 ④2x-3y=1 ,其中不等式有不等式: 。
例2:⑴a 是正数: ;⑵x 的平方是非负数: ; ⑶a 不大于b : ;⑷x 的3倍与-2的差是负数: ;⑸长方形的长为x cm ,宽为10cm ,其面积不小于200cm 2: 。
变式训练2:用不等式表示:(1)x 与1的差不大于y 的3倍; (2)a 与b 的平方和是非负数;例3:试判断237a a -+与32a -+的大小变式训练3-1:比较1415-与1314-的大小。
一元一次不等式与一元一次不等式组典型例题
一元一次不等式与一元一次不等式组的解法知识点回顾1.不等式用不等号连接起来的式子叫做不等式.常见的不等号有五种: “≠”、 “>” 、 “<” 、 “≥”、 “≤”. 2.不等式的解与解集不等式的解:使不等式成立的未知数的值,叫做不等式的解.不等式的解集:一个含有未知数的不等式的解的全体,叫做不等式的解集.不等式的解集可以在数轴上直观的表示出来,具体表示方法是先确定边界点。
解集包含边界点,是实心圆点;不包含边界点,则是空心圆圈;再确定方向:大向右,小向左。
说明:不等式的解与一元一次方程的解是有区别的,不等式的解是不确定的,是一个范围,而一元一次方程的解则是一个具体的数值. 3.不等式的基本性质(重点)(1)不等式的两边都加上(或减去)同一个数或同一个整式.不等号的方向不变.如果a b >,那么__a c b c ±±(2)不等式的两边都乘以(或除以)同一个正数,不等号的方向不变.如果,0a b c >>,那么__ac bc (或___a b c c) (3)不等式的两边都乘以(或除以)同一个负数,不等号的方向改变.如果a b >,0c <那么__ac bc (或___a b c c) 说明:常见不等式所表示的基本语言与含义还有:①若a -b >0,则a 大于b ;②若a -b <0,则a 小于b ;③若a -b ≥0,则a 不小于b ;④若a -b≤0,则a 不大于b ;⑤若ab >0或0a b >,则a 、b 同号;⑥若ab <0或0ab<,则a 、b 异号。
任意两个实数a 、b 的大小关系:①a -b>O ⇔a>b ;②a -b=O ⇔a=b ;③a-b<O ⇔a<b .不等号具有方向性,其左右两边不能随意交换:但a <b 可转换为b >a ,c ≥d 可转换为d ≤c 。
4.一元一次不等式(重点)只含有一个未知数,且未知数的次数是1.系数不等于0的不等式叫做一元一次不等式. 注:其标准形式:ax+b <0或ax+b ≤0,ax+b >0或ax+b ≥0(a ≠0). 5.解一元一次不等式的一般步骤(重难点)(1)去分母;(2)去括号;(3)移项; (4)合并同类项;(5)化系数为1.例:131321≤---x x 解不等式:6.一元一次不等式组含有相同未知数的几个一元一次不等式所组成的不等式组,叫做一元一次不等式组.说明:判断一个不等式组是一元一次不等式组需满足两个条件:①组成不等式组的每一个不等式必须是一元一次不等式,且未知数相同;②不等式组中不等式的个数至少是2个,也就是说,可以是2个、3个、4个或更多.7.一元一次不等式组的解集一元一次不等式组中,几个不等式解集的公共部分.叫做这个一元一次不等式组的解集.一元一次不等式组的解集通常利用数轴来确定.9.解一元一次不等式组的步骤(1)分别求出不等式组中各个不等式的解集;(2)利用数轴求出这些解集的公共部分,即这个不等式组的解集.(三)常见题型归纳和经典例题讲解 1.常见题型分类(加粗体例题需要作答) 1.下列不等式中,是一元一次不等式的是( ) A.x1+1>2 B.x 2>9 C.2x +y ≤5D.21(x -3)<0 2.若51)2(12>--+m x m 是关于x 的一元一次不等式,则该不等式的解集为 .a 与6的和小于5; x 与2的差小于-1;1.a ,b 两个实数在数轴上的对应点如图所示:用“<”或“>”号填空:a __________b ; |a |__________|b |; a +b __________0 a -b __________0; a +b __________a -b ; ab __________a .2.已知实数a 、b 在数轴上对应的点如图所示,则下列式子正确的是( )A 、ab >0B 、a b >C 、a -b >0D 、a +b >01.与2x <6不同解的不等式是( )A.2x +1<7B.4x <12C.-4x >-12D.-2x <-6): (这类试题在中考中很多见)1.(2010湖北随州)解不等式组110334(1)1x x +⎧-⎪⎨⎪--<⎩≥ 2.(2010福建宁德)解不等式215312+--x x ≤1,并把它的解集在数轴上表示出来. 3.(2006年绵阳市)12(1)1,1.23x x x -->⎧⎪⎨-≥⎪⎩此类试题易错知识辨析(1)解字母系数的不等式时要讨论字母系数的正、负情况. 如不等式ax b >(或ax b <)(0a ≠)的形式的解集:当0a >时,b x a >(或b x a<) 当0a <时,bx a <(或b x a >)当0a <时,b x a <(或b x a>) 4 若不等式(a +1)x >a +1的解集是x <1,则a 必满足( ).(A)a <0 (B)a >-1 (C)a <-1 (D)a <15 若m >5,试用m 表示出不等式(5-m )x >1-m 的解集______.6.如果不等式(m -2)x >2-m 的解集是x <-1,则有( ) A.m >2 B.m <2 C.m =2 D.m ≠27.如果不等式(a -3)x <b 的解集是x <3-ab,那么a 的取值范围是________. 1.不等式3(x -2)≤x +4的非负整数解有几个.( ) A.4 B.5 C.6D.无数个2.不等式4x -41141+<x 的最大的整数解为( ) A.1B.0C.-1D.不存在|x |<37的整数解是________.不等式|x |<1的解集是________. 已知ax <2a (a ≠0)是关于x 的不等式,那么它的解集是( )A.x <2B.x >-2C.当a >0时,x <2D.当a >0时,x <2;当a <0时,x >21. 若x +y >x -y ,y -x >y ,那么(1)x +y >0,(2)y -x <0,(3)xy ≤0,(4)yx<0中,正确结论的序号为________。
北师版八年级下数学2.4一元一次不等式习题精选3(含答案)
数学2.4习题精选3(含答案)一.填空题(共16小题)1.小明、小杰和小丽代表班级参加学校组织的团体智力竞赛,如果小明得86分,小杰得79分,那么要使三人团体平均分不低于83分,小丽至少应得_________分.2.导火线的燃烧速度为0.8cm/s,爆破员点燃后跑开的速度为5m/s,为了点火后能够跑到150m外的安全地带,导火线的长度至少是_________.3.为了迎接2012伦敦奥运会,我区举办奥运知识竞赛,共有20道题.每一题答对十分,答错或不答都扣5分,小欣得分超过70分,则她至少要答对_________道题.4.某景点门票价是:每人5元,一次购票满30张,每张票可少收1元.当人数少于30人时,至少要有_________人去该景点,买30张票反而合算.5.有关学生体质健康评价指定规定:七年级男生握力体重指数m的合格标准是m≥35.若七年级男生小明的体重是50kg,那么小明的握力至少要达到_________kg时才能合格.【握力体重指数=(握力÷体重)×100】6.小王家的鱼塘可出售的大鱼和小鱼共800㎏,大鱼每千克售价10元,小鱼每千克售价6元.若将这800㎏鱼全部出售,收入可超过6800元,则其中出售的大鱼应多于_________㎏.7.某种商品进价是100元,出售时标价为150元,春节期间为了“大酬宾”优惠,特意大折出售,但要保证利润不低于20%,则最低可以打_________折.8.(2009•万年县模拟)一种药品的说明书上写着“每日用量60~120mg,分3~4次服用”,则一次服用这种剂量x mg应该满足_________.9.(2007•中山区一模)阳阳从家到学校的路程为2400米,他早晨8点离开家,要在8点30分到8点40分之间到学校,如果用x表示他的速度(单位:米/分),则x的取值范围为_________.10.如图,a,b,c三种物体的质量的大小关系是_________.11.爸爸上个月的电话费用37.5元,其中月租费是12.5元,每打一次市话不超过3分钟收费0.2元.爸爸上月没有打过长途或其他电话,且每次却不超过3分钟,那么爸爸上个月累计通话时间至多为_________分钟.12.随着两岸交往的不断深入,台湾地区的水果源源不断地进入内地市场,一种台湾苹果的进价是每千克7.6元,销售中估计有5%的苹果正常损耗.为避免亏本,商家将售价应该至少定为每千克_________元.13.某种品牌的八宝粥,外包装标明:净含量为330g±10g,表明了这罐八宝粥的净含量x的范围是_________.14.将一筐橘子分给若干个儿童,如果每人分4个橘子,则剩下9个橘子;如果每人分6个橘子,则最后一个儿童分得的橘子数将少于3个,由以上可推出,共有_________个儿童,分_________个橘子.15.东方旅行社,某天有空客房10间,当天接待了一个旅游团,当每个房间住3人时,只有一个房间不空也不满,试问旅游团共有_________人.16.有人问一位老师,他教的班级有多少学生,老师说:“一半学生在学数学,四分之一的学生在学音乐,七分之一的学生在念外语,还有不足6位学生正在操场踢足球.”因此,这个班一共有学生_________人.二.解答题(共10小题)17.(2013•天水)某工程机械厂根据市场需求,计划生产A、B两种型号的大型挖掘机共100台,该厂所筹生产资金不少于22 400万元,但不超过22 500万元,且所筹资金全部用于生产此两型挖掘机,所生产的此两型挖掘机可全部售出,此两型挖掘机的生产成本和售价如下表:型号 A B成本(万元/台)200 240售价(万元/台)250 300(1)该厂对这两型挖掘机有哪几种生产方案?(2)该厂如何生产能获得最大利润?(3)根据市场调查,每台B型挖掘机的售价不会改变,每台A型挖掘机的售价将会提高m万元(m >0),该厂应该如何生产获得最大利润?(注:利润=售价﹣成本)18.(2013•台州)在某校班际篮球联赛中,每场比赛都要分出胜负,每队胜一场得3分,负一场得1分,如果某班要在第一轮的28场比赛中至少得43分,那么这个班至少要胜多少场?19.(2013•本溪)某中学响应“阳光体育”活动的号召,准备从体育用品商店购买一些排球、足球和篮球,排球和足球的单价相同,同一种球的单价相同,若购买2个足球和3个篮球共需340元,购买4个排球和5个篮球共需600元.(1)求购买一个足球,一个篮球分别需要多少元?(2)该中学根据实际情况,需从体育用品商店一次性购买三种球共100个,且购买三种球的总费用不超过6000元,求这所中学最多可以购买多少个篮球?20.(2011•温州)2011年5月20日是第22个中国学生营养日,某校社会实践小组在这天开展活动,调查快餐营养情况.他们从食品安全监督部门获取了一份快餐的信息(如图).根据信息,解答下列问题.(1)求这份快餐中所含脂肪质量;(3)若这份快餐中蛋白质和碳水化合物所占百分比的和不高于85%,求其中所含碳水化合物质量的最大值.21.(2010•菏泽)我市为绿化城区,计划购买甲、乙两种树苗共计500棵,甲种树苗每棵50元,乙种树苗每棵80元,调查统计得:甲、乙两种树苗的成活率分别为90%,95%.(1)如果购买两种树苗共用28000元,那么甲、乙两种树苗各买了多少棵?(2)市绿化部门研究决定,购买树苗的钱数不得超过34000元,应如何选购树苗?(3)要使这批树苗的成活率不低于92%,且使购买树苗的费用最低,应如何选购树苗?最低费用是多少?22.(2009•天水)为了保护环境,某企业决定购买10台污水处理设备.现有A、B两种型号的设备,其中每台的价格、月处理污水量及年消耗费如右表:经预算,该企业购买设备的资金不高于105万元.A型B型价格(万元/台)12 10处理污水量(吨/月)240 200年消耗费(万元/台) 1 1(1)请你设计该企业有几种购买方案;(2)若企业每月产生的污水量为2040吨,为了节约资金,应选择哪种购买方案;(3)在第(2)问的条件下,若每台设备的使用年限为10年,污水厂处理污水费为每吨10元,请你计算,该企业自己处理污水与将污水排到污水厂处理相比较,10年节约资金多少万元?(注:企业处理污水的费用包括购买设备的资金和消耗费)23.(2009•贵港)蓝天运输公司要将300吨物资运往某地,现有A、B两种型号的汽车可供调用.已知A型汽车每辆最多可装该物资20吨,B型汽车每辆最多可装该物资15吨.在每辆车不超载的条件下,要把这300吨物资一次性装运完.问:在已确定调用7辆A型车的前提下至少还需调用B型车多少辆?24.(2008•南平)“母亲节”到了,九年级(1)班班委发起慰问烈属王大妈的活动,决定在“母亲节”期间全班同学利用课余时间去卖鲜花筹集慰问金.已知同学们从花店按每支1.2元买进鲜花,并按每支3元卖出.(1)求同学们卖出鲜花的销售额y(元)与销售量x(支)之间的函数关系式;(2)若从花店购买鲜花的同时,还总共用去40元购买包装材料,求所筹集的慰问金w(元)与销售量x(支)之间的函数关系式;若要筹集不少于500元的慰问金,则至少要卖出鲜花多少支?(慰问金25.(2006•宿迁)甲、乙两家商场以同样的价格出售同样的电器,但是各自推出的优惠方案不同.甲商场规定:凡购买超过1000元电器的,超出的金额按90%实收;乙商场规定:凡购买超过500元电器的,超出的金额按95%实收.顾客怎样选择商场购买电器能获得更大的优惠?26.(2006•泸州)九年级(3)班学生到学校阅览室上课外阅读课,班长问老师要分成几个小组,老师风趣地说:假如我把43本书分给各个组,若每组8本,还有剩余;若每组9本,却又不够,你知道该分几个组吗?(请你帮助班长分组,注意写出解题过程,不能仅有分组的结果哟!)数学2.4习题精选3(含答案)参考答案与试题解析一.填空题(共16小题)1.小明、小杰和小丽代表班级参加学校组织的团体智力竞赛,如果小明得86分,小杰得79分,那么要使三人团体平均分不低于83分,小丽至少应得84分.考点:一元一次不等式的应用.分析:只要运用求平均数公式:=列出关系式即可求出,为简单题.解答:解:设小丽成绩为x分,由题意得:≥83,解得x≥84.故小丽的成绩至少是84分.故答案为:84.点评:本题考查了样本平均数的求法以及不等式的应用.熟记求平均数公式是解决本题的关键.2.导火线的燃烧速度为0.8cm/s,爆破员点燃后跑开的速度为5m/s,为了点火后能够跑到150m外的安全地带,导火线的长度至少是24cm.考点:一元一次不等式的应用.分析:设导火线应有x厘米长,根据题意可得跑开时间要小于爆炸的时间,由此可列出不等式,然后求解即可.解答:解:设导火线应有x厘米长,根据题意≥,解得:x≥24.故导火线至少应有24厘米.故答案为:24cm.点评:此题主要考查了一元一次不等式的应用,关键是读懂题意,找到符合题意的不等关系式.3.为了迎接2012伦敦奥运会,我区举办奥运知识竞赛,共有20道题.每一题答对十分,答错或不答都扣5分,小欣得分超过70分,则她至少要答对12道题.考点:一元一次不等式的应用.分析:设小欣答对x道题,则答错或者不答为(20﹣x)道题,等量关系为:答对得分﹣扣分>70,列不等式求出最小整数解即可.解答:解:设小欣答对x道题,则答错或者不答为(20﹣x)道题,由题意得,10x﹣5(20﹣x)>70,解得:x>11,故答案为:12.点评:此题主要考查了一元一次不等式的应用,解决本题的关键是读懂题意,找到符合题意的不等关系式,正确表示出小明的得分是解决本题的关键.4.某景点门票价是:每人5元,一次购票满30张,每张票可少收1元.当人数少于30人时,至少要有25人去该景点,买30张票反而合算.考点:一元一次不等式的应用.分析:先求出购买30张票,优惠后需要多少钱,然后再利用5x>120时,求出买到的张数的取值范围再加上1即可.解答:解:30×(5﹣1)=30×4=120(元);故5x>120时,解得:x>24,当有24人时,购买24张票和30张票的价格相同,再多1人时买30张票较合算;24+1=25(人);则至少要有25人去世纪公园,买30张票反而合算.故答案为:25.点评:此题主要考查了一元一不等式的应用,找到按5元的单价付款和4元单价付款的等量关系是解决本题的关键.5.有关学生体质健康评价指定规定:七年级男生握力体重指数m的合格标准是m≥35.若七年级男生小明的体重是50kg,那么小明的握力至少要达到x≥17.5kg时才能合格.【握力体重指数=(握力÷体重)×100】考点:一元一次不等式的应用.分析:设小明的握力至少要达到xkg时才能合格,根据握力体重指数=(握力÷体重)×100建立方程求出其解就可以了.解答:解:设小明的握力至少要达到xkg时才能合格,由题意,得(x÷50)×100≥35,解得:x≥17.5.故答案为:x≥17.5点评:本题一道关于列一元一次不等式解实际问题的运用题,考查了握力体重指数=(握力÷体重)×100在实际问题中的运用,解答时根据题意建立不等式是关键.6.小王家的鱼塘可出售的大鱼和小鱼共800㎏,大鱼每千克售价10元,小鱼每千克售价6元.若将这800㎏鱼全部出售,收入可超过6800元,则其中出售的大鱼应多于500㎏.考点:一元一次不等式的应用.分析:关系式为:大鱼的收入+小鱼的收入>6800元,把相关数值代入关系式即可得到所列不等式,求解即可.解答:解:售出的大鱼为x千克,大鱼每千克售价10元,所以大鱼的收入为10x;小鱼每千克售价6元,售出小鱼为(800﹣x)千克,小鱼的收入为6(800﹣x);解得:x>500,即出售的大鱼应多于500kg.故答案为:500.点评:此题主要考查了一元一次不等式的应用,解决本题的关键是找到总收入的关系式,易错点是找到对应的数量与单价.7.某种商品进价是100元,出售时标价为150元,春节期间为了“大酬宾”优惠,特意大折出售,但要保证利润不低于20%,则最低可以打8折.考点:一元一次不等式的应用.专题:应用题.分析:设打x折,则实际售价为150×0.1x,再由利润不低于20%,得出不等式,解出即可得出答案.解答:解:设打x折,则实际售价为150×0.1x,由题意得:150×0.1x﹣100≥100×20%,解得:x≥8.即最低可以打8折.故答案为:8.点评:本题考查一元一次不等式的应用,将现实生活中的事件与数学思想联系起来,读懂题列出不等式关系式即可求解.8.(2009•万年县模拟)一种药品的说明书上写着“每日用量60~120mg,分3~4次服用”,则一次服用这种剂量x mg应该满足15≤x≤40.考点:一元一次不等式的应用.专题:应用题.分析:一次服用剂量x=,故可求出服用剂量的最大值和最小值,而一次服用的剂量应介于两者之间,依题意列出不等式即可.解答:解:由题意,当每日用量60mg,分4次服用时,一次服用的剂量最小;当每日用量120mg,分3次服用时,一次服用的剂量最大;根据依题意列出不等式组:解得15≤x≤40.故答案为:15≤x≤40.点评:由实际问题中的不等关系列出不等式,通过解不等式可以得到实际问题的答案.9.(2007•中山区一模)阳阳从家到学校的路程为2400米,他早晨8点离开家,要在8点30分到8点40分之间到学校,如果用x表示他的速度(单位:米/分),则x的取值范围为60≤x≤80.考点:一元一次不等式的应用.分析:早晨8点离开家,要在8点30分到8点40分之间到学校,即所用的时间是大于等于30分钟并且小于等于40分钟,设速度是x米/分,则时间是分钟,根据以上的不等关系,就可以列出不等式组,求出x的范围.解答:解:由题意可得,30≤≤40解之得60≤x≤80.故答案为:60≤x≤80点评:此题关键是用代数式,表示阳阳从家到校的时间,时间=.10.如图,a,b,c三种物体的质量的大小关系是a>b>c.考点:一元一次不等式的应用.分析:根据第一个图可知2a=3b,可判断a,b的大小关系,从图2可知,2b>3c,可判断b,c的大小关系.解答:解:∵2a=3b,∴a>b,∵2b>3c,∴b>c,∴a>b>c.故答案为:a>b>c.点评:本题考查一元一次不等式的应用,关键是根据图可依次判断a,b的大小关系,b,c的大小关系可求出解.11.爸爸上个月的电话费用37.5元,其中月租费是12.5元,每打一次市话不超过3分钟收费0.2元.爸爸上月没有打过长途或其他电话,且每次却不超过3分钟,那么爸爸上个月累计通话时间至多为375分钟.考点:一元一次不等式的应用.专题:应用题.分析:本题首先由题意得出不等关系即每次通话都不超过3分钟,可列出方程为x÷≤3,解出不等式即可.解答:解:设爸爸上个月累计通话时间为x分钟.依题意可得:x÷≤3,解得:x≤375,∴爸爸上个月累计通话时间至多为375分钟.点评:本题考查一元一次不等式的应用,将现实生活中的事件与数学思想联系起来,读懂题列出不等12.随着两岸交往的不断深入,台湾地区的水果源源不断地进入内地市场,一种台湾苹果的进价是每千克7.6元,销售中估计有5%的苹果正常损耗.为避免亏本,商家将售价应该至少定为每千克8元.考点:一元一次不等式的应用.分析:设商家把售价应该定为每千克x元,因为销售中估计有5%的苹果正常损耗,故每千克苹果损耗后的价格为x(1﹣5%)元,根据题意列出不等式即可.解答:解:设商家把售价应该定为每千克x元,根据题意得:x(1﹣5%)≥7.6,解得,x≥8,所以为避免亏本,商家把售价应该至少定为每千克8元.故答案为:8.点评:本题考查一元一次不等式组的应用,将现实生活中的事件与数学思想联系起来,读懂题意,根据“去掉损耗后的售价≥进价”列出不等式即可求解.13.某种品牌的八宝粥,外包装标明:净含量为330g±10g,表明了这罐八宝粥的净含量x的范围是320≤x≤340.考点:一元一次不等式的应用.专题:应用题.分析:将现实生活中的事件与数学思想联系起来,读懂题列出不等式关系式即可.解答:解:因为净含量为330g±10g,则这罐八宝粥的净含量x少不过320g,多不过340g,即320≤x≤340.点评:此题是一道与生活联系紧密的题目,解答起来较容易.14.将一筐橘子分给若干个儿童,如果每人分4个橘子,则剩下9个橘子;如果每人分6个橘子,则最后一个儿童分得的橘子数将少于3个,由以上可推出,共有7个儿童,分37个橘子.考点:一元一次不等式的应用.分析:如果每人分4个橘子,则剩下9个橘子,可设有x个儿童,则橘子数有:4x+9;每人分6个橘子,则最后一个儿童分得的橘子数将少于3个,即橘子总数小于6(x﹣1)+3,就可以列出不等式,得出x的取值范围.解答:解:设共有x个儿童,则共有4x+9个橘子,则1≤4x+9﹣6(x﹣1)<3解得6<x≤7所以共有7个儿童,分了4x+9=37个橘子故答案为:7,37.点评:本题考查的是一元一次不等式的运用,要注意不等式两边同时除以一个负数不等式的方向要改变.正确理解“最后一个儿童分得的橘子数将少于3个”这句话包含的不等关系是解决本题的关键.15.东方旅行社,某天有空客房10间,当天接待了一个旅游团,当每个房间住3人时,只有一个房间不空也不满,试问旅游团共有28或29人.分析:有空客房10间,每个房间住3人时,只有一个房间不空也不满即:9间客房住满了,一个房间不空也不满即1个房间客房住了一个人或两个人,则就可以得到所有旅客的人数.解答:解:9个房间住的人数是9×3=27人.当不空也不满的房间有一个人时:有游客27+1=28人.当不空也不满的房间有2个人时:有游客27+2=29人.因而旅游团共有28或29人.点评:解决问题的关键是读懂题意,理解每个房间住3人时,只有一个房间不空也不满的含义,得到这个房间中的人数是解决本题的关键.16.有人问一位老师,他教的班级有多少学生,老师说:“一半学生在学数学,四分之一的学生在学音乐,七分之一的学生在念外语,还有不足6位学生正在操场踢足球.”因此,这个班一共有学生28人.考点:一元一次不等式的应用.分析:一半学生在学数学,四分之一的学生在学音乐,七分之一的学生在念外语,还有不足6位学生正在操场踢足球,即踢足球的学生人数大于0并且小或等于5.设这个班一共有学生x人,根据这个不等关系就可以列出不等式.解答:解:不足6位学生说明剩下人数在1和5之间.设有x人,则0<x﹣x﹣x﹣x≤50<x﹣0.5x﹣0.25x﹣x≤5解得9<x≤46这些整数里,∵x,,都表示学生人数,∴必须为整数,∴学生总数应为28的倍数,∴只有28能被28整除.∴这个班一共有学生28人.点评:解决本题的关键是读懂题意,理解:不足6位学生正在操场踢足球的含义,找到符合题意的不等关系.二.解答题(共10小题)17.(2013•天水)某工程机械厂根据市场需求,计划生产A、B两种型号的大型挖掘机共100台,该厂所筹生产资金不少于22 400万元,但不超过22 500万元,且所筹资金全部用于生产此两型挖掘机,所生产的此两型挖掘机可全部售出,此两型挖掘机的生产成本和售价如下表:型号 A B成本(万元/台)200 240售价(万元/台)250 300(1)该厂对这两型挖掘机有哪几种生产方案?(2)该厂如何生产能获得最大利润?(3)根据市场调查,每台B型挖掘机的售价不会改变,每台A型挖掘机的售价将会提高m万元(m >0),该厂应该如何生产获得最大利润?(注:利润=售价﹣成本)专题:应用题;压轴题;方案型.分析:(1)在题目中,每种型号的成本及总成本的上限和下限都已知,所以设生产A型挖掘机x台,则B型挖掘机(100﹣x)台的情况下,可列不等式22400≤200x+240(100﹣x)≤22500,解不等式,取其整数值即可求解;(2)在知道生产方案以及每种利润情况下可列函数解析式W=50x+60(100﹣x)=6000﹣10x,利用函数的自变量取值范围和其单调性即可求得函数的最值;(3)结合(2)得W=(50+m)x+60(100﹣x)=6000+(m﹣10)x,在此,必须把(m﹣10)正负性考虑清楚,即m>10,m=10,m<10三种情况,最终才能得出结论.即怎样安排,完全取决于m的大小.解答:解:(1)设生产A型挖掘机x台,则B型挖掘机(100﹣x)台,由题意得22400≤200x+240(100﹣x)≤22500,解得37.5≤x≤40.∵x取非负整数,∴x为38,39,40.∴有三种生产方案①A型38台,B型62台;②A型39台,B型61台;③A型40台,B型60台.(2)设获得利润W(万元),由题意得W=50x+60(100﹣x)=6000﹣10x∴当x=38时,W最大=5620(万元),即生产A型38台,B型62台时,获得最大利润.(3)由题意得W=(50+m)x+60(100﹣x)=6000+(m﹣10)x总之,当0<m<10,则x=38时,W最大,即生产A型38台,B型62台;当m=10时,m﹣10=0则三种生产方案获得利润相等;当m>10,则x=40时,W最大,即生产A型40台,B型60台.点评:考查学生解决实际问题的能力,试题的特色是在要求学生能读懂题意,并且会用函数知识去解题,以及会讨论函数的最大值.要结合自变量的范围求函数的最大值,并要把(m﹣10)正负性考虑清楚,分情况讨论问题.18.(2013•台州)在某校班际篮球联赛中,每场比赛都要分出胜负,每队胜一场得3分,负一场得1分,如果某班要在第一轮的28场比赛中至少得43分,那么这个班至少要胜多少场?考点:一元一次不等式的应用.分析:设这个班要胜x场,则负(28﹣x)场,根据题意列出不等式,解不等式即可求出至少要胜几场.解答:解:设这个班要胜x场,则负(28﹣x)场,由题意得,3x+(28﹣x)≥43,2x≥15,解得:x≥7.5,∵场次x为正整数,∴x≥8.答:这个班至少要胜8场.点评:本题考查了一元一次不等式的应用,难度一般,解答本题的关键是表示出胜场得分和输场得分并列出不等式.19.(2013•本溪)某中学响应“阳光体育”活动的号召,准备从体育用品商店购买一些排球、足球和篮球,排球和足球的单价相同,同一种球的单价相同,若购买2个足球和3个篮球共需340元,购买4个排球和5个篮球共需600元.(1)求购买一个足球,一个篮球分别需要多少元?(2)该中学根据实际情况,需从体育用品商店一次性购买三种球共100个,且购买三种球的总费用不超过6000元,求这所中学最多可以购买多少个篮球?考点:一元一次不等式的应用;二元一次方程组的应用.分析:(1)设购买一个足球需要x元,则购买一个排球也需要x元,购买一个篮球y元,根据购买2个足球和3个篮球共需340元,4个排球和5个篮球共需600元,可得出方程组,解出即可;(2)设该中学购买篮球m个,根据购买三种球的总费用不超过6000元,可得出不等式,解出即可.解答:解:(1)设购买一个足球需要x元,则购买一个排球也需要x元,购买一个篮球y元,由题意得:,解得:,答:购买一个足球需要50元,购买一个篮球需要80元;(2)设该中学购买篮球m个,由题意得:80m+50(100﹣m)≤6000,解得:m≤33,∵m是整数,∴m最大可取33.答:这所中学最多可以购买篮球33个.点评:本题考查了一元一次不等式及二元一次方程组的知识,解答本题的关键是仔细审题,得到等量关系及不等关系,难度一般.20.(2011•温州)2011年5月20日是第22个中国学生营养日,某校社会实践小组在这天开展活动,调查快餐营养情况.他们从食品安全监督部门获取了一份快餐的信息(如图).根据信息,解答下列问题.(1)求这份快餐中所含脂肪质量;(2)若碳水化合物占快餐总质量的40%,求这份快餐所含蛋白质的质量;(3)若这份快餐中蛋白质和碳水化合物所占百分比的和不高于85%,求其中所含碳水化合物质量的最大值.考点:一元一次不等式的应用;一元一次方程的应用.专题:应用题;压轴题.分析:(1)快餐中所含脂肪质量=快餐总质量×脂肪所占百分比;(2)根据这份快餐总质量为400克,列出方程求解即可;(3)根据这份快餐中蛋白质和碳水化合物所占百分比的和不高于85%,列出不等式求解即可.解答:解:(1)400×5%=20克.答:这份快餐中所含脂肪质量为20克;(2)设400克快餐所含矿物质的质量为x克,由题意得:x+4x+20+400×40%=400,∴x=44,∴4x=176.答:所含蛋白质质量为176克;(3)设所含矿物质的质量为y克,则所含蛋白质质量为4y克,所含碳水化合物的质量为(380﹣5y)克.∴4y+(380﹣5y)≤400×85%,∴y≥40,∴﹣5y≤﹣200,∴380﹣5y≤380﹣200,即380﹣5y≤180,∴所含碳水化合物质量的最大值为180克.点评:本题由课本例题改编而成(原题为浙教版七年级下P96例题),这使学生对试题有“亲切感”,而且对教学有着积极的导向作用.题中第(3)问是本题的一个亮点,给出两个量的和的范围,求其中一个量的最值,隐含着函数最值思想.本题切入点较多,方法灵活,解题方式多样化,可用不等式解题,也可用极端原理求解,不同的解答反映出思维的不同层次.21.(2010•菏泽)我市为绿化城区,计划购买甲、乙两种树苗共计500棵,甲种树苗每棵50元,乙种树苗每棵80元,调查统计得:甲、乙两种树苗的成活率分别为90%,95%.(1)如果购买两种树苗共用28000元,那么甲、乙两种树苗各买了多少棵?(2)市绿化部门研究决定,购买树苗的钱数不得超过34000元,应如何选购树苗?。
北师大版八年级下册数学《资源与评价》答案
1.1 不等关系1.B ; 2.A ; 3.D ; 4.C ; 5.C ;6.D ;7.(1)>,(2)>;8.3y +4x <0;9.x<ll .7,x ≥11.7;10.a <1<1a ;11.8;12.12a 2+12b 2>ab (a ≠b) . 13.(1)2a<a+3,(2)1502y -≥,(3)3x +l < 2x -5.14.(1)设这个数为x ,则x 2≥0;(2)设某天的气温为x ℃, 则≤25. 15.2a<a +b <3b . 16.a >b .17.设参加春游的同学x 人,则8x<250,9x >250(或8x< 250<9x ). 18.50+(20-3)x >270.19.设该同学至少应答对x 道题,依题意有6x -(16-x)×2≥60.20.(1)>(2)=(3)>(4)>(5)>; 22a b +≥2ab (当a =b 时取等号).聚沙成塔:甲同学说的意思是:如果每5人一组玩一个篮球,那么玩球的人数少于50人,有些同学就没有球玩.乙同学说的意思是:如果每6人一组玩一个篮球,那么就会有一个组玩篮球的人数不足6人.丙同学说的意思是:如果每6人一组玩一个篮球,除了一个球以外,剩下的每6人玩一个球,还有几个(不足6人)玩另外一个篮球.1.2 不等式的基本性质1.C ; 2.D ; 3.B ; 4.A ; 5.C ; 6.A ; 7.C ; 8.D ; 9.(1)<(2)>(3)>(4)>(5)>(6)<;10.(1)<(2)>(3)>(4)<;11.a <0; 12.(4); 13.0,1,2,3,4,5; 14.<a b ; 15.<2 <0; 16.>32. 17.(1)x >5;(2)172x >-;(3)得x <-3.(4)x <-8. 18.解:根据不等式基本性质3,两边都乘以-12,得3a >4a .根据不等式基本性质1,两边都减去3a ,得0>a ,即a<0 ,即a 为负数. 19.(1)a >0;(2)a >l 或a <0;(3)a<0. 聚沙成塔解:∵B 1=45×111111111=45×(10+11111)=12.5+111125.1<13A 1=⨯341111111=⨯34(10+1111)=13.33+11133.1>13∴A 1>B1>0 ∴A <B点拨:利用倒数比较大小是一种重要方法.1.3 不等式的解集1.A ;2.B ;3.C ;4.D ;5.B ;6.A ;7.B ;8.C ;9.答案不唯一,如x -1≤0,2x ≤2等. 10.=52,≤52.11.x =2. 12.x =1,2,3 13.-6. 14.(1)x >3;(2)x <6;(3)x >5;(4)x >10. 15.x =1,2 16.n >75% 40%≤n ≤49% n <20% 温饱.17.图略.18.答案不惟一:(1)x <4; (2) -3<x ≤1. 19.不少于1.5克. 20.x 可取一切实数.21.非负整数为0,1,2,3. 22. x >512. 23. k 大于36时b 为负数. 24. a=-3 聚沙成塔解:设白球有x 个,红球有y 个,由题意,得⎩⎨⎧=+60322y x xy x由第一个不等式得:3x <3y <6x ,由第二个不等式得,3y=60-2x ,则有3x <60-2x <6x ∴7.5<x <12,∴x 可取8,9,10,11.又∵2x=60-3y=3(20-y ) ∴2x 应是3的倍数 ∴x 只能取9,y =39260⨯-= 14 答:白球有9个,红球有14个.1.4一元一次不等式(1)1.B ;2.C ;3.D ;4.B ;5.B ;6.D ;7.A ;8.A ;9.x =0,-1,-2,-3,-4 ;10.x <-3;11.R >3;12.-6;13.2;14.2≤a <3; 15.x ≥119. 16.第④步错误,应该改成无论x 取何值,该不等式总是成立的,所以x 取一切数. 17.(1)得x ≥1;(2)x >5;(3)x ≤1;(4)x < 3;18.(1)解不等式231023x x ++-≥,得74x ≥- 所以当74x ≥-时,23123x x ++-的值是非负数.(2)解不等式231123x x ++-≤,得14x ≤- 所以当14x ≤-时,代数式23123x x ++-的值不大于119.p >-6. 20.-11.聚沙成塔解:假设存在符合条件的整数m . 由 321mx x +->+ 解得 25->m x由 mm x m x 931+>+整理得 m m m x ->92, 当0>m 时,29mx ->.根据题意,得 2925mm -=- 解得 m=7 把m=7代入两已知不等式,都解得解集为1>x ,因此存在整数m ,使关于x 的不等式与321mx x +->+是同解不等式,且解集为1>x .1.4一元一次不等式(2)1.B ; 2.B ; 3.C ; 4.C ; 5.D ; 6.12; 7.13; 8.152. 9.以后6天内平均每天至少要挖土80立方米. 10.以后每个月至少要生产100台. 11.不少于16千米.12.每天至少安排3个小组.13.招聘A 工种工人为50人时,可使每月所付的工资最少,此时每月工资为130000元. 14.甲厂每天处理垃圾至少需要6小时. 15.(1)y=9.2-0.9x ;;(2)饼干和牛奶的标价分别为2元、8元. 聚沙成塔 解:(1)由题意,可将一、二、三等奖的奖品定为相册、笔记本、钢笔即可.此时所需费用为5×6+10×5+25×4=180(元); (2)设三等奖的奖品单价为x 元,则二等奖奖品单价应为4x 元,一等奖奖品单价为20x 元,由题意应由5×20x +10×4x +25×x ≤1000,解得x ≤6.06(元).故x 可取6元、5元、4元.故4x 依次应为24元,20元,16元,20x 依次应为120元、100元、80元.再看表格中所提供各类奖品单价可知,120元、24元、6元以及80元、16元、4元这两种情况适合题意,故有两种购买方案,方案一:奖品单价依次为120元、24元、6元,所需费用为990元;方案二:奖品单价依次为80元、16元、4元,所需费用为660元.从而可知花费最多的一种方案需990元.1.5一元一次不等式与一次函数(1)1.A ;2.D ;3.C ;4.C ;5.B ;6.A ;7.D ;8.B ;9.m <4且m ≠1;10.20;11.x >-45,x <-45;12.x <-5;13.x >-2;14.x <3;15.(-3,0);16.(2,3). 17.(1) 12x <-;(2)x ≤0.18. (1)P (1,0);(2)当x <1时y 1>y 2,当x >1时y 1<y 2. 聚沙成塔在直角坐标系画出直线x =3,x +y =0,x -y +5=0, 因原点(0,0)不在直线x -y +5=0上,故将原点(0,0)代入x -y +5可知,原点所在平面区域表示x -y+5≥0部分, 因原点在直线x+y=0上,故取点(0,1)代入x+y 判定可知点(0,1)所在平面区域表示x+y≥0的部分,见图阴影部分.1.5 一元一次不等式与一次函数(2)1.B ;2.B ;3.A ;4.13;5.(1)y 1=600+500x y 2=2000+200x ; (2)x >432,到第5个月甲的存款额超过乙的存款额. 6.设商场投入资金x 元,如果本月初出售,到下月初可获利y 1元, 则y 1=10%x +(1+10%)x·10%=0.1x +0.11x =0.21x ;如果下月初出售,可获利y 2元,则y 2=25%x -8000=0.25x -8000 当y 1=y 2即0.21x =0.25x -8000时,x =200000 当y 1>y 2即0.21x >0.25x -8000时,x <200000 当y 1<y 2即0.21x <0.25x -8000时,x >200000∴ 若商场投入资金20万元,两种销售方式获利相同;若商场投入资金少于20万元,本月初出售获利较多,若投入资金多于20万元,下月初出售获利较多.7.(1)分两种情况:y=x(0≤x ≤8),y=2x -8(x >8); (2)14. 8.(1)乙在甲前面12米;(2)s 甲=8t ,s 乙=12+213t ; (3)由图像可看出,在时间t >8秒时,甲走在乙前面,在0到8秒之间,甲走在乙的后面,在8秒时他们相遇.9.解:如果购买电脑不超过11台,很明显乙公司有优惠,而甲公司没优惠,因此选择乙公司.如果购买电脑多于10台.则:设学校需购置电脑x 台,则到甲公司购买需付[10×5800+5800(x -10)×70%]元,到乙公司购买需付5800×85% x 元.根据题意得: 1)若甲公司优惠:则 10×5800+5800(x -10)×70%<5800×85% x 解得: x >202)若乙公司优惠:则 10×5800+5800(x -10)×70%>5800×85% x 解得: x <203)若两公司一样优惠:则 10×5800+5800(x -10)×70%=5800×85% x 解得: x =20答:购置电脑少于20台时选乙公司较优惠,购置电脑正好20台时两公司随便选哪家,购置电脑多于20台时选甲公司较优惠. 10.(1)他继续在A 窗口排队所花的时间为42844a a -⨯-=(分) (2)由题意,得42625246a a -⨯-⨯+⨯>,解得 a >20. 11. 解:(1)设轿车要购买x 辆,那么面包车要购买(10-x )辆,由题意得:7x +4(10-x )≤55 解得:x ≤5又∵x ≥3,则 x =3,4,5 ∴购机方案有三种:方案一:轿车3辆,面包车7辆;方案二:轿车4辆,面包车6辆;方案三:轿车5辆,面包车5辆; (2)方案一的日租金为:3×200+7×110=1370(元) 方案二的日租金为:4×200+6×110=1460(元) 方案三的日租金为:5×200+5×110=1550(元) 为保证日租金不低于1500元,应选择方案三. 12.(1)y 1=50+0.4x ,y 2=0.6x ;(2)当y 1=y 2,即50+0.4x =0.6x 时,x =250(分钟),即当通话时间为250分钟时,两种通讯方式的费用相同; (3)由y 1<y 2即50+0.4x <0.6x ,知x >250,即通话时间超过250分钟时用“全球通”的通讯方式便宜.13.解:(1)该商场分别购进A 、B 两种商品200件、120件. (2)B 种商品最低售价为每件1080元. 聚沙成塔 解:(1)500n ;(2)每亩年利润=(1400×4+160×20)-(500+75×4+525×4+15×20+85×20) =3900(元) (3)n 亩水田总收益=3900n 需要贷款数=(500+75×4+525×4+15×20+85×20)n -25000=4900n -25000 贷款利息=8%×(4900n -25000)=392n -2000根据题意得:35000)2000392(3900≥--n n 解得:n ≥9.41 ∴ n =10需要贷款数:4900n -25000=24000(元)答:李大爷应该租10亩水面,并向银行贷款24000元,可使年利润超过35000元.1.6 一元一次不等式组(1)1.C ;2.D ;3.C ;4.C ;5.A ;6.D ;7.D ;8.-1<y <2;9.-1≤x <3;10.-14≤x ≤4;11.M ≥2;12.2≤x <5;13.a ≤2;14.-6;15.A ≤1; 16.(1)31023x <<;(2)无解;(3)-2≤x <13;(4)x >-3.17.解集为345x <≤-,整数解为2,1,0,-1.18.不等式组的解集是27310x ≤<-,所以整数x 为0.19.不等式组的解集为6913x ≤, 所以不等式组的非负整数解为:0,l ,2,3,4,5.聚沙成塔 -4<m <0.5.1.6.一元一次不等式组(2)1.解:设甲地到乙地的路程大约是xkm ,据题意,得 16<10+1.2(x -5)≤17.2, 解之,得10<x ≤11,即从甲地到乙地路程大于10km ,小于或等于11km .2.解:设甲种玩具为x 件,则甲种玩具为(50-x )件.根据题意得:⎩⎨⎧≤-+≤-+6440)50(1201404600)50(10080x x x x 解得:20≤x ≤22答:甲种玩具不少于20个,不超过22个. 3.(1)y =3.2-0.2x(2)共有三种方案,A 、B 两种车厢的节数分别为24节、16节或25节、15节或26节、14节. 4.(1)共有三种购买方案,A 、B 两种型号的设备分别为0台、10台或1台、9台或2台、8台;(2)A 、B 两种型号的设备分别1台、9台;(3)10年节约资金42.8万元. 5.解:设明年可生产产品x 件,根据题意得:⎪⎩⎪⎨⎧+≤≤≤⨯≤600006000412000100002400800120x x x 解得:10000≤x ≤12000 答:明年产品至多能生产12000件.6.解:设宾馆底层有客房x 间,则二楼有客房(x+5)间.根据题意得:⎪⎪⎩⎪⎪⎨⎧>+<+><48)5(448)5(3485484x x x x 解得:9.6<x <11,所以 x = 10 答:该宾馆底层有客房10间. 7.解:(1)32(20)y x x =+-40x =+ (2)由题意可得203(20)264486(20)708x x x x +-⎧⎨+-⎩≥ ①≤ ②解①得x ≥12 解②得x ≤14∴不等式的解为12≤x ≤14 ∵x 是正整数∴x 的取值为12,13,14即有3种修建方案:①A 型12个,B 型8个;②A 型13个,B 型7个;③A 型14个,B 型6个. (3)∵y =x +40中,y 随x 的增加而增加,要使费用最少,则x =12 ∴最少费用为y =x +40=52(万元) 村民每户集资700元与政府补助共计:700×264+340000=524800>520000 ∴每户集资700元能满足所需要费用最少的修建方案. 8.解:(1)设一盒“福娃”x 元,一枚徽章y 元,根据题意得23153195x y x y +=⎧⎨+=⎩ 解得15015x y =⎧⎨=⎩ 答:一盒“福娃”150元,一枚徽章15元. (2)设二等奖m 名,则三等奖(10—m )名,216515015(10)1000216515015(10)1100m m m m ⨯++-⎧⎨⨯++-⎩≥≤ 解得1041242727m ≤≤. ∵m 是整数,∴m =4,∴10-m =6. 答:二等奖4名,三等奖6名.单元综合评价1. 3a -2b ≤5; 2.0,1,2,3; 3. <; 4. x >21; 5. m <2; 6.28人或29人;7.4x ; 8. 51-+≤a a x ; 9.x >2; 10. 1. 11. D ; 12. B ;13. B ;14. C ;15. D ;16. C ;17. B ;18. A . 19.解:图略 (1)x >-4 (2)-6≤x ≤-2. 20.(1)x ≤4;(2)x <3;(3)1<x ≤2; (4)2<x ≤4. 21. 解:9a 2 + 5a + 3-(9a 2-a -1)=6a +4当6a +4>0即a >-32时,9a 2 + 5a + 3>9a 2-a -1 当6a +4=0即a =-32时,9a 2 + 5a + 3=9a 2-a -1当6a +4<0即a <-32时,9a 2 + 5a + 3<9a 2-a -1.22.解:根据三角形三边关系定理,得 ⎩⎨⎧->-+<-38213821a a解得 25-<<-a .23.解:设导火线至少需xcm ,根据题意,得40215>⋅x4.80>x 81≈x答:导火线至少需要81厘米长.24.解:假设存在符合条件的整数m . 由 321mx x +->+ 解得 25->m x由 mm x m x 931+>+整理得 m m m x ->92, 当0>m 时,29mx ->.根据题意,得 2925mm -=- 解得 m=7 把m=7代入两已知不等式,都解得解集为1>x因此存在整数m ,使关于x 的不等式与321mx x +->+是同解不等式,且解集为1>x .25.解:(1)y 1=250x+200,y 2=222x+1600.(2)分三种情况:①若y 1>y 2,250x+200>222x+1600,解得x >50;②若y 1=y 2,解得x=50; ③若y 1<y 2,解得x <50.因此,当所运海产品不少于30吨且不足50吨时,应选择汽车货运公司承担运输业务;当所运海产品刚好50吨时,可选择任意一家货运公司;当所运海产品多于50吨时,应选择铁路货运公司承担业务.第二章 分解因式2.1分解因式1.整式,积;2.整式乘法;3.因式分解;4.C ;5.A ;6.D ;7.D ;8.B ;9.2,1-=-=n m ;10.0; 11.C; 12.能;2.2提公因式法1.ab 2;2.3+x ;3.)43)(2(++a a ;4.(1)x+1;(2)b-c;5.22432y xy x +-;6.D;7.A;8.(1)3xy(x-2); (2))5(522x y y x -; (3))1382(22+--m m m ; (4))72)(3(--a a ; (5))223)((y x m y x +--; (6))25()(62a b b a --;(7) )413(522y xy y x -+; (8)2(x+y)(3x-2y); (9)))((c b a a x ---; (10))(2n m q +;9.C;10.10;21;11.)1(2n n a a a ++;12.)1(2+=+n n n n ;13.6-;14.6;2.3运用公式法(1)1.B;2.B;3.C;4.(1)))((x y x y -+;(2))3)(3(41y x y x -+; 5.(1)800;(2)3.98; 6.(1)(2x+5y)(2x-5y); (2)y(x+1)(x-1); (3)(2x+y-z)(2x-y+z); (4)(5a-3b)(3a-5b);(5)-3xy(y+3x)(y-3x); (6)4a 2(x+2y)(x-2y); (7)(a+4)(a-4); (8))3)(3)(9(22y x y x y x -++; (9)(7p+5q)(p+7q); (10)-(27a+b)(a+27b); 7.x m+1(x+1)(x-1); 8.A; 9.2008; 10.40162009; 2.3运用公式法(2)1.±8;2.1;3.2)121(-x ; 4.(1)5x+1;(2)b-1;(3)4;2;(4)±12mn;2m ±3n;5.D;6.C;7.D;8.D;9.C;10.C;11.A;12.(1)-(2a-1)2;(2)-y(2x-3y)2;(3)(3x-3y+1)2;(4)3(1-x)2;(5)-a(1-a)2; (6)(x+y)2(x-y)2; (7)(a+b)2(a-b)2; (8)(x+3)2(x-3)2; (9)22)3(n mn +; (10)-2ax n-1(1-3x)2; 13.x=2;y=-3; 14.(1)240000;(2)2500;15.7;16.31-;17.A;18.B;19.B;20.1;单元综合评价1.C; 2.B; 3.B; 4.C; 5.C; 6.A; 7.C; 8.D; 9.A; 10.A;11.-11或13;12.57;13.-6;14.3;15.5;16. -3xy(3x 2y+2xy-1); 17.(a-b)2(a+b); 18.2)21(--x a ; 19.(x+y)2(x-y)2; 20.45000; 21.14; 22.2)1(1)1(+=+++n n n n第三章 分式3.1分式(1)1.②和④,①和③;2.43;3.23+-m m ,-2;4.31,-5;5.为任意实数,1;6.32-,3±;7.⑴t s ,⑵)(a mb a m --,⑶b a bn am ++,⑷pnm -;8.B ;9.C ;10.C ;11.⑴3±≠x ,⑵a x 4±≠;12.⑴x=2,⑵x=1;13.a=6;14.2<x ;15.-3,-1,0,2,3,5;四.109=+b a . 1分式(2):1.⑴ab a +2,⑵x ,⑶4n ,⑷x-y ;2.1≠x 且0≠x ;3.①y x32,②x x --112,③xx x -+-2122,④1312-++x x x ;4.①y x y x 560610+-,②15203012+-x y x ,③yx y x 20253940+-,④b a b a 1512810+-;5.B ;6.71-;7.①-6xyz ,②m m 2-,③42+-m ,④22+-a a ;8.5;9.53;10.-3,11;11.5642++x x ;四.1.M=N ;2.1. 3.2分式的乘除法1.⑴bc a 2,⑵22xy ;2.2-≠x 且3-≠x 且4-≠x ;3.b a x 265;4.515;5.D ;6.D ;7.C ;8.⑴y x 2-,⑵55ba -,⑶2-x x ,⑷11-+-m m ;9.⑴-1,⑵34-,⑶41.四.1. 3.3分式的加减法(1)1.⑴ab c -7,⑵1,⑶3-a ,⑷a b c b c 129810+-;2.D ;3.15bc 2;4.22+x x ;5.2235--x x ;6.yx xy+;7.⑴a1-,⑵8-,⑶33-+x x ,⑷a a 2-;8.52;9.2x ;10.-2;11.B ;12.⑴2,⑵21+-x ;13.83;四.1.3.3分式的加减法(2)1.B;2.B;3.C;4.27;5.1;6.⑴11-x ,⑵2)2(4--x x x ,⑶y ,⑷3-x ;7.31或21;8.81;9.A=1,B=1;10.12;11.-3;四.解:由13ab a b =+,得3a b ab +=,即113a b+=……① 同理可得114b c +=……②,115a c +=……③,①+②+③得22212a b c ++=,∴1116a b c ++=,∴6bc ac ab abc++=,∴abc ab bc ca ++=163.4分式方程(1)1.整式方程,检验;2.12-x ;3.D ;4.0;5.x=20;6.-1;7.5;8.x=2;9.3;10.C ;11.D ;12.3;13.4;14.-1;15.A ;16.⑴原方程无解,⑵x=2,⑶x=3,⑷3-=x ;四.221+-n n .3.4分式方程(2)1.B ;2.C ;3.3;4.22;5.D ;6.⑴x200,⑵5x ,(200-5x),⑶55200+-x x ,⑷1552005200++-+=x xx ;⑸20;7.3±;8.⑴x=4,⑵x=7;9.1>m 且9≠m ;10.解:设公共汽车的速度为x 千米/时,则小汽车速度为3x 千米/时,根据题意得xx x 38031380=+-解得x=20,经检验x=20是所列方程的解,所以3x=60,答:公共汽车的速度为20千米/时,小汽车的速度为60千米/时;11.解:设去年居民用水价格为x 元,则今年价格为1.25x 元,根据题意得,6181.2536=-xx ,解得x=1.8,经检验x=1.8是所列方程的解,所以1.25x=2.25.答:今年居民用水价格为2.25元.四.解:设需要竖式纸盒5x 个,则需要横式3x 个,根据题意得,)3354x x ⨯+⨯(∶)325(x x ⨯+=29x ∶11x=29∶11.答:长方形和正方形纸板的张数比应是29∶11.单元综合评价1.D ;2.B ;3.D ;4.C ;5.B ;6.B ;7.C ;8.)1()1(2-+x x x ;9.21≠x 且43-≠x ;10.2;11.53;12.-3;13.av v a +25;14.x=2;15.1<m 且3-≠m ;16.1210222++-x x x ;17.x -22;18.21;19.56-=x ;20.5-=x ;21.解:设改进前每天加工x 个,则改进后每天加工2.5个,根据题意得155.210001000+=xx ,解得x=40,经检验x=40是所列方程的解,所以2.5x=100.答:改进后每天加工100个零件.22.解:设甲原来的速度为x 千米/时,则乙原来的速度为(x-2)千米/时,根据题意得240844-40-=-+x x x ,解得x=12,经检验x=12是所列方程的解,所以x-2=10.答:甲原来的速度为12千米/时,乙原来的速度为10千米/时.第四章 相似图形4. 1线段的比⑴1.2:5,57;2.58;3.269;4.5; 5.1:50000;6.45;7.1:2:2;8.D ;9.B ;10.C ;11.B ;12.D ;13.⑴√⑵×;14.BC=10cm .4.1线段的比⑵1.3;2.32;3.53;4.C ;5.B ;6.B ;7.D ;8.B ;9.PQ=24;10.⑴3;⑵54-;11.⑴38;⑵76-;(3)-5;12.a :b:c=4:8:7;13.分两种情况讨论:⑴a +b+c≠0时,值为2;⑵a +b+c=0时,值为-1.4.2黄金分割 1.AP 2=BP·AB 或PB 2=AP·AB ;2.0.618;3.7.6,4.8;4.C ;5.C ;6.B ;7.C ;8证得AM 2=AN·MN 即可;9.⑴AM=5-1;DM=3-5;⑵略;⑶点M 是线段AD 的黄金分割点;10.通过计算可得215-=AB AE ,所以矩形ABFE 是黄金矩形. 4.3形状相同的图形1.相同⑶⑸;不同(1)(2)(4)(6).2.(a )与⑷,(b)与⑹,(c)与⑸是形状相同的;3.略;4.⑴AB=13,BC=26,AC=5,⑵A /B /=213,B /C /=226,A /C /=10,⑶成比例,⑷相同.4.4相似多边形1.×2.√3.×4.√5.√6.①④⑤;7.B ;8.B ;9.C ;10.C ;11.A ;12.27;13.66;14.一定;15.不一定;16.2;17.都不相似,不符合相似定义;18.各角的度数依次为650,650,1150;1150.B 'C '=A 'D '=415cm ;19.BC·CF=1;20.相似;21.2;22.b 2=2a 2. 4.5相似三角形1.全等;2.4:3;3.24cm ;4.80,40;5.直角三角形,96cm 2;6.3.2;7.D ;8.B ;9.D ;10.C ;11.C ;12.A ;13.B ;14.A /B /=18cm ,B /C /=27cm ,A /C /=36cm ;15.⑴相似,1:2.⑵分别为43a 2和163a 2. ⑶面积之比等于边长之比的平方.4.6探索三角形相似的条件⑴1.2;2.6;3.2;4.4;△CDF ,1:2,180;5.4:3;6.2.4;7.572;8.B ;9.B ;10.C ;11.C ;12D ;13.BF=10cm ;14.⑴略.⑵BM=3. 15.由已知可得:AE AF BE FG =, AEAF DE FC =,BE=DE ,所以,FG=FC . 16.由已知可得: AG AF CG BF =,AG AF GD EF =,所以GD EF CG BF =.17. 由已知得:BF DF CF GF =,BFDF EF CF =,可得EF CF CF GF =,即: CF 2=GF·EF . 18.由已知得: PB PD PA PQ =,PB PD PR PA =,可得: 22PBPD PR PQ =. 19.不变化,由已知得: BC CP AB PE =,BCBP CD PF =,得:1=+CD PF AB PE ,即PE+PF=3. 20.提示:过点C 作CG//AB 交DF 于G .21.23. 22.⑴由已知得:21===CD OE FC OF GC EG ,所以32=CE GC ,即31=BC GC .问题得证.⑵连结DG 交AC 于M ,过M 作MH ⊥BC 交BC 于H ,点H 即为所求.23.⑴证△AEC ≌△AEF 即可.⑵EG=4.24.⑴过点E 作EG//BC 交AE 于G .可得: nn m EC BE +=.⑵由⑴与已知得:2=+n n m 解得:m=n ,即AF=BF .所以:CF ⊥AB .⑶不能,由⑴及已知可得:若E 为中点,则m=0与已知矛盾.4.6探索三角形相似的条件⑵1.三;2.22,26;3.6;4;15-55;5.310;6.2.4;7.A ;8.C ;9.B ;10.A ;11.B ;12.A ;13.⑴略.⑵相似,由⑴得∠AFE=∠BAC=600,∠AEF 公共.⑶由△BDF ∽△ABD 得: AD BD BD DF =,即BD 2=AD·DF .14.⑴∠BAC=∠D 或∠CAD=∠ACB .⑵由△ABC ∽△ACD 得BCAC AC AD =,解得:AD= 4,所以中位线的长= 6.5. 15.证: △ADF ∽△BDE 即可.16.AC = 43.17.提示:连结AC 交BD 于O .18.连结PM ,PN .证: △BPM ∽△CPN 即可.19.证△BOD ∽△EOC 即可.20.⑴连结AF .证; △ACF ∽△BAF 可得AF 2=FB·FC ,即FD 2=FB·FC .⑵由⑴相似可得: CF AF AC AB =,AF BF AC AB =,即CFBF AC AB =22. 21.⑴略.⑵作AF//CD 交BC 与F .可求得AB=4.⑶存在.设BP=x ,由⑴可得xx -⨯=74834,解得x 1=1, x 2= 6.所以BP 的长为1cm 或6cm .22.⑴由∠AFC=∠BCE=∠BCF+450,∠A=∠B=450可证得相似.⑵由⑴得AF·BE=AC·BC=2S .23. ⑴略. ⑵△ABP ∽△DPQ , DQ PD AP AB =,xy x -+=522,得y =-21x 2+25x -2.(1<x <4). 24. ⑴略. ⑵不相似.增加的条件为: ∠C=300或∠ABC=600.4.6探索三角形相似的条件⑶1.√;2.√;3.相似;4.90;5.相似;6.相似;7.D ;8.C ;9.C ;10.略;11.略;12.易得BCEF OC OF AC DF OA OD AB DE ====. 13.证: 22===AG AF CG AC AC CF 得△ACF ∽△ACG ,所以∠1=∠CAF ,即∠1+∠2+∠3=900. 14.A .15. ⑴略. ⑵AQ 平分∠DAP 或△ADQ ∽△AQP 等.4.6探索三角形相似的条件⑷1.相似;2.4.1;3.310;4.4;5.ABD ,CBA ,直角;6.D ;7.A ;8.C ;9.B ;10.C ;11.DE//BC ;12.证△AEF ∽△ACD ,得∠AFE=∠D ;13.易得△ABD ∽△CBE , ∠ACB=∠DEB .14.证△ABD ∽△ACE 得∠ADB=∠AEC 即可.15.略.16. ⑴CD 2=AC·BD .⑵∠APB=1200. 17.分两种情况讨论: ⑴CM=55,⑵CM=552. 18. ⑴证明△ACD ∽△ABE , ⑵AD AC DE BC =或AE AB DE BC =.由⑴得: AD AE AC AB =,△ABC ∽△AED 问题即可得证.19.650或1150.20.易得2==CEDF CF AD ,△CEF ∽△DAF ,得2=EF AF 与∠AFE=900.即可得到.21. ⑴证明△CDE ∽△ADE ,⑵由⑴得BC AD CE DM 212=,即BC AD CE DM =,又∠ADM=∠C .⑶由⑵得∠DBF=∠DAM ,所以AM ⊥BE . 22.易得:AC=6,AB=10.分两种情况讨论: 设时间为t 秒.⑴当AC CQ BC PC =时, 6828t t =-,解得t=512.⑵同理得8628t t =-,解得t=1132. 23. ⑴相似,提示可延长FE ,CD 交于点G . ⑵分两种情况:①∠BCF=∠AFE 时,产生矛盾,不成立.②当∠BCF=∠EFC 时,存在,此时k=23.由条件可得∠BCF=∠ECF=∠DCE=300,以下略.4.6探索三角形相似的条件⑸1.B ;2.C ;3.B ;4.C ;5.C ;6.C ;7.C ;8.A ;9.C ;10.B ;11.2等(答案不 唯一);12.DE//BC(答案不唯一);13. △ABF ∽△ACE , △BDE ∽△CDF 等;14.②③;15. ∠B=∠D(答案不 唯一);16.略;17.略(只要符合条件即可);18. ⑴七. ⑵△ABE ∽△DCA ∽△DAE ;19.利用相似可求得答案: x = 2cm .20. ⑴相似,证略.⑵BD=6.21.BF 是FG ,EF 的比例中项.证△BFG ∽△EFB 即可.22.证△ACF ∽△AEB .23. 2.24. ⑴AQ=AP ,6-t=2t 解得t=2.⑵S=12×6-21×12t -21×6(12-2t)=36.所以四边形的面积与点P ,Q 的位置无关.⑶分两种情况:①t=3.②t=56. 4.7测量旗杆的高度1.20;2.5;3.14;4.C ;5.C ;6.AB=25346米;7.MH=6m ;8. ⑴DE=310m ;⑵3.7m/s ;9.由相似可得: ⎪⎪⎩⎪⎪⎨⎧+==1284.37.18.17.1BC AB BC AB 解得AB=10.所以这棵松树的高为10m . 10.略.4.8相似多边形的性质1.2:3;2.2:5,37.5;3.1:4,1:16;4.1:4;5.75;6.1:16;7.22;8.60;9.C ;10.C ;11.C ;12.D ;13.B ;14.B ;15.C ;16.B ;17.4.8cm ;18.25;19.16;20.⑴提示:延长AD ,BF 交于G .AE:EC=3:2.⑵4.21.⑴S 1:S=1:4.⑵141+-=x y (0<x <4).22.提示:延长BA ,CD 交于点F .面积=16217.23. ⑴可能,此时BD=72108180-.⑵不可能,当S FCE ∆的面积最大时,两面积之比=925<4. 24.⑴S AEF ∆=x x 512522+-.⑵存在.AE=266-.25.略.26. ⑴640元.⑵选种茉莉花.⑶略.27. ⑴利用勾股定理问题即可解决.⑵答:无关.利用△MCG ∽△MDE 的周长比等于相似比可求得△MCG 的面积=4a .28. ⑴CP=22.⑵CP=724.⑶分两种情况①PQ=3760,②PQ=49120. 29.提示:作△ABC 的高AG . ⑴略.⑵DE=38. 30. ⑴x =310s .⑵2:9.⑶AP=940或20. 31.⑴DE=AD ,AE=BE=CE . ⑵有: △ADE ∽△ACE 或△BCD ∽△ABC . ⑶2:1.4.9图形的放大与缩小1.点O ,3:2;2.68,40;3. △A 'B 'C ',7:4, △OA 'B ',7:4;4.一定;5.不一定;6.略;7.(-1,2)或(1, -2),(-2,1)或(1, -2);8.2:1;9.D ;10.C ;11.B ;12.D ;13.C ;14.D ;15.略;16.略;17.略;18.略;19. ⑴略; ⑵面积为445. 单元综合评价⑴1.C ;2.C ;3.C ;4.A ;5.D ;6.B ;7.B ;8.C ;9.95;10.80;11.5;12.8;13.7.5;14.5;15.8:27;16.a 22;17.1:3; 18.相似.证明略.19.10:2.20.25:64.21.边长为6.22.y x :=3:2.23.略.24. △ABF ∽△ACE ,AB AF AC AE =得△AEF ∽△ACB . 25.菱形的边长为320cm . 26.证明略.27. ⑴边长为48mm .⑵分两种情况讨论:①PN=2PQ 时,长是7480mm ,宽是7240mm .②PQ=2PN 时,长是60mm .宽是30mm .单元综合评价⑵1.64cm ;2.4:9;3.30;4.三;5.72;6. △AEC ;7.1:4;8.②③④;9.8:5;10.7;11.C ;12.B ;13.B ;14.C ;15.C ;16.D ;17.D ;18.C ;19.B ;20.A ;21.略;22.EC= 4.5cm ;23.21. 6cm 2;24.略;25.边长是48mm .26. ⑴AC AO BC OE =,DC DF BC OF =,DCDF AC AO =,所以:OE= OF . ⑵易得OE=712,EF=2OE=724.27. ⑴PM=43厘米. ⑵相似比为2:3.⑶由已知可得:t=aa +66≤3,解得a ≤6,所以3<a ≤6. ⑷存在.由条件可得:⎪⎪⎩⎪⎪⎨⎧-=-+=t t a at a a t 3)(66 解得: a 1=23,a 2=-23(不合题意,舍去). 28. ⑴600,450.⑵900-21α.⑶900-21α,900+21α.证明略. 第五章 数据的收集与处理5.1 每周干家务活的时间1、(1)普查 (2)抽样调查 (3)抽样调查 (4)抽样调查2、(1)总体:该种家用空调工作1小时的用电量;个体:每一台该种家用空调工作1小时的用电量;样本:10台该种家用空调每台工作1小时的用电量;样本容量:10 (2)总体:初二年级270名学生的视力情况;个体:每一名学生的视力情况;样本:抽取的50名学生的视力情况;样本容量:50.3、D4、B5、(1)适合抽样调查 (2)适合普查 (3)适合抽样调查 (4)适合普查6、(1)缺乏代表性 (2)缺乏代表性 (3)有代表性7、8001512000=÷条 8、估计该城市一年(以365天计)中空气质量达到良以上的天数为219天. 四、聚沙成塔(略)5.2 数据的收集1、抽样调查2、A3、C4、7万名学生的数学成绩、每名考生的数学成绩、1500名考生的数学成绩5、D6、(1)丘陵,平原,盆地,高原,山地;山地的面积最大(2)59%(3)丘陵和平原(4)各种地形的面积占总面积的百分比,100%(5)略(6)不能(7)96万平方千米,249.6万平方千米.7、原因可能是:样本的容量太小,或选区的样本不具有代表性、广泛性、随机性.8、(1)否(2)抽样调查(3)200(4)不一定,抽查的样本不具有代表性和广泛性. 9、(1)平均质量为2.42千克. (2)900只可以出售.四、聚沙成塔能装电话或订阅《文学文摘》杂志的人在经济上相对富裕,而占人口比例多数、收入不高的选民却选择了罗斯福,因此抽样调查既要关注样本的大小,又要关注样本的代表性.5.3 频数与频率1、C2、0.323、0.54、0.185、D6、(1)48人(2)12人,0.257、0.258、(1)0.26 24 3 0.06(2)略9、(1)8,12,0.2,0.24 (2)略 (3)900名学生竞赛成绩, 每名学生竞赛成绩, 50名学生竞赛成绩,50 (4)80.5~90.5 (5)216人四、聚沙成塔(1)89分(2)甲的综合得分=92(1-a )+87a 乙的综合得分=89(1-a )+88a 当0.5 ≤a <0.75, 甲的综合得分高;当0.75 <a ≤0.8, 乙的综合得分高.5.4 数据的波动1、B2、A3、24、C5、B6、B7、D8、9 s ²9、2 10、4牛顿 11、(1)90分、70分、甲组(2)172、256、甲组成绩比较整齐. 12、甲x =8,乙x =8,x 丙=7.6,2甲s =4.4,2乙s =2.8,2s 丙=5.44;(2)乙 13、(1)8,7,8,2,60% (2)略 四、聚沙成塔(1)701.6 699.3 (2)65.84 284.21 (3)甲稳定 (4)甲,乙单元综合评价1、 某校八年级学生的视力情况,每名八年级学生的视力情况,85八年级学生的视力情况.2、 (2), (1)、(3)3、3.2 、964、不可信,样本不具有代表性5、50,20、0.46、3,5,12克7、(1)50,(2)60%(3)15 8、3,2.25,1.5 9、A 10、B 11、D 12、B 13、C 14、B 15、B 16、B 17、C 18、B 19、(1)102、113,106 (2)3180(3)y=53x 20\(1)21人 (2)0.96 (3)答题合理即可 21、(1)7、7、7.5、3(2)①甲的成绩较为稳定②乙的成绩较好③乙要比甲成绩好④尽管甲的成绩较为稳定,单从折线图的走势看,从第四次射击后,乙每次成绩都比甲高,并成上升趋势,乙的潜力比较大.第六章 证明(一)6.1 你能肯定吗?1、 观察可能得出的结论是(1)中的实线是弯曲的;(2)a 更长一些;(3)AB 与CD 不平行.而我们用科学的方法验证可发现:(1)中的实线是直的;(2)a 与b 一样长;(3)AB 与CD 平行. 2、一样长.计算略. 3、(1)不正确;(2)不正确;(3)不正确. 4.A 5.B6.能 7、原式=n 4,,所以一定为4的倍数.8、(1)正确的结论有①②③;(2)略 9.将此长方体从右到左数记为Ⅰ,Ⅱ,Ⅲ,Ⅳ,由Ⅱ,Ⅳ可知,白颜色的面与红、黄两种颜色的面必相邻,又由Ⅰ知,白颜色的面应是蓝色的对面,恰为Ⅰ中的下底面,由Ⅲ知红与紫必相邻,再与Ⅰ相比较知,黄色的对面必为紫色了,从而红色的对面必为绿色了,通过上面的推理可以知道Ⅰ的下底面为白颜色,有4朵花,Ⅱ的下底面为绿色,有6朵花,Ⅲ的下底面为黄色,有2朵花,Ⅳ的下底面的紫色有5朵花,故这个长方体的下底面有(4+6+2+5)朵花,即共17朵花.聚沙成塔.m 4.107371000201.030≈÷⨯,比五层楼和电视塔都高.6.2 定义与命题1.(1)题设:两个角是对顶角;结论:这两个角相等(2)题设: 22b a =;结论:b a =(3)题设:如果两个角是同角或等角的补角;结论:这两个角相等(4)题设:同旁内角互补;结论:两直线平行(5)题设:经过两点作直线;结论:有且只有一条直线.2.C3.C4.C5.B6.D7.(1)如果在同一平面内,两条直线垂直于同一条直线,那么这两条直线平行.(2)如果一个三角形有两条边相等,那么这两条边所对的角相等.(3)如果两个数的绝对值相等,那么这两个数相等.(4)如果一个数是有理数,那么在数轴上就有一个点与之相对应.(5)如果一个三角形是直角三角形,那么这个三角形的两个锐角互余.8.略9.D 10.D 11.B 12.C 13.D 14略 15.(1)假命题(2)真命题(3)假命题16. 两条平行直线被第三条直线所截,同旁内角的平分线互相垂直.17.解;例如已知,,C B AC AB ∠=∠=求证:AD AE =是真命题.(只要答案合理即可)18.先把羊带过河,再把狼带过河,然后把羊带回去,把青草带过河,最后再回去把羊带过河.6.3 为什么它们平行1.C2. C3.B4.C5.B6. D7.A8.B9.(1)AD ∥BC (2) AD ∥BC (3)AB ∥CD 10.平行11.平行 12.平行,同位角相等,两直线平行. 13——16答案略 17.因为∠A=∠1,∠2+∠ACE+∠1=180º,又AC ⊥CE ,故∠ACE=90º,∴∠1+∠2=90º,∴∠A+∠2=90º,∴∠ABC=90º,同理∠EDC=90º,∴AB ∥DE. 18.提示:∠B+∠A=90º,∠AEF=∠B ,∴∠AEF+∠A=90º19.提示:∠A=90º,∠B=60º,∠C=30º ,∠A :∠B :∠C=3:2:16.4 如果两条直线平行1.C 2.C 3.C 4.B 5.A 6. 110º 7. 123º 8. 180º 9.南偏东70º 10. 证明:(1)∵AD ∥BC ,∴∠1=∠B ,∠2=∠C.又∠B=∠C ,∴∠1=∠2,即AD 平分∠EAC ;(2)由∠B+∠C+∠BAC=180º,且∠1+∠2+∠BAC=180º知,∠1+∠2=∠B+∠C ,又AD 平分∠EAC ,∴∠1=∠2,而∠B=∠C ,故∠1=∠B ,或∠2=∠C ,从而AD ∥BC.11. 148º12.提示:过点C 做CP ∥AB 13. 121º49ˊ 14. (1)证明:过C 作CD ∥AB ,∵AB ∥EF ,∴CD ∥AB ∥EF ,∴∠B=∠BCD ,∠F=∠FCD , 故∠B+∠F=∠BCF.(2)过C 作CD ∥AB ,∴∠B+∠BCD=180º,又AB ∥EF ,AB ∥CD ,∴CD ∥EF ∥AB ,∴∠F+∠FCD=180º,故∠B+∠F+∠BCF=360º.6.5 三角形内角和定理的证明1.B2.D3.C4.D5.B6. 90º7. 50º, 100º8. 40º9. 63º 10. 100º 11. 50º12.略13.略 14.连CE ,记∠AEC=∠1,∠ACE=∠2,∴∠D+∠2+∠1+∠DEA=180º,∠B+∠1+∠2+∠BCA=180º,∠F+∠1+∠2+21∠DEA+21∠BCD=180º 由 ∠D+∠2+∠1+∠DEA+∠B+∠1+∠2+∠BCA=360º. ∴21(∠D+∠B )+∠1+∠2+21∠BCA+21∠DEA=180º ∴∠1+∠2+21∠BCA+21∠DEA=180º-21(∠D+∠B ), 即∠F+180º-21(∠D+∠B )=180º,∴∠F=21(∠B+∠D ); ( 2)设∠B=2α,则∠D=4α,∴∠F= 21(∠B+∠D )=3α, 又∠B :∠D :∠F=2:4:x ,∴x=3.2.略. 15.略6.6 关注三角形的外角1.C 2.C 3.C 4.B 5C 6. 35° 7. 37.5° 8. 260° 9. 55°或70° 10. 120°或115°或125°11.AF ⊥DE 12.∠D=70° ∠D=90°12A +∠ 13. 证法一:延长CD 交AB 于点E ; 证法二:过点B 做BF ⊥AD ,交AD 的延长线于点F.14.证法1: 360BDC BDA CDA∠=-∠-∠又180BDA B BAD ∠=-∠-∠ 180CDA C CAD ∠=-∠-∠360(180)BDC B BAD ∴∠=--∠-∠-(180)C CAD BAD CAD B C -∠-∠=∠+∠+∠+∠即BDC BAC B C ∠=∠+∠+∠;证法2略. 15.略16.延长BP 交AC 于D ,则∠BPC >∠BDC ,∠BDC >∠A 故∠BPC >∠A(2)在直线l 同侧,且在△ABC 外,存在点Q ,使得∠BQC >∠A 成立.此时,只需在AB 外,靠近AB 中点处取点Q ,则∠BQC >∠A .证明略.提示:单元综合评价一、1.A 2.C 3.D 4.B 5.B 6.B 7.B 8.C 9.B 10.B二、11.略12.80° 13.60° 14.115° 15.88° 16.45°>∠B>30°17.360 ° 18.118° 19.3 20.68°三、21.10022.证明: ∵∠ADE=∠B ,∴ED ∥BC . ∴∠1=∠3.∵∠1=∠2,∴∠3=∠2.∴CD ∥FG .∵FG ⊥AB ,∴CD ⊥AB .23. ∵L 1∥L 2, ∴∠ECB+∠CBF=180°. ∴∠ECA+∠ACB+∠CBA+∠ABF=180°.∵∠A=90°, ∴∠ACB+∠CBA=90°. 又∠ABF=25°, ∴∠ECA=180°-90°-25°=65°.24.解:分两种情况(1)当ABC ∆为锐角三角形时,70B ∠=(2) 当ABC ∆为钝角三角形时,20B ∠=25.略 33.FD EC ⊥90EFD FEC ∴∠=-∠而FEC B BAE ∴∠=∠+∠又AE 平分BAC ∠11(180)22BAE BAC B C ∴∠=∠=-∠-∠=190()2B C -∠+∠ 则19090()2EFD B B C ⎡⎤∠=-∠+-∠+∠⎢⎥⎣⎦=1()2C B ∠-∠ (2)成立。
北师大版八年级下册数学《不等式的解集》一元一次不等式和一元一次不等式组说课研讨教学复习课件
3×4 + 2X ≤ 30
表示不等式的解集 你能用什么办法把不等式 x>5的解集和 不等式x-5≤-1的解集表示在数轴上?
x>5
-1 0 1 2 3 4 5 6 7 8 9 10 11 12 13
x≤4
将不等式的解集表示在数轴上时,要注意:
1)指示线的方向,“>”向右,“<”向左. 2)有“=”用实心点,没有“=”用空心圈.
A.1个
B.2个
C.3个
D.4个
探究新知
知识点 2 在数轴上表示不等式的解集
思考:如何在数轴上表示出不等式x>2的解集呢? 先在数轴上标出表示2的点A; 则点A右边所有的点表示的数都大于2,而点A左边 所有的点表示的数都小于2;
因此可以像图那样表示不等式的解集x>2.
A -1 0 1 2 3 4 5 6
课堂检测
能力提升题
2、根据不等式的基本性质确定不等式2-x<1的解集,并把解集表
示在数轴上. 解:根据不等式的基本性质1,不等式的两边同时减去2得-x<-1; 根据不等式的基本性质3,不等式的两边同时除以-1得x>1. 这个不等式的解集在数轴上表示为:
课堂检测
拓广探索题
1、不等式2x-3≥-1的解集在数轴上表示为( A )
-3 -2 -1 0 1 2 3 4 5 6 7 8
根据不等式的基本性质求不等式的解集,
并把解集表示在数轴上.
(1)x-2≥ -4
(2)2x ≤ 8
解:两边同时加2得:
解:两边同时除以2得:
x ≥ -2
x ≤4
-3 -2 -1 0 1 2
(3)-2x-2 > -10
北师大八年级数学下册一元一次不等式应用题精讲及分类训练(分类训练含答案)
一元一次不等式(组)解应用题精讲及分类练习识别不等式(组)类应用题的几个标志,供解题时参考.一.下列情况列一元一次不等式解应用题1.应用题中只含有一个不等量关系,文中明显存在着不等关系的字眼,如“至少”、“至多”、“不超过”等.例1.为了能有效地使用电力资源,宁波市电业局从1月起进行居民峰谷用电试点,每天8:00至22:00用电千瓦时0.56元(“峰电” 价),22:00至次日8:00每千瓦时0.28元(“谷电” 价),而目前不使用“峰谷”电的居民用电每千瓦时0.53元.当“峰电”用量不超过...每月总电量的百分之几时,使用“峰谷”电合算?分析:本题的一个不等量关系是由句子“当‘峰电’用量不超过...每月总电量的百分之几时,使用‘峰谷’电合算”得来的,文中带加点的字“不超过...”明显告诉我们该题是一道需用不等式来解的应用题.解:设当“峰电”用量占每月总用电量的百分率为x 时,使用“峰谷”电合算,月用电量总量为y.依题意得0.56xy+0.28y(1-x)<0.53y.解得x <89℅答:当“峰电”用量占每月总用电量的89℅时,使用“峰谷”电合算.2.应用题仍含有一个不等量关系,但这个不等量关系不是用明显的不等字眼来表达的,而是用比较隐蔽的不等字眼来表达的,需要根据题意作出判断.例2.周未某班组织登山活动,同学们分甲、乙两组从山脚下沿着一条道路同时向山顶进发.设甲、乙两组行进同一段路程所用的时间之比为2:3.⑴直接写出甲、乙两组行进速度之比;⑵当甲组到达山顶时,乙组行进到山腰A处,且A处离山顶的路程尚有1.2千米.试问山脚离山顶的路程有多远?⑶在题⑵所述内容(除最后的问句外)的基础上,设乙组从A处继续登山,甲组到达山顶后休息片刻,再从原路下山,并且在山腰B 处与乙组相遇.请你先根据以上情景提出一个相应的问题,再给予解答(要求:①问题的提出不得再增添其他条件;②问题的解决必须利用上述情景提供的所有已知条件).解:⑴甲、乙两组行进速度之比为3:2.⑵设山腰离山顶的路程为x 千米,依题意得方程为232.1=-x x , 解得x =6.3(千米).经检验x =6.3是所列方程的解,答:山脚离山顶的路程为6.3千米.⑶可提问题:“问B 处离山顶的路程小于多少千米?”再解答如下:设B 处离山顶的路程为m千米(m>0)甲、乙两组速度分别为3k 千米/时,2k 千米/时(k >0) 依题意得k m 3<km 22.1-,解得m<0.72(千米). 答:B 处离山顶的路程小于0.72千米.说明:本题由于所要提出的问题被两个条件所限制,因此,所提问题应从句子“乙组从A 处继续登山,甲组到达山顶后休息片刻....,再从原路下山,并且在山腰B 处与乙组相遇”去突破,若注意到“甲组到达山顶后休息片刻....”中加点的四个字,我们就可以看出题中隐含着这样一个不等关系:乙组从A 处走到B 处所用的时间比甲组从山顶下到B 处所用的时间来得少,即可提出符合题目要求的问题且可解得正确的答案.二.下列情况列一元一次不等式组解应用题1.应用题中含有两个(或两个以上,下同)不等量的关系.它们是由两个明显的不等关系体现出来,一般是讲两件事或两种物品的制作、运输等.例3.已知服装厂现有A 种布料70米,B 种布料52米,现计划用这两种面料生产M,N 两种型号的时装共80套.已知做一套M 型号的时装需用A 种布料0.6米,B 种布料0.9米,可获利45元;做一套N 型号的时装需用A 种布料1.1米,B 种布料0.4米,可获利润50元.若设生产N 型号码的时装套数为x,用这批布料生产这两种型号的时装所获的总利润为y 元.(1)求y(元)与x(套)的函数关系式,并求出自变量x 的取值范围;(2)服装厂在生产这批时装中,当N 型号的时装为多少套时,所获利润最大?最大利润是多少? 分析:本题存在的两个不等量关系是:①合计生产M 、N 型号的服装所需A 种布料不大于70米;②合计生产M 、N 型号的服装所需B 种布料不大于52米.解:(1)=y ()x x 508045+-,即36005+=x y .依题意得⎩⎨⎧≤+-≤+-.524.0)80(9.0;701.1)80(6.0x x x x 解之,得40≤x ≤44.∵x 为整数,∴自变量x 的取值范围是40,41,42,43,44.(2)略2.两个不等关系直接可从题中的字眼找到,这些字眼明显存在着上下限.例4.某校为了奖励在数学竞赛中获胜的学生,买了若干本课外读物准备送给他们.如果每人送3本,则还余8本;如果前面每人送5本,则最后一人得到的课外读物不足..3.本..设该校买了m 本课外读物,有x 名学生获奖.请回答下列问题:(1)用含x 的代数式表示m;(2)求出该校的获奖人数及所买课外读物的本数.分析:不等字眼“不足..3.本.”即是说全部课外读物减去5(x -1)本后所余课外读物应在大于等于0而小于3这个范围内.解:(1)m=3x+8(2)由题意,得⎩⎨⎧<--+≥--+.3)1(5830)1(583x x x x ∴不等式组的解集是:5<x ≤213 ∵x 为正整数,∴x=6.把x=6代入m=3x+8,得m=26.答:略例5.某城市的出租汽车起步价为10元(即行驶距离在5千米以内都需付10元车费),达到或超过5千米后,每行驶1千米加1.2元(不足1千米也按1千米计).现某人乘车从甲地到乙地,支付车费17.2元,问从甲地到乙地的路程大约是多少?分析:本题采用的是“进一法”,对于不等关系的字眼“不足1千米也按1千米计”,许多同学在解题时都视而不见,最终都列成了方程类的应用题,事实上,顾客所支付的17.2元车费是以上限11公里来计算的,即顾客乘车的范围在10公里至11公里之间.理论上收费是按式子10+1.2(x-5)来进行的,而实际收费是取上限值来进行的.解:设从甲地到乙地的路程大约是x 公里,依题意,得10+5×1.2<10+1.2(x-5)≤17.2解得10<x ≤11 答:从甲地到乙地的路程大于10公里,小于或等于11公里.用一元一次不等式组解决实际问题的步骤:⑴审题,找出不等关系;⑵设未知数;⑶列出不等式;⑷求出不等式的解集;⑸找出符合题意的值;⑹作答。
北师大版初中数学八年级下册期末总复习
第一章 一元一次不等式和一元一次不等式组
一、一般地,用符号“<”(或“≤”),“>”(或“≥”)连接的式
子叫做不等式。能使不等式成立的未知数的值,叫做不等式的解. 不等式的解
不唯一,把所有满足不等式的解集合在一起,构成不等式的解集. 求不等式解
集的过程叫解不等式.
3、当m取何值时,3x+m-2(m+2)=3m+x的解在-5和5之间。
第一章 整章水平测试
一、填空题(每小题3分,共30分)
1.若代数式t?1t?1?的值不小于-3,则t的取值范围是_________. 52
2.不等式3x?k?0的正数解是1,2,3,那么k的取值范围是________.
由几个一元一次不等式组所组成的不等式组叫做一元一次不等式组。
不等式组的解集 :一元一次不等式组各个不等式的解集的公共部分。
等式基本性质:
1、在等式的两边都加上(或减去)同一个数或整式,所得的结果仍是等式.
2、在等式的两边都乘以或除以同一个数(除数不为0),所得的结果仍是等式.
二、不等式的基本性质:
五、列一元一次不等式组解实际问题的一般步骤:
(1) 审题;(2)设未知数,找(不等量)关系式;(3)设元,(根据不等量)
关系式列不等式(组)(4)解不等式组;检验并作答。
六、常考题型:
1、 求4x-6 7x-12的非负数解.
2、已知3(x-a)=x-a+1r的解适合2(x-5) 8a,求a 的范围.
若c<0, 则ac<bc
不等式的其他性质:反射性:若a>b,则b<a;传递性:若a>b,且b>c,、去分母; 2、去括号; 3、移项合并同类项; 4、系
北师大版初中数学八年级下册第二单元《一元一次不等式与一元一次不等式组》(标准困难)(含答案解析)
北师大版初中数学八年级下册第二单元《一元一次不等式与一元一次不等式组》(标准困难)(含答案解析)考试范围:第二单元; 考试时间:120分钟;总分:120分,第I卷(选择题)一、选择题(本大题共12小题,共36.0分。
在每小题列出的选项中,选出符合题目的一项)1. 给出下列数学表达式: ①−3<0; ②4x+3y>0; ③x=5; ④x2−xy+y2; ⑤x+2>y−7.其中不等式的个数是.( )A. 5B. 4C. 3D. 12. 下列不等关系表示正确的是.( )A. a是负数可表示为a>0B. x不大于3可表示为x>3C. m与4的差是负数可表示为m−4<0D. x与2的和为非负数可表示为x+2>03. 已知2m>4m,那么.( )A. m一定是正数B. m是0或负数C. m是非负数D. m一定是负数4. 设a,b,c表示三种不同物体的质量,用天平称两次,情况如图所示,则这三种物体的质量从小到大排序正确的是.( )A. c<b<aB. b<c<aC. c<a<bD. b<a<c5. 等式√x−3√x+1=√x−3x+1成立的x的取值范围在数轴上可表示为( )A. B. C. D.6. 已知关于x的不等式(1−a)x>1的解集为x<11−a,则a的取值范围是( )A. a≥1B. 0≤a<1C. a>1D. 0<a≤17. 欲用甲、乙两种运输车将46t抗旱物资运往灾区,甲种运输车载质量为5t,乙种运输车载质量为4t,若安排车辆不超过10辆,则甲种运输车至少应安排.( )A. 4辆B. 5辆C. 6辆D. 7辆8. 某商店老板销售一种商品,他要以不低于进价20%的利润才能出售,但为了获得更多利润,他以高出进价80%的价格标价.若小李想买下标价为360元的这种商品,商店老板让价的最大限度为.( )A. 160元B. 120元C. 100元D. 82元9. 函数y =kx +b(k,b 为常数,且k ≠0)的图象如图所示,则关于x 的不等式kx +b >0的解集为.( )A. x >0B. x <0C. x <2D. x >210. 如图,一次函数y =kx +b(k,b 为常数,且k ≠0)与正比例函数y =ax (a 为常数,且a ≠0)的图象相交于点P ,则不等式kx +b >ax 的解集是.( )A. x >1B. x <1C. x >2D. x <211. 用若干辆载重量为6吨的货车运一批货物,若每辆货车只装4吨,则剩下18吨货物;若每辆货车装6吨,则最后一辆车装的货物不足5吨,若设有x 辆货车,则x 应满足的不等式组是( )A. {6x −(4x +18)>06x −(4x +18)≤5B. {(4x +18)−6(x −1)>0(4x +18)−6(x −1)≤5C. {6(x −1)−(4x +18)⩾06(x −1)−(4x +18)<5D. {(4x +18)−6(x −1)⩾0(4x +18)−6(x −1)<5 12. 若关于x 的不等式组{2x +3>12x −a ≤0恰有3个整数解,则实数a 的取值范围是( ) A. 7<a <8 B. 7<a ≤8 C. 7≤a <8 D. 7≤a ≤8第II 卷(非选择题)二、填空题(本大题共4小题,共12.0分)13. 当x________时,代数式x+32−5x−16的值是非负数.14. 如图,一次函数y=x+b与一次函数y=kx+4的图象相交于点P(1,3),则关于x的不等式x+b>kx+4的解集是.15. 不等式组╔╔ \ begin{cases}3x+1 .16. 我们定义|a bc d |=ad−bc,例如|2345|=2×5−3×4=−2,则不等式组1<|1x34|<3的解集是.三、解答题(本大题共9小题,共72.0分。
2.6 一元一次不等式组 北师大版数学八年级下册堂堂练及答案
2.6一元一次不等式组——2022-2023学年北师大版数学八年级下册堂堂练1.将不等式组的解集在数轴上表示出来,正确的是( )A.B.C.D.2.不等式组的解集是( )A. B. C. D.3.若关于x的一元一次不等式组的解集是,则m的取值范围是( )A. B. C. D.4.把一些图书分给几名同学,如果每人分3本,那么余8本;如果前面的每名同学分5本,那么最后一人至少有一本,但不到3本.那么这些图书有( )A.26本B.25本C.24本D.23本5.若不等式组无解,则m的取值范围为( )A. B. C. D.6.不等式组的解集为________.7.不等式组的所有整数解的和为___________.8.入汛以来,我国南方地区发生多轮降雨,造成的多地发生较重洪涝灾害.某爱心机构将为一受灾严重地区捐赠的物资打包成件,其中帐篷和食品共320件,帐篷比食品多80件.(1)求打包成件的帐篷和食品各多少件?(2)现计划租用甲、乙两种货车共8辆,一次性将这批帐篷和食品全部运往受灾地区.已知甲种货车最多可装帐篷40件和食品10件,乙种货车最多可装帐篷和食品各20件.安排甲、乙两种货车时有几种方案?请你帮助设计出来;(3)在第(2)问的条件下,如果甲种货车每辆需付运输费2000元,乙种货车每辆需付运输费1800元,应选择哪种方案可使运输费最少?最少运输费是多少元?答案以及解析1.答案:B解析:不等式组的解集在数轴上表示出来为故选B.2.答案:C解析:解不等式,得;解不等式,得,不等式组的解集是.3.答案:A解析:解不等式,得,又,且不等式组的解集是,根据“同小取小”,知m的取值范围是.4.答案:A解析:设共有x名学生,则图书共有本,由题意得:解得,书的数量为.故选:A.5.答案:A解析:解不等式,得.∵不等式组无解,,解得.6.答案:解析:解不等式得:,解不等式得:,所以不等式组的解集为:,故答案为:.7.答案:0解析:,由①得:,由②得,,x可取的整数有:-2,-1,0,1,2;所有整数解的和为,故答案为:0.8.答案:(1)食品120件,则帐篷200件(2)方案共有3种:方案一:甲车2辆,乙车6辆;方案二:甲车3辆,乙车5辆;方案三:甲车4辆,乙车4辆(3)方案一运费最少,最少运费是14800元解析:(1)设食品x件,则帐篷件,由题意得:,解得:.帐篷有件.答:食品120件,则帐篷200件;(2)设租用甲种货车a辆,则乙种货车辆,由题意得:,解得:.又a为整数,或3或4,乙种货车为:6或5或4.方案共有3种:方案一:甲车2辆,乙车6辆;方案二:甲车3辆,乙车5辆;方案三:甲车4辆,乙车4辆;(3)3种方案的运费分别为:方案一:(元);方案二:(元);方案三:(元).方案一运费最少,最少运费是14800元.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一元一次不等式和一元一次不等式组基础练习
一. 填空题
1. 用不等式表示:x 的2倍与1的和大于-1为__________,y 的1
3与t 的差的一半是负数为
_________。
2. 有理数a 、b 在数轴上的对应点如图所示,根据图示,用“>”或“<”填空。
b 0 a
(1)a +3______b +3;(2)b -a_______0
(3)-
a 3______-
b
3;(4)a +b________0
3. 若0<a<1,则a a
a 21,,按从小到大排列为________。
4. 在数轴上表示数x 的点与原点的距离不超过5,则x 满足的不等式(组)为_______
5. 当x_______时,代数式3x +4的值为正数。
6. 要使方程52321x m x m -=-+()的解是负数,则m________
7. 若||2112x x -=-,则x___________
8. 已知a<b ,则不等式组x a
x b
><⎧⎨
⎩的解集是____________ 9. 若不等式组21
23
x a x b -<->⎧⎨
⎩的解集是-<<11x ,则()()a b +-11的值为___________ 10. 如果不等式20x m -≥的负整数解是-1,-2,则m 的取值范围是_________ 二. 选择题(每小题3分,共24分)
11. 若a>b ,则下列不等式中一定成立的是( ) A. b a <1 B. a b
>1 C. ->-a b D. a b ->0
12. 与不等式325
1-≤-x 的解集相同的是( )
A. 325-≥x
B. 325-≤x
C. 235x -≥
D. x ≤4
13. 不等式x x --<
-32
131
3的负整数解的个数有( ) A. 0个 B. 2个 C. 4个 D. 6个
14. 不等式组124
1
323-<-≤-⎧⎨⎪
⎩⎪x x x 的整数解的和是( ) A. 1
B. 0
C. -1
D. -2
15. 下列四个不等式:(1)ac>bc ;(2)-<-ma mb ;(3)ac bc 22>;(4)-≤-ac bc 22中,能推出a>b 的有( ) A. 1个 B. 2个 C. 3个 D. 4个
16. 如果不等式()a x a +>+11的解集为x <1,那么a 满足的条件是( ) A. a>0 B. a<-2 C. a>-1 D. a<-1
17. 若不等式组x x t
-<->⎧⎨
⎩10的解集是x <1,则t 的取值范围是( ) A. t<1 B. t>1 C. t ≤-1 D. t ≥1 18. 若方程组x y x y a -=+=-⎧⎨
⎩323
的解是负数,则a 的取值范围为( ) A. -<<36a B. a <6 C. a <-3 D. 无解 三. 解下列不等式或不等式组(每4题6分,共24分)
19. x x 2131--≥ 20. -<-<123
2x
21. -+<-+-≥⎧⎨⎪⎩⎪211131
21x x x 22. 311512
35x x x x +>-≤-⎧
⎨
⎪⎪⎩⎪⎪
四. 解答题(23题5分,其余每题9分共50分)
23. 若
||()x x y m -+--=4502
,求当y ≥0时,m 的取值范围。
24. 已知A 、B 两地相距80km ,甲、乙两人沿同一条公路从A 地出发到B 地,甲骑摩托车,乙骑电动自行车,PC 、OD 分别表示甲、乙两人离开A 的距离s (km )与时间t (h )的函数关系。
根据图象,回答下列问题: (1)_________比_______先出发________h ; (2)大约在乙出发______h 时两人相遇,相遇时距离A 地______km ;(3)甲到达B 地时,乙距B 地还有___________km ,
乙还需__________h到达B地;
(4)甲的速度是_________km/h,乙的速度是__________km/h。
25. 甲、乙两旅行社假期搞组团促销活动,甲:“若领队买一张全票,其余可半价优惠”。
乙“包括领队在内,一律按全票价的六折优惠”。
已知全票价为120元,你认为选择哪家旅行社更优惠?
26. 某工厂有甲种原料360kg,乙种原料290kg,计划用这两种原料生产A、B两种产品共50件。
已知生产一件A种产品,需用甲种原料9kg,乙种原料3kg,可获利润700元:生产一件B种产品,需用甲种原料4kg,乙种原料10kg,可获利润1200元。
(1)按要求安排A、B两种产品的生产件数,有哪几种方案?请你设计出来。
(2)设生产A、B两种产品获总利润W(元),采用哪种生产方案获总利润最大?最大利润为多少?
27. 某园林的门票每张10元,一次使用,考虑到人们的不同需求,也为了吸引更多的游客,该园林除保留原来的售票方法外,还推出了一种“购买个人年票”的售票方法(个人年票从购买日起,可供持票者使用一年),年票分A、B、C三类;A类年票每张120元,持票者进入园林时,无需再购买门票;B类年票每张60元,持票者进入园林时,需再购买门票,每次2元;C类年票每张40元,持票者进入园林时,需再购买门票每次3元。
(1)如果你只选择一种购买门票的方式,并且你计划在年中用80元花在该园林的门票上,试通过计算,找出可使进入该园林次数最多的购票方式。
(2)求一年中进入该园林至少超过多少次时,购买A类年票比较合算。
【试题答案】
一. 1. 211x +>-;1213
0()y t -<
2. >,<,<,<
3. a a a 21<<
4. ||x ≤5(或-≤≤55x )
5. x >-43
6. m >14
7. x ≤12
8. a x b << 9. -6
10. -<≤-64m 二. 11. D 12. C
13. C 14. B 15. A 16. D 17. C 18. C
三. 19. x ≥4
20. -<<45x 21. x >6
22. x ≥-13
四. 23. m ≤20
24. (1)乙,甲,1;(2)32,20;(3)40,3;(4)40,403
25. 设团内人数为x (不包括领队),则甲旅行社的收费为y x 甲=+12060,乙旅行社的收费
y x 乙=+7272
(1)由y y 甲乙>,得120607272+>+x x ,解之得x<4 (2)由y y 甲乙=,得120607272+=+x x ,解之得x =4 (3)由y y 甲乙<,得120607272+<+x x ,解之得x>4
故当团内少于4人时,选择乙旅行社更优惠; 当团内有4人时,选择两家旅行社收费一样; 当团内多于4人时,选择甲旅行社更优惠。
26. (1)设安排生产A 种产品x 件,则生产B 种产品(50-x )件,由题意,得
945036031050290x x x x +-≤+-≤⎧⎨
⎩()() 解之,得3032≤≤x
因为件数x 为自然数,所以x 可取30,31,32
故第一种方案为:生产A 产品30件,B 产品20件; 第二种方案为:生产A 产品31件,B 产品19件; 第三种方案为:生产A 产品32件,B 产品18件。
(2)由题意,得
W x x x =+-=+70012005050060000()
此一次函数W x =-+5006000W 随x 的增大而减小,所以要使W 取最大值,x 应取最小值。
故原x =30时,所获总利润W 最大,W 最大值=-⨯+=500306000045000元。
27. (1)显然不可能选购A 类年票(80<120)
若选购B 类年票,则可进该园林80602
10-=(次)
若选购C 类年票,则可进该园林80403403
13-=≈(次)
若不购买年票,则可进该园林8010
8=(次)
81013<<
∴一年中计划用80元花在该园林的门票上时,选购C 类年票的方法进入该园林的次数最多,为13次。
(2)设至少超过x 次时,购买A 类年票比较合算,由题意,得
60212040312010120+>+>>⎧⎨⎪
⎩⎪
x x x 解之,得x >30
答:一年中进入该园林至少超过30次时,购买A 类年票比较合算。