44数与代数2

合集下载

青岛版数学六年级下册-小升初专项卷2.数与代数(二)解决问题(有答案)

青岛版数学六年级下册-小升初专项卷2.数与代数(二)解决问题(有答案)

小升初专项卷2.数与代数(二)解决问题一、填空。

(每空2分,共20分)1.商品销售中,“利润率”是指所得利润占成本的百分率。

一件商品的进价是80元,售价是120元,这件商品的利润率是( )。

2.明天小学组织六年级全体学生参观天文馆,租用大巴车和面包车共5辆。

租用一辆大巴车和一辆面包车的费用分别是150元和120元。

若租用了a辆大巴车,则租用了( )辆面包车,租用大巴车的总费用是( )元,租车总费用是( )元。

3.一辆汽车每行驶100千米大约耗油8升,这辆汽车每行驶1千米大约耗油( )升;每升汽油大约可供这辆汽车行驶( )千米。

4.沿一个圆形花坛的周围每隔1.5米放1盆花,一共放了40盆。

这个圆形花坛的半径大约是( )米。

(结果保留整数) 5.下表是2021 年山东省各地暑假的开始时间和结束时间,济南的小学暑假共计( )天,东营的普通高中暑假共计( )天。

6.广西壮族自治区是我国唯一一个沿海自治区,也是21世纪海上丝绸之路的重要节点。

其大陆海岸线约长1595千米,大陆海岸线在比例尺为1∶50000000 的地图上长( )厘米。

二、判断。

(对的打“√”,错的打“×”)(每小题1分,共5分)1.在一张机器零件图纸上,1厘米长的线段表示实际长度2毫米,这张图纸的比例尺是1∶5。

( ) 2.甲、乙两辆汽车的速度比是4∶5,两车都行驶2小时,甲车所行路程是乙车所行路程的80%。

( ) 3.星光小学六年级有378名学生,总有一个月至少有32名学生过生日。

( ) 4.为迎接二十年校庆,学校购进一百多朵鲜花,三朵三朵地数余2朵,五朵五朵地数也余2朵,七朵七朵地数还是余2朵,学校一共购进107朵鲜花。

( ) 5.商场搞促销活动,一件衣服先提价15,再降价15,现在的价格与原来的价格相等。

( )三、选择。

(将正确答案的字母填在括号里)(每小题3分,共18分)1.学校举行足球赛,每个小组有4支球队,小组内每两支球队之间都要进行一场比赛,每个小组需要进行( )场比赛。

北师大版四年级上册数学教学设计-总复习第2课时 数与代数(2)

北师大版四年级上册数学教学设计-总复习第2课时 数与代数(2)

北师大版四年级上册数学教学设计总复习第2课时数与代数(2)一. 教学内容及要素1.数的认识和应用–数的名字–数的大小比较–奇偶性–数的加减法2.代数的认识和应用–变量的引入–代数式的加减法–变量代数式的值的求解3.相关概念–相等关系–数量的增减与多少二. 教学目标1.了解数字的大小比较,能利用数轴、左右比较法、折线图等形象化的工具,识别和辨别数的大小。

2.了解数字的奇偶性,能识别整数的奇偶性。

3.掌握小于100以内各加数的运算方法。

4.能建立简单的代数式,进行加减运算,并能根据已知量求出未知量的值5.能在实际问题中运用代数式求解。

6.能理解“数量的多少”和“增减变化”的概念。

三. 教学重点难点1.数字的大小比较、奇偶性的理解和辨别方法。

2.代数式的基本建立、代数式加减的方法和未知量的求解。

3.在实际问题中运用代数式求解。

四. 教学方法和过程1.设计环节:通过回顾已学知识,复习加减法,引出代数式的定义和基本的加减法规则,再通过实例的讲解,让学生理解代数式中未知数的概念。

根据学生的实际情况,提示文中的关键点,便于学生有全面的理解。

2.演示环节:老师通过板书和PPT建立代数式模型,让学生理解每个代数符号的含义。

举例讲解代数式中未知量的求解方法,解决学生对未知量的认识问题。

3.练习环节:教师通过练习帮助学生掌握代数式的基本加减法规则和未知量的求解方法,提高学生发现未知量和解决问题的能力。

通过作业检测学生掌握情况并做针对性的辅导。

4.教学过程中进一步了解学生的基础知识,根据不同水平的学生及时调整教学内容与进度,提高教学效率并让学生在学习中更有兴趣。

五. 教学关联1.数学基础的打牢:加减法和进位算法的掌握2.综合运用:从已知量求解未知量的方法在日常生活中的综合应用3.拓展知识:数的大小比较和应用的扩展,数的运算规律,多项式式的应用,方程的认识和应用。

六. 教学评价1.反思:对教学过程中的环节和方法进行反思。

数学中的数与代数

数学中的数与代数

数学中的数与代数在数学领域中,数与代数是两个重要的概念。

数是用来表示数量的抽象概念,而代数则是研究数及其运算规律的一个分支。

本文将探讨数与代数在数学中的重要性以及它们之间的关系。

一、数的概念与分类数是一种用来度量和计算数量的概念。

在数学中,根据数的性质和特点,可以将数分为自然数、整数、有理数和实数等。

其中自然数是最基本的一类数,用来表示物体的个数;整数除了包括自然数外,还包括负数,用来表示欠债或亏损的数量;有理数包括整数和分数,用来表示可以表示为两个整数的比值的数;实数是包括有理数和无理数在内的所有数,它们可以在数轴上表示。

二、代数的基本概念代数是数学中研究数与其运算规律的一个分支。

代数可以分为元素代数和符号代数两个部分。

元素代数是对数及其运算规律的研究,它着重于数的性质和运算规则。

符号代数则是使用符号代表数和未知数,并通过符号代数的运算来解决实际问题。

在代数中,我们可以通过使用字母来代替任意数,以便更好地研究数的规律和运算。

未知数通常表示为字母x、y或z,而常数则是已知的数。

代数运算包括加法、减法、乘法、除法等基本运算,以及指数、对数、函数等高级运算。

三、数与代数的关系数与代数是紧密相关的,它们相互依赖,相互补充。

代数通过引入符号和未知数的概念,将数的运算规律更加抽象化和普遍化。

通过使用代数方法,我们可以建立方程和不等式来解决实际问题,推导出数的性质和规律。

举个例子,假设我们要解决下面的实际问题:某商店的商品原价为x元,现在进行了打折,打折后的价格为原价的80%,问现在商品的价格是多少?使用代数的方法,我们可以假设原价为x元,然后建立方程:x × 80% = 现价,通过求解方程,可以得到现价。

这个例子展示了代数在解决实际问题中的应用。

另外,数学中的一些概念和定理也与数和代数密切相关。

例如,我们熟知的勾股定理可以通过代数的方法进行证明。

将直角三角形的两条直角边长度分别用a和b表示,斜边的长度用c表示,那么根据勾股定理,有a² + b² = c²。

数与代数课程目标解读

数与代数课程目标解读

第1单元课程目标解读在本学段中,学生将学习万以内的数、简单的分数和小数、常见的量,体会数和运算的意义,掌握数的基本运算,探索并理解简单的数量关系。

具体目标:1. 数的认识●能认、读、写万以内的数,会用数表示物体的个数或事物的顺序和位置。

●认识符号<、=、>的含义,能够用符号和词语来描述万以内数的大小。

●能说出各数位的名称,识别各数位上数字的意义。

●结合现实素材感受大数的意义,并能进行估计。

●能结合具体情境初步理解分数的意义,能认、读、写小数和简单的分数。

●能运用数表示日常生活中的一些事物,并进行交流。

2. 数的运算●结合具体的情境,体会四则运算的意义。

●能熟练地口算20以内的加减法和表内乘除法,会口算百以内的加减法。

●能计算三位数的加减法,一位数乘三位数、两位数乘两位数的乘法,三位数除以一位数的除法。

●会计算同分母分数(分母小于10)的加减运算以及一位小数的加减运算。

●能结合具体情境进行估算,并解释估算的过程。

●经历与他人交流各自算法的过程。

●能灵活运用不同的方法解决生活中的简单问题,并能对结果的合理性进行判断。

3. 常见的量●在现实的情景中,认识元、角、分,并了解它们之间的关系。

●能认识钟表,了解24时计时法;结合自己的生活经验,体验时间的长短。

●认识年、月、日,了解它们之间的关系,能正确判断平年和闰年。

●在具体生活情境中,感受并认识重量单位克、千克、吨和长度单位米、分米、厘米、,并能进行简单换算。

●结合生活实际,解决与常见的量有关的简单问题。

4. 探索规律●发现给定的事物中隐含的简单规律。

案例一:教学过程▼▼▼★教学内容分析9加几的进位加法”的教学是(人教版)《义务教育课程标准实验教科书》一年级上册——第九单元“20以内的进位加法”中的第一节内容,是学生掌握了11—20各数的认识及10加几的基础上进行教学的,这部分知识和技能是进一步学习20以内进位加法、20以内退位减法和多位数加减法的基础。

二年级上册数学课件-九 整理与复习 专题一 数与代数(二) 表内乘法|人教新课标 (共44张PPT)

二年级上册数学课件-九 整理与复习 专题一 数与代数(二) 表内乘法|人教新课标 (共44张PPT)

4个6相加。
6×4 或 4×6
小试牛刀 (把加法算式改写成乘法算式。)
5+5+5=( 5×3 ) ( 3×5 ) 2+2+2+2+2+2+2+2=( 8×2 ) ( 2×8 ) 7+7=( 2×7 ) ( 7×2 )
小试牛刀 (把加法算式改写成乘法算式。)
3+3+3+3+3=( 3×5 ) ( 5×3 ) 6+6+6+6=( 6×4 ) ( 4×6 ) 1+1+1+1+1+1= ( 1×6 ) ( 6×1 )
)。
①3×8
②7×4
③6×4
8.两个乘数都是最大的一位数,积是( ② )。
①18
②81
③9
3、乘加、乘减
2人
3人Βιβλιοθήκη 3人3人一共坐了多少人?
3+3+3+2=11 3×3+2=11
9
3、乘加、乘减
2人
3人
3人
3人
一共坐了多少人?
3+3+3+3-1=11 3×4-1=11
12
先乘除,后
加减哦!
小试牛刀 (看图填等式。)
3.在 里填上“+”“-”“×”“÷”“>”
“<”或“=”。
4 3×=12
6 4=+10
20 5-=15
6 5=×30
5 3×=15
6×6 40 <
3×2 5>
2×5 4×<3
2×4 4=+4
4.在( )里填上合适的数。 (1)14 21 ( 28 ) 35 ( 42 )。 (2)27 ( 36 ) 45 54 ( 63 )。 (3)60 54 ( 48 ) 42 ( 36 )。
小试牛刀 (游乐园。)
1.如果小冬想玩一次小火车和一次划船,共需多 少钱?

人教新课标一年级下册数学课件-期末整理与复习 专题一:数与代数(二)认识人民币 (共23张)

人教新课标一年级下册数学课件-期末整理与复习 专题一:数与代数(二)认识人民币 (共23张)
October 30, 2021
• 7、要经常培养开阔的胸襟,要经常培养知识上诚实的习惯,而且要经常学习向自己的思想负责任。2021年10月30日星期六1时44分32秒01: 44:3230 October 2021
• 8、儿童集体里的舆论力量,完全是一种物质的实际可以感触到的教育力量。上午1时44分32秒上午1时44分01:44:3221.10.30
2.学会解决人民币的实际问题。
2 课时流程
知识 梳理
深化 知识
拓展 延伸
课后 作业
人民币的分类
元、角、分

识 人民币的分类 人

纸币和硬币 1元=10角
币 人民币单位之间的进率 1角=10分
1元=100分
1.认识人民币的面值 认一认。
你知道左边对应的人 民币各是多少钱吗?
5元
10 元
20 元
50 元
1张1张
52人张张民币可以怎样换呢? 10张
算一算
1.买一本故事书和一支圆珠笔共需多少钱? 3元+5角=3元5角 试着算一算吧!
2.拿1元钱买一把直尺,应找回多少钱?
1元-8角=2角 3.一个文具盒比一块橡皮贵多少钱?
4元9角-1元=3元9角
根据上面的题目你能说说人 民币简单计算的方法吗?
人民币加、减,即相同单位元和元、角和角 相加、减,单位不统一时,要统一后再计算。
认识人民币
RJ 一年级下册
期末整理与复习
薄薄一张纸,作用可真大。 买书、买纸、买玩具都要用到它。
是人民币!
我们今天一起来复习人 聪明的你知道是什么吗?
民币的相关知识!
1 复习目标
1.通过“认一认、换一换、算一算”等活动,让学 生对人民币的面值、单位间的进率和简单的计算 进行系统的复习,加深印象。

小学数学四年级数学下册数与代数(二)期末综合复习 人教版(含答案)

小学数学四年级数学下册数与代数(二)期末综合复习 人教版(含答案)

四年级下册数与代数(二)期末综合复习-人教版一、单选题1.(·蓬江月考)23.008的计数单位是()。

A.0.1B.0.01C.0.001D.12.(·兴义月考)一个数先扩大到它的100倍,再将小数点向左移动三位,结果是20.96,这个数原来是()。

A.2096B.209.6C.2.096D.0.20963.(·兴义月考)按照体重从小到大给他们排序正确的是()。

①38.5kg ②43.6kg ③35.8kg ④43.9kgA.④②①③B.④①②③C.③①②④D.④①②4.(·祁东期中)800□200000≈80.0亿(用四舍五入法),□里能填的数字是()。

A.0~5B.0~4C.0~95.(播州期末)小米用计算器计算25.19+5.85时,错误地输入了25.91+5.85,要改正这个错误需要再输入()A.-0.88B.+0.88C.-0.72D.-0.86.(·播州期末)下列各数中,与10最接近的是()A.9.8B.10.102C.9.98D.9.9987.(·沭阳期中)下面的说法中,正确的有()句。

①最大的三位数除以最大的两位数,商11余9。

②如果被除数的末尾有0,那么商的末尾也一定有0。

③某篮球队队员平均身高是160厘米,小华是该篮球队队员,他的身高可能是158厘米。

A.1B.2C.38.(·南郑期末)在献爱心捐助活动中,笑笑和淘气平均每人捐助了49元,奇思捐了55元。

他们三人平均每人捐助了()元。

A.49B.51C.55二、填空题9.(·兴义月考)看图写数这个数写作,它的计数单位是。

10.(·兴义月考)用1千克的小麦可以磨0.85千克的面粉,用1吨这样的小麦可以磨千克的面粉。

11.(·兴义月考)0.584里面有个千分之一;2.8里面有个0.1;5个百分之一写成小数是。

12.(·微山期末)甲数是32.78,比乙数少1.8,乙数是。

人教六下数学课件第6单元 整理和复习_第4课时 数的运算(2)

人教六下数学课件第6单元  整理和复习_第4课时  数的运算(2)
20.6×2+39.6≈21×2+40=82(元)
100-82=18(元) 18元>13.7元
答:小兰的钱够买简装的。
巩固运用
(教材P76 上面的“做一做”)
1.计算下面各。
4
2 7
4
5 7
=4
2 7
5 7
=4
1=14
9 7
4 9
5 9
=
9 7
4 9
5 9
=
9 7
1=
2 7
1 3
1 5
乘法结合律 (37×25)×4=37×(25×4) (a×b)×c=a×(b×c) 乘法分配律(50+125)×8=50×8+125×8 (a+b)×c=a×c+b×c
你还记得减法和除法的 运算性质吗? 减 法 的 运 算 性 质 :a-b-c=a-(b+c)
20-3-7=20-(3+7)
除法的运算性质:a÷b÷c=a÷ (b×c) 30÷2÷5=30÷(2×5)
这几种运算定律有什么特点呢?
加法交换律、结合律能综合运用于连加运 算,加数经过交换、结合,运算符号不变, 还是连加。乘法交换律、结合律也类似。 只有乘法分配律涉及乘加或乘减两种运算。
估算
举例说明估算的应用,你知道哪些估算策略?
(1)7.99×9.99与80比,哪个大?
由8×10=80,而7.99<8,9.99<10,所以80比
答:需要加椅子。
(教材P78 练习十五T3)
3.估算。
803-207≈ 600
798+205≈ 1000
23×498≈ 10000
632÷69≈ 9
(教材P78 练习十五T4)
4. 估一估,在○里填上“>”或“<”。

数与代数中的二次根式与其运算

数与代数中的二次根式与其运算

数与代数中的二次根式与其运算二次根式是数学中重要的概念之一,它在数与代数中具有广泛的运用。

本文将探讨二次根式及其运算,并介绍其在实际生活和学术研究中的应用。

一、二次根式的定义与性质二次根式是指形如√a的代数表达式,其中a为非负实数。

二次根式的定义有以下几个重要性质:1. 非负实数的二次根式是唯一存在的,即√a表示的是非负实数。

2. 二次根式可以通过乘法和除法进行运算。

例如,√a * √b = √(ab)。

3. 二次根式可以通过加法和减法进行运算。

例如,√a + √b 和√a - √b 不能进行简化。

4. 二次根式可以与有理数相加减,但无法与有理数相乘除。

例如,√a + b 和√a - b 可以进行简化。

二、二次根式的运算二次根式的运算包括加法、减法、乘法和除法。

下面以具体的例子进行说明:例1:计算√2 + √3。

解:这个二次根式无法进行简化,所以结果为√2 + √3。

例2:计算√5 - √2。

解:这个二次根式也无法进行简化,所以结果为√5 - √2。

例3:计算(√3 + √2) * (√3 - √2)。

解:利用公式(a + b)(a - b) = a^2 - b^2,可将运算式转化为(√3)^2 - (√2)^2,即3 - 2,结果为1。

例4:计算(√5 + √2) / (√5 - √2)。

解:为了简化运算,可将分子和分母同时乘以(√5 + √2),得到(√5 + √2)^2 / (√5 - √2)(√5 + √2)。

利用公式(a + b)^2 = a^2 + 2ab + b^2,将分子展开得到5 + 2√10 + 2,将分母展开得到5 - 2,最终结果为(7 + 2√10) / 3。

三、二次根式的应用领域二次根式在数学和实际生活中有广泛的应用。

以下是几个常见的应用领域:1. 几何学:二次根式在几何学中用于计算图形的周长、面积和体积。

例如,计算一个边长为2的正方形的对角线长度可以使用√2。

2. 物理学:二次根式在物理学中用于描述运动的速度、加速度以及能量的传递和转化。

五年级下册数学总复习课件(4个课时)

五年级下册数学总复习课件(4个课时)

由于2不是85的因数,所以如果每2个装
也就是判断2和 5是不是85的因 数。
一袋不能正好装完;而5是85的因数,所
以如果每5个装一袋,能正好装完。
8 今年欣欣的年龄是奇数,妈妈的年龄是偶数。两年后,欣欣和妈 妈的年龄和是奇数还是偶数?
今年欣欣和妈妈的年龄和 是奇数。
两年后,欣欣和妈妈的年 龄和增加4。
• 倍数、因数的概念 ➢ 公倍数、公因数
3的倍数
2的倍数
3, 9,15, 6,12, 2, 4, 8,
21···
18,··· 10, 14, 16,
20 ···
6,12,18,……是3和2公有的倍数,叫作它们的公倍数。其 中, 6是最小的公倍数,叫作它们的最小公倍数。
• 倍数、因数的概念 ➢ 公倍数、公因数
9的倍数:9、18、27、36、45、54……
可以分别列出 54的因数和9的 一部分倍数, 再来找。
54的因数:1、2、3、18、27、54
这个数可能是18、27、54。
5 三个连续自然数的和是72,这三个自然数分别是多少?如果是三个 连续偶数,那么这三个偶数分别是多少?
72÷3=24
24-2=22
B. 95
C. 90
4. 两个质数的积一定是( B )。
A. 质数
B. 合数
C. 奇数
填2空题。
(1)在10以内的自然数中,( 2)既是质数又是偶数,( 9 )既 是奇数又是合数。 (2)一个两位数同时是3和5的倍数,这个两位数如果是奇数,则 最大是(75);如果是偶数,则最小是(30)。 (3)一个数既是13的因数,又是13的倍数,这个数是(13)。 (4)既是奇数又是合数的最大两位数是(99)。

初中数学 数与代数课件

初中数学 数与代数课件

三、2012年学业水平考试怎样考
1、全卷满分0分,考试时间120分钟。 2、试题题型 (1)、选择题(四选一型的单项选择题) (2)、填空题(直接写出结果,不写计算或推证过程) (3)、解答题(计算题、证明题、开放性问题、应用性 问题、阅读分析题、探索性问题及其他各种题型) 3、各种题型分数的百分比约为:客观题40%,主观题 60% 4、易中难之比约为7:2:1。 5、各位教师应注意考查知识点的轮换特点。 6、关注相同知识点的不同考查方式和以不同背景设置 问题。
考查方式
• 对本专题的考查主要以填空题的形式考 查相反数、倒数、绝对值等概念。
• 有理数的运算常与零次方、负指数幂、 二次根式等同时考查。
考查方式
• 以实际问题为背景,考查近似数与有效数字。 • 用根号表示数的平方根、立方根以及二次根式的
简单四则运算主要以选择题的形式考查。
考查方式
化简再求值)。
• 数与式考查重点:
运算及运算律、解释和推断数字所含 信息、代数式表示意义、公式变形、求 值计算。
数与式各部分内容在中考所占分值
考查内容
滇八 09云 保
倒数、相反数、绝对值 3
33
有理数的简单运算
3
3
二次根式与其他
3
3

有效数字
3

因式分解
3
3

择 列代数式、找规律
3
3

科学记数法
• 在资料选择上,要有针对性,严格筛选,绝 不能滥用。一般一门学科配置1~2本综合 性复习用书就足够了,建议以“考试说明” 为基础,一定要认真用好样题。
• 这样有利于师生准确把握命题方向,避免教 师在复习备考过程中对基础知识和技能进行 无目的的泛化,避免学生对基础知识进行机 械重复训练,提高学习的针对性和实效性, 减轻学生的课业负担,并有利于提高学生的 合格率。

人教版四年级数学下册总复习《数与代数》练习课件

人教版四年级数学下册总复习《数与代数》练习课件

(4)13.8与7.14的和比它们的差多( 14.28 )。 (5)用0、2、3、8和小数点组成的两位小数中,最
大的是( 83.20 ),最小的是( 20.38 ),它们相 差( 62.82 )。
2.选择。(将正确答案的字母填在括号里)
(1)两位小数加两位小数的结果不可能是( C )。
A.一位小数
6.解决问题。 (1)某工厂生产了1万件防护服,经抽查发现,每
100件防护服中有1.5件是次品,照这样计算, 这批防护服中共有多少件是次品?
1万=10000 10000÷100×1.5=150(件) 答:这批防护服中共有150件是次品。
(2)高速列车10分钟可行驶58.3千米。照这样的速 度,100分钟可行驶多少千米?
98×45 =(100-2)×45 =100×45-2×45 =4500-90 =4410
127×67+127×34-127 =127×(67+34-1) =127×100 =12700
3.解决问题。 (1)三位阿姨每人买了8件同样的保暖内衣,每件保 暖125元,她们一共花了多少元?
125×8×3=3000(元) 答:她们一共花了3000元。
10 总复习
《数与代数(2)》运算律
练习
1.填空。 (1)根据运算定律填一填。
5×125×6×8=(5×__6__)×(_1_2_5_×8) 278+183+122=_1_8_3_+(_2_7_8_+_1_2_2_) 168×99+168=__1_6_8__×(__9_9_+__1__) 125-37-63=__1_2_5__-(_3_7____+_6_3____) 810÷45=_8_1_0_÷__9__÷5
(2)思源小学四年级要添置87套桌椅,五年级要添置113 套同样的桌椅,每套桌椅135元,两个年级一共要准 备多少元? (87+113)×135=27000(元) 答:两个年级一共要准备27000元。

北师大版三年级上册数学教案-总复习第2课时 数与代数(2)

北师大版三年级上册数学教案-总复习第2课时 数与代数(2)

北师大版三年级上册数学教案-总复习第2课时数与代数(2)一、教学目标1.通过观察,能够掌握两个数之间从小到大和从大到小的顺序关系;2.理解代数中的未知数,能够利用已知量解决有关的问题;3.培养学生分析问题、解决问题的能力;4.培养学生的逻辑思维能力。

二、教学内容1.掌握两个数的顺序关系;2.学习代数中的未知数、求值;3.运用所学知识解决实际问题。

三、教学重点1.学生通过观察,能够掌握两个数之间从小到大和从大到小的顺序关系;2.学生理解代数中的未知数,能够利用已知量解决有关的问题。

四、教学难点1.帮助学生理解代数中的未知数;2.培养学生的逻辑思维能力。

五、教学方法1.情景模拟法;2.案例分析法;3.讨论交流法。

1. 热身本节课是数学总复习的第二天课。

先请学生回顾昨天学习的知识点,并回答上课前的小问题。

2. 导入1.让学生自然数从小到大说出前三十个数,从大到小说出前十个数。

2.引导学生发现数的顺序有规律,哪些是递增规律,哪些是递减规律。

3. 学习1.张牙舞爪,张三的爸爸问你:你爷爷67岁,你奶奶64岁,请问哪个人的年龄更大?通过讨论,学生可以得到答案,找到两个数的大小关系,掌握两个数的先后次序。

2.四个小动物下山,每只动物的体重不一样,请让学生排一下序。

从轻到重或从重到轻都可以,但是必须保持一致性。

这道题引导孩子学会观察,理解大小关系,掌握排序的原则。

3.制作代数表达式,例如 2 + x = 5,让学生通过图像或物品模拟,找出未知数x的值。

通过案例分析,让学生理解代数中的未知数,同时计算x的值。

4. 巩固例题:1.有两个数,比较一下他们的大小:26,29。

2.在这个式子中,未知数x的值是多少:6 + x = 12。

5. 作业1.在家自然数排序,在课堂上展示并解释其中的规律;2.在家里寻找有意思的图像,制作出代数表达式并计算出未知数的值。

通过本节课的教学,孩子们学会了通过观察,理解两个数之间的大小关系,学会了代数中的未知数、求值的方法。

北师大数学五年级上册数与代数2PPT课件带内容

北师大数学五年级上册数与代数2PPT课件带内容

100以内24的所有倍数? 1×24=24 2×24=48 3×24=72 4×24=96
答:100以内24的所有因数 24 48 72 96
用 0,3,6 组成同时是 2,3 倍数的最大三 位数是(630 ),最小的三位数是(306 )
由大到小: 630 > 603 > 360 > 306 > 063 (二位数)> 036(二位数)
倍数和因数
倍数和因数 的个数
2的倍数的特征 5的倍数的特征 3的倍数的特征 质数
偶数 奇数是质数,也不是合数
倍数和因数
90÷10=9,我们就说(90)是(10) 和( 9 )的倍数,(10)和( 9 )是 (90)的因数。
写出45的全部因数?
1×45=45 3×15=45 5×9 =45 答:45的全部因数是1,3,5,9,15,45
总复习第2节
数与代数
北师大 数学 五年级 上册
点击输入您的内容文字请点击输入您的内容文字点击输入您的内容文字请点击输入您的内容文字点击输入您的内容点击输入您的内容输入您的 内容文字请点击输入您的内容文字点击输入您的内容点击输入您的内容点击输入您的内容文字请点击输入您的内容文字点击
完整课件
直接使用
1.归纳整理因数和倍数的有关概念,理解并掌握概念间的 内在联系,形成认知结构。 2.亲历数学知识的整理过程,培养学生的观察、分析、比 较,带框,判断等逻辑思维能力。 3.在整理和复习的过程中培养学生合作交流的意识,渗透 事物间互相联系,互相依存的辩证思想。
1.同时是2、3、5的倍数的数是(②)。 ①18 ②120 ③75 2.两个质数的和是(③)。 ① 偶数 ②奇数 ③奇数或偶数
3.下面的数。因数个数最多的是(③) ①18 ②36 ③ 40

《初中数学教案:数与代数的关系》

《初中数学教案:数与代数的关系》

《初中数学教案:数与代数的关系》一、引言数学是一门抽象而精确的科学,它运用符号和符号系统来研究数量、结构、变化和空间。

在数学的学习中,数与代数是两个最基础且密切相关的概念。

本教案旨在通过针对初中生的数学教学来探讨数与代数之间的关系,并提供具体的教学策略和方法。

二、理解数与代数1. 数的概念数是我们用来计量、比较和统计事物数量或属性的工具。

它可以表示为自然数、整数、有理数或实数等不同形式。

让学生明确地了解到不同类型的数字,并能够灵活地在不同情境下应用这些数字是非常重要的。

2. 代数中的变量在代数中,变量是一个未知量,用字母或符号表示。

它可以代表任何值,在求解方程和进行问题推理时起到关键作用。

通过提供一些简单例子,帮助学生理解变量并熟练运用它。

三、分类讨论:数字与线性关系1. 正比例关系正比例关系描述了一种等比增长或减少的现象。

当两个变量之间存在这样的关系时,我们可以使用直线通过原点来表示。

教师可以利用例子和图表来展示这种关系,并引导学生理解其中的数学概念。

2. 反比例关系反比例关系也是一种很常见的现象,它描述了一个变量增长而另一个变量减少的情况。

与正比例关系类似,反比例关系也可以由一条经过原点的曲线来表示。

在教学中,通过实际问题和图形的分析,展示反比例关系对数学运算的重要性。

四、应用解决实际问题1. 代数方程求解代数方程是指包含未知量和已知数量之间相等或不等关系的等式。

在从生活实践中引入具体问题后,教师可以提供一些简单的代数方程给学生进行求解训练,并逐步引导他们将所学知识应用到更复杂、更抽象的问题中。

2. 图形与代数联系图形与代数之间有着密切且深远的联系。

在解决图形问题时,学生需要能够将图形转化为具有代数表达式或方程式。

通过提供多样化的几何形状并要求学生用代数方式进行计算、解决问题,可以培养学生对抽象思维的发展。

五、教学策略与方法1. 目标导向教学教师应对每堂课的目标进行明确设定,并通过设计合适的问题和活动来正确引导学生达到这些目标。

冀教版小学五年级上册数学 整理与评价 第2课时 数与代数(2)

冀教版小学五年级上册数学 整理与评价 第2课时  数与代数(2)
答:慢车每小时行48千米,快车每小时行96千米。
课堂小结
通过这节课的学习,你有什么收获?
答:每套儿童衣服用布1.5米。
(3)一列快车和一列慢车从相距576千米的两地同时
相对开出,4小时后相遇。已知快车的速度是慢车的2
倍。两车每小时各行多少千米?
解:设慢车每小时行x千米,那么快车每小时行2x千米。
(x+2x)×4=576 3x×4=576 3x=144 x=48
快车每小时行:2x=2×48=96(千米)
5.列方程解决下面的问题。 (1)一双旱冰鞋的价钱是一双旅游鞋的3倍,一双旅 游鞋多少元?
解:3x=216 x=72
答:一双旅游鞋72元。
(2)有36米布,正好能做8套儿童衣服和10套大人 衣服。每套大人衣服用布2.4米,每套儿童衣服用布 多少米?
解:设每套儿童衣服用布x米。
8x+2.4×10=36 8x+24=36 8x=12 x=1.5
义务教育冀教版五年级上册
整理与评价பைடு நூலகம்
第2课时 数与代数(2)
知识回顾
相遇问题 速度和×相遇时间=总路程
四则混合 运算(二)
三步混合运算 小括号里含有两级运算的三步混合运算
带中括号的三步混合运算
等式和方程 的含义
等式的 性质
方程
解方程
列方程解 决问题
巩固运用
(教材P99 T7第4小题)
1.先说一说运算顺序,再计算。
4x-12=20 x÷15=3 5x-3x=60
x=5
x=8
x=45
x=30
4.解方程。
(教材P100 T11)
5x+7=42 解:5x=35
x=7
x÷4.2=3 解:x=12.6

1初中数学教学内容分为数与代数图形与几何统计与概率

1初中数学教学内容分为数与代数图形与几何统计与概率

一、初中数学教学内容分为数与代数,图形与几何,统计与概率,综合与实践四个部份。

二、数与代数的内容要紧包括数的熟悉,数的表示,数的大小,数的运算,数量的估量、用字母表示数,代数式及其运算、方程、方程组、不等式、函数等。

3、“图形与几何”的要紧内容有空间和平面大体图形的熟悉,图形的性质,分类和气宇、图形的平移、旋转、轴对称、相似和投影、平面图形大体性质的证明、运用坐标描述图形的位置和运动。

4、“统计与概率”的要紧内容有:搜集、整理和描述数据,包括简单抽样、整理调查数据、绘制统计图表等;处置数据,包括计算平均数、中位数、众数、极差、方差等;从数据中提取信息并进行简单的推断;简单随机事件及其发生的概率。

五、“综合与实践”是一类以问题为载体、以学生自主参与为主的学习活动。

在学习活动中,学生将综合运用“数与代数”“图形与几何”“统计与概率”等知识和方式解决问题。

“综合与实践”的教学活动应当保证每学期至少一次,能够在课堂上完成,也能够课内外相结合。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
六、矫正反馈
1、做P84第5题独立完成,集体核对
2、出示数位顺序表.
举例:362005789.123每一位上的数字表示什么?怎样读?
3、复习P84第6题,写数;
4、复习P85第9题,读出面积和人口,注意0的读法;
举例:用4个“8”和4个“0”组成一个数,再读一读:
(1)一个“零”都不读出来的八位数;
序号:
时间:
课题:数与代数2
教学内容:教科书第12册p84-85“练习与实践”第5-9题。
教学目标:
1.使学生进一步加深对整数、小数、分数和百分数的理解,加深对正数与负数、小数与负数、分数与百分数关系的认识;
2.让学生在练习中复习多位数的读、写方法,提高正确读、写多位数的能力;
3.引导学生自主整理把一个较大数改写成用“万”或“亿”作单位的数的方法,能根据要求用“四舍五入”法省略“万”或“亿”后面的尾数以及求一个数的近似数的方法;
7、(1)第9题按照面积的大小怎样排列?还可以怎样比较?
(2)第9题按照人口的多少怎样排列?还可以怎样比较?
七、课堂总结
今天你有什么收获?
九、课堂作业
《补充习题》相关内容。
课堂生成与反思数;
(4)读出三个“零”的八位数。
5、(1)把第9题中的面积数改写成用“万平方千米”作单位的数;
(2)把第9题中的人口数改写成用“亿”作单位的数;
(3)把第9题中的人口数精确到万位。
6、完成第7、8两题;
(1)互相交流,总结规律;
(2)指名说一说取一个数的近似值的方法,注意“0”的作用。
2、读数和写数时要注意什么?
3、数的改写要遵循什么法则?
4、小数点是怎样移动的?
5、数的大小事怎样比较?
小组交流后全班交流
五、精讲点拨
整数的计数单位是“1”,当用“1”作单位不能准确地表示数值时,就要把单位“1”平均分成若干份,用分数或小数来表示。小数是分母是10、100、1000……的分数,百分数是一种更加特殊的分数,只能用来表示两个数之间的倍比关系。把一个数改写成某个单位的数,只要把小数点移到相应数位的后面就可以了,求一个数的近似数时,要先找到相应数位上的数,再用“四舍五入”法舍去该数位后面的尾数
教学过程:
一、直接导入
今天我们继续复习数与代数。
二、自学质疑
1、独立思考,完成学案。
2、小组交流学案。
3、你有什么不明白的吗?生提问集体解决
三、交流展示
学生展示自己利用学案学习所得,提出发现问题。教师组织学生互动交流,促使学生积极思维。
四、互动探究
针对学生提出问题,小组内交流探究。
思考:
1、我们学过了那些数?什么时候用小数、分数、整数?
4.使学生掌握比较数的大小的方法,培养学生解决实际问题的能力。
教学重点:进一步理解数的意义。
教学难点:数的区别
教学过程:
预习目标:
教科书第12册p84-85“练习与实践”第5-9题。加深对整数、小数、分数和百分数的理解,在练习中正确读、写多位数的能力;会把一个较大数改写成用“万”或“亿”作单位的数的方法,能根据要求用“四舍五入”法省略“万”或“亿”后面的尾数以及求一个数的近似数的方法;
相关文档
最新文档