断裂
断裂分类
断裂类型根据断裂的分类方法不同而有很多种,它们是依据一些各不相同的特征来分类的。
根据金属材料断裂前所产生的宏观塑性变形的大小可将断裂分为韧性断裂与脆性断裂。
韧性断裂的特征是断裂前发生明显的宏观塑性变形,脆性断裂在断裂前基本上不发生塑性变形,是一种突然发生的断裂,没有明显征兆,因而危害性很大。
通常,脆断前也产生微量塑性变形,一般规定光滑拉伸试样的断面收缩率小于5%为脆性断裂;大于5%为韧性断裂。
可见,金属材料的韧性与脆性是依据一定条件下的塑性变形量来规定的,随着条件的改变,材料的韧性与脆性行为也将随之变化。
多晶体金属断裂时,裂纹扩展的路径可能是不同的。
沿晶断裂一般为脆性断裂,而穿晶断裂既可为脆性断裂(低温下的穿晶断裂),也可以是韧性断裂(如室温下的穿晶断裂)。
沿晶断裂是晶界上的一薄层连续或不连续脆性第二相、夹杂物,破坏了晶界的连续性所造成的,也可能是杂质元素向晶界偏聚引起的。
应力腐蚀、氢脆、回火脆性、淬火裂纹、磨削裂纹都是沿晶断裂。
有时沿晶断裂和穿晶断裂可以混合发生。
按断裂机制又可分为解理断裂与剪切断裂两类。
解理断裂是金属材料在一定条件下(如体心立方金属、密排六方金属与合金处于低温、冲击载荷作用),当外加正应力达到一定数值后,以极快速率沿一定晶体学平面的穿晶断裂。
解理面一般是低指数或表面能最低的晶面。
对于面心立方金属来说,在一般情况下不发生解理断裂,但面心立方金属在非常苛刻的环境条件下也可能产生解理破坏。
通常,解理断裂总是脆性断裂,但脆性断裂不一定是解理断裂,两者不是同义词,它们不是一回事。
剪切断裂是金属材料在切应力作用下,沿滑移面分离而造成的滑移面分离断裂,它又分为滑断(又称切离或纯剪切断裂)和微孔聚集型断裂。
纯金属尤其是单晶体金属常发生滑断断裂;钢铁等工程材料多发生微孔聚集型断裂,如低碳钢拉伸所致的断裂即为这种断裂,是一种典型的韧性断裂。
根据断裂面取向又可将断裂分为正断型或切断型两类。
若断裂面取向垂直于最大正应力,即为正断型断裂;断裂面取向与最大切应力方向相一致而与最大正应力方向约成45°角,为切断型断裂。
断裂分类
断裂类型根据断裂的分类方法不同而有很多种,它们是依据一些各不相同的特征来分类的。
根据金属材料断裂前所产生的宏观塑性变形的大小可将断裂分为韧性断裂与脆性断裂。
韧性断裂的特征是断裂前发生明显的宏观塑性变形,脆性断裂在断裂前基本上不发生塑性变形,是一种突然发生的断裂,没有明显征兆,因而危害性很大。
通常,脆断前也产生微量塑性变形,一般规定光滑拉伸试样的断面收缩率小于5%为脆性断裂;大于5%为韧性断裂。
可见,金属材料的韧性与脆性是依据一定条件下的塑性变形量来规定的,随着条件的改变,材料的韧性与脆性行为也将随之变化。
多晶体金属断裂时,裂纹扩展的路径可能是不同的。
沿晶断裂一般为脆性断裂,而穿晶断裂既可为脆性断裂(低温下的穿晶断裂),也可以是韧性断裂(如室温下的穿晶断裂)。
沿晶断裂是晶界上的一薄层连续或不连续脆性第二相、夹杂物,破坏了晶界的连续性所造成的,也可能是杂质元素向晶界偏聚引起的。
应力腐蚀、氢脆、回火脆性、淬火裂纹、磨削裂纹都是沿晶断裂。
有时沿晶断裂和穿晶断裂可以混合发生。
按断裂机制又可分为解理断裂与剪切断裂两类。
解理断裂是金属材料在一定条件下(如体心立方金属、密排六方金属与合金处于低温、冲击载荷作用),当外加正应力达到一定数值后,以极快速率沿一定晶体学平面的穿晶断裂。
解理面一般是低指数或表面能最低的晶面。
对于面心立方金属来说,在一般情况下不发生解理断裂,但面心立方金属在非常苛刻的环境条件下也可能产生解理破坏。
通常,解理断裂总是脆性断裂,但脆性断裂不一定是解理断裂,两者不是同义词,它们不是一回事。
剪切断裂是金属材料在切应力作用下,沿滑移面分离而造成的滑移面分离断裂,它又分为滑断(又称切离或纯剪切断裂)和微孔聚集型断裂。
纯金属尤其是单晶体金属常发生滑断断裂;钢铁等工程材料多发生微孔聚集型断裂,如低碳钢拉伸所致的断裂即为这种断裂,是一种典型的韧性断裂。
根据断裂面取向又可将断裂分为正断型或切断型两类。
若断裂面取向垂直于最大正应力,即为正断型断裂;断裂面取向与最大切应力方向相一致而与最大正应力方向约成45°角,为切断型断裂。
断裂事故产生原因及解决措施有哪些?
断裂事故产生原因及解决措施有哪些?
断裂事故产生原因如下:
①曲轴、连杆在操作过程中存有残余应力引起的变形。
②组装时连杆螺栓转矩不均引起的变形。
③操作中出现超压、超温引起的变形。
④长时间在交变载荷下工作,引起活塞杆与十字头连接螺纹的疲劳断裂。
⑤安装找正不准确,同轴度差,起活塞杆断裂。
⑥设计计算不准确,局部应力集中,造成气缸阀孑L处开裂。
解决措施:
①加强结构设计,避免尖角锐边效应而引起局部应力集中。
例如气阀孑L应尽量避免扁孔结构形状,尽可能制作圆孑L、棱角倒圆、气腔部位滚压冷作。
②在零件制造或修复过程中,对于比较复杂或比较重要的零件,采取措施消除铸造、锻制、金属切削加工及焊接过程中产生的应力和变形。
③在零件制造过程中,应降低表面粗糙度参数值,尤其对于台阶、圆角、键槽、油孔和螺纹等应力集中处更应如此。
对承受交
变弯曲或交变扭转载荷的零件,应采取表面强化处理,如表面冷作变形、表面热处理以及表面镀层和涂层等。
④在组装与安装过程中,应尽力保证零部件的位置精度。
重要螺栓连接力要均匀和适度,如采用力矩扳手、或用液压顶紧装置、或测量螺栓伸长量等办法来控制其预紧力。
⑤精心操作,密切注视仪表指示,防止超压超温。
断裂分类
断裂类型根据断裂的分类方法不同而有很多种,它们是依据一些各不相同的特征来分类的。
根据金属材料断裂前所产生的宏观塑性变形的大小可将断裂分为韧性断裂与脆性断裂。
韧性断裂的特征是断裂前发生明显的宏观塑性变形,脆性断裂在断裂前基本上不发生塑性变形,是一种突然发生的断裂,没有明显征兆,因而危害性很大。
通常,脆断前也产生微量塑性变形,一般规定光滑拉伸试样的断面收缩率小于5%为脆性断裂;大于5%为韧性断裂。
可见,金属材料的韧性与脆性是依据一定条件下的塑性变形量来规定的,随着条件的改变,材料的韧性与脆性行为也将随之变化。
多晶体金属断裂时,裂纹扩展的路径可能是不同的。
沿晶断裂一般为脆性断裂,而穿晶断裂既可为脆性断裂(低温下的穿晶断裂),也可以是韧性断裂(如室温下的穿晶断裂)。
沿晶断裂是晶界上的一薄层连续或不连续脆性第二相、夹杂物,破坏了晶界的连续性所造成的,也可能是杂质元素向晶界偏聚引起的。
应力腐蚀、氢脆、回火脆性、淬火裂纹、磨削裂纹都是沿晶断裂。
有时沿晶断裂和穿晶断裂可以混合发生。
按断裂机制又可分为解理断裂与剪切断裂两类。
解理断裂是金属材料在一定条件下(如体心立方金属、密排六方金属与合金处于低温、冲击载荷作用),当外加正应力达到一定数值后,以极快速率沿一定晶体学平面的穿晶断裂。
解理面一般是低指数或表面能最低的晶面。
对于面心立方金属来说,在一般情况下不发生解理断裂,但面心立方金属在非常苛刻的环境条件下也可能产生解理破坏。
通常,解理断裂总是脆性断裂,但脆性断裂不一定是解理断裂,两者不是同义词,它们不是一回事。
剪切断裂是金属材料在切应力作用下,沿滑移面分离而造成的滑移面分离断裂,它又分为滑断(又称切离或纯剪切断裂)和微孔聚集型断裂。
纯金属尤其是单晶体金属常发生滑断断裂;钢铁等工程材料多发生微孔聚集型断裂,如低碳钢拉伸所致的断裂即为这种断裂,是一种典型的韧性断裂。
根据断裂面取向又可将断裂分为正断型或切断型两类。
若断裂面取向垂直于最大正应力,即为正断型断裂;断裂面取向与最大切应力方向相一致而与最大正应力方向约成45°角,为切断型断裂。
断裂分类
断裂类型根据断裂的分类方法不同而有很多种,它们是依据一些各不相同的特征来分类的。
根据金属材料断裂前所产生的宏观塑性变形的大小可将断裂分为韧性断裂与脆性断裂。
韧性断裂的特征是断裂前发生明显的宏观塑性变形,脆性断裂在断裂前基本上不发生塑性变形,是一种突然发生的断裂,没有明显征兆,因而危害性很大。
通常,脆断前也产生微量塑性变形,一般规定光滑拉伸试样的断面收缩率小于5%为脆性断裂;大于5%为韧性断裂。
可见,金属材料的韧性与脆性是依据一定条件下的塑性变形量来规定的,随着条件的改变,材料的韧性与脆性行为也将随之变化。
多晶体金属断裂时,裂纹扩展的路径可能是不同的。
沿晶断裂一般为脆性断裂,而穿晶断裂既可为脆性断裂(低温下的穿晶断裂),也可以是韧性断裂(如室温下的穿晶断裂)。
沿晶断裂是晶界上的一薄层连续或不连续脆性第二相、夹杂物,破坏了晶界的连续性所造成的,也可能是杂质元素向晶界偏聚引起的。
应力腐蚀、氢脆、回火脆性、淬火裂纹、磨削裂纹都是沿晶断裂。
有时沿晶断裂和穿晶断裂可以混合发生。
按断裂机制又可分为解理断裂与剪切断裂两类。
解理断裂是金属材料在一定条件下(如体心立方金属、密排六方金属与合金处于低温、冲击载荷作用),当外加正应力达到一定数值后,以极快速率沿一定晶体学平面的穿晶断裂。
解理面一般是低指数或表面能最低的晶面。
对于面心立方金属来说,在一般情况下不发生解理断裂,但面心立方金属在非常苛刻的环境条件下也可能产生解理破坏。
通常,解理断裂总是脆性断裂,但脆性断裂不一定是解理断裂,两者不是同义词,它们不是一回事。
剪切断裂是金属材料在切应力作用下,沿滑移面分离而造成的滑移面分离断裂,它又分为滑断(又称切离或纯剪切断裂)和微孔聚集型断裂。
纯金属尤其是单晶体金属常发生滑断断裂;钢铁等工程材料多发生微孔聚集型断裂,如低碳钢拉伸所致的断裂即为这种断裂,是一种典型的韧性断裂。
根据断裂面取向又可将断裂分为正断型或切断型两类。
若断裂面取向垂直于最大正应力,即为正断型断裂;断裂面取向与最大切应力方向相一致而与最大正应力方向约成45°角,为切断型断裂。
断裂的分类及特征
断裂的分类及特征下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts,other materials and so on, want to know different data formats and writing methods, please pay attention!人类分类学是生物学中一个重要的分支,通过对生物体进行分类,可以更好地了解生物的特征和演化过程。
断裂分类(韧窝)
断裂分类(韧窝)2 微孔聚合断裂机制2.1相关概念定义:微孔聚合型断裂过程是在外力作用下,在夹杂物、第二相粒子与基体的界面处,或在晶界、孪晶带、相界、大量位错塞积处形成微裂纹,因相邻微裂纹的聚合产生可见微孔洞,以后孔洞长大、增殖,最后连接形成断裂。
微孔萌生的时间:若材料中第二相与基体结合强度低,在颈缩之前;反之,在颈缩之后。
微孔萌生成为控制马氏体时效钢断裂过程的主要环节微孔聚合型断裂形成的韧窝有三种:1)拉伸型等轴状韧窝;2)剪切型伸长韧窝;3)拉伸撕裂型伸长韧窝。
正应力作用下,韧窝是等轴型的,而在剪切应力和弯曲应力的作用下,韧窝沿一定的方向伸长变形形成剪切韧窝和撕开韧窝。
韧窝的大小和深浅取决于第二相的数量分布以及基体的塑性变形能力,如第二相较少、分布均匀且基体塑性变形能力又强,那么韧窝大而深;若基体的加工硬化能力很强,韧窝大而浅。
文案编辑词条B 添加义项?文案,原指放书的桌子,后来指在桌子上写字的人。
现在指的是公司或企业中从事文字工作的职位,就是以文字来表现已经制定的创意策略。
文案它不同于设计师用画面或其他手段的表现手法,它是一个与广告创意先后相继的表现的过程、发展的过程、深化的过程,多存在于广告公司,企业宣传,新闻策划等。
基本信息中文名称文案外文名称Copy目录1发展历程2主要工作3分类构成4基本要求5工作范围6文案写法7实际应用折叠编辑本段发展历程汉字"文案"(wén àn)是指古代官衙中掌管档案、负责起草文书的幕友,亦指官署中的公文、书信等;在现代,文案的称呼主要用在商业领域,其意义与中国古代所说的文案是有区别的。
在中国古代,文案亦作" 文按"。
公文案卷。
《北堂书钞》卷六八引《汉杂事》:"先是公府掾多不视事,但以文案为务。
"《晋书·桓温传》:"机务不可停废,常行文按宜为限日。
" 唐戴叔伦《答崔载华》诗:"文案日成堆,愁眉拽不开。
断裂分类(韧窝)
断裂分类(韧窝)
2 微孔聚合断裂机制
2.1相关概念
定义:微孔聚合型断裂过程是在外力作用下,在夹杂物、第二相粒子与基体的界面处,或在晶界、孪晶带、相界、大量位错塞积处形成微裂纹,因相邻微裂纹的聚合产生可见微孔洞,以后孔洞长大、增殖,最后连接形成断裂。
微孔萌生的时间:若材料中第二相与基体结合强度低,在颈缩之前;反之,在颈缩之后。
微孔萌生成为控制马氏体时效钢断裂过程的主要环节
微孔聚合型断裂形成的韧窝有三种:
1)拉伸型等轴状韧窝;
2)剪切型伸长韧窝;
3)拉伸撕裂型伸长韧窝。
正应力作用下,韧窝是等轴型的,而在剪切应力和弯曲应力的作用下,韧窝
沿一定的方向伸长变形形成剪切韧窝和撕开韧窝。
韧窝的大小和深浅取决于第二相的数量分布以及基体的塑性变形能力,如第二相较少、分布均匀且基体塑性变形能力又强,那么韧窝大而深;若基体的加工硬化能力很强,韧窝大而浅。
断裂分类及特征
断裂分类及特征以下是 7 条关于“断裂分类及特征”的内容:1. 脆性断裂可是很常见的哟!就像玻璃突然碎掉一样干脆。
比如你不小心把一个瓷碗掉地上,“啪”的一声,瞬间就裂成好多块,这就是脆性断裂啦。
它的特征呢,通常就是没什么明显的塑性变形,直接咔嚓断开,不给你一点反应的机会!痛心啊!2. 韧性断裂知道不?哎呀,就好比你拉一根橡皮筋,拉到很长很长才断掉。
像那种金属材料在承受很大的力之后,经过一些变形才断掉,这就是韧性断裂啦。
例子嘛,你想想拉伸过度的弹簧,最后还是断开了,这就是韧性断裂的典型呀!无奈吧!3. 疲劳断裂呀,可真折磨人呢!就像你天天让一个人干很累很累的活,时间长了他就撑不住啦。
比如一些机器零件,总是不断地受到循环应力的作用,慢慢的就出现了小裂纹,最后终于彻底断裂了多烦人呐!4. 腐蚀断裂是不是听起来就挺糟糕呀?就好像是有个小虫子一点一点地把东西啃坏。
像金属在腐蚀性环境中,天长日久的就会出现断裂呢。
比如铁在潮湿的环境中生锈变脆最后断开,这就是腐蚀断裂呀!真倒霉!5. 解理断裂很特别哦!就类似你把一块饼干按照它原本的纹路掰开,很整齐的那种。
一些晶体材料会沿着特定的晶面发生解理断裂呢。
想象一下一块水晶被敲开,沿着特定的面断开,多神奇呀!6. 沿晶断裂可别小瞧呀!这就像是一堵用不太结实的砖头砌成的墙,稍微有点外力,砖头之间就断开啦。
比如有些材料的晶界比较脆弱,就容易发生沿晶断裂呢。
哎呀,是不是挺有意思?7. 混合型断裂呢就是各种情况都有点啦!好比是一个大杂烩。
可能既有脆性的部分又有韧性的部分等等。
就像一场复杂的事故,啥情况都有。
你说这混合型断裂是不是很让人头疼呀?我的观点结论就是:断裂分类及特征真是复杂多样又有趣呢,我们可得好好研究研究呀!。
断裂分类(韧窝)
word格式-可编辑-感谢下载支持
断裂分类(韧窝)
2 微孔聚合断裂机制
2.1相关概念
定义:微孔聚合型断裂过程是在外力作用下,在夹杂物、第二相粒子与基体的界面处,或在晶界、孪晶带、相界、大量位错塞积处形成微裂纹,因相邻微裂纹的聚合产生可见微孔洞,以后孔洞长大、增殖,最后连接形成断裂。
微孔萌生的时间:若材料中第二相与基体结合强度低,在颈缩之前;反之,在颈缩之后。
微孔萌生成为控制马氏体时效钢断裂过程的主要环节
微孔聚合型断裂形成的韧窝有三种:
1)拉伸型等轴状韧窝;
2)剪切型伸长韧窝;
3)拉伸撕裂型伸长韧窝。
正应力作用下,韧窝是等轴型的,而在剪切应力和弯曲应力的作用下,韧窝沿一定的方向伸长变形形成剪切韧窝和撕开韧窝。
韧窝的大小和深浅取决于第二相的数量分布以及基体的塑性变形能力,如第二相较少、分布均匀且基体塑性变形能力又强,那么韧窝大而深;若基体的加工硬化能力很强,韧窝大而浅。
9.断裂的类型与特征
断裂☐断裂是机械和工程构件失效的主要形式之一。
☐断裂是材料的一种十分复杂的行为,在不同的力学、物理和化学环境下,会有不同的断裂形式。
☐研究断裂的主要目的是防止断裂,以保证构件在服役过程中的安全。
断裂的分类1按断裂前塑性变形大小分类:脆性断裂,韧性断裂(延性断裂)是材料断裂前基本上不产生明显的宏观塑性变形,没有明显预兆,往往表现为突然发生的快速断裂过程。
脆性断裂:脆性材料的拉伸断口断口呈平齐状,可见明显放射状线。
☐因为没有明显的预兆,所以脆性断裂具有很大的危险性。
☐脆性断裂的断口一般与正应力垂直,宏观上比较齐平光亮,常呈放射状或结晶状。
☐裂纹扩展速度大,往往受到的应力低于设计要求的许用应力。
是材料断裂前及断裂过程中产生明显宏观塑性变形的断裂韧性断裂:过程。
延性材料的拉伸断口☐韧性断裂时一般裂纹扩展过程较慢,而且要消耗大量塑性变形能。
☐韧性断裂的断口用肉眼或放大镜观察时,往往呈暗灰色、纤维状。
☐不易造成重大事故,易被人察觉。
韧断前有明显的颈缩,断裂前有大量的塑性变形。
上下断杯锥状断口:口分别呈杯状和锥状,合称为杯锥状断口。
延性材料的拉伸断口断口13•剪切唇•放射区断口上分三个典型的区域:三要素2按断裂面的取向分类:正断,切断正断:正应力引起;切断:切应力引起。
有缘学习更多+谓ygd3076或关注桃报:奉献教3按裂纹扩展途径分类:穿晶断裂,沿晶(晶界)断裂穿晶断裂&沿晶断裂沿晶断裂的断口形貌穿晶断裂与沿晶断裂有时是同时发生的断裂的分类4按微观断裂机理分类:剪切断裂,微孔聚合型断裂, 解理断裂解理断裂是材料在拉应力的作用下,由于原于间结合键遭到破坏,严解理断裂:格地沿一定的结晶学平面(即所谓“解理面”)劈开而造成的。
解理断裂是脆性穿晶断裂,宏观形貌较为平坦的、发亮的结晶状断面。
B类碳素钢低温解理断裂的河流花样微孔聚合型断裂断口在宏观上常呈现暗灰色、纤维状,微观断口特征花样韧窝:则是断口上分布大量“韧窝”。
9.断裂的类型与特征
断裂☐断裂是机械和工程构件失效的主要形式之一。
☐断裂是材料的一种十分复杂的行为,在不同的力学、物理和化学环境下,会有不同的断裂形式。
☐研究断裂的主要目的是防止断裂,以保证构件在服役过程中的安全。
断裂的分类1按断裂前塑性变形大小分类:脆性断裂,韧性断裂(延性断裂)是材料断裂前基本上不产生明显的宏观塑性变形,没有明显预兆,往往表现为突然发生的快速断裂过程。
脆性断裂:脆性材料的拉伸断口断口呈平齐状,可见明显放射状线。
☐因为没有明显的预兆,所以脆性断裂具有很大的危险性。
☐脆性断裂的断口一般与正应力垂直,宏观上比较齐平光亮,常呈放射状或结晶状。
☐裂纹扩展速度大,往往受到的应力低于设计要求的许用应力。
是材料断裂前及断裂过程中产生明显宏观塑性变形的断裂韧性断裂:过程。
延性材料的拉伸断口☐韧性断裂时一般裂纹扩展过程较慢,而且要消耗大量塑性变形能。
☐韧性断裂的断口用肉眼或放大镜观察时,往往呈暗灰色、纤维状。
☐不易造成重大事故,易被人察觉。
韧断前有明显的颈缩,断裂前有大量的塑性变形。
上下断杯锥状断口:口分别呈杯状和锥状,合称为杯锥状断口。
延性材料的拉伸断口断口13•剪切唇•放射区断口上分三个典型的区域:三要素2按断裂面的取向分类:正断,切断正断:正应力引起;切断:切应力引起。
有缘学习更多+谓ygd3076或关注桃报:奉献教3按裂纹扩展途径分类:穿晶断裂,沿晶(晶界)断裂穿晶断裂&沿晶断裂沿晶断裂的断口形貌穿晶断裂与沿晶断裂有时是同时发生的断裂的分类4按微观断裂机理分类:剪切断裂,微孔聚合型断裂, 解理断裂解理断裂是材料在拉应力的作用下,由于原于间结合键遭到破坏,严解理断裂:格地沿一定的结晶学平面(即所谓“解理面”)劈开而造成的。
解理断裂是脆性穿晶断裂,宏观形貌较为平坦的、发亮的结晶状断面。
B类碳素钢低温解理断裂的河流花样微孔聚合型断裂断口在宏观上常呈现暗灰色、纤维状,微观断口特征花样韧窝:则是断口上分布大量“韧窝”。
名词解释断裂
名词解释断裂断裂:工程结构中在长期荷载作用下发生的破坏现象。
破坏特征是部分或全部失去连续性,如钢筋混凝土梁、板,砌体墙、柱等,常有明显的塑性变形,很少有突然倒塌现象,但往往产生了一系列损伤或变形。
在建筑和机械工业中,将材料、零件或构件在受力情况下的变形超过允许值的现象称为断裂。
①机械方面:指构件发生了永久变形而丧失原有的正常工作能力;发生疲劳破坏而丧失原有的承载能力;发生脆性断裂或在冲击载荷下发生断裂;振动影响造成机件失效等。
②建筑方面:指由于温度、湿度、变形、地基不均匀沉降以及材料老化等原因,使构件发生断裂或脆性断裂;因材料劣化而丧失强度,进而导致结构破坏等。
对混凝土结构的危害最大。
③水利方面:指结构上的裂缝达到一定数量时,其影响将会导致结构物不能正常使用而报废。
断裂对结构的危害可分为两类:第一类是结构的抗裂性不足引起的,即材料强度的破坏引起的,第二类是结构的抗拉强度、抗压强度、抗剪强度不足引起的,这类破坏对结构安全有重要意义。
断裂具有随机性、突发性和危害性三个特点。
5)断面过小。
6)接缝不紧密。
7)预制混凝土构件端部的模板缺陷。
8)施工阶段,混凝土结构表面出现收缩裂缝。
9)混凝土产品存放过久,产生不利于其性能恢复的物理或化学变化。
10)使用过程中,混凝土强度降低。
11)外界因素对混凝土结构的影响,主要包括温度应力、收缩应力、约束、地基不均匀沉降、风与霜冻等。
12)在构件中预埋铁件、吊环、销钉等造成的裂缝。
13)混凝土的碳化和碱骨料反应等。
14)结构的混凝土保护层过厚,使得裂缝宽度加大。
15)长期荷载作用下,钢筋锈蚀,产生体积膨胀,造成混凝土开裂。
16)构件的预应力张拉过度,造成局部或全部的混凝土弹性变形,使得混凝土的内应力增大,造成混凝土开裂。
6)接缝不紧密。
7)预制混凝土构件端部的模板缺陷。
8)施工阶段,混凝土结构表面出现收缩裂缝。
9)混凝土产品存放过久,产生不利于其性能恢复的物理或化学变化。
地质上所说的断裂
地质上所说的断裂1. 断裂定义地质上的断裂是指地壳中的岩石在一定条件下发生破裂,并沿破裂面有明显相对移动的现象。
断裂是地球上广泛存在的一种地质现象,对于地球构造、地质工程、采矿等领域具有重要意义。
2. 断裂类型根据断裂的成因和特征,一般可以将断裂分为以下几种类型:(1)节理:一种常见的地质断裂类型,是指岩石在应力作用下产生的细微裂纹。
节理通常不具有明显的位移,也不会影响地形的连续性。
(2)断层:一种规模较大的地质断裂,通常具有明显的位移和断层崖。
根据断层位移的性质,可以分为正断层、逆断层和平移断层。
(3)褶皱:一种由于地壳挤压作用产生的地质断裂类型,通常表现为岩层的弯曲和变形。
褶皱对于地形的形成和演变具有重要影响。
3. 断裂特征断裂具有以下特征:(1)位移:断裂会导致岩石沿破裂面产生明显的相对移动,位移大小和方向取决于断裂的类型和规模。
(2)裂缝:断裂通常表现为一条或数条裂缝,沿裂缝两侧的岩石相对位移。
裂缝的形状、大小和方向可以用来判断断裂的类型和性质。
(3)岩石破碎:断裂会使岩石在破裂面附近产生破碎和裂解,形成断层岩、角砾岩等破碎岩石。
这些破碎岩石对于地层的连续性和稳定性具有重要影响。
4. 断裂判别对于地质断裂的判别,通常可以采用以下方法:(1)地貌判别:断层崖、断层三角面等地貌特征是断层的明显标志。
通过对地貌的观察和分析,可以初步判断是否存在断层。
(2)地层判别:地层的重复、缺失或突变等现象可能是断层的反映。
通过对地层的观察和分析,可以进一步确定是否存在断层。
(3)构造判别:构造线、构造面等构造特征是判断断层的重要依据。
通过对构造的观察和分析,可以确定断层的性质和特征。
(4)地球物理判别:地球物理勘探方法如重力、磁力、地震等可以用来探测地下岩层的形态和性质,为判断断层提供依据。
5. 断裂对环境影响地质断裂对环境产生多方面的影响,主要包括:(1)地表下沉:大型断层的存在可能导致地表下沉,影响土地利用、建筑物的稳定性和地下水资源分布。
材料断裂的3种形式
材料断裂的三种形式包括**脆性断裂、延性断裂和韧性断裂**。
1. 脆性断裂:材料在断裂前没有明显的塑性变形,断裂时断口平齐,呈脆性断裂。
这种断裂方式往往突然发生,破坏性很大。
2. 延性断裂:材料在断裂前有明显的塑性变形,断裂时断口呈纤维状,呈韧性断裂。
这种断裂方式往往在承受较大载荷或温度变化时发生。
3. 韧性断裂:材料在断裂前有较大的塑性变形,断裂时断口呈韧窝状,呈韧性断裂。
这种断裂方式往往在承受较小载荷或温度变化时发生。
以上信息仅供参考,如需了解更多信息,建议查阅相关书籍或咨询专业人士。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
断裂力学的一个新分支,它用弹性力学和塑性力学的理论研究变形体中裂纹的扩展规律。
弹塑性断裂力学在焊接结构的缺陷评定、核电工程的安全性评定、压力容器的断裂控制以及结构物的低周疲劳和蠕变断裂的研究等方面起着重要的作用。
20世纪中叶,由于韧性材料的广泛应用,原有的线弹性断裂力学已不能用来描述裂纹体内出现较大塑性区时裂纹的扩展规律,弹塑性断裂力学就是在此背景下发展起来的。
60年代初,美国的G.R.欧文对线弹性断裂力学作了塑性修正,把它推广应用于弹塑性裂纹体,并在小范围屈服的条件下得到较好的结果。
随后,英国的A.A.韦尔斯提出了在大范围屈服以至全面屈服条件下的裂纹张开位移理论(见COD法)。
该理论用裂纹顶端的张开位移δ为控制参量来表示韧性断裂过程的特征,并以δ达到裂纹顶端张开位移的临界值δc为断裂准则进行断裂分析。
韦尔斯的研究结果在某些缺陷评定标准中得到采用。
1968年美国的J.R.赖斯提出了J 积分。
同年,J.W.哈钦森、J.R.赖斯和G.F.罗森格林用塑性全量理论分析了裂纹体在张开型断裂(见断裂力学)情况下裂纹顶端起裂前的应力场和应变场,并指出,在一定条件下,弹塑性体的裂纹顶端附近存在称为HRR奇异场的应力应变场,而J积分正是表征该奇异应力应变场强度的主导参量。
近年来以J积分为特征参量的弹塑性断裂力学的工程方法得到了发展。
目前,弹塑性断裂力学的研究内容主要有:①确定表示韧性断裂过程中裂纹顶端场及其特征的控制参量;②发展确定裂纹扩展阻力特征的实验技术;③寻求弹塑性断裂准则。
弹塑性断裂力学虽取得了一定的进展,但其理论迄今仍不成熟。
二、经典断裂力学的未来发展方向此前所述经典断裂力学源于格里菲斯的断裂理论,是建立在奇异性基础上的,即均基于裂纹顶端应力与应变为无限大的模式展开的。
Inglis数学尖裂纹模型的弹性力学解是断裂理论的基础。
这种数学尖裂纹上、下表面间距为零、裂纹顶端曲率半径也为零,因而由弹性力学求出的应力分量,在裂纹顶端处为无限大,这种无限大称为奇异性。
奇异性理论一直延续至今。
但是奇异性断裂力学在物理上存在本质的缺陷,这主要表现在两方面:其一,在实际中
发现的裂纹,其上、下表面间距,以及裂纹顶端曲率半径,都是有限值,不等于零;其二,实际裂纹,即使在裂纹顶端,应力与应变均为有限值,不存在所谓应力与应变的奇异性。
这样,基于数学尖裂纹和应力奇异性的物理量缺乏坚实的物理基础。
为了完善理论,呈现非奇异性,可采用比较符合真实情形的半圆形顶端的钝裂纹(或切口)模型,但钝裂纹的曲率半径的测量需要用金相的方法来测出,这需要金相断裂力学的发展。
断裂力学是20世纪50年代开始发展起来的固体力学的新分支。
线弹性断裂、弹塑性断裂和断裂动力学三者几乎是同时开始研究的。
目前线弹性断裂力学发展较为成熟,在生产中已经得到应用。
弹塑性断裂力学虽取得了一些进展,但仍有许多尚待深入研究的问题,它是当前断裂力学的主要研究方向之一。
断裂动力学,对于线性材料还有待完善;对于非线性材料,尚处于研究初期,是断裂力学的又一主要研究方向。
随着对断裂问题的深入研究及数学工具的方便使用,断裂力学理论会日益成熟,断裂力学应用会日渐广泛。