粘土矿物
粘土矿物
东营凹陷沙四上亚段Sr Ba比值分析图 东营凹陷沙四上亚段Sr / Ba比值分析图
沙四上亚段含盐水溶液中, Sr/Ba比值是在 0~8, 甚至最高值可达到12。东北 部永安镇、民丰、广利港一带河流-三角洲水的进入,Ba很快沉积,形成Sr/Ba比 值最低值,大约 0~1。随着离岸距离的增大,Sr含量相对富集在辛镇、郝科1、史 口、利津和牛庄等开阔半咸水湖相,比值大约是在 1~5。最后向南坡和西部的含盐 水Sr/Ba高达到6~8 及其以上,如王家岗、纯化镇等含咸分析图 东营凹陷沙四上亚段Fe/Mn比值分析图
湖盆Fe和Mn性质分异较明显,大致0.005以上至0.007的Fe/Mn高比值是 在Fe+3更多富集于河口或滨岸地带, 而Mn+2更多富集于小于0.005以下的滨 656、郝科1、王587等较深水区的低值响应。
交换性阳离子 n H2O
O2 Si 4+ OHAl3+ (Fe2- 、Fe3+ 、 Mg 2+)
伊利石类构造示意图
蒙托石构造示意图
高呤石: 假六方板状, 高呤石: 假六方板状,书页和蠕虫状
高岭石: 高岭石:
假六方板状,书页和蠕虫状 假六方板状,
蒙脱石
弯片状、棉絮状,遇水膨胀,脱落堵塞 弯片状、棉絮状,遇水膨胀,
蒙托石
伊利石
绿泥石
混层 伊/蒙 绿/蒙
山东济阳坳陷砂岩成岩作用序列表
成岩带 一般埋深 m 主要层位 储层主要沉积相 地温 ℃ 镜煤反射率 % 一般孔隙度 % 平均渗透率 10-3μm 有机质成熟度 粘土环边 早期方解石化 石英次生加大 自生高岭石化 黑云母碳酸盐化 深层溶解次生孔隙出现 阶状石榴石形成 斜长石钠长石化 铁方解石胶结交代作用 铁白云石胶结交代作用 蒙托石带 无序混层带 有序混层带 伊利石带 油气形成 常见敏感性伤害 浅层 <1700 Nm~ Nm~Ed 河流冲洪积 <75 0.35 25~ 25~35 500~ 500~600 未成熟 中层 1700~ 1700~2100 Ed~ Ed~Es2 湖砂坝湖砂坝-三角洲 90 0.45 20~ 20~30 500~ 500~2000 半成熟 深层 超深层 2100~ 2100~3200 >3200 Es2~Es4 Es4~Ek 湖三角洲-浊流湖三角洲-浊流-河流冲洪积 130 >130 0.65 >0.65 5~20 1~10 50~ 50~500 >10 成熟 高成熟
第一章 粘土矿物
1、吸附:物质在两相界面上自动浓集(界
面浓度大于内部浓度)的现象。
吸附质:被吸附的物质。 吸附剂:吸附吸附质的物质。 吸附分类:物理吸附、化学吸附。
2、吸附过程:
可逆、动态平衡。 注:吸附与解吸附同时存在,平衡时吸附与 解吸附速度相等。 吸附量: 达到动态平衡时,单位体积(重量) 吸附 剂所吸附的吸附质的数量。
格取代引起的。
产生原因:晶格取代数量的多少,决定了永
久性负电荷数量的多少。
表面电荷:永久负电荷主要分布在晶层表面
上,又称之为表面电荷。
2、可变负电荷
定 义:电荷的数量随外界环境变化而变化。 产生原因: ① PH值:介质的PH变化,使OH- 吸附或使 H+ 解离。 ② 吸附带有负电荷的物质: 带有负电荷的有机、无机处理剂。
粘土颗粒在流体中存在的三种方式:
合并变大(面—面结合)、相互联结(网架 结构)、分散(颗粒独立存在)。
这三种存在方式形成的主要原因:
取决于粒子之间引力与斥力的平衡关系,即 引力>斥力 合并变大 引力≈斥力 网架结构 引力<斥力 分散存在
2、稳定性:聚集稳定性和沉降稳定性。
①聚集稳定性:
③ 外来可溶性盐类的影响
降低电动电位,降低双电层的厚度
④ 有机处理剂的影响
水溶性有机(特别是高分子)处理剂有较多 的亲水基团,吸附于粘土离子表面或将粘土
颗粒包被起来,减弱或阻止水分子的进入,
使粘土粒子的水化性能变弱或不水化。
四、凝聚性和稳定性 1、凝聚性:在一定条件下,粘土矿物颗粒
在水中发生联接的性质。 三种联接方式: ①面—面:引力远远大于斥力,使粒子体积变 大,分散度降低。 ②面—端:引力大于斥力,形成网架结构。 ③端—端:端面水化膜较薄,相对斥力较小, 易使其联接,形成网架结构。
粘土矿物1
(2)非膨胀性
在伊利石晶层之间 吸附有钾离子。它受到 相邻两晶层负电荷的吸 附,因而对相邻两晶层 产生了很强的键联效果, 连接力很强,使晶层不 易膨胀。
(3)电荷数量较大
同晶替代较普遍, 主要发生在硅片中, 但部分电荷被K+离子 所中和,阳离子交换 量介于高岭石与蒙脱 石之间。
(4)胶体特性
3、水化云母组
又叫2:1型非 膨胀性矿物或伊利 组矿物。
水化云母组具有以下特征:
(1)2:1型晶层结构
晶层结构与蒙脱石相似, 同样是由两层硅片夹一层 铝片组成,硅片和铝片的 比例为2:1,故又称2:1 型非膨胀性矿物。
伊利石是其代表。分子 式为: K2(Al·Fe·Mg)4 (SiAl)8O20(OH) 4·nH2O。
晶层类型
两种晶片的配合比例不 同,而构成: 1:1型晶层 2:1型晶层 2:1:1型晶层
(1)1:1型单位晶层
由一个硅片和一个铝片构成。 硅片顶端的活性氧与铝片底层 的活性氧通过共用的方式形成单位 晶层。这样1:1型层状铝硅酸盐的 单位晶层有两个不同的层面,一个 是由具有六角形空穴的氧原子层面, 一个是由氢氧构成的层面。
2、单位晶片
从化学上来看,四面体 为 ( SiO4)4-, 八 面 体 为 (AlO6)9-,它们都不是化 合物,在它们形成硅酸盐粘 土矿物之前,四面体和八面 体分别各自聚合。
(1)四面体片(简称硅片)
在水平方向上四面体通过共 用底部氧的方式在平面两维方向上 无限延伸,排列成近似六边形蜂窝 状的四面体片(简称硅片)。
粘土矿物的分类
粘土矿物根据结晶学特征分 为三类:
一、层状硅酸盐粘土矿物, 二、纤维状硅酸盐粘土矿物, 三、非硅酸盐粘土矿物(非 晶质粘土矿物)。
第一章 油田化学——粘土矿物
☞蒙脱石由于晶格取代作用产生的负电荷由K+来平衡,由于
蒙脱石取代位置主要在Si-O四面体中,产生的负电荷离晶层 表面近,故与K+产生很强的静电力, K+不易交换下来。
☞ K+的大小刚好嵌入相邻晶层间的氧原子网格形成的空穴
中,起到连接作用,周围有12个氧与它配伍,因此, K+连
吸附性越强交换能力越大,通常离子的交换能力由弱到强 的排列顺序为 Li+<Na+<K+(NH4+)<Mg2+<Ca2+<Ba2+<Al3+<Fe3+<H+ c. 离子浓度 离子浓度越大交换能力越强
粘土矿物的性质
四、 粘土的凝聚性
(1)概念:粘土矿物(颗粒)在水分散体系状态下, 通过不同的联结方式产生絮凝或聚结(集)的现象。 粘土颗粒的联结:絮凝和聚结(集)
②作用机理:浓差扩散。
粘土矿物的性质
1、 吸附:物质在两相界面上自动浓集(界面浓度大于内部 浓 度)的现象。 吸附质:被吸附的物质(钻井液处理剂) 吸附剂:吸附吸附质的物质(粘土) 2、分类 (1)物理吸附:范德华引力引起,一般无选择性, 吸附热较 小,容易脱附。例:阴离子和非离子处理剂在粘土上的吸附。 (2)化学吸附:化学键力引起,具有选择性,吸附热较大, 不易脱附。例:阳离子处理剂在粘土上的吸附。
构的)和非晶质,自然界中所见到的粘土矿物绝大多
粘 土
数是晶质的。 (2)粘土:疏松的尚未固结成岩的以粘土矿物为 主的(≥50%)沉积物。 (3)粘土岩(俗称:泥页岩):粘土矿物经沉积、
三种主要黏土矿物(高岭石、水云母、蒙脱石)的性质。
1、试比较三种主要黏土矿物(高岭石、水云母、蒙脱石)的性质。
(1) 高岭石(1:1型铝硅酸盐矿物)由一个硅氧片和一个水铝片,通过共用硅氧顶端的氧原子连接起来的片状晶格构造。
每个晶层的一面是OH离子组(水铝片上的),另一面是O离子(硅氧片上的),因而叠加时晶层间可形成氢键,使各晶层之间紧密相连从而形成大颗粒,晶粒多呈六角形片状。
其分子结构外形特征为OHOHOH .......OH顶层─────────────底层─────────────OOO ........O许多晶片相互重叠形成高岭矿物特点:晶层与晶层间距离稳定,连接紧密,内部空隙小,电荷量少,单位个体小,分散度低。
多出现于酸性土壤。
如高岭石类。
高岭石的性质特点:晶格内的水铝片和硅氧片很少发生同晶替代,因此无永久性电荷。
但水铝片上的--OH在一定条件下解离出氢离子,使高岭石带负电。
晶片与晶片之间形成氢键而结合牢固,水分子及其他离子难以进入层间,并且形成较大的颗粒。
因此其吸湿性、粘结性和可塑性较弱,富含高岭石的土壤保肥性差。
(2)蒙脱石类(2:1型铝硅酸盐矿物)由两片硅氧片和一片水铝片结合成的一个晶片(层)单元,再相互叠加而成的。
每个晶层的两面均由O离子组(硅氧片上的),因而叠加时晶层间不能形成氢键,而是通过“氧桥”联结,这种联结力弱,晶层易碎裂,其晶粒比高岭石小。
特点:胀缩性大,吸湿性强,易在两边硅氧片中以Al3+代Si4+,有时可在硅铝片中,一般以Mg2+代Al3+→带负电→吸附负离子。
如蒙脱石,这类矿物多出现于北方土壤。
如东北、华北的栗钙土、黑钙土和褐土等。
(3)水云母类(2:1型粘土矿物)结构与蒙脱石相类似,只是同晶替代产生的负电荷主要被钾离子中和,而少量被钙镁离子中和.特点:a、永久性电荷数量少于蒙脱石。
b、层与层之间由钾离子中和,使得各层相互紧密结合。
形成的颗粒相对比蒙脱石粗而比高岭石细。
其粘结性、可塑、胀缩性居中。
c、钾离子被固定在硅氧片的六角形网孔中,当晶层破裂时,可将被固定的钾重新释放出来,供植物利用。
油田应用化学第二章 粘土矿物
☞ K+的大小刚好嵌入硅氧四面体
片构成的六方网格内切圆空穴中, 周围有12个氧与它配伍,起到连接 作用,水分子不易进入晶层;
D、CEC 介于高岭石与蒙脱石之间(200-400mmol/kg)
☞伊利石由于晶格取代作用产生的负电荷由K+来平衡,由
于伊利石取代位置主要在Si-O四面体中,产生的负电荷离晶
3、晶片的结合(基本结构层)
晶层:四面体晶片与八面体晶片以适当的方式结合,构成晶层
(1)1:1型晶层:由一个硅氧四面体晶片与一个铝 氧八面体 晶片构成(5层原子面)。 层面上是OH Al-O晶片 Si-O晶片 层面是O
上一内容
下一内容
回主目录
返回
(2)2:1型晶层:由两个硅氧四面体晶片与一个铝氧八面体 晶片构成(7层原子面)。
返回
第四节 粘土的吸附性及凝聚性
二、粘土的凝聚性 1、定义:在一定条件下,粘土矿物颗粒在水中发生联结的性质。
2、粘土颗粒间作用力
静电斥力(扩散双电层) 斥力 水化膜斥力(水分子在粒子周围定向排列)
引力:范德华引力 3、粘土的联结方式
上一内容 下一内容 回主目录
返回
(1)边边联结 (2)边面联结
油田应用化学-----第二章
第二章 粘土矿物
上一内容
下一内容
回主目录
返回
前言
(1)粘土主要由粘土矿物(含水的铝硅酸盐)组成。
粘土
(2) 在水中有分散性 、带电性、离子交换以及水化性。
粘土 与钻 井的 关系
(1)粘土为钻井液的重要组成成分之一。 (2)钻井过程中井眼的稳定性与地层粘土含量和类型密切相关。 (3)油气层粘土含量和类型与钻井过程中油气层损害密切相关。
第二章 第四节 粘土矿物自生与转化
2、高岭石
高岭石族粘土矿物包括高岭石,地开石和珍珠陶土3种矿物。高岭石 族矿物的晶体结构以高岭石为代表。高岭石由一层Si—O四面体和一层Al— (O—H)八面体组成。
3、蒙皂石 现代的用法趋向于建立1个蒙皂石族(Semetite)来代替过去的蒙脱
石族。 蒙皂石又分为蒙脱石(在八面体层中Mg代替Al)和贝得石(在四面
孔隙衬层
孔隙衬层或 孔隙充填 孔隙衬层或 孔隙充填 孔隙衬层
孔隙衬层
孔隙衬层
2-10
2-10 4-150 , 通 常 4-20 8-40
0.1-10
2-12
2-12
特殊特征
锯齿状或港 湾状鳞片(双 晶?) 锯齿状或港 湾状鳞片(双 晶?) 锯齿状或港 湾状鳞片(双 晶?)
颗粒之间搭 桥 颗粒之间搭 桥 颗粒之间搭 桥
410、蒙皂石与高岭石 (霍6井,1647.02m,大磨拐河组,SEM)
371、粒间大孔隙,颗粒表面贴附蒙皂石 (贝16井, 1334.70m,兴安岭群,SEM)
394、粒间充填伊利石 (乌20井,2073.67m,南屯组,SEM)
395、伊利石贴附颗粒与充填孔隙 (乌20井,2077.09m,南屯组,SEM)
体层中Al代替Si)两个亚组。 蒙脱石有两个四面体层夹1个八面体层组成。
3、伊利石 伊利石并不是一种具体矿物。这个术语表示一组具有云母
构造的粘土矿物,过去称之为水云母。
二、如何区别自生与碎屑粘土矿物
1、识别手段 A 扫描电镜 B 电子探针 C 偏光显微镜 D x射线衍射分析(结晶度,伊利石) E 透射电子显微镜
H2O,Na+,Ca2+
蒙皂石
火山玻璃
+H2O;—Na+,Ca2+,K+
第二章粘土矿物和粘土胶体化学基础
Li+<Na+<K+(NH4+)<Mg2+<Ca2+<Ba2+<Al3+<Fe3+<H+
c. 离子浓度 离子浓度越大交换能力越强
四、粘土的凝聚性
(1)概念:粘土矿物(颗粒)在水分散体系状态下,通 过不同的联结方式产生絮凝或聚结(集)的现象。
膨胀性是衡量粘土亲水性的指标,亲水性越强,吸水量越 大,水化膨胀越厉害。 二、水化膨胀机理
各种粘土都会吸水膨胀,只是不同的粘土矿物水化膨胀的 程度不同而已。粘 土水化膨胀受三种力制约:表面水化 力、渗透水化力和毛细管作用。
二、 粘土的水化膨胀性
(1)表面水化 ①定义:由粘土晶体表面直接吸附水分子和通过所吸附的 可交换性阳离子间接吸附水分子而导致的水化。 ②表面水化机理 直接水化:粘土表面上的H+和OH-通过氢键吸附水分子 间接水化:通过所吸附的可交换性阳离子间接吸附水分子 (2) 渗透水化
D、CEC 大介于高岭石与蒙脱石之间(200-400mmol/kg)
☞蒙脱石由于晶格取代作用产生的负电荷由K+来平衡,由于 蒙脱石取代位置主要在Si-O四面体中,产生的负电荷离晶层 表面近,故与K+产生很强的静电力, K+不易交换下来。
☞ K+的大小刚好嵌入相邻晶层间的氧原子网格形成的空穴 中,起到连接作用,周围有12个氧与它配伍,因此, K+连 接通常非常牢固,不易交换下来。
2 粘土矿物带电量
CEC:pH值等于7的水溶液中1kg粘土中可被交换 出来的阳离子电荷总数。
粘土矿物
主要粘粒矿物的形成环境影响粘粒矿物形成的环境因素主要有:酸度、盐基物质、有关离子的浓度、湿度等。
例如高岭石的形成条件是高温多湿与少盐基、强酸性等,则必然以分布在华南的红壤地带为主,但它在北方的古红土母质中也会出现,那是古气候影响的残迹;又如蒙脱石的形成条件是碱性与高镁等,则必然以出现在北方土壤中为主,但它在热带的燥红土中也有,则表明燥红土有特殊的干燥气候与酸度偏碱的成土环境;再如赤铁矿与三水铝石等氧化物矿物都属于风化阶段的最后产物,一般来说,他们应分布在以红壤与砖红壤地带为主,如果不是,则表明另有特殊的局部成土环境。
——陆景岗《土壤地质学》(1997)粘土矿物自然色无色——高岭石矿物、蒙脱石、绢云母绿色——绿泥石、蛇纹石、铁蒙脱石、滑石、黑高岭土褐色——铁蒙脱石、黑铁高岭土、黑硬绿泥石黄色——囊脱石蓝绿色——海绿石、绿鳞石PS:采集时为绿色,在空气中放置后变成褐色粘土矿物为多铁的蒙脱石或多铁的蛇纹石,可能是由于亚铁被氧化。
——须腾俊男《粘土矿物》(1959)粘土矿物在石油地质中地应用(A)粘土矿物判断古环境:1、代表干旱气候的矿物组合类型粘土矿物对周围环境很敏感,干旱的古气候通过具有较高盐度和某些离子的水介质而影响粘土矿物组合类型。
根据粘土矿物组合类型研究古气候效果较好。
(1)以伊利石含量占优势的伊利石+绿泥石矿物组合和伊利石+伊/蒙有序间层+绿泥石矿物组合,一般代表干旱古气候和富含K+离子的盐湖水介质。
(2)伊利石+绿/蒙间层(包括柯绿泥石)+绿泥石矿物组合,则往往代表干旱-半干旱古气候和富Fe2+、Mg2+离子中等盐度且偏碱性的水介质。
(3)伊利石+蒙皂石(或伊/蒙无序问层)+坡缕石+绿泥石矿物组合,则代表干旱-半干旱古气候和碱性(pH值为8~9)且富Mg2+离子的水介质。
(4)伊利石+伊/蒙无序间层+绿泥石矿物组合,往往处于(1)与(3)之间的古气候和古水介质。
以上几种组合的共同特点是不含高岭石。
粘土矿物——精选推荐
1、高岭石定义“高岭土(Kaolin)”一词源自中国,由江西景德镇(古浮梁县)东北的高岭村出产的一种可以制瓷的白色粘土而得名。
清康熙年间的约1712—1722年,法国神甫殷弘绪(Le Pere d’Entrecolles)从饶州向本国写信介绍景德镇的制瓷和高岭土使用情况,1769年德人李希霍芬(Riehthofen)访问景德镇,并著文将高岭土音译成“Kauling”,后以“Kaolin”流传于欧美。
古代的“玉岭土”、。
明砂土。
、“东埠土。
等均指产于高岭村一带的高岭土。
高岭土还有下列许多地区性的、商业的和工业的名称。
(1)瓷土和瓷石(china ciay and!chin/stone)是陶瓷业使用的术语,也是一种商业名称。
早先系指由石英斑岩等细粒脉岩风化而成的高岭土,风化带上部呈土状产出者称瓷土,半风化带呈较为坚硬的块状者称瓷石。
瓷土和瓷石二者没有截然界线。
现在,也有将供制瓷用的绢(水)云母一石英质矿石称瓷石者。
1982年制定的“江西省轻工业厅企业标准。
中,把高岭土和瓷石原矿加工后用于制陶瓷的不子、泥料和粉料统统定义为瓷土。
(2)耐火粘土(refractory ciay) 是冶金业使用的术语,也是一种商业名称,指耐火度大于1580℃的粘土。
它主要包括高岭土,但也包括部分非高岭土质的铝钒土等。
它们按成型时掺砂量的多少被划分为软质(掺砂量>50%)、半软质(掺砂量20—50%)、硬质(不成型)耐火粘土三种。
(3)陶土是陶瓷业使用的术语,指一些富含铁质而带黄褐、红紫等色调,具良好可塑性,可用以烧制陶瓷的粘土。
矿物成分较杂,以高岭石为最主要。
(4)球土(ball clay) 此术语源于英国,指一种沉积成因的,含有机质的细粒高可塑性粘土,主要由高岭石组成。
相传,最早开采时为便于运输把粘土滚成球形,因而得名。
属软质粘土类。
(5)燧石粘土(flint clay) 该术语于1886年由库克(Cook)命名,流行于西方。
粘土矿物
用扫描电子显微镜观察,沉积岩中自生高岭石呈蠕虫状(图版I-b)、书页状(图版I-c)集合体赋存子粒间.其单晶为六方板状(图版I—a),常与自生石英、方解石等自生矿物共生.10.1.2成分特征用能谱测定高岭石的化学成分.主要元素为硅(Si)、铝(Al),其Si02/Al2O3的比值为1·1-1.3。
10.2蒙皂石10.2.1形态特征用扫描电子显微镜观察.沉积岩中自生蒙皂石呈蜂窝状(图版I-a、b、c)赋存子粒表,星棉絮状、片状赋存予粒间.10.2.2成分特征用能谱测定其成分.主要成分为硅(Si)、铝(Al)、钙(Ca)、钠(Na),氧化钾(K2O)含量低,通常小于1.5%.10.3伊利石10.3.1形态特征用扫描电子显微镜观察,自生伊利石呈片状(图版I-a、c)或丝状(图版I-b)集合体,赋存子粒表和粒同.10.3.2成分特征用能谱测定伊利石成分.主要元素为硅(Si)、铝(Al)、钾(K).其氧化钾(K20)值通常大于7.5%.10.4绿泥石10.4.1形态特征用扫描电子显微镜观察,自生绿泥石墨绒球状(图版Ⅳ-a)赋存子粒间,或以针叶状(图版Ⅳ-b)赋存于粒表,其单晶结构为叶片状(图版Ⅳ-c).10.4.2成分特征用能谱测定绿泥石成分.主要元素为硅(Si)、铝(Al)、铁(Fe)、镁(Mg).除硅、铝外,富含铁、镁是其主要特征.10.5伊/蒙混层用扫描电子显微镜观察,伊/蒙混层呈丝状(图版Va、b、c),是蒙皂石向伊利石过渡期的粘土矿物.形态特征是蒙皂石特征逐渐消失,伊利石特征逐渐增强,赋存于粒表和粒间.10.5.2成分特征用能谱测定伊/蒙混层成分,主要元素为硅(Si)、铝(Al)、钾(K)、钙(Ca)、钠(Na).其成分特征主要反映在氧化钾(K2O)含量为1.5%~7.5%.确定为过渡期的混层粘土矿物.10.6绿/蒙混层10.6.1形态特征用扫描电子显微镜观察,绿/蒙混层粘土矿物呈蜂窝状(图版Ⅵ-a、b)和丝状结构(图版Ⅵ-c).是蒙皂石向绿泥石过渡期的粘土矿物,具有蒙皂石和绿泥石的形态特征.10.6.2成分特征用能谱测定绿/蒙混层成分,主要元素为硅(Si)、铝(Al)、铁(Fe)、镁(Mg)、钙(Ca)。
粘土矿物
一、粘土矿物的结构
(一)硅氧四面体与硅氧四面体晶片
• 其最基本的结构单元是 SiO4四面体,多个SiO4 四面体通过共用顶角上 的一个、二个或三个、 四个氧原子连成链状、 环状、片状或三维网状 结构。在空间重复形成 硅氧四面体晶片。
硅氧四面体晶片
硅氧四面体的六方网格结构 内切圆直径0.288 nm,硅氧四面体片的厚度0.5 nm
(三)粘土-水界面的吸附作用——离子交换吸附
1、离子交换吸附: 就是一种离子被吸附的同时从吸附剂表面顶替出等电量
的带相同电荷的另一种离子的过程。 由于粘土颗粒带负电荷,它在溶液中能吸附阳离子,进
行阳离子交换吸附。离子交换吸附是经常发生的,例如:在泥 浆 中 2Na+ 与 Ca2+ 的 交 换 吸 附 , 又 如 饱 含 盐 水 泥 浆 pH 下 降 , Na+与H+的交换吸附。
第一章 粘土矿物
• 粘土在钻井工艺中起着极其重要的作用,粘土的种 类和数量直接影响钻井液的性能、井眼的稳定性以 及油气层的保护。
• 粘土主要由粘土矿物(含水的硅铝酸盐)组成,呈 颗粒状,其颗粒大多数小于2μm。它在水中具有水 化性、分散性、带电性、离子交换性。这些性能对 于处理与配制钻井液都具有重要作用,是主要的配 浆用原料。
3、可变性(端面 )正电荷 • 当粘土介质的pH值小于9时,粘土晶体端面上带正电荷,
这是因为裸露在边缘上的铝氧八面体在酸性条件下从介质 中解离出OH-:
>Al-OH→>Al++OH-(两性偏碱性)
粘土表面-OH的两性表现
4、净电荷数
粘土的正电荷与负电荷的代数和称为粘土晶体颗粒的净电 荷数。粘土的负电荷数一般多于正电荷,所以粘土颗粒总起来 讲是带负电荷。
粘土矿物耐火材料
粘土矿物耐火材料粘土矿物是一种重要的耐火材料,广泛应用于冶金、化工、建筑等领域。
它具有优良的耐高温性能、化学稳定性和机械强度,是制造耐火砖、耐火浇注材料和耐火涂料的主要原料之一、本文将详细介绍粘土矿物的种类、性质和应用领域。
粘土矿物主要包括膨化土、石墨石、滑石和蛭石等,它们的主要成分是层状硅酸盐矿物。
这些矿物具有特殊的结构和化学组成,使其具有良好的耐火性能。
例如,膨化土由于其膨化结构,具有低导热系数和高耐火温度,常用于制造耐火砖和耐火浇注材料。
石墨石则由于其高熔点和良好的导热性能,适用于制造耐火涂料和耐火电极。
粘土矿物的耐火性能主要体现在以下几个方面。
首先,由于其层状结构和高结晶度,粘土矿物具有较高的熔点和熔化温度,能够在高温环境下保持稳定。
其次,粘土矿物的导热性能较低,可以有效减少热量传导损失。
此外,粘土矿物的热膨胀系数较低,能够耐受高温下的热膨胀和冷缩变形,不易发生开裂和崩落。
粘土矿物在不同领域有广泛的应用。
在冶金行业,粘土矿物常用于制造高温炉窑的耐火砖,如钢铁冶炼炉、电炉和转炉等。
耐火砖是一种耐高温和耐侵蚀的砌块材料,可承受炉内高温和化学侵蚀。
在化工行业,粘土矿物可用于制造化工炉窑的耐火浇注材料。
耐火浇注材料是一种用于炉窑内壁和底座的耐火材料,能够承受化学腐蚀和机械冲击。
在建筑行业,粘土矿物常用于制造耐火涂料和耐火砂浆,用于保护建筑物或结构物的耐火性能。
耐火涂料和耐火砂浆可以形成一层保护膜,防止火灾的蔓延和结构物的损坏。
值得注意的是,粘土矿物在应用过程中需要考虑其与其他材料的相容性。
由于粘土矿物具有一定的吸湿性和收缩性,与其他材料的热膨胀系数和线膨胀系数应相匹配,以避免应力集中和开裂。
此外,粘土矿物的制备和加工过程也需要进行一定的技术改进,以确保其稳定性和均匀性。
总之,粘土矿物是一种重要的耐火材料,具有优良的耐高温性能、化学稳定性和机械强度。
它们在冶金、化工、建筑等领域有广泛的应用,用于制造耐火砖、耐火浇注材料和耐火涂料等产品,提供了重要的保护和支持。
耐火粘土中常见的主要矿物、化学成分及矿石类型
书山有路勤为径,学海无涯苦作舟耐火粘土中常见的主要矿物、化学成分及矿石类型1、耐火粘土中常见的主要矿物、化学成分(1)一水硬铝石(Diaspore)A12O3- H2O 氧化铝含量84.98%(2)勃姆石(一水软铝石)(Boehmite)A12O3-H2O 氧化铝含量85.7%※(3)三水铝石(Gibbsite)A12O3-3H2O 氧化铝含量65.35%※(4)珍珠陶土(Nacrite)Al2O3-2SiO2-2H2O 氧化铝含量39.65%※(5)高岭石(Kaolinite)Al2O3-2SiO2-2H2O 氧化铝含量39.55%※※(6)地开石(Dickite) Al2O3-2SiO2-2H2O 氧化铝含量38.93%※※(7)水铝英石(Allophane)A12O3-SiO2-nH2O 氧化铝含量37.73%※※(8)埃洛石(Halloysite)A12O3-2Si02-4H2O 氧化铝含量36.58%※※(9)伊利石(Illite)K1-1..5Al4[Si6.5-7Al1-1.5O20](OH)4 氧化铝含量30.15%※※10)叶蜡石(Pyrophyllite)A12O3-4SiO2-H2O 氧化铝含量28.64%※※(11)蒙脱石(Montmorillonite)(Ca,Na)0.7(Al,Mg,Fe)4(Si,Al)8O20(OH)4-nH2O 氧化铝含量16.5422.96%※※(注:※化学理论成分;※※据化学分析的成分)次要矿物主要有褐铁矿、赤铁矿、黄铁矿、菱铁矿、钛铁矿、金红石、白钛矿、锐钛矿、石英、蛋白石、玉髓、电气石、锆石、石榴石、长石、角闪石、辉石、榍石、方解石、白云石、石膏等。
耐火粘土的有害杂质主要有铁的氧化物、氢氧化物、硫化物、碳酸盐、游离SiO2、钙和镁的碳酸盐和碳酸盐、锰的氧化物、钾、钠的氧化物、碳质和有机质等。
此外,钛的氧化物常因其含量的多少,而有不同的作用。
黏土矿物组成
黏土矿物组成
黏土矿物是指那些具有黏土性质的矿物,主要由硅酸盐矿物组成。
常见的黏土矿物有:
1. 伊利石:由硅酸钠、铝酸镁、水合硅酸钠等矿物组成,是常见的黏土矿物之一。
2. 蒙脱石:由硅酸镁、水合硅酸钠等矿物组成,具有很高的吸附能力,常用于活性土、吸附剂等领域。
3. 膨润土:由硅酸铝、镁酸铝等矿物组成,具有较强的吸附能力和膨胀性质。
4. 绿泥石:由硅酸镁、硅酸铁等矿物组成,常见于绿色粘土中。
5. 凹凸棒石:由硅酸镁、硅酸铁等矿物组成,是一种典型的黏土矿物。
黏土矿物在地球上广泛分布,常见于沉积岩和火山岩中,其主要成分是硅酸盐矿物,具有较强的吸附能力和可塑性,可用于制作陶器、建筑材料等。
第二章粘土矿物
非收缩型粘土矿物
水镁石对晶层的静电引力
五、海泡石
海泡石族矿物〔俗称抗盐粘土〕包括海泡石、凹凸棒石 等。是铝和镁的水硅酸盐,其晶体结构常为链层状。它由2:1层 型的晶体结构每隔6个硅氧四面体做180º翻转,并沿a轴延伸而 成。发生平行与a轴的通道。
特点:含较多的吸附水,具有较高的热动摇性〔加热到 350℃晶体结构仍无变化〕,在海水和饱和盐水中水化收缩状况 简直完全一样〔良好的抗盐性〕。因此,用它配制的钻井液用 于陆地钻井和钻高压盐水层或盐岩层具有很好的悬浮功用。
第二章粘土矿物
2021年7月24日星期六
粘土的定义
2μm 。在水中具有分散性、带电性和离子交流性。 粘通常土以矿为物粘土就是是由通极细常的构粘成土矿岩物石组和成,土其壤颗细粒小粒于局部〔<2μm〕的
主要成分的矿物。普通状况下粘‘’土矿物是细分散的、含水的 层状结构硅酸岩矿物和层链状结构硅酸岩矿物及含水的非晶 质硅酸岩矿物的总称。
引伸概念
粘土矿物区分由上述两种基本结构层堆叠而成。 层间域:当两个基本结构层重复堆叠时,相邻基本结构层 之间的空间; 粘土矿物的单位结构:基本结构层加下层间域; 层间物:存在于层间域中的物质;假定层间物为水时,那么称 为层间水,假定层间域中有阳离子,那么称为层间阳离子。
粘土矿物
粘土矿物有高岭石、蒙脱石、伊利石、绿泥石、坡缕石等。
为了平衡电价而结合的阳离子Fra bibliotek可以相互交流的,称为可交流阳离子。
很少晶格取代
很少的可交流阳离子
氢键
非收缩型粘土矿物
粘土矿物
二、蒙脱石〔Montmorillonite〕 基本结构层是由两个硅氧四面体片和一个铝氧八面体片组成,2:1层型粘土矿物
粘土矿物名词解释
粘土矿物名词解释粘土矿物是一种由生物或物理作用形成的细小粒子与杂质的混合物,是地壳上最常见的一类物质。
粘土矿物具有重要的地质意义,它们反映了地壳中微粒和硅质晶体之间的结构和性质,这也使许多人注意到这类物质。
下面我们就粘土矿物名词解释来做一些简单的介绍。
首先,要了解粘土矿物,必须了解粘土矿物组成。
一般来说,粘土矿物是由不同形状的沉积矿物组成的,通常包含石英、集晶石、铝石英、硅质晶体和钙石等,它们的分类根据石英、集晶石、硅质晶体或钙石的存在情况而定。
例如,如果石英含量少于30%,则称该粘土矿物为高硅质粘土。
其次,要了解粘土矿物的性能特征,先来看看粘土矿物的物理性质。
粘土矿物的物理特性主要有颗粒细度、硬度、孔隙度和密度等。
例如,粘土矿物颗粒细度可以通过石英、集晶石、硅质晶体或钙石的大小来确定,而硬度则可以用相邻两粒砂粒间的摩擦力来确定,而孔隙度则可以用渗透水的速率来判断,而密度则可以用比重法来确定。
最后,要了解粘土矿物的化学性能,也就是有关其组成元素和原位测量方法的知识。
其中,也包括石英、集晶石、硅质晶体或钙石的X射线衍射分析,以及石英、硅质晶体或钙石的核磁共振波谱分析等。
其结果可以帮助我们更好地了解粘土矿物的构造和性质,从而为地质学方面的研究提供一定的帮助。
粘土矿物的“解释”只是初步的介绍,它还有更多的性质和用途等,这里就不一一展开了,有兴趣的读者可以自行深入研究。
虽然粘土矿物在各领域的应用还不是非常广泛,但它的研究和应用还是相当有价值的,因此未来将会更多的发掘和利用粘土矿物在各个领域的潜力,从而给人类带来更多的福利。
粘土矿物的基本类型
粘土矿物的基本类型粘土矿物是一类重要的地球物质,广泛存在于地壳中。
它们具有极细的颗粒结构和良好的可塑性,因此在许多领域都有广泛的应用。
在本文中,我们将介绍粘土矿物的基本类型,包括膨润土、伊利石、高岭石和蒙脱石。
膨润土是一种常见的粘土矿物,它的特点是具有很强的吸湿性和膨胀性。
膨润土的颗粒结构呈片状,具有很大的比表面积。
它可以吸附和储存大量的水分,因此被广泛用于土壤改良、陶瓷制造和油田开发等领域。
伊利石是一种由硅酸盐矿物组成的粘土矿物,常见于火山岩、火山灰和沉积岩中。
伊利石的颗粒结构呈片状,具有很好的吸附性和吸湿性。
它被广泛应用于陶瓷、造纸、塑料和涂料等工业中。
高岭石是一种由硅酸盐矿物组成的粘土矿物,常见于火山岩、火山灰和沉积岩中。
高岭石的颗粒结构呈片状,具有很好的吸附性和吸湿性。
它被广泛应用于陶瓷、造纸、塑料和涂料等工业中。
蒙脱石是一种由硅酸盐矿物组成的粘土矿物,常见于火山岩、火山灰和沉积岩中。
蒙脱石的颗粒结构呈片状,具有很好的吸附性和吸湿性。
它被广泛应用于陶瓷、造纸、塑料和涂料等工业中。
除了以上几种基本类型的粘土矿物,还存在着一些其他类型的粘土矿物,如绿泥石、菱铁矿和白云石等。
这些粘土矿物在地质学、材料科学和环境科学等领域都有重要的研究价值和应用前景。
总结起来,粘土矿物是一类重要的地球物质,具有极细的颗粒结构和良好的可塑性。
膨润土、伊利石、高岭石和蒙脱石是粘土矿物的基本类型,它们在土壤改良、陶瓷制造、油田开发和工业生产等领域都有广泛的应用。
除了这些基本类型,还存在着其他类型的粘土矿物,它们在科学研究和应用开发中也具有重要的价值。
通过深入研究粘土矿物的性质和应用,我们可以更好地理解地球的演化过程,并为人类的发展提供更多的资源和技术支持。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
用扫描电子显微镜观察,沉积岩中自生高岭石呈蠕虫状(图版I-b)、书页状(图版I-c)集合体赋存子粒间.其单晶为六方板状(图版I—a),常与自生石英、方解石等自生矿物共生.
10.1.2成分特征
用能谱测定高岭石的化学成分.主要元素为硅(Si)、铝(Al),其Si02/Al2O3的比值为1·1-1.3。
10.2蒙皂石
10.2.1形态特征
用扫描电子显微镜观察.沉积岩中自生蒙皂石呈蜂窝状(图版I-a、b、c)赋存子粒表,星棉絮状、片状赋存予粒间.
10.2.2成分特征
用能谱测定其成分.主要成分为硅(Si)、铝(Al)、钙(Ca)、钠(Na),氧化钾(K2O)含量低,通常小于1.5%.
10.3伊利石
10.3.1形态特征
用扫描电子显微镜观察,自生伊利石呈片状(图版I-a、c)或丝状(图版I-b)集合体,赋存子粒表和粒同.
10.3.2成分特征
用能谱测定伊利石成分.主要元素为硅(Si)、铝(Al)、钾(K).其氧化钾(K20)值通常大于7.5%.
10.4绿泥石
10.4.1形态特征
用扫描电子显微镜观察,自生绿泥石墨绒球状(图版Ⅳ-a)赋存子粒间,或以针叶状(图版Ⅳ-b)赋存于粒表,其单晶结构为叶片状(图版Ⅳ-c).
10.4.2成分特征
用能谱测定绿泥石成分.主要元素为硅(Si)、铝(Al)、铁(Fe)、镁(Mg).除硅、铝外,富含铁、镁是其主要特征.
10.5伊/蒙混层
用扫描电子显微镜观察,伊/蒙混层呈丝状(图版Va、b、c),是蒙皂石向伊利石过渡期的粘土矿物.形态特征是蒙皂石特征逐渐消失,伊利石特征逐渐增强,赋存于粒表和粒间.
10.5.2成分特征
用能谱测定伊/蒙混层成分,主要元素为硅(Si)、铝(Al)、钾(K)、钙(Ca)、钠(Na).其成分特征主要反映在氧化钾(K2O)含量为1.5%~7.5%.确定为过渡期的混层粘土矿物.10.6绿/蒙混层
10.6.1形态特征
用扫描电子显微镜观察,绿/蒙混层粘土矿物呈蜂窝状(图版Ⅵ-a、b)和丝状结构(图版Ⅵ-c).是蒙皂石向绿泥石过渡期的粘土矿物,具有蒙皂石和绿泥石的形态特征.
10.6.2成分特征
用能谱测定绿/蒙混层成分,主要元素为硅(Si)、铝(Al)、铁(Fe)、镁(Mg)、钙(Ca)。
其铁、镁含量较高是主要特征.
11分析结果发布
11.1鉴定粘土矿物的名称.
11.2对于石油地质样品,要说明样品相应的地区、井号、层位、岩性。
11.3说明粘土矿物的赋存状态及形态特征.
11.4说明粘土矿物的元素成分特征及标样编号、名称。
11.5使用标样说明. GB/T 17361-1998
附录A
(提示的附录)
几种常见粘土矿物元素成分特征参考表
伊利石 1.06 2.74 31.36 45.24 9.12 0.36 0.09 2. 03 0.19 90~95 伊/袋混层0.55 1.43 18.57 61.96 2.58 0.64 - 4. 57 0.50 89~95 绿/蒙混层 1.27 11.13 21.99 37.26 2.34 0.53 -17. 54 0.49 84~93 绿泥石0.12 16.84 20.88 26.45 0.32 1.54 -18. 83 -87~90
附录B
(提示的附录)
图版I至图版Ⅵ
图版I 高岭石
a.粒同书页状高岭石×3000;
b.粒问蠕虫状高岭石×1500;
c.粒表六方板状高岭石×2500;
d.高岭石能谱图.
图版I 蒙脱石
a.粒表蜂窝状蒙脱石×2200;
b.粒表蜂窝状蒙脱石×l300;
c.粒表蜂窝状蒙脱石×l500;
d.蒙脱石能谱图.
图版Ш伊利石
a.粒袭片状伊利石×4010;
b.粒间丝状伊利石×2000;
c.粒表片状伊利石×2500;
d.伊利石能谱图,
图版Ⅳ绿泥石
a. 粒问绒球状绿泥石×800;b.粒间针叶状绿泥石×1000;c.粒表叶片状绿泥石×5000;
d.绿泥石能谱圈.
图版V 伊/蒙混层
a.粒表丝状I/S混层×3500;
b.粒间丝状I/S混层×3000;
c.粒间丝状I/S混层×2500;
d.I/S混层能谱图。
图版VI 绿/蒙混层
a.粒表蜂窝状C/S混层×500;
b.粒闻蜂窝状C/S混层×2000;
c.粒间丝状C/S混层×1000;
d.C/S混层能谱图,。