新初中数学数据分析真题汇编附答案(2)

合集下载

初中数学数据分析真题汇编含答案

初中数学数据分析真题汇编含答案

数.它是反映数据集中趋势的一项指标.将一组数据按照从小到大(或从大到小)的顺序
排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数
据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.
7.甲、乙两名同学分别进行 6 次射击训练,训练成绩(单位:环)如下表
第一次
第二次
15 C.15 岁, 6 岁
【答案】A 【解析】
B.15 岁,15 岁 D.14 岁,15 岁
【分析】 根据众数、平均数的定义进行计算即即可. 【详解】 观察图表可知:人数最多的是 5 人,年龄是 15 岁,故众数是 15.
这 12 名队员的年龄的平均数是: 123 13114 2 15 5 161 14 12
故选:D. 【点睛】 本题主要考查了方差、平均数、中位数以及众数的知识,解答本题的关键是熟练掌握各个 知识点的定义以及计算公式,此题难度不大.
13.为参加学校举办的“诗意校园•致远方”朗诵艺术大赛,八年级“屈原读书社”组织了五次 选拔赛,这五次选拔赛中,小明五次成绩的平均数是 90,方差是 2;小强五次成绩的平均 数也是 90,方差是 14.8.下列说法正确的是( ) A.小明的成绩比小强稳定 B.小明、小强两人成绩一样稳定 C.小强的成绩比小明稳定 D.无法确定小明、小强的成绩谁更稳定 【答案】A 【解析】 【分析】 方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性 也越小;反之,则它与其平均值的离散程度越小,稳定性越好. 【详解】 ∵小明五次成绩的平均数是 90,方差是 2;小强五次成绩的平均数也是 90,方差是 14.8. 平均成绩一样,小明的方差小,成绩稳定, 故选 A. 【点睛】 本题考查方差、平均数的定义,解题的关键是熟练掌握基本知识,属于中考基础题. 错因分析 容易题.失分原因是方差的意义掌握不牢.

(专题精选)初中数学数据分析真题汇编及答案

(专题精选)初中数学数据分析真题汇编及答案

方差的变化,可分别求出原来的方差和改变数据后的方差,再进行比较.
13.郑州某中学在备考 2018 河南中考体育的过程中抽取该校九年级 20 名男生进行立定跳 远测试,以便知道下一阶段的体育训练,成绩如下所示:
成绩(单位:米) 2.10 2.20 2.25 2.30 2.35 2.40 2.45 2.50
9.一组数据 5,4,2,5,6 的中位数是( )
A.5
B.4
C.2
D.6
【答案】A
【解析】
试题分析:将题目中数据按照从小到大排列是: 2,4,5,5,6,故这组数据的中位数是
5,故选 A.
考点:中位数;统计与概率.
10.某地区汉字听写大赛中,10 名学生得分情况如下表:
分数 50
85
90
95
人数 3
ห้องสมุดไป่ตู้
A.7,6 【答案】B 【解析】
B.7,4
C.5,4
D.以上都不对
【分析】
根据数据 a,b,c 的平均数为 5 可知 a+b+c=5×3,据此可得出 1 (-2+b-2+c-2)的值;再由 3
方差为 4 可得出数据 a-2,b-2,c-2 的方差. 【详解】
解:∵数据 a,b,c 的平均数为 5,∴a+b+c=5×3=15,
若众数为 5,则数据为 1、5、5、7,中位数为 5,符合题意,
此时平均数为 1 5 5 7 = 4.5; 4
若众数为 7,则数据为 1、5、7、7,中位数为 6,不符合题意;
故选 C.
7.甲、乙两位运动员在相同条件下各射击10 次,成绩如下: 甲: 9,10,8,5, 7,8,10,8,8, 7 ;

初中数学冀教版九年级上册第二十三章 数据分析23.3 方差-章节测试习题(2)

初中数学冀教版九年级上册第二十三章 数据分析23.3 方差-章节测试习题(2)

章节测试题1.【答题】数据100,99,99,100,102,100的方差S2=______.【答案】1【分析】根据方差公式直接计算.【解答】数据的平均数方差s2= [(100-100)2+(99-100)2+(99-100)2+(100-100)2+(102-100)2+(100-100)2]=1故答案是:1.2.【答题】观察下面折线图,回答问题:(1) ______组的数据的极差较大;(2) ______组的数据的方差较大.【答案】a,a【分析】标准差和方差都可以衡量数据稳定性,数据越稳定,方差和标准差越小.由此可得答案.【解答】(1)a组的极差是95-20=75;b组的极差是40-30=10,所以a组的极差大;(2)由图中可以看出a组数据的波动大,所以a的方差大.方法总结:本题考查了方差和极差的意义,方差反映一组数据的波动大小,方差越大,波动性越大,反之也成立;极差是一组数据的最大值与最小值的差.3.【答题】有A、B两个班级,每个班级各有45名学生参加一次测验.每名参加者可获得0,1,2,3,4,5,6,7,8,9这几种不同的分值中的一种.测试结果A班的成绩如下表所示,B班的成绩如图所示.分数0 1 2 3 4 5 6 7 8 9 人数 1 3 5 7 6 8 6 4 3 2A班(1)由观察所得______班的方差大;(2)若两班合计共有60人及格,问参加者最少获______分才可以及格.【答案】A,4【分析】(1)根据方差的意义:反映一组数据的波动大小,方差越大,波动性越大,反之也成立;(2)计算第60人的分数即可.【解答】(1)观察图象可知,B班成绩分布集中,A班成绩比较分散,故可得A班的方差较大;(2)据统计表可知:两个班的成绩从高到低排到60名时,为4分;∴若两班合计共有60人及格,参加者最少获4分才可以及格.4.【答题】甲乙两种水稻实验品种连续5年的平均单位面积产量如下(单位:吨/公顷):品种第1年第2年第3年第4年第5年甲9.8 9.9 10.1 10 10.2乙9.4 10.3 10.8 9.7 9.8经计算,甲=10,乙=10,试根据这组数据估计______种水稻品种的产量比较稳定.【答案】甲【分析】(1)根据中位数的定义解答即可;(2)根据平均数的定义解答即可;(3)根据方差进行解答即可.【解答】甲种水稻产量的方差是:;乙种水稻产量的方差是:;∵0.02<0.224,∴产量比较稳定的水稻品种是甲,5.【答题】如图,是甲、乙两地5月上旬的日平均气温统计图,则甲、乙两地这6天日平均气温的方差大小关系为:S2甲______S2乙 (填“<”或“>”号),甲、乙两地气温更稳定的是:______.【答案】>,乙【分析】先从图中读出甲、乙两地的气温数据,然后计算方差比较大小.【解答】观察平均气温统计图可知:乙地的平均气温比较稳定,波动小;故乙地的日平均气温的方差小.故S2甲>S2乙.故答案是:>,乙.6.【答题】已知样本x1、x2,…,x n的方差是2,则样本3x1+2,3x2+2,…,3x n +2的方差是______.【答案】18【分析】运用了方差的计算公式的运用.一般地设有n个数据,x1,x2,…x n,若每个数据都放大或缩小相同的倍数后再同加或同减去一个数,其平均数也有相对应的变化,方差则变为这个倍数的平方倍.【解答】∵样本x1、x2、…、x n的方差为2,又∵一组数据中的各个数据都扩大几倍,则新数据的方差扩大其平方倍,∴样本3x1、3x2、…、3x n的方差为32×2=18,∵一组数据中的各个数据都加上同一个数后得到的新数据的方差与原数据的方差相等,∴样本3x1+2、3x2+2、…、3x n+2的方差为187.【题文】某篮球队对运动员进行3分球投篮成绩测试,每人每天投3分球10次,对甲、乙两名队员在五天中进球的个数统计结果如下:经过计算,甲进球的平均数为8,方差为3.2.(1)求乙进球的平均数和方差;(2)现在需要根据以上结果,从甲、乙两名队员中选出一人去参加3分球投篮大赛,你认为应该选哪名队员去?为什么?【答案】(1)8;0.8;(2)详见解析.【分析】(1)根据平均数、方差的计算公式计算即可;(2)根据方差越大,波动越大,成绩越不稳定;方差越小,波动越小,成绩越稳定进行解答.【解答】解:(1)乙的平均数为:(7+9+8+9+7)÷5=8,乙的方差:=0.8,(2)∵S2甲>S2乙,∴乙成绩稳,选乙合适.8.【题文】八年2班组织了一次经典诵读比赛,甲乙两组各10人的比赛成绩如下表(10 分制):(I)甲组数据的中位数是,乙组数据的众数是;(Ⅱ)计算乙组数据的平均数和方差;(Ⅲ)已知甲组数据的方差是1.4分2,则成绩较为整齐的是.【答案】(1)9.5,10;(2)9,1;(3)乙组.【分析】(1)根据中位数的定义求出最中间两个数的平均数;根据众数的定义找出出现次数最多的数即可;(2)先求出乙组的平均成绩,再根据方差公式进行计算;(3)先比较出甲组和乙组的方差,再根据方差的意义即可得出答案.【解答】解:(1)把甲组的成绩从小到大排列为:7,7,8,9,9,10,10,10,10,10,最中间两个数的平均数是(9+10)÷2=9.5(分),则中位数是9.5分;乙组成绩中10出现了4次,出现的次数最多,则乙组成绩的众数是10分;故答案为:9.5,10;(2)乙组的平均成绩是:(10×4+8×2+7+9×3)÷10=9,则方差是:=1;(3)∵甲组成绩的方差是1.4,乙组成绩的方差是1,∴成绩较为整齐的是乙组.故答案为乙组.9.【题文】甲、乙两人在5次打靶测试中命中的环数如下:甲:8,8,8,8,9乙:5,9,7,10,9(1)填写下表(2)教练根据5次成绩,选择甲参加射击比赛,教练的理由是什么?(3)如果乙再射击1次,命中8环,那么乙的射击成绩的方差(填“变大”“变小”或“不变”)【答案】(1)8|8|9;(2)详见解析;(3)变小.【分析】(1)根据众数、平均数和中位数的定义求解;(2)根据方差的意义求解;(3)根据方差公式求解.【解答】解:(1)甲的众数为8;乙的平均数=(5+9+7+10+9)÷5=8,乙的中位数是9;(2)因为甲乙的平均数相等,而甲的方差小,成绩比较稳定,所以选择甲参加射击比赛;(3)如果乙再射击1次,命中8环,平均数不变,根据方差公式可得乙的射击成绩的方差变小.10.【题文】要从甲.乙两名同学中选出一名,代表班级参加射击比赛,如图是两人最近10次射击训练成绩的折线统计图.(1)已求得甲的平均成绩为8环,求乙的平均成绩;(2)观察图形,直接写出甲,乙这10次射击成绩的方差,哪个大;(3)如果其他班级参赛选手的射击成绩都在7环左右,本班应该选参赛更合适;如果其他班级参赛选手的射击成绩都在9环左右,本班应该选参赛更合适.【答案】(1)8环;(2) >;(3)乙|甲.【分析】(1)根据平均数的计算公式和折线统计图给出的数据即可得出答案;(2)根据图形波动的大小可直接得出答案;(3)根据射击成绩都在7环左右的多少可得出乙参赛更合适;根据射击成绩都在9环左右的多少可得出甲参赛更合适.【解答】解:(1)乙的平均成绩是:(8+9+8+8+7+8+9+8+8+7)÷10=8(环);(2)根据图象可知:甲的波动大于乙的波动,则S2甲>S2乙,(3)如果其他班级参赛选手的射击成绩都在7环左右,本班应该选乙参赛更合适;如果其他班级参赛选手的射击成绩都在9环左右,本班应该选甲参赛更合适.11.【题文】在学校组织的社会实践活动中,甲、乙两人参加了射击比赛,每人射击七次,命中的环数如表:根据以上信息,解决以下问题:(1)写出甲、乙两人命中环数的众数;(2)已知通过计算器求得=8,≈1.43,试比较甲、乙两人谁的成绩更稳定?【答案】(1)8,10;(2)甲.【分析】(1)根据众数的定义解答即可;(2)根据已知条件中的数据计算出乙的方差和平均数,再和甲比较即可.【解答】解:(1)由题意可知:甲的众数为8,乙的众数为10;(2)乙的平均数=(5+6+7+8+10+10+10)÷7=8,乙的方差为: S2乙≈3.71.∵甲=8,S2甲≈1.43,∴甲乙的平均成绩一样,而甲的方差小于乙的方差,∴甲的成绩更稳定.12.【题文】某商店对一周内甲、乙两种计算器每天销售情况统计如下(单位:个):品种\星期一二三四五六日甲 3 4 4 3 4 5 5乙 4 3 3 4 3 5 6(1)求出本周内甲、乙两种计算器平均每天各销售多少个?(2)甲、乙两种计算器哪个销售更稳定一些?请你说明理由.【答案】(1)本周内甲计算器平均每天销售4个,乙计算器平均每天销售4个;(2)甲的方差小于乙的方差,故甲的销售更稳定一些.【分析】根据题意,需求出甲、乙两种计算器销售量的平均数;要比较甲、乙两种计算器哪个销售更稳定,需比较它们的方差,根据方差的计算方法计算方差,进行比较可得结论.【解答】解:(1)甲种计算器销售量的平均数为(3+4+4+3+4+5+5)=4;乙种计算器销售量的平均数为(4+3+3+4+3+5+6)=4.答:本周内甲种计算器平均每天销售4个,乙种计算器平均每天销售4个.(2)甲的方差为[(3-4)2+(4-4)2+(4-4)2+(3-4)2+(4-4)2+(5-4)2+(5-4)2]= 个2;乙的方差为[(4-4)2+(3-4)2+(3-4)2+(4-4)2+(3-4)2+(5-4)2+(6-4)2]= 个2.根据方差的意义,方差越大,波动性越大,反之也成立.甲的方差小于乙的方差,故甲的销售更稳定一些.【方法总结】本题考查方差的定义与意义:一般地设n个数据,x1,x2,…x n的平均数为,则方差S2= [(x1-)2+(x2-)2+…+(x n-)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.13.【题文】甲、乙两个样本的相关信息如下:样本甲数据:1,6,2,3;样本乙方差:=3.4.(1)计算样本甲的方差;(2)试判断哪个样本波动大.【答案】(1)3.5;(2)样本甲的波动大【分析】(1)先由平均数的公式计算出平均数,再根据方差的公式计算即可.(2)先比较出甲和乙的方差,再根据方差越大,波动性越大,即可得出答案.【解答】解:(1)∵样本甲的平均数是,∴样本甲的方差是:S2甲= [(1-3)2+(6-3)2+(2-3)2+(3-3)2]=3.5;(2)∵S2甲=3.5,S2乙=3.4,∴S2甲>S2乙,∴样本甲的波动大.14.【题文】某校要在两个体育特长生小明、小勇中挑选一人参加市跳远比赛,在跳远专项测试及之后的6次跳远选拔赛中,他们的成绩如下表所示(单位:cm):姓名一专项测试和6次选拔赛成绩小明603 589 602 596 604 612 608 小勇597 580 597 630 590 631 596(1)分别求出他们成绩的中位数、平均数及方差;(2)你发现小明、小勇的成绩各有什么特点?(3)经查阅比赛资料,成绩若达到6.00m,就很可能夺得冠军,你认为选谁参赛更有把握?(4)以往的该项最好成绩纪录是6.15m,为了打破纪录,你认为应选谁去参赛?【答案】(1)小勇成绩的中位数为597cm,平均数为603cm,2≈49cm2;小明成绩的中位数为603cm,平均数为 602cm,2≈333cm2,(2)详见解析;(3)选小明更有把握夺冠;(4)选小勇.【分析】(1)根据中位数、众数、方差的概念计算即可;(2)从中位数、众数、方差等角度分析即可;(3)根据方差,从成绩的稳定性方面分析;(4)从最高成绩方面进行分析,超过6.15米的破纪录的可能性大.【解答】解:(1)将小勇成绩从小到大依次排列为580,590,596,597,597,630,631,中位数为597cm,将小明成绩从小到大依次排列为589,596,602,603,604,608,612,中位数为603cm,小明成绩的平均数为:(589+596+602+603+604+608+612)÷7=602cm,小勇成绩的平均数为:(603+589+602+596+604+612+608)÷7=603cm,方差为:2= [(597-603)2+(580-603)2+…+(596-603)2]≈333cm2,2= [(603-602)2+(589-602)2+…+(608-60)2]≈49cm2.(2)从成绩的中位数来看,小明较高成绩的次数比小勇的多;从成绩的平均数来看,小勇成绩的“平均水平”比小明的高,从成绩的方差来看,小明的成绩比小勇的稳定;(3)在跳远专项测试以及之后的6次跳远选拔赛中,小明有5次成绩超过6米,而小勇只有两次超过6米,从成绩的方差来看,小明的成绩比小勇的稳定,选小明更有把握夺冠.(4)小勇有两次成绩为6.30米和6.31米,超过6.15米,而小明没有一次达到6.15米,故选小勇.方法总结:本题结合实际问题考查了平均数、中位数、方差等方面的知识,体现了数学来源于生活、服务于生活的本质.15.【题文】小红的奶奶开了一个金键牛奶销售店,主要经营“金键学生奶”、“金键酸牛奶”、“金键原味奶”,可奶奶经营不善,经常有品种的牛奶滞销(没卖完)或脱销(量不够),造成了浪费或亏损,细心的小红结合所学的统计知识帮奶奶统计了一个星期牛奶的销售情况,并绘制了下表:(1)计算各品种牛奶的日平均销售量,并说明哪种牛奶销量最高;(2)计算各品种牛奶的方差(保留两位小数),并比较哪种牛奶销量最稳定;(3)假如你是小红,你会对奶奶有哪些好的建议。

新初中数学代数式真题汇编及答案解析(2)

新初中数学代数式真题汇编及答案解析(2)

新初中数学代数式真题汇编及答案解析(2)一、选择题1.若(x+1)(x+n)=x2+mx﹣2,则m的值为()A.﹣1 B.1 C.﹣2 D.2【答案】A【解析】【分析】先将(x+1)(x+n)展开得出一个关于x的多项式,再将它与x2+mx-2作比较,即可分别求得m,n的值.【详解】解:∵(x+1)(x+n)=x2+(1+n)x+n,∴x2+(1+n)x+n=x2+mx-2,∴12n m n+=⎧⎨=-⎩,∴m=-1,n=-2.故选A.【点睛】本题考查了多项式乘多项式的法则以及类比法在解题中的运用.2.已知:1+3=4=22,1+3+5=9=32,1+3+5+7=16=42,1+3+5+7+9=25=52,…,根据前面各式的规律可猜测:101+103+105+…+199=()A.7500 B.10000 C.12500 D.2500【答案】A【解析】【分析】用1至199的奇数的和减去1至99的奇数和即可.【详解】解:101+103+10 5+107+…+195+197+199=22 119919922++⎛⎫⎛⎫-⎪ ⎪⎝⎭⎝⎭=1002﹣502,=10000﹣2500,=7500,故选A.【点睛】本题考查了规律型---数字类规律与探究,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.3.下列运算或变形正确的是( )A .222()a b a b -+=-+B .2224(2)a a a -+=-C .2353412a a a ⋅=D .()32626a a =【答案】C【解析】【分析】根据合并同类项,完全平方公式,同底数幂的乘法以及幂的乘方与积的乘方计算法则解答.【详解】A 、原式中的两项不是同类项,不能合并,故本选项错误;B 、原式=(a-1)2+2,故本选项错误;C 、原式=12a 5,故本选项正确;D 、原式=8a 6,故本选项错误;故选:C .【点睛】此题考查单项式的乘法,因式分解,解题关键在于熟记计算法则.4.下列运算错误的是( )A .()326m m =B .109a a a ÷=C .358⋅=x x xD .437a a a +=【答案】D【解析】【分析】直接利用合并同类项法则以及单项式乘以单项式运算法则和同底数幂的除法运算法则化简求出即可.【详解】A 、(m 2)3=m 6,正确;B 、a 10÷a 9=a ,正确;C 、x 3•x 5=x 8,正确;D 、a 4+a 3=a 4+a 3,错误;故选:D .【点睛】此题考查合并同类项法则以及单项式乘以单项式运算法则和同底数幂的除法运算法则等知识,正确掌握运算法则是解题关键.5.观察等式:232222+=-;23422222++=-;2345222222+++=-⋅⋅⋅已知按一定规律排列的一组数:502、512、522、⋅⋅⋅、992、1002.若502a =,用含a 的式子表示这组数的和是( )A.22a a-D.22a a+--C.2a a22222a a-B.2【答案】C【解析】【分析】根据题意,一组数:502的和为250+251+252+…+299+21002、512、522、⋅⋅⋅、992、100==a+(2+22+…+250)a,进而根据所给等式的规律,可以发现2+22+…+250=251-2,由此即可求得答案.【详解】250+251+252+…+299+2100=a+2a+22a+ (250)=a+(2+22+…+250)a,∵23+=-,2222234++=-,222222345+++=-,222222…,∴2+22+…+250=251-2,∴250+251+252+…+299+2100=a+(2+22+…+250)a=a+(251-2)a=a+(2 a-2)a=2a2-a ,故选C.【点睛】本题考查了规律题——数字的变化类,仔细观察,发现其中哪些发生了变化,哪些没有发生变化,是按什么规律变化的是解题的关键.6.观察下列图形:()它们是按一定规律排列的,依照此规律,那么第7个图形中共有五角星的个数为() A.20B.21C.22D.23【答案】C【解析】【分析】设第n个图形共有a n(n为正整数)个五角星,根据各图形中五角星个数的变化可找出变化规律“a n=3n+1(n为正整数)”,再代入n=7即可得出结论.解:设第n 个图形共有a n (n 为正整数)个五角星,∵a 1=4=3×1+1,a 2=7=3×2+1,a 3=10=3×3+1,a 4=13=3×4+1,…,∴a n =3n +1(n 为正整数),∴a 7=3×7+1=22.故选:C .【点睛】本题考查了规律型:图形的变化类,根据各图形中五角星个数的变化,找出变化规律“a n =3n +1(n 为正整数)”是解题的关键.7.下列运算正确的是( )A .2235a a a +=B .22224a b a b +=+()C .236a a a ⋅=D .2336()ab a b -=- 【答案】D【解析】【分析】根据合并同类项法则、完全平方公式、同底数幂乘法法则、积的乘方法则逐一进行计算即可得.【详解】A. 235a a a +=,故A 选项错误;B. 222244a b a ab b +=++(),故B 选项错误;C. 235a a a ⋅=,故C 选项错误;D. 2336()ab a b -=-,正确,故选D.【点睛】本题考查了整式的运算,涉及了合并同类项、完全平方公式、积的乘方等运算,熟练掌握各运算的运算法则是解题的关键.8.下列命题正确的个数有( )①若 x 2+kx+25 是一个完全平方式,则 k 的值等于 10;②一组对边平行,一组对角相等的四边形是平行四边形;③顺次连接平行四边形的各边中点,构成的四边形是菱形;④黄金分割比的值为≈0.618. A .0 个B .1 个C .2 个D .3 个【答案】C【解析】根据完全平方式的定义,黄金分割的定义,平行四边形的判定,菱形的判定即可一一判断;【详解】①错误.x2+kx+25是一个完全平方式,则 k 的值等于±10 ②正确.一组对边平行,一组对角相等,可以推出两组对角分别相等,即可判断是平行四边形;③错误.顺次连接平行四边形的各边中点,构成的四边形是平行四边形;④正确.黄金分割比的值为≈0.618;故选C.【点睛】本题考查完全平方式的定义,黄金分割的定义,平行四边形的判定,菱形的判定等知识,解题的关键是熟练掌握基本知识.9.下列运算正确的是()A.3a3+a3=4a6B.(a+b)2=a2+b2C.5a﹣3a=2a D.(﹣a)2•a3=﹣a6【答案】C【解析】【分析】依次运用合并同类型、完全平方公式、幂的乘法运算即可.【详解】A.3a3+a3=4a3,故A错误;B.(a+b)2=a2+b2+2ab,故B错误;C.5a﹣3a=2a,故C正确;D.(﹣a)2•a3=a5,故D错误;故选C.【点睛】本题考查了幂的运算与完全平方公式,熟练掌握幂运算法则与完全平方公式是解题的关键.10.下列计算正确的是()A.2x2•2xy=4x3y4B.3x2y﹣5xy2=﹣2x2yC.x﹣1÷x﹣2=x﹣1D.(﹣3a﹣2)(﹣3a+2)=9a2﹣4【答案】D【解析】A选项:2x2·2xy=4x3y,故是错误的;B选项:3x2y和5xy2不是同类项,不可直接相加减,故是错误的;C.选项:x-1÷x-2=x ,故是错误的;D选项:(-3a-2)(-3a+2)=9a2-4,计算正确,故是正确的.11.如图1,在边长为a 的正方形中挖掉一个边长为b 的小正方形(a >b ),把余下的部分剪拼成如图2所示的长方形.通过计算剪拼前后阴影部分的面积,验证了一个等式,这则个等式是( )A .(a +b )(a ﹣b )=a 2﹣b 2B .(a +b )2=a 2+2ab +b 2C .(a ﹣b )2=a 2﹣2ab +b 2D .a (a ﹣b )=a 2﹣ab【答案】A【解析】【分析】 分别计算出两个图形中阴影部分的面积即可.【详解】图1阴影部分面积:a 2﹣b 2,图2阴影部分面积:(a +b )(a ﹣b ),由此验证了等式(a +b )(a ﹣b )=a 2﹣b 2,故选:A .【点睛】此题主要考查了平方差公式的几何背景,运用几何直观理解、解决平方差公式的推导过程,通过几何图形之间的数量关系对平方差公式做出几何解释.12.下列说法正确的是()A .若 A 、B 表示两个不同的整式,则A B 一定是分式 B .()2442a a a ÷=C .若将分式xy x y+中,x 、y 都扩大 3 倍,那么分式的值也扩大 3 倍 D .若35,34m n ==则2532m n -= 【答案】C【解析】【分析】 根据分式的定义、幂的乘方、同底数幂相除、分式的基本性质解答即可.【详解】A. 若 A 、B 表示两个不同的整式,如果B 中含有字母,那么称A B 是分式.故此选项错误. B. ()244844a a a a a ÷=÷=,故故此选项错误.C. 若将分式xy x y +中,x 、y 都扩大 3 倍,那么分式的值也扩大 3 倍,故此选项正确. D. 若35,34m n ==则()22253332544m n m n -=÷=÷=,故此选项错误. 故选:C【点睛】 本题考查的是分式的定义、幂的乘方、同底数幂相除、分式的基本性质,熟练掌握各定义、性质及运算法则是关键.13.下列计算正确的是( )A .2571a a a -÷=B .()222a b a b +=+C .2+=D .()235a a =【答案】A【解析】 分析:直接利用完全平方公式以及二次根式加减运算法则和幂的乘方运算法则分别计算得出答案.详解:A 、2571a a a-÷=,正确; B 、(a+b )2=a 2+2ab+b 2,故此选项错误;C 、,无法计算,故此选项错误;D 、(a 3)2=a 6,故此选项错误;故选:A .点睛:此题主要考查了完全平方公式以及二次根式加减运算和幂的乘方运算,正确掌握相关运算法则是解题关键.14.下列运算正确的是( )A .236a a a ⋅=B .222()ab a b =C .()325a a =D .224a a a +=【答案】B【解析】【分析】根据积的乘方运算法则和同底数幂的运算法则分别计算即可解答.【详解】解:A. 235a a a ⋅=,故A 错误;B. 222()ab a b =,正确;C. ()326a a =,故C 错误;D. 2222a a a +=,故D 错误.故答案为B .【点睛】本题主要考查了积的乘方和同底数幂的运算运算法则,掌握并灵活运用相关运算法则是解答本题的关键.15.有两个正方形A ,B ,现将B 放在A 的内部得图甲,将A ,B 并列放置后构造新的正方形得图乙.若图甲和图乙中阴影部分的面积分别为1和12,则正方形A ,B 的面积之和为( )A .7B .12C .13D .25【答案】C【解析】【分析】 设正方形A 的边长为a ,正方形B 的边长为b ,根据图形列式整理得a 2+b 2−2ab =1,2ab =12,求出a 2+b 2即可.【详解】解:设正方形A 的边长为a ,正方形B 的边长为b ,由图甲得:a 2−b 2−2(a−b )b =1,即a 2+b 2−2ab =1,由图乙得:(a +b )2−a 2−b 2=12,即2ab =12,所以a 2+b 2=13,即正方形A ,B 的面积之和为13,故选:C.【点睛】本题主要考查了完全平方公式在几何图形中的应用,解题的关键是根据图形列出算式.16.如图,大正方形与小正方形的面积之差是60,则阴影部分的面积是 ( )A .30B .20C .60D .40【答案】A【解析】【分析】设大正方形的边长为x ,小正方形的边长为y ,表示出阴影部分的面积,结合大正方形与小正方形的面积之差是60即可求解.【详解】设大正方形的边长为x ,小正方形的边长为y ,则2260x y -=,∵S 阴影=S △AEC +S △AED =11()()22x y x x y y -+-g g =1()()2x y x y -+g =221()2x y - =1602⨯ =30.故选A.【点睛】 此题主要考查了平方差公式的应用,读懂图形和熟练掌握平方差公式是解此题的关键.17.下列计算正确的是()A .4482a a a +=B .236a a a •=C .4312()a a =D .623a a a ÷=【答案】C【解析】【分析】根据合并同类项、同底数幂的乘除法公式、幂的乘方公式逐项判断,即可求解.【详解】A 、4442a a a +=,故错误;B 、235a a a •=,故错误;C 、4312()a a =,正确;D 、624a a a ÷=,故错误;故答案为:C.【点睛】本题考查了整式的运算,解题的关键是熟练掌握合并同类项的运算法则、同底数幂的乘除法公式、幂的乘方公式.18.在很小的时候,我们就用手指练习过数数,一个小朋友按如图所示的规则练习数数,数到2019时对应的指头是()(说明:数1、2、3、4、5对应的指头名称依次为大拇指、食指、中指、无名指、小指)A.食指B.中指C.小指D.大拇指【答案】B【解析】【分析】根据题意,观察图片,可得小指、大拇指所表示的数字的规律,及其计数的顺序,进而可得答案.【详解】解:∵大拇指对的数是1+8n,小指对的数是5+8n.食指、中指、无名指对的数介于它们之间.=⨯+,又∵2019是奇数,201925283∴数到2019时对应的指头是中指.故选:B.【点睛】此题主要考查了数字变化类,只需找出大拇指和小指对应的数的规律即可.关键规律为:大拇指对的数是1+8n,小指对的数是5+8n.食指、中指、无名指对的数介于它们之间.19.计算(-2)2009+(-2)2010的结果是()A.22019 B.22009 C.-2 D.-22010【答案】B【解析】(-2)2009+(-2)2010=(-2)2009+(-2)2009+1=(-2)2009+(-2)2009×(-2)=(-2)2009×[1+(-2)]=-22009×(-1)=22009,故选B.20.如图,两个连接在一起的菱形的边长都是1cm,一只电子甲虫从点A开始按ABCDAEFGAB…的顺序沿菱形的边循环爬行,当电子甲虫爬行2014cm时停下,则它停的位置是()A.点F B.点E C.点A D.点C【答案】A【解析】分析:利用菱形的性质,电子甲虫从出发到第1次回到点A共爬行了8cm(称第1回合),而2014÷8=251……6,即电子甲虫要爬行251个回合,再爬行6cm,所以它停的位置是F点.详解:一只电子甲虫从点A开始按ABCDAEFGAB…的顺序沿菱形的边循环爬行,从出发到第1次回到点A共爬行了8cm,而2014÷8=251……6,所以当电子甲虫爬行2014cm时停下,它停的位置是F点.故选A.点睛:本题考查了规律型:图形的变化类:首先应找出图形哪些部分发生了变化,是按照什么规律变化的,通过分析找到各部分的变化规律后直接利用规律求解.探寻规律要认真观察、仔细思考,善用联想来解决这类问题.。

初中数学冀教版九年级上册第二十三章 数据分析23.4 用样本估计总体-章节测试习题(2)

初中数学冀教版九年级上册第二十三章 数据分析23.4 用样本估计总体-章节测试习题(2)

章节测试题1.【答题】为了解某山区金丝猴的数量,科研人员在该山区不同的地方捕获了15只金丝猴,并在它们的身上做标记后放回该山区.过段时间后,在该山区不同的地方又捕获了32只金丝猴,其中4只身上有上次做的标记,由此可估计该山区金丝猴的数量约有______只.【答案】120【分析】设该山区金丝猴的数量约有x只金丝猴,根据第一次捕获了15只金丝猴,在它们的身上做标记后放回该山区,第二次又捕获了32只金丝猴,其中4只身上有上次做的标记,列出方程,求出x的值即可.【解答】设该山区金丝猴的数量约有x只金丝猴,依题意得x:15=32:4,解得:x=120.则该山区金丝猴的数量约有120只.故答案是:120.2.【答题】为了了解我市9000名学生参加初中毕业会考数学考试的成绩情况,从中抽取了200名考生的成绩进行统计,在这个问题中,下列说法:①这9000名学生的数学会考成绩的全体是总体;②每个考生是个体;③200名考生是总体的一个样本;④样本容量是200其中说法正确的有______个.【答案】2【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象.从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.【解答】①这9000名学生的数学考试成绩的全体是总体,故①正确;②每个考生数学考试成绩是个体,故②错误;③200名考生的数学成绩是总体的一个样本,故③错误;④样本容量是200,故④正确;所以共有2全正确.故答案是:23.【答题】小亮一天的时间安排如图所示,请根据图中的信息计算:小亮一天中,上学、做家庭作业和体育锻炼的总时间占全天时间的______%.【答案】37.5【分析】根据统计图发现:小亮一天中,上学、做家庭作业和体育锻炼的总时间是7+1+1=9小时,总时间是9+9+6=24小时,则小亮一天中,上学、做家庭作业和体育锻炼的总时间占全天时间的百分比即可求解.【解答】解:7+9+1+1+6=24,小亮一天中,上学、做家庭作业和体育锻炼的总时间:7+1+1=9,即小亮一天中,上学、做家庭作业和体育锻炼的总时间占全天时间的故答案为:4.【答题】要考察的全体对象称为______,样本中个体的数目称为______.【答案】总体,样本容量【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象.从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.【解答】解:要考察的全体对象称为总体,组成总体的每一个考察对象称为个体,被抽取那些个体组成一个样本,样本中个体的数目称为样本容量.故答案是:总体、样本容量.5.【答题】某校在“爱护地球,绿化祖国”的创建活动中,组织学生开展植树造林活动,为了解全校学生的植树情况,学校随机抽查了100名学生的植树情况,将调查数据整理如下表:植树数4 5 6 8 10量/棵人数30 22 25 15 8则这100名同学平均每人植树______棵.若该校共有1 000名学生,根据以上调查结果可估计该校学生的植树总数约是______棵.【答案】5.8,5800【分析】(1)根据平均数的计算方法:求出所有数据的和,然后除以数据的总个数.(2)根据总体平均数约等于样本平均数,用样本的平均数乘以总人数即可.【解答】根据平均数的计算方法,求得平均数=(30×4+5×22+6×25+8×15+10×8)÷100=580÷100=5.8棵,根据总体平均数约等于样本平均数,用样本的平均数乘以总人数即可得出植树总数=5.8×1000=5800棵.故答案为:5.8,5800.方法总结:本题考查的是加权平均数的求法.频率=频数÷总数,用样本估计整体让整体×样本的百分比即可.6.【答题】为了解一批保温瓶的保温性能,从中抽取了10只保温瓶进行试验.在这个问题中,样本是______.【答案】10只保温瓶的保温性能【分析】根据总体:我们把所要考察的对象的全体叫做总体;样本:从总体中取出的一部分个体叫做这个总体的一个样本;样本容量:一个样本包括的个体数量叫做样本容量可得答案.【解答】解:样本是抽取的10只保温瓶的保温性能;故答案为:10只保温瓶的保温性能.方法总结:根据总体:我们把所要考察的对象的全体叫做总体;样本:从总体中取出的一部分个体叫做这个总体的一个样本;样本容量:一个样本包括的个体数量叫做样本容量可得答案.7.【答题】在拆线统计图上点的位置______,则数据越大,它反映的是数据波动情况,条形统计图上的______越高,则相应的数据越大,直方图运用长方形的______表示频数.【答案】高,长度,长【分析】根据常用的几种统计图反映数据的不同特征结合实际来求解.【解答】解:在拆线统计图上点的位置高,则数据越大,它反映的是数据波动情况,条形统计图上的长度越高,则相应的数据越大,直方图运用长方形的长表示频数.故答案为:高,长度,长.8.【题文】政府为了更好地加强城市建设,就社会热点问题广泛征求市民意见,调查方式是发调查表,要求每位被调查人员只写一个你最关心的有关城市建设的问题,经统计整理,发现对环境保护问题提出的最多,有700人,同时作出相应的条形统计图,如图所示,请回答下列问题.(1)共收回调查表张;(2)提道路交通问题的有人;(3)请你把这个条形统计图用扇形统计图表示出来.【答案】(1)2000;(2)400;(3)扇形图见解析.【分析】(1)根据环境保护问题的数据就可以求出结论;(2)用总人数×提道路交通问题的百分数20%就可以得出结论;(3)先由条形统计图的数据计算出个各个圆心角的度数就可以得出结论.【解答】解:(1由题意,得700÷35%=2000人;(2由题意,得2000×20%=400人;(3由题意,得其他:360°×5%=18°,房屋建设:360°×15%=54°,环境保护:360°×35%=126°,绿化:360×25%=90°,道路交通:360×20%=72°.∴扇形统计图为:9.【题文】指出下列调查中的总体、个体、样本和样本容量.(1)从一批电视机中抽取20台,调查电视机的使用寿命.(2)从学校七年级中抽取30名学生,调查学校七年级学生每周用于做数学作业的时间. 【答案】(1)总体:这批电视机的使用寿命.个体:这批电视机中每台电视机的使用寿命.样本:这批电视机中被抽取的20台电视机的使用寿命.样本容量: 20(2)总体:该校七年级学生每周用于做数学作业的时间.个体:该校七年级每个学生每周用于做数学作业的时间.样本:被抽取30名学生每周用于做数学作业的时间.样本容量:30【分析】根据总体:我们把所要考察的对象的全体叫做总体;个体:把组成总体的每一个考察对象叫做个体;样本:从总体中取出的一部分个体叫做这个总体的一个样本;样本容量:一个样本包括的个体数量叫做样本容量分别进行分析即可.【解答】解:(1)总体:这批电视机的使用寿命;个体:这批电视机中每一台电视机的使用寿命;样本:被抽取的20台电视机的使用寿命;样本容量:20;(2)总体:该校七年级学生每周用于做数学作业的时间;个体:该校七年级每个学生每周用于做数学作业的时间;样本:被抽取的30名学生每周用于做数学作业的时间;样本容量:30.10.【题文】国家规定,中小学生每天在校体育活动时间不低于1小时,为了解这项政策的落实情况,有关部门就“你某天在校体育活动时间是多少”的问题,在某校随机抽查了部分学生,再根据活动时间t(小时)进行分组(A组:t<0.5,B组:0.5≤t <1,C组:1≤t<1.5,D组:t≥1.5)绘制成如下统计图,根据图中信息回答问题:(1)此次抽查的学生数为________人;(2)补全条形统计图;(3)若当天在校学生数为1 200人,请估计在当天达到国家规定体育活动时间学生有_______人.【答案】(1)300;(2)见解析;(3)720【分析】(1)根据题意即可得到结论;(2)求出C组的人数,A组的人数补全条形统计图即可;(3)用总人数乘以达到国家规定体育活动时间的百分比即可得到结论.【解答】解:(1)60÷20%=300(人).答:此次抽查的学生数为300人,故答案为:300;(2)C组的人数=300×40%=120(人),A组的人数=300-100-120-60=20(人),补全条形统计图如图所示,(3)当天达到国家规定体育活动时间的学生有1200×=720(人).方法总结:本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.11.【题文】为了让学生了解环保知识,增强环保意识,某中学举行了一次“环保知识竞赛”,共有850名学生参加了这次竞赛,为了解本次竞赛成绩情况,从中抽取了部分学生的成绩(得分取整数,满分为100分)进行统计.请你根据尚未完成并有局部污染的频率分布表和频率分布直方图,解答下列问题:分组频数频率50.5~60.5 4 0.0860.5~70.5 0.1670.5~80.5 1080.5~90.5 16 0.3290.5~100.5合计50 1.00(1)填充频率分布表的空格;(2)补全频数直方图,并在此图上直接绘制频数分布折线图;(3)全体参赛学生中,竞赛成绩落在哪组范围内的人数最多?(4)若成绩在90分以上(不含90分)为优秀,则该校成绩优秀的约为多少人?【答案】(1)50,8,12,0.24;(2)图形见解析(3)全体参赛学生中,竞赛成绩落在80.5~90.5组范围内的人数最多(4)该校成绩优秀的约为204人【分析】(1)首先计算出抽取的学生数:用其中一组的频数÷这一组频率得出总数,进而得出各组的学生数以及频率;(2)根据(1)中所求数据,即可补全频率分布直方图;(3)利用(2)中条形图或频率分布表可得出,全体参赛学生中,竞赛成绩落在80.5~90.5组范围内的人数最多;(4)若成绩在90分以上(含90分)为优秀,则这随机抽取的50个人中优秀的频率为0.24,进而得出850名学生中优秀人数.【解答】解:(1)抽取的学生数:4÷0.08=50,60.5~70.5的学生数为:50×0.16=8,90.5~100.5的学生数:50﹣4﹣8﹣10﹣16=12,频率==0.24;分组频数频率50.5~60.5 4 0.0860.5~70.5 8 0.1670.5~80.5 10 0.2080.5~90.5 16 0.3290.5~100 12 0.24合计50 1.00(2)如图所示:(3)利用(2)中条形图或频率分布表可得出,全体参赛学生中,竞赛成绩落在80.5~90.5组范围内的人数最多.(4)∵随机抽取的50个人中优秀的频率为0.24,∴850名学生中优秀人数为:850×0.24=204(人),答:该校成绩优秀的约为204人.12.【题文】某校九年级进行了模拟考试后,张老师对九(2)班全体同学“满分值为6分得一道解答题的得分”情况进行了统计,绘制成下表(学生得分均为整数分):由于在填表时不慎把墨水滴在表格上,致使表中数据不完整,但已知全班同学此题的平均得分为4分,结合上表回答下列问题:(1)九(2)班学生共有多少人?(2)若本年级学生共有540人,请你用此样本估计整个年级有多少同学此题得满分?【答案】(1)45(人);(2)估计该校九年级有132人此题得满分.【分析】(1)设该班得6分的学生为x人,然后根据“全班同学此题的平均得分为4分”列出方程求解即可;(2)利用本班中得满分的学生占全班学生的比例即可求出整个年级有多少同学此题得满分.【解答】解:(1)设该班得6分的学生为x人,则根据题意得:1×1+2×5+3×7+4×8+5×10+6x=(3+1+5+7+8+10+x)×4,化简得:114+6x=136+4x,解得:x=11,所以该班共有:3+1+5+7+8+10+11=45(人);(2)整个年级此题得满分人数为:×540=132(人).答:估计该校九年级有132人此题得满分.13.【题文】某市有30万户家庭,要想了解这30万户家庭的年收入情况,从中抽取500户家庭进行调查,在这个问题中,总体、个体、样本各是什么?【答案】总体是30万户家庭的年收入情况,个体是每户家庭的年收入情况,样本是抽取的500户家庭的年收入情况.【分析】根据总体、个体、样本的定义作答即可.【解答】解:总体是30万户家庭的年收入情况,个体是每户家庭的年收入情况,样本是抽取的500户家庭的年收入情况.14.【题文】为了解某校九年级学生体育测试成绩情况,现从中随机抽取部分学生的体育成绩统计如右表:根据上面提供的信息,回答下列问题:(1)求随机抽取学生的人数;(2)求统计表中b的值;(3)已知该校九年级共有500名学生,如果体育成绩达28分以上(含28分)为优秀,请估计该校九年级学生体育成绩达到优秀的总人数.【答案】(1)50;(2)10;(3)300人.【分析】(1)用第一组的人数除以第一组所占的百分比,求出总人数;(2)先求出a和c的值,再用总人数减去其它各组数的和,求出b的值;(3)先求出体育成绩的优秀率,再乘以九年级学生体育成绩的总人数,求出答案.【解答】解:(1)随机抽取学生的人数为8÷16%=50;(2)∵统计表中a=50×24%=12,c=50×10%=5,∴统计表中b=50-8-12-15-5=10.(3)∵28分以上(含28分)为优秀,∴九年级学生体育成绩的优秀率为(15+10+5)÷50=60%,该校九年级学生体育成绩达到优秀的总人数为500×60%=300人.15.【题文】一个口袋中有9个红球和若干个白球,在不允许将球倒出来数的前提下,小明采用如下的方法估算其中白球的个数:从口袋中随机摸出一球,记下颜色,然后把它放回口袋中,摇匀后再随机摸出一球,记下颜色…,小明重复上述过程共摸了100次,其中40次摸到白球,请回答:(1)口袋中的白球约有多少个?(2)有一个游乐场,要按照上述红球、白球的比例配置彩球池,若彩球池里共有1200个球,则需准备多少个红球?【答案】(1)小明可估计口袋中的白球的个数是6个.(2)需准备720个红球。

新初中数学有理数的运算易错题汇编附答案解析(2)

新初中数学有理数的运算易错题汇编附答案解析(2)

新初中数学有理数的运算易错题汇编附答案解析(2)一、选择题1.我国古代《易经》一书中记载,远古时期,人们通过在绳子上打结来记录数量,即“结绳计数”.如图,一位母亲在从右到左依次排列的绳子上打结,满七进一,用来记录孩子自出生后的天数,由图可知,孩子自出生后的天数是( )A .81B .508C .928D .1324【答案】B【解析】【分析】类比于现在我们的十进制“满十进一”,可以表示满七进一的数为:千位上的数×73+百位上的数×72+十位上的数×7+个位上的数.【详解】解:孩子自出生后的天数是:1×73+3×72+2×7+4=508,故选:B .【点睛】本题是以古代“结绳计数”为背景,按满七进一计算自孩子出生后的天数,运用了类比的方法,根据图中的数字列式计算;本题题型新颖,一方面让学生了解了古代的数学知识,另一方面也考查了学生的思维能力.2.已知一天有86400秒,一年按365天计算共有31536000秒,用科学记数法表示31536000正确的是( )A .63.153610⨯B .73.153610⨯C .631.53610⨯D .80.3153610⨯【答案】B【解析】【分析】科学记数法的表示形式为10n a ⨯的形式,其中1||10a ≤<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值1<时,n 是负数.【详解】将31536000用科学记数法表示为73.153610⨯.故选B .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为10n a ⨯的形式,其中1<10a≤,n为整数,表示时关键要正确确定a的值以及n的值.3.9万亿1388900000000008.8910==⨯,故选A.【点睛】本题主要考查科学记数法,科学记数法是指把一个数表示成a×10的n次幂的形式(1≤a<10,n 为正整数.)4.电影《流浪地球》中有一个名词“洛希极限”,它是指两大星体之间可以保持平稳运行的最小距离,其中地球与木星之间的洛希极限约为10.9万公里,数据“10.9万”用科学记数法表示正确的是()A.10.9×104B.1.09×104C.10.9×105D.1.09×105【答案】D【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【详解】将10.9万用科学记数法表示为:1.09×105.故选D.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.计算12+16+112+120+130+……+19900的值为()A.1100B.99100C.199D.10099【答案】B【解析】分析:直接利用分数的性质将原式变形进而得出答案.详解:原式=11111 1223344599100 ++++⋯+⨯⨯⨯⨯⨯=111111112233499100 -+-+-+⋯+-,=1-1 100=99100. 故选B . 点睛:此题主要考查了有理数的加法,正确分解分数将原式变形是解题关键.6.在运算速度上,已连续多次取得世界第一的神威太湖之光超级计算机,其峰值性能为12.5亿亿次/秒.这个数据以亿次/秒为单位用科学计数法可以表示为( )亿次/秒 A .81.2510⨯B .91.2510⨯C .101.2510⨯D .812.510⨯【答案】B【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.【详解】解:12.5亿亿次/秒=1.25×109亿次/秒,故选:B .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.7.如图是张小亮的答卷,他的得分应是( )A .40分B .60分C .80分D .100分【答案】A【解析】【分析】 根据绝对值、倒数、相反数、立方以及平均数进行计算即可.【详解】解:①若ab=1,则a 与b 互为倒数,②(-1)3=-1,③-12=-1,④|-1|=-1,⑤若a+b=0,则a与b互为相反数,故选A.【点睛】本题考查了实数,掌握绝对值、倒数、相反数、立方根以及平均数的定义是解题的关键.8.现有若干张卡片,分别是正方形卡片A、B和长方形卡片C,卡片大小如图所示.如果要拼一个长为(a+2b),宽为(a+b)的大长方形,则需要C类卡片张数为()A.1 B.2 C.3 D.4【答案】C【解析】试题分析:(a+2b)(a+b)=22++,则C类卡片需要3张.32a ab b考点:整式的乘法公式.9.如图是正方体的展开图,则原正方体相对两个面上的数字之和的最小值是()A.﹣1 B.﹣2 C.﹣3 D.﹣6【答案】A【解析】【分析】由正方体各个面之间的关系知道,它的展开图中相对的两个面之间应该隔一个正方形,可以得到相对面的两个数,相加后比较即可.【详解】解:根据展开图可得,2和﹣2是相对的两个面;0和1是相对的两个面;﹣4和3是相对的两个面,∵2+(﹣2)=0,0+1=1,﹣4+3=﹣1,∴原正方体相对两个面上的数字和的最小值是﹣1.故选:A.【点睛】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析解答问题.10.(﹣1)4可表示为()A.(﹣1)×4 B.(﹣1)+(﹣1)+(﹣1)+(﹣1)C.﹣1×1×1×1 D.(﹣1)×(﹣1)×(﹣1)×(﹣1)【答案】D【解析】【分析】根据有理数乘法的定义可得出结论.【详解】(﹣1)4=(-1)×(-1)×(-1)×(-1).故答案选D.【点睛】本题考查的知识点是有理数的乘方,解题的关键是熟练的掌握有理数的乘方. 11.-2的倒数是()A.-2 B.12C.12D.2【答案】B【解析】【分析】根据倒数的定义求解.【详解】-2的倒数是-1 2故选B【点睛】本题难度较低,主要考查学生对倒数相反数等知识点的掌握12.现规定一种运算,a*b=ab-a+b,计算(-3*5)等于多少?()A.-7 B.-15 C.2 D.7【答案】A【解析】【分析】根据题目所给的运算法则,代入具体数进行计算即可.【详解】解:(-3*5)=(-3×5)-(-3)+5=-7,故选:A.【点睛】此题主要考查了有理数的混合运算,关键是掌握有理数的加法、减法法则.13.将数47300000用科学记数法表示为( )A .547310⨯B .647.310⨯C .74.7310⨯D .54.7310⨯【答案】C【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】解:将47300000用科学记数法表示为74.7310⨯,故选:C .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.14.12的相反数与﹣7的绝对值的和是( )A .5B .19C .﹣17D .﹣5 【答案】D【解析】【分析】根据绝对值和相反数的定义进行选择即可.【详解】-12+|-7|=-12+7=-5,故选D .【点睛】本题考查了绝对值和相反数的定义,掌握绝对值和相反数的求法是解题的关键.15.2018年4月8日11-日,博鳌亚洲论坛2018年年会在海南博鳌句型,本次年会的主题为“开放创新的亚洲,繁荣发展的世界”.开幕式上,博鳌亚洲论坛副理事长周小川致辞中提到:“一带一路”区域基础设施投资缺口每年超过6000亿美元.6000亿用科学计数法可以表示为( )A .3610⨯亿B .4610⨯亿C .30.610⨯亿D .40.610⨯亿【答案】A【解析】【分析】科学计数法的表示形式为n a 10⨯的形式,其中1a 10≤<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值1>时,n 是正数;当原数的绝对值1<时,n 是负数.解:6000亿3610=⨯⨯亿,故选A .【点睛】此题考查科学计数法的表示方法.科学计数法的表示形式为n a 10⨯的形式,其中1a 10≤<,n 为整数,表示时关键要正确确定a 的值以及n 的值.16.2019年4月10日,天文学家召开全球新闻发布会,发布首次直接拍摄到的黑洞照片,这颗黑洞位于代号为M 87的星系当中,距离地球5500万光年,质量相当于65亿颗太阳,太阳质量大约是2.1×1030千克,那么这颗黑洞的质量约是( )A .130×1030千克B .1.3×1030千克C .1.3×1040千克D .1.3×1041千克【答案】C【解析】【分析】科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数.【详解】17.用科学记数方法表示0.0000907,得( )A .49.0710-⨯B .59.0710-⨯C .690.710-⨯D .790.710-⨯【答案】B【解析】【分析】【详解】解:根据科学记数法的表示—较小的数为10n a ⨯,可知a=9.07,n=-5,即可求解. 故选B【点睛】本题考查科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.18.若实数a ,b ,c ,d 在数轴上的对应点的位置如图所示,则正确的结论是( )A .a <-5B .b +d <0C .||||a c <D .c d <【答案】D【解析】>>>,再依次判断各选项即可得到答案.根据数轴得到-5<a<b<0<c<d,且a d b c【详解】>>>,由数轴得-5<a<b<0<c<d,且a d b c∴A错误;∵b+d>0,故B错误;>,∵a c∴C错误;>,c>0,∵d c∴c<D正确,故选:D.【点睛】此题考查数轴上数的大小关系,绝对值的性质,有理数的加法法则.19.计算(-2)100+(-2)99的结果是()A.2 B.2-C.992-D.992【答案】D【解析】解:原式=(﹣2)99[(﹣2)+1]=﹣(﹣2)99=299.故选D.20.x是最大的负整数,y是最小的正整数,则x-y的值为( )A.0 B.2 C.-2 D.±2【答案】C【解析】【分析】根据有理数的概念求出x、y,再根据减去一个数等于加上这个数的相反数进行计算即可得解.【详解】∵x是最大的负整数,y是最小的正整数,∴x=-1,y=1,∴x-y=-1-1=-2.故选C.【点睛】本题考查了有理数的减法,熟记有理数的概念求出a、b的值是解题的关键.。

(常考题)北师大版初中数学八年级数学上册第六单元《数据的分析》测试卷(有答案解析)(2)

(常考题)北师大版初中数学八年级数学上册第六单元《数据的分析》测试卷(有答案解析)(2)

一、选择题1.某同学对数据31,36,36,47,5•,52进行统计分析发现其中一个两位数的个位数字被墨水涂污看不到了,则计算结果与被涂污数字无关的是()A.平均数B.中位数C.方差D.众数2.某鞋店一天中卖出运动鞋11双,其中各种尺码的鞋的销售量如下表:尺码(cm)23.52424.52525.5销售量(双)12341A.25,25 B.24.5,25 C.25,24.5 D.24.5,24.53.某班有46人,一次体能测试后,老师对测试成绩进行了统计.由于小亮没有参加本次集体划试.因此计算其他45人的平均分为88分,方差为38.后来小亮进行了补测,成绩为88分,关于该班46人的测试成绩,下列说法正确的是()A.平均分和方差都不变B.平均分不变,方差变大C.平均分不变,方差变小D.平均分和方差都改变4.某专卖店专销售某品牌运动鞋,店主对上一周中不同尺码的运动鞋销售情况统计如下:尺码4041424344平均每天销售数量/双591586A.平均数B.中位数C.众数D.方差5.抽样调查了某年级30名女生所穿鞋子的尺码,数据如下(单位:码)号码3334353637人数791211A.34,35 B.34.5,35 C.35,35 D.35,376.如图是根据我市某天七个整点时的气温绘制成的统计图,则这七个整点时气温的中位数和众数分别是()A.26,26 B.26,22 C.31,22 D.31,267.学校篮球队5名场上队员的身高分别为:170,173,175,177,180(单位:cm).增加一名身高为175cm的成员后,现篮球队成员的身高与原来相比,下列说法正确的是()A.方差不变B.方差变大C.方差变小D.不能确定8.某次校园歌手比赛,进入最后决赛的三名选手的成绩统计如下表,若唱功、音乐常识、舞台表现按6∶3∶1的比例计入选手最后得分排出冠军、亚军、季军,则本场比赛的冠军、亚军、季军分别是()A.李真、王飞、林杨B.王飞、林杨、李真C.王飞、李真、林杨D.李真、林杨、王飞9.一次数学测试,某小组五名同学的成绩如表所示(有两个数据被遮盖).那么被盖住的两个数依次是()A.79,0.8 B.79,1 C.80,0.8 D.80,110.某校书法兴趣小组20名学生日练字页数如表所示:这些学生日练字页数的众数、平均数分别是()A.3页,4页B.3页,5页C.4页,4页D.4页,5页11.为了解九年级()1班学生某天的体温情况,班长把所有同学当天上报的体温(单位:C)绘制成了如下统计表.这组体温数据的众数是()人数(人A.36.2C B.36.3C C.36.4C D.36.5C12.在实验一中举行新冠肺炎疫情防控知识竞赛中,八年级(1)班全体学生成绩统计如下表:根据上表中信息判断,下列结论中错误的是()A.该班一共有40名同学B.该班学生这次竞赛成绩的众数是55分C.该班学生这次竞赛成绩的中位数是55分D.该班学生这次竞赛成绩的平均数是55分二、填空题13.某校七年级统计30名学生的身高情况(单位cm),其中身高最大值为172,最小值为149,且组距为3,则组数为________组.14.某鸡腿生产公司的质检人员从两批鸡腿中各随机抽取了6个,记录相应的质量(g)如右表,若甲、乙两个样本数据的方差分别为2S甲、2S乙,则2S甲___________2S乙(填“>”、“=”、“<”)15.一次考试中6名学生的成绩(单位:分)如下:24,72,68,45,86,92.这组数据的中位数是________分.16.面试时,某人的基础知识、表达能力、工作态度的得分分别是80分、70分、90分,若依次按照30%、30%、40%的比例确定面试成绩,则这个人的面试成绩是_____分.17.一次安全知识测验中,学生得分均为整数,满分10分,这次测验中甲、乙两组学生人数都为6人,成绩如下:甲:7,9,10,8,5,9;乙:9,6,8,10,7,8.(1)请补充完整下面的成绩统计分析表:平均分 方差 众数 中位数甲组 89乙组5388(2)甲组学生说他们的众数高于乙组,所以他们的成绩好于乙组,但乙组学生不同意甲组学生的说法,认为他们组的成绩要好于甲组,请你给出一条支持乙组学生观点的理由_____________________________.18.已知7,11,8,8,8,6,7,6,9,10.这10个数据的方差是________. 19.若一组数据12,,,n x x x 的平均数为5,方差为9,则数据123x +,223x +,…,23n x +的平均数为___________,方差为___________.20.小明本学期平时测验,期中考试和期末考试的数学成绩分别是135分、135分、122分.如果这3项成绩分别按30%、30%、40%的比例计算,那么小明本学期的数学平均分是_____.三、解答题21.“防控疫情,全民力行”,某中学开展防疫知识线上竞赛活动,八年级(1),(2)班各选出5名选手参加竞赛,两个班选出的5名选手的竞赛成绩(满分为100分)如图所示.(1)请你计算两个班的平均成绩各是多少分;(2)写出两个班竞赛成绩的中位数,结合两班竞赛成绩的平均数和中位数,你认为哪个班的竞赛成绩较好:(3)已知八(2)班竞赛成绩的方差是114,请计算八(1)班竞赛成绩的方差,并说明哪个班的成绩较为整齐.22.玉米是一种重要的粮食作物,也是全世界总产量最高的农作物.玉米的容重是指每升玉米的重量,可以反映出玉米的饱满度以及整齐度.超市采购员小李准备进购一批玉米,小李对甲、乙两个乡镇的玉米进行实地考察,各随机采摘了20根玉米进行容重检测,这些玉米的容重记为x (单位:g/L ),对数据进行整理后,将所得的数据分为5个等级:五等玉米:600≤x<630;四等玉米:630≤x<660;三等玉米:660≤x<690;二等玉米:690≤x<720;一等玉米:x≥720.其中二等玉米和一-等玉米,我们把它称为“优等玉米”.下面给出了小李整理、描述和分析数据的部分信息.a.甲乡镇被抽取的20根玉米的容重分别为(单位:g/L):610620635650655635670675680675 680680685690710705710660720730容重等级600≤x<630630≤x< 660660≤x<690690≤x<720x≥720甲乡镇24a b2乙乡镇被抽取的玉米容重在660≤x< 690这一组的数据是:660 670 685 680 685 685 685c.分析数据:样本数据的平均数、众数、中位数、“优等玉米”所占的百分比如下表:乡镇平均数众数中位数“优等玉米”所占的百分比甲673.75680677.5d%乙673.75685c35%(1)上述表中的a=________,b=________,c=________,d=________;(2)若小李只选择一个产地采购玉米,根据以上数据,你认为小李选择哪个乡镇采购玉米比较好?(写出一条理由即可)(3)小李最终决定在甲乡镇采购400根玉米,在乙乡镇采购600根玉米,估计本次小李采购的玉米中“优等玉米”的数量是多少?23.为帮助学生了解“预防新型冠状病毒”的有关知识,学校组织了一次线上知识培训,培训结束后进行测试.试题的满分为20分.为了解学生的成绩情况,从七、八年级学生中各随机抽取了20名学生的成绩进行了整理、描述和分析.下面给出了部分信息:抽取的20名七年级学生成绩是:20,20,20,20,19,19,19,19,18,18,18,18,18,18,18,17,16,16,15,14.抽取的40名学生成绩统计表性别七年级八年级平均分1818众数a b中位数18c方差 2.7 2.7根据以上信息,解答下列问题:(1)直接写出表中a,b,c的值:a=,b=,c=.(2)在这次测试中,你认为是七年级学生成绩好,还是八年级学生成绩好?请说明理由.(3)若九年级随机抽取20名学生的成绩的方差为2.5,则年级成绩更稳定(填“七”或“八”或“九”).24.一次演讲比赛,评委将从演讲内容、演讲能力、演讲效果三个方面为选手打分,各项成绩均按百分制,进入决赛的前两名选手的单项成绩如下表所示:选手演讲内容演讲能力演讲效果A859595B95859525.2020年11月24日,全国劳动模范和先进工作者表彰大会在北京人民大会堂隆重举行,某县举办了“弘扬工匠精神,争当文明员工”歌唱比赛,某企业要从甲、乙两参赛部门中择优推荐一部门参加县级决赛,他们预赛阶段的各项得分如下表:歌唱内容歌唱技巧仪表形象甲959085乙879393被推荐;(2)如果根据歌唱内容、歌唱技巧、仪表形象按5:4:1的比例确定成绩,请通过计算说明甲、乙两部门哪个部门会被推荐,并对另外一部门提出合理的建议.26.某校学生会向全校3000名学生发起了“爱心捐助”捐款活动,为了解捐款情况,学生会随机调查了部分学生的捐款金额,并用得到的数据绘制了如图所示的统计图:请根据相关信息,解答下列问题:(1)本次接受随机调查的学生人数为__________;(2)图1中m的值是________,并补全条形统计图;(3)本次调查获取的样本数据的众数是__________;中位数是__________;(4)根据样本数据,估计该校本次活动一共捐款多少元?【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】利用平均数、中位数、方差和标准差的定义对各选项进行判断即可.【详解】解:这组数据的平均数、方差和标准差都与被涂污数字有关,而这组数据的中位数为36与46的平均数,与被涂污数字无关.故选:B.【点睛】本题考查了方差:方差描述了数据对平均数的离散程度.也考查了中位数、平均数和众数的概念.2.C解析:C【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个.【详解】解:从小到大排列此数据为:23.5、24、24、24.5、24.5、24.5、25、25、25、25、25.5,数据25出现了五次最多为众数.24.5处在第6位为中位数.所以众数是25,中位数是24.5.故选:C.【点睛】本题属于基础题,考查了确定一组数据的中位数和众数的能力.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求.如果是偶数个则找中间两位数的平均数.3.C解析:C【分析】根据平均数,方差的定义计算即可.【详解】解:∵小亮的成绩和其他45人的平均数相同,都是88分,该班46人的平均分为:8845+88=8846⨯(分),该班46人的方差为:3845+0855=37.18 4623⨯≈,∴该班46人的测试成绩的平均分不变,方差变小,故选:C.【点睛】本题考查方差,算术平均数等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.4.C解析:C【分析】平均数、中位数、众数是描述一组数据集中程度的统计量;方差是描述一组数据离散程度的统计量.销量大的尺码就是这组数据的众数.【详解】解:由于众数是数据中出现次数最多的数,故影响该店主决策的统计量是众数.故选:C.【点睛】此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.5.A解析:A【分析】根据众数与中位数的意义分别进行解答即可.【详解】解:∵共有30双女生所穿的鞋子的尺码,∴中位数是第15、16个数的平均数,这组数据的第15、16个数都是34,∴这组数据的中位数是34;35出现了12次,出现的次数最多,则这组数据的众数是35;故选:A.【点睛】此题考查了众数与中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错;众数是一组数据中出现次数最多的数.6.B解析:B【分析】根据中位数,众数的定义进行解答即可.【详解】七个整点时数据为:22,22,23,26,28,30,31.所以中位数为26,众数为22,故选:B.【点睛】本题考查了折线统计图,中位数,众数等知识,关键是掌握将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.7.C解析:C 【分析】根据平均数和方差公式分别求出原篮球队5名队员的平均身高和方差以及增加一名身高后的平均身高和方差,然后进行比较即可得出答案. 【详解】原5名场上队员的平均身高是15(170+173+175+177+180)=175(cm ), 则方差是(222221[(170175)(173175)(175175)(177175)180175)11.65⎤-+-+-+-+-=⎦, 增加一名身高为175cm 的成员后的平均身高是16(170+173+175+177+180+175)=175(cm ), 则方差是(222222129[(170175)(173175)(175175)(177175)180175)(175175)63⎤-+-+-+-+-+-=⎦,∵2911.63>, ∴现篮球队成员的身高与原来相比,方差变小; 故选:C . 【点睛】本题考查方差的定义:一般地设n 个数据,12x x ,,…n x 的平均数为x ,则方差为(222212n 1[()())S x x x x x x n⎤=-+-++-⎦ ],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.8.A解析:A 【分析】根据加权平均数的定义分别计算出三人的平均成绩,再比较大小即可得出答案. 【详解】解:王飞的平均成绩为986803801631⨯+⨯+⨯++=90.8(分),李真的平均成绩为956903901631⨯+⨯+⨯++=93(分),林杨的平均成绩为80610031001631⨯+⨯+⨯++=88(分),因为93>90.8>88,所以冠军是李真,亚军是王飞,季军是林杨,【点睛】本题主要考查加权平均数,解题的关键是掌握加权平均数的定义.9.A解析:A【分析】先根据算术平均数的定义列式求出丙的成绩,再利用方差的定义计算可得.【详解】解:丙的成绩为5×80﹣(79+80+81+81)=79,所以这五名学生成绩的方差为15×[2×(79﹣80)2+(80﹣80)2+2×(81﹣80)2]=0.8,故选:A.【点睛】本题考查了方差,解题的关键是掌握算术平均数和方差的定义.10.A解析:A【分析】人数最多的即为众数,通过平均数的公式可求解平均数.【详解】日练字3页的人数有6人,最多,故众数为:3平均数=22364554634 26543⨯+⨯+⨯+⨯+⨯=++++故选:A.【点睛】本题考查众数和平均数的求解,本题的平均数类似于求解加权平均数.11.C解析:C【分析】直接利用众数的概念求解可得.【详解】解:∵在这组数据中,36.4出现了10次,次数最多,∴学生体温数据的众数是36.4C,故选:C.【点睛】本题考查众数,解题关键是熟练掌握一组数据中出现次数最多的数据叫做众数.12.D解析:D【分析】根据众数、中位数、平均数的定义解答.该班共有2+5+6+6+8+7+6=40(人),故A 选项正确;成绩55分的有8人,人数最多,众数为55,故B 选项正确;该班学生这次考试成绩的中位数是第20名和第21名的成绩都是55分,所以其平均数为55分,故C 选项正确; 该班学生这次考试成绩的平均数是:140x =(45×2+49×5+52×6+54×6+55×8+58×7+60×6)=54.425(分),故D 选项错误; 故选:D .【点睛】 本题考查了众数、中位数、平均数的定义,熟悉定义并能分析表格是解题的关键.二、填空题13.8【分析】根据题意可以求得极差然后根据组距即可求得组数【详解】解:极差为:172-149=2323÷3=7则组数为8组故答案为:8【点睛】本题考查频数分布表解答本题的关键是明确分组的方法解析:8【分析】根据题意可以求得极差,然后根据组距即可求得组数.【详解】解:极差为:172-149=23, 23÷3=723, 则组数为8组,故答案为:8.【点睛】本题考查频数分布表,解答本题的关键是明确分组的方法.14.【分析】分别计算甲乙的方差比较得出答案【详解】解:∵∴∵∴<故答案为:<【点睛】本题考查平均数方差的计算方法明确方差是反映数据离散程度的统计量解析:<【分析】分别计算甲、乙的方差,比较得出答案.【详解】解:∵7071472716x +⨯+==甲,7037127342566x ⨯+⨯+==乙, ∴22211(7071)(7271)63S ⎡⎤=-+-=⎣⎦甲,222214254254254170371273666636S ⎡⎤⎛⎫⎛⎫⎛⎫=-⨯+-⨯+-=⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦乙, ∵411363>, ∴2S 甲<2S 乙,故答案为:<.【点睛】本题考查平均数、方差的计算方法,明确方差是反映数据离散程度的统计量. 15.70【分析】根据求中位数要把数据按从小到大的顺序排列位于最中间的一个数或两个数的平均数为中位数【详解】解:题目中数据共有6个故中位数是按从小到大排列后第3第4两个数的平均数作为中位数故这组数据的中位 解析:70【分析】根据求中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数.【详解】解:题目中数据共有6个,故中位数是按从小到大排列后第3,第4两个数的平均数作为中位数, 故这组数据的中位数是12×(68+72)=70. 故答案为70.【点睛】本题考查了确定一组数据的中位数的能力.将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.注意:找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求.如果是偶数个则找中间两位数的平均数. 16.81【分析】根据加权平均数定义可得【详解】解:这个人的面试成绩是80×30+70×30+90×40=81(分)故答案为:81【点睛】本题主要考查加权平均数的计算掌握加权平均数的定义是解题的关键解析:81【分析】根据加权平均数定义可得.【详解】解:这个人的面试成绩是80×30%+70×30%+90×40%=81(分).故答案为:81.【点睛】本题主要考查加权平均数的计算,掌握加权平均数的定义是解题的关键.17.(1)858;(2)两队的平均分相同但乙组的方差小于甲组方差所以乙组成绩更稳定【分析】(1)根据方差平均数的计算公式求出甲组方差和乙组平均数根据中位数的定义取出甲组中位数;(2)根据(1)中表格数据解析:(1)83,8.5,8;(2)两队的平均分相同,但乙组的方差小于甲组方差,所以乙组成绩更稳定.【分析】(1)根据方差、平均数的计算公式求出甲组方差和乙组平均数,根据中位数的定义,取出甲组中位数;(2)根据(1)中表格数据,分别从反应数据集中程度的中位数和平均分及反应数据波动程度的方差比较甲、乙两组,由此找出乙组优于甲组的一条理由.【详解】(1)甲组方差:()()()()()()22222218789810888589863⎡⎤-+-+-+-+-+-=⎣⎦ 甲组数据由小到大排列为:5,7,8,9,9,10故甲组中位数:(8+9)÷2=8.5乙组平均分:(9+6+8+10+7+8)÷6=8填表如下:故答案为:83,8.5,8;两队的平均分相同,但乙组的方差小于甲组方差,所以乙组成绩更稳定.【点睛】本题考查数据分析,熟练掌握反应数据集中趋势的中位数、众数和平均数以及反应数据波动程度的方差的计算公式和定义是解题关键.18.4【分析】先计算出平均数再根据方差的定义计算即可【详解】解:∵平均数∴方差故答案为:24【点睛】本题考查求方差掌握方差的定义是解题的关键 解析:4【分析】先计算出平均数,再根据方差的定义计算即可.【详解】解:∵平均数72118362910810x ⨯++⨯+⨯++==, ∴方差()()()()()()2222222178211888368298108 2.410s ⎡⎤=-⨯+-+-⨯+-⨯+-+-=⎣⎦, 故答案为:2.4.【点睛】本题考查求方差,掌握方差的定义是解题的关键.19.36【分析】根据平均数和方差的变化规律即可得出答案【详解】解:∵数据x1x2x3…xn 的平均数是5∴数2x1+32x2+32x3+3…2xn+3的平均数是25+3=13;∵数据x1x2x3…xn 的方解析:36【分析】根据平均数和方差的变化规律,即可得出答案.【详解】解:∵数据x 1,x 2,x 3,…x n 的平均数是5,∴数2x 1+3,2x 2+3,2x 3+3,…2 x n +3的平均数是2⨯5+3=13;∵数据x 1,x 2,x 3,…x n 的方差是9,∴数2x 1+3,2x 2+3,2x 3+3,…2 x n +3的方差是4⨯9=36;故答案为:13,36.【点睛】此题考查了方差和平均数,当数据都加上一个数(或减去一个数)时,方差不变,即数据的波动情况不变.20.8【分析】按照所给的比例进行计算即可小明本学期的数学学习成绩=平时测试×30+期中考试×30+期末考试×40【详解】小明本学期的数学学习成绩=135×30+135×30+122×40=1298(分)解析:8【分析】按照所给的比例进行计算即可,小明本学期的数学学习成绩=平时测试×30%+期中考试×30%+期末考试×40%.【详解】小明本学期的数学学习成绩=135×30%+135×30%+122×40%=129.8(分).故答案为129.8.【点睛】本题考查了加权平均数的计算.平均数等于所有数据的和除以数据的个数.权的大小直接影响结果.三、解答题21.(1)八1班86分;八2班86分;(2)八1班的中位数是80分,八2班的中位数是85分,八2班成绩好;(3)八1班方差为64;八1班成绩整齐【分析】(1)根据已知数据求解平均数即可;(2)根据中位数做决策即可;(3)根据方差进行比较即可;【详解】解:(1)八(1)班的平均成绩是:()180809080100865⨯++++=(分): 八(2)班的平均成绩是:()180100957085865⨯++++=(分);(2)八(1)班的成绩分别为80,80,80,90,100,∴八(1)班的中位数是80分,八(2)班的成绩分别为:70,80,85,95,100,∴八(2)班的中位数是85分,∵八(1)班的平均成绩是86分,八(2)班的平均成绩是86分,八(1)班的中位数是80分,八(2)班的中位数是85分,∴八年级(2)班竞赛成绩较好;(3)八(1)班的成绩比较稳定,理由:八(1)班的方差是:()()()()()2222221?1808680869086808610086645S ⎡⎤=⨯-+-+-+-+-=⎣⎦班, 八(2)班的方差是114,∵八(1)班的方差小于八(2)班的方差,∴八(1)班的成绩比较稳定.【点睛】本题主要考查了根据中位数和方差做决策,准确分析判断是解题的关键.22.(1)8,4,685,30;(2)选择乙乡镇,因为乙乡镇优等玉米的比例大;(3)330【分析】(1)通过对甲乡镇的计数可得a 、b 和d 的值,利用中位数的定义可得c 的值;(2)通过甲乡镇与乙乡镇平均数相同,但是乙乡镇中位数和优等玉米百分比高可得结论; (3)利用甲乡镇与乙乡镇的优等玉米百分比即可求解.【详解】解:(1)对甲乡镇的计数可得:8a =,4b =,610020d %=⨯%=30%,即30d =; 乙乡镇的中位数为6856856852c +==; (2)选择乙乡镇,因为乙乡镇优等玉米的比例大;(3)4003060035330⨯%+⨯%=(根).【点睛】本题考查统计图与统计表、中位数、样本估计总体等,从统计图和统计表中获取有用信息是解题的关键.23.(1)18,19,18.5;(2)八年级成绩好,见解析;(3)九【分析】(1)根据众数和中位数的定义解决问题;(2)利用两年级成绩的平均数、方差都相同,则通过比较中位数的大小比较成绩;(3)根据方差的意义求解即可.【详解】解:(1)七年级20名学生成绩的众数a=18,八年级成绩的众数b=19,中位数c=18+192=18.5;(2)八年级的成绩好,∵七年级与八年级成绩的平均分和方差相等,而八年级的中位数大于七年级的中位数,即八年级高分人数稍多,∴八年级的成绩好;(3)∵七、八、九年级成绩的方差分别为2.7、2.7、2.5,∴九年级成绩的方差最小,∴九年级成绩更稳定,故答案为:九.【点睛】本题考查了方差、中位数、众数及折线统计图,解题的关键是掌握众数、中位数的概念及样本估计总体思想的运用.24.选手B【分析】利用加权平均数的定义计算出A、B选手的综合成绩,从而得出答案.【详解】解:A选手的综合成绩为85595495190541⨯+⨯+⨯=++(分),B选手的综合成绩为95585495191541⨯+⨯+⨯=++(分),∴选手B的成绩更优秀.【点睛】本题主要考查加权平均数,解题的关键是掌握加权平均数的定义.25.(1)乙;(2)甲;建议见解析(答案不唯一,只要合理都可).【分析】(1)代入求平均数公式即可求出甲、乙两人的平均成绩,比较得出结果;(2)根据加权平均数的计算方法,将甲、乙两人的总成绩按比例求出测试成绩,比较得出结果.【详解】解:(1)()1959085903x =⨯++=甲(分); ()1879393913x =⨯++=乙(分). ∵90<91,∴乙将被推荐参加校级决赛.(2)9559048592541x ⨯+⨯+==++甲(分); 8759349390541x ⨯+⨯+==++乙(分). ∵92>90,∴甲将被推荐参加校级决赛. 建议:由于演讲内容的权较大,乙这项得成绩较低,应改进演讲内容,力争取得更好的成绩.(答案不唯一,只要合理都可).【点睛】本题考查了平均数的应用.熟练掌握算术平均数与加权平均数的计算方法是解题的关键. 26.(1)50;(2)32,图形见解析;(3)10,15;(4)48000元.【分析】(1)利用样本容量=频数所占百分比计算即可; (2)利用样本容量等于各频数的和计算即可,根据频数补图;(3)比较频数大小,定众数,根据中位数的定义计算即可;(4)利用样本估计总体思想计算即可.【详解】解:(1)样本容量=001020=50, 故应填50;(2)∵50-12-10-8-4=16, ∴0=3205016, 故应填32;补图如右图(3)∵10的频数为16,最大,∴众数为10;将数据排列如下 5,10,15,20,30,∴中位数应是第25,第26个数据的平均数, 即15+15=152, 故应填10;15; (4)根据题意,得54101612152010305300050⨯+⨯+⨯+⨯+⨯⨯ 16300048000=⨯=元答:估计该校本次活动一共捐款48000元.【点睛】本题考查了样本容量的计算,众数,中位数的确定,条形图的完善,样本估计总体,熟练掌握上述知识是解题的关键.。

(专题精选)初中数学数据分析真题汇编附答案

(专题精选)初中数学数据分析真题汇编附答案

(专题精选)初中数学数据分析真题汇编附答案一、选择题1.在5轮“中国汉字听写大赛”选拔赛中,甲、乙两位同学的平均分都是90分,甲的成绩方差是15,乙的成绩的方差是3,下列说法正确的是()A.甲的成绩比乙的成绩稳定B.乙的成绩比甲的成绩稳定C.甲、乙两人的成绩一样稳定D.无法确定甲、乙的成绩谁更稳定【答案】B【解析】【分析】根据方差的意义求解可得.【详解】∵乙的成绩方差<甲成绩的方差,∴乙的成绩比甲的成绩稳定,故选B.【点睛】本题主要考查方差,方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.2.多多班长统计去年1~8月“书香校园”活动中全班同学的课外阅读数量(单位:本),绘制了如图折线统计图,下列说法正确的是()A.极差是47 B.众数是42C.中位数是58 D.每月阅读数量超过40的有4个月【答案】C【解析】【分析】根据统计图可得出最大值和最小值,即可求得极差;出现次数最多的数据是众数;将这8个数按大小顺序排列,中间两个数的平均数为中位数;每月阅读数量超过40的有2、3、4、5、7、8,共六个月.【详解】A、极差为:83-28=55,故本选项错误;B、∵58出现的次数最多,是2次,∴众数为:58,故本选项错误;C、中位数为:(58+58)÷2=58,故本选项正确;D、每月阅读数量超过40本的有2月、3月、4月、5月、7月、8月,共六个月,故本选项错误;故选C.3.某校四个绿化小组一天植树的棵数如下:10,x,10,8,已知这组数据的众数与平均数相等,则这组数据的中位数是( )A.8 B.9 C.10 D.12【答案】C【解析】【分析】根据这组数据的众数与平均数相等,可知这组数据的众数(因10出现了2次)与平均数都是10;再根据平均数是10,可求出这四个数的和是40,进而求出x的数值;然后把这四个数据按照从大到小的顺序排列,由于是偶数个数据,则中间两个数的平均数就是中位数.【详解】当x=8时,有两个众数,而平均数只有一个,不合题意舍去.当众数为10,根据题意得(10+10+x+8)÷4=10,解得x=12,将这组数据按从小到大的顺序排列为8,10,10,12,处于中间位置的是10,10,所以这组数据的中位数是(10+10)÷2=10.故选C.【点睛】本题为统计题,考查平均数、众数与中位数的意义,解题时需要理解题意,分类讨论.4.有甲、乙两种糖果,原价分别为每千克a元和b元.根据调查,将两种糖果按甲种糖果x千克与乙种糖果y千克的比例混合,取得了较好的销售效果.现在糖果价格有了调整:甲种糖果单价下降15%,乙种糖果单价上涨20%,但按原比例混合的糖果单价恰好不变,则xy等于()A.34abB.43abC.34baD.43ba【答案】D【解析】【分析】根据已知条件表示出价格变化前后两种糖果的平均价格,进而得出等式求出即可.【详解】解:∵甲、乙两种糖果,原价分别为每千克a元和b元,两种糖果按甲种糖果x千克与乙种糖果y千克的比例混合,∴两种糖果的平均价格为:ax byx y++,∵甲种糖果单价下降15%,乙种糖果单价上涨20%,∴两种糖果的平均价格为:1520(1)(1)100100a xb yx y-•+++,∵按原比例混合的糖果单价恰好不变,∴ax byx y++=1520(1)(1)100100a xb yx y-•+++,整理,得15ax=20by∴43x by a=,故选:D.【点睛】本题考查了加权平均数,解决本题的关键是表示出价格变化前后两种糖果的平均价格.5.小明参加射击比赛,10次射击的成绩如表:若小明再射击2次,分别命中7环、9环,与前10次相比,小明12次射击的成绩()A.平均数变大,方差不变B.平均数不变,方差不变C.平均数不变,方差变大D.平均数不变,方差变小【答案】D【解析】【分析】首先利用计算出前10次射击的平均数,再计算出方差,然后计算出再射击2次后的平均数和方差,进而可得答案.【详解】前10次平均数:(6×3+7×1+8×2+9×1+10×3)÷10=8,方差:S2=110[(6﹣8)2×3+(7﹣8)2+(8﹣8)2×2+(9﹣8)2+3×(10﹣8)2]=2.6,再射击2次后的平均数::(6×3+7×1+8×2+9×1+10×3+7+9)÷12=8,方差:S2=112[(6﹣8)2×3+(7﹣8)2×2+(8﹣8)2×2+(9﹣8)2×2+3×(10﹣8)2]=73,平均数不变,方差变小,故选:D.【点睛】此题主要考查了方差和平均数,关键是掌握方差计算公式:S2=1n[(x1﹣x)2+(x2﹣x)2+…+(x n﹣x)2].6.2022年将在北京﹣﹣张家口举办冬季奥运会,很多学校为此开设了相关的课程,下表记录了某校4名同学短道速滑成绩的平均数x和方差S2,根据表中数据,要选一名成绩好又发挥稳定的运动员参加比赛,应选择()A.队员1 B.队员2 C.队员3 D.队员4【答案】B【解析】【分析】根据方差的意义先比较出4名同学短道速滑成绩的稳定性,再根据平均数的意义即可求出答案.【详解】解:因为队员1和2的方差最小,所以这俩人的成绩较稳定,但队员2平均数最小,所以成绩好,即队员2成绩好又发挥稳定.故选B.【点睛】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.7.下列说法:①一组对边平行,另一组对边相等的四边形是平行四边形;②经过有交通信号灯的路口,遇到红灯是必然事件;③若甲组数据的方差是0.3,乙组数据的方差是0.1,则甲数据比乙组数据稳定;④圆内接正六边形的边长等于这个圆的半径,其中正确说法的个数是()A.1个B.2个C.3个D.4个【答案】A【解析】【分析】根据平行四边形的判定去判断①;根据必然事件的定义去判断②;根据方差的意义去判断③;根据圆内接正多边形的相关角度去计算④.【详解】一组对边平行,另一组对边相等的四边形也有可能是等腰梯形,①错误;必然事件是一定会发生的事件,遇到红灯是随机事件,②错误;方差越大越不稳定,越小越稳定,乙比甲更稳定,③错误;正六边形的边所对的圆心角是60 ,所以构成等边三角形,④结论正确.所以正确1个,答案选A.【点睛】本题涉及的知识点较多,要熟悉平行四边形的常见判定;随机事件、必然事件、不可能事件等的区分;掌握方差的意义;会计算圆内接正多边形相关.8.某篮球运动员在连续7场比赛中的得分(单位:分)依次为23,22,20,20,20,25,18.则这组数据的众数与中位数分别是()A.20分,22分B.20分,18分C.20分,22分D.20分,20分【答案】D【解析】【分析】根据众数和中位数的概念求解可得.【详解】数据排列为18,20,20,20,22,23,25,则这组数据的众数为20,中位数为20.故选:D.【点睛】此题考查众数和中位数,解题关键在于掌握一组数据中出现次数最多的数据叫做众数.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.9.一组数据5,4,2,5,6的中位数是()A.5 B.4 C.2 D.6【答案】A【解析】试题分析:将题目中数据按照从小到大排列是: 2,4,5,5,6,故这组数据的中位数是5,故选A.考点:中位数;统计与概率.10.甲、乙两位运动员在相同条件下各射击10次,成绩如下: 甲:9,10,8,5,7,8,10,8,8,7; 乙:5,7,8,7,8,9,7,9,10,10.根据上述信息,下列结论错误的是( ) A .甲、乙的众数分别是8,7 B .甲、乙的中位数分别是8,8 C .乙的成绩比较稳定 D .甲、乙的平均数分别是8,8【答案】C 【解析】 【分析】分别根据众数,平均数,中位数和方差的概念以及计算方法计算出结果,然后进行判断. 【详解】在甲的10次射击成绩中8环出现次数最多,有4次,故众数是8,而乙的10次射击成绩中7环出现次数最多,故众数是7,因此选项A 说法正确,不符合题意;甲的10次射击成绩按大小顺序排列为:5,7,7,8,8,8,8,9,10,10,故其中位数为:8+8=82; 乙的10次射击成绩按大小顺序排列为:5,7,7,7,8,8,9,9,10,10,故其中位数为:8+8=82,所以甲、乙的中位数分别是8,8,故选项B 说法正确,不符合题意; 甲的平均数为:5+72+84+9+102=810⨯⨯⨯;乙的平均数:5+73+82+92+102=810⨯⨯⨯⨯,所以,甲、乙的平均数分别是8,8,故选项D 不符合题意;甲组数据的方差为:2222221=[(58)2(78)4(88)(98)2(108)]10S -+⨯-+⨯-+-+⨯-甲=2; 乙组数据的方差为:2222221=[(58)3(78)2(88)2(98)2(108)]10S -+⨯-+⨯-+⨯-+⨯-乙=2.2;所以甲乙两组数据的方差不相等,甲的成绩更稳定,故选项C 符合题意. 故选:C. 【点睛】本题考查了平均数、中位数、众数和方差的定义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.11.某校九年级开展“光盘行动”宣传活动,各班级参加该活动的人数统计结果如下表,对于这组统计数据,下列说法中正确的是()A .平均数是58B .中位数是58C .极差是40D .众数是60【答案】A 【解析】分别根据平均数,中位数,极差,众数的计算方法计算即可作出判断平均数是指在一组数据中所有数据之和再除以数据的个数,因此,这组数据的平均数是:526062545862586+++++=.中位数是一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数).由此将这组数据重新排序为52,54,58,60,62,62,∴中位数是按从小到大排列后第3,4个数的平均数为:59.根据一组数据中的最大数据与最小数据的差叫做这组数据的极差的定义,这组数据的极差是: 62-52=10.众数是在一组数据中,出现次数最多的数据,这组数据中,出现次数最多的是62,故这组数据的众数为62.综上所述,说法正确的是:平均数是58.故选A .12.某中学为了了解同学们平均每月阅读课外书籍的情况,在某年级随机抽查了20名同学,结果如下表所示:这些同学平均每月阅读课外书籍本数的中位数和众数为( ) A .5,5B .6,6C .5,6D .6,5【答案】D【解析】【分析】根据中位数和众数的定义分别进行解答即可.【详解】把这组数据从小到大排列中间的两个数都是6,则这组数据的中位数是6;5出现了6次,出现的次数最多,则众数是5.故选D.【点睛】此题考查了中位数和众数,将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数)叫做这组数据的中位数;众数是一组数据中出现次数最多的数.13.某校为了解同学们课外阅读名著的情况,在八年级随机抽查了20名学生,调查结果如表所示:课外名著阅读量(本)89101112学生人数33464关于这20名学生课外阅读名著的情况,下列说法错误的是( )A.中位数是10 B.平均数是10.25 C.众数是11 D.阅读量不低于10本的同学点70%【答案】A【解析】【分析】根据中位数、平均数、众数的定义解答即可.【详解】解:A、把这20名周学课外阅读经典名著的本书按从小到大的顺序排列,则中位数是=10.5,故本选项错误;B、平均数是:(8×3+9×3+10×4+11×6+12×4)÷20=10.25,此选项不符合题意;C、众数是11,此选项不符合题意;D、阅读量不低于10本的同学所占百分比为×100%=70%,此选项不符合题意;故选:A.【点睛】本题考查了平均数、众数和中位数,平均数平均数表示一组数据的平均程度.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数).众数是一组数据中出现次数最多的数.14.如图是成都市某周内日最高气温的折线统计图,关于这7天的日最高气温的说法正确的是()A.极差是8℃B.众数是28℃C.中位数是24℃D.平均数是26℃【答案】B【解析】分析:根据折线统计图中的数据可以判断各个选项中的数据是否正确,从而可以解答本题.详解:由图可得,极差是:30-20=10℃,故选项A错误,众数是28℃,故选项B正确,这组数按照从小到大排列是:20、22、24、26、28、28、30,故中位数是26℃,故选项C 错误,平均数是:2022242628283032577++++++=℃,故选项D错误,故选B.点睛:本题考查折线统计图、极差、众数、中位数、平均数,解答本题的关键是明确题意,能够判断各个选项中结论是否正确.15.为参加学校举办的“诗意校园•致远方”朗诵艺术大赛,八年级“屈原读书社”组织了五次选拔赛,这五次选拔赛中,小明五次成绩的平均数是90,方差是2;小强五次成绩的平均数也是90,方差是14.8.下列说法正确的是()A.小明的成绩比小强稳定B.小明、小强两人成绩一样稳定C.小强的成绩比小明稳定D.无法确定小明、小强的成绩谁更稳定【答案】A【解析】【分析】方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.【详解】∵小明五次成绩的平均数是90,方差是2;小强五次成绩的平均数也是90,方差是14.8.平均成绩一样,小明的方差小,成绩稳定,故选A.【点睛】本题考查方差、平均数的定义,解题的关键是熟练掌握基本知识,属于中考基础题.错因分析容易题.失分原因是方差的意义掌握不牢.16.立定跳远是体育中考选考项目之一,体育课上老师记录了某同学的一组立定跳远成绩如表:则下列关于这组数据的说法,正确的是()A.众数是2.3 B.平均数是2.4C.中位数是2.5 D.方差是0.01【答案】B【解析】【分析】一组数据中出现次数最多的数据叫做众数;平均数是指在一组数据中所有数据之和再除以数据的个数.它是反映数据集中趋势的一项指标;将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数;一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差.【详解】这组数据中出现次数最多的是2.4,众数是2.4,选项A不符合题意;∵(2.3+2.4+2.5+2.4+2.4)÷5=12÷5=2.4∴这组数据的平均数是2.4,∴选项B符合题意.17.某中学篮球队12名队员的年龄如表:关于这12名队员年龄的数据,下列说法正确的是()A.中位数是14.5 B.年龄小于15岁的频率是5 12C.众数是5 D.平均数是14.8【答案】A【解析】【分析】根据表中数据,求出这组数据的众数、频率、中位数和平均数即可.【详解】解:A、中位数为第6、7个数的平均数,为14152+=14.5,此选项正确;B、年龄小于15岁的频率是151122+=,此选项错误;C、14岁出现次数最多,即众数为14,此选项错误;D、平均数为:131145154162175=1212⨯+⨯+⨯+⨯,此选项错误;【点睛】本题考查了众数、中位数、平均数与频率的计算问题,是基础题.解题的关键是掌握众数、中位数、平均数与频率的定义进行解题.18.数据2、5、6、0、6、1、8的中位数是()A.8 B.6 C.5 D.0【答案】C【解析】【分析】将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.【详解】将数据从小到大排列为:0,1,2,5,6,6,8∵这组数据的个数是奇数∴最中间的那个数是中位数即中位数为5故选C.【点睛】此题考查了平均数与中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.19.为考察两名实习工人的工作情况,质检部将他们工作第一周每天生产合格产品的个数整理成甲,乙两组数据,如下表:关于以上数据,说法正确的是( )A .甲、乙的众数相同B .甲、乙的中位数相同C .甲的平均数小于乙的平均数D .甲的方差小于乙的方差【答案】D【解析】【分析】分别根据众数、中位数、平均数、方差的定义进行求解后进行判断即可得.【详解】甲:数据7出现了2次,次数最多,所以众数为7,排序后最中间的数是7,所以中位数是7, 26778==65x ++++甲, ()()()()()2222221S =26666767865⎡⎤⨯-+-+-+-+-⎣⎦甲=4.4, 乙:数据8出现了2次,次数最多,所以众数为8,排序后最中间的数是4,所以中位数是4,23488==55x 乙++++, ()()()()()2222221S =25354585855乙⎡⎤⨯-+-+-+-+-⎣⎦=6.4, 所以只有D 选项正确,故选D.【点睛】本题考查了众数、中位数、平均数、方差,熟练掌握相关定义及求解方法是解题的关键.20.在创建平安校园活动中,九年级一班举行了一次“安全知识竞赛”活动,第一小组6名同学的成绩(单位:分)分别是:87,91,93,87,97,96,下列关于这组数据说正确的是( )A .中位数是90B .平均数是90C .众数是87D .极差是9【答案】C【解析】【分析】根据中位数、平均数、众数、极差的概念求解.【详解】解:这组数据按照从小到大的顺序排列为:87,87,91,93,96,97,则中位数是(91+93)÷2=92,平均数是(87+87+91+93+96+97)÷6=9156,众数是87,极差是97﹣87=10.故选C.【点睛】本题考查了中位数、平均数、众数、极差的知识,掌握各知识点的概念是解答本题的关键.。

(压轴题)初中数学八年级数学上册第六单元《数据的分析》检测题(含答案解析)(2)

(压轴题)初中数学八年级数学上册第六单元《数据的分析》检测题(含答案解析)(2)
一、选择题
1.小明在计算一组数据的方差时,列出的公式如下 ,根据公式信息,下列说法中,错误的是()
A.数据个数是5B.数据平均数是8C.数据众数是8D.数据方差是
2.抽样调查了某校30位女生所穿鞋子的尺码,数据如下表
码号
33
34
35
36
人数
7
6
15
2
在这组数据中,鞋厂最感兴趣的码号是()
A.33B.34C.35D.36
【详解】
解:(2×2+3×2+4×10+5×6)÷20
=(4+6+40+30)÷20
=80÷20
=4(次).
由于这组数据共有20个,所以中位数为第10和11个数据的平均数,因此这组数据的中位数为(4+4)÷2=4(次)
故选:A.
【点睛】
本题考查的是加权平均数和中位数的求法.本题易出现的错误是求2,3,4,5这四个数的平均数,对平均数的理解不正确,掌握相关定义是解题的关键.
25.为了了解某学校初四年级学生每周平均课外阅读的时间情况,随机抽查了该学校初四年级 名同学,对其每周平均课外阅读时间进行统计,绘制了如下条形统计图(图一)和扇形统计图(图二):
(1)根据以上信息回答下列问题:
①求m的值;
②补全条形统计图.
(2)求出这组数据的中位数和平均数.
26.某学校开展了“远离新冠珍爱生命”的防“新冠”安全知识竞赛.现从该校七、八年级中各随机抽取 名学生的竞赛成绩(百分制)进行整理、描述和分析(成绩得分用 表示,共分成四组: ).下面给出了部分信息:
7.D
解析:D
【分析】
直接利用方差是反映一组数据的波动大小的一个量,方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好,进而分析即可.

(常考题)北师大版初中数学八年级数学上册第六单元《数据的分析》测试(含答案解析)(2)

(常考题)北师大版初中数学八年级数学上册第六单元《数据的分析》测试(含答案解析)(2)

一、选择题1.数据201,202,198,199,200的方差与极差分别是()A.1,4 B.2,2 C.2,4 D.4,22.为了调查某校同学的体质健康状况,随机抽查了若干名同学的每天锻炼时间如表:每天锻炼时间20406090(分钟)学生数2341则关于这些同学的每天锻炼时间,下列说法错误的是()A.众数是60 B.平均数是21 C.抽查了10个同学D.中位数是50 3.在一次射击练习中,某运动员命中的环数是7,9,9,10,10,其中9是( )A.平均数B.中位数C.众数D.既是平均数和中位数,又是众数4.某次校园歌手比赛,进入最后决赛的三名选手的成绩统计如下表,若唱功、音乐常识、舞台表现按6∶3∶1的比例计入选手最后得分排出冠军、亚军、季军,则本场比赛的冠军、亚军、季军分别是()选手成绩计分项目王飞李真林杨唱功989580音乐常识8090100舞台表现8090100A.李真、王飞、林杨B.王飞、林杨、李真C.王飞、李真、林杨D.李真、林杨、王飞5.小亮家1月至10月的用电量统计如图所示,这组数据的众数和中位数分别是()A.30和 20 B.30和25 C.30和22.5 D.30和17.5 6.2022年北京张家口将举办冬季奥运会,下表记录了四名短道速滑选手几次选拔赛成绩的平均数x和方差2s:甲乙丙丁平均数x(秒)52515251方差2s 4.5 4.512.517.5根据表中数据,要从中选择出一名成绩好且发挥稳定的运动员,应该选择()A.甲B.乙C.丙D.丁7.小李大学毕业到一家公司应聘英文翻译,该公司对他进行了听、说、读、写的英语水平测试,他的各项成绩(百分制)分别为70、80、90、100.他这四项测试的平均成绩是()A.80 B.85 C.90 D.958.已知第一组数据:12,14,16,18的方差为S12;第二组数据:32,34,36,38的方差为S22;第三组数据:2020,2019,2018,2017的方差为S32,则S12,S22,S32的大小关系表示正确的是()A.S12>S22>S32B.S12=S22>S32C.S12<S22<S32D.S12=S22<S329.某青年排球队12名队员的年龄情况如下表所示,则这12名队员的平均年龄是()年龄1819202122人数14322A.18岁B.19岁C.20岁D.21岁10.下表记录了甲、乙、丙、丁四位跳远运动员选拔赛成绩的平均数与方差:根据表中信息,请你选择一名成绩好且发挥稳定的选手参赛,最合适的是( )A.甲B.乙C.丙D.丁11.某校为了解学生的课外阅读情况,随机抽取了一个班级的学生,对他们一周的读书时间进行了统计,统计数据如下图所示:则该班学生一周读书时间的中位数和众数分别是()A.9,8 B.9, 9 C.9.5, 9 D.9.5,812.五个正整数2、4、5、m、n的平均数是3,且m≠n,则这五个数的中位数是()A.5 B.4 C.3.5 D.3二、填空题13.一组数据:9、12、10、9、11、9、10,则它的方差是_____.14.2020年新冠疫情来势汹汹,我国采取了有力的防疫措施,控制住了疫情的蔓延.甲,乙两个学校各有400名学生,在复学前期,为了解学生对疫情防控知识的掌握情况,进行了抽样调查,过程如下,请补充完整.(1)收集数据从甲、乙两校各随机抽取20名学生进行了相关知识的网上测试,测试成绩如下:甲98 98 92 92 92 92 92 89 89 85 84 84 83 83 79 79 78 78 69 58乙99 96 96 96 96 96 96 94 92 89 88 85 80 78 72 72 71 65 58 55(2)整理、描述数据根据上面得到的两组样本数据,绘制了频数分布直方图:(3)分析数据两组样本数据的平均数、众数、中位数、方差如表所示:平均数众数中位数方差甲校84.792m88.91乙校83.7n88.5184.01(说明:成绩80分及以上为优良,60﹣79分为合格,60分以下为不合格)(4)得出结论a.估计甲学校掌握疫情防控知识优良的学生人数约为;b.可以推断出学校的学生掌握疫情防控知识的水平较高,理由为.15.甲、乙、丙、丁四人各进行了6次跳远测试,他们的平均成绩相同,方差分别是S甲2=0.65,S乙2=0.55,S丙2=0.50,S丁2=0.45,则跳远成绩最稳定的是____.16.甲、乙两名同学在射击选拔比赛中,各射击10次,平均成绩都是是7.5环,方差分别是22225345S .,S .==乙甲,则在本次测试中,成绩更稳定的同学是______(填“甲”或“乙”).17.马拉松赛选手分甲、乙两组运动员进行了艰苦的训练,他们在相同条件下各10次比赛,成绩的平均数相同,方差分别为0.25,0.21,则成绩较为稳定的是_________(选填“甲”或“乙)18.一组数据:1、2、5、3、3、4、2、4,它们的平均数为_______,中位数为_______,方差是_______.19.我市某中学举行“校园好声音”歌手大赛,甲、乙两班根据初赛成绩各选出5名选手组成甲班代表队和乙班代表队参加学校决赛,两个队各选出的5名选手的决赛成绩(满分100)如图所示:根据图示信息,整理分析数据如表:平均数(分) 中位数(分) 众数(分) 方差 甲班 a 85 c 70 乙班85b100160号选手的预赛成绩是 分,乙班号选手的预赛成绩是 分, 班的预赛成绩更平衡,更稳定;(2)求出表格中a = ,b = ,c = ;(3)学校决定在甲、乙两班中选取预赛成绩较好的5人参加该活动的区级比赛,这5人预赛成绩的平均分数为 .20.甲、乙两名短跑运动员,每人训练10次,平均成绩恰好相等,且甲成绩的方差是0.11,乙成绩的方差是0.09.则在这10次训练中,甲、乙两人成绩较稳定的是__________.三、解答题21.为了加强安全教育,某校对学生进行“防溺水知识应知应答”测评.该校随机选取了八年级300名学生中的20名学生在10月份测评的成绩,数据如下: 收集数据:97 91 89 95 90 99 90 97 91 98 90 90 918898 97 95 90 9688,=,d=;(2)该校决定授予在10月份测评成绩优秀(96分及以上)的八年级的学生“防溺水小卫士”荣誉称号,请估计评选该荣誉称号的人数.(3)若被选取的20名学生在11月份测评的成绩的平均数、众数和中位数如表:10月份到11月份开展的“防溺水知识应知应答”测评活动的效果.22.为帮助学生了解“预防新型冠状病毒”的有关知识,学校组织了一次线上知识培训,培训结束后进行测试.试题的满分为20分.为了解学生的成绩情况,从七、八年级学生中各随机抽取了20名学生的成绩进行了整理、描述和分析.下面给出了部分信息:抽取的20名七年级学生成绩是:20,20,20,20,19,19,19,19,18,18,18,18,18,18,18,17,16,16,15,14.抽取的40名学生成绩统计表根据以上信息,解答下列问题:(1)直接写出表中a,b,c的值:a=,b=,c=.(2)在这次测试中,你认为是七年级学生成绩好,还是八年级学生成绩好?请说明理由.(3)若九年级随机抽取20名学生的成绩的方差为2.5,则年级成绩更稳定(填“七”或“八”或“九”).23.国庆长假期间,兴趣小组随机采访了10位到高邮的游客使用“街兔”共享电动车的次数,得到了这10位游客1天内使用“街兔”共享电动车的次数,统计如下:使用次数02346人数11431共享电动车的次数的中位数是次,众数是次,平均数是次;(2)若小明同学把统计表中的数据“6”错看成了“5”,则用“街兔”共享电动车的次数的中位数、众数、和平均数这三个统计量中不受影响的是;(填“中位数”、“众数”或“平均数”)(3)若国庆长假期间,每天约有1200位游客到高邮,试估计这些游客7天国庆长假期间使用“街兔”共享电动车的总次数.24.为加强抗击疫情的教育宣传,某中学开展防疫知识线上竞赛活动,八年级(1)、(2)班各选出5名选手参加竞赛,两个班各选出的5名选手的竞赛成绩(满分为100分)如图所示:(1)请你计算两个班的平均成绩各是多少分;(2)写出两个班竞赛成绩的中位数,结合两个班竞赛成绩的平均数和中位数,你认为哪个班的竞赛成绩较好;(3)计算两个班竞赛成绩的方差,并说明哪个班的竞赛成绩较为整齐.25.为了从甲、乙两名选手中选拔一个参加射击比赛,现对他们进行一次测试,两个人在相同条件下各射靶5次,甲命中的环数分别是:10、6、10、6、8,乙命中的环数分别是:7、9、7、8、9.经过计算,甲命中的平均数为8x =甲,方差为23.2S =甲.(1)求乙命中的平均数x 乙和方差2S 乙;(2)现从甲、乙两名队员中选出一人去参加射击比赛,你认为应该选哪名队员去?为什么?26.某学校开展了“远离新冠珍爱生命”的防“新冠”安全知识竞赛.现从该校七、八年级中各随机抽取10名学生的竞赛成绩(百分制)进行整理、描述和分析(成绩得分用x 表示,共分成四组:.8085,A x < .8590,.9095,.95100B x C x D x <<).下面给出了部分信息:七年级10名学生的竞赛成绩是:80,86,99,96,90,99,100,82,89,99;抽取的八年级10名学生的竞赛成绩没有低于80分的,且在C 组中的数据是:94,94,90. 根据以上信息,解答下列问题: (1)直接写出图表中,,a b c 的值;(2)计算d 的值,并判断七、八年级中哪个年级学生的竞赛成绩更稳定?请说明理由; (3)该学校七、八年级共2160人参加了此次竞赛活动,估计参加此次竞赛活动获得成绩优秀(95x ≥)的学生人数是多少?【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】极差=数据最大值-数据最小值,求出数据的平均数,后套用方差公式计算即可. 【详解】∵最大数据为202,最小数据为198, ∴极差=202-198=4; ∵1200(12210)5x =++--+=200, ∴2222221[(201200)(202200)(198200)(199200)(200200)]5S =-+-+-+-+- =2, 故选C. 【点睛】本题考查了方差和极差的计算,熟记方差的公式,极差的定义是解题的关键.2.B解析:B 【分析】根据众数、中位数和平均数的定义分别对每一项进行分析即可. 【详解】解:A 、60出现了4次,出现的次数最多,则众数是60,故A 选项说法正确; B 、这组数据的平均数是:(20×2+40×3+60×4+90×1)÷10=49,故B 选项说法错误; C 、调查的户数是2+3+4+1=10,故C 选项说法正确;D 、把这组数据从小到大排列,最中间的两个数的平均数是(40+60)÷2=50,则中位数是50,故D 选项说法正确; 故选B . 【点睛】此题考查了众数、中位数和平均数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数;众数是一组数据中出现次数最多的数.3.D解析:D 【解析】 试题数据按从小到大顺序排列为7,9,9,10,10,所以中位数是9;数据9和10都出现了两次,出现次数最多,所以众数是9和10;平均数=(7+9+9+10+10)÷5=9.∴此题中9既是平均数和中位数,又是众数.故选D.点睛:平均数是指在一组数据中所有数据之和再除以数据的个数;在一组数据中出现次数最多的数据叫做这一组数据的众数,注意众数不止一个;中位数是指将一组数据按大小顺序排列后,处在最中间的一个数(或处在最中间的两个数的平均数).4.A解析:A【分析】根据加权平均数的定义分别计算出三人的平均成绩,再比较大小即可得出答案.【详解】解:王飞的平均成绩为986803801631⨯+⨯+⨯++=90.8(分),李真的平均成绩为956903901631⨯+⨯+⨯++=93(分),林杨的平均成绩为80610031001631⨯+⨯+⨯++=88(分),因为93>90.8>88,所以冠军是李真,亚军是王飞,季军是林杨,故选:A.【点睛】本题主要考查加权平均数,解题的关键是掌握加权平均数的定义.5.C解析:C【分析】将折线统计图中的数据从小到大重新排列后,根据中位数和众数的定义求解可得.【详解】将这10个数据从小到大重新排列为:10、15、15、20、20、25、25、30、30、30,所以该组数据的众数为30、中位数为20252+=22.5,故选C.【点睛】此题考查了众数与中位数,众数是一组数据中出现次数最多的数;中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.6.B解析:B【分析】比较平均数与方差,选择平均数较大且方差较小的运动员参加. 【详解】 解:x x x x =>=甲乙丁丙,∴从乙和丁中选择一人参加比赛,2222s s s s =<<甲乙丁丙,∴要从中选择出一名成绩好且发挥稳定的运动员,应该选择乙.故选:B . 【点睛】本题考查了方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.也考查了平均数.7.B解析:B 【分析】利用平均数公式计算即可. 【详解】他这四项测试的平均成绩是708090100854+++=,故选:B. 【点睛】此题考查平均数的计算公式,正确掌握公式是解题的关键.8.B解析:B 【分析】先计算出三组数据的平均数,再根据方差的定义计算出方差,从而得出答案. 【详解】 解:∵1x =12141618154+++=,2x =32343638354+++=,3x =20202019201820172018.54+++=,∴S 12=14×[(12﹣15)2+(14﹣15)2+(16﹣15)2+(18﹣15)2]=5, S 22=14×[(32﹣35)2+(34﹣35)2+(36﹣35)2+(38﹣35)2]=5, S 32=14×[(2020﹣2018.5)2+(2019﹣2018.5)2+(2018﹣2018.5)2+(2017﹣2018.5)2]=54,∴S12=S22>S32,故选:B.【点睛】本题主要考查了平均数、方差的计算,准确计算是解题的关键.9.C解析:C【分析】加权平均数:若n个数x1,x2,x3,…,x n的权分别是w1,w2,w3,…,w n,则(x1w1+x2w2+…+x n w n)÷(w1+w2+…+w n)叫做这n个数的加权平均数.依此解答即可求解.【详解】(18+4×19+3×20+2×21+2×22)÷12=(18+76+60+42+44)÷12=240÷12=20(岁).故这12名队员的平均年龄是20岁.故选:C.【点睛】考查了加权平均数,正确理解加权平均数的概念是解题的关键.10.A解析:A【分析】根据方差的意义求解可得.【详解】解:由表可知,甲、丁的平均成绩相等并大于乙,丙的平均成绩,且甲的方差比丁的方差小,所以甲的立定跳远成绩好且发挥稳定,故选:A.【点睛】本题主要考查方差,方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.11.A解析:A【分析】根据表格中的数据可知该班有学生40人,从而可以求得中位数和众数,本题得以解决.【详解】解:由表格可得,读书时间为8小时最多,故一周读书时间的众数为8,该班学生一周读书时间的第20个数9和第21个数是9,故该班学生一周读书时间的中位数为9+9=92,故选:A.【点睛】本题考查众数、中位数,解答本题的关键是明确题意,会求一组数据的众数和中位数.12.D解析:D【分析】根据五个正整数2、4、m、n的平均数是3,且m≠n,可以得到m、n的值,从而可以得到这组数据的中位数.【详解】∵五个正整数2、4、5、m、n的平均数是3,且m≠n,∴(2+4+5+m+n)÷5=3,∴m+n=4,∴m=1,n=3或m=3,n=1,∴这组数据按照从小到大排列是1,2,3,4,5,∴这五个数的中位数是3,故选:D.【点睛】本题考查平均数和中位数,解答本题的关键是明确平均数、中位数的含义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.二、填空题13.【分析】先由平均数的公式计算出这组数据的平均数再根据方差的公式计算即可【详解】解:这组数据的平均数是:(9+12+10+9+11+9+10)=10则它的方差是:3×(9﹣10)2+2×(10﹣10)解析:8 7【分析】先由平均数的公式计算出这组数据的平均数,再根据方差的公式计算即可.【详解】解:这组数据的平均数是:17(9+12+10+9+11+9+10)=10,则它的方差是:17[3×(9﹣10)2+2×(10﹣10)2+(12﹣10)2+(11﹣10)2]=87;故答案为:87.【点睛】本题考查方差的定义:一般地设n个数据,x1,x2,…x n的平均数为x,则方差S2=1n [(x1-x)2+(x2-x)2+…+(x n-x)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.14.(3)m=845n=96;(4)a280人;b乙乙校的中位数大于甲校的中位数【分析】(3)根据(1)中的数据可以得到中位数m和众数n的值;(4)a根据(1)中的数据和(3)中的说明由样本估算总体可以解析:(3)m=84.5,n=96;(4)a.280人;b.乙,乙校的中位数大于甲校的中位数.【分析】(3)根据(1)中的数据,可以得到中位数m和众数n的值;(4)a.根据(1)中的数据和(3)中的说明,由样本估算总体,可以得到甲学校掌握疫情防控知识优良的学生人数;b.根据(3)中表格中的数据,由中位数可以得到哪所学校的学生掌握疫情防控知识的水平较高,理由见详解.【详解】解:(3)甲校的中位数m=(85+84)÷2=84.5,乙校的众数是n=96;故答案为:84.5,96(4)a.成绩80分及以上为优良,根据样本数据计算甲学校掌握疫情防控知识优良的学生人数约为:400×1420=280(人),故答案为:280;b.可以推断出乙学校的学生掌握疫情防控知识的水平较高,理由为乙校的中位数大于甲校的中位数,故答案为:乙,乙校的中位数大于甲校的中位数.【点睛】此题考查中位数、众数、由样本估算总体等相关知识,熟练掌握中位数、众数的定义及运用由样本估算总体等是解题关键.15.丁【分析】根据方差的意义求解可得【详解】解:∵S甲2=065S乙2=055S 丙2=050S丁2=045∴S丁2<S丙2<S乙2<S甲2∵他们的平均成绩相同∴跳远成绩最稳定的是丁故答案为:丁【点睛】本解析:丁.【分析】根据方差的意义求解可得.【详解】解:∵S甲2=0.65,S乙2=0.55,S丙2=0.50,S丁2=0.45,∴S丁2<S丙2<S乙2<S甲2,∵他们的平均成绩相同,∴跳远成绩最稳定的是丁.故答案为:丁.【点睛】本题主要考查方差,解题的关键是掌握方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.16.甲【分析】根据方差的意义:方差越大则平均值的离散程度越大稳定性也越小求解即可【详解】解:∵∴∴在本次测试中成绩更稳定的同学是甲故答案为:甲【点睛】本题主要考查方差方差是反映一组数据的波动大小的一个量 解析:甲【分析】根据方差的意义:方差越大,则平均值的离散程度越大,稳定性也越小求解即可.【详解】解:∵22225345S .,S .==乙甲,∴22S S <甲乙.∴在本次测试中,成绩更稳定的同学是甲,故答案为:甲.【点睛】本题主要 考查方差,方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好. 17.乙【分析】根据方差的意义判断即可方差是用来衡量一组数据波动大小的量方差越小表明这组数据分布比较集中各数据偏离平均数越小即波动越小数据越稳定【详解】∵甲乙的方差分别为025021∴成绩比较稳定的是乙故 解析:乙【分析】根据方差的意义判断即可.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【详解】∵甲乙的方差分别为0.25,0.21∴成绩比较稳定的是乙故答案为:乙【点睛】运用了方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.18.33【分析】根据平均数的公式即可求出答案将数据按照由小到大的顺序重新排列中间两个数的平均数即是中位数根据方差的公式计算即可得到这组数据的方差【详解】平均数=将数据重新排列是:12233445∴中位数解析:3, 3,32. 【分析】 根据平均数的公式即可求出答案,将数据按照由小到大的顺序重新排列,中间两个数的平均数即是中位数,根据方差的公式计算即可得到这组数据的方差.【详解】平均数=1(12533424)38⨯+++++++=,将数据重新排列是:1、2、2、3、3、4、4、5,∴中位数是3332+=, 方差=222221(13)2(23)2(33)2(43)(53)8⎡⎤⨯-+⨯-+⨯-+⨯-+-⎣⎦=32, 故答案为:3,3,32. 【点睛】 此题考查计算能力,计算平均数,中位数,方差,正确掌握各计算的公式是解题的关键. 19.(1)80;100;甲;(2)858085;(3)94分;【分析】(1)根据树状图和表格分析即可;(2)根据中位数众数平均数的计算公式计算即可;(3)先判断出好的5人的成绩在进行计算即可;【详解】(解析:(1)80;100;甲;(2)85,80,85;(3)94分;【分析】(1)根据树状图和表格分析即可;(2)根据中位数、众数、平均数的计算公式计算即可;(3)先判断出好的5人的成绩,在进行计算即可;【详解】(1)根据树状图可知甲班2号选手的成绩为80分,乙班3号选手的成绩为100分; ∵甲班方差小于乙班方差,∴甲班成绩更稳定;故答案是:80;100;甲;(2)甲的平均分为()75808585100585÷++++=分,乙的数据从小到大排列:70,75,80,100,100,∴乙的中位数是80;由数据可知甲的众数是85分;∴85a ,80b =,85c =;(3)这5人的分数为:100,100,100,85,85,∴()1003852594⨯+⨯÷=分;故答案是94分;【点睛】本题主要考查了数据分析的考查,结合中位数、众数、平均数的计算是解题的关键.20.乙【分析】方差越小越稳定即可得到答案【详解】∵甲成绩的方差是011乙成绩的方差是009011>009∴乙的成绩较稳定故答案为:乙【点睛】此题考查方差的稳定性:方差越小越稳定掌握方差的应用方法是解题的解析:乙【分析】方差越小越稳定,即可得到答案.【详解】∵甲成绩的方差是0.11,乙成绩的方差是0.09,0.11>0.09,∴乙的成绩较稳定,故答案为:乙.【点睛】此题考查方差的稳定性:方差越小越稳定掌握方差的应用方法是解题的关键.三、解答题21.(1)3;2;91;90;(2)估计评选该荣誉称号的人数为105人;(3)11月份开展的“防溺水知识应知应答”测评活动的效果比较好.【分析】由题意直接写出a,b的值,再根据中位数和众数的定义即可求出c,d的值;(2)先求出测评成绩优秀的学生人数所占分率,再乘300即可得出结论.(3)从中位数出发,结合题意即可得出结论;【详解】解:(1)由题意得:91分的有2个,即a=3;98分的有2个,即b=2;出现次数最多的是90分,故众数是90分,即d=90;一共20个数据,第10个,第11个数据都是91,故中位数是91分,即c=91.故答案为:3;2;91;90;(2)300×1+3+2+120=105(人).答:估计评选该荣誉称号的人数为105人;(3)10月份的中位数是91,11月份的中位数是93,∵93>91,∴ 11月份开展的“防溺水知识应知应答”测评活动的效果比较好.【点睛】本题考查了众数、平均数、中位数、用样本估计总体等知识;熟练掌握众数、平均数、中位数的定义以及用样本估计总体是解题的关键.22.(1)18,19,18.5;(2)八年级成绩好,见解析;(3)九【分析】(1)根据众数和中位数的定义解决问题;(2)利用两年级成绩的平均数、方差都相同,则通过比较中位数的大小比较成绩;(3)根据方差的意义求解即可.【详解】解:(1)七年级20名学生成绩的众数a=18,八年级成绩的众数b=19,中位数c=18+192=18.5;(2)八年级的成绩好,∵七年级与八年级成绩的平均分和方差相等,而八年级的中位数大于七年级的中位数,即八年级高分人数稍多,∴八年级的成绩好;(3)∵七、八、九年级成绩的方差分别为2.7、2.7、2.5,∴九年级成绩的方差最小,∴九年级成绩更稳定,故答案为:九.【点睛】本题考查了方差、中位数、众数及折线统计图,解题的关键是掌握众数、中位数的概念及样本估计总体思想的运用.23.(1)3,3,3.2;(2)中位数,众数;(3)26880次【分析】(1)根据众数、中位数和平均数的定义分别求解可得;(2)由中位数和众数不受极端值影响可得答案;(3)用总人数乘以样本中居民的平均使用次数即可得.【详解】解:(1)这10位居民一周内使用共享单车次数的中位数是3+3=32(次),出现使用次数最多的是3次,故众数为3次,平均数为01+21+34+43+61=3.210⨯⨯⨯⨯⨯(次),故答案为:3、3、3.2;(2)把数据“6”看成了“5”,那么中位数,众数和平均数中不受影响的是中位数和众数,故答案为:中位数和众数.(3)估计该小区居民一周内使用共享单车的总次数为1200×3.2×7=26880次.【点睛】本题考查的是平均数、众数、中位数的定义及其求法,牢记定义是关键.24.(1)八(1)班平均成绩86分;八(2)班平均成绩86分;(2)八(1)班中位数80分,八(2)班中位数85分,八(2)班成绩较好,见解析;(3)八(1)班方差64,八(2)班方差114,八(1)班成绩较为整齐,见解析【分析】(1)根据平均数的概念求解即可;(2)根据中位数的定义即可得到结论;(3)先计算出两个班的方差,再根据方差的意义求解即可.【详解】(1)八(1)班的平均成绩是:1(80809080100)865++++=(分)八(2)班的平均成绩是:1(80100957085)865++++=(分)(2)八(1)班的中位数是80分,八(2)班的中位数85分;两个班的平均成绩相同,八(2)班的中位数比八(1)班的中位数大,八(2)班的优秀学生多, ∴八(2)班的成绩优秀.(3)八(1)班的方差为:222222(1)1[(8086)(8086)(9086)(8086)(10086)]645S =-+-+-+-+-= 八(2)班的方差为:222222(2)1[(8086)(10086)(9586)(7086)(8586)]1145S =-+-+-+-+-= 22(1)(2)S S <∴八(1)班的成绩较为整齐.【点睛】本题考查了平均数,中位数,方差的概念及统计意义,熟练掌握其概念是解题关键.25.(1)8x =乙;20.8S =乙;(2)乙,见解析【分析】(1)利用平均数以及方差的定义得出即可;(2)利用方差的意义,分析得出答案即可.【详解】解:(1)()7978958x =++++÷=乙(个),()()()()()222222178987888980.85S ⎡⎤=-+-+-+-+-=⎣⎦乙; (2)应选乙去,理由:∵x x =甲乙∵2 3.2S =甲,20.8S =乙,∴22S S >甲乙,∴乙的波动小,成绩更稳定∴应选乙去参加射击比赛.【点睛】此题主要考查了平均数以及方差,正确记忆相关定义是解题关键.26.无。

数据分析02选择题(中档题)-2021中考数学真题知识点分类汇编(含答案,45题)

数据分析02选择题(中档题)-2021中考数学真题知识点分类汇编(含答案,45题)

数据分析02选择题(中档题)-2021中考数学真题知识点分类汇编(含答案,45题)一.算术平均数(共3小题)1.(2021•湘潭)某中学积极响应党的号召,大力开展各项有益于德智体美劳全面发展的活动.小明同学在某学期德智体美劳的评价得分如图所示,则小明同学五项评价的平均得分为( )A.7分B.8分C.9分D.10分2.(2021•贵阳)今年是三年禁毒“大扫除”攻坚克难之年.为了让学生认识毒品的危害,某校举办了禁毒知识比赛,小红所在班级学生的平均成绩是80分,小星所在班级学生的平均成绩是85分,在不知道小红和小星成绩的情况下,下列说法比较合理的是( )A.小红的分数比小星的分数低B.小红的分数比小星的分数高C.小红的分数与小星的分数相同D.小红的分数可能比小星的分数高3.(2021•苏州)为增强学生的环保意识,共建绿色文明校园,某学校组织“废纸宝宝旅行记”活动.经统计,七年级5个班级一周回收废纸情况如表:班级一班二班三班四班五班4.5 4.45.1 3.3 5.7废纸重量(kg)则每个班级回收废纸的平均重量为( )A.5kg B.4.8kg C.4.6kg D.4.5kg二.加权平均数(共2小题)4.(2021•抚顺)某校举行学生会成员的竞选活动,对竞选者从民主测评和演讲两个方面进行考核,两项成绩均按百分制计,规定民主测评的成绩占40%,演讲的成绩占60%,小新同学的民主测评和演讲的成绩分别为80分和90分,则他的最终成绩是( )A.83分B.84分C.85分D.86分5.(2021•大连)某校健美操队共有10名队员,统计队员的年龄情况,结果如下:13岁3人,14岁5人,15岁2人.该健美操队队员的平均年龄为( )A.14.2岁B.14.1岁C.13.9岁D.13.7岁三.中位数(共6小题)6.(2021•西藏)数据3,4,6,6,5的中位数是( )A.4.5B.5C.5.5D.67.(2021•潍坊)如图为2021年第一季度中国工程机械出口额TOP10国家的相关数据(同比增速是指相对于2020年第一季度出口额的增长率),下列说法正确的是( )A.对10个国家出口额的中位数是26201万美元B.对印度尼西亚的出口额比去年同期减少C.去年同期对日本的出口额小于对俄罗斯联邦的出口额D.出口额同比增速中,对美国的增速最快8.(2021•本溪)下表是有关企业和世界卫生组织统计的5种新冠疫苗的有效率,则这5种疫苗有效率的中位数是( )疫苗名称克尔来福阿斯利康莫德纳辉瑞卫星V有效率79%76%95%95%92%A.79%B.92%C.95%D.76% 9.(2021•贵港)一组数据8,7,8,6,4,9的中位数和平均数分别是( )A.7和8B.7.5和7C.7和7D.7和7.5 10.(2021•齐齐哈尔)喜迎建党100周年,某校将举办小合唱比赛,七个参赛小组人数如下:5,5,6,7,x,7,8.已知这组数据的平均数是6,则这组数据的中位数是( )A.5B.5.5C.6D.7 11.(2021•宿迁)已知一组数据:4,3,4,5,6,则这组数据的中位数是( )A.3B.3.5C.4D.4.5四.众数(共16小题)12.(2021•攀枝花)疫情期间,某商店连续7天销售口罩的盒数分别为10,12,14,13,12,12,11.关于这组数据,以下结论错误的是( )A.众数是12B.平均数是12C.中位数是12D.方差是12 713.(2021•阿坝州)新冠疫情防控形势下,学校要求学生每日测量体温.某同学连续一周的体温情况如表所示,则该同学这一周的体温数据的众数和中位数分别是( )日期星期一星期二星期三星期四星期五星期六星期天体温(℃)36.336.736.236.336.236.436.3A.36.3和36.2B.36.2和36.3C.36.3和36.3D.36.2和36.114.(2021•内江)某中学七(1)班的6位同学在课间体育活动时进行一分钟跳绳比赛,成绩(单位:个)如下:122,146,134,146,152,121.这组数据的众数和中位数分别是( )A.152,134B.146,146C.146,140D.152,140 15.(2021•百色)一组数据4,6,x,7,10的众数是7,则这组数据的平均数是( )A.5B.6.4C.6.8D.7 16.(2021•抚顺)某校为加强学生出行的安全意识,学校每月都要对学生进行安全知识测评,随机选取15名学生在五月份的测评成绩如表:成绩(分)909195969799人数(人)232431则这组数据的中位数和众数分别为( )A.95,95B.95,96C.96,96D.96,97 17.(2021•丹东)若一组数据1,3,4,6,m的平均数为4,则这组数据的中位数和众数分别是( )A.4,6B.4,4C.3,6D.3,4 18.(2021•黑龙江)从小到大的一组数据﹣1,1,2,x,6,8的中位数为2,则这组数据的众数和平均数分别是( )A.2,4B.2,3C.1,4D.1,3 19.(2021•黄石)为庆祝中国共产党建党100周年,某校开展主题为《党在我心中》的绘画、书法、摄影等艺术作品征集活动,从八年级5个班收集到的作品数量(单位:件)分别为50、45、42、46、50,则这组数据的众数是( )A.46B.45C.50D.42 20.(2021•威海)某校为了解学生的睡眠情况,随机调查部分学生一周平均每天的睡眠时间,统计结果如表:睡眠时间/小时78910人数69114这些学生睡眠时间的众数、中位数是( )A.众数是11,中位数是8.5B.众数是9,中位数是8.5C.众数是9,中位数是9D.众数是10,中位数是9 21.(2021•绥化)近些年来,移动支付已成为人们的主要支付方式之一.某企业为了解员工某月A,B两种移动支付方式的使用情况,从企业2000名员工中随机抽取了200人,发现样本中A,B两种支付方式都不使用的有10人,样本中仅使用A种支付方式和仅使用B 种支付方式的员工支付金额a(元)分布情况如表:支付金额a(元)0<a≤10001000<a≤2000a>2000仅使用A36人18人6人仅使用B20人28人2人下面有四个推断:①根据样本数据估计,企业2000名员工中,同时使用A,B两种支付方式的为800人;②本次调查抽取的样本容量为200人;③样本中仅使用A种支付方式的员工,该月支付金额的中位数一定不超过1000元;④样本中仅使用B种支付方式的员工,该月支付金额的众数一定为1500元.其中正确的是( )A.①③B.③④C.①②D.②④22.(2021•聊城)为了保护环境加强环保教育,某中学组织学生参加义务收集废旧电池的活动,下面是随机抽取40名学生对收集废旧电池的数量进行的统计:45678废旧电池数/节人数/人9111154请根据学生收集到的废旧电池数,判断下列说法正确的是( )A.样本为40名学生B.众数是11节C.中位数是6节D.平均数是5.6节23.(2021•十堰)某校男子足球队的年龄分布如下表:年龄131415161718人数268321则这些队员年龄的众数和中位数分别是( )A.8,15B.8,14C.15,14D.15,15 24.(2021•长沙)“杂交水稻之父”袁隆平培育的超级杂交稻在全世界推广种植.某种植户为了考察所种植的杂交水稻苗的长势,从稻田中随机抽取9株水稻苗,测得苗高(单位:cm)分别是:22,23,24,23,24,25,26,23,25.则这组数据的众数和中位数分别是( )A.24,25B.23,23C.23,24D.24,24 25.(2021•凉山州)某校七年级1班50名同学在“森林草原防灭火”知识竞赛中的成绩如表所示:成绩60708090100人数3913169则这个班学生成绩的众数、中位数分别是( )A.90,80B.16,85C.16,24.5D.90,85 26.(2021•嘉兴)5月1日至7日,我市每日最高气温如图所示,则下列说法错误的是( )A.中位数是33℃B.众数是33℃C.平均数是1977℃D.4日至5日最高气温下降幅度较大27.(2021•自贡)学校为了解“阳光体育”活动开展情况,随机调查了50名学生一周参加体育锻炼时间,数据如下表所示:人数(人)9161411时间(小时)78910这些学生一周参加体育锻炼时间的众数、中位数分别是( )A.16,15B.11,15C.8,8.5D.8,9五.方差(共11小题)28.(2021•无锡)已知一组数据:23,22,24,23,23,这组数据的方差是( )A.3B.2C.35D.2529.(2021•绵阳)某同学连续7天测得体温(单位:℃)分别是36.5、36.3、36.7、36.5、36.7、37.1、37.1,关于这一组数据,下列说法正确的是( )A.众数是36.3B.中位数是36.6C.方差是0.08D.方差是0.0930.(2021•日照)袁隆平院士被誉为“世界杂交水稻之父”,他研究的水稻,不仅高产,而且抗倒伏.在某次实验中,他的团队对甲、乙两种水稻品种进行产量稳定实验,各选取了8块条件相同的试验田,同时播种并核定亩产,结果甲、乙两种水稻的平均产量均为1200千克/亩,方差为S甲2=186.9,S乙2=325.3.为保证产量稳定,适合推广的品种为( )A.甲B.乙C.甲、乙均可D.无法确定31.(2021•盘锦)甲、乙、丙、丁四人10次随堂测验的成绩如图所示,从图中可以看出这10次测验平均成绩较高且较稳定的是( )A.甲B.乙C.丙D.丁32.(2021•河池)甲、乙、丙、丁4名同学参加跳远测试各10次,他们的平均成绩及其方差如表:测试者平均成绩(单位:m)方差甲 6.20.32乙 6.00.58丙 5.80.12丁 6.20.25若从其中选出1名成绩好且发挥稳定的同学参加学校运动会,则应选( )A.甲B.乙C.丙D.丁33.(2021•德阳)对于一组数据1,1,3,1,4,下列结论不正确的是( )A.平均数是2B.众数是1C.中位数是3D.方差是1.6 34.(2021•柳州)某校九年级进行了3次数学模拟考试,甲、乙、丙三名同学的平均分以及方差S2如表所示,那么这三名同学数学成绩最稳定的是( )甲乙丙x 919191S262454 A.甲B.乙C.丙D.无法确定35.(2021•菏泽)在2021年初中毕业生体育测试中,某校随机抽取了10名男生的引体向上成绩,将这组数据整理后制成如下统计表:成绩(次)1211109人数(名)1342关于这组数据的结论不正确的是( )A.中位数是10.5B.平均数是10.3C.众数是10D.方差是0.8136.(2021•衡阳)为了向建党一百周年献礼,我市中小学生开展了红色经典故事演讲比赛.某参赛小组6名同学的成绩(单位:分)分别为:85,82,86,82,83,92.关于这组数据,下列说法错误的是( )A.众数是82B.中位数是84C.方差是84D.平均数是85 37.(2021•南充)据统计,某班7个学习小组上周参加“青年大学习”的人数分别为:5,5,6,6,6,7,7.下列说法错误的是( )A.该组数据的中位数是6B.该组数据的众数是6C.该组数据的平均数是6D.该组数据的方差是638.(2021•台州)超市货架上有一批大小不一的鸡蛋,某顾客从中选购了部分大小均匀的鸡蛋,设货架上原有鸡蛋的质量(单位:g)平均数和方差分别为x,s2,该顾客选购的鸡蛋的质量平均数和方差分别为x1,s12,则下列结论一定成立的是( )A.x<x1B.x>x1C.s2>s12D.s2<s12六.统计量的选择(共7小题)39.(2021•德州)八年级二班在一次体重测量中,小明体重54.5kg,低于全班半数学生的体重,分析得到结论所用的统计量是( )A.中位数B.众数C.平均数D.方差40.(2021•阜新)在庆祝中国共产党成立100周年的“红色记忆”校园歌咏比赛中,15个参赛班级按照成绩(成绩各不相同)取前7名进入决赛,小红知道了自己班级的比赛成绩,如果要判断自己的班级能否进入决赛,还需要知道这15个参赛班级成绩的( )A.平均数B.中位数C.众数D.方差41.(2021•湘西州)据悉,在2021年湘西州“三独”比赛中,某校11名参赛同学的成绩各不相同,按照成绩,取前5名进入决赛.如果小红知道了自己的比赛成绩,要判断自己能否进入决赛,小红还需知道这11名同学成绩的( )A.平均数B.中位数C.众数D.方差42.(2021•黑龙江)一组数据:2,4,4,4,6,若去掉一个数据4,则下列统计量中发生变化的是( )A.众数B.中位数C.平均数D.方差43.(2021•通辽)为迎接中国共产党建党一百周年,某班50名同学进行了党史知识竞赛,测试成绩统计如下表,其中有两个数据被遮盖.成绩/分919293949596979899100人数■■1235681012下列关于成绩的统计量中,与被遮盖的数据无关的是( )A.平均数,方差B.中位数,方差C.中位数,众数D.平均数,众数44.(2021•广元)一组数据:1,2,2,3,若添加一个数据3,则不发生变化的统计量是( )A.平均数B.中位数C.众数D.方差45.(2021•资阳)15名学生演讲赛的成绩各不相同,若某选手想知道自己能否进入前8名,则他不仅要知道自己的成绩,还应知道这15名学生成绩的( )A.平均数B.众数C.方差D.中位数参考答案与试题解析一.算术平均数(共3小题)1.(2021•湘潭)某中学积极响应党的号召,大力开展各项有益于德智体美劳全面发展的活动.小明同学在某学期德智体美劳的评价得分如图所示,则小明同学五项评价的平均得分为( )A.7分B.8分C.9分D.10分【解析】解:小明同学五项评价的平均得分为10+9+9+8+95=9(分),故选:C.2.(2021•贵阳)今年是三年禁毒“大扫除”攻坚克难之年.为了让学生认识毒品的危害,某校举办了禁毒知识比赛,小红所在班级学生的平均成绩是80分,小星所在班级学生的平均成绩是85分,在不知道小红和小星成绩的情况下,下列说法比较合理的是( )A.小红的分数比小星的分数低B.小红的分数比小星的分数高C.小红的分数与小星的分数相同D.小红的分数可能比小星的分数高【解析】解:根据平均数的定义可知,已知小红所在班级学生的平均成绩是80分,小星所在班级学生的平均成绩是85分,在不知道小红和小星成绩的情况下,小红的分数可能高于80分,或等于80分,也可能低于80分,小星的分数可能高于85分,或等于85分,也可能低于85分,所以上述说法比较合理的是小红的分数可能比小星的分数高.故选:D.3.(2021•苏州)为增强学生的环保意识,共建绿色文明校园,某学校组织“废纸宝宝旅行记”活动.经统计,七年级5个班级一周回收废纸情况如表:班级一班二班三班四班五班废纸重量(kg)4.5 4.45.1 3.3 5.7则每个班级回收废纸的平均重量为( )A.5kg B.4.8kg C.4.6kg D.4.5kg【解析】解:每个班级回收废纸的平均重量为15×(4.5+4.4+5.1+3.3+5.7)=4.6(kg),故选:C.二.加权平均数(共2小题)4.(2021•抚顺)某校举行学生会成员的竞选活动,对竞选者从民主测评和演讲两个方面进行考核,两项成绩均按百分制计,规定民主测评的成绩占40%,演讲的成绩占60%,小新同学的民主测评和演讲的成绩分别为80分和90分,则他的最终成绩是( )A.83分B.84分C.85分D.86分【解析】解:他的最终成绩为80×40%+90×60%=86(分),故选:D.5.(2021•大连)某校健美操队共有10名队员,统计队员的年龄情况,结果如下:13岁3人,14岁5人,15岁2人.该健美操队队员的平均年龄为( )A.14.2岁B.14.1岁C.13.9岁D.13.7岁【解析】解:∵13岁3人,14岁5人,15岁2人,∴该健美操队队员的平均年龄为:13×3+14×5+15×210=13.9(岁).故选:C.三.中位数(共6小题)6.(2021•西藏)数据3,4,6,6,5的中位数是( )A.4.5B.5C.5.5D.6【解析】解:将这组数据从小到大排列为3,4,5,6,6,处在中间位置的一个数是5,因此中位数是5,故选:B.7.(2021•潍坊)如图为2021年第一季度中国工程机械出口额TOP10国家的相关数据(同比增速是指相对于2020年第一季度出口额的增长率),下列说法正确的是( )A.对10个国家出口额的中位数是26201万美元B.对印度尼西亚的出口额比去年同期减少C.去年同期对日本的出口额小于对俄罗斯联邦的出口额D.出口额同比增速中,对美国的增速最快【解析】解:A、将这组数据按从小到大的顺序排列为19677,19791,21126,24268,25855,26547,29285,35581,39513,67366,位于中间的两个数分别是25855,26547,所以中位数是25855+265472=26201(万美元),故本选项说法正确,符合题意;B、根据折线图可知,对印度尼西亚的出口额比去年同期增长27.3%,故本选项说法错误,不符合题意;C、去年同期对日本的出口额为:355811+31.4%≈27078.4,对俄罗斯联邦的出口额为:395131+66.0%≈23803.0,故本选项说法错误,不符合题意;D、根据折线图可知,出口额同比增速中,对越南的增速最快,故本选项说法错误,不符合题意;故选:A.8.(2021•本溪)下表是有关企业和世界卫生组织统计的5种新冠疫苗的有效率,则这5种疫苗有效率的中位数是( )疫苗名称克尔来福阿斯利康莫德纳辉瑞卫星V有效率79%76%95%95%92%A.79%B.92%C.95%D.76%【解析】解:从小到大排列此数据为:76%、79%、92%、95%、95%,92%处在第3位为中位数.故选:B.9.(2021•贵港)一组数据8,7,8,6,4,9的中位数和平均数分别是( )A.7和8B.7.5和7C.7和7D.7和7.5【解析】解:把这些数从小到大排列为4,6,7,8,8,9,则中位数是7+82=7.5;平均数是:(8+7+8+6+4+9)÷6=7.故选:B.10.(2021•齐齐哈尔)喜迎建党100周年,某校将举办小合唱比赛,七个参赛小组人数如下:5,5,6,7,x,7,8.已知这组数据的平均数是6,则这组数据的中位数是( )A.5B.5.5C.6D.7【解析】解:∵5,5,6,7,x,7,8的平均数是6,∴(5+5+6+7+x+7+8)÷7=6,解得:x=4,将这组数据从小到大排列为4、5、5、6、7、7、8,最中间的数是6,则这组数据的中位数是6,故选:C.11.(2021•宿迁)已知一组数据:4,3,4,5,6,则这组数据的中位数是( )A.3B.3.5C.4D.4.5【解析】解:将这组数据重新排列为3、4、4、5、6,所以这组数据的中位数为4,四.众数(共16小题)12.(2021•攀枝花)疫情期间,某商店连续7天销售口罩的盒数分别为10,12,14,13,12,12,11.关于这组数据,以下结论错误的是( )A.众数是12B.平均数是12C.中位数是12D.方差是12 7【解析】解:A、12出现了3次,出现的次数最多,则这组数据的众数是12,故本选项正确,不符合题意;B、这组数据的平均数:10+12+14+13+12+12+117=12,故本选项正确,不符合题意;C、把这些数从小到大排列为:10,11,12,12,12,13,14,中位数是12,故本选项正确,不符合题意;D、方差是:17×[(10﹣12)2+(11﹣12)2+3×(12﹣12)2+(13﹣12)2+(14﹣12)2]=107,故本选项错误,符合题意;故选:D.13.(2021•阿坝州)新冠疫情防控形势下,学校要求学生每日测量体温.某同学连续一周的体温情况如表所示,则该同学这一周的体温数据的众数和中位数分别是( )日期星期一星期二星期三星期四星期五星期六星期天体温(℃)36.336.736.236.336.236.436.3A.36.3和36.2B.36.2和36.3C.36.3和36.3D.36.2和36.1【解析】解:把已知数据按照由小到大的顺序重新排序后为36.2,36.2,36.3,36.3,36.3,36.4,36.7,该名同学这一周体温出现次数最多的是36.3℃,共出现3次,因此众数是36.3,将这七天的体温从小到大排列处在中间位置的一个数是36.3℃,因此中位数是36.3,故选:C.14.(2021•内江)某中学七(1)班的6位同学在课间体育活动时进行一分钟跳绳比赛,成绩(单位:个)如下:122,146,134,146,152,121.这组数据的众数和中位数分别是( )A.152,134B.146,146C.146,140D.152,140【解析】解:∵146出现了2次,出现的次数最多,∴这组数据的众数是146个;把这些数从小到大排列为:121,122,134,146,146,152,则中位数是134+1462=140(个).故选:C.15.(2021•百色)一组数据4,6,x,7,10的众数是7,则这组数据的平均数是( )A.5B.6.4C.6.8D.7【解析】解:这组数据4,6,x,7,10的众数是7,因此x=7,这组数据的平均数为4+6+7+10+75= 6.8,16.(2021•抚顺)某校为加强学生出行的安全意识,学校每月都要对学生进行安全知识测评,随机选取15名学生在五月份的测评成绩如表:成绩(分)909195969799人数(人)232431则这组数据的中位数和众数分别为( )A.95,95B.95,96C.96,96D.96,97【解析】解:将这15名学生成绩从小到大排列,处在中间位置的一个数,即第8个数是96,因此中位数是96,这15名学生成绩出现次数最多的是96,共出现4次,因此众数是96,故选:C.17.(2021•丹东)若一组数据1,3,4,6,m的平均数为4,则这组数据的中位数和众数分别是( )A.4,6B.4,4C.3,6D.3,4【解析】解:∵数据1,3,4,6,m的平均数为4,∴1+3+4+6+m=4×5,解得m=6则这组数据从小到大排列为1,3,4,6,6∴这组数据的中位数为4,众数为6,故选:A.18.(2021•黑龙江)从小到大的一组数据﹣1,1,2,x,6,8的中位数为2,则这组数据的众数和平均数分别是( )A.2,4B.2,3C.1,4D.1,3【解析】解:∵一组数据﹣1,1,2,x,6,8的中位数为2,∴x=2×2﹣2=2,2出现的次数最多,故这组数据的众数是2,这组数据的平均数是(﹣1+1+2+2+6+8)÷6=3.故选:B.19.(2021•黄石)为庆祝中国共产党建党100周年,某校开展主题为《党在我心中》的绘画、书法、摄影等艺术作品征集活动,从八年级5个班收集到的作品数量(单位:件)分别为50、45、42、46、50,则这组数据的众数是( )A.46B.45C.50D.42【解析】解:∵50出现了2次,出现的次数最多,∴这组数据的众数是50.故选:C.20.(2021•威海)某校为了解学生的睡眠情况,随机调查部分学生一周平均每天的睡眠时间,统计结果如表:78910睡眠时间/小时人数69114这些学生睡眠时间的众数、中位数是( )A.众数是11,中位数是8.5B.众数是9,中位数是8.5C.众数是9,中位数是9D.众数是10,中位数是9【解析】解:抽查学生的人数为:6+9+11+4=30(人),这30名学生的睡眠时间出现次数最多的是9小时,共出现11次,因此众数是9,将这30名学生的睡眠时间从小到大排列,处在中间位置的两个数的平均数为8+92=8.5,因此中位数是8.5,故选:B.21.(2021•绥化)近些年来,移动支付已成为人们的主要支付方式之一.某企业为了解员工某月A,B两种移动支付方式的使用情况,从企业2000名员工中随机抽取了200人,发现样本中A,B两种支付方式都不使用的有10人,样本中仅使用A种支付方式和仅使用B 种支付方式的员工支付金额a(元)分布情况如表:支付金额a(元)0<a≤10001000<a≤2000a>2000仅使用A36人18人6人仅使用B20人28人2人下面有四个推断:①根据样本数据估计,企业2000名员工中,同时使用A,B两种支付方式的为800人;②本次调查抽取的样本容量为200人;③样本中仅使用A种支付方式的员工,该月支付金额的中位数一定不超过1000元;④样本中仅使用B种支付方式的员工,该月支付金额的众数一定为1500元.其中正确的是( )A.①③B.③④C.①②D.②④【解析】解:①根据样本数据估计,企业2000名员工中,同时使用A,B两种支付方式的大约有2000×200-10-60-50200=800(人),此推断合理,符合题意;②本次调查抽取的样本容量为200,故原说法错误,不符合题意;③样本中仅使用A种支付方式的员工,第30、31个数据均落在0<a≤1000,所以上个月的支付金额的中位数一定不超过1000元,此推断合理,符合题意;④样本中仅使用B种支付方式的员工,上个月的支付金额的众数无法估计,此推断不正确,不符合题意.故推断正确的有①③,故选:A.22.(2021•聊城)为了保护环境加强环保教育,某中学组织学生参加义务收集废旧电池的活动,下面是随机抽取40名学生对收集废旧电池的数量进行的统计:废旧电池数/节45678人数/人9111154请根据学生收集到的废旧电池数,判断下列说法正确的是( )A.样本为40名学生B.众数是11节C.中位数是6节D.平均数是5.6节【解析】解:A.样本为40名学生收集废旧电池的数量,此选项错误;B.众数是5节和6节,此选项错误;C.共40个数据,从小到大排列后位于第20个和第21个的数据分别是5和6,∴中位数为5+62= 5.5(节),此选项错误;D.平均数为140×(4×9+5×11+6×11+7×5+8×4)=5.6(节),故选:D.23.(2021•十堰)某校男子足球队的年龄分布如下表:年龄131415161718人数268321则这些队员年龄的众数和中位数分别是( )A.8,15B.8,14C.15,14D.15,15【解析】解:根据图表数据,同一年龄人数最多的是15岁,共8人,所以众数是15;根据图表数据可知共有22名队员,按照年龄从小到大排列,第11名队员与第12名队员的年龄都是15岁,所以,中位数是(15+15)÷2=15.故选:D.24.(2021•长沙)“杂交水稻之父”袁隆平培育的超级杂交稻在全世界推广种植.某种植户为了考察所种植的杂交水稻苗的长势,从稻田中随机抽取9株水稻苗,测得苗高(单位:cm)分别是:22,23,24,23,24,25,26,23,25.则这组数据的众数和中位数分别是( )A.24,25B.23,23C.23,24D.24,24【解析】解:将这组数据从小到大重新排列为22,23,23,23,24,24,25,25,26,∴这组数据的众数为23cm,中位数为24cm,故选:C.25.(2021•凉山州)某校七年级1班50名同学在“森林草原防灭火”知识竞赛中的成绩如表所示:成绩60708090100人数3913169则这个班学生成绩的众数、中位数分别是( )A.90,80B.16,85C.16,24.5D.90,85【解析】解:90出现的次数最多,众数为90.这组数据一共有50个,已经按大小顺序排列,第25和第26个数分别是80、90,所以中位数为(80+90)÷2=85.故选:D.26.(2021•嘉兴)5月1日至7日,我市每日最高气温如图所示,则下列说法错误的是( )A.中位数是33℃B.众数是33℃C.平均数是1977℃D.4日至5日最高气温下降幅度较大【解析】解:A、7个数排序后为23,25,26,27,30,33,33,位于中间位置的数为27,所以中位数为27℃,故A错误,符合题意;B、7个数据中出现次数最多的为33,所以众数为33℃,正确,不符合题意;C、平均数为17(23+25+26+27+30+33+33)=1977,正确,不符合题意;D、观察统计图知:4日至5日最高气温下降幅度较大,正确,不符合题意,故选:A.27.(2021•自贡)学校为了解“阳光体育”活动开展情况,随机调查了50名学生一周参加体育锻炼时间,数据如下表所示:人数(人)9161411时间(小时)78910这些学生一周参加体育锻炼时间的众数、中位数分别是( )A.16,15B.11,15C.8,8.5D.8,9【解析】解:由于一共有50个数据,其中8小时的人数最多,有16人,所以这组数据的众数为8小时,这50个数据的第25、26个数据分别为8、9,所以这组数据的中位数为8+92=8.5(小时),故选:C.五.方差(共11小题)28.(2021•无锡)已知一组数据:23,22,24,23,23,这组数据的方差是( )A.3B.2C.35D.25【解析】解:∵这组数据的平均数为15×(23+22+24+23+23+23)=23,∴这组数据的方差为15×[(22﹣23)2+3×(23﹣23)2+(22﹣23)2]=25,故选:D.29.(2021•绵阳)某同学连续7天测得体温(单位:℃)分别是36.5、36.3、36.7、36.5、36.7、37.1、37.1,关于这一组数据,下列说法正确的是( )A.众数是36.3B.中位数是36.6C.方差是0.08D.方差是0.09【解析】解:7个数中36.5、36.7和37.1都出现了二次,次数最多,即众数为36.5、36.7和37.1,故A选项不正确,不符合题意;将7个数按从小到大的顺序排列为:36.3,36.5,36.5,36.7,36.7,37.1,37.1,则中位数为36.7,故B选项错误,不符合题意;x=17×(36.5+36.3+36.5+36.7+36.7+37.1+37.1)=36.7,S2=17[(36.3﹣36.7)2+2×(36.5﹣36.7)2+2×(36.7﹣36.7)2+2×(37.1﹣36.7)2]=0.08,故C选项正确,符合题意,故D选项错误,不符合题意;故选:C.30.(2021•日照)袁隆平院士被誉为“世界杂交水稻之父”,他研究的水稻,不仅高产,而且抗倒伏.在某次实验中,他的团队对甲、乙两种水稻品种进行产量稳定实验,各选取了8块条件相同的试验田,同时播种并核定亩产,结果甲、乙两种水稻的平均产量均为1200千克/亩,方差为S甲2=186.9,S乙2=325.3.为保证产量稳定,适合推广的品种为( )A.甲B.乙C.甲、乙均可D.无法确定【解析】解:∵S甲2=186.9,S乙2=325.3,∴S甲2<S乙2,∴为保证产量稳定,适合推广的品种为甲,故选:A.31.(2021•盘锦)甲、乙、丙、丁四人10次随堂测验的成绩如图所示,从图中可以看出这10次测验平均成绩较高且较稳定的是( )A.甲B.乙C.丙D.丁【解析】解:由折线统计图得:丙、丁的成绩在92附近波动,甲、乙的成绩在91附近波动,∴丙、丁的平均成绩高于甲、乙,由折线统计图得:丙成绩的波动幅度小于丁成绩的波动幅度,∴这四人中丙的平均成绩好又发挥稳定,故选:C.32.(2021•河池)甲、乙、丙、丁4名同学参加跳远测试各10次,他们的平均成绩及其方差如表:测试者平均成绩(单位:m)方差甲 6.20.32乙 6.00.58丙 5.80.12丁 6.20.25若从其中选出1名成绩好且发挥稳定的同学参加学校运动会,则应选( )A.甲B.乙C.丙D.丁【解析】解:∵甲和丁的平均数比乙和丙的平均数大,∴甲和丁的成绩较好,∵S丁2<S甲2,∴丁的成绩比甲要稳定,∴这四位同学中,成绩较好,且发挥稳定的是丁.故选:D.33.(2021•德阳)对于一组数据1,1,3,1,4,下列结论不正确的是( )A.平均数是2B.众数是1C.中位数是3D.方差是1.6【解析】解:将这组数据重新排列为1,1,1,3,4,所以这组数据的平均数为15×(1+1+1+3+4)=2,中位数为1,众数为1,方差为15×[3×(1﹣2)2+(3﹣2)2+(4﹣2)2]=1.6,故选:C.34.(2021•柳州)某校九年级进行了3次数学模拟考试,甲、乙、丙三名同学的平均分以及方差S2如表所示,那么这三名同学数学成绩最稳定的是( )甲乙丙x 919191S262454 A.甲B.乙C.丙D.无法确定【解析】解:∵S甲2=6,S乙2=24,S丙2=54,且平均数相等,∴S甲2<S乙2<S丙2,∴这三名同学数学成绩最稳定的是甲.故选:A.。

(压轴题)初中数学八年级数学上册第六单元《数据的分析》检测题(答案解析)(2)

(压轴题)初中数学八年级数学上册第六单元《数据的分析》检测题(答案解析)(2)

一、选择题1.小明在计算一组数据的方差时,列出的公式如下222221(7)(8)(8)(8)s x x x x n⎡=-+-+-+-+⎣2(9)x ⎤-⎦,根据公式信息,下列说法中,错误的是( ) A .数据个数是5B .数据平均数是8C .数据众数是8D .数据方差是152.两年前,某校七(1)班的学生平均年龄为13岁,方差为3,若学生没有变动,则今年升为九(1)班的学生年龄中( ) A .平均年龄为13岁,方差改变 B .平均年龄为15岁,方差不变 C .平均年龄为15岁,方差改变 D .平均年龄不变,方差不变3.甲、乙、丙、丁四人进行射击测试,每人10次射击成绩的平均数都是9环,方差分别是S 甲2=0.61,S 乙2=0.52,S 丙2=0.53,S 丁2=0.42,则射击成绩比较稳定的是( ) A .甲B .乙C .丙D .丁4.某果园随机从甲、乙、丙、丁四个品种的苹果树中各采摘了15棵,产量的平均数x (单位:千克)及方差2s 如下表所示:)A .甲B .乙C .丙D .丁5.为了调查某校同学的体质健康状况,随机抽查了若干名同学的每天锻炼时间如表:则关于这些同学的每天锻炼时间,下列说法错误的是( ) A .众数是60 B .平均数是21C .抽查了10个同学D .中位数是506.某地某月中午12时的气温(单位:℃)如下:根据上表计算得该地本月中午12时的平均气温是( ) A .18℃B .20℃C .22℃D .24℃7.学习勾股定理时,数学兴趣小组设计并组织了“勾股定理的证明”的比赛,全班同学的比赛得分统计如表:则得分的中位数和众数分别为( ) A .75,70 B .75,80 C .80,70 D .80,80 8.已知一组数据:92,94,98,91,95的中位数为a ,方差为b ,则a+b=( ) A .98B .99C .100D .1029.射击训练中,甲、乙、丙、丁四人每人射击10次,平均环数均为8.7环,方差分别为2=0.51S 甲,2=0.41S 乙,2=0.62S 丙,2=0.45S 丁,则四人中成绩最稳定的是( ) A .甲 B .乙 C .丙 D .丁10.在实验一中举行新冠肺炎疫情防控知识竞赛中,八年级(1)班全体学生成绩统计如下表:根据上表中信息判断,下列结论中错误的是( ) A .该班一共有40名同学B .该班学生这次竞赛成绩的众数是55分C .该班学生这次竞赛成绩的中位数是55分D .该班学生这次竞赛成绩的平均数是55分11.某校5个环保小队参加植树活动,平均每组植树10棵,已知第一、二、三、五组分别植树9棵、12棵、9棵、8棵,则第四小组植树( ) A .7棵B .9棵C .10棵D .12棵12.已知123,,x x x 的方差是1,数据12323,23,23x x x +++的方差是( ) A .1B .2C .4D .8二、填空题13.一组数据:25,29,20,x ,14,它的中位数是24,则这组数据的平均数为_____. 14.为了响应学校“书香校园”建设,八(1)班的同学们积极捐书,其中第一组的同学捐书册数分别是:5,7,x ,3,4,6.已知他们平均每人捐5本,那么这组数据的方差是_____.15.八年级两个班一次数学考试的成绩如下:八(1)班46人,平均成绩为90分,八(2)班54人,平均成绩为80分,则这两个班的平均成绩为_____________分.16.一次考试中6名学生的成绩(单位:分)如下:24,72,68,45,86,92.这组数据的中位数是________分.17.在实验操作中,某兴趣小组的得分情况是:有5人得10分,有8人得9分,有4人得8分,有3人得7分,则这个兴趣小组实验操作得分的平均分是________.18.某校九年级学生参加体育测试,其中10人的引体向上成绩如下表:完成引体向上的个数78910人数123419.若一组数据-1,0,2,4,x的极差为7,则x的值是______.20.某校拟招聘一名数学教师,现有甲、乙、丙三名教师人围,三名教师的笔试、面试成绩如下表所示:教师甲乙丙笔试成绩80分82分78分面试成绩76分74分78分综合成绩按照笔试成绩占60%,面试成绩占40%进行计算,学校录取综合成绩得分最高者,则被录取的教师是__________.三、解答题21.某区举办中学生科普知识竞赛,各学校分别派出一支代表队参赛.知识竞赛满分为100分,规定85分及以上为“合格”,95分及以上为“优秀”现将A,B两个代表队的竞赛成绩分布图及统计表展示如下:组别平均分中位数方差合格率优秀率A队88906170%30%B队a b7175%25%(2)小明的成绩虽然在本队排名属中游,但是竞赛成绩低于本队的平均分,那么小明应属于哪个队?(3)从平均分、合格率、优秀率、队内成绩的整齐性等方面进行综合评价,你认为集体奖应该颁给哪一队?22.为了宣传垃圾分类从我做起活动,我校举行了垃圾分类相关知识竞赛.为了了解初一、初二两个年级学生的掌握情况.现从两个年级各随机抽取20名学生的竞赛成绩(百分制)进行分析,将成绩分为以下4组,A组:90≤x≤100,B组:80≤x≤89,C组:70≤x≤79,D组:60≤x≤69.现将数据整数分析如下:收集数据:初一年级:79,85,72,80,75,76,87, 70,75,93,75,79,81,71,75,80,86,61,83,77.初二年级20名学生中80≤x≤89的分数分别是:84,87,82,81,83,83,80,8l,81,82,80.整理数据:分析数据:平均数众数中位数初一年级78c78初二年级7881d(1)由上表填空:a=_____,b=_____,c=_____,d=_____.(2)根据以上数据,你认为哪个年级的学生对经典文化知识掌握的总体水平较好,请说明理由(一条理由即可).(3)该校初一有1500名学生和初二有2000名学生参加了此活动,请估计两个年级成绩达到90分及以上的学生共有多少人?23.国庆长假期间,兴趣小组随机采访了10位到高邮的游客使用“街兔”共享电动车的次数,得到了这10位游客1天内使用“街兔”共享电动车的次数,统计如下:使用次数02346人数11431共享电动车的次数的中位数是次,众数是次,平均数是次;(2)若小明同学把统计表中的数据“6”错看成了“5”,则用“街兔”共享电动车的次数的中位数、众数、和平均数这三个统计量中不受影响的是;(填“中位数”、“众数”或“平均数”)(3)若国庆长假期间,每天约有1200位游客到高邮,试估计这些游客7天国庆长假期间使用“街兔”共享电动车的总次数.24.为了解学生参加体育活动的情况,某地对九年级学生每天参加体育活动的时间进行抽样调查,并将调查结果绘制成如图两幅不完整的统计图,根据图示,请回答下列问题:(1)求被抽样调查的学生总数和每天体育活动时间为1.5小时的学生数; (2)每天体育活动时间的中位数;(3)该校共有3500名学生,请估计该地九年级每天体育活动时间超过1小时的学生有多少人?25.某学校八年级举行“垃圾分类,人人有责”的知识测试活动,现从中随机抽取20名学生的测试成绩(满分10分,6分及6分以上为合格)进行整理,得到条形统计图如下:(1)求抽取的学生测试成绩的平均数、众数和中位数;(2)该校八年级共有600名学生参加此次测试活动,试估计八年级参加此次测试的学生成绩合格的人数.26.某学校开展了“远离新冠珍爱生命”的防“新冠”安全知识竞赛.现从该校七、八年级中各随机抽取10名学生的竞赛成绩(百分制)进行整理、描述和分析(成绩得分用x 表示,共分成四组:.8085,A x < .8590,.9095,.95100B x C x D x <<).下面给出了部分信息:七年级10名学生的竞赛成绩是:80,86,99,96,90,99,100,82,89,99;抽取的八年级10名学生的竞赛成绩没有低于80分的,且在C 组中的数据是:94,94,90. 根据以上信息,解答下列问题: (1)直接写出图表中,,a b c 的值;(2)计算d 的值,并判断七、八年级中哪个年级学生的竞赛成绩更稳定?请说明理由;(3)该学校七、八年级共2160人参加了此次竞赛活动,估计参加此次竞赛活动获得成绩优秀(95x ≥)的学生人数是多少?【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】根据题目中的方差公式,众数的定义以及平均数的求法即可进行判断; 【详解】根据方差的公式可知样本容量为5,故A 正确;样本的平均数为:78889=85++++ ,故B 正确;样本的众数为8,故C 正确;样本的方差为:()()()()()22222212788888898558=s ⎡⎤=-+-+-+-+-⎣⎦,故D 错误; 故选:D . 【点睛】本题考查了方差、样本容量、平均数、众数,解答本题的关键是明确题意,会求一组数据的方差、样本容量、平均数以及众数.2.B解析:B 【分析】由全体学生的人数没有变化,而每位同学的年龄都增加了2岁,且学生的年龄波动幅度没有变化可得答案. 【详解】设两年前:平均年龄1n(x 1+x 2+x 3+⋯+x n )=13,方差:1n[(x1−13)2+(x2−13)2+(x3−13)2+⋯+(x n−13)2]=3,所以今年学生的平均年龄是:1 n (x1+2+x2+2+x3+2+⋯+x n+2)=1n(x1+x2+x3+⋯+x n+2n) =1n(x1+x2+x3+⋯+x n)+2=13+2=15 .今年学生年龄的方差是:1n[(x1+2−15)2+(x2+2-15)2+(x3+2-15)2+⋯+(xn+2-15)2] =1n[(x1−13)2+(x2−13)2+(x3−13)2+⋯+(x n−13)2]=3.故选B.【点睛】本题主要考查平均数和方差,解题的关键是掌握平均数和方差的意义.3.D解析:D【分析】直接利用方差的意义求解即可.【详解】解:∵S甲2=0.61,S乙2=0.52,S丙2=0.53,S丁2=0.42,∴S丁2<S乙2<S丙2<S甲2,∴射击成绩比较稳定的是丁,故选:D.【点睛】本题考查方差的意义,理解和掌握方差是描述数据波动情况的量,方差越小,波动越小是解题关键.4.C解析:C【分析】先比较平均数得到丙和甲的产量较好,然后比较方差得到丙品种既高产又稳定.【详解】解:在四个品种中甲、丙的平均数大于乙、丁,且丙的方差小于甲的方差,∴丙品种的苹果树的产量高又稳定.故选:C.【点睛】本题考查了方差:一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差.方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.5.B解析:B【分析】根据众数、中位数和平均数的定义分别对每一项进行分析即可.【详解】解:A、60出现了4次,出现的次数最多,则众数是60,故A选项说法正确;B、这组数据的平均数是:(20×2+40×3+60×4+90×1)÷10=49,故B选项说法错误;C、调查的户数是2+3+4+1=10,故C选项说法正确;D、把这组数据从小到大排列,最中间的两个数的平均数是(40+60)÷2=50,则中位数是50,故D选项说法正确;故选B.【点睛】此题考查了众数、中位数和平均数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数;众数是一组数据中出现次数最多的数.6.B解析:B【分析】气温x取各组组中值,利用加权平均数的定义列式计算可得.【详解】解:该地本月中午12时的平均气温是141018722326830230⨯+⨯+⨯+⨯+⨯=20(℃),故选:B.【点睛】本题考查了加权平均数,解题的关键是掌握加权平均数的定义.7.A解析:A【分析】根据众数的定义,找到该组数据中出现次数最多的数即为众数;根据中位数定义,将该组数据按从小到大依次排列,处于中间位置的两个数的平均数即为中位数.【详解】全班共有40人,40人分数,按大小顺序排列最中间的两个数据是第20,21个,故得分的中位数是7080752+=(分),得70分的人数最多,有12人,故众数为70(分),故选A.【点睛】本题为统计题,考查众数与中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.8.C解析:C【分析】分别根据中位数和方差的定义求出a、b,然后即可求出答案.【详解】数据:92,94,98,91,95从小到大排列为91,92,94,95,98,处于中间位置的数是94,则该组数据的中位数是94,即a=94,该组数据的平均数为15×(92+94+98+91+95)=94,其方差为15×[(92﹣94)2+(94﹣94)2+(98﹣94)2+(91﹣94)2+(95﹣94)2]=6,所以b=6,所以a+b=94+6=100,故选C.【点睛】本题考查了中位数和方差,熟练掌握中位数和方差的定义以及求解方法是解题的关键. 9.B解析:B【分析】比较四个人的方差,然后根据方差的意义可判断谁的成绩最稳定.【详解】解:∵S甲2=0.51,S乙2=0.41、S丙2=0.62、S丁2=0.45,∴S丙2>S甲2>S丁2>S乙2,∴四人中乙的成绩最稳定.故选:B.【点睛】本题考查了方差:方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.10.D解析:D【分析】根据众数、中位数、平均数的定义解答.【详解】该班共有2+5+6+6+8+7+6=40(人),故A选项正确;成绩55分的有8人,人数最多,众数为55,故B选项正确;该班学生这次考试成绩的中位数是第20名和第21名的成绩都是55分,所以其平均数为55分,故C选项正确;该班学生这次考试成绩的平均数是:140x =(45×2+49×5+52×6+54×6+55×8+58×7+60×6)=54.425(分),故D 选项错误; 故选:D . 【点睛】 本题考查了众数、中位数、平均数的定义,熟悉定义并能分析表格是解题的关键.11.D解析:D 【分析】根据平均数乘以5得到总数,减去其他四组的数量即可得到答案. 【详解】5109129812⨯----=(棵) 故选:D. 【点睛】此题考查利用平均数求总数,理解平均数的意义,正确计算是解题的关键.12.C解析:C 【分析】根据平均数与方差的概念,求出数据2x 1+3,2x 2+3,2x 3+3的平均数与方差即可. 【详解】设数据1x ,2x ,3x 的平均数是x ,方差是2s , ∴()12313x x x x =++, ()()()2222123113s x x x x x x ⎡⎤=-+-+-=⎣⎦,∴数据21x +3,22x +3,23x +3的平均数为:()()()()12312311232323232333x x x x x x x x ⎡⎤=+++++=⨯+++=+⎣⎦', 方差为()()()222212312323232323233s x x x x x x ⎡⎤=+--++--++--⎣'⎦ ()()()222123143x x x x x x ⎡⎤=⨯-+-+-⎣⎦414=⨯=.故选:C . 【点睛】本题考查了求数据的平均数与方差的应用问题,灵活运算是解题的关键.二、填空题13.4【解析】∵一组数据:252920x14它的中位数是24所以x=24∴这组数据为1420242529∴平均数=(14+20+24+25+29)÷5=224故答案是:224【点睛】找中位数的时候一定要解析:4【解析】∵一组数据:25,29,20,x ,14,它的中位数是24,所以x=24,∴这组数据为14,20,24,25,29,∴平均数=(14+20+24+25+29)÷5=22.4.故答案是:22.4.【点睛】找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数. 14.【分析】先根据平均数的概念求出的值然后利用方差的概念求解可得【详解】∵他们平均每人捐5本∴解得所以这组数据为575346方差为:故答案为:【点睛】本题主要考查了平均数的概念以及方差的计算掌握方差的计 解析:53【分析】先根据平均数的概念求出x 的值,然后利用方差的概念求解可得.【详解】∵他们平均每人捐5本,∴5734656x +++++=⨯,解得5x =,所以这组数据为5,7,5,3,4,6, 方差为:(22222221[(55)(75)(55)(35)(45)65)6S ⎤=-+-+-++-+-+-⎦ 53=. 故答案为:53. 【点睛】 本题主要考查了平均数的概念以及方差的计算,掌握方差的计算公式(222212n 1[()())S x x x x x x n ⎤=-+-++-⎦ 是解题的关键. 15.6【分析】先算出两个班的总成绩再除以两个班的总人数即可【详解】解:(90×46+80×54)÷(46+54)=846(分)故答案为:846【点睛】本题考查了加权平均数关键是掌握加权平均数的计算公式解析:6【分析】先算出两个班的总成绩,再除以两个班的总人数即可.【详解】解:(90×46+80×54)÷(46+54)=84.6(分),故答案为:84.6.【点睛】本题考查了加权平均数,关键是掌握加权平均数的计算公式.16.70【分析】根据求中位数要把数据按从小到大的顺序排列位于最中间的一个数或两个数的平均数为中位数【详解】解:题目中数据共有6个故中位数是按从小到大排列后第3第4两个数的平均数作为中位数故这组数据的中位 解析:70【分析】根据求中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数.【详解】解:题目中数据共有6个,故中位数是按从小到大排列后第3,第4两个数的平均数作为中位数, 故这组数据的中位数是12×(68+72)=70. 故答案为70.【点睛】本题考查了确定一组数据的中位数的能力.将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.注意:找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求.如果是偶数个则找中间两位数的平均数. 17.5【分析】根据平均分=总分数÷总人数求解即可【详解】这个兴趣小组实验操作得分的平均分=(分)故答案为:875分【点睛】本题考查了加权平均数的求法熟记公式:是解决本题的关键解析:5【分析】根据“平均分=总分数÷总人数”求解即可.【详解】这个兴趣小组实验操作得分的平均分=105+98+84+73175==87.55+8+4+320⨯⨯⨯⨯(分). 故答案为:87.5分.【点睛】 本题考查了加权平均数的求法.熟记公式:11221212 ( 0)n n n n x f x f x f x f f f f f f ++⋯++++≠+++=是解决本题的关键.18.9【分析】将数据由小排到大再找到中间的数值即可求得中位数奇数个数中位数是中间一个数偶数个数中位数是中间两个数的平均数【详解】解:将10个数据由小到大排序:78899910101010处于这组数据中间解析:9【分析】将数据由小排到大,再找到中间的数值,即可求得中位数,奇数个数中位数是中间一个数,偶数个数中位数是中间两个数的平均数。

新初中数学因式分解真题汇编附答案(2)

新初中数学因式分解真题汇编附答案(2)

新初中数学因式分解真题汇编附答案(2)一、选择题1.下列分解因式正确的是( )A .24(4)x x x x -+=-+B .2()x xy x x x y ++=+C .2()()()x x y y y x x y -+-=-D .244(2)(2)x x x x -+=+-【答案】C【解析】【分析】根据因式分解的步骤:先提公因式,再用公式法分解即可求得答案.注意分解要彻底.【详解】A. ()244x x x x -+=-- ,故A 选项错误; B. ()21x xy x x x y ++=++,故B 选项错误; C. ()()()2x x y y y x x y -+-=- ,故C 选项正确;D. 244x x -+=(x-2)2,故D 选项错误,故选C.【点睛】本题考查了提公因式法,公式法分解因式.注意因式分解的步骤:先提公因式,再用公式法分解.注意分解要彻底.2.若多项式3212x mx nx ++-含有因式()3x -和()2x +,则n m 的值为 ( ) A .1B .-1C .-8D .18- 【答案】A【解析】【分析】多项式3212x mx nx ++-的最高次数是3,两因式乘积的最高次数是2,所以多项式的最后一个因式的最高次数是1,可设为()x a +,再根据两个多项式相等,则对应次数的系数相等列方程组求解即可.【详解】解:多项式3212x mx nx ++-的最高次数是3,2(3)(2)6x x x x -+=--的最高次数是2,∵多项式3212x mx nx ++-含有因式()3x -和()2x +,∴多项式的最后一个因式的最高次数应为1,可设为()x a +,即3212(3)(2)()++-=--+x mx nx x x x a ,整理得:323212(1)(6)6++-=+--+-x mx nx x a x a x a ,比较系数得:1(6)612m a n a a =-⎧⎪=-+⎨⎪=⎩,解得:182m n a =⎧⎪=-⎨⎪=⎩,∴811-==n m ,故选:A .【点睛】此题考查了因式分解的应用,运用待定系数法设出因式进行求解是解题的关键.3.下列式子从左到右变形是因式分解的是( )A .12xy 2=3xy •4yB .(x +1)(x ﹣3)=x 2﹣2x ﹣3C .x 2﹣4x +1=x (x ﹣4)+1D .x 3﹣x =x (x +1)(x ﹣1)【答案】D【解析】【分析】根据因式分解的定义逐个判断即可.【详解】A 、不是因式分解,故本选项不符合题意;B 、不是因式分解,故本选项不符合题意;C 、不是因式分解,故本选项不符合题意;D 、是因式分解,故本选项符合题意;故选:D .【点睛】此题考查因式分解的定义,能熟记因式分解的定义的内容是解题的关键,注意:把一个多项式化成几个整式的积的形式,叫因式分解.4.下列各式从左到右的变形中,是因式分解的为( ).A .()x a b ax bx -=-B .()()222111x y x x y -+=-++C .()()2111x x x -=+-D .()ax bx c x a b c ++=+【答案】C【解析】【分析】根据因式分解的定义作答.把一个多项式化成几个整式的积的形式,叫做把这个多项式因式分解,也叫做把这个多项式分解因式.【详解】解:A 、是整式的乘法运算,故选项错误;B 、右边不是积的形式,故选项错误;C 、x 2-1=(x+1)(x-1),正确;D 、等式不成立,故选项错误.故选:C .【点睛】熟练地掌握因式分解的定义,明确因式分解的结果应是整式的积的形式.5.下列各式中,由等式的左边到右边的变形是因式分解的是( )A .(x +3)(x -3)=x 2-9B .x 2+x -5=(x -2)(x +3)+1C .a 2b +ab 2=ab(a +b)D .x 2+1=x 1()x x+ 【答案】C【解析】【分析】根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.【详解】A 、是整式的乘法,故A 错误;B 、没有把一个多项式转化成几个整式积的形式,故B 错误;C 、把一个多项式转化成了几个整式积的形式,故C 正确;D 、没有把一个多项式转化成几个整式积的形式,故D 错误;故选:C .【点睛】本题考查了因式分解,因式分解是把一个多项式转化成几个整式积的形式.6.一次课堂练习,王莉同学做了如下4道分解因式题,你认为王莉做得不够完整的一题是( )A .x 3﹣x=x (x 2﹣1)B .x 2﹣2xy+y 2=(x ﹣y )2C .x 2y ﹣xy 2=xy (x ﹣y )D .x 2﹣y 2=(x ﹣y )(x+y )【答案】A【解析】A. 提公因式法后还可以运用平方差公式继续分解,应为:原式=x(x+1)(x−1),错误;B. 是完全平方公式,已经彻底,正确;C. 是提公因式法,已经彻底,正确;D. 是平方差公式,已经彻底,正确.故选A.7.下列从左边到右边的变形,属于因式分解的是( )A .2(1)(1)1x x x +-=-B .221(2)1x x x x -+=-+C .224(4)(4)x y x y x y -=+-D .26(2)(3)x x x x --=+-【答案】D【解析】A. 和因式分解正好相反,故不是分解因式;B. 结果中含有和的形式,故不是分解因式;C. 22x 4y -=(x+2y)(x−2y),解答错误;D. 是分解因式。

(常考题)北师大版初中数学八年级数学上册第六单元《数据的分析》检测题(有答案解析)(2)

(常考题)北师大版初中数学八年级数学上册第六单元《数据的分析》检测题(有答案解析)(2)

一、选择题1.小明在计算一组数据的方差时,列出的公式如下222221(7)(8)(8)(8)s x x x x n⎡=-+-+-+-+⎣2(9)x ⎤-⎦,根据公式信息,下列说法中,错误的是( ) A .数据个数是5B .数据平均数是8C .数据众数是8D .数据方差是152.在学校数学竞赛中,某校10名学生参赛成绩统计如图所示,对于这10名学生的参赛成绩,下列说法中错误的是( )A .众数是90B .中位数是85C .平均数是89D .极差是153.张老师将自己2019年10月至2020年5月的通话时长(单位:分钟)的有关数据整理如下:①2019年10月至2020年3月通话时长统计表 时间10月11月 12月 1月 2月 3月 时长(单位:分钟) 520530550610650660②2020年4月与2020年5月,这两个月通话时长的总和为1100分钟根据以上信息,推断张老师这八个月的通话时长的中位数可能的最大值为( ) A .550 B .580C .610D .6304.某校书法兴趣小组20名学生日练字页数如表所示:这些学生日练字页数的众数、平均数分别是( ) 日练字页数 2 3 4 5 6人数26543A .3页,4页B .3页,5页C .4页,4页D .4页,5页5.已知一组数据为7,1,5,x ,8,它们的平均数是5,则这组数据的方差为( )A .3B .4.6C .5.2D .66.在一次期末考试中,某一小组的6名同学的数学成绩(单位:分)分别是114,115,100,108,110,120,则这组数据的中位数是( ) A .100B .108C .112D .1207.某文艺汇演中,10位评委对节目A 的评分为1210a a a 、、、,去掉其中一个最高分和一个最低分得到一组新数据128b b b 、、、,这两组数据一定相同的是( ) A .平均数 B .中位数 C .众数 D .方差 8.若一组数据2,2,x ,5,7,7的众数为7,则这组数据的x 为( )A .2B .5C .6D .79.若一组数据1a ,2a ,3a 的平均数为4,方差为3,那么数据12a +,22a +,32a +的平均数和方差分别是( ) A .4, 3B .6, 3C .3, 4D .6 510.下表记录了甲、乙、丙、丁四名立定跳远运动员选拔赛成绩的平均数与方差:甲 乙 丙 丁平均数()V cm 166 165 166 165方差22()s cm3.53.5 15.516.5根据表中数据,要从中选择一名成绩好发挥稳定的运动员参加比赛,应该选择( ) A .甲B .乙C .丙D .丁11.下表记录了甲、乙、丙、丁四位跳远运动员选拔赛成绩的平均数与方差:根据表中信息,请你选择一名成绩好且发挥稳定的选手参赛,最合适的是( ) A .甲B .乙C .丙D .丁12.甲、乙两名运动员的10次射击成绩(单位:环)如图所示,甲、乙两名运动员射击成绩的平均数依次记为x 甲,x 乙,射击成绩的方差依次记为s 甲2,s 乙2,则下列关系中完全正确的是( )A .x 甲=x 乙,s 甲2>s 乙2B .x 甲=x 乙,s 甲2<s 乙2C .x 甲>x 乙,s 甲2>s 乙2D .x 甲<x 乙,s 甲2<s 乙2二、填空题13.为了响应学校“书香校园”建设,八(1)班的同学们积极捐书,其中第一组的同学捐书册数分别是:5,7,x ,3,4,6.已知他们平均每人捐5本,那么这组数据的方差是_____.14.市运会举行射击比赛,校射击队从甲、乙、丙、丁四人中选拔一人参赛。

(易错题精选)初中数学数据分析难题汇编及答案解析

(易错题精选)初中数学数据分析难题汇编及答案解析

ax by
∴两种糖果的平均价格为:

x y
∵甲种糖果单价下降 15%,乙种糖果单价上涨 20%,
∴两种糖果的平均价格为:
a(1 15 ) • 100
x
b(1
20 ) y 100

x y
∵按原比例混合的糖果单价恰好不变,

ax x
by y

a(1 15 ) • x b(1 100 x y
20 ) y 100
6.某小组长统计组内 6 人一天在课堂上的发言次数分別为 3,3,4,6,5,0.则这组数
据的众数是( )
A.3
B.3.5
C.4
D.5
【答案】A
【解析】
【分析】
根据众数的定义,找数据中出现次数最多的数据即可.
【详解】
在 3,3,4,6,5,0 这组数据中,数字 3 出现了 2 次,为出现次数最多的数,故众数为
(易错题精选)初中数学数据分析难题汇编及答案解析
一、选择题
1.在一次数学答题比赛中,五位同学答对题目的个数分别为 7,5,3,5,10,则关于这
组数据的说法不正确的是( )
A.众数是 5
B.中位数是 5
C.平均数是 6
D.方差是 3.6
【答案】D
【解析】
【分析】
根据平均数、中位数、众数以及方差的定义判断各选项正误即可.
0.1 ,则甲数据比乙组数据稳定;④圆内接正六边形的边长等于这个圆的半径,其中正确
说法的个数是( )
A.1个
B. 2 个
C. 3 个
D. 4 个
【答案】A
【解析】
【分析】
根据平行四边形的判定去判断①;根据必然事件的定义去判断②;根据方差的意义去判

(常考题)人教版初中数学八年级数学下册第五单元《数据的分析》测试(有答案解析)(2)

(常考题)人教版初中数学八年级数学下册第五单元《数据的分析》测试(有答案解析)(2)

一、选择题1.某校九年级(1)班部分学生上学路上所花时间如图所示.设他们上学路上所花时间的平均数为a ,中位数为b ,众数为c ,则有( )A .b a c >>B .c a b >>C .a b c >>D .b c a >>2.初三体育素质测试,某小组5名同学成绩如下所示,有两个数据遮盖,如图: 编号 1 2 3 4 5 方差 平均成绩 得分3834■3740■37A .35 2B .36 4C .35 3D .36 33.某校以“我和我的祖国”为主题的演讲比赛中,共有10位评委分别给出某选手的原始评分,在评定该选手成绩时,则从10个原始评分中去掉1个最高分和1个最低分,得到8个有效评分. 8个有效评分与10个原始评分相比,不变的是 ( ) A .平均数B .极差C .中位数D .方差4.下表记录了甲、乙、丙、丁四名射击运动员最近几次选拔赛成绩的平均数和方差:甲 乙 丙 丁 平均数(环) 9.14 9.15 9.14 9.15 方差6.66.86.76.6根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应选择( ) A .甲 B .乙 C .丙 D .丁 5.一组数据:1、2、3、4、1,这组数据的众数与中位数分别为( ) A .1、3B .2、2.5C .1、2D .2、26.下图是2019年5月17日至31日某市的空气质量指数趋势图.(说明:空气质量指数为0-50、51-100、101-150分别表示空气质量为优、良、轻度污染)有如下结论:①在此次统计中,空气质量为优的天数少于轻度污染的天数;②在此次统计中,空气质量为优良的天数占45;③20,21,22三日的空气质量指数的方差小于26,27,28三日的空气质量指数的方差.上述结论中,所有正确结论的序号是()A.①B.①③C.②③D.①②③7.甲、乙两班举行电脑汉字输入比赛,参赛学生每分输入汉字的个数统计结果如下表:班级参加人数中位数方差平均数甲55149 1.91135乙55151 1.10135某同学分析上表后得到如下结论:①甲、乙两班学生平均成绩相同;②乙班优秀的人数多于甲班优秀的人数(每分输入汉字个数150为优秀)③甲班成绩的波动比乙班大.上述结论中正确的是()A.①②③B.①②C.①③D.②③8.下列说法正确的是()A.为了解我国中学生课外阅读的情况,应采取全面调查的方式B.一组数据1、2、5、5、5、3、3的中位数和众数都是5C.若甲组数据的方差是003,乙组数据的方差是0.1,则甲组数据比乙组数据稳定D.抛掷一枚硬币100次,一定有50次“正面朝上”9.甲、乙两人各射击次,甲所中的环数是,,,,,,且甲所中的环数的平均数是,众数是;乙所中的环数的平均数是,方差是4.根据以上数据,对甲,乙射击成绩的正确判断是()A.甲射击成绩比乙稳定B.乙射击成绩比甲稳定C.甲,乙射击成绩稳定性相同D.甲、乙射击成绩稳定性无法比较10.随着智能手机的普及,抢微信红包成为了春节期间人们最喜欢的活动之一.某中学八年级六班班长对全班50名学生在春节期间所抢的红包金额进行统计,并绘制成了统计图.根据如图提供的信息,红包金额的众数和中位数分别是()A.20,20 B.30,20 C.30,30 D.20,3011.某校九年级模拟考试中,1班的六名学生的数学成绩如下:96,108,102,110,108,82.下列关于这组数据的描述不正确的是()A.众数是108 B.中位数是105C.平均数是101 D.方差是9312.某班体育委员记录了第一小组七位同学定点投篮(每人投10次)的情况,投进篮筐的个数为6,9,5,3,4,8,4,这组数据的众数是()A.3 B.4 C.5 D.8二、填空题13.烹饪大赛的菜品的评价按味道、外形、色泽三个方面进行评价(评价的满分均为100分),三个方面的重要性之比依次为7:2:1.某位厨师的菜所得的分数依次为92分、88分、80分,那么这位厨师的最后得分是_______________.14.若一组数据4,x,5,7,9的众数为5,则这组数据的方差为_____.15.有一组数据:1,3,5,3,若再添加一个数,所得的新一组数据与原数据的中位数,众数,平均数都没有发生变化,则添加的数为____.16.某次数学竞赛共有15道题,下表是对于做对n(n=0,1,2…15)道题的人数的一个统计,如果又知其中做对4道题和4道以上的学生每人平均做对6道题,做对10道题和10道题以下的学生每人平均做对4道题,问这个表至少统计了______人.n0123 (12131415)做对 n道781021 (15631)题的人数17.一组数2、a、4、6、8的平均数是5,这组数的中位数是______.18.现有甲、乙两个合唱队队员的平均身高均为170cm,方差分别是2S甲,2S乙,且22S S,则两个队的队员的身高较整齐的是______.甲乙19.某组数据按从小到大的顺序如下:2、4、8、x、10、14,已知这组数据的中位数是9,则这组数据的众数是_____.20.小明五次数学测验的平均成绩是85,中位数为86,众数是89,则最低两次测验的成绩之和为________.三、解答题21.8年级某老师对一、二班学生阅读水平进行测试,并将成绩进行了统计,绘制了如下图表(得分为整数,满分为10分,成绩大于或等于6分为合格,成绩大于或等于9分为优秀).平均分方差中位数众数合格率优秀率一班7.2 2.117692.5%20%二班 6.85 4.288885%10%根据图表信息,回答问题:(1)用方差推断,班的成绩波动较大;用优秀率和合格率推断,班的阅读水平更好些;(2)甲同学用平均分推断,一班阅读水平更好些;乙同学用中位数或众数推断,二班阅读水平更好些.你认为谁的推断比较科学合理,更客观些.为什么?22.为了让同学们了解自己的体育水平,初二1班的体育刘老师对全班45名学生进行了一次体育模拟测试(得分均为整数),成绩满分为10分,1班的体育委员根据这次测试成绩,制作了统计图和分析表如下:初二1班体育模拟测试成绩分析表平均分方差中位数众数男生287女生7.92 1.998(1)这个班共有男生人,共有女生人;(2)补全初二1班体育模拟测试成绩分析表;(3)你认为在这次体育测试中,1班的男生队、女生队哪个表现更突出一些?并说明理由.(至少从两个不同的角度说明推断的合理性)23.某校为了了解九年级学生体育测试成绩情况,以九年(1)班学生的体育测试成绩为样本,按A、B、C、D四个等级进行统计,并将统计结果绘制如下两幅统计图,请你结合图中所给信息解答下列问题:(说明:A级:90分﹣100分;B级:75分﹣89分;C级:60分﹣74分;D级:60分以下)(1)求出D级学生的人数占全班总人数的百分比;(2)求出扇形统计图中C级所在的扇形圆心角的度数;(3)该班学生体育测试成绩的中位数落在哪个等级内;(4)若该校九年级学生共有500人,请你估计这次考试中A级和B级的学生共有多少人?24.为了解学生的课外阅读情况,李老师随机调查了一部分学生,得到了他们上周双休日课外阅读时间(记为t,单位:h)的一组样本数据,其部分条形图和扇形图如下:(1)请补全条形图和扇形图;(2)试确定这组样本数据的中位数和众数;(3)估计全班学生上周双休日的平均课外阅读时间.25.某校为了分析九年级学生艺术考试的成绩,随机抽查了两个班级的各5名学生的成绩,它们分别是:九(1)班:96,92,94,97,96 九(2)班:90,98,97,98,92 通过数据分析,列表如下:(1)__________;__________a b ==(2)计算两个班级所抽取的学生艺术成绩的方差,判断哪个班学生艺术成绩比较稳定. 26.随着移动计算技术和无线网络的快速发展,移动学习方式越来越引起人们的关注.某校计划将这种学习方式应用到教育教学中,从各年级共1500名学生中随机抽取了部分学生,对其家庭中拥有的移动设备情况进行了调查,并绘制出如下的统计图①和图②,根据相关信息,解答下列问题:(1)本次接受随机抽样调查的学生人数为 人 ,图①中m 的值为 . (2)求本次调查获取的样本数据的众数、中位数;(3)根据样本数据,估计该校学生家庭中;拥有3台移动设备的学生人数.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A【分析】先根据图形得出相关数据,再分别求出平均数、中位数、众数,由此即可得. 【详解】由图可知,统计的学生人数为43310++=(人),他们上学路上所花时间分别为20,20,20,20,30,30,30,40,40,40,则平均数202020203030304040402910a +++++++++==,中位数3030302b +==, 因为20出现的次数最多, 所以众数20c =,因此有b a c >>, 故选:A . 【点睛】本题考查了平均数、中位数、众数,熟练掌握相关定义和计算公式是解题关键.2.B解析:B 【分析】根据平均数的计算公式先求出编号3的得分,再根据方差公式进行计算即可得出答案. 【详解】 解:这组数据的平均数是37,∴编号3的得分是:375(38343740)36⨯-+++=;方差是:222221[(3837)(3437)(3637)(3737)(4037)]45-+-+-+-+-=;故选:B . 【点睛】本题考查平均数和方差的定义,一般地设n 个数据,1x ,2x ,n x ⋯的平均数为x ,则方差2222121[()()()]n S x x x x x x n=-+-+⋯+-,它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.3.C解析:C 【分析】根据题意,由数据的数字特征的定义,分析可得答案. 【详解】根据题意,从10个原始评分中去掉1个最高分、1个最低分,得到8个有效评分, 8个有效评分与10个原始评分相比,最中间的两个数不变,即中位数不变, 故选C .本题考查数据的数字特征,关键是掌握数据的平均数、中位数、方差、极差的定义以及计算方法.4.D解析:D 【解析】【分析】首先比较平均数,平均数相同时选择方差较小的运动员参加. 【详解】∵==x x x x >乙丁甲丙, ∴从乙和丁中选择一人参加比赛,∵22S S >乙丁,∴选择丁参赛, 故选D .【点睛】本题考查了平均数和方差,正确理解方差与平均数的意义是解题关键.5.C解析:C 【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数,众数是一组数据中出现次数最多的数据,注意众数可以不止一个. 【详解】数据1出现了2次,次数最多,所以众数是1; 数据按从小到大排列:1,1,2,3,4,所以中位数是2. 故选C . 【点睛】本题考查了确定一组数据的中位数和众数的能力.要明确定义,一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.6.C解析:C 【分析】根据折线统计图的数据,逐一分析即可. 【详解】解:①中:当空气质量指数为0-50时表示优,数出折线图中在这个范围内的天数有5天;当空气质量指数为101-150是表示轻度污染,数出折线图中在这个范围内的天数有3天,故空气质量优的天数大于轻度污染的天数,故①错误;②中:空气质量指数在0-100范围内为优良,其天数共有12天,故空气质量为优良的天数所占比例为:124=155,故②正确;③中:20,21,22三日的空气质量指数波动范围小于26,27,28三日的空气质量指数波动范围,故20,21,22三日的空气质量指数的方差小于26,27,28三日的空气质量指数的方差,故③正确.∴正确的有:②③.故答案为:C.【点睛】本题是复式折线统计图,要通过坐标轴以及图例等读懂本图,根据图中所示的数量解决问题.7.A解析:A【分析】平均水平的判断主要分析平均数;优秀人数的判断从中位数不同可以得到;波动大小比较方差的大小.【详解】从表中可知,平均字数都是135,①正确;甲班的中位数是149,乙班的中位数是151,比甲的多,而平均数都要为135,说明乙的优秀人数多于甲班的,②正确;甲班的方差大于乙班的,又说明甲班的波动情况大,所以③也正确.①②③都正确.故选:A.【点睛】此题考查平均数,中位数,方差的意义.解题关键在于掌握平均数表示一组数据的平均程度.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);方差是用来衡量一组数据波动大小的量.8.C解析:C【分析】可根据调查的选择、中位数和众数的求法、方差及随机事件的意义,逐个判断得结论.【详解】解:因为我国中学生人数众多,其课外阅读的情况也不需要特别精确,所以对我国中学生课外阅读情况的调查,宜采用抽样调查,故选项A不正确;因为B中数据按从小到大排列为1、2、3、3、5、5、5,位于中间的数是3,故该组数据的中位数为3,所以选项B说法不正确;因为0.003<0.1,方差越小,波动越小,数据越稳定,所以甲组数据比乙组数据稳定,故选项C说法正确;因为抛掷硬币属于随机事件,抛掷一枚硬币100次,不一定有50次“正面朝上”故选项D说法不正确.故选:C.【点睛】本题的关键在于掌握调查的选择、中位数和众数的求法、方差及随机事件的意义.9.B解析:B【解析】【分析】要判断甲,乙射击成绩的稳定性就是要比较两人成绩的方差的大小,关键是求甲的方差.甲的这组数中的众数是8就说明a,b,c中至少有两个是8,而平均数是6,则可以得到a,b,c三个数其中一个是2,另两个数是8,求得则甲的方差,再进行比较得出结果.【详解】∵这组数中的众数是8,∴a,b,c中至少有两个是8,∵平均数是6,∴a,b,c三个数其中一个是2,∴ (4+1+1+4+4+16)=5,∵5>4,∴乙射击成绩比甲稳定.故选:B.【点睛】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.10.C解析:C【解析】【分析】根据众数和中位数的定义,出现次数最多的那个数就是众数,把一组数据按照大小顺序排列,中间那个数或中间两个数的平均数叫中位数.【详解】解:30元的人数为20人,最多,则众数为30,中间两个数分别为30和30,则中位数是30,故选:C.【点睛】本题考查了条形统计图、众数和中位数,这是基础知识要熟练掌握.11.D解析:D把六名学生的数学成绩从小到大排列为:82,96,102,108,108,110,求出众数、中位数、平均数和方差,即可得出结论.【详解】解:把六名学生的数学成绩从小到大排列为:82,96,102,108,108,110,∴众数是108,中位数为1021081052+=,平均数为82961021081081101016+++++=, 方差为()()()()()()222222182101961011021011081011081011101016⎡⎤-+-+-+-+-+-⎣⎦ 94.393≈≠;故选D .【点睛】考核知识点:众数、中位数、平均数和方差;理解定义,记住公式是关键.12.B解析:B【解析】【分析】众数是出现次数最多的数,据此求解即可.【详解】∵数据4出现了2次,最多,∴众数为4,故选:B .【点睛】本题考查了众数的知识,解题的关键是了解有关的定义,属于基础题,难度不大.二、填空题13.90分【分析】根据加权平均数的计算方法即可得出答案【详解】解:这位厨师的最后得分为:(分)故答案为:90分【点睛】本题考查了加权平均数的计算掌握计算加权平均数的方法是解题的关键解析:90分【分析】根据加权平均数的计算方法即可得出答案.【详解】 解:这位厨师的最后得分为:927+882+801=907+2+1⨯⨯⨯(分). 故答案为:90分.本题考查了加权平均数的计算,掌握计算加权平均数的方法是解题的关键.14.【分析】根据众数的定义先判断出x是5再根据平均数的计算公式求出平均数为6然后代入方差公式即可得出答案【详解】解:∵数据4x579的众数为5∴x=5S2=(4﹣6)2+2×(5﹣6)2+(7﹣6)2+解析:16 5【分析】根据众数的定义先判断出x是5,再根据平均数的计算公式求出平均数为6,然后代入方差公式即可得出答案.【详解】解:∵数据4,x,5,7,9的众数为5,∴x=5,1(45579)65x=+++++=,S2=15[(4﹣6)2+2×(5﹣6)2+(7﹣6)2+(9﹣6)2]=165,故答案为165.【点睛】此题主要考查了平均数、众数、方差的统计意义.众数是一组数据中出现次数最多的数据,注意众数可以不止一个;平均数是指在一组数据中所有数据之和再除以数据的个数.熟练掌握方差的计算公式是解答本题的关键.15.3【分析】依据定义和公式分别计算新旧两组数据的平均数中位数众数求解即可【详解】原数据的1335的平均数为=3中位数为=3众数为3;添加的数为3后新数据13335的平均数为=3中位数为3众数为3;故答解析:3.【分析】依据定义和公式分别计算新旧两组数据的平均数、中位数、众数求解即可.【详解】原数据的1、3、3、5的平均数为13354+++=3,中位数为332+=3,众数为3;添加的数为3后,新数据1、3、3、3、5的平均数为133355++++=3,中位数为3,众数为3;故答案为:3.【点睛】此题考查众数、中位数、平均数,熟练掌握相关概念和公式是解题的关键.16.200【解析】【分析】设统计的总人数为x答对11道题的人数为a根据做对4个题和4个以上的人数乘以其平均分加上做对4个以下题的人答对的总题数等于所有被统计的人答对的总题数;做对10个题和10个以下的人解析:200【解析】【分析】设统计的总人数为x,答对11道题的人数为a,根据做对4个题和4个以上的人数乘以其平均分加上做对4个以下题的人答对的总题数等于所有被统计的人答对的总题数;做对10个题和10个以下的人数乘以其平均分加上做对10个以上题的人答对的总题数等于所有被统计的人答对的总题数.做对10个题和10个以下的人数乘以其平均分加上做对11,12,13,14道题的人答对的总题数等于所有被统计的人答对的总题数列方程求解即可.【详解】设统计的总人数为x,答对11道题的人数为a.∵做对4个题和4个以上的人数为(x-7-8-10-21)=(x-46)人,∴所有学生做的总题数为:(x-46)×6+0×7+1×8+2×10+3×21=6x-185;又∵做对10个题和10个以下的人数为(x-a-15-6-3-1)=(x-a-25)人,∴所有学生做的总题数为:(x-a-25)×4+15×1+14×3+13×6+12×15+11a=4x+215+7a,∴6x-185=4x+215+7a,2x=400+7a,x=200+ 72 a,∵a为自然数,∴当a=0时x取最小值200.所以至少统计了200人.故答案为200【点睛】本题考查了加权平均数及方程的应用,有一定的难度.解题关键是根据答对的总题数不变列方程.17.5【解析】【分析】由平均数可求解a的值再根据中位数的定义即可求解【详解】解:由平均数可得a=5×5-2-4-6-8=5则该组数由小至大排序为:24568则中位数为5故答案为:5【点睛】本题考查了平均解析:5【解析】【分析】由平均数可求解a的值,再根据中位数的定义即可求解.【详解】解:由平均数可得,a=5×5-2-4-6-8=5,则该组数由小至大排序为:2、4、5、6、8,则中位数为5,故答案为:5.【点睛】本题考查了平均数和中位数的概念.18.甲【解析】【分析】根据方差小的身高稳定判断即可【详解】现有甲乙两个合唱队队员的平均身高均为170cm 方差分别是且则两个队的队员的身高较整齐的是甲故答案为:甲【点睛】此题考查了方差方差是用来衡量一组数 解析:甲【解析】【分析】根据方差小的身高稳定判断即可.【详解】现有甲、乙两个合唱队队员的平均身高均为170cm ,方差分别是2S 甲,2S 乙,且22S S 甲乙,则两个队的队员的身高较整齐的是甲,故答案为:甲【点睛】此题考查了方差,方差是用来衡量一组数据波动大小的量.19.10【解析】分析:根据中位数为9可求出x 的值继而可判断出众数详解:由题意得:(8+x )÷2=9解得:x=10则这组数据中出现次数最多的是10故众数为10故答案为10点睛:本题考查了中位数及众数的知识解析:10【解析】分析:根据中位数为9,可求出x 的值,继而可判断出众数.详解:由题意得:(8+x )÷2=9,解得:x =10,则这组数据中出现次数最多的是10,故众数为10.故答案为10.点睛:本题考查了中位数及众数的知识,属于基础题,掌握中位数及众数的定义是关键. 20.161【解析】分析:知道平均数可以求出5次成绩之和又知道中位数和众数就能求出最低两次成绩详解:由五次数学测验的平均成绩是85分∴5次数学测验的总成绩是425分∵中位数是86分众数是89分∴最低两次测解析:161【解析】分析:知道平均数可以求出5次成绩之和,又知道中位数和众数,就能求出最低两次成绩.详解:由五次数学测验的平均成绩是85分,∴5次数学测验的总成绩是425分,∵中位数是86分,众数是89分,∴最低两次测试成绩为425-86-2×89=161,故答案为:161.点睛:本题主要考查平均数和众数等知识点.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求.如果是偶数个则找中间两位数的平均数.三、解答题21.(1)二,一;(2)乙同学的推断比较科学合理,理由见解析.【分析】(1)根据方差的大小即可判断出波动的大小;结合合格率和优秀率则要先数值大的,由此即可得答案;(2)结合条形统计图,根据平均分、中位数、众数的优缺点进行解答即可.【详解】(1)一班的方差为2.11,二班的方差为4.28,用方差推断,二班的成绩波动较大;一班的合格率为92.5% ,优秀率为20%,二班的合格率为85%,优秀率为10%,一班的合格率与优秀率均比二班的大,因此用优秀率和合格率推断,一班的阅读水平更好些,故答案为二;一;(2)乙同学的推断比较科学合理.理由:虽然二班成绩的平均分比一班低,但从条形图中可以看出,二班有3名学生的成绩是1分,它在该组数据中是一个极端值,平均数受极端值影响较大,而中位数或众数不易受极端值的影响,所以,乙同学的推断更客观些.【点睛】本题考查了数据的收集整理与描述,涉及了平均数,方差,众数和中位数等知识,熟练掌握相关知识以及各自的优缺点是解题的关键.22.(1)20,25;(2)7.9,8;(3)女生队表现更突出,理由见解析【分析】(1)由条形图可得男生总人数,总人数减去男生人数可得女生人数;(2)根据平均数和众数定义可得.(3)可从平均数、方差、众数和中位数的意义求解可得.【详解】解:(1)这个班共有男生1+2+6+3+5+3=20(人),共有女生45﹣20=25(人),故答案为:20、25;(2)男生的平均分为120×(5+6×2+7×6+8×3+9×5+10×3)=7.9(分),女生的众数为8分,补全表格如下:理由为:女生队的平均数较高,表示女生队测试成绩较好;女生队的方差小,表示女生队测试成绩比较集中,整体水平较好;女生队的众数较高,女生队的众数为8,中位数也为8,而男生队众数为7低于中位数8,表示女生队的测试成绩高分较多.【点睛】本题主要考查加权平均数、利用众数、方差、平均数、众数作出决策.注意方差越小,说明数据越稳定.23.(1)4%;(2)72°;(3)落在B等级内;(4)380人【分析】(1)先求出总人数,再求D成绩的人数占的比例;(2)C成绩的人数为10人,占的比例=10÷50=20%,表示C的扇形的圆心角=360°×20%=72°,(3)根据中位数的定义判断;(4)该班占全年级的比例=50÷500=10%,所以,这次考试中A级和B级的学生数=(13+25)÷10%=380人,【详解】(1)总人数为25÷50%=50人,D成绩的人数占的比例:2÷50=4%;(2)表示C的扇形的圆心角360°×(10÷50)=360°×20%=72°;(3)由于A成绩人数为13人,C成绩人数为10人,D成绩人数为2人,而B成绩人数为25人,故该班学生体育测试成绩的中位数落在B等级内;(4)这次考试中A级和B级的学生数:(13+25)÷(50÷500)=(13+25)÷10%=380(人).【点睛】本题主要考查统计图和用样本估计总体,提取统计图中的有效信息是解答此题的关键. 24.(1)详见解析;(2)中位数是3(h),众数是4(h);(3)全班学生上周双休日的平均课外阅读时间为3.36h.【分析】(1)由条形统计图知:读1小时的人数为3人,在扇形统计图中占的比例为12%,则总调查人数可求出.这样可分别求出读2小时的人数,读3小时的人数,以及读4小时的人数占的比例,再计算其在扇形统计图中的圆心角.最后求出读5小时的人数占的比例和读5小时的人数;(2)根据中位数和众数的定义解答.(3)根据平均数的定义计算即可.【详解】解:(1)由条形统计图知,读1小时的人数为3人,在扇形统计图中占的比例为12%,∴总调查人数=3÷12%=25人,∴读2小时的人数=25×16%=4人,读3小时的人数=25×24%=6人,读4小时的人数占的比例=7÷25=28%,在扇形统计图中的圆心角=360°×28%=100.8°,读5小时的人数占的比例=1﹣28%﹣24%﹣16%﹣12%﹣8%=12%,读5小时的人数=25×12%=3人.(2)中位数是3(h),众数是4(h);(3)1×12%+2×16%+3×24%+4×28%+5×12%+6×8%=3.36(h).估计全班学生上周双休日的平均课外阅读时间为3.36h.【点睛】本题考查了条形统计图和扇形统计图以及从统计图中获取信息的能力.解题时要掌握平均数、中位数、众数的概念和求法.25.(1)96;98;(2)九(1)班的学生的艺术成绩比较稳定.【分析】(1)根据中位数和众数的定义求解可得;(2)根据方差公式计算,再依据方差越小成绩越稳定可得答案.【详解】(1)九(1)班成绩重新排列为92,94,96,96,97,则中位数a=96,九(2)班成绩的众数为b=98;故答案为:96,98;(2)S2(1)班=15×[(96-95)2+(92-95)2+(94-95)2+(97-95)2+(96-95)2]=3.2,S2(2)班=15×[(90-95)2+(98-95)2+(97-95)2+(98-95)2+(92-95)2]=11.2,∵S2(1)班<S2(2)班,∴九(1)班学生的艺术成绩比较稳定.【点睛】此题考查中位数、众数和方差的意义,解题关键在于掌握方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.26.(1)50,32;(2)众数为4;中位数是3;(3)420【分析】(1)根据2台的人数和所占百分比可求出调查的学生总人数,用4台的人数除以总人数可得m的值;(2)根据众数和中位数的定义求解;(3)用1500乘以拥有3台移动设备的学生人数所占的百分比即可.。

初中数学数据分析练习题和答案

初中数学数据分析练习题和答案

初中数学数据分析练习题和答案1. 某班级共有40名学生,他们参加了一次数学考试。

以下是每个学生的得分情况(满分100分):75, 83, 92, 68, 77, 85, 90, 73, 89, 78, 82, 87, 95, 62, 80, 84, 91, 79, 72, 88, 76, 81, 86, 94, 70,69, 74, 93, 71, 67, 75, 83, 92, 68, 77, 85, 90, 73, 89, 78, 82请根据以上数据回答以下问题:解答:1) 求全班学生的平均分数。

解析:要求全班学生的平均分数,需要将每个学生的得分相加,再除以学生总数。

75 + 83 + 92 + 68 + 77 + 85 + 90 + 73 + 89 + 78 + 82 + 87 + 95 + 62 + 80 + 84 + 91 + 79 + 72 + 88 + 76 + 81 + 86 + 94 + 70 +69 + 74 + 93 + 71 + 67 + 75 + 83 + 92 + 68 + 77 + 85 + 90 + 73 + 89 + 78 + 82 = 3024全班学生的平均分数为:3024 / 40 = 75.6分2) 求全班学生中的最高分和最低分。

解析:要求全班学生中的最高分和最低分,需要找出最大值和最小值。

最高分为:95分最低分为:62分3) 求全班学生中得分在80分以上的人数。

解析:要求得分在80分以上的人数,需要统计得分大于等于80分的学生人数。

得分大于等于80分的学生有:83, 92, 85, 90, 89, 82, 87, 95, 80, 84, 91, 88, 81, 86, 94, 83, 92, 85, 90, 89, 82。

得分在80分以上的人数为:21人4) 绘制全班学生成绩的频率分布直方图。

解析:为更好地展示全班学生成绩的分布情况,可以通过绘制频率分布直方图来呈现。

(好题)初中数学八年级数学上册第六单元《数据的分析》检测(答案解析)(2)

(好题)初中数学八年级数学上册第六单元《数据的分析》检测(答案解析)(2)

一、选择题1.某篮球队5名场上队员的身高(单位:cm)分别是183、187、190、200、195,现用一名身高为210cm的队员换下场上身高为195cm的队员,与换人前相比,场上队员身高的()A.平均数变大,方差变小B.平均数变小,方差变大C.平均数变大,方差变大D.平均数变小,方差变小2.“按情就是命令,防控就是责任!”在去年新冠肺炎疫情爆发期间,我区教师发扬不畏艰险、无私奉献的精神,挺身而出,协助社区做好疫情监测、排查、防控等工作.现将50名教师参加社区工作时间t(单位:天)的情况统计如下:①平均数一定在40~50之间;②平均数可能在40~50之间;③中位数一定是45;④众数一定是50.其中正确的推断是()A.①④B.②③C.③④D.②③④3.为了解某电动车一次充电后行驶的里程数(千米),抽检了10辆车统计结果是:200、210、210、210、220、220、220、220、230、230,则这组数据中众数和中位数分别是()A.220,220 B.220,210 C.200,220 D.230,2104.已知一组数据x1,x2,x3,把每个数据都减去2,得到一组新数据x1-2,x2-2,x3-2,对比这两组数据的统计量不变的是()A.平均数B.方差C.中位数D.众数5.在一次数学竞赛后,学校随机抽取了八年级某班5名学生的成绩如下:92,79,99,86,99.关于这组数据说法错误的是()A.中位数是92B.方差是20C.平均数是91D.众数是996.某次校园歌手比赛,进入最后决赛的三名选手的成绩统计如下表,若唱功、音乐常识、舞台表现按6∶3∶1的比例计入选手最后得分排出冠军、亚军、季军,则本场比赛的冠军、亚军、季军分别是()A.李真、王飞、林杨B.王飞、林杨、李真C.王飞、李真、林杨D.李真、林杨、王飞7.在学校的一次年级数学统考中,八(1)的平均分为110 分,八(2)的平均分为90分,若两个班的总分相同,则两个班的平均分是()A.80分B.99分C.100分D.110分8.李大伯前年在驻村扶贫工作队的帮助下种了一片果林,今年收获一批成熟的果子。

新初中数学数据分析真题汇编附答案解析(2)

新初中数学数据分析真题汇编附答案解析(2)

新初中数学数据分析真题汇编附答案解析(2)一、选择题1.(11·大连)某农科院对甲、乙两种甜玉米各用10块相同条件的试验田进行试验,得到两个品种每公顷产量的两组数据,其方差分别为s甲2=0.002、s乙2=0.03,则 ( ) A.甲比乙的产量稳定B.乙比甲的产量稳定C.甲、乙的产量一样稳定D.无法确定哪一品种的产量更稳定【答案】A【解析】【分析】方差是刻画波动大小的一个重要的数字.与平均数一样,仍采用样本的波动大小去估计总体的波动大小的方法,方差越小则波动越小,稳定性也越好.【详解】因为s2甲=0.002<s2乙=0.03,所以,甲比乙的产量稳定.故选A【点睛】本题考核知识点:方差. 解题关键点:理解方差意义.2.在只有15人参加的演讲比赛中,参赛选手的成绩各不相同,若选手要想知道自己是否进入前8名,只需要了解自己的成绩以及全部成绩的( )A.平均数B.中位数C.众数D.以上都不对【答案】B【解析】【分析】此题是中位数在生活中的运用,知道自己的成绩以及全部成绩的中位数就可知道自己是否进入前8名.【详解】15名参赛选手的成绩各不相同,第8名的成绩就是这组数据的中位数,所以选手知道自己的成绩和中位数就可知道自己是否进入前8名.故选B.【点睛】理解平均数,中位数,众数的意义.3.某射击运动员在训练中射击了10次,成绩如图所示:下列结论不正确的是()A.众数是8 B.中位数是8 C.平均数是8.2 D.方差是1.2【答案】D【解析】【分析】首先根据图形数出各环数出现的次数,在进行计算众数、中位数、平均数、方差.【详解】根据图表可得10环的2次,9环的2次,8环的3次,7环的2次,6环的1次.所以可得众数是8,中位数是8,平均数是102+92+83+72+61=8.210⨯⨯⨯⨯⨯方差是222222(108.2)2(98.2)3(88.2)2(78.2)(68.2)1.5610⨯-+⨯-+⨯-+⨯-+-=故选D【点睛】本题主要考查统计的基本知识,关键在于众数、中位数、平均数和方差的概念.特别是方差的公式.4.某青年排球队12名队员的年龄情况如下:则12名队员的年龄()A.众数是20岁,中位数是19岁B.众数是19岁,中位数是19岁C.众数是19岁,中位数是20.5岁D.众数是19岁,中位数是20岁【答案】D【解析】【分析】中位数是指将统计总体当中的各个变量值按大小顺序排列起来,形成一个数列,处于变量数列中间位置的变量值就称为中位数;众数是指在统计分布上具有明显集中趋势点的数值,代表数据的一般水平(众数可以不存在或多于一个).【详解】解:在这一组数据中19岁是出现次数最多的,故众数是19岁;将这组数据从小到大的顺序排列后,处于中间位置的数是20岁,那么由中位数的定义可知,这组数据中的中位数是20岁.故选:D.【点睛】理解中位数和众数的定义是解题的关键.5.某校共有200名学生,为了解本学期学生参加公益劳动的情况,收集了他们参加公益劳动时间(单位:小时)等数据,以下是根据数据绘制的统计图表的一部分.学生类型人数时间010t≤<1020t≤<2030t≤<3040t≤<40t≥性别男73125304女82926328学段初中25364411高中下面有四个推断:①这200名学生参加公益劳动时间的平均数一定在24.5-25.5之间②这200名学生参加公益劳动时间的中位数在20-30之间③这200名学生中的初中生参加公益劳动时间的中位数一定在20-30之间④这200名学生中的高中生参加公益劳动时间的中位数可能在20-30之间所有合理推断的序号是()A.①③B.②④C.①②③D.①②③④【答案】C【解析】【分析】根据中位数与平均数的意义对每个选项逐一判断即可.【详解】解:①解这200名学生参加公益劳动时间的平均数:①(24.5×97+25.5×103)÷200=25.015,一定在24.5-25.5之间,正确;②由统计表类别栏计算可得,各时间段人数分别为15,60,51,62,12,则中位数在20~30之间,故②正确.③由统计表计算可得,初中学段栏0≤t<10的人数在0~15之间,当人数为0时,中位数在20~30之间;当人数为15时,中位数在20~30之间,故③正确.④由统计表计算可得,高中学段栏各时间段人数分别为0~15,35,15,18,1.当0≤t<10时间段人数为0时,中位数在10~20之间;当0≤t<10时间段人数为15时,中位数在10~20之间,故④错误【点睛】本题考查了中位数与平均数,平均数是指在一组数据中所有数据之和再除以数据的个数.它是反映数据集中趋势的一项指标.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.6.为了解我市初三女生的体能状况,从某校初三的甲、乙两班中各抽取27名女生进行一分钟跳绳次数测试,测试数据统计结果如下表.如果每分钟跳绳次数≥105次的为优秀,那么甲、乙两班的优秀率的关系是()A.甲优<乙优B.甲优>乙优C.甲优=乙优D.无法比较【答案】A【解析】【分析】根据中位数可得甲班优秀的人数最多有13人,乙班优秀的人数最少有14人,据此可得答案.【详解】解:由表格可知,每班有27人,则中位数是排序后第14名学生的成绩,∵甲班的中位数是104,乙班的中位数是106,∴甲班优秀的人数最多有13人,乙班优秀的人数最少有14人,∴甲优<乙优,故选:A.【点睛】本题考查了中位数的应用,熟练掌握中位数的意义和求法是解题的关键.7.回忆位中数和众数的概念;8.某鞋店一天中卖出运动鞋11双,其中各种尺码的鞋的销售量如下表:尺码(cm)23.52424.52525.5销售量12251则这11双鞋的尺码组成的一组数据中,众数和中位数分别是()A.25,25 B.24.5,25 C.25,24.5 D.24.5,24.5【答案】A【解析】【分析】【详解】解:从小到大排列此数据为:23.5、24、24、24.5、24.5、25、25、25、25、25、26,数据25出现了五次最多为众数.25处在第6位为中位数.所以中位数是25,众数是25.故选:A.9.一组数据2,x,6,3,3,5的众数是3和5,则这组数据的中位数是()A.3 B.4 C.5 D.6【答案】B【解析】【分析】由众数的定义求出x=5,再根据中位数的定义即可解答.【详解】解:∵数据2,x,3,3,5的众数是3和5,∴x=5,则数据为2、3、3、5、5、6,这组数据为352=4.故答案为B.【点睛】本题主要考查众数和中位数,根据题意确定x的值以及求中位数的方法是解答本题的关键.10.为了解九(1)班学生的体温情况,对这个班所有学生测量了一次体温(单位:℃),小明将测量结果绘制成如下统计表和如图所示的扇形统计图.下列说法错误的是()A.这些体温的众数是8 B.这些体温的中位数是36.35 C.这个班有40名学生D.x=8【答案】A【解析】【分析】【详解】解:由扇形统计图可知:体温为36.1℃所占的百分数为36360×100%=10%,则九(1)班学生总数为410%=40,故C正确;则x=40﹣(4+8+8+10+2)=8,故D正确;由表可知这些体温的众数是36.4℃,故A错误;由表可知这些体温的中位数是36.336.42+=36.35(℃),故B正确.故选A.考点:①扇形统计图;②众数;③中位数.11.为了迎接2022年的冬奥会,中小学都积极开展冰上运动,小乙和小丁进行500米短道速滑比赛,他们的五次成绩(单位:秒)如表所示:12345小乙4563555260小丁5153585657设两人的五次成绩的平均数依次为x乙,x丁,成绩的方差一次为2S乙,2S丁,则下列判断中正确的是( )A.x x=乙丁,22S S<乙丁B.x x=乙丁,22S S>乙丁C.x x>乙丁,22S S>乙丁D.x x<乙丁,22S S<乙丁【答案】B 【解析】【分析】根据平均数的计算公式先求出甲和乙的平均数,再根据方差的意义即可得出答案. 【详解】4563555260555x ++++==乙,则()()()()()2222221455563555555525560555S ⎡⎤=⨯-+-+-+-+-⎣⎦乙39.6=,5153585657555x ++++==丁,则()()()()()2222221515553555855565557555S ⎡⎤=⨯-+-+-+-+-⎣⎦丁 6.8=,所以x x =乙丁,22S S >乙丁,故选B . 【点睛】本题考查方差的定义与意义:一般地设n 个数据,1x ,2x ,…n x 的平均数为x ,则方差()()()2222121n S x x x x x x n ⎡⎤=-+-+⋅⋅⋅+-⎢⎥⎣⎦,它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.12.郑州某中学在备考2018河南中考体育的过程中抽取该校九年级20名男生进行立定跳远测试,以便知道下一阶段的体育训练,成绩如下所示:则下列叙述正确的是( ) A .这些运动员成绩的众数是 5 B .这些运动员成绩的中位数是 2.30 C .这些运动员的平均成绩是 2.25 D .这些运动员成绩的方差是 0.0725 【答案】B 【解析】 【分析】根据方差、平均数、中位数和众数的计算公式和定义分别对每一项进行分析,即可得出答案. 【详解】由表格中数据可得:A 、这些运动员成绩的众数是2.35,错误;B 、这些运动员成绩的中位数是2.30,正确;C 、这些运动员的平均成绩是 2.30,错误;D、这些运动员成绩的方差不是0.0725,错误;故选B.【点睛】考查了方差、平均数、中位数和众数,熟练掌握定义和计算公式是本题的关键,平均数平均数表示一组数据的平均程度.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);方差是用来衡量一组数据波动大小的量.13.5、2.4、2.4、2.4、2.3的中位数是2.4,选项C不符合题意.15×[(2.3﹣2.4)2+(2.4﹣2.4)2+(2.5﹣2.4)2+(2.4﹣2.4)2+(2.4﹣2.4)2]=15×(0.01+0+0.01+0+0)=15×0.02=0.004∴这组数据的方差是0.004,∴选项D不符合题意.故选B.【点睛】此题主要考查了中位数、众数、算术平均数、方差的含义和求法,要熟练掌握.14.立定跳远是体育中考选考项目之一,体育课上老师记录了某同学的一组立定跳远成绩如表:则下列关于这组数据的说法,正确的是()A.众数是2.3 B.平均数是2.4C.中位数是2.5 D.方差是0.01【答案】B【解析】【分析】一组数据中出现次数最多的数据叫做众数;平均数是指在一组数据中所有数据之和再除以数据的个数.它是反映数据集中趋势的一项指标;将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数;一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差.【详解】这组数据中出现次数最多的是2.4,众数是2.4,选项A不符合题意;∵(2.3+2.4+2.5+2.4+2.4)÷5=12÷5=2.4∴这组数据的平均数是2.4,∴选项B符合题意.15.小王在清点本班为偏远贫困地区的捐款时发现,全班同学捐款的钞票情况如下:100元的3 张,50元的9张,10元的23张,5元的10张.在这些不同面额的钞票中,众数是()A.10 B.23 C.50 D.100【答案】A【解析】【分析】根据众数就是一组数据中,出现次数最多的数,即可得出答案.【详解】∵100元的有3 张,50元的有9张,10元的有23张,5元的有10张,其中10元的最多,∴众数是10元.故答案为A.【点睛】本题考查众数的概念.,一组数据中出现次数做多的数叫做众数.16.某校为了解学生的课外阅读情况,随机抽取了一个班级的学生,对他们一周的读书时间进行了统计,统计数据如下表所示:则该班学生一周读书时间..的中位数和众数分别是()读书时间(小时)7891011学生人数610987A.9,8 B.9,9 C.9.5,9 D.9.5,8【答案】A【解析】【分析】根据中位数和众数的定义进行解答即可.【详解】由表格,得该班学生一周读书时间的中位数和众数分别是9,8.【点睛】本题主要考查了中位数和众数,掌握中位数和众数的定义及求法是解答的关键.17.数据2、5、6、0、6、1、8的中位数是()A.8 B.6 C.5 D.0【答案】C【解析】【分析】将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.【详解】将数据从小到大排列为:0,1,2,5,6,6,8∵这组数据的个数是奇数∴最中间的那个数是中位数即中位数为5故选C.【点睛】此题考查了平均数与中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.18.体育课上,某班两名同学分别进行了5次短跑训练,要判断哪一位同学的成绩比较稳定,通常要比较两名同学成绩的()A.平均数B.方差C.众数D.中位数【答案】B【解析】【分析】平均数、众数、中位数反映的是数据的集中趋势,方差反映的是数据的离散程度,方差越大,说明这组数据越不稳定,方差越小,说明这组数据越稳定.【详解】解:由于方差能反映数据的稳定性,故需要比较这两名同学5次短跑训练成绩的方差.故选B.【点睛】考核知识点:均数、众数、中位数、方差的意义.19.据统计,某住宅楼30户居民五月份最后一周每天实行垃圾分类的户数依次是:27,30,29,25,26,28,29,那么这组数据的中位数和众数分别是()A.25和30 B.25和29 C.28和30 D.28和29【答案】D【解析】【分析】根据中位数和众数的定义进行求解即可得答案.【详解】对这组数据重新排列顺序得,25,26,27,28,29,29,30,处于最中间是数是28,∴这组数据的中位数是28,在这组数据中,29出现的次数最多,∴这组数据的众数是29,故选D.【点睛】本题考查了中位数和众数的概念,熟练掌握众数和中位数的概念是解题的关键.一组数据中出现次数最多的数据叫做众数,一组数据按从小到大(或从大到小)排序后,位于最中间的数(或中间两数的平均数)是这组数据的中位数.20.某校在中国学生核心素养知识竞赛中,通过激烈角逐,甲、乙、丙、丁四名同学胜出,他们的成绩如表:如果要选出一个成绩较好且状态稳定的同学去参加市级比赛,应选()A.丁B.丙C.乙D.甲【答案】B【解析】【分析】先比较平均数得到甲和丙成绩较好,然后比较方差得到丙的状态稳定,即可决定选丙去参赛.【详解】∵甲、丙的平均数比乙、丁大,∴甲和丙成绩较好,∵丙的方差比甲的小,∴丙的成绩比较稳定,∴丙的成绩较好且状态稳定,应选的是丙,故选:B.【点睛】本题考查了方差:一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差;方差是反映一组数据的波动大小的一个量,方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.也考查了平均数的意义.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

新初中数学数据分析真题汇编附答案(2)一、选择题1.对于两组数据A ,B ,如果s A 2>s B 2,且A B x x =,则( ) A .这两组数据的波动相同 B .数据B 的波动小一些 C .它们的平均水平不相同 D .数据A 的波动小一些【答案】B 【解析】试题解析:方差越小,波动越小.22,A B s s >Q数据B 的波动小一些. 故选B.点睛:本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.2.某学校组织学生进行社会主义核心价值观的知识竞赛,进入决赛的共有20名学生,他们的决赛成绩如下表所示:那么20名学生决赛成绩的众数和中位数分别是( ) A .85,90 B .85,87.5C .90,85D .95,90【答案】B 【解析】试题解析:85分的有8人,人数最多,故众数为85分; 处于中间位置的数为第10、11两个数, 为85分,90分,中位数为87.5分. 故选B .考点:1.众数;2.中位数3.某单位招考技术人员,考试分笔试和面试两部分,笔试成绩与面试成绩按6:4记入总成绩,若小李笔试成绩为80分,面试成绩为90分,则他的总成绩为( ) A .84分 B .85分C .86分D .87分【答案】A 【解析】 【分析】按照笔试与面试所占比例求出总成绩即可.根据题意,按照笔试与面试所占比例求出总成绩:648090841010⨯+⨯=(分)故选A【点睛】本题主要考查了加权平均数的计算,解题关键是正确理解题目含义.4.在学校的体育训练中,小杰投掷实心球的7次成绩如统计图所示,则这7次成绩的中位数和平均数分别是()A.9.7m,9.9m B.9.7m,9.8m C.9.8m,9.7m D.9.8m,9.9m【答案】B【解析】【分析】将这7个数据从小到大排序后处在第4位的数是中位数,利用算术平均数的计算公式进行计算即可.【详解】把这7个数据从小到大排列处于第4位的数是9.7m,因此中位数是9.7m,平均数为:(9.59.69.79.79.810.110.2)79.8++++++÷=m,故选:B.【点睛】考查中位数、算术平均数的计算方法,将一组数据从小到大排列后处在中间位置的一个数或两个数的平均数就是这组数据的中位数,平均数则是反映一组数据的集中水平.5.有甲、乙两种糖果,原价分别为每千克a元和b元.根据调查,将两种糖果按甲种糖果x千克与乙种糖果y千克的比例混合,取得了较好的销售效果.现在糖果价格有了调整:甲种糖果单价下降15%,乙种糖果单价上涨20%,但按原比例混合的糖果单价恰好不变,则xy等于()A.34abB.43abC.34baD.43ba【解析】【分析】根据已知条件表示出价格变化前后两种糖果的平均价格,进而得出等式求出即可.【详解】解:∵甲、乙两种糖果,原价分别为每千克a元和b元,两种糖果按甲种糖果x千克与乙种糖果y千克的比例混合,∴两种糖果的平均价格为:ax byx y++,∵甲种糖果单价下降15%,乙种糖果单价上涨20%,∴两种糖果的平均价格为:1520 (1)(1)100100a xb yx y-•+++,∵按原比例混合的糖果单价恰好不变,∴ax byx y++=1520(1)(1)100100a xb yx y-•+++,整理,得15ax=20by∴43x by a =,故选:D.【点睛】本题考查了加权平均数,解决本题的关键是表示出价格变化前后两种糖果的平均价格.6.某班40名同学一周参加体育锻炼时间统计如表所示:那么该班40名同学一周参加体育锻炼时间的众数、中位数分别是()A.17,8.5 B.17,9 C.8,9 D.8,8.5【答案】D【解析】【分析】根据中位数、众数的概念分别求得这组数据的中位数、众数.【详解】解:众数是一组数据中出现次数最多的数,即8;由统计表可知,处于20,21两个数的平均数就是中位数,∴这组数据的中位数为898.5 2+=;故选:D.【点睛】考查了中位数、众数的概念.本题为统计题,考查众数与中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.7.某小组长统计组内6人一天在课堂上的发言次数分別为3,3,4,6,5,0.则这组数据的众数是()A.3 B.3.5 C.4 D.5【答案】A【解析】【分析】根据众数的定义,找数据中出现次数最多的数据即可.【详解】在3,3,4,6,5,0这组数据中,数字3出现了2次,为出现次数最多的数,故众数为3.故选A.【点睛】本题考查了众数的概念.众数是一组数据中出现次数最多的数据.8.某班有40人,一次体能测试后,老师对测试成绩进行了统计.由于小亮没有参加本次集体测试,因此计算其他39人的平均分为90分,方差239s=.后来小亮进行了补测,成绩为90分,关于该班40人的测试成绩,下列说法正确的是()A.平均分不变,方差变大B.平均分不变,方差变小C.平均分和方差都不变D.平均分和方差都改变【答案】B【解析】【分析】根据平均数,方差的定义计算即可.【详解】解:∵小亮的成绩和其他39人的平均数相同,都是90分,∴该班40人的测试成绩的平均分为90分,方差变小,故选:B.【点睛】本题考查方差,算术平均数等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.9.已知一组数据a、b、c的平均数为5,方差为4,那么数据a+2、b+2、c+2的平均数和方差分别为()A.7,6 B.7,4 C.5,4 D.以上都不对【答案】B【解析】【分析】根据数据a,b,c的平均数为5可知a+b+c=5×3,据此可得出13(-2+b-2+c-2)的值;再由方差为4可得出数据a-2,b-2,c-2的方差.【详解】解:∵数据a,b,c的平均数为5,∴a+b+c=5×3=15,∴13(a-2+b-2+c-2)=3,∴数据a-2,b-2,c-2的平均数是3;∵数据a,b,c的方差为4,∴13[(a-5)2+(b-5)2+(c-5)2]=4,∴a-2,b-2,c-2的方差=13[(a-2-3)2+(b-2-3)2+(c--2-3)2]= 13[(a-5)2+(b-5)2+(c-5)2]=4,故选B.【点睛】本题考查了平均数、方差,熟练掌握平均数以及方差的计算公式是解题的关键.10.样本数据3,a,4,b,8的平均数是5,众数是3,则这组数据的中位数是()A.2 B.3 C.4 D.8【答案】C【解析】【分析】先根据平均数为5得出a b10+=,由众数是3知a、b中一个数据为3、另一个数据为7,再根据中位数的定义求解可得.【详解】解:Q数据3,a,4,b,8的平均数是5,3a4b825∴++++=,即a b10+=,又众数是3,a∴、b中一个数据为3、另一个数据为7,则数据从小到大为3、3、4、7、8,∴这组数据的中位数为4,【点睛】此题考查了平均数、众数和中位数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,众数是一组数据中出现次数最多的数.11.下列说法正确的是( )A.打开电视机,正在播放“张家界新闻”是必然事件B.天气预报说“明天的降水概率为65%”,意味着明天一定下雨C.两组数据平均数相同,则方差大的更稳定D.数据5,6,7,7,8的中位数与众数均为7【答案】D【解析】【分析】根据必然事件的意义、概率的意义、方差的意义、中位数和众数的概念逐一进行判断即可.【详解】A.打开电视机,正在播放“张家界新闻”是随机事件,故A选项错误;B.天气预报说“明天的降水概率为65%”,意味着明天可能下雨,故B选项错误;C.两组数据平均数相同,则方差大的更不稳定,故C选项错误;D,数据5,6,7,7,8的中位数与众数均为7,正确,故选D.【点睛】本题考查了概率、方差、众数和中位数等知识,熟练掌握相关知识的概念、意义以及求解方法是解题的关键.12.某地区汉字听写大赛中,10名学生得分情况如下表:那么这10名学生所得分数的中位数和众数分别是()A.85和85 B.85.5和85 C.85和82.5 D.85.5和80【答案】A【解析】【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;众数是一组数据中出现次数最多的数据,可得答案.把这组数据从小到大排列,处于中间位置的两个数都是85,那么由中位数的定义可知,这组数据的中位数是85;在这一组数据中85出现的次数最多,则众数是85;故选:A.【点睛】此题考查众数与中位数的意义.解题关键在于掌握众数是一组数据中出现次数最多的数据;中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),叫做这组数据的中位数.如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.13.郑州某中学在备考2018河南中考体育的过程中抽取该校九年级20名男生进行立定跳远测试,以便知道下一阶段的体育训练,成绩如下所示:则下列叙述正确的是()A.这些运动员成绩的众数是 5B.这些运动员成绩的中位数是 2.30C.这些运动员的平均成绩是 2.25D.这些运动员成绩的方差是 0.0725【答案】B【解析】【分析】根据方差、平均数、中位数和众数的计算公式和定义分别对每一项进行分析,即可得出答案.【详解】由表格中数据可得:A、这些运动员成绩的众数是2.35,错误;B、这些运动员成绩的中位数是2.30,正确;C、这些运动员的平均成绩是 2.30,错误;D、这些运动员成绩的方差不是0.0725,错误;故选B.【点睛】考查了方差、平均数、中位数和众数,熟练掌握定义和计算公式是本题的关键,平均数平均数表示一组数据的平均程度.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);方差是用来衡量一组数据波动大小的量.14.为参加学校举办的“诗意校园•致远方”朗诵艺术大赛,八年级“屈原读书社”组织了五次选拔赛,这五次选拔赛中,小明五次成绩的平均数是90,方差是2;小强五次成绩的平均数也是90,方差是14.8.下列说法正确的是()A.小明的成绩比小强稳定B.小明、小强两人成绩一样稳定C.小强的成绩比小明稳定D.无法确定小明、小强的成绩谁更稳定【答案】A【解析】【分析】方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.【详解】∵小明五次成绩的平均数是90,方差是2;小强五次成绩的平均数也是90,方差是14.8.平均成绩一样,小明的方差小,成绩稳定,故选A.【点睛】本题考查方差、平均数的定义,解题的关键是熟练掌握基本知识,属于中考基础题.错因分析容易题.失分原因是方差的意义掌握不牢.15.小王在清点本班为偏远贫困地区的捐款时发现,全班同学捐款的钞票情况如下:100元的3 张,50元的9张,10元的23张,5元的10张.在这些不同面额的钞票中,众数是()A.10 B.23 C.50 D.100【答案】A【解析】【分析】根据众数就是一组数据中,出现次数最多的数,即可得出答案.【详解】∵100元的有3 张,50元的有9张,10元的有23张,5元的有10张,其中10元的最多,∴众数是10元.故答案为A.【点睛】本题考查众数的概念.,一组数据中出现次数做多的数叫做众数.16.在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如下表所示:则这些运动员成绩的中位数、众数分别为()A.1.70,1.75 B.1.70,1.70 C.1.65,1.75 D.1.65,1.70【答案】A【解析】分析:找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个.详解:共15名学生,中位数落在第8名学生处,第8名学生的跳高成绩为1.70m,故中位数为1.70;跳高成绩为1.75m的人数最多,故跳高成绩的众数为1.75;故选A.点睛:本题为统计题,考查众数与中位数的意义.众数是一组数据中出现次数最多的数.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.17.数据2、5、6、0、6、1、8的中位数是()A.8 B.6 C.5 D.0【答案】C【解析】【分析】将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.【详解】将数据从小到大排列为:0,1,2,5,6,6,8∵这组数据的个数是奇数∴最中间的那个数是中位数即中位数为5故选C.【点睛】此题考查了平均数与中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.18.在光明中学组织的全校师生迎“五四”诗词大赛中,来自不同年级的25名参赛同学的得分情况如图所示.这些成绩的中位数和众数分别是()A .96分,98分B .97分,98分C .98分,96分D .97分,96分【答案】A 【解析】 【分析】利用众数和中位数的定义求解. 【详解】98出现了9次,出现次数最多,所以数据的众数为98分;共有25个数,最中间的数为第13个数,是96,所以数据的中位数为96分. 故选A . 【点睛】本题考查了众数:一组数据中出现次数最多的数据叫做众数.也考查了中位数.19.某校九年级开展“光盘行动”宣传活动,各班级参加该活动的人数统计结果如下表,对于这组统计数据,下列说法中正确的是() 班级1班2班3班4班5班6班人数526062545862A .平均数是58B .中位数是58C .极差是40D .众数是60【答案】A 【解析】分别根据平均数,中位数,极差,众数的计算方法计算即可作出判断平均数是指在一组数据中所有数据之和再除以数据的个数,因此,这组数据的平均数是:526062545862586+++++=.中位数是一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数).由此将这组数据重新排序为52,54,58,60,62,62,∴中位数是按从小到大排列后第3,4个数的平均数为:59.根据一组数据中的最大数据与最小数据的差叫做这组数据的极差的定义,这组数据的极差是:62-52=10.众数是在一组数据中,出现次数最多的数据,这组数据中,出现次数最多的是62,故这组数据的众数为62.综上所述,说法正确的是:平均数是58.故选A.20.某校在中国学生核心素养知识竞赛中,通过激烈角逐,甲、乙、丙、丁四名同学胜出,他们的成绩如表:如果要选出一个成绩较好且状态稳定的同学去参加市级比赛,应选()A.丁B.丙C.乙D.甲【答案】B【解析】【分析】先比较平均数得到甲和丙成绩较好,然后比较方差得到丙的状态稳定,即可决定选丙去参赛.【详解】∵甲、丙的平均数比乙、丁大,∴甲和丙成绩较好,∵丙的方差比甲的小,∴丙的成绩比较稳定,∴丙的成绩较好且状态稳定,应选的是丙,故选:B.【点睛】本题考查了方差:一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差;方差是反映一组数据的波动大小的一个量,方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.也考查了平均数的意义.。

相关文档
最新文档