最新 广东省初三中考数学试卷

合集下载

2023年广东省中考数学真题含答案解析

2023年广东省中考数学真题含答案解析

绝密★启用前2023年广东省中考数学真题学校:___________姓名:___________班级:___________考号:___________注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上,写在试卷上无效。

3.考试结束后,本试卷和答题卡一并交回。

第I 卷(选择题)一、选择题(本大题共10小题,共30.0分。

在每小题列出的选项中,选出符合题目的一项) 1. 负数的概念最早出现在我国古代著名的数学专著《九章算术》中,如果把收入5元记作+5元,那么支出5元记作( )A. −5元B. 0元C. +5元D. +10元2. 下列出版社的商标图案中,是轴对称图形的为( )A. B. C. D.3. 2023年5月28日,我国自主研发的C919国产大飞机商业首航取得圆满成功,C919可储存约186000升燃油,将数据186000用科学记数法表示为( )A. 0.186×105B. 1.86×105C. 18.6×104D. 186×1034. 如图,街道AB 与CD 平行,拐角∠ABC =137∘,则拐角∠BCD =( )A. 43∘B. 53∘C. 107∘D. 137∘ 5. 计算3a +2a 的结果为( )A. 1aB. 6a 2C. 5aD. 6a 6. 我国著名数学家华罗庚曾为普及优选法作出重要贡献,优选法中有一种0.618法应用了( )A. 黄金分割数B. 平均数C. 众数D. 中位数7. 某学校开设了劳动教育课程.小明从感兴趣的“种植”“烹饪”“陶艺”“木工”4门课程中随机选择一门学习,每门课程被选中的可能性相等,小明恰好选中“烹饪”的概率为( )A. 18B. 16C. 14D. 128. 一元一次不等式组{x−2>1x<4的解集为( )A. −1<x<4B. x<4C. x<3D. 3<x<49. 如图,AB是⊙O的直径,∠BAC=50∘,则∠D=( )A. 20∘B. 40∘C. 50∘D. 80∘10. 如图,抛物线y=ax2+c经过正方形OABC的三个顶点A,B,C,点B在y轴上,则ac的值为( )A. −1B. −2C. −3D. −4第II卷(非选择题)二、填空题(本大题共5小题,共15.0分)11. 因式分解:x2−1=.12. 计算√ 3×√ 12=.13. 某蓄电池的电压为48V,使用此蓄电池时,电流I(单位:A)与电阻R(单位:Ω)的函数表达式为I=48R,当R=12Ω时,I的值为A.14. 某商品进价4元,标价5元出售,商家准备打折销售,但其利润率不能少于10%,则最多可打折.15. 边长分别为10,6,4的三个正方形拼接在一起,它们的底边在同一直线上(如图),则图中阴影部分的面积为.三、解答题(本大题共8小题,共64.0分。

2024年广东省广州市中考真题数学试卷含答案解析

2024年广东省广州市中考真题数学试卷含答案解析

2024年广东省广州市中考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.四个数10-,1-,0,10中,最小的数是( )A .10-B .1-C .0D .10【答案】A【分析】本题考查了有理数的大小比较,解题关键是掌握有理数大小比较法则:正数大于零,负数小于零,正数大于一切负数;两个正数比较大小,绝对值大的数大;两个负数比较大小,绝对值大的数反而小.【详解】解:101010-<-<< ,∴最小的数是10-,故选:A .2.下列图案中,点O 为正方形的中心,阴影部分的两个三角形全等,则阴影部分的两个三角形关于点O 对称的是( )A .B .C .D .【答案】C【分析】本题考查了图形关于某点对称,掌握中心对称图形的性质是解题关键.根据对应点连线是否过点O 判断即可.【详解】解:由图形可知,阴影部分的两个三角形关于点O 对称的是C ,故选:C .3.若0a ≠,则下列运算正确的是( )A .235a a a +=B .325a a a ⋅=C .235a a a⋅=D .321a a ÷=4.若a b <,则( )A .33a b +>+B .22a b ->-C .a b -<-D .22a b<【答案】D【分析】本题考查了不等式的基本性质,熟练掌握不等式的基本性质是解题关键.根据不等式的基本性质逐项判断即可得.【详解】解:A .∵a b <,∴33a b +<+,则此项错误,不符题意;B .∵a b <,∴22a b -<-,则此项错误,不符题意;C .∵a b <,∴a b ->-,则此项错误,不符合题意;D .∵a b <,∴22a b <,则此项正确,符合题意;故选:D .5.为了解公园用地面积x (单位:公顷)的基本情况,某地随机调查了本地50个公园的用地面积,按照04x <≤,48x <≤,812x <≤,1216x <≤,1620x <≤的分组绘制了如图所示的频数分布直方图,下列说法正确的是( )A .a 的值为20B .用地面积在812x <≤这一组的公园个数最多C .用地面积在48x <≤这一组的公园个数最少D .这50个公园中有一半以上的公园用地面积超过12公顷【答案】B【分析】本题考查的是从频数分布直方图获取信息,根基图形信息直接可得答案.【详解】解:由题意可得:5041612810a =----=,故A 不符合题意;用地面积在812x <≤这一组的公园个数有16个,数量最多,故B 符合题意;用地面积在04x <≤这一组的公园个数最少,故C 不符合题意;这50个公园中有20个公园用地面积超过12公顷,不到一半,故D 不符合题意;故选B6.某新能源车企今年5月交付新车35060辆,且今年5月交付新车的数量比去年5月交付的新车数量的1.2倍还多1100辆.设该车企去年5月交付新车x 辆,根据题意,可列方程为( )A .1.2110035060x +=B .1.2110035060x -=C .1.2(1100)35060x +=D .110035060 1.2x -=⨯【答案】A【分析】本题考查了一元一次方程的应用,找出题目中的数量关系是解题关键.设该车企去年5月交付新车x 辆,根据“今年5月交付新车的数量比去年5月交付的新车数量的1.2倍还多1100辆”列出方程即可.【详解】解:设该车企去年5月交付新车x 辆,根据题意得:1.2110035060x +=,故选:A .7.如图,在ABC 中,90A ∠=︒,6AB AC ==,D 为边BC 的中点,点E ,F 分别在边AB ,AC 上,AE CF =,则四边形AEDF 的面积为( )A .18B .C .9D .∵90BAC ∠=︒,AB AC =∴45BAD B C ∠=∠=∠=︒∴ADE CDF V V ≌,S S S =+8.函数21y ax bx c =++与2k y x=的图象如图所示,当( )时,1y ,2y 均随着x 的增大而减小.A .1x <-B .10x -<<C .02x <<D .1x >【答案】D 【分析】本题考查了二次函数以及反比例函数的图象和性质,利用数形结合的思想解决问题是关键.由函数图象可知,当1x >时,1y 随着x 的增大而减小;2y 位于在一、三象限内,且2y 均随着x 的增大而减小,据此即可得到答案.【详解】解:由函数图象可知,当1x >时,1y 随着x 的增大而减小;2y 位于一、三象限内,且在每一象限内2y 均随着x 的增大而减小,∴当1x >时,1y ,2y 均随着x 的增大而减小,故选:D .9.如图,O 中,弦AB 的长为C 在O 上,OC AB ⊥,30ABC ∠=︒.O 所在的平面内有一点P ,若5OP =,则点P 与O 的位置关系是( )A .点P 在O 上B .点P 在O 内C .点P 在O 外D .无法确定10.如图,圆锥的侧面展开图是一个圆心角为72︒的扇形,若扇形的半径l是5,则该圆锥的体积是()A B C.D【答案】D【分析】本题考查了弧长公式,圆锥的体积公式,勾股定理,理解圆锥的底面周长与侧面展开图扇形的弧长相等是解题关键,设圆锥的半径为r,则圆锥的底面周长为2rπ,根据弧长公式得出侧面展开图的弧长,进而得出1r=,再利用勾股定理,求出圆锥的高,再代入体积公式求解即可.【详解】解:设圆锥的半径为r,则圆锥的底面周长为2rπ,二、填空题11.如图,直线l 分别与直线a ,b 相交,a b ,若171∠=︒,则2∠的度数为 .【答案】109︒【分析】本题考查的是平行线的性质,邻补角的含义,先证明1371∠=∠=︒,再利用邻补角的含义可得答案.【详解】解:如图,∵a b ,171∠=︒,∴1371∠=∠=︒,∴21803109∠=︒-∠=︒;故答案为:109︒12.如图,把1R ,2R ,3R 三个电阻串联起来,线路AB 上的电流为I ,电压为U ,则123U IR IR IR =++.当120.3R =,231.9R =,347.8R =, 2.2I =时,U 的值为 .【答案】220【分析】本题考查了代数式求值,乘法运算律,掌握相关运算法则,正确计算是解题关键.根据123U IR IR IR =++,将数值代入计算即可.【详解】解:123U IR IR IR =++ ,当120.3R =,231.9R =,347.8R =, 2.2I =时,()20.3 2.231.9 2.247.8 2.220.331.947.8 2.2220U =⨯+⨯+⨯=++⨯=,故答案为:220.13.如图,ABCD Y 中,2BC =,点E 在DA 的延长线上,3BE =,若BA 平分EBC ∠,则DE = .【答案】5【分析】本题考查了平行四边形的性质,等腰三角形的判定和性质,掌握平行四边形的性质是解题关键.由平行四边形的性质可知,2AD BC ==,BC AD ∥,进而得出BAE EBA ∠=∠,再由等角对等边的性质,得到3BE AE ==,即可求出DE 的长.【详解】解:在ABCD Y 中,2BC =,2AD BC ∴==,BC AD ∥,CBA BAE ∴∠=∠,BA 平分EBC ∠,CBA EBA ∴∠=∠,BAE EBA∴∠=∠,3BE AE∴==,235DE AD AE∴=+=+=,故答案为:5.14.若2250a a--=,则2241a a-+=.【答案】11【分析】本题考查了已知字母的值求代数式的值,得出条件的等价形式是解题关键.由2250a a--=,得225a a-=,根据对求值式子进行变形,再代入可得答案.【详解】解:2250a a--=,225a a∴-=,()2224122125111a a a a∴-+=-+=⨯+=,故答案为:11.15.定义新运算:()()20a b aa ba b a⎧-≤⎪⊗=⎨-+>⎪⎩例如:224(2)40-⊗=--=,23231⊗=-+=.若314x⊗=-,则x的值为.16.如图,平面直角坐标系xOy 中,矩形OABC 的顶点B 在函数(0)k y x x =>的图象上,(1,0)A ,(0,2)C .将线段AB 沿x 轴正方向平移得线段A B ''(点A 平移后的对应点为A '),A B ''交函数(0)k y x x =>的图象于点D ,过点D 作DE y ⊥轴于点E ,则下列结论:①2k =;②OBD 的面积等于四边形ABDA '的面积;③A E ';④B BD BB O ''∠=∠.其中正确的结论有 .(填写所有正确结论的序号)∵1212AOB A OD S S '==⨯= ,∴BOK AKDA S S '= 四边形,∴BOK BKD AKDA S S S S '+=+ 四边形∴OBD 的面积等于四边形ABDA 如图,连接A E ',∵DE y ⊥轴,DA O EOA '∠=∠∴四边形A DEO '为矩形,∴A E OD '=,∴当OD 最小,则A E '最小,设()2,0D x x x ⎛⎫> ⎪⎝⎭,∴B BD A OB ''' ∽,∴B BD B OA '''∠=∠,∵B C A O ''∥,∴CB O A OB '''∠=∠,∴B BD BB O ''∠=∠,故④符合题意;三、解答题17.解方程:1325x x =-.解得:3x =,经检验,3x =是原方程的解,∴该分式方程的解为3x =.18.如图,点E ,F 分别在正方形ABCD 的边BC ,CD 上,3BE =,6EC =,2CF =.求证:ABE ECF △△∽.19.如图,Rt ABC △中,90B Ð=°.(1)尺规作图:作AC 边上的中线BO (保留作图痕迹,不写作法);(2)在(1)所作的图中,将中线BO 绕点O 逆时针旋转180︒得到DO ,连接AD ,CD .求证:四边形ABCD 是矩形.【答案】(1)作图见解析(2)证明见解析【分析】本题考查的是作线段的垂直平分线,矩形的判定,平行四边形的判定与性质,旋转的性质;(1)作出线段AC 的垂直平分线EF ,交AC 于点O ,连接BO ,则线段BO 即为所求;(2)先证明四边形ABCD 为平行四边形,再结合矩形的判定可得结论.【详解】(1)解:如图,线段BO 即为所求;(2)证明:如图,∵由作图可得:AO CO =,由旋转可得:BO DO =,∴四边形ABCD 为平行四边形,∵90ABC ∠=︒,∴四边形ABCD 为矩形.20.关于x 的方程2240x x m -+-=有两个不等的实数根.(1)求m 的取值范围;(2)化简:2113|3|21m m m m m ---÷⋅-+.【答案】(1)3m >(2)2-【分析】本题考查的是一元二次方程根的判别式,分式的混合运算,掌握相应的基础知识是解本题的关键;(1)根据一元二次方程根的判别式建立不等式解题即可;(2)根据(1)的结论化简绝对值,再计算分式的乘除混合运算即可.21.善于提问是应用人工智能解决问题的重要因素之一.为了解同学们的提问水平,对A,B两组同学进行问卷调查,并根据结果对每名同学的提问水平进行评分,得分情况如下(单位:分):A组75788282848687889395B组75778083858688889296(1)求A组同学得分的中位数和众数;(2)现从A、B两组得分超过90分的4名同学中随机抽取2名同学参与访谈,求这2名同学恰好来自同一组的概率.由树状图可知,共有12种等可能的情况,其中这2名同学恰好来自同一组的情况有∴这2名同学恰好来自同一组的概率41123=.22.2024年6月2日,嫦娥六号着陆器和上升器组合体(简称为“着上组合体”)成功着陆在月球背面.某校综合实践小组制作了一个“着上组合体”的模拟装置,在一次试验中,如图,该模拟装置在缓速下降阶段从A 点垂直下降到B 点,再垂直下降到着陆点C ,从B 点测得地面D 点的俯角为36.87︒,17AD =米,10BD =米.(1)求CD 的长;(2)若模拟装置从A 点以每秒2米的速度匀速下降到B 点,求模拟装置从A 点下降到B 点的时间.(参考数据:sin 36.870.60︒≈,cos36.870.80︒≈,tan 36.870.75︒≈)【答案】(1)CD 的长约为8米;(2)模拟装置从A 点下降到B 点的时间为4.5秒.【分析】本题考查了解直角三角形的应用——仰俯角问题,灵活运用锐角三角函数求边长是解题关键.(2)解:17AD =Q 22AC AD CD ∴=-=在BCD △中,C ∠=sin BC BDC BD∠= ,sin 36.87BC BD ∴=⋅︒15AB AC BC ∴=-=-23.一个人的脚印信息往往对应着这个人某些方面的基本特征.某数学兴趣小组收集了大量不同人群的身高和脚长数据,通过对数据的整理和分析,发现身高y 和脚长x 之间近似存在一个函数关系,部分数据如下表:脚长(cm)x ...232425262728...身高(cm)y (156163)170177184191…(1)在图1中描出表中数据对应的点(,)x y ;(2)根据表中数据,从(0)y ax b a =+≠和(0)k y k x=≠中选择一个函数模型,使它能近似地反映身高和脚长的函数关系,并求出这个函数的解析式(不要求写出x 的取值范围);(3)如图2,某场所发现了一个人的脚印,脚长约为25.8cm ,请根据(2)中求出的函数解析式,估计这个人的身高.【答案】(1)见解析(2)75y x =-(3)175.6cm【分析】本题考查了函数的实际应用,正确理解题意,选择合适的函数模型是解题关键.(1)根据表格数据即可描点;(2)选择函数(0)y ax b a =+≠近似地反映身高和脚长的函数关系,将点()()23,156,24,163代入即可求解;(3)将25.8cm 代入75y x =-代入即可求解;【详解】(1)解:如图所示:(2)解:由图可知:y 随着x 的增大而增大,因此选择函数(0)y ax b a =+≠近似地反映身高和脚长的函数关系,将点()()23,156,24,163代入得:1562316324a b a b=+⎧⎨=+⎩,解得:75a b =⎧⎨=-⎩∴75y x =-(3)解:将25.8cm 代入75y x =-得:725.85175.6cmy =⨯-=∴估计这个人身高175.6cm24.如图,在菱形ABCD 中,120C ∠=︒.点E 在射线BC 上运动(不与点B ,点C 重合),AEB △关于AE 的轴对称图形为AEF △.(1)当30BAF ∠=︒时,试判断线段AF 和线段AD 的数量和位置关系,并说明理由;(2)若6AB =+O 为AEF △的外接圆,设O 的半径为r .①求r 的取值范围;②连接FD ,直线FD 能否与O 相切?如果能,求BE 的长度;如果不能,请说明理由.【分析】(1)由菱形的性质可得120BAD C ∠=∠=︒,AB AD =,再结合轴对称的性质可得结论;(2)①如图,设AEF △的外接圆为O ,连接AC 交BD 于H .连接OA ,OE ,OF ,OC ,证明ABC 为等边三角形,,,,A E F C 共圆,2120AOE AFE ∠=∠=︒,O 在BD 上,30AEO EAO ∠=∠=︒,过O 作OJ AE ⊥于J ,当AE BC ⊥时,AE 最小,则AO 最小,再进一步可得答案;②如图,以A 为圆心,AC 为半径画圆,可得,,,B C F D 在A 上,延长CA 与A 交于L ,连接DL ,证明18030150CFD ∠=︒-︒=︒,可得60OFC ∠=︒,OCF △为等边三角形,证明1203090BAF ∠=︒-︒=︒,可得:45BAE FAE ∠=∠=︒,BE EF =,过E 作EM AF ⊥于M ,再进一步可得答案.【详解】(1)解:AF AD =,AF AD ⊥;理由如下:∵在菱形ABCD 中,120C ∠=︒,∴120BAD C ∠=∠=︒,AB AD =,∵30BAF ∠=︒,∴1203090FAD ∠=︒-︒=︒,∴AF AD ⊥,由对折可得:AB AF =,∴AF AD =;(2)解:①如图,设AEF △的外接圆为O ,连接AC 交BD 于H .连接OA ,OE ,OF ,OC ,∵四边形ABCD 为菱形,120BCD ∠=︒,∴AC BD ⊥, 60BCA ∠=︒,BA BC =,∴ABC 为等边三角形,∴60ABC AFE ACB ∠=∠=︒=∠,∴,,,A E F C 共圆,2120AOE AFE ∠=∠=︒,O 在BD 上,同理可得ACD 为等边三角形,∴60CAD ∠=︒,∴30CLD ∠=︒,∴18030150CFD ∠=︒-︒=︒,∵DF 为O 的切线,∴90OFD ∠=︒,∴60OFC ∠=︒,∵OC OF =,∴OCF △为等边三角形,∴60COF ∠=︒,∴1302CAF COF ∠=∠=︒,25.已知抛物线232:621(0)G y ax ax a a a =--++>过点()1,2A x 和点()2,2B x ,直线2:l y m x n =+过点(3,1)C ,交线段AB 于点D ,记CDA 的周长为1C ,CDB △的周长为2C ,且122C C =+.(1)求抛物线G 的对称轴;(2)求m 的值;(3)直线l 绕点C 以每秒3︒的速度顺时针旋转t 秒后(045)t ≤<得到直线l ',当l AB '∥时,直线l '交抛物线G 于E ,F 两点.①求t 的值;②设AEF △的面积为S ,若对于任意的0a >,均有S k ≥成立,求k 的最大值及此时抛物线G 的解析式.∵直线2:l y m x n =+过点(3,1)C ,2C ,且122C C =+,∴A 在B 的左边,AD AC CD ++=∵C 在抛物线的对称轴上,∴CA CB =,∴345t =,解得:15t =,②∵()1122AEF A E S EF y y EF =⋅-= 当1y =时,232621ax ax a a --++∴22620x x a a --+=,。

数学九年级中考广东试卷【含答案】

数学九年级中考广东试卷【含答案】

数学九年级中考广东试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 若函数f(x) = x² 4x + 3,则f(2)的值为:A. -1B. 0C. 1D. 32. 下列函数中,奇函数是:A. y = x³B. y = x²C. y = |x|D. y = x⁴3. 已知一组数据2, 3, 5, 7, 11, x,其平均数为6,则x的值为:A. 4B. 6C. 8D. 104. 若直线y = 2x + 1与y轴的交点为(0, b),则b的值为:A. 0B. 1C. 2D. 35. 二项式展开式(1 + x)⁵的系数和为:A. 1B. 2C. 32D. 64二、判断题(每题1分,共5分)6. 若a > b,则a² > b²。

()7. 一元二次方程ax² + bx + c = 0(a ≠ 0)的判别式Δ = b² 4ac。

()8. 对角线互相垂直平分的四边形一定是菱形。

()9. 函数y = 2x + 3的图像是一条直线。

()10. 两个相互垂直的向量一定是零向量。

()三、填空题(每题1分,共5分)11. 已知三角形ABC中,∠A = 60°,AB = AC,则三角形ABC是____三角形。

12. 若函数f(x) = 3x 2,则f(-1) = ______。

13. 平方差公式:a² b² = _______。

14. 若一组数据2, 3, 5, 7, 11的平均数为6,则这组数据的方差是______。

15. 二项式定理中,(a + b)⁵展开后的项数为______。

四、简答题(每题2分,共10分)16. 解释什么是函数的单调性,并举一个例子。

17. 简述平行线的性质。

18. 什么是二次函数的顶点式?如何用顶点式求二次函数的最值?19. 简述等差数列和等比数列的定义。

20. 什么是坐标轴?如何用坐标轴表示一个点的位置?五、应用题(每题2分,共10分)21. 已知一元二次方程x² 5x + 6 = 0,求方程的解。

广东初三数学试题及答案

广东初三数学试题及答案

广东初三数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是无理数?A. 3.14159B. √2C. 0.1010010001…(1后面无限个0)D. 1/7答案:B2. 一个圆的直径是10厘米,那么它的周长是多少?A. 31.4厘米B. 15.7厘米C. 20厘米D. 10厘米答案:A3. 如果一个角的补角是它的3倍,那么这个角的度数是多少?A. 45°B. 60°C. 75°D. 90°答案:A4. 一个数的平方根是它本身,这个数是?A. 0B. 1C. -1D. 以上都不正确答案:A5. 一次函数y=2x+3的图像不经过哪个象限?A. 第一象限B. 第二象限C. 第三象限D. 第四象限答案:C6. 一个长方体的长、宽、高分别是2cm、3cm、4cm,它的体积是多少?A. 24立方厘米B. 12立方厘米C. 8立方厘米D. 6立方厘米答案:A7. 一个等腰三角形的两边长分别是5cm和8cm,那么它的周长可能是多少?A. 18cmB. 21cmC. 26cmD. 无法确定答案:B8. 下列哪个图形是轴对称图形?A. 圆B. 正方形C. 正五边形D. 所有选项答案:D9. 一个数的相反数是-5,那么这个数是?A. 5B. -5C. 0D. 10答案:A10. 一个数的绝对值是5,那么这个数可能是?A. 5B. -5C. 5或-5D. 以上都不对答案:C二、填空题(每题4分,共20分)1. 一个数的立方根是它本身,这个数是______。

答案:0, 1, -12. 一个数的倒数是它本身,这个数是______。

答案:1或-13. 一个数的绝对值是它本身,这个数是非负数,即______。

答案:非负数4. 一个数的相反数是它本身,这个数是______。

答案:05. 一个数的平方是它本身,这个数是______。

答案:0或1三、解答题(每题10分,共50分)1. 已知一个直角三角形的两条直角边长分别为3cm和4cm,求斜边的长度。

2024年广东省广州市中考数学试卷正式版含答案解析

2024年广东省广州市中考数学试卷正式版含答案解析

绝密★启用前2024年广东省广州市中考数学试卷学校:___________姓名:___________班级:___________考号:___________注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上,写在试卷上无效。

3.考试结束后,本试卷和答题卡一并交回。

第I卷(选择题)一、选择题:本题共10小题,每小题3分,共30分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.四个数−10,−1,0,10中,最小的数是( )A. −10B. −1C. 0D. 102.下列图案中,点O为正方形的中心,阴影部分的两个三角形全等,则阴影部分的两个三角形关于点O对称的是( )A. B. C. D.3.若a≠0,则下列运算正确的是( )A. a2+a3=a5B. a3⋅a2=a5C. 2a⋅3a=5aD. a3÷a2=14.若a<b,则( )A. a+3>b+3B. a−2>b−2C. −a<−bD. 2a<2b5.为了解公园用地面积x(单位:公顷)的基本情况,某地随机调查了本地50个公园的用地面积,按照0<x≤4,4<x≤8,8<x≤12,12<x≤16,16<x≤20的分组绘制了如图所示的频数分布直方图,下列说法正确的是( )A. a的值为20B. 用地面积在8<x≤12这一组的公园个数最多C. 用地面积在4<x≤8这一组的公园个数最少D. 这50个公园中有一半以上的公园用地面积超过12公顷6.某新能源车企今年5月交付新车35060辆,且今年5月交付新车的数量比去年5月交付的新车数量的1.2倍还多1100辆.设该车企去年5月交付新车x辆,根据题意,可列方程为( )A. 1.2x+1100=35060B. 1.2x−1100=35060C. 1.2(x+1100)=35060D. x−1100=35060×1.27.如图,在△ABC中,∠A=90°,AB=AC=6,D为边BC的中点,点E,F分别在边AB,AC上,AE=CF,则四边形AEDF的面积为( )A. 18B. 9√ 2C. 9D. 6√ 28.函数y1=ax2+bx+c与y2=k的图象如图所示,当()时,y1,y2均随着xx的增大而减小.A. x<−1B. −1<x<0C. 0<x<2D. x>19.如图,⊙O中,弦AB的长为4√ 3,点C在⊙O上,OC⊥AB,∠ABC=30°.⊙O所在的平面内有一点P,若OP=5,则点P与⊙O的位置关系是( )A. 点P在⊙O上B. 点P在⊙O内C. 点P在⊙O外D. 无法确定10.如图,圆锥的侧面展开图是一个圆心角为72°的扇形,若扇形的半径l是5,则该圆锥的体积是( )A. 3√ 11π8πB. √ 118C. 2√ 6ππD. 2√ 63第II卷(非选择题)二、填空题:本题共6小题,每小题3分,共18分。

2023年广东省中考数学试卷及答案解析

2023年广东省中考数学试卷及答案解析

2023年广东省中考数学试卷一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)负数的概念最早出现在我国古代著名的数学专著《九章算术》中.如果把收入5元记作+5元,那么支出5元记作()A.﹣5元B.0元C.+5元D.+10元2.(3分)下列出版社的商标图案中,是轴对称图形的为()A.B.C.D.3.(3分)2023年5月28日,我国自主研发的C919国产大飞机商业首航取得圆满成功.C919可储存约186000升燃油,将数据186000用科学记数法表示为()A.0.186×105B.1.86×105C.18.6×104D.186×103 4.(3分)如图,街道AB与CD平行,拐角∠ABC=137°,则拐角∠BCD=()A.43°B.53°C.107°D.137°5.(3分)计算的结果为()A.B.C.D.6.(3分)我国著名数学家华罗庚曾为普及优选法作出重要贡献.优选法中有一种0.618法应用了()A.黄金分割数B.平均数C.众数D.中位数7.(3分)某学校开设了劳动教育课程.小明从感兴趣的“种植”“烹饪”“陶艺”“木工”4门课程中随机选择一门学习,每门课程被选中的可能性相等.小明恰好选中“烹饪”的概率为()A.B.C.D.8.(3分)一元一次不等式组的解集为()A.﹣1<x<4B.x<4C.x<3D.3<x<49.(3分)如图,AB是⊙O的直径,∠BAC=50°,则∠D=()A.20°B.40°C.50°D.80°10.(3分)如图,抛物线y=ax2+c经过正方形OABC的三个顶点A,B,C,点B在y轴上,则ac的值为()A.﹣1B.﹣2C.﹣3D.﹣4二、填空题:本大题共5小题,每小题3分,共15分.11.(3分)因式分解:x2﹣1=.12.(3分)计算:=.13.(3分)某蓄电池的电压为48V,使用此蓄电池时,电流I(单位:A)与电阻R(单位:Ω)的函数表达式为.当R=12Ω时,I的值为A.14.(3分)某商品进价4元,标价5元出售,商家准备打折销售,但其利润率不能少于10%,则最多可打折.15.(3分)边长分别为10,6,4的三个正方形拼接在一起,它们的底边在同一直线上(如图),则图中阴影部分的面积为.三、解答题(一):本大题共3小题,第16题10分,第17、18题各7分,共24分.16.(10分)(1)计算:+|﹣5|+(﹣1)2023.(2)已知一次函数y=kx+b的图象经过点(0,1)与点(2,5),求该一次函数的表达式.17.(7分)某学校开展了社会实践活动,活动地点距离学校12km,甲、乙两同学骑自行车同时从学校出发,甲的速度是乙的1.2倍,结果甲比乙早到10min,求乙同学骑自行车的速度.18.(7分)2023年5月30日,神舟十六号载人飞船发射取得圆满成功,3名航天员顺利进驻中国空间站.如图中的照片展示了中国空间站上机械臂的一种工作状态.当两臂AC=BC=10m,两臂夹角∠ACB=100°时,求A,B两点间的距离.(结果精确到0.1m,参考数据:sin50°≈0.766,cos50°≈0.643,tan50°≈1.192)四、解答题(二):本大题共3小题,每小题9分,共27分.19.(9分)如图,在▱ABCD中,∠DAB=30°.(1)实践与操作:用尺规作图法过点D作AB边上的高DE;(保留作图痕迹,不要求写作法)(2)应用与计算:在(1)的条件下,AD=4,AB=6,求BE的长.20.(9分)综合与实践主题:制作无盖正方体形纸盒.素材:一张正方形纸板.步骤1:如图1,将正方形纸板的边长三等分,画出九个相同的小正方形,并剪去四个角上的小正方形;步骤2:如图2,把剪好的纸板折成无盖正方体形纸盒.猜想与证明:(1)直接写出纸板上∠ABC与纸盒上∠A1B1C1的大小关系;(2)证明(1)中你发现的结论.21.(9分)小红家到学校有两条公共汽车线路.为了解两条线路的乘车所用时间,小红做了试验,第一周(5个工作日)选择A线路,第二周(5个工作日)选择B线路,每天在固定时间段内乘车2次并分别记录所用时间.数据统计如下:(单位:min)数据统计表实验序号12345678910 A线路所用时间15321516341821143520 B线路所用时间25292325272631283024根据以上信息解答下列问题:平均数中位数众数方差A线路所用时间22a1563.2B线路所用时间b26.5c 6.36(1)填空:a=;b=;c=;(2)应用你所学的统计知识,帮助小红分析如何选择乘车线路.五、解答题(三):本大题共2小题,每小题12分,共24分.22.(12分)综合探究如图1,在矩形ABCD中(AB>AD),对角线AC,BD相交于点O,点A关于BD的对称点为A′.连接AA′交BD于点E,连接CA′.(1)求证:AA'⊥CA';(2)以点O为圆心,OE为半径作圆.①如图2,⊙O与CD相切,求证:;②如图3,⊙O与CA′相切,AD=1,求⊙O的面积.23.(12分)综合运用如图1,在平面直角坐标系中,正方形OABC的顶点A在x轴的正半轴上.如图2,将正方形OABC绕点O逆时针旋转,旋转角为α(0°<α<45°),AB交直线y=x于点E,BC交y轴于点F.(1)当旋转角∠COF为多少度时,OE=OF;(直接写出结果,不要求写解答过程)(2)若点A(4,3),求FC的长;(3)如图3,对角线AC交y轴于点M,交直线y=x于点N,连接FN.将△OFN与△OCF的面积分别记为S1与S2.设S=S1﹣S2,AN=n,求S关于n的函数表达式.2023年广东省中考数学试卷参考答案与试题解析一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.【分析】本题考查负数的概念问题,负数和正数是具有相反意义的量,收入和支出是一对具有相反意义的量,进而作答.【解答】解:把收入5元记作+5元,根据收入和支出是一对具有相反意义的量,支出5元就记作﹣5元.故答案为A.【点评】本题考查负数和正数是具有相反意义的量,收入和支出是一对具有相反意义的量,解题的关键是理解相反意义的含义,进而作答.2.【分析】利用轴对称图形的定义进行分析即可.【解答】解:选项B,C,D中的图形都不能确定一条直线,使图形沿这条直线对折,直线两旁的部分能够完全重合,不是轴对称图形,选项A中的图形沿某条直线对折后两部分能完全重合,是轴对称图形,故选:A.【点评】此题主要考查了轴对称图形,关键是掌握如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴.3.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将186000用科学记数法表示为:1.86×105.故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.【分析】由平行线的性质即可求解.【解答】解:∵AB∥CD,∴∠ABC=∠BCD=137°,故选:D.【点评】本题考查平行线的性质,熟练掌握性质解解题关键.5.【分析】本题考查同分母分式的加减法,分母不变,分子相加减.【解答】解:==.故本题选:C.【点评】本题考查同分母分式相加减,分母不变,分子相加减.解题的关键是类比同分母分数的相加减进行计算即可.6.【分析】根据黄金分割的定义,即可解答.【解答】解:我国著名数学家华罗庚曾为普及优选法作出重要贡献.优选法中有一种0.618法应用了黄金分割数,故选:A.【点评】本题考查了黄金分割,算术平均数,中位线,众数,统计量的选择,熟练掌握这些数学知识是解题的关键.7.【分析】直接利用概率公式可得答案.【解答】解:∵共有“种植”“烹饪”“陶艺”“木工”4门兴趣课程,∴明恰好选中“烹饪”的概率为.故选:C.【点评】本题考查了概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数.8.【分析】求出第一个不等式的解集,再求出其公共解集即可.【解答】解:,由不等式x﹣2>1得:x>3,∴不等式的解集为3<x<4.故选:D.【点评】本题考查了解一元一次不等式组,解题的关键是熟知解集的规律.9.【分析】由AB是⊙O的直径,得∠ACB=90°,而∠BAC=50°,即得∠ABC=40°,故∠D=∠ABC=40°,【解答】解:∵AB是⊙O的直径,∴∠ACB=90°,∴∠BAC+∠ABC=90°,∵∠BAC=50°,∴∠ABC=40°,∵=,∴∠D=∠ABC=40°,故选:B.【点评】本题考查圆周角定理的应用,解题的关键是掌握直径所对的圆周角是直角和同弧所对的圆周角相等.10.【分析】过A作AH⊥x轴于H,根据正方形的性质得到∠AOB=45°,得到AH=OH,利用待定系数法求得a、c的值,即可求得结论.【解答】解:过A作AH⊥x轴于H,∵四边形ABCO是正方形,∴∠AOB=45°,∴∠AOH=45°,∴AH=OH,设A(m,m),则B(0,2m),∴,解得am=﹣1,m=,∴ac的值为﹣2,故选:B.【点评】本题考查了待定系数法求二次函数的解析式,根据图象得出抛物线经过的点的坐标是解题的关键.二、填空题:本大题共5小题,每小题3分,共15分.11.【分析】原式利用平方差公式分解即可.【解答】解:原式=(x+1)(x﹣1).故答案为:(x+1)(x﹣1).【点评】此题考查了因式分解﹣运用公式法,熟练掌握平方差公式是解本题的关键.12.【分析】本题考查二次根式的乘法计算,根据×=和=a(a>0)进行计算,【解答】解:方法一:×=×2=2×3=6.方法二:×===6.故答案为:6.【点评】本题考查二次根式的计算,考查的关键是准确运用×=和=a (a>0)进计算.13.【分析】直接将R=12代入I=中可得I的值.【解答】解:当R=12Ω时,I==4(A).故答案为:4.【点评】此题考查的是反比例函数的应用,掌握反比例函数的点的坐标是解决此题的关键.14.【分析】利润率不能少于10%,意思是利润率大于或等于10%,相应的关系式为:(打折后的销售价﹣进价)÷进价≥10%,把相关数值代入即可求解.【解答】解:设这种商品最多可以按x折销售,则售价为5×0.1x,那么利润为5×0.1x﹣4,所以相应的关系式为5×0.1x﹣4≥4×10%,解得:x≥8.8.答:该商品最多可以8.8折,故答案为:8.8.【点评】此题主要考查了一元一次不等式的应用,解决本题的关键是得到利润率的相关关系式,注意“不能低于”用数学符号表示为“≥”;利润率是利润与进价的比值.15.【分析】根据相似三角形的性质,利用相似比求出梯形的上底和下底,用面积公式计算即可.【解答】解:如图,∵BF∥DE,∴△ABF∽△ADE,∴=,∵AB=4,AD=4+6+10=20,DE=10,∴=,∴BF=2,∴GF=6﹣2=4,∵CK∥DE,∴△ACK∽△ADE,∴=,∵AC=4+6=10,AD=20,DE=10,∴=,∴CK=5,∴HK=6﹣5=1,∴阴影梯形的面积=(HK+GF)•GH=(1+4)×6=15.故答案为:15.【点评】本题考查的是相似三角形的判定与性质,解决本题的关键是掌握相似三角形的对应边成比例.三、解答题(一):本大题共3小题,第16题10分,第17、18题各7分,共24分.16.【分析】(1)利用立方根的性质、绝对值的性质以及负数指数幂的性质进行化简计算即可.(2)将(0,1)与(2,5)代入y=kx+b解方程组即可.【解答】(1)解:原式=2+5﹣1=6.(2)解:将(0,1)与(2,5)代入y=kx+b得:,解得:,∴一次函数的表达式为:y=2x+1.【点评】本题考查了实数的运算,待定系数法求一次函数表达式,正确化简各数,将点的坐标代入后能正确解方程组是解题的关键.17.【分析】设乙步行的速度为xkm/分,则甲骑自行车的速度为1.2xkm/分,根据题意列方程即可得到结论.【解答】解:设乙步行的速度为xkm/分,则甲骑自行车的速度为1.2xkm/分,根据题意得﹣=,解得x=12.经检验,x=12是原分式方程的解,答:乙骑自行车的速度为12km/h.【点评】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.18.【分析】连接AB,取AB中点D,连接CD,根据AC=BC,点D为AB中点,可得∠ACD=∠BCD=∠ACB=50°,在Rt△ACD中,sin50°=,解得AD=10×sin50°≈7.66(m),故AB=2AD≈15.3(m).【解答】解:连接AB,取AB中点D,连接CD,如图,∵AC=BC,点D为AB中点,∴中线CD为等腰三角形的角平分线(三线合一),AD=BD=AB,∴∠ACD=∠BCD=∠ACB=50°,在Rt△ACD中,sin∠ACD=,∴sin50°=,∴AD=10×sin50°≈7.66(m),∴AB=2AD=2×7.66=15.32≈15.3(m),答:A、B的距离大约是15.3m.【点评】本题考查解直角三角形的应用,解题的关键是掌握锐角三角函数的定义.四、解答题(二):本大题共3小题,每小题9分,共27分.19.【分析】(1)由基本作图即可解决问题;(2)由锐角的余弦求出AE的长,即可得到BE的长.【解答】解:(1)如图E即为所求作的点;(2)∵cos∠DAB=,∴AE=AD•cos30°=4×=2,∴BE=AB﹣AE=6﹣2.【点评】本题考查基本作图,平行四边形的性质,解直角三角形,关键是掌握基本作图,由锐角的余弦求出AE的长.20.【分析】(1)根据等腰直角三角形的性质即可求解;(2)根据勾股定理和勾股定理的逆定理和正方形的性质即可求解.【解答】解:(1)∠ABC=∠A1B1C1;(2)∵A1C1为正方形对角线,∴∠A1B1C1=45°,设每个方格的边长为1,则AB==,AC=BC==,∵AC2+BC2=AB2,∴由勾股定理的逆定理得△ABC是等腰直角三角形,∴∠ABC=45°,∴∠ABC=∠A1B1C1.【点评】本题考查了正方形的性质,勾股定理和勾股定理的逆定理,等腰直角三角形的判定与性质,得到△ABC是等腰直角三角形是解题的关键.21.【分析】本题考查数据的分析,数据的集中和波动问题,(1)平均数,中位数,众数的计算.(2)方差的实际应用.【解答】解:(1)求中位数a首先要先排序,从小到大顺序为:14,15,15,16,18,20,21,32,34,35.共有10个数,中位数在第5和6个数为18和20,所以中位数为=19,求平均数b==26.8,众数c=25,故答案为:19,26.8,25.(2)小红统计的选择A线路平均数为22,选择B线路平均数为26.8,用时差不太多.而方差63.2>6.36,相比较B路线的波动性更小,所以选择B路线更优.【点评】本题考查数据的波动与集中程度,解题的关键是能够平均数,中位数,众数进行准确的计算,理解方差的意义,并进行作答.五、解答题(三):本大题共2小题,每小题12分,共24分.22.【分析】(1)根据轴对称的性质可得AE=A′E,AA′⊥BD,根据四边形ABCD是矩形,得出OA=OC,从而OE∥A′C,从而得出AA′⊥CA′;(2)①设CD⊙O与CD切于点F,连接OF,并延长交AB于点G,可证得OG=OF=OE,从而得出∠EAO=∠GAO=∠GBO,进而得出∠EAO=30°,从而;②设⊙O切CA′于点H,连接OH,可推出AA′=2OH,CA′=2OE,从而AA′=CA′,进而得出∠A′AC=∠A′CA=45°,∠AOE=∠ACA′=45°,从而得出AE=OE,OD=OA=AE,设OA=OE=x,则OD=OA=,在Rt△ADE中,由勾股定理得出=1,从而求得x2=,进而得出⊙O的面积.【解答】(1)证明:∵点A关于BD的对称点为A′,∴AE=A′E,AA′⊥BD,∵四边形ABCD是矩形,∴OA=OC,∴OE∥A′C,∴AA′⊥CA′;(2)①证明:如图2,设CD⊙O与CD切于点F,连接OF,并延长交AB于点G,∴OF⊥CD,OF=OE,∵四边形ABCD是矩形,∴OB=OD=BD,AB∥CD,AC=BD,OA=AC,∴OG⊥AB,∠FDO=∠BOG,OA=OB,∴∠GAO=∠GBO,∵∠DOF=∠BOG,∴△DOF≌△BOG(ASA),∴OG=OF,∴OG=OE,由(1)知:AA′⊥BD,∴∠EAO=∠GAO,∵∠EAB+∠GBO=90°,∴∠EAO+∠GAO+∠GBO=90°,∴3∠EAO=90°,∴∠EAO=30°,由(1)知:AA′⊥CA′,∴tan∠EAO=,∴tan30°=,∴;②解:如图3,设⊙O切CA′于点H,连接OH,∴OH⊥CA′,由(1)知:AA′⊥CA′,AA′⊥CA′,OA=OC,∴OH∥AA′,OE∥CA′,∴△COH∽△CAA′,△AOE∽△ACA′,∴,∴AA′=2OH,CA′=2OE,∴AA′=CA′,∴∠A′AC=∠A′CA=45°,∴∠AOE=∠ACA′=45°,∴AE=OE,OD=OA=AE,设AE=OE=x,则OD=OA=,∴DE=OD﹣OE=()x,在Rt△ADE中,由勾股定理得,=1,∴x2=,∴S⊙O=π•OE2=.【点评】本题考查了圆的切线性质,矩形的性质,全等三角形的判定和性质,相似三角形的判定和性质,解直角三角形等知识,解决问题的关键是熟练掌握有关基础知识.23.【分析】(1)如图2中,当OE=OF时,得到Rt△AOE≌Rt△COF,利用全等三角形的性质以及旋转的性质解决问题即可;(2)在图2中,过点A作AG⊥x轴于点G,利用三角形相似,可得结论;(3)过点N作直线PQ⊥BC于点P,交OA于点Q,利用四点共圆,得出三角形FON 是等腰直角三角形是解决问题的关键,结合三角形全等的判定和性质和三角形的面积公式解决问题.【解答】解:(1)当OE=OF时,在Rt△AOE和Rt△COF中,,∴Rt△AOE≌Rt△COF(HL),∴∠AOE=∠COF(即∠AOE=旋转角),∴2∠AOE=45°,∴∠COF=∠AOE=22.5°,∴当旋转角为22.5°时,OE=OF;(2)过点A作AG⊥x轴于点G,则有AG=3,OG=4,∴,∵四边形OABC是正方形,∴OC=OA=5,∠AOC=∠C=90°,又∵∠COF+∠FOA=90°,∠AOG+∠FOA=90°,∴∠COG=∠GOA,∴Rt△AOG∽Rt△FOC,∴,∴,∴FC的长为;(3)过点N作直线PQ⊥BC于点P,交OA于点Q,∵四边形OABC是正方形,∴∠BCA=∠OCA=45°,BC∥OA,又∠FON=45°,∴∠FCN=∠FON=45°,∴F、C、O、N四点共圆,∴∠OFN=∠OCA=45°,∴∠OFN=∠FON=45°,∴△FON是等腰直角三角形,∴FN=NO,∠FNO=90°,∴∠FNP+∠ONQ=90°,又∵∠NOQ+∠ONQ=90°,∴∠NOQ=∠FNP,∴△NOQ≌△FNP(AAS),∴NP=OQ,FP=NQ,∵四边形OQPC是矩形,∴CP=OQ,OC=PQ,∴,=,,=,=,=,∴,又∵△ANQ为等腰直角三角形,∴,∴,∴S关于n的函数表达式为.【点评】本题属于一次函数综合题,考查了正方形的性质,旋转的性质,全等三角形的判定和性质,相似角三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题。

九年级上册广东数学试卷【含答案】

九年级上册广东数学试卷【含答案】

九年级上册广东数学试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 若一个正方形的边长为a,则它的对角线长为()A. aB. a√2C. 2aD. a/22. 下列函数中,哪个函数是奇函数?()A. y = x²B. y = |x|C. y = x³D. y = x² + 13. 若一组数据为2, 3, 5, 7, 11,则这组数据的中位数为()A. 2B. 3C. 5D. 74. 若sinθ = 1/2,且θ为锐角,则cosθ的值为()A. √3/2B. 1/2C. √2/2D. 1/√25. 在直角坐标系中,点(3, 4)关于y轴的对称点坐标为()A. (-3, 4)B. (3, -4)C. (-3, -4)D. (4, 3)二、判断题(每题1分,共5分)1. 任何两个奇函数的乘积一定是偶函数。

()2. 若一组数据的平均数为10,则这组数据中至少有一个数不小于10。

()3. 在等差数列中,若公差为0,则这个数列是一个常数数列。

()4. 若两个角的和为90度,则这两个角互为余角。

()5. 任何数的立方根都是唯一的。

()三、填空题(每题1分,共5分)1. 若一个三角形的两边长分别为5和12,且这两边的夹角为90度,则这个三角形的第三边长为______。

2. 若函数f(x) = 2x + 3,则f(-1)的值为______。

3. 若一个圆的半径为r,则这个圆的面积为______。

4. 若一组数据的方差为4,则这组数据的平均数为______。

5. 若log₂8 = 3,则2的3次方等于______。

四、简答题(每题2分,共10分)1. 请简述勾股定理的内容。

2. 什么是函数的单调性?请举例说明。

3. 请解释等差数列和等比数列的区别。

4. 什么是概率?请举例说明。

5. 请简述圆的标准方程。

五、应用题(每题2分,共10分)1. 一个长方体的长、宽、高分别为2cm、3cm、4cm,求这个长方体的体积。

广东2024中考数学试卷

广东2024中考数学试卷

选择题:
下列哪个数是无理数?
A. √4
B. 3.14
C. √2(正确答案)
D. 1/3
下列哪个选项是方程x2 - 4x + 4 = 0 的根?
A. x = 1
B. x = 2(正确答案)
C. x = -2
D. x = 4
下列哪个图形是中心对称图形但不是轴对称图形?
A. 正方形
B. 等腰三角形
C. 平行四边形(正确答案)
D. 圆
下列哪个式子表示的是二次函数?
A. y = 2x + 1
B. y = x2 - 4x + 4(正确答案)
C. y = 1/x
D. y = √x
在直角三角形中,如果一个锐角是30°,那么另一个锐角的大小是?
A. 30°
B. 45°
C. 60°(正确答案)
D. 90°
下列哪个数集是实数集的子集但不是有理数集的子集?
A. 自然数集
B. 整数集
C. 无理数集(正确答案)
D. 有理数集
下列哪个选项是不等式2x - 5 > 3 的解?
A. x = 1
B. x = 2
C. x = 3
D. x = 4(正确答案)
下列哪个图形可以通过平移得到另一个与其全等的图形?
A. 等边三角形
B. 正方形(正确答案)
C. 等腰直角三角形
D. 等腰梯形(非特殊情况下不能通过平移得到全等图形)
下列哪个式子表示的是一元一次不等式?
A. x2 + 3x > 5
B. x/2 - 1 < 3(正确答案)
C. x + y > 7
D. 2x + 3y < 8。

2023年广东省中考数学真题(解析版)

2023年广东省中考数学真题(解析版)

2023年广东省初中学业水平考试数学满分120分,考试用时90分钟.一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 负数的概念最早出现在我国古代著名的数学专著《九章算术》中,如果把收入5元记作5+元,那么支出5元记作( ) A 5−元 B. 0元C. 5+元D. 10+元【答案】A 【解析】【分析】根据相反数的意义可进行求解.【详解】解:由把收入5元记作5+元,可知支出5元记作5−元; 故选A .【点睛】本题主要考查相反数的意义,熟练掌握相反数的意义是解题的关键. 2. 下列出版社的商标图案中,是轴对称图形的为( )A. B. C. D.【答案】A 【解析】【分析】根据轴对称图形的概念:一个图形沿一条直线折叠,直线两旁部分能够完全重合的图形;由此问题可求解.【详解】解:符合轴对称图形的只有A 选项,而B 、C 、D 选项找不到一条直线能使直线两旁部分能够完全重合; 故选A .【点睛】本题主要考查轴对称图形的识别,熟练掌握轴对称图形的概念是解题的关键.3. 2023年5月28日,我国自主研发的C919国产大飞机商业首航取得圆满成功,C919可储存约186000升燃油,将数据186000用科学记数法表示为( ) A. 50.18610× B. 51.8610×C. 418.610×D. 318610×【答案】B 【解析】.【分析】科学记数法的表示形式为10n a ×的形式,其中110a ≤<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值大于或等于10时,n 是正整数;当原数的绝对值小于1时,n 是负整数. 【详解】解:将数据186000用科学记数法表示为51.8610×; 故选B【点睛】本题主要考查科学记数法,熟练掌握科学记数法的表示方法是解题的关键. 4. 如图,街道AB 与CD 平行,拐角137ABC ∠=°,则拐角BCD ∠=( )A. 43°B. 53°C. 107°D. 137°【答案】D 【解析】【分析】根据平行线的性质可进行求解. 【详解】解:∵AB CD ,137ABC ∠=°, ∴137BCD ABC ∠=∠=°; 故选D .【点睛】本题主要考查平行线的性质,熟练掌握平行线的性质是解题的关键. 5. 计算32a a+的结果为( ) A.1aB.26aC.5aD.6a【答案】C 【解析】【分析】根据分式的加法运算可进行求解. 【详解】解:原式5a=; 故选C .【点睛】本题主要考查分式的运算,熟练掌握分式的运算是解题的关键.6. 我国著名数学家华罗庚曾为普及优选法作出重要贡献,优选法中有一种0.618法应用了( ) A. 黄金分割数 B. 平均数C. 众数D. 中位数【答案】A【解析】【分析】根据黄金分割比可进行求解.【详解】解:0.618为黄金分割比,所以优选法中有一种0.618法应用了黄金分割数; 故选A .【点睛】本题主要考查黄金分割比,熟练掌握黄金分割比是解题的关键.7. 某学校开设了劳动教育课程.小明从感兴趣的“种植”“烹饪”“陶艺”“木工”4门课程中随机选择一门学习,每门课程被选中的可能性相等,小明恰好选中“烹饪”的概率为( ) A.18B.16C.14D.12【答案】C 【解析】【分析】根据概率公式可直接进行求解.【详解】解:由题意可知小明恰好选中“烹饪”的概率为14; 故选C .【点睛】本题主要考查概率,熟练掌握概率公式是解题的关键. 8. 一元一次不等式组214x x −> <的解集为( )A. 14x −<<B. 4x <C. 3x <D. 34x <<【答案】D 【解析】【分析】第一个不等式解与第二个不等式的解,取公共部分即可.【详解】解:214x x −><①② 解不等式①得:3x >结合②得:不等式组的解集是34x <<, 故选:D .【点睛】本题考查解一元一次不等式组,掌握解一元一次不等式组的一般步骤是解题的关键. 9. 如图,AB 是O 的直径,50BAC ∠=°,则D ∠=( )A. 20°B. 40°C.50°D. 80°【答案】B 【解析】【分析】根据圆周角定理可进行求解. 【详解】解:∵AB 是O 直径,∴90ACB ∠=°, ∵50BAC ∠=°,∴9040ABC BAC ∠=°−∠=°,∵ AC AC=, ∴40D ABC ∠=∠=°; 故选B .【点睛】本题主要考查圆周角的相关性质,熟练掌握直径所对圆周角为直角是解题的关键. 10. 如图,抛物线2y ax c =+经过正方形OABC 的三个顶点A ,B ,C ,点B 在y 轴上,则ac 的值为( )A. 1−B. 2−C. 3−D. 4−【答案】B 【解析】【分析】连接AC ,交y 轴于点D ,根据正方形的性质可知22AC OB AD OD ===,然后可得点,22c c A,进而代入求解即可.的【详解】解:连接AC ,交y 轴于点D ,如图所示:当0x =时,则y c =,即OB c =, ∵四边形OABC 是正方形,∴22AC OB AD OD c ====,AC OB ⊥,∴点,22c c A, ∴224c c a c =×+, 解得:2ac =−, 故选B .【点睛】本题主要考查二次函数的图象与性质及正方形的性质,熟练掌握二次函数的图象与性质及正方形的性质是解题的关键.二、填空题:本大题共5小题,每小题3分,共15分.11. 因式分解:21x −=______. 【答案】()()11x x +− 【解析】【分析】利用平方差公式进行因式分解即可得. 【详解】解:()()2111x x x −+−,故答案为:()()11x x +−.【点睛】本题考查了利用平方差公式进行因式分解,熟记平方差公式是解题关键. 12.=_________. 【答案】6 【解析】【分析】利用二次根式的乘法法则进行求解即可.6==.故答案为:6.【点睛】本题考查了二次根式的乘法,熟练掌握二次根式的乘法法则和二次根式的性质是解题的关键.13. 某蓄电池的电压为48V,使用此蓄电池时,电流I(单位:A)与电阻R(单位:Ω)的函数表达式为48IR=,当12R=Ω时,I的值为_______A.【答案】4【解析】【分析】将12R=Ω代入48IR=中计算即可;【详解】解:∵12R=Ω,∴4848412IR===()A故答案为:4.【点睛】本题考查已知自变量的值求函数值,掌握代入求值的方法是解题的关键.14. 某商品进价4元,标价5元出售,商家准备打折销售,但其利润率不能少于10%,则最多可打_______折.【答案】8.8【解析】【分析】设打x折,由题意可得5441010x×−≥×%,然后求解即可.【详解】解:设打x折,由题意得5441010x×−≥×%,解得:8.8≥x;故答案为8.8.【点睛】本题主要考查一元一次不等式的应用,熟练掌握一元一次不等式的应用是解题的关键.15. 边长分别为10,6,4的三个正方形拼接在一起,它们的底边在同一直线上(如图),则图中阴影部分的面积为_______.【答案】15 【解析】【分析】根据正方形的性质及相似三角形的性质可进行求解. 【详解】解:如图,由题意可知10,6,90AD DC CG CE GF CEF EFG =====∠=∠=°,4GH =, ∴10CH AD ==,∵90,D DCH AJD HJC ∠=∠=°∠=∠, ∴()AAS ADJ HCJ ≌, ∴5CJ DJ ==, ∴1EJ =, ∵GI CJ ∥, ∴HGI HCJ ∽, ∴25GIGH CJ CH ==, ∴2GI =, ∴4FI =, ∴()1152EJIF S EJ FI EF =+⋅=梯形; 故答案为15.【点睛】本题主要考查正方形的性质及相似三角形的性质与判定,熟练掌握正方形的性质及相似三角形的性质与判定是解题的关键.三、解答题(一):本大题共3小题,第16题10分,第17、18题各7分,共24分.16. (12023|5|(1)−+−;(2)已知一次函数y kx b =+的图象经过点(0,1)与点(2,5),求该一次函数的表达式. 【答案】(1)6;(2)21y x =+ 【解析】【分析】(1)先求出立方根及有理数的乘方运算,绝对值的化简,然后计算加减法即可; (2)将两个点代入解析式求解即可.【详解】解:(12023|5|(1)−+−251=+− 6=;(2)�一次函数y kx b =+的图象经过点(0,1)与点(2,5), �代入解析式得:152b k b = =+ ,解得:12b k == , ∴一次函数的解析式为:21y x =+. 【点睛】题目主要考查实数的混合运算及待定系数法确定一次函数解析式,熟练掌握这些基础知识点是解题关键.17. 某学校开展了社会实践活动,活动地点距离学校12km ,甲、乙两同学骑自行车同时从学校出发,甲的速度是乙的1.2倍,结果甲比乙早到10min ,求乙同学骑自行车的速度. 【答案】乙同学骑自行车的速度为0.2千米/分钟. 【解析】【分析】设乙同学骑自行车的速度为x 千米/分钟,则甲同学骑自行车的速度为1.2x 千米/分钟,根据时间=路程÷速度结合甲车比乙车提前10分钟到达,即可得出关于x 的分式方程,解之并检验后即可得出结论. 【详解】解:设乙同学骑自行车的速度为x 千米/分钟,则甲同学骑自行车的速度为1.2x 千米/分钟, 根据题意得:1212101.2x x−=, 解得:0.2x =.经检验,0.2x =是原方程的解,且符合题意, 答:乙同学骑自行车的速度为0.2千米/分钟.【点睛】题目主要考查分式方程的应用,理解题意列出分式方程是解题的关键.18. 2023年5月30日,神舟十六号载人飞船发射取得圆满成功,3名航天员顺利进驻中国空间站,如图中的照片展示了中国空间站上机械臂的一种工作状态,当两臂10m AC BC ==,两臂夹角100ACB ∠=°时,求A ,B 两点间的距离.(结果精确到0.1m ,参考数据sin 500.766°≈,cos500.643°≈,tan 50 1.192°≈)【答案】15.3m 【解析】【分析】连接AB ,作作CD AB ⊥于D ,由等腰三角形“三线合一”性质可知,2AB AD =,1502ACD ACB ∠=∠=°,在Rt ACD △中利用sin AD ACD AC∠=求出AD ,继而求出AB 即可.【详解】解:连接AB ,作CD AB ⊥于D ,∵AC BC =,CD AB ⊥,∴CD 是边AB 边上的中线,也是ACB ∠的角平分线,∴2AB AD =,1502ACD ACB ∠=∠=°, 在Rt ACD △中,10m AC =,50ACD ∠=°,sin AD ACD AC∠= ∴sin 5010AD°=, ∴10sin 50100.7667.66AD =°≈×=∴()227.6615.3215.3m ABAD =≈×=≈ 答:A ,B 两点间的距离为15.3m .【点睛】本题考查等腰三角的性质,解直角三角形的应用等知识,掌握等腰三角形的性质是解题的关键.四、解答题(二):本大题共3小题,每小题9分,共27分.19. 如图,ABCD Y 中,30DAB ∠=°.在(1)实践与操作:用尺规作图法过点D 作AB 边上的高DE ;(保留作图痕迹,不要求写作法) (2)应用与计算:在(1)的条件下,4=AD ,6AB =,求BE 的长. 【答案】(1)见解析 (2)6− 【解析】【分析】(1)根据过直线外一点作已知直线的垂线的方法作图即可,可用圆规以点D 为圆心,在AB 上找到两个点到点D 的距离相等,再分别以这两个点为圆心,相等且大于这两点距离的一半为半径画弧,再找到一个到这两个点的距离相等的点,连接最后得到的点与点D 所得线段所在的直线就是高DE 所在的直线,据此画图即可;(2)先利用30度角余弦值求出AE ,再由BE AB AE =−计算即可. 【小问1详解】解:依题意作图如下,则DE 即为所求作的高:【小问2详解】∵4=AD ,30DAB ∠=°,DE 是AB 边上的高, ∴cos AEDAB AD∠=,即cos304AE =°=,∴4AE 又∵6AB =,∴6BE AB AE =−=−, 即BE的长为6−.【点睛】本题考查尺规作图—作垂线,30度角的余弦值,掌握过直线外一点作垂线的方法和30度角的余弦值是解题的关键. 20. 综合与实践主题:制作无盖正方体形纸盒的素材:一张正方形纸板.步骤1:如图1,将正方形纸板的边长三等分,画出九个相同的小正方形,并剪去四个角上的小正方形; 步骤2:如图2,把剪好的纸板折成无盖正方体形纸盒.猜想与证明:(1)直接写出纸板上ABC ∠与纸盒上111A B C ∠的大小关系;(2)证明(1)中你发现的结论.【答案】(1)111ABC A B C ∠=∠(2)证明见解析.【解析】【分析】(1)ABC 和111A B C ∆均是等腰直角三角形,11145A BC B A C ∠∠==°;(2)证明ABC 是等腰直角三角形即可.【小问1详解】解:111ABC A B C ∠=∠【小问2详解】证明:连接AC ,设小正方形边长为1,则AC BC ===AB ==22255AC BC AB +=+=Q ,ABC ∴ 为等腰直角三角形,∵111111111A C B C A C B C ==⊥,, ∴111A B C 为等腰直角三角形,11145A B BC C A ∠∠=°∴=,故111ABC A B C ∠=∠ 【点睛】此题考查了勾股定理及其逆定理的应用和等腰三角形的性质,熟练掌握其性质是解答此题的关键�21. 小红家到学校有两条公共汽车线路,为了解两条线路的乘车所用时间,小红做了试验,第一周(5个工作日)选择A 线路,第二周(5个工作日)选择B 线路,每天在固定时间段内乘车2次并分别记录所用时间,数据统计如下:(单位:min)数据统计表 试验序号 1 2 3 4 5 6 7 8 9 10A 线路所用时间 15 32 15 16 34 18 21 14 35 20B 线路所用时间 25 29 23 25 27 26 31 28 30 24数据折线统计图根据以上信息解答下列问题:平均数 中位数 众数 方差A 线路所用时间 22 a15 63.2 B 线路所用时间 b26.5 c 6.36(1)填空:=a __________;b =___________;c =___________;(2)应用你所学的统计知识,帮助小红分析如何选择乘车线路.【答案】(1)19,26.8,25(2)见解析【解析】【分析】(1)根据中位数定义将A线路所用时间按从小到大的顺序排列,求中间两个数的平均数即为A线路所用时间的中位数a,利用平均数的定义求出B线路所用时间的平均数b,找出B线路所用时间中出现次数最多的数据即为B线路所用时间的众数c,从而得解;(2)根据四个统计量分析,然后根据分析结果提出建议即可.【小问1详解】解:将A线路所用时间按从小到大顺序排列得:14,15,15,16,18,20,21,32,34,35,中间两个数是18,20,�A线路所用时间的中位数为:1820192a+=,由题意可知B线路所用时间得平均数为:2529232527263128302426.810b+++++++++=,�B线路所用时间中,出现次数最多的数据是25,有两次,其他数据都是一次,�B线路所用时间的众数为:25c=故答案为:19,26.8,25;【小问2详解】根据统计量上来分析可知,A线路所用时间平均数小于B线路所用时间平均数线路,A线路所用时间中位数也小于B线路所用时间中位数,但A线路所用时间的方差比较大,说明A线路比较短,但容易出现拥堵情况,B线路比较长,但交通畅通,总体上来讲A路线优于B路线.因此,我的建议是:根据上学到校剩余时间而定,如果上学到校剩余时间比较短,比如剩余时间是21分钟,则选择A路线,因为A路线的时间不大于21分钟的次数有7次,而B路线的时间都大于21分钟;如果剩余时间不短也不长,比如剩余时间是31分钟,则选择B路线,因为B路线的时间都不大于31分钟,而A路线的时间大于31分钟有3次,选择B路线可以确保不迟到;如果剩余时间足够长,比如剩余时间是36分钟,则选择A路线,在保证不迟到的情况,选择平均时间更少,中位数更小的路线.【点睛】本题考查求平均数,中位数和众数,以及根据统计量做决策等知识,掌握统计量的求法是解题的关键.五、解答题(三):本大题共2小题,每小题12分,共24分.22综合探究.如图1,在矩形ABCD 中()AB AD >,对角线AC BD ,相交于点O ,点A 关于BD 的对称点为A ′,连接AA ′交BD 于点E ,连接CA ′.(1)求证:AA CA ′⊥′;(2)以点O 为圆心,OE 为半径作圆.�如图2,O 与CD 相切,求证:AA ′=′;�如图3,O 与CA ′相切,1AD =,求O 的面积.【答案】(1)见解析 (2)�见解析; 【解析】【分析】(1)由点A 关于BD 的对称点为A ′可知点E 是AA ′的中点,90AEO ∠=°,从而得到OE 是ACA ′ 的中位线,继而得到OE A C ′∥,从而证明AA CA ′⊥′;(2)�过点O 作OF AB ⊥于点F ,延长FO 交CD 于点G ,先证明()AAS OCG OAF ≌得到OG OF =,由O 与CD 相切,得到OG OE =,继而得到OE OF =,从而证明AO 是EAF ∠的角平分线,即OAE OAF ∠=∠,OAE OAF x ∠=∠=,求得2AOE x ∠=,利用直角三角形两锐角互余得到90AOE OAE ∠+∠=°,从而得到30OAE ∠=°,即30A AC ′∠=°,最后利用含30度角的直角三角形的性质得出AA ′=′;�先证明四边形A EOH ′是正方形,得到OE OH A H ′==,再利用OE 是ACA ′ 的中位线得到12OE A C ′=,从而得到OH CH =,45OCH ∠=°,再利用平行线的性质得到45AOE ∠=°,从而证明AEO △是等腰直角三角形,AE OE =,设AE OE r ==,求得)1DEr =−,在Rt ADE △中,222AE DE AD +=即)222211r r +−=,解得2r =,从而得到O 的面积为2S r π==.【小问1详解】∵点A 关于BD 的对称点为A ′,∴点E 是AA ′的中点,90AEO ∠=°,又∵四边形ABCD 是矩形,∴O 是AC 的中点,∴OE 是ACA ′ 的中位线,∴OE A C ′∥∴90AA C AEO ∠′=∠=°,∴AA CA ′⊥′【小问2详解】�过点O 作OF AB ⊥于点F ,延长FO 交CD 于点G ,则90OFA ∠=°,∵四边形ABCD 是矩形,∴AB CD ,AO BO CO DO ===,∴OCG OAF ∠=∠,90OGC OFA ∠=∠=°.∵OCG OAF ∠=∠,90OGC OFA ∠=∠=°,AO CO =,∴()AAS OCG OAF ≌,∴OG OF =.∵O 与CD 相切,OE 为半径,90OGC ∠=°,∴OG OE =,∴OE OF =又∵90AEO ∠=°即OE AE ⊥,OF AB ⊥,∴AO 是EAF ∠的角平分线,即OAE OAF ∠=∠,设OAE OAF x ∠=∠=,则OCG OAF x ∠=∠=,又∵CO DO =∴OCG ODG x ∠=∠=∴2AOE OCG ODG x ∠=∠+∠=又∵90AEO ∠=°,即AEO △是直角三角形,∴90AOE OAE ∠+∠=°,即290x x +=°解得:30x =°,∴30OAE ∠=°,即30A AC ′∠=°,在Rt A AC ′△中,30A AC ′∠=°,90AA C ′∠=°,∴2AC CA ′=,∴AA ′===′;�过点O 作OH A C ′⊥于点H ,∵O 与CA ′相切,∴OE OH =,90A HO ′∠=°∵90AA C AEO A EO A HO ′′∠′=∠=∠=∠=°∴四边形A EOH ′是矩形,又∵OE OH =,∴四边形A EOH ′是正方形,∴OE OH A H ′==,又∵OE 是ACA ′ 的中位线,∴12OE A C ′=∴12A H CH A C ′′==∴OH CH =又∵90A HO ′∠=°,∴45OCH ∠=°又∵OE A C ′∥,∴45AOE ∠=°又∵90AEO ∠=°,∴AEO △是等腰直角三角形,AE OE =,设AE OE r ==,则AO DO =∴)1DE DO OE r r =−=−=− 在Rt ADE △中,222AE DE AD +=,1AD =即)222211r r +=∴2r =∴O 的面积为:2S r π== 【点睛】本题考查矩形的性质,圆的切线的性质,含30度角的直角三角形的性质,等腰直角三角形的性质与判定,中位线的性质定理,角平分线的判定定理等知识,掌握相关知识并正确作出辅助线是解题的关键.23. 综合运用如图1,在平面直角坐标系中,正方形OABC 的顶点A 在x 轴的正半轴上,如图2,将正方形OABC 绕点O 逆时针旋转,旋转角为()045αα°<<°,AB 交直线y x =于点E ,BC 交y 轴于点F .(1)当旋转角COF ∠为多少度时,OE OF =;(直接写出结果,不要求写解答过程)(2)若点(4,3)A ,求FC 的长;(3)如图3,对角线AC 交y 轴于点M ,交直线y x =于点N ,连接FN ,将OFN △与OCF △的面积分别记为1S 与2S ,设12SS S =−,AN n =,求S 关于n 的函数表达式. 【答案】(1)22.5°(2)154FC =(3)212S n =【解析】【分析】(1)根据正方形的性质及直角三角形全等的判定及性质得出AOG AOE ∠∠=,再由题意得出45EOG ∠=°,即可求解;(2)过点A 作AP x ⊥轴,根据勾股定理及点的坐标得出5OA =,再由相似三角形的判定和性质求解即可; (3)根据正方形的性质及四点共圆条件得出O 、C 、F 、N 四点共圆,再由圆周角定理及等腰直角三角形的判定和性质得出FN ON =,90FNO ∠=°,过点N 作GQ BC ⊥于点G ,交OA 于点Q ,利用全等三角形及矩形的判定和性质得出,CG OQ CO QG ==,结合图形分别表示出1S ,2S ,得出212S S S NQ =−=,再由等腰直角三角形的性质即可求解.【小问1详解】解:�正方形OABC ,�OA OC =,90A C ∠=∠=°,�OE OF =,�Rt Rt (HL)OCF OAE ≌ ,�COF AOE ∠∠=,�COF AOG ∠∠=,�AOG AOE ∠∠=,�AB 交直线y x =于点E ,�45EOG ∠=°,�22.5AOG AOE ∠∠==°,即22.5COF ∠=°;【小问2详解】过点A 作AP x ⊥轴,如图所示:�(4,3)A ,�3,4AP OP ==,�5OA =,�正方形OABC ,�5OC OA ==,90C ∠=°,�90C APO ∠∠==°,�AOP COF ∠∠=,�OCF OPA ∽ , �OCFC OP AP =即543FC =, ∴154FC =;【小问3详解】�正方形OABC ,�45BCA OCA ∠∠==°,�直线y x =,�45FON ∠=°,�45BCA FON ∠∠==°,�O 、C 、F 、N 四点共圆,�45OCN FON ∠∠==°,�45OFN FON ∠∠==°,�FON ∆为等腰直角三角形,�FN ON =,90FNO ∠=°,过点N 作GQ BC ⊥于点G ,交OA 于点Q ,�BC OA ∥,�GQ OA ⊥,�90FNO ∠=°,�1290∠∠+=°,�1390∠∠+=°,�23∠∠=,∴(AAS)FGN NQO ≌�,GN OQFG QN ==, �GQ BC ⊥,90FCOCOQ ∠∠==°, �四边形COQG 为矩形,�,CG OQCO QG ==, �()()222222************OFN S S ON OQ NQ GN NQ GN NQ ∆===+=+=+, ()()()222221*********COF S S CF CO GC FG GN NQ GN NQ GN NQ ∆==⋅=−+=−=−, �212S S S NQ =−=,�45OAC ∠=°,�AQN △为等腰直角三角形,�NQ AN =,∴22212S NQ n ==【点睛】题目主要考查全等三角形、相似三角形及特殊四边形的判定和性质,四点共圆的性质,理解题意,作出辅助线,综合运用这些知识点是解题关键.21。

2023年广东省中考数学试卷附答案

2023年广东省中考数学试卷附答案

2023年广东省中考数学试卷附答案一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)负数的概念最早出现在我国古代著名的数学专著《九章算术》中.如果把收入5元记作+5元,那么支出5元记作()A.﹣5元B.0元C.+5元D.+10元2.(3分)下列出版社的商标图案中,是轴对称图形的为()A.B.C.D.3.(3分)2023年5月28日,我国自主研发的C919国产大飞机商业首航取得圆满成功.C919可储存约186000升燃油,将数据186000用科学记数法表示为()A.0.186×105B.1.86×105C.18.6×104D.186×103 4.(3分)如图,街道AB与CD平行,拐角∠ABC=137°,则拐角∠BCD=()A.43°B.53°C.107°D.137°5.(3分)计算的结果为()A.B.C.D.6.(3分)我国著名数学家华罗庚曾为普及优选法作出重要贡献.优选法中有一种0.618法应用了()A.黄金分割数B.平均数C.众数D.中位数7.(3分)某学校开设了劳动教育课程.小明从感兴趣的“种植”“烹饪”“陶艺”“木工”4门课程中随机选择一门学习,每门课程被选中的可能性相等.小明恰好选中“烹饪”的概率为()A.B.C.D.8.(3分)一元一次不等式组的解集为()A.﹣1<x<4B.x<4C.x<3D.3<x<4 9.(3分)如图,AB是⊙O的直径,∠BAC=50°,则∠D=()A.20°B.40°C.50°D.80°10.(3分)如图,抛物线y=ax2+c经过正方形OABC的三个顶点A,B,C,点B在y轴上,则ac的值为()A.﹣1B.﹣2C.﹣3D.﹣4二、填空题:本大题共5小题,每小题3分,共15分.11.(3分)因式分解:x2﹣1=.12.(3分)计算:=.13.(3分)某蓄电池的电压为48V,使用此蓄电池时,电流I(单位:A)与电阻R(单位:Ω)的函数表达式为.当R=12Ω时,I的值为A.14.(3分)某商品进价4元,标价5元出售,商家准备打折销售,但其利润率不能少于10%,则最多可打折.15.(3分)边长分别为10,6,4的三个正方形拼接在一起,它们的底边在同一直线上(如图),则图中阴影部分的面积为.三、解答题(一):本大题共3小题,第16题10分,第17、18题各7分,共24分.16.(10分)(1)计算:+|﹣5|+(﹣1)2023.(2)已知一次函数y=kx+b的图象经过点(0,1)与点(2,5),求该一次函数的表达式.17.(7分)某学校开展了社会实践活动,活动地点距离学校12km,甲、乙两同学骑自行车同时从学校出发,甲的速度是乙的1.2倍,结果甲比乙早到10min,求乙同学骑自行车的速度.18.(7分)2023年5月30日,神舟十六号载人飞船发射取得圆满成功,3名航天员顺利进驻中国空间站.如图中的照片展示了中国空间站上机械臂的一种工作状态.当两臂AC=BC=10m,两臂夹角∠ACB=100°时,求A,B两点间的距离.(结果精确到0.1m,参考数据:sin50°≈0.766,cos50°≈0.643,tan50°≈1.192)四、解答题(二):本大题共3小题,每小题9分,共27分.19.(9分)如图,在▱ABCD中,∠DAB=30°.(1)实践与操作:用尺规作图法过点D作AB边上的高DE;(保留作图痕迹,不要求写作法)(2)应用与计算:在(1)的条件下,AD=4,AB=6,求BE的长.20.(9分)综合与实践主题:制作无盖正方体形纸盒.素材:一张正方形纸板.步骤1:如图1,将正方形纸板的边长三等分,画出九个相同的小正方形,并剪去四个角上的小正方形;步骤2:如图2,把剪好的纸板折成无盖正方体形纸盒.猜想与证明:(1)直接写出纸板上∠ABC与纸盒上∠A1B1C1的大小关系;(2)证明(1)中你发现的结论.21.(9分)小红家到学校有两条公共汽车线路.为了解两条线路的乘车所用时间,小红做了试验,第一周(5个工作日)选择A线路,第二周(5个工作日)选择B线路,每天在固定时间段内乘车2次并分别记录所用时间.数据统计如下:(单位:min)数据统计表实验序号12345678910A线路所用时间15321516341821143520B线路所用时间25292325272631283024根据以上信息解答下列问题:平均数中位数众数方差A线路所用时间22a1563.2B线路所用时间b26.5c 6.36(1)填空:a=;b=;c=;(2)应用你所学的统计知识,帮助小红分析如何选择乘车线路.五、解答题(三):本大题共2小题,每小题12分,共24分.22.(12分)综合探究如图1,在矩形ABCD中(AB>AD),对角线AC,BD相交于点O,点A关于BD的对称点为A′.连接AA′交BD于点E,连接CA′.(1)求证:AA'⊥CA';(2)以点O为圆心,OE为半径作圆.①如图2,⊙O与CD相切,求证:;②如图3,⊙O与CA′相切,AD=1,求⊙O的面积.23.(12分)综合运用如图1,在平面直角坐标系中,正方形OABC的顶点A在x轴的正半轴上.如图2,将正方形OABC绕点O逆时针旋转,旋转角为α(0°<α<45°),AB交直线y=x于点E,BC交y轴于点F.(1)当旋转角∠COF为多少度时,OE=OF;(直接写出结果,不要求写解答过程)(2)若点A(4,3),求FC的长;(3)如图3,对角线AC交y轴于点M,交直线y=x于点N,连接FN.将△OFN与△OCF的面积分别记为S1与S2.设S=S1﹣S2,AN=n,求S关于n的函数表达式.2023年广东省中考数学试卷参考答案与试题解析一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)负数的概念最早出现在我国古代著名的数学专著《九章算术》中.如果把收入5元记作+5元,那么支出5元记作()A.﹣5元B.0元C.+5元D.+10元【答案】A【分析】本题考查负数的概念问题,负数和正数是具有相反意义的量,收入和支出是一对具有相反意义的量,进而作答.【解答】解:把收入5元记作+5元,根据收入和支出是一对具有相反意义的量,支出5元就记作﹣5元.故答案为A.【点评】本题考查负数和正数是具有相反意义的量,收入和支出是一对具有相反意义的量,解题的关键是理解相反意义的含义,进而作答.2.(3分)下列出版社的商标图案中,是轴对称图形的为()A.B.C.D.【答案】A【分析】利用轴对称图形的定义进行分析即可.【解答】解:选项B,C,D中的图形都不能确定一条直线,使图形沿这条直线对折,直线两旁的部分能够完全重合,不是轴对称图形,选项A中的图形沿某条直线对折后两部分能完全重合,是轴对称图形,故选:A.【点评】此题主要考查了轴对称图形,关键是掌握如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴.3.(3分)2023年5月28日,我国自主研发的C919国产大飞机商业首航取得圆满成功.C919可储存约186000升燃油,将数据186000用科学记数法表示为()A.0.186×105B.1.86×105C.18.6×104D.186×103【答案】B【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将186000用科学记数法表示为:1.86×105.故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(3分)如图,街道AB与CD平行,拐角∠ABC=137°,则拐角∠BCD=()A.43°B.53°C.107°D.137°【答案】D【分析】由平行线的性质即可求解.【解答】解:∵AB∥CD,∴∠ABC=∠BCD=137°,故选:D.【点评】本题考查平行线的性质,熟练掌握性质解解题关键.5.(3分)计算的结果为()A.B.C.D.【答案】C【分析】本题考查同分母分式的加减法,分母不变,分子相加减.【解答】解:==.故本题选:C.【点评】本题考查同分母分式相加减,分母不变,分子相加减.解题的关键是类比同分母分数的相加减进行计算即可.6.(3分)我国著名数学家华罗庚曾为普及优选法作出重要贡献.优选法中有一种0.618法应用了()A.黄金分割数B.平均数C.众数D.中位数【答案】A【分析】根据黄金分割的定义,即可解答.【解答】解:我国著名数学家华罗庚曾为普及优选法作出重要贡献.优选法中有一种0.618法应用了黄金分割数,故选:A.【点评】本题考查了黄金分割,算术平均数,中位线,众数,统计量的选择,熟练掌握这些数学知识是解题的关键.7.(3分)某学校开设了劳动教育课程.小明从感兴趣的“种植”“烹饪”“陶艺”“木工”4门课程中随机选择一门学习,每门课程被选中的可能性相等.小明恰好选中“烹饪”的概率为()A.B.C.D.【答案】C【分析】直接利用概率公式可得答案.【解答】解:∵共有“种植”“烹饪”“陶艺”“木工”4门兴趣课程,∴明恰好选中“烹饪”的概率为.故选:C.【点评】本题考查了概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数.8.(3分)一元一次不等式组的解集为()A.﹣1<x<4B.x<4C.x<3D.3<x<4【答案】D【分析】求出第一个不等式的解集,再求出其公共解集即可.【解答】解:,由不等式x﹣2>1得:x>3,∴不等式的解集为3<x<4.故选:D.【点评】本题考查了解一元一次不等式组,解题的关键是熟知解集的规律.9.(3分)如图,AB是⊙O的直径,∠BAC=50°,则∠D=()A.20°B.40°C.50°D.80°【答案】B【分析】由AB是⊙O的直径,得∠ACB=90°,而∠BAC=50°,即得∠ABC=40°,故∠D=∠ABC=40°,【解答】解:∵AB是⊙O的直径,∴∠ACB=90°,∴∠BAC+∠ABC=90°,∵∠BAC=50°,∴∠ABC=40°,∵=,∴∠D=∠ABC=40°,故选:B.【点评】本题考查圆周角定理的应用,解题的关键是掌握直径所对的圆周角是直角和同弧所对的圆周角相等.10.(3分)如图,抛物线y=ax2+c经过正方形OABC的三个顶点A,B,C,点B在y轴上,则ac的值为()A.﹣1B.﹣2C.﹣3D.﹣4【答案】B【分析】过A作AH⊥x轴于H,根据正方形的性质得到∠AOB=45°,得到AH=OH,利用待定系数法求得a、c的值,即可求得结论.【解答】解:过A作AH⊥x轴于H,∵四边形ABCO是正方形,∴∠AOB=45°,∴∠AOH=45°,∴AH=OH,设A(m,m),则B(0,2m),∴,解得am=﹣1,m=,∴ac的值为﹣2,故选:B.【点评】本题考查了待定系数法求二次函数的解析式,根据图象得出抛物线经过的点的坐标是解题的关键.二、填空题:本大题共5小题,每小题3分,共15分.11.(3分)因式分解:x2﹣1=(x+1)(x﹣1).【答案】见试题解答内容【分析】原式利用平方差公式分解即可.【解答】解:原式=(x+1)(x﹣1).故答案为:(x+1)(x﹣1).【点评】此题考查了因式分解﹣运用公式法,熟练掌握平方差公式是解本题的关键.12.(3分)计算:=6.【答案】6.【分析】本题考查二次根式的乘法计算,根据×=和=a(a>0)进行计算,【解答】解:方法一:×=×2=2×3=6.方法二:×===6.故答案为:6.【点评】本题考查二次根式的计算,考查的关键是准确运用×=和=a (a>0)进计算.13.(3分)某蓄电池的电压为48V,使用此蓄电池时,电流I(单位:A)与电阻R(单位:Ω)的函数表达式为.当R=12Ω时,I的值为4A.【答案】4.【分析】直接将R=12代入I=中可得I的值.【解答】解:当R=12Ω时,I==4(A).故答案为:4.【点评】此题考查的是反比例函数的应用,掌握反比例函数的点的坐标是解决此题的关键.14.(3分)某商品进价4元,标价5元出售,商家准备打折销售,但其利润率不能少于10%,则最多可打8.8折.【答案】8.8.【分析】利润率不能少于10%,意思是利润率大于或等于10%,相应的关系式为:(打折后的销售价﹣进价)÷进价≥10%,把相关数值代入即可求解.【解答】解:设这种商品最多可以按x折销售,则售价为5×0.1x,那么利润为5×0.1x﹣4,所以相应的关系式为5×0.1x﹣4≥4×10%,解得:x≥8.8.答:该商品最多可以8.8折,故答案为:8.8.【点评】此题主要考查了一元一次不等式的应用,解决本题的关键是得到利润率的相关关系式,注意“不能低于”用数学符号表示为“≥”;利润率是利润与进价的比值.15.(3分)边长分别为10,6,4的三个正方形拼接在一起,它们的底边在同一直线上(如图),则图中阴影部分的面积为15.【答案】15.【分析】根据相似三角形的性质,利用相似比求出梯形的上底和下底,用面积公式计算即可.【解答】解:如图,∵BF∥DE,∴△ABF∽△ADE,∴=,∵AB=4,AD=4+6+10=20,DE=10,∴=,∴BF=2,∴GF=6﹣2=4,∵CK∥DE,∴△ACK∽△ADE,∴=,∵AC=4+6=10,AD=20,DE=10,∴=,∴CK=5,∴HK=6﹣5=1,∴阴影梯形的面积=(HK+GF)•GH=(1+4)×6=15.故答案为:15.【点评】本题考查的是相似三角形的判定与性质,解决本题的关键是掌握相似三角形的对应边成比例.三、解答题(一):本大题共3小题,第16题10分,第17、18题各7分,共24分.16.(10分)(1)计算:+|﹣5|+(﹣1)2023.(2)已知一次函数y=kx+b的图象经过点(0,1)与点(2,5),求该一次函数的表达式.【答案】(1)6.(2)y=2x+1.【分析】(1)利用立方根的性质、绝对值的性质以及负数指数幂的性质进行化简计算即可.(2)将(0,1)与(2,5)代入y=kx+b解方程组即可.【解答】(1)解:原式=2+5﹣1=6.(2)解:将(0,1)与(2,5)代入y=kx+b得:,解得:,∴一次函数的表达式为:y=2x+1.【点评】本题考查了实数的运算,待定系数法求一次函数表达式,正确化简各数,将点的坐标代入后能正确解方程组是解题的关键.17.(7分)某学校开展了社会实践活动,活动地点距离学校12km,甲、乙两同学骑自行车同时从学校出发,甲的速度是乙的1.2倍,结果甲比乙早到10min,求乙同学骑自行车的速度.【答案】乙骑自行车的速度为0.2km/分.【分析】设乙步行的速度为xkm/分,则甲骑自行车的速度为1.2xkm/分,根据题意列方程即可得到结论.【解答】解:设乙步行的速度为xkm/分,则甲骑自行车的速度为1.2xkm/分,根据题意得﹣10=,解得x=.经检验,x=是原分式方程的解,答:乙骑自行车的速度为0.2km/分.【点评】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.18.(7分)2023年5月30日,神舟十六号载人飞船发射取得圆满成功,3名航天员顺利进驻中国空间站.如图中的照片展示了中国空间站上机械臂的一种工作状态.当两臂AC=BC=10m,两臂夹角∠ACB=100°时,求A,B两点间的距离.(结果精确到0.1m,参考数据:sin50°≈0.766,cos50°≈0.643,tan50°≈1.192)【答案】A、B的距离大约是15.3m.【分析】连接AB,取AB中点D,连接CD,根据AC=BC,点D为AB中点,可得∠ACD =∠BCD=∠ACB=50°,在Rt△ACD中,sin50°=,解得AD=10×sin50°≈7.66(m),故AB=2AD≈15.3(m).【解答】解:连接AB,取AB中点D,连接CD,如图,∵AC=BC,点D为AB中点,∴中线CD为等腰三角形的角平分线(三线合一),AD=BD=AB,∴∠ACD=∠BCD=∠ACB=50°,在Rt△ACD中,sin∠ACD=,∴sin50°=,∴AD=10×sin50°≈7.66(m),∴AB=2AD=2×7.66=15.32≈15.3(m),答:A、B的距离大约是15.3m.【点评】本题考查解直角三角形的应用,解题的关键是掌握锐角三角函数的定义.四、解答题(二):本大题共3小题,每小题9分,共27分.19.(9分)如图,在▱ABCD中,∠DAB=30°.(1)实践与操作:用尺规作图法过点D作AB边上的高DE;(保留作图痕迹,不要求写作法)(2)应用与计算:在(1)的条件下,AD=4,AB=6,求BE的长.【答案】(1)见作图;(2)6﹣2.【分析】(1)由基本作图即可解决问题;(2)由锐角的余弦求出AE的长,即可得到BE的长.【解答】解:(1)如图E即为所求作的点;(2)∵cos∠DAB=,∴AE=AD•cos30°=4×=2,∴BE=AB﹣AE=6﹣2.【点评】本题考查基本作图,平行四边形的性质,解直角三角形,关键是掌握基本作图,由锐角的余弦求出AE的长.20.(9分)综合与实践主题:制作无盖正方体形纸盒.素材:一张正方形纸板.步骤1:如图1,将正方形纸板的边长三等分,画出九个相同的小正方形,并剪去四个角上的小正方形;步骤2:如图2,把剪好的纸板折成无盖正方体形纸盒.猜想与证明:(1)直接写出纸板上∠ABC与纸盒上∠A1B1C1的大小关系;(2)证明(1)中你发现的结论.【答案】(1)∠ABC=∠A1B1C1;(2)证明过程见解答.【分析】(1)根据等腰直角三角形的性质即可求解;(2)根据勾股定理和勾股定理的逆定理和正方形的性质即可求解.【解答】解:(1)∠ABC=∠A1B1C1;(2)∵A1C1为正方形对角线,∴∠A1B1C1=45°,设每个方格的边长为1,则AB ==,AC=BC ==,∵AC2+BC2=AB2,∴由勾股定理的逆定理得△ABC是等腰直角三角形,∴∠ABC=45°,∴∠ABC=∠A1B1C1.【点评】本题考查了正方形的性质,勾股定理和勾股定理的逆定理,等腰直角三角形的判定与性质,得到△ABC是等腰直角三角形是解题的关键.21.(9分)小红家到学校有两条公共汽车线路.为了解两条线路的乘车所用时间,小红做了试验,第一周(5个工作日)选择A线路,第二周(5个工作日)选择B线路,每天在固定时间段内乘车2次并分别记录所用时间.数据统计如下:(单位:min)数据统计表12345678910实验序号A线路15321516341821143520所用时间B线路所用时间25292325272631283024根据以上信息解答下列问题:平均数中位数众数方差A线路所用时间22a1563.2B线路所用时间b26.5c6.36(1)填空:a=19;b=26.8;c=25;(2)应用你所学的统计知识,帮助小红分析如何选择乘车线路.【答案】(1)19,26.8,25.(2)选择B路线更优.【分析】本题考查数据的分析,数据的集中和波动问题,(1)平均数,中位数,众数的计算.(2)方差的实际应用.【解答】解:(1)求中位数a首先要先排序,从小到大顺序为:14,15,15,16,18,20,21,32,34,35.共有10个数,中位数在第5和6个数为18和20,所以中位数为=19,求平均数b==26.8,众数c=25,故答案为:19,26.8,25.(2)小红统计的选择A线路平均数为22,选择B线路平均数为26.8,用时差不太多.而方差63.2>6.36,相比较B路线的波动性更小,所以选择B路线更优.【点评】本题考查数据的波动与集中程度,解题的关键是能够平均数,中位数,众数进行准确的计算,理解方差的意义,并进行作答.五、解答题(三):本大题共2小题,每小题12分,共24分.22.(12分)综合探究如图1,在矩形ABCD中(AB>AD),对角线AC,BD相交于点O,点A关于BD的对称点为A′.连接AA′交BD于点E,连接CA′.(1)求证:AA'⊥CA';(2)以点O为圆心,OE为半径作圆.①如图2,⊙O与CD相切,求证:;②如图3,⊙O与CA′相切,AD=1,求⊙O的面积.【答案】(1)证明过程详见解答;(2)①证明过程详见解答;②.【分析】(1)根据轴对称的性质可得AE=A′E,AA′⊥BD,根据四边形ABCD是矩形,得出OA=OC,从而OE∥A′C,从而得出AA′⊥CA′;(2)①设CD⊙O与CD切于点F,连接OF,并延长交AB于点G,可证得OG=OF=OE,从而得出∠EAO=∠GAO=∠GBO,进而得出∠EAO=30°,从而;②设⊙O切CA′于点H,连接OH,可推出AA′=2OH,CA′=2OE,从而AA′=CA′,进而得出∠A′AC=∠A′CA=45°,∠AOE=∠ACA′=45°,从而得出AE=OE,OD =OA=AE,设OA=OE=x,则OD=OA=,在Rt△ADE中,由勾股定理得出=1,从而求得x2=,进而得出⊙O的面积.【解答】(1)证明:∵点A关于BD的对称点为A′,∴AE=A′E,AA′⊥BD,∵四边形ABCD是矩形,∴OA=OC,∴OE∥A′C,∴AA′⊥CA′;(2)①证明:如图2,设CD⊙O与CD切于点F,连接OF,并延长交AB于点G,∴OF⊥CD,OF=OE,∵四边形ABCD是矩形,∴OB=OD=BD,AB∥CD,AC=BD,OA=AC,∴OG⊥AB,∠FDO=∠BOG,OA=OB,∴∠GAO=∠GBO,∵∠DOF=∠BOG,∴△DOF≌△BOG(ASA),∴OG=OF,∴OG=OE,由(1)知:AA′⊥BD,∴∠EAO=∠GAO,∵∠EAB+∠GBO=90°,∴∠EAO+∠GAO+∠GBO=90°,∴3∠EAO=90°,∴∠EAO=30°,由(1)知:AA′⊥CA′,∴tan∠EAO=,∴tan30°=,∴;②解:如图3,设⊙O切CA′于点H,连接OH,∴OH⊥CA′,由(1)知:AA′⊥CA′,AA′⊥CA′,OA=OC,∴OH∥AA′,OE∥CA′,∴△COH∽△CAA′,△AOE∽△ACA′,∴,∴AA′=2OH,CA′=2OE,∴AA′=CA′,∴∠A′AC=∠A′CA=45°,∴∠AOE=∠ACA′=45°,∴AE=OE,OD=OA=AE,设OA=OE=x,则OD=OA=,∴DE=OD﹣OE=()x,在Rt△ADE中,由勾股定理得,=1,∴x2=,∴S⊙O=π•OE2=.【点评】本题考查了圆的切线性质,矩形的性质,全等三角形的判定和性质,相似三角形的判定和性质,解直角三角形等知识,解决问题的关键是熟练掌握有关基础知识.23.(12分)综合运用如图1,在平面直角坐标系中,正方形OABC的顶点A在x轴的正半轴上.如图2,将正方形OABC绕点O逆时针旋转,旋转角为α(0°<α<45°),AB交直线y=x于点E,BC交y轴于点F.(1)当旋转角∠COF为多少度时,OE=OF;(直接写出结果,不要求写解答过程)(2)若点A(4,3),求FC的长;(3)如图3,对角线AC交y轴于点M,交直线y=x于点N,连接FN.将△OFN与△OCF的面积分别记为S1与S2.设S=S1﹣S2,AN=n,求S关于n的函数表达式.【答案】(1)当旋转角为22.5°时,OE=OF;(2)FC的长为;(3)S关于n的函数表达式为.【分析】(1)如图2中,当OE=OF时,得到Rt△AOE≌Rt△COF,利用全等三角形的性质以及旋转的性质解决问题即可;(2)在图2中,过点A作AG⊥x轴于点G,利用三角形相似,可得结论;(3)过点N作直线PQ⊥BC于点P,交OA于点Q,利用四点共圆,得出三角形FON 是等腰直角三角形是解决问题的关键,结合三角形全等的判定和性质和三角形的面积公式解决问题.【解答】解:(1)当OE=OF时,在Rt△AOE和Rt△COF中,,∴Rt△AOE≌Rt△COF(HL),∴∠AOE=∠COF(即∠AOE=旋转角),∴2∠AOE=45°,∴∠COF=∠AOE=22.5°,∴当旋转角为22.5°时,OE=OF;(2)过点A作AG⊥x轴于点G,则有AG=3,OG=4,∴,∵四边形OABC是正方形,∴OC=OA=5,∠AOC=∠C=90°,又∵∠COF+∠FOA=90°,∠AOG+∠FOA=90°,∴∠COG=∠GOA,∴Rt△AOG∽Rt△FOC,∴,∴,∴FC的长为;(3)过点N作直线PQ⊥BC于点P,交OA于点Q,∵四边形OABC是正方形,∴∠BCA=∠OCA=45°,BC∥OA,又∠FON=45°,∴∠FCN=∠FON=45°,∴F、C、O、N四点共圆,∴∠OFN=∠OCA=45°,∴∠OFN=∠FON=45°,∴△FON是等腰直角三角形,∴FN=NO,∠FNO=90°,∴∠FNP+∠ONQ=90°,又∵∠NOQ+∠ONQ=90°,∴∠NOQ=∠FNP,∴△NOQ≌△FNP(AAS),∴NP=OQ,FP=NQ,∵四边形OQPC是矩形,∴CP=OQ,OC=PQ,∴,=,,=,=,=,∴,又∵△ANQ为等腰直角三角形,∴,∴,∴S关于n的函数表达式为.【点评】本题属于一次函数综合题,考查了正方形的性质,旋转的性质,全等三角形的判定和性质,相似角三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.。

广东中考数学试卷2024

广东中考数学试卷2024

中考数学试卷一、单项选择题(共12分)1.如图,一个等边三角形的边长与它的一边相外切的圆的周长相等,当这个圆按箭头方向从某一位置沿等边三角形的三边做无滑动旋转,直至回到原出发位置时,则这个圆共转了()A.4圈B.3圈C.5圈D.3.5圈2.如图,四边形ABCD是矩形,E是边BC延长线上的一点,AE与CD相交于点F,则图中的相似三角形共有()A.4对 B.3对C.2对D.1对3.对于反比例函数y=kx(k≠0),下列所给的四个结论中,正确的是()A.过图象上任一点P作x轴、y轴的垂线,垂足分别A,B,则矩形O APB的面积为kB.若点(2,4)在其图象上,则(−2,4)也在其图象上C.反比例函数的图象关于直线y=x和y=−x成轴对称D.当k>0时,y随x的增大而减小4.在同一平面直角坐标系中,函数y=x﹣1与函数y=1x的图象可能是()A.B. C.D.5.已知m3=n4,那么下列式子中一定成立的是()A.4m=3n B.3m=4n C.m=4n D.mn=126.如图,在三角形ABC中D,E分别是AB和AC上的点,且DE平行BC,AE 比EC=5/2,D E=10,则BC的长为()。

A.16B.14C.12D.11二、填空题(共24分)7.如图,在平面直角坐标系xOy中,反比例函数y=一的图象与↵0交于A,B 两点,且点A,B都在第一象限.若A(1,2),则点B的坐标为___.8.学校为了解学生的安全防范意识,随机抽取了12名学生进行相关知识测试,将测试成绩整理得到如图所示的条形统计图,则这12名学生测试成绩的中位数是___.(单位:分)9.把一张半径为2cm,圆心角为120°的扇形纸片卷成一个圆锥的侧面,那么这个圆锥的底面积是。

三、解答题10.如图,在矩形ABCD中,AB=4,BC=6,M是BC的中点,DE⊥AM于点E。

(1)求证:△ADE∽△MAB;(2)求DE的长。

11.如图,方格纸中的每个小方格都是边长为1的正方形,我们把以格点间连线为边的三角形称为“格点三角形”,图中的△ABC是格点三角形.在建立平面直角坐标系后,点B的坐标为(﹣1,﹣1)。

2024年广东省广州市中考数学试卷及答案解析

2024年广东省广州市中考数学试卷及答案解析

2024年广东省广州市中考数学试卷一、选择题(本大题共10小题,每小题3分,满分30分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(3分)四个数﹣10,﹣1,0,10中,最小的数是()A.﹣10B.﹣1C.0D.102.(3分)下列图案中,点O为正方形的中心,阴影部分的两个三角形全等,则阴影部分的两个三角形关于点O对称的是()A.B.C.D.3.(3分)若a≠0,则下列运算正确的是()A.+=B.a3•a2=a5C.•=D.a3÷a2=14.(3分)若a<b,则()A.a+3>b+3B.a﹣2>b﹣2C.﹣a<﹣b D.2a<2b5.(3分)为了解公园用地面积x(单位:公顷)的基本情况,某地随机调查了本地50个公园的用地面积,按照0<x≤4,4<x≤8,8<x≤12,12<x≤16,16<x≤20的分组绘制了如图所示的频数分布直方图,下列说法正确的是()A.a的值为20B.用地面积在8<x≤12这一组的公园个数最多C.用地面积在4<x≤8这一组的公园个数最少D.这50个公园中有一半以上的公园用地面积超过12公顷6.(3分)某新能源车企今年5月交付新车35060辆,且今年5月交付新车的数量比去年5月交付的新车数量的1.2倍还多1100辆.设该车企去年5月交付新车x辆,根据题意,可列方程为()A.1.2x+1100=35060B.1.2x﹣1100=35060C.1.2(x+1100)=35060D.x﹣1100=35060×1.27.(3分)如图,在△ABC中,∠A=90°,AB=AC=6,D为边BC的中点,点E,F分别在边AB,AC 上,AE=CF,则四边形AEDF的面积为()A.18B.9C.9D.68.(3分)函数y1=ax2+bx+c与y2=的图象如图所示,当()时,y1,y2均随着x的增大而减小.A.x<﹣1B.﹣1<x<0C.0<x<2D.x>19.(3分)如图,⊙O中,弦AB的长为4,点C在⊙O上,OC⊥AB,∠ABC=30°.⊙O所在的平面内有一点P,若OP=5,则点P与⊙O的位置关系是()A.点P在⊙O上B.点P在⊙O内C.点P在⊙O外D.无法确定10.(3分)如图,圆锥的侧面展开图是一个圆心角为72°的扇形,若扇形的半径l是5,则该圆锥的体积是()A.πB.πC.2πD.π二、填空题(本大题共6小题,每小题3分,满分18分.)11.(3分)如图,直线l分别与直线a,b相交,a∥b,若∠1=71°,则∠2的度数为.12.(3分)如图,把R1,R2,R3三个电阻串联起来,线路AB上的电流为I,电压为U,则U=IR1+IR2+IR3,当R1=20.3,R2=31.9,R3=47.8,I=2.2时,U的值为.13.(3分)如图,▱ABCD中,BC=2,点E在DA的延长线上,BE=3,若BA平分∠EBC,则DE=.14.(3分)若a2﹣2a﹣5=0,则2a2﹣4a+1=.15.(3分)定义新运算:a⊗b=例如:﹣2⊗4=(﹣2)2﹣4=0,2⊗3=﹣2+3=1.若x⊗1=﹣,则x的值为.16.(3分)如图,平面直角坐标系xOy中,矩形OABC的顶点B在函数y=(x>0)的图象上,A(1,0),C(0,2).将线段AB沿x轴正方向平移得线段A'B'(点A平移后的对应点为A′),A'B'交函数y =(x>0)的图象于点D,过点D作DE⊥y轴于点E,则下列结论:①k=2;②△OBD的面积等于四边形ABDA′的面积;③A'E的最小值是;④∠B'BD=∠BB'O.其中正确的结论有.(填写所有正确结论的序号)三、解答题(本大题共9小题,满分72分.解答应写出文字说明、证明过程或演算步骤.)17.(4分)解方程:=.18.(4分)如图,点E,F分别在正方形ABCD的边BC,CD上,BE=3,EC=6,CF=2.求证:△ABE ∽△ECF.19.(6分)如图,Rt△ABC中,∠B=90°.(1)尺规作图:作AC边上的中线BO(保留作图痕迹,不写作法);(2)在(1)所作的图中,将中线BO绕点O逆时针旋转180°得到DO,连接AD,CD.求证:四边形ABCD是矩形.20.(6分)关于x的方程x2﹣2x+4﹣m=0有两个不等的实数根.(1)求m的取值范围;(2)化简:÷•.21.(8分)善于提问是应用人工智能解决问题的重要因素之一.为了解同学们的提问水平,对A,B两组同学进行问卷调查,并根据结果对每名同学的提问水平进行评分,得分情况如下(单位:分):A组75788282848687889395B组75778083858688889296(1)求A组同学得分的中位数和众数;(2)现从A,B两组得分超过90分的4名同学中随机抽取2名同学参与访谈,求这2名同学恰好来自同一组的概率.22.(10分)2024年6月2日,嫦娥六号着陆器和上升器组合体(简称为“着上组合体”)成功着陆在月球背面.某校综合实践小组制作了一个“着上组合体”的模拟装置,在一次试验中,如图,该模拟装置在缓速下降阶段从A点垂直下降到B点,再垂直下降到着陆点C,从B点测得地面D点的俯角为36.87°,AD=17米,BD=10米.(1)求CD的长;(2)若模拟装置从A点以每秒2米的速度匀速下降到B点,求模拟装置从A点下降到B点的时间.参考数据:sin36.87°≈0.60,cos36.87°≈0.80,tan36.87°≈0.75.23.(10分)一个人的脚印信息往往对应着这个人某些方面的基本特征.某数学兴趣小组收集了大量不同人群的身高和脚长数据,通过对数据的整理和分析,发现身高y和脚长x之间近似存在一个函数关系,部分数据如表:脚长x(cm)…232425262728…身高y(cm)…156163170177184191…(1)在图1中描出表中数据对应的点(x,y);(2)根据表中数据,从y=ax+b(a≠0)和y=(k≠0)中选择一个函数模型,使它能近似地反映身高和脚长的函数关系,并求出这个函数的解析式(不要求写出x的取值范围);(3)如图2,某场所发现了一个人的脚印,脚长约为25.8cm,请根据(2)中求出的函数解析式,估计这个人的身高.24.(12分)如图,在菱形ABCD中,∠C=120°.点E在射线BC上运动(不与点B,点C重合),△AEB关于AE的轴对称图形为△AEF.(1)当∠BAF=30°时,试判断线段AF和线段AD的数量和位置关系,并说明理由;(2)若AB=6+6,⊙O为△AEF的外接圆,设⊙O的半径为r.①求r的取值范围;②连接FD,直线FD能否与⊙O相切?如果能,求BE的长度;如果不能,请说明理由.25.(12分)已知抛物线G:y=ax2﹣6ax﹣a3+2a2+1(a>0)过点A(x1,2)和点B(x2,2),直线l:y =m2x+n过点C(3,1),交线段AB于点D,记△CDA的周长为C1,△CDB的周长为C2,且C1=C2+2.(1)求抛物线G的对称轴;(2)求m的值;(3)直线l绕点C以每秒3°的速度顺时针旋转t秒后(0≤t<45)得到直线l′,当l′∥AB时,直线l′交抛物线G于E,F两点.①求t的值;②设△AEF的面积为S,若对于任意的a>0,均有S≥k成立,求k的最大值及此时抛物线G的解析式.2024年广东省广州市中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,满分30分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.【分析】利用有理数大小的比较方法:1、在数轴上表示的两个数,右边的总比左边的数大.2、正数都大于零,负数都小于零,正数大于负数.3、两个正数比较大小,绝对值大的数大;两个负数比较大小,绝对值大的数反而小.按照从小到大的顺序排列找出结论即可.【解答】解:∵﹣10<﹣1<0<10,∴最小的数是:﹣10.故选:A.【点评】本题考查了有理数的大小比较,掌握正数都大于零,负数都小于零,正数大于负数,两个正数比较大小,绝对值大的数大,两个负数比较大小,绝对值大的数反而小是本题的关键.2.【分析】根据中心对称的性质解答即可.【解答】解:由题可知,A、B、D不是中心对称图形,C是中心对称图形图形.故选:C.【点评】本题考查的是中心对称,正方形的性质及全等三角形的性质,熟知把一个图形绕着某个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心,这两个图形中的对应点叫做关于中心的对称点是解题的关键.3.【分析】利用合并同类项法则,同底数幂乘法及除法法则,分式的乘法法则计算即可.【解答】解:+==,则A不符合题意;a3•a2=a5,则B符合题意;•=,则C不符合题意;a3÷a2=a,则D不符合题意;故选:B.【点评】本题考查合并同类项,同底数幂乘法及除法,分式的乘法,熟练掌握相关运算法则是解题的关键.4.【分析】利用不等式的性质逐项判断即可.【解答】解:若a<b,两边同时加上3得a+3<b+3,则A不符合题意;若a<b,两边同时减去2得a﹣2<b﹣2,则B不符合题意;若a<b,两边同时乘﹣1得﹣a>﹣b,则C不符合题意;若a<b,两边同时乘2得2a<2b,则D符合题意;故选:D.【点评】本题考查不等式的性质,此为基础且重要知识点,必须熟练掌握.5.【分析】用样本容量50分别减去其它四组的频数可得a的值;根据频数分布直方图可知用地面积在8<x≤12这一组的公园个数最多,用地面积在0<x≤4这一组的公园个数最少,这50个公园中有20个公园用地面积超过12公顷.【解答】解:由题意可得,a=50﹣4﹣16﹣12﹣8=10,故选项A不符合题意;由频数分布直方图可知,用地面积在8<x≤12这一组的公园个数最多,故选项B符合题意;由频数分布直方图可知,用地面积在0<x≤4这一组的公园个数最少,故选项C不符合题意;由频数分布直方图可知,这50个公园中有20个公园用地面积超过12公顷,没有达到一半,故选项D 不符合题意.故选:B.【点评】本题主要考查了频数分布直方图,解决问题的关键是在频数分布直方图中获取数据进行计算.6.【分析】等量关系:今年5月交付新车的数量=1.2×去年5月交付的新车数量+1100.【解答】解:根据题意,得1.2x+1100=35060.故选:A.【点评】本题主要考查了由实际问题抽象出一元一次方程,解题的关键是读懂题意,找到等量关系,列出方程.7.【分析】由等腰直角三角形的性质可得AD=BD=CD,∠BAD=∠C=45°,S△ABC=×6×6=18,由=S△CDF,即可求解.“SAS”可证△ADE≌△CDF,可得S△ADE【解答】解:如图,连接AD,∵∠BAC=90°,AB=AC=6,D为边BC的中点,=×6×6=18,∴AD=BD=CD,∠BAD=∠C=45°,S△ABC在△ADE和△CDF中,,∴△ADE≌△CDF(SAS),=S△CDF,∴S△ADE=S△ABC=9,∴四边形AEDF的面积=S△ADC故选:C.【点评】本题主要考查了全等三角形的判定和性质,等腰直角三角形的性质,证明三角形全等是解题的关键.8.【分析】根据二次函数和反比例函数图象解答即可.【解答】解:根据二次函数图象当x>1时,y1随着x的增大而减小,同样当x>1时,反比例函数y2随着x的增大而减小.故选:D.【点评】本题考查了反比例函数与二次函数的图象与性质,数形结合是解答本题的关键.9.【分析】先根据垂径定理得出AD=BD=AB,再由∠ABC=30°得出∠AOD=2∠B=60°,故∠A=30°,可知OA=2OD,设OD=x,则OA=2x,利用勾股定理求出x的值,进而可得出OA的长,根据点与圆的位置关系即可得出结论.【解答】解:设AB与OC交于点D,∵弦AB的长为4,OC⊥AB,∴AD=BD=AB=2,∵∠ABC=30°,∴∠AOD=2∠B=60°,∴∠A=90°﹣60°=30°,∴OA=2OD,设OD=x,则OA=2x,在Rt△AOD中,OD2+AD2=OA2,即x2+(2)2=(2x)2,解得x=±2(负值舍去),∴OA=2x=4,∵OP=5,∴OP>OA,∴点P在圆外.故选:C.【点评】本题考查的是点与圆的位置关系,垂径定理及勾股定理,圆周角定理,熟知点与圆的位置关系有3种.设⊙O的半径为r,点P到圆心的距离OP=d,则有点P在圆外⇔d>r;点P在圆上⇔d=r;点P在圆内⇔d<r是解题的关键.10.【分析】根据扇形的弧长公式可得圆锥的底面周长,进而得出底面半径,再根据勾股定理求出圆锥的高,然后根据圆锥的体积公式计算即可.【解答】解:由题意得,圆锥的底面圆周长为=2π,故圆锥的底面圆的半径为=1,所以圆锥的高为:=,该圆锥的体积是:=π.故选:D.【点评】本题考查了几何体的展开图,关键是掌握圆锥的侧面展开图的弧长等于底面周长;弧长公式为:.二、填空题(本大题共6小题,每小题3分,满分18分.)11.【分析】由邻补角的性质得到∠3=180°﹣71°=109°,由平行线的性质推出∠2=∠3=109°.【解答】解:∵∠1=71°,∴∠3=180°﹣71°=109°,∵a∥b,∴∠2=∠3=109°.故答案为:109°.【点评】本题考查平行线的性质,关键是由平行线的性质推出∠2=∠3=109°.12.【分析】根据题干条件代值即可.【解答】解:由题意可得U=2.2×(20.3+31.9+47.8)=220.故答案为:220.【点评】本题主要考查有理数的混合运算,根据题意列出式子是解题关键.13.【分析】由平行四边形的性质得AD∥BC,AD=BC=2,则∠EAB=∠CBA,而∠EBA=∠CBA,所以∠EAB=∠EBA,则AE=BE=3,求得DE=AD+AE=5,于是得到问题的答案.【解答】解:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC=2,∴∠EAB=∠CBA,∵BA平分∠EBC,∴∠EBA=∠CBA,∴∠EAB=∠EBA,∴AE=BE=3,∴DE=AD+AE=2+3=5,故答案为:5.【点评】此题重点考查平行四边形的性质、角平分线的定义、“等角对等边”等知识,推导出∠EAB=∠EBA是解题的关键.14.【分析】由已知条件可得a2﹣2a=5,将原式变形后代入数值计算即可.【解答】解:∵a2﹣2a﹣5=0,∴a2﹣2a=5,∴原式=2(a2﹣2a)+1=2×5+1=11,故答案为:11.【点评】本题考查代数式求值,将原式进行正确的变形是解题的关键.15.【分析】根据题目中的新定义,利用分类讨论的方法列出方程,然后求解即可.【解答】解:∵x⊗1=﹣,∴当x≤0时,x2﹣1=﹣,解得x=﹣或x=(不合题意,舍去);当x>0时,﹣x+1=﹣,解得x=;由上可得,x的值为﹣或,故答案为:﹣或.【点评】本题考查一元一次方程的应用、新定义,解答本题的关键是明确题意,列出相应的方程.16.【分析】根据反比例函数图象上点的坐标特征判断①,根据反比例函数k值几何意义判断②,根据矩形性质判断③④即可.【解答】解:①∵A(1,0),C(0,2),∴B(1,2),∵矩形OABC的顶点B在函数y=(x>0)的图象上,∴k=2,故①正确;②∵点B、点D在函数y=(x>0)的图象上,=S△AOD=,∴S△AOB=S梯形AMDA′,∴S△OBM∴S△OBD=S梯形ABDA′,故②正确;③随着线段AB向右平移的过程,平移后的线段与反比例函数的交点D也逐渐下移,此时过点D作y轴的垂线交点E也下移,所以A′E的最小值逐渐趋向于OA′的长度,故③错误;④向右平移的过程中角B′BD与角BB′O变化相同,这两个角刚好是矩形BB′ND的对角线与边的夹角,所以是相等,④正确.故正确的结论有①②④.故答案为:①②④.【点评】本题考查了反比例函数k值的几何意义、反比例函数图象上点的坐标特征、坐标与图形变化,熟练掌握平移性质是关键.三、解答题(本大题共9小题,满分72分.解答应写出文字说明、证明过程或演算步骤.)17.【分析】利用去分母将原方程化为整式方程,解得x的值后进行检验即可.【解答】解:原方程去分母得:x=6x﹣15,解得:x=3,检验:当x=3时,x(2x﹣5)≠0,故原方程的解为x=3.【点评】本题考查解分式方程,熟练掌握解方程的方法是解题的关键.18.【分析】先根据BE=3,EC=6得出BC的长,进而可得出AB的长,由相似三角形的判定定理即可得出结论.【解答】证明:∵BE=3,EC=6,CF=2,∴BC=3+6=9,∵四边形ABCD是正方形,∴AB=BC=9,∠B=∠C=90°,∵==,=,∴=,∴△ABE∽△ECF.【点评】本题考查的是相似三角形的判定,熟知两组对应边的比相等且夹角对应相等的两个三角形相似是解题的关键.19.【分析】(1)作线段AC的垂直平分线交AC于O,连接BO,于是得到结论;(2)根据平行四边形的判定和性质以及矩形的判定定理即可得到结论.【解答】(1)解:如图所示,线段BO为AC边上的中线;(2)证明:∵点O是AC的中点,∴AO=CO,∵将中线BO绕点O逆时针旋转180°得到DO,∴BO=DO,∴四边形ABCD是平行四边形,∵∠ABC=90°,∴四边形ABCD是矩形.【点评】本题考查了作图﹣基本作图,矩形的判定,中心对称图形,熟练掌握矩形的判定定理是解题的关键.20.【分析】(1)根据判别式的意义得到Δ=(﹣2)2﹣4(4﹣m)>0,然后解不等式即可.(2)根据m的取值范围化简即可.【解答】解:(1)根据题意得Δ=(﹣2)2﹣4(4﹣m)>0,解得m>3;(2)∵m>3,∴m﹣3>0,∴÷•=••=﹣2.【点评】此题主要考查一元二次方程根的情况与判别式△的关系以及绝对值和分式乘除法的化简,根据题意得到关于m的不等式是解题的关键.21.【分析】(1)根据中位数和众数的定义可得答案.(2)列表可得出所有等可能的结果数以及这2名同学恰好来自同一组的结果数,再利用概率公式可得出答案.【解答】解:(1)将10名A组同学的得分按照从小到大的顺序排列,排在第5和第6名的成绩为84,86,∴A组同学得分的中位数为(84+86)÷2=85(分).由表格可知,A组同学得分的众数为82分.(2)将A组的两名同学分别记为甲、乙,将B组的两名同学分别记为丙,丁,画树状图如下:共有12种等可能的结果,其中这2名同学恰好来自同一组的结果有:甲乙,乙甲,丙丁,丁丙,共4种,∴这2名同学恰好来自同一组的概率为.【点评】本题考查列表法与树状图法、中位数、众数,熟练掌握列表法与树状图法、中位数、众数的定义是解答本题的关键.22.【分析】(1)根据题意可得:AC⊥CD,BE∥CD,从而可得∠EBD=∠BDC=36.87°,然后在Rt△BCD 中,利用锐角三角函数的定义求出CD的长,即可解答;(2)在Rt△BCD中,利用锐角三角函数的定义求出BC的长,然后在Rt△ACD中,利用勾股定理求出AC的长,从而利用线段的和差关系求出AB的长,最后进行计算即可解答.【解答】解:(1)如图:由题意得:AC⊥CD,BE∥CD,∴∠EBD=∠BDC=36.87°,在Rt△BCD中,BD=10米,∴CD=BD•cos36.87°≈10×0.80=8(米),∴CD的长约为8米;(2)在Rt△BCD中,BD=10米,∠BDC=36.87°,∴BC=BD•sin36.87°≈10×0.6=6(米),在Rt△ACD中,AD=17米,CD=8米,∴AC===15(米),∴AB=AC﹣BC=15﹣6=9(米),∵模拟装置从A点以每秒2米的速度匀速下降到B点,∴模拟装置从A点下降到B点的时间=9÷2=4.5(秒),∴模拟装置从A点下降到B点的时间约为4.5秒.【点评】本题考查了解直角三角形的应用﹣仰角俯角问题,熟练掌握锐角三角函数的定义是解题的关键.23.【分析】(1)根据表格数据在直角坐标系中描点即可;(2)先排除反比例函数,再利用待定系数法求出一次函数解析式即可;(3)将x=25.8代入一次函数解析式求出y值即可.【解答】解:(1)描点如图示:(2)∵y=(k≠0)转化为k=xy=23×156≠24×163≠25×170≠•••,∴y与x的函数不可能是y=,故选一次函数y=ax+b(a≠0),将点(23,156)、(24,163)代入解析式得:,解得,∴一次函数解析式为y=7x﹣5.(3)当x=25.8时,y=7×25.8﹣5=175.6(cm).答:脚长约为25.8cm,估计这个人的身高为175.6cm.【点评】本题考查了反比例函数与一次函数的应用,熟练掌握待定系数法求一次函数解析式是关键.24.【分析】(1)根据折叠的性质和菱形的性质易得AB=AF=AD再根据角度求出∠DAF=90°即可得证;(2)画出示意图,找到半径r和AE的关系,在求出AE的范围即可求解;(3)画出示意图,利用弦切角定理和圆周角定理以及等腰三角形的性质可求得∠AEF=∠AEB=75°,再在解三角形ABE即可求解.【解答】解:(1)AF=AD,AF⊥AD,理由如下,∵四边形ABCD是菱形,∴AB=AD,∠BAD=∠C=120°,∵△ABE和△AFE关于AE轴对称,∴AB=AF,∴AF=AD,∵∠BAF=30°,∴∠DAF=∠BAD﹣∠BAF=90°,∴AF⊥AD,综上,AF=AD,AF⊥AD.(2)①如图,设△AEF的外接圆圆心为O,连接OA、OE,作OG⊥AE于点G,作AH⊥BC于点H.∵∠AFE=∠ABE=60°,∴∠AOE=120°,∵OA=OE,∴∠OAE=∠OEA=30°,∴OA==AG,∵r=OA=AG=•AE=AE,在Rt△ABH中,AH=AB•sin60°=9+3,∵AE≥AH,且点E不与B、C重合,∴AE≥9+3,且AE≠6+6,∴r≥3+3,且r≠2+6.(3)能相切,此时BE=12,理由如下:假设存在,如图画出示意图,设△AEF的外接圆圆心为O,连接OA、OF,作EH⊥AB于点H,∵∠AFE=∠ACB=60°,∴点C也在⊙O上,设∠AFD=α,则∠AEF=∠AEB=α(弦切角),∴∠CEF=180°﹣∠AEB﹣∠AEF=180°﹣2α,∵AF=AD,∴∠ADF=∠AFD=α,∴∠DAF=180°﹣2α,∵∠CEF=∠CAF,∴∠CAF=180°﹣2α=∠DAF,∵∠CAD=∠BAD=60°,∴∠CAF=180°﹣2α=∠DAF=30°,∴α=75°,即∠AEB=75°,作EH⊥AB于点H,∵∠B=60°,∴∠BEH=30°,∴∠AEH=∠EAH=45°,设BH=m,则EH=AH=m,BE=2m,∵AB=6+6,∴m+m=6+6,∴m=6,∴BE=12.【点评】本题主要考查了菱形的性质、切线的性质、圆周角定理、等腰三角形的性质、折叠的性质、解直角三角形等知识,熟练掌握相关知识和画出示意图是解题关键.25.【分析】(1)由抛物线对称轴公式即可求解;(2)由C1=C2+2,即AC+CD+AD=BC+CD+BD+2,得到2x D=x A+x B+2,即可求解;(3)①当m=±1时,一次函数的表达式为:y=m2(x﹣3)+1=x﹣2,该直线和x轴的夹角为45°,即可求解;②由S=×EF×(y A﹣y E)=EF,而EF2=(m﹣n)2=(m+n)2﹣4mn=4(a2﹣2a+9),即可求解.【解答】解:(1)由抛物线的表达式知,其对称轴为直线x=﹣=﹣=3;(2)直线l:y=m2x+n过点C(3,1),则该直线的表达式为:y=m2(x﹣3)+1,当y=2时,2=m2(x﹣3)+1,则x D=+3,∵C1=C2+2,即AC+CD+AD=BC+CD+BD+2,其中,AC=BC,上式变为:AD=BD+2,即2x D=x A+x B+2,而函数的对称轴为直线x=3,由函数的对称性知,x A+x B=2×3=6,即2x D=x A+x B+2=8,则x D=4=+3,解得:m=±1;(3)①当m=±1时,一次函数的表达式为:y=m2(x﹣3)+1=x﹣2,该直线和x轴的夹角为45°,则t=45÷3=15(秒);②由①知,l为:y=1,如下图:则S=×EF×(y A﹣y E)=EF,联立直线l和抛物线的表达式得:ax2﹣6ax﹣a3+2a2+1=1,即x2﹣6x﹣a2+2a=0,设点E、F的横坐标为m,n,则m+n=6,nm=﹣a2+2a,则EF2=(m﹣n)2=(m+n)2﹣4mn=4(a2﹣2a+9),则S=EF==≥2,当a=1时,等号成立,即k的最大值为:2,a=1,则抛物线的表达式为:y=x2﹣6x+2.【点评】本题考查的是二次函数综合运用,涉及到二次函数的图象和性质、周长的确定、点的对称性、面积的计算等,灵活运用二次函数的性质是解题的关键。

2023广东省数学中考真题及答案

2023广东省数学中考真题及答案

2023年广东省中考数学试卷一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)负数的概念最早出现在我国古代著名的数学专著《九章算术》中.如果把收入5元记作+5元,那么支出5元记作( )A.﹣5元B.0元C.+5元D.+10元2.(3分)下列出版社的商标图案中,是轴对称图形的为( )A.B.C.D.3.(3分)2023年5月28日,我国自主研发的C919国产大飞机商业首航取得圆满成功.C919可储存约186000升燃油,将数据186000用科学记数法表示为( )A.0.186×105B.1.86×105C.18.6×104D.186×103 4.(3分)如图,街道AB与CD平行,拐角∠ABC=137°,则拐角∠BCD=( )A.43°B.53°C.107°D.137°5.(3分)计算的结果为( )A.B.C.D.6.(3分)我国著名数学家华罗庚曾为普及优选法作出重要贡献.优选法中有一种0.618法应用了( )A.黄金分割数B.平均数C.众数D.中位数7.(3分)某学校开设了劳动教育课程.小明从感兴趣的“种植”“烹饪”“陶艺”“木工”4门课程中随机选择一门学习,每门课程被选中的可能性相等.小明恰好选中“烹饪”的概率为( )A.B.C.D.8.(3分)一元一次不等式组的解集为( )A.﹣1<x<4B.x<4C.x<3D.3<x<49.(3分)如图,AB是⊙O的直径,∠BAC=50°,则∠D=( )A.20°B.40°C.50°D.80°10.(3分)如图,抛物线y=ax2+c经过正方形OABC的三个顶点A,B,C,点B在y轴上,则ac的值为( )A.﹣1B.﹣2C.﹣3D.﹣4二、填空题:本大题共5小题,每小题3分,共15分.11.(3分)因式分解:x2﹣1= .12.(3分)计算:= .13.(3分)某蓄电池的电压为48V,使用此蓄电池时,电流I(单位:A)与电阻R(单位:Ω)的函数表达式为.当R=12Ω时,I的值为 A.14.(3分)某商品进价4元,标价5元出售,商家准备打折销售,但其利润率不能少于10%,则最多可打 折.15.(3分)边长分别为10,6,4的三个正方形拼接在一起,它们的底边在同一直线上(如图),则图中阴影部分的面积为 .三、解答题(一):本大题共3小题,第16题10分,第17、18题各7分,共24分.16.(10分)(1)计算:+|﹣5|+(﹣1)2023.(2)已知一次函数y=kx+b的图象经过点(0,1)与点(2,5),求该一次函数的表达式.17.(7分)某学校开展了社会实践活动,活动地点距离学校12km,甲、乙两同学骑自行车同时从学校出发,甲的速度是乙的1.2倍,结果甲比乙早到10min,求乙同学骑自行车的速度.18.(7分)2023年5月30日,神舟十六号载人飞船发射取得圆满成功,3名航天员顺利进驻中国空间站.如图中的照片展示了中国空间站上机械臂的一种工作状态.当两臂AC =BC=10m,两臂夹角∠ACB=100°时,求A,B两点间的距离.(结果精确到0.1m,参考数据:sin50°≈0.766,cos50°≈0.643,tan50°≈1.192)四、解答题(二):本大题共3小题,每小题9分,共27分.19.(9分)如图,在▱ABCD中,∠DAB=30°.(1)实践与操作:用尺规作图法过点D作AB边上的高DE;(保留作图痕迹,不要求写作法)(2)应用与计算:在(1)的条件下,AD=4,AB=6,求BE的长.20.(9分)综合与实践主题:制作无盖正方体形纸盒.素材:一张正方形纸板.步骤1:如图1,将正方形纸板的边长三等分,画出九个相同的小正方形,并剪去四个角上的小正方形;步骤2:如图2,把剪好的纸板折成无盖正方体形纸盒.猜想与证明:(1)直接写出纸板上∠ABC与纸盒上∠A1B1C1的大小关系;(2)证明(1)中你发现的结论.21.(9分)小红家到学校有两条公共汽车线路.为了解两条线路的乘车所用时间,小红做了试验,第一周(5个工作日)选择A线路,第二周(5个工作日)选择B线路,每天在固定时间段内乘车2次并分别记录所用时间.数据统计如下:(单位:min)数据统计表实验序号12345678910A线路所用时间15321516341821143520B线路所用时间25292325272631283024根据以上信息解答下列问题:平均数中位数众数方差A线路所用时间22a1563.2B线路所用时间b26.5c 6.36(1)填空:a= ;b= ;c= ;(2)应用你所学的统计知识,帮助小红分析如何选择乘车线路.五、解答题(三):本大题共2小题,每小题12分,共24分.22.(12分)综合探究如图1,在矩形ABCD中(AB>AD),对角线AC,BD相交于点O,点A关于BD的对称点为A′.连接AA′交BD于点E,连接CA′.(1)求证:AA'⊥CA';(2)以点O为圆心,OE为半径作圆.①如图2,⊙O与CD相切,求证:;②如图3,⊙O与CA′相切,AD=1,求⊙O的面积.23.(12分)综合运用如图1,在平面直角坐标系中,正方形OABC的顶点A在x轴的正半轴上.如图2,将正方形OABC绕点O逆时针旋转,旋转角为α(0°<α<45°),AB交直线y=x于点E,BC交y轴于点F.(1)当旋转角∠COF为多少度时,OE=OF;(直接写出结果,不要求写解答过程)(2)若点A(4,3),求FC的长;(3)如图3,对角线AC交y轴于点M,交直线y=x于点N,连接FN.将△OFN与△OCF 的面积分别记为S1与S2.设S=S1﹣S2,AN=n,求S关于n的函数表达式.2023年广东省中考数学试卷参考答案与试题解析一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)负数的概念最早出现在我国古代著名的数学专著《九章算术》中.如果把收入5元记作+5元,那么支出5元记作( )A.﹣5元B.0元C.+5元D.+10元【分析】本题考查负数的概念问题,负数和正数是具有相反意义的量,收入和支出是一对具有相反意义的量,进而作答.【解答】解:把收入5元记作+5元,根据收入和支出是一对具有相反意义的量,支出5元就记作﹣5元.故答案为A.【点评】本题考查负数和正数是具有相反意义的量,收入和支出是一对具有相反意义的量,解题的关键是理解相反意义的含义,进而作答.2.(3分)下列出版社的商标图案中,是轴对称图形的为( )A.B.C.D.【分析】利用轴对称图形的定义进行分析即可.【解答】解:选项B,C,D中的图形都不能确定一条直线,使图形沿这条直线对折,直线两旁的部分能够完全重合,不是轴对称图形,选项A中的图形沿某条直线对折后两部分能完全重合,是轴对称图形,故选:A.【点评】此题主要考查了轴对称图形,关键是掌握如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴.3.(3分)2023年5月28日,我国自主研发的C919国产大飞机商业首航取得圆满成功.C919可储存约186000升燃油,将数据186000用科学记数法表示为( )A.0.186×105B.1.86×105C.18.6×104D.186×103【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将186000用科学记数法表示为:1.86×105.故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(3分)如图,街道AB与CD平行,拐角∠ABC=137°,则拐角∠BCD=( )A.43°B.53°C.107°D.137°【分析】由平行线的性质即可求解.【解答】解:∵AB∥CD,∴∠ABC=∠BCD=137°,故选:D.【点评】本题考查平行线的性质,熟练掌握性质解解题关键.5.(3分)计算的结果为( )A.B.C.D.【分析】本题考查同分母分式的加减法,分母不变,分子相加减.【解答】解:==.故本题选:C.【点评】本题考查同分母分式相加减,分母不变,分子相加减.解题的关键是类比同分母分数的相加减进行计算即可.6.(3分)我国著名数学家华罗庚曾为普及优选法作出重要贡献.优选法中有一种0.618法应用了( )A.黄金分割数B.平均数C.众数D.中位数【分析】根据黄金分割的定义,即可解答.【解答】解:我国著名数学家华罗庚曾为普及优选法作出重要贡献.优选法中有一种0.618法应用了黄金分割数,故选:A.【点评】本题考查了黄金分割,算术平均数,中位线,众数,统计量的选择,熟练掌握这些数学知识是解题的关键.7.(3分)某学校开设了劳动教育课程.小明从感兴趣的“种植”“烹饪”“陶艺”“木工”4门课程中随机选择一门学习,每门课程被选中的可能性相等.小明恰好选中“烹饪”的概率为( )A.B.C.D.【分析】直接利用概率公式可得答案.【解答】解:∵共有“种植”“烹饪”“陶艺”“木工”4门兴趣课程,∴明恰好选中“烹饪”的概率为.故选:C.【点评】本题考查了概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数.8.(3分)一元一次不等式组的解集为( )A.﹣1<x<4B.x<4C.x<3D.3<x<4【分析】求出第一个不等式的解集,再求出其公共解集即可.【解答】解:,由不等式x﹣2>1得:x>3,∴不等式的解集为3<x<4.故选:D.【点评】本题考查了解一元一次不等式组,解题的关键是熟知解集的规律.9.(3分)如图,AB是⊙O的直径,∠BAC=50°,则∠D=( )A.20°B.40°C.50°D.80°【分析】由AB是⊙O的直径,得∠ACB=90°,而∠BAC=50°,即得∠ABC=40°,故∠D=∠ABC=40°,【解答】解:∵AB是⊙O的直径,∴∠ACB=90°,∴∠BAC+∠ABC=90°,∵∠BAC=50°,∴∠ABC=40°,∵=,∴∠D=∠ABC=40°,故选:B.【点评】本题考查圆周角定理的应用,解题的关键是掌握直径所对的圆周角是直角和同弧所对的圆周角相等.10.(3分)如图,抛物线y=ax2+c经过正方形OABC的三个顶点A,B,C,点B在y轴上,则ac的值为( )A.﹣1B.﹣2C.﹣3D.﹣4【分析】过A作AH⊥x轴于H,根据正方形的性质得到∠AOB=45°,得到AH=OH,利用待定系数法求得a、c的值,即可求得结论.【解答】解:过A作AH⊥x轴于H,∵四边形ABCO是正方形,∴∠AOB=45°,∴∠AOH=45°,∴AH=OH,设A(m,m),则B(0,2m),∴,解得am=﹣1,m=,∴ac的值为﹣2,故选:B.【点评】本题考查了待定系数法求二次函数的解析式,根据图象得出抛物线经过的点的坐标是解题的关键.二、填空题:本大题共5小题,每小题3分,共15分.11.(3分)因式分解:x2﹣1= (x+1)(x﹣1) .【分析】原式利用平方差公式分解即可.【解答】解:原式=(x+1)(x﹣1).故答案为:(x+1)(x﹣1).【点评】此题考查了因式分解﹣运用公式法,熟练掌握平方差公式是解本题的关键.12.(3分)计算:= 6 .【分析】本题考查二次根式的乘法计算,根据×=和=a(a>0)进行计算,【解答】解:方法一:×=×2=2×3=6.方法二:×===6.故答案为:6.【点评】本题考查二次根式的计算,考查的关键是准确运用×=和=a(a>0)进计算.13.(3分)某蓄电池的电压为48V,使用此蓄电池时,电流I(单位:A)与电阻R(单位:Ω)的函数表达式为.当R=12Ω时,I的值为 4 A.【分析】直接将R=12代入I=中可得I的值.【解答】解:当R=12Ω时,I==4(A).故答案为:4.【点评】此题考查的是反比例函数的应用,掌握反比例函数的点的坐标是解决此题的关键.14.(3分)某商品进价4元,标价5元出售,商家准备打折销售,但其利润率不能少于10%,则最多可打 8.8 折.【分析】利润率不能少于10%,意思是利润率大于或等于10%,相应的关系式为:(打折后的销售价﹣进价)÷进价≥10%,把相关数值代入即可求解.【解答】解:设这种商品最多可以按x折销售,则售价为5×0.1x,那么利润为5×0.1x﹣4,所以相应的关系式为5×0.1x﹣4≥4×10%,解得:x≥8.8.答:该商品最多可以8.8折,故答案为:8.8.【点评】此题主要考查了一元一次不等式的应用,解决本题的关键是得到利润率的相关关系式,注意“不能低于”用数学符号表示为“≥”;利润率是利润与进价的比值.15.(3分)边长分别为10,6,4的三个正方形拼接在一起,它们的底边在同一直线上(如图),则图中阴影部分的面积为 15 .【分析】根据相似三角形的性质,利用相似比求出梯形的上底和下底,用面积公式计算即可.【解答】解:如图,∵BF∥DE,∴△ABF∽△ADE,∴=,∵AB=4,AD=4+6+10=20,DE=10,∴=,∴BF=2,∴GF=6﹣2=4,∵CK∥DE,∴△ACK∽△ADE,∴=,∵AC=4+6=10,AD=20,DE=10,∴=,∴CK=5,∴HK=6﹣5=1,∴阴影梯形的面积=(HK+GF)•GH=(1+4)×6=15.故答案为:15.【点评】本题考查的是相似三角形的判定与性质,解决本题的关键是掌握相似三角形的对应边成比例.三、解答题(一):本大题共3小题,第16题10分,第17、18题各7分,共24分.16.(10分)(1)计算:+|﹣5|+(﹣1)2023.(2)已知一次函数y=kx+b的图象经过点(0,1)与点(2,5),求该一次函数的表达式.【分析】(1)利用立方根的性质、绝对值的性质以及负数指数幂的性质进行化简计算即可.(2)将(0,1)与(2,5)代入y=kx+b解方程组即可.【解答】(1)解:原式=2+5﹣1=6.(2)解:将(0,1)与(2,5)代入y=kx+b得:,解得:,∴一次函数的表达式为:y=2x+1.【点评】本题考查了实数的运算,待定系数法求一次函数表达式,正确化简各数,将点的坐标代入后能正确解方程组是解题的关键.17.(7分)某学校开展了社会实践活动,活动地点距离学校12km,甲、乙两同学骑自行车同时从学校出发,甲的速度是乙的1.2倍,结果甲比乙早到10min,求乙同学骑自行车的速度.【分析】设乙步行的速度为xkm/分,则甲骑自行车的速度为1.2xkm/分,根据题意列方程即可得到结论.【解答】解:设乙步行的速度为xkm/分,则甲骑自行车的速度为1.2xkm/分,根据题意得﹣=,解得x=12.经检验,x=12是原分式方程的解,答:乙骑自行车的速度为12km/h.【点评】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.18.(7分)2023年5月30日,神舟十六号载人飞船发射取得圆满成功,3名航天员顺利进驻中国空间站.如图中的照片展示了中国空间站上机械臂的一种工作状态.当两臂AC =BC=10m,两臂夹角∠ACB=100°时,求A,B两点间的距离.(结果精确到0.1m,参考数据:sin50°≈0.766,cos50°≈0.643,tan50°≈1.192)【分析】连接AB,取AB中点D,连接CD,根据AC=BC,点D为AB中点,可得∠ACD =∠BCD=∠ACB=50°,在Rt△ACD中,sin50°=,解得AD=10×sin50°≈7.66(m),故AB=2AD≈15.3(m).【解答】解:连接AB,取AB中点D,连接CD,如图,∵AC=BC,点D为AB中点,∴中线CD为等腰三角形的角平分线(三线合一),AD=BD=AB,∴∠ACD=∠BCD=∠ACB=50°,在Rt△ACD中,sin∠ACD=,∴sin50°=,∴AD=10×sin50°≈7.66(m),∴AB=2AD=2×7.66=15.32≈15.3(m),答:A、B的距离大约是15.3m.【点评】本题考查解直角三角形的应用,解题的关键是掌握锐角三角函数的定义.四、解答题(二):本大题共3小题,每小题9分,共27分.19.(9分)如图,在▱ABCD中,∠DAB=30°.(1)实践与操作:用尺规作图法过点D作AB边上的高DE;(保留作图痕迹,不要求写作法)(2)应用与计算:在(1)的条件下,AD=4,AB=6,求BE的长.【分析】(1)由基本作图即可解决问题;(2)由锐角的余弦求出AE的长,即可得到BE的长.【解答】解:(1)如图E即为所求作的点;(2)∵cos∠DAB=,∴AE=AD•cos30°=4×=2,∴BE=AB﹣AE=6﹣2.【点评】本题考查基本作图,平行四边形的性质,解直角三角形,关键是掌握基本作图,由锐角的余弦求出AE的长.20.(9分)综合与实践主题:制作无盖正方体形纸盒.素材:一张正方形纸板.步骤1:如图1,将正方形纸板的边长三等分,画出九个相同的小正方形,并剪去四个角上的小正方形;步骤2:如图2,把剪好的纸板折成无盖正方体形纸盒.猜想与证明:(1)直接写出纸板上∠ABC与纸盒上∠A1B1C1的大小关系;(2)证明(1)中你发现的结论.【分析】(1)根据等腰直角三角形的性质即可求解;(2)根据勾股定理和勾股定理的逆定理和正方形的性质即可求解.【解答】解:(1)∠ABC=∠A1B1C1;(2)∵A1C1为正方形对角线,∴∠A1B1C1=45°,设每个方格的边长为1,则AB==,AC=BC==,∵AC2+BC2=AB2,∴由勾股定理的逆定理得△ABC是等腰直角三角形,∴∠ABC=45°,∴∠ABC=∠A1B1C1.【点评】本题考查了正方形的性质,勾股定理和勾股定理的逆定理,等腰直角三角形的判定与性质,得到△ABC是等腰直角三角形是解题的关键.21.(9分)小红家到学校有两条公共汽车线路.为了解两条线路的乘车所用时间,小红做了试验,第一周(5个工作日)选择A线路,第二周(5个工作日)选择B线路,每天在固定时间段内乘车2次并分别记录所用时间.数据统计如下:(单位:min)数据统计表12345678910实验序号A 线路所用时间15321516341821143520B 线路所用时间25292325272631283024根据以上信息解答下列问题:平均数中位数众数方差A 线路所用时间22a 1563.2B 线路所用时间b26.5c6.36(1)填空:a = 19 ;b = 26.8 ;c = 25 ;(2)应用你所学的统计知识,帮助小红分析如何选择乘车线路.【分析】本题考查数据的分析,数据的集中和波动问题,(1)平均数,中位数,众数的计算.(2)方差的实际应用.【解答】解:(1)求中位数a 首先要先排序,从小到大顺序为:14,15,15,16,18,20,21,32,34,35.共有10个数,中位数在第5和6个数为18和20,所以中位数为=19,求平均数b ==26.8,众数c =25,故答案为:19,26.8,25.(2)小红统计的选择A线路平均数为22,选择B线路平均数为26.8,用时差不太多.而方差63.2>6.36,相比较B路线的波动性更小,所以选择B路线更优.【点评】本题考查数据的波动与集中程度,解题的关键是能够平均数,中位数,众数进行准确的计算,理解方差的意义,并进行作答.五、解答题(三):本大题共2小题,每小题12分,共24分.22.(12分)综合探究如图1,在矩形ABCD中(AB>AD),对角线AC,BD相交于点O,点A关于BD的对称点为A′.连接AA′交BD于点E,连接CA′.(1)求证:AA'⊥CA';(2)以点O为圆心,OE为半径作圆.①如图2,⊙O与CD相切,求证:;②如图3,⊙O与CA′相切,AD=1,求⊙O的面积.【分析】(1)根据轴对称的性质可得AE=A′E,AA′⊥BD,根据四边形ABCD是矩形,得出OA=OC,从而OE∥A′C,从而得出AA′⊥CA′;(2)①设CD⊙O与CD切于点F,连接OF,并延长交AB于点G,可证得OG=OF=OE,从而得出∠EAO=∠GAO=∠GBO,进而得出∠EAO=30°,从而;②设⊙O切CA′于点H,连接OH,可推出AA′=2OH,CA′=2OE,从而AA′=CA′,进而得出∠A′AC=∠A′CA=45°,∠AOE=∠ACA′=45°,从而得出AE=OE,OD=OA=AE,设OA=OE=x,则OD=OA=,在Rt△ADE中,由勾股定理得出=1,从而求得x2=,进而得出⊙O的面积.【解答】(1)证明:∵点A关于BD的对称点为A′,∴AE=A′E,AA′⊥BD,∵四边形ABCD是矩形,∴OA=OC,∴OE∥A′C,∴AA′⊥CA′;(2)①证明:如图2,设CD⊙O与CD切于点F,连接OF,并延长交AB于点G,∴OF⊥CD,OF=OE,∵四边形ABCD是矩形,∴OB=OD=BD,AB∥CD,AC=BD,OA=AC,∴OG⊥AB,∠FDO=∠BOG,OA=OB,∴∠GAO=∠GBO,∵∠DOF=∠BOG,∴△DOF≌△BOG(ASA),∴OG=OF,∴OG=OE,由(1)知:AA′⊥BD,∴∠EAO=∠GAO,∵∠EAB+∠GBO=90°,∴∠EAO+∠GAO+∠GBO=90°,∴3∠EAO=90°,∴∠EAO=30°,由(1)知:AA′⊥CA′,∴tan∠EAO=,∴tan30°=,∴;②解:如图3,设⊙O切CA′于点H,连接OH,∴OH⊥CA′,由(1)知:AA′⊥CA′,AA′⊥CA′,OA=OC,∴OH∥AA′,OE∥CA′,∴△COH∽△CAA′,△AOE∽△ACA′,∴,∴AA′=2OH,CA′=2OE,∴AA′=CA′,∴∠A′AC=∠A′CA=45°,∴∠AOE=∠ACA′=45°,∴AE=OE,OD=OA=AE,设AE=OE=x,则OD=OA=,∴DE=OD﹣OE=()x,在Rt△ADE中,由勾股定理得,=1,∴x2=,∴S⊙O=π•OE2=.【点评】本题考查了圆的切线性质,矩形的性质,全等三角形的判定和性质,相似三角形的判定和性质,解直角三角形等知识,解决问题的关键是熟练掌握有关基础知识.23.(12分)综合运用如图1,在平面直角坐标系中,正方形OABC的顶点A在x轴的正半轴上.如图2,将正方形OABC绕点O逆时针旋转,旋转角为α(0°<α<45°),AB交直线y=x于点E,BC交y轴于点F.(1)当旋转角∠COF为多少度时,OE=OF;(直接写出结果,不要求写解答过程)(2)若点A(4,3),求FC的长;(3)如图3,对角线AC交y轴于点M,交直线y=x于点N,连接FN.将△OFN与△OCF的面积分别记为S1与S2.设S=S1﹣S2,AN=n,求S关于n的函数表达式.【分析】(1)如图2中,当OE=OF时,得到Rt△AOE≌Rt△COF,利用全等三角形的性质以及旋转的性质解决问题即可;(2)在图2中,过点A作AG⊥x轴于点G,利用三角形相似,可得结论;(3)过点N作直线PQ⊥BC于点P,交OA于点Q,利用四点共圆,得出三角形FON 是等腰直角三角形是解决问题的关键,结合三角形全等的判定和性质和三角形的面积公式解决问题.【解答】解:(1)当OE=OF时,在Rt△AOE和Rt△COF中,,∴Rt△AOE≌Rt△COF(HL),∴∠AOE=∠COF(即∠AOE=旋转角),∴2∠AOE=45°,∴∠COF=∠AOE=22.5°,∴当旋转角为22.5°时,OE=OF;(2)过点A作AG⊥x轴于点G,则有AG=3,OG=4,∴,∵四边形OABC是正方形,∴OC=OA=5,∠AOC=∠C=90°,又∵∠COF+∠FOA=90°,∠AOG+∠FOA=90°,∴∠COG=∠GOA,∴Rt△AOG∽Rt△FOC,∴,∴,∴FC的长为;(3)过点N作直线PQ⊥BC于点P,交OA于点Q,∵四边形OABC是正方形,∴∠BCA=∠OCA=45°,BC∥OA,又∠FON=45°,∴∠FCN=∠FON=45°,∴F、C、O、N四点共圆,∴∠OFN=∠OCA=45°,∴∠OFN=∠FON=45°,∴△FON是等腰直角三角形,∴FN=NO,∠FNO=90°,∴∠FNP+∠ONQ=90°,又∵∠NOQ+∠ONQ=90°,∴∠NOQ=∠FNP,∴△NOQ≌△FNP(AAS),∴NP=OQ,FP=NQ,∵四边形OQPC是矩形,∴CP=OQ,OC=PQ,∴,=,,=,=,=,∴,又∵△ANQ为等腰直角三角形,∴,∴,∴S关于n的函数表达式为.【点评】本题属于一次函数综合题,考查了正方形的性质,旋转的性质,全等三角形的判定和性质,相似角三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.。

初三数学试题及答案广东

初三数学试题及答案广东

初三数学试题及答案广东一、选择题(每题3分,共30分)1. 下列哪个数是无理数?A. 0.33333...(循环)B. 根号2C. 0.5D. 32. 一个三角形的两边长分别为3和4,第三边的长x满足的条件是?A. 1 < x < 7B. 0 < x < 7C. 1 < x < 5D. 3 < x < 73. 以下哪个函数是二次函数?A. y = 2x + 3B. y = x^2 + 2x + 1C. y = 3x^3 - 2xD. y = 54. 一个圆的半径为5,它的面积是多少?A. 25πB. 50πC. 100πD. 200π5. 如果一个数的相反数是-3,那么这个数是?A. 3C. 0D. 66. 以下哪个选项是不等式2x - 3 > 5的解?A. x > 4B. x < 4C. x > 2D. x < 27. 一个等腰三角形的底角是45度,顶角是多少度?A. 90度B. 45度C. 60度D. 30度8. 以下哪个是正比例函数?A. y = 2x + 3B. y = 3xC. y = x^2D. y = 5/x9. 一个数的绝对值是5,这个数可能是?A. 5B. -5C. 5和-5D. 010. 一个长方体的长、宽、高分别是2、3、4,它的体积是多少?A. 24B. 26D. 32二、填空题(每题3分,共15分)11. 一个直角三角形的两个直角边长分别是6和8,斜边长是_________。

12. 一个数的平方是25,这个数是_________。

13. 一个圆的周长是31.4,它的半径是_________。

14. 一个等差数列的首项是2,公差是3,第5项是_________。

15. 一个二次函数的顶点是(1, -2),且经过点(0, 3),它的解析式是y = _________。

三、解答题(共55分)16. (10分)解方程:x^2 - 5x + 6 = 0。

中考广东数学试题及答案

中考广东数学试题及答案

中考广东数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是完全平方数?A. 23B. 24C. 25D. 26答案:C2. 已知等腰三角形的两边长分别为5和8,那么它的周长是多少?A. 18B. 21C. 26D. 30答案:B3. 若x+y=5,且xy=6,求x²+y²的值。

A. 13B. 19C. 23D. 25答案:D4. 函数y=2x+3的图象不经过哪个象限?A. 第一象限B. 第二象限C. 第三象限D. 第四象限答案:C5. 一个圆的半径为3,求该圆的面积。

A. 9πB. 18πC. 27πD. 36π答案:C6. 一个数的相反数是-5,这个数是多少?A. 5B. -5C. 0D. 10答案:A7. 已知一个角的补角是120°,那么这个角的度数是多少?A. 30°B. 60°C. 90°D. 120°答案:A8. 一个数的绝对值是4,这个数可能是?A. 4B. -4C. 4或-4D. 0答案:C9. 一个等差数列的首项是2,公差是3,那么它的第5项是多少?A. 17B. 14C. 11D. 8答案:A10. 一个直角三角形的两条直角边长分别是6和8,斜边长是多少?A. 10B. 14C. 16D. 20答案:A二、填空题(每题3分,共15分)11. 已知一个数的立方根是2,那么这个数是______。

答案:812. 一个数的平方是36,那么这个数是______。

答案:±613. 一个三角形的内角和是______度。

答案:18014. 一个数的倒数是1/4,那么这个数是______。

答案:415. 一个圆的直径是8,那么它的半径是______。

答案:4三、解答题(每题10分,共40分)16. 已知一个直角三角形的两条直角边长分别是3和4,求斜边长。

解:根据勾股定理,斜边长c = √(3² + 4²) = √(9 + 16) = √25 = 5。

广东初三数学试题及答案

广东初三数学试题及答案

广东初三数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是二次函数的一般形式?A. y = ax^2 + bx + c (a ≠ 0)B. y = ax^2 + bx + c (a = 0)C. y = ax + b + c (a ≠ 0)D. y = ax^2 + bx + c (a = 1)答案:A2. 已知一个等腰三角形的底边长为6,腰长为5,那么这个三角形的周长是多少?A. 16B. 21C. 26D. 31答案:B3. 计算下列表达式的值:(3x^2 - 2x + 1) - (2x^2 + 3x - 4)。

A. x^2 - 5x + 5B. x^2 - x + 5C. x^2 + x - 3D. x^2 - x - 3答案:B4. 如果一个数的平方根是2,那么这个数是多少?A. 4B. -4C. 2D. -2答案:A5. 一个圆的半径是3cm,那么这个圆的面积是多少?A. 9π cm^2B. 18π cm^2C. 36π cm^2D. 72π cm^2答案:C6. 一个直角三角形的两个直角边长分别是3和4,那么这个三角形的斜边长是多少?A. 5B. 6C. 7D. 8答案:A7. 计算下列表达式的值:(2x - 3)(x + 1)。

A. 2x^2 + x - 3B. 2x^2 + x + 3C. 2x^2 - x - 3D. 2x^2 - x + 3答案:C8. 一个等差数列的首项是2,公差是3,那么这个数列的第5项是多少?A. 17B. 14C. 11D. 8答案:A9. 一个正多边形的内角和是900度,那么这个多边形有多少条边?A. 6B. 7C. 8D. 9答案:B10. 计算下列表达式的值:(5x^2 - 2x + 1) / (x - 1)。

A. 5x + 2 + 1/(x - 1)B. 5x - 2 + 1/(x - 1)C. 5x + 2 - 1/(x - 1)D. 5x - 2 - 1/(x - 1)答案:A二、填空题(每题3分,共15分)11. 一个数的立方根是-2,那么这个数是__-8__。

2024年广东省中考数学试卷及答案解析

2024年广东省中考数学试卷及答案解析

2024年广东省中考数学试卷一、选择题:本大题共10小题,每小题3分,共30分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.(3分)计算﹣5+3的结果是()A.﹣2B.﹣8C.2D.82.(3分)下列几何图形中,既是中心对称图形也是轴对称图形的是()A.B.C.D.3.(3分)2024年6月6日,嫦娥六号在距离地球约384000千米外上演“太空牵手”,完成月球轨道的交会对接.数据384000用科学记数法表示为()A.3.84×104B.3.84×105C.3.84×106D.38.4×1054.(3分)如图,一把直尺、两个含30°的三角尺拼接在一起,则∠ACE的度数为()A.120°B.90°C.60°D.30°5.(3分)下列计算正确的是()A.a2•a5=a10B.a8÷a2=a4C.﹣2a+5a=7a D.(a2)5=a106.(3分)长江是中华民族的母亲河,长江流域孕育出藏羌文化、巴蜀文化、荆楚文化、吴越文化等区域文化.若从上述四种区域文化中随机选一种文化开展专题学习,则选中“巴蜀文化”的概率是()A.B.C.D.7.(3分)完全相同的4个正方形面积之和是100,则正方形的边长是()A.2B.5C.10D.208.(3分)若点(0,y1),(1,y2),(2,y3)都在二次函数y=x2的图象上,则()A.y3>y2>y1B.y2>y1>y3C.y1>y3>y2D.y3>y1>y29.(3分)方程=的解是()A.x=﹣3B.x=﹣9C.x=3D.x=910.(3分)已知不等式kx+b<0的解集是x<2,则一次函数y=kx+b的图象大致是()A.B.C.D.二、填空题:本大题共5小题,每小题3分,共15分。

11.(3分)数据5,2,5,4,3的众数是.12.(3分)关于x的不等式组中,两个不等式的解集如图所示,则这个不等式组的解集是.13.(3分)若关于x的一元二次方程x2+2x+c=0有两个相等的实数根,则c=.14.(3分)计算:﹣=.15.(3分)如图,菱形ABCD的面积为24,点E是AB的中点,点F是BC上的动点.若△BEF的面积为4,则图中阴影部分的面积为.三、解答题(一):本大题共3小题,每小题7分,共21分.16.(7分)计算:20×|﹣|+﹣3﹣1.17.(7分)如图,在△ABC中,∠C=90°.(1)实践与操作:用尺规作图法作∠A的平分线AD交BC于点D;(保留作图痕迹,不要求写作法)(2)应用与证明:在(1)的条件下,以点D为圆心,DC长为半径作⊙D.求证:AB与⊙D相切.18.(7分)中国新能源汽车为全球应对气候变化和绿色低碳转型作出了巨大贡献.为满足新能源汽车的充电需求,某小区增设了充电站,如图是矩形PQMN充电站的平面示意图,矩形ABCD是其中一个停车位.经测量,∠ABQ=60°,AB=5.4m,CE=1.6m,GH⊥CD,GH是另一个车位的宽,所有车位的长宽相同,按图示并列划定.根据以上信息回答下列问题:(结果精确到0.1m,参考数据≈1.73)(1)求PQ的长;(2)该充电站有20个停车位,求PN的长.四、解答题(二):本大题共3小题,每小题9分,共27分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

广东省中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)5的相反数是()A.B.5 C.﹣D.﹣52.(3分)“一带一路”倡议提出三年以来,广东企业到“一带一路”国家投资越来越活跃,据商务部门发布的数据显示,广东省对沿线国家的实际投资额超过4000000000美元,将4000000000用科学记数法表示为()A.0.4×109B.0.4×1010C.4×109D.4×10103.(3分)已知∠A=70°,则∠A的补角为()A.110°B.70°C.30°D.20°4.(3分)如果2是方程x2﹣3x+k=0的一个根,则常数k的值为()A.1 B.2 C.﹣1 D.﹣25.(3分)在学校举行“阳光少年,励志青春”的演讲比赛中,五位评委给选手小明的平分分别为:90,85,90,80,95,则这组数据的众数是()A.95 B.90 C.85 D.806.(3分)下列所述图形中,既是轴对称图形又是中心对称图形的是()A.等边三角形B.平行四边形 C.正五边形D.圆7.(3分)如图,在同一平面直角坐标系中,直线y=k1x(k1≠0)与双曲线y=(k2≠0)相交于A,B两点,已知点A的坐标为(1,2),则点B的坐标为()A.(﹣1,﹣2)B.(﹣2,﹣1)C.(﹣1,﹣1)D.(﹣2,﹣2)8.(3分)下列运算正确的是()A.a+2a=3a2B.a3•a2=a5 C.(a4)2=a6D.a4+a2=a49.(3分)如图,四边形ABCD内接于⊙O,DA=DC,∠CBE=50°,则∠DAC的大小为()A.130°B.100°C.65°D.50°10.(3分)如图,已知正方形ABCD,点E是BC边的中点,DE与AC相交于点F,连接BF,下列结论:①S△ABF =S△ADF;②S△CDF=4S△CEF;③S△ADF=2S△CEF;④S△ADF=2S△CDF,其中正确的是()A.①③B.②③C.①④D.②④二、填空题(本大题共6小题,每小题4分,共24分)11.(4分)分解因式:a2+a= .12.(4分)一个n边形的内角和是720°,则n= .13.(4分)已知实数a,b在数轴上的对应点的位置如图所示,则a+b 0.(填“>”,“<”或“=”)14.(4分)在一个不透明的盒子中,有五个完全相同的小球,把它们分别标号为1,2,3,4,5,随机摸出一个小球,摸出的小球标号为偶数的概率是.15.(4分)已知4a+3b=1,则整式8a+6b﹣3的值为.16.(4分)如图,矩形纸片ABCD中,AB=5,BC=3,先按图(2)操作:将矩形纸片ABCD沿过点A的直线折叠,使点D落在边AB上的点E处,折痕为AF;再按图(3)操作,沿过点F的直线折叠,使点C落在EF上的点H处,折痕为FG,则A、H两点间的距离为.三、解答题(本大题共3小题,每小题6分,共18分)17.(6分)计算:|﹣7|﹣(1﹣π)0+()﹣1.18.(6分)先化简,再求值:(+)•(x2﹣4),其中x=.19.(6分)学校团委组织志愿者到图书馆整理一批新进的图书.若男生每人整理30本,女生每人整理20本,共能整理680本;若男生每人整理50本,女生每人整理40本,共能整理1240本.求男生、女生志愿者各有多少人?四、解答题(本大题共3小题,每小题7分,共21分)20.(7分)如图,在△ABC中,∠A>∠B.(1)作边AB的垂直平分线DE,与AB,BC分别相交于点D,E(用尺规作图,保留作图痕迹,不要求写作法);(2)在(1)的条件下,连接AE,若∠B=50°,求∠AEC的度数.21.(7分)如图所示,已知四边形ABCD,ADEF都是菱形,∠BAD=∠FAD,∠BAD为锐角.(1)求证:AD⊥BF;(2)若BF=BC,求∠ADC的度数.22.(7分)某校为了解九年级学生的体重情况,随机抽取了九年级部分学生进行调查,将抽取学生的体重情况绘制如下不完整的统计图表,如图表所示,请根据图标信息回答下列问题:体重频数分布表(1)填空:①m= (直接写出结果);②在扇形统计图中,C组所在扇形的圆心角的度数等于度;(2)如果该校九年级有1000名学生,请估算九年级体重低于60千克的学生大约有多少人?五、解答题(本大题共3小题,每小题9分,共27分)23.(9分)如图,在平面直角坐标系中,抛物线y=﹣x2+ax+b交x轴于A(1,0),B (3,0)两点,点P是抛物线上在第一象限内的一点,直线BP与y轴相交于点C.(1)求抛物线y=﹣x2+ax+b的解析式;(2)当点P是线段BC的中点时,求点P的坐标;(3)在(2)的条件下,求sin∠OCB的值.24.(9分)如图,AB是⊙O的直径,AB=4,点E为线段OB上一点(不与O,B重合),作CE⊥OB,交⊙O于点C,垂足为点E,作直径CD,过点C的切线交DB的延长线于点P,AF⊥PC于点F,连接CB.(1)求证:CB是∠ECP的平分线;(2)求证:CF=CE;(3)当=时,求劣弧的长度(结果保留π)25.(9分)如图,在平面直角坐标系中,O为原点,四边形ABCO是矩形,点A,C的坐标分别是A(0,2)和C(2,0),点D是对角线AC上一动点(不与A,C重合),连结BD,作DE⊥DB,交x轴于点E,以线段DE,DB为邻边作矩形BDEF.(1)填空:点B的坐标为;(2)是否存在这样的点D,使得△DEC是等腰三角形?若存在,请求出AD的长度;若不存在,请说明理由;(3)①求证:=;②设AD=x,矩形BDEF的面积为y,求y关于x的函数关系式(可利用①的结论),并求出y的最小值.广东省中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)(•广东)5的相反数是()A.B.5 C.﹣D.﹣5【解答】解:根据相反数的定义有:5的相反数是﹣5.故选:D.2.(3分)(•广东)“一带一路”倡议提出三年以来,广东企业到“一带一路”国家投资越来越活跃,据商务部门发布的数据显示,广东省对沿线国家的实际投资额超过4000000000美元,将4000000000用科学记数法表示为()A.0.4×109B.0.4×1010C.4×109D.4×1010【解答】解:4000000000=4×109.故选:C.3.(3分)(•广东)已知∠A=70°,则∠A的补角为()A.110°B.70°C.30°D.20°【解答】解:∵∠A=70°,∴∠A的补角为110°,故选A4.(3分)(•广东)如果2是方程x2﹣3x+k=0的一个根,则常数k的值为()A.1 B.2 C.﹣1 D.﹣2【解答】解:∵2是一元二次方程x2﹣3x+k=0的一个根,∴22﹣3×2+k=0,解得,k=2.故选:B.5.(3分)(•广东)在学校举行“阳光少年,励志青春”的演讲比赛中,五位评委给选手小明的平分分别为:90,85,90,80,95,则这组数据的众数是()A.95 B.90 C.85 D.80【解答】解:数据90出现了两次,次数最多,所以这组数据的众数是90.故选B.6.(3分)(•广东)下列所述图形中,既是轴对称图形又是中心对称图形的是()A.等边三角形B.平行四边形 C.正五边形D.圆【解答】解:等边三角形为轴对称图形;平行四边形为中心对称图形;正五边形为轴对称图形;圆既是轴对称图形又是中心对称图形.故选D.7.(3分)(•广东)如图,在同一平面直角坐标系中,直线y=k1x(k1≠0)与双曲线y=(k2≠0)相交于A,B两点,已知点A的坐标为(1,2),则点B的坐标为()A.(﹣1,﹣2)B.(﹣2,﹣1)C.(﹣1,﹣1)D.(﹣2,﹣2)【解答】解:∵点A与B关于原点对称,∴B点的坐标为(﹣1,﹣2).故选:A.8.(3分)(•广东)下列运算正确的是()A.a+2a=3a2B.a3•a2=a5 C.(a4)2=a6D.a4+a2=a4【解答】解:A、a+2a=3a,此选项错误;B、a3•a2=a5,此选项正确;C、(a4)2=a8,此选项错误;D、a4与a2不是同类项,不能合并,此选项错误;故选:B.9.(3分)(•广东)如图,四边形ABCD内接于⊙O,DA=DC,∠CBE=50°,则∠DAC的大小为()A.130°B.100°C.65°D.50°【解答】解:∵∠CBE=50°,∴∠ABC=180°﹣∠CBE=180°﹣50°=130°,∵四边形ABCD为⊙O的内接四边形,∴∠D=180°﹣∠ABC=180°﹣130°=50°,∵DA=DC,∴∠DAC==65°,故选C.10.(3分)(•广东)如图,已知正方形ABCD,点E是BC边的中点,DE与AC相交于点F,连接BF,下列结论:①S△ABF =S△ADF;②S△CDF=4S△CEF;③S△ADF=2S△CEF;④S△ADF=2S△CDF,其中正确的是()A.①③B.②③C.①④D.②④【解答】解:∵四边形ABCD是正方形,∴AD∥CB,AD=BC=AB,∠FAD=∠FAB,在△AFD和△AFB中,,∴△AFD≌△AFB,∴S△ABF =S△ADF,故①正确,∵BE=EC=BC=AD,AD∥EC,∴===,∴S△CDF =2S△CEF,S△ADF=4S△CEF,S△ADF=2S△CDF,故②③错误④正确,故选C.二、填空题(本大题共6小题,每小题4分,共24分)11.(4分)(•广东)分解因式:a2+a= a(a+1).【解答】解:a2+a=a(a+1).故答案为:a(a+1).12.(4分)(•广东)一个n边形的内角和是720°,则n= 6 .【解答】解:设所求正n边形边数为n,则(n﹣2)•180°=720°,解得n=6.13.(4分)(•广东)已知实数a,b在数轴上的对应点的位置如图所示,则a+b <0.(填“>”,“<”或“=”)【解答】解:∵a在原点左边,b在原点右边,∴a<0<b,∵a离开原点的距离比b离开原点的距离大,∴|a|>|b|,∴a+b<0.故答案为:<.14.(4分)(•广东)在一个不透明的盒子中,有五个完全相同的小球,把它们分别标号为1,2,3,4,5,随机摸出一个小球,摸出的小球标号为偶数的概率是.【解答】解:∵5个小球中,标号为偶数的有2、4这2个,∴摸出的小球标号为偶数的概率是,故答案为:15.(4分)(•广东)已知4a+3b=1,则整式8a+6b﹣3的值为﹣1 .【解答】解:∵4a+3b=1,∴8a+6b=2,8a+6b﹣3=2﹣3=﹣1;故答案为:﹣1.16.(4分)(•广东)如图,矩形纸片ABCD中,AB=5,BC=3,先按图(2)操作:将矩形纸片ABCD沿过点A的直线折叠,使点D落在边AB上的点E处,折痕为AF;再按图(3)操作,沿过点F的直线折叠,使点C落在EF上的点H处,折痕为FG,则A、H两点间的距离为.【解答】解:如图3中,连接AH.由题意可知在Rt△AEH中,AE=AD=3,EH=EF﹣HF=3﹣2=1,∴AH===,故答案为.三、解答题(本大题共3小题,每小题6分,共18分)17.(6分)(•广东)计算:|﹣7|﹣(1﹣π)0+()﹣1.【解答】解:原式=7﹣1+3=9.18.(6分)(•广东)先化简,再求值:(+)•(x2﹣4),其中x=.【解答】解:原式=[+]•(x+2)(x﹣2)=•(x+2)(x﹣2)=2x,当x=时,原式=2.19.(6分)(•广东)学校团委组织志愿者到图书馆整理一批新进的图书.若男生每人整理30本,女生每人整理20本,共能整理680本;若男生每人整理50本,女生每人整理40本,共能整理1240本.求男生、女生志愿者各有多少人?【解答】解:设男生志愿者有x人,女生志愿者有y人,根据题意得:,解得:.答:男生志愿者有12人,女生志愿者有16人.四、解答题(本大题共3小题,每小题7分,共21分)20.(7分)(•广东)如图,在△ABC中,∠A>∠B.(1)作边AB的垂直平分线DE,与AB,BC分别相交于点D,E(用尺规作图,保留作图痕迹,不要求写作法);(2)在(1)的条件下,连接AE,若∠B=50°,求∠AEC的度数.【解答】解:(1)如图所示;(2)∵DE是AB的垂直平分线,∴AE=BE,∴∠EAB=∠B=50°,∴∠AEC=∠EAB+∠B=100°.21.(7分)(•广东)如图所示,已知四边形ABCD,ADEF都是菱形,∠BAD=∠FAD,∠BAD为锐角.(1)求证:AD⊥BF;(2)若BF=BC,求∠ADC的度数.【解答】(1)证明:如图,连结DB、DF.∵四边形ABCD,ADEF都是菱形,∴AB=BC=CD=DA,AD=DE=EF=FA.在△BAD与△FAD中,,∴△BAD≌△FAD,∴DB=DF,∴D在线段BF的垂直平分线上,∵AB=AF,∴A在线段BF的垂直平分线上,∴AD是线段BF的垂直平分线,∴AD⊥BF;(2)如图,设AD⊥BF于H,作DG⊥BC于G,则四边形BGDH是矩形,∴DG=BH=BF.∵BF=BC,BC=CD,∴DG=CD.在直角△CDG中,∵∠CGD=90°,DG=CD,∴∠C=30°,∵BC∥AD,∴∠ADC=180°﹣∠C=150°.22.(7分)(•广东)某校为了解九年级学生的体重情况,随机抽取了九年级部分学生进行调查,将抽取学生的体重情况绘制如下不完整的统计图表,如图表所示,请根据图标信息回答下列问题:体重频数分布表(1)填空:①m= 52 (直接写出结果);②在扇形统计图中,C组所在扇形的圆心角的度数等于144 度;(2)如果该校九年级有1000名学生,请估算九年级体重低于60千克的学生大约有多少人?【解答】解:(1)①调查的人数为:40÷20%=200(人),∴m=200﹣12﹣80﹣40﹣16=52;②C组所在扇形的圆心角的度数为×360°=144°;故答案为:52,144;(2)九年级体重低于60千克的学生大约有×1000=720(人).五、解答题(本大题共3小题,每小题9分,共27分)23.(9分)(•广东)如图,在平面直角坐标系中,抛物线y=﹣x2+ax+b交x轴于A(1,0),B(3,0)两点,点P是抛物线上在第一象限内的一点,直线BP与y轴相交于点C.(1)求抛物线y=﹣x2+ax+b的解析式;(2)当点P是线段BC的中点时,求点P的坐标;(3)在(2)的条件下,求sin∠OCB的值.【解答】解:(1)将点A、B代入抛物线y=﹣x2+ax+b可得,,解得,a=4,b=﹣3,∴抛物线的解析式为:y=﹣x2+4x﹣3;(2)∵点C在y轴上,所以C点横坐标x=0,∵点P是线段BC的中点,==,∴点P横坐标xP∵点P在抛物线y=﹣x2+4x﹣3上,=﹣3=,∴yP∴点P的坐标为(,);(3)∵点P的坐标为(,),点P是线段BC的中点,∴点C的纵坐标为2×﹣0=,∴点C的坐标为(0,),∴BC==,∴sin∠OCB===.24.(9分)(•广东)如图,AB是⊙O的直径,AB=4,点E为线段OB上一点(不与O,B重合),作CE⊥OB,交⊙O于点C,垂足为点E,作直径CD,过点C的切线交DB的延长线于点P,AF⊥PC于点F,连接CB.(1)求证:CB是∠ECP的平分线;(2)求证:CF=CE;(3)当=时,求劣弧的长度(结果保留π)【解答】(1)证明:∵OC=OB,∴∠OCB=∠OBC,∵PF是⊙O的切线,CE⊥AB,∴∠OCP=∠CEB=90°,∴∠PCB+∠OCB=90°,∠BCE+∠OBC=90°,∴∠BCE=∠BCP,∴BC平分∠PCE.(2)证明:连接AC.∵AB是直径,∴∠ACB=90°,∴∠BCP+∠ACF=90°,∠ACE+∠BCE=90°,∵∠BCP=∠BCE,∴∠ACF=∠ACE,∵∠F=∠AEC=90°,AC=AC,∴△ACF≌△ACE,∴CF=CE.(3)解:作BM⊥PF于M.则CE=CM=CF,设CE=CM=CF=4a,PC=4a,PM=a,∵△BMC∽△PMB,∴=,∴BM2=CM•PM=3a2,∴BM=a,∴tan∠BCM==,∴∠BCM=30°,∴∠OCB=∠OBC=∠BOC=60°,∴的长==π.25.(9分)(•广东)如图,在平面直角坐标系中,O为原点,四边形ABCO是矩形,点A,C的坐标分别是A(0,2)和C(2,0),点D是对角线AC上一动点(不与A,C 重合),连结BD,作DE⊥DB,交x轴于点E,以线段DE,DB为邻边作矩形BDEF.(1)填空:点B的坐标为(2,2);(2)是否存在这样的点D,使得△DEC是等腰三角形?若存在,请求出AD的长度;若不存在,请说明理由;(3)①求证:=;②设AD=x,矩形BDEF的面积为y,求y关于x的函数关系式(可利用①的结论),并求出y的最小值.【解答】解:(1)∵四边形AOCB是矩形,∴BC=OA=2,OC=AB=2,∠BCO=∠BAO=90°,∴B(2,2).故答案为(2,2).(2)存在.理由如下:连接BE,取BE的中点K,连接DK、KC.∵∠BDE=∠BCE=90°,∴KD=KB=KE=KC,∴B、D、E、C四点共圆,∴∠DBC=∠DCE,∠EDC=∠EBC,∵tan∠ACO==,∴∠ACO=30°,∠ACB=60°①如图1中,△DEC是等腰三角形,观察图象可知,只有ED=EC,∴∠DBC=∠DCE=∠EDC=∠EBC=30°,∴∠DBC=∠BCD=60°,∴△DBC是等边三角形,∴DC=BC=2,在Rt△AOC中,∵∠ACO=30°,OA=2,∴AC=2AO=4,∴AD=AC﹣CD=4﹣2=2.∴当AD=2时,△DEC是等腰三角形.②如图2中,∵△DCE是等腰三角形,易知CD=CE,∠DBC=∠DEC=∠CDE=15°,∴∠ABD=∠ADB=75°,∴AB=AD=2,综上所述,满足条件的AD的值为2或2.(3)①由(2)可知,B、D、E、C四点共圆,∴∠DBC=∠DCE=30°,∴tan∠DBE=,∴=.②如图2中,作DH⊥AB于H.在Rt△ADH中,∵AD=x,∠DAH=∠ACO=30°,∴DH=AD=x,AH==x,∴BH=2﹣x,在Rt△BDH中,BD==,∴DE=BD=•,∴矩形BDEF的面积为y=[]2=(x2﹣6x+12),即y=x2﹣2x+4,∴y=(x﹣3)2+,∵>0,∴x=3时,y有最小值.。

相关文档
最新文档