2013年辽宁本溪中考数学试卷及答案(word解析版)
本溪市中考数学试题含答案
本溪市初中毕业生学业考试数学试卷※ 考试时间120分钟 试卷满分150分考生注意:请在答题卡各题目规定区域内作答,答在本试卷上无效.第一部分 选择题(共30分)一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.41-的倒数是( ) A.4- B.4 C.41 D.41- 2.下列计算正确的是( ) A.52332a a a =+B.()2263a a = C.()222b a b a +=+D.·22a 532a a = 3.如图所示的几何体的俯视图是( )第3题图 A. B. C. D. 4.如图,AB ∥CD ,AD 与BC 相交于点O , ︒=∠30B ,︒=∠40D ,则AOC ∠的度数为( )A.︒60 B.︒70 C.︒80 D.︒90OABA第4题图 第5题图 ABCD 中,4=AB ,6=BC ,︒=∠30B ,则此平行四边形的面积是( )A.6 B.12 C.18 D.24 6年龄(岁) 12 13 14 15 人数(人)1254则这个队队员年龄的众数是( )A .12岁 B.13岁 C.14岁 D.15岁7.底面半径为4,高为3的圆锥的侧面积是( ) A .π12 B.π15 C.π20 D.π368.若实数a 、b 满足ab <0,a <b ,则函数b ax y +=的图像可能是( )yyyOOOO xxx xyA B C D9.如图,已知ABC ∆和ADE ∆均为等边三角形,D 在BC 上,DE 与AC 相交于点F ,9=AB ,3=BD ,则CF 等于( )A .1 B.2 C.3 D.4FE Axy BCODA第9题图 第10题图10.如图,边长为2的正方形ABCD 的顶点A 在y轴上,顶点D 在反比例函数x k y =(x >0)的图像上,已知点B 的坐标是(56,511),则k 的值为( ) A .4 B.6 C.8 D.10第二部分 非选择题(共120分)二、填空题(本大题共8小题,每小题3分,共24分)11.目前发现一种病毒直径约是0.000 025 2米,将0.000 025 2用科学记数法表示为 .12.因式分解:=-a a 43.13.一个数的算术平方根是2,则这个数是 .14.在一个不透明的盒子中放入标号分别为1,2,…,9的形状、大小、质地完全相同的9个小球,充分混合后,从中取出一个球,标号能被3整除的概率是 .15.在ABC ∆中,︒=∠45B ,21cos =A ,则C ∠的度数是 . 16.关于x 、y 的方程组⎩⎨⎧=+=-n my x m y x 2的解是⎩⎨⎧==31y x ,则n m +的值是 .17.关于x 的一元二次方程02=++c bx x ,从1-,2,3三个数中任取一个数,作为方程中b 的值,再从剩下的两个数中任取一个数作为方程中c 的值,能使该一元二次方程有实数根的概率是 .18.如图,已知︒=∠90AOB ,点A 绕点O 顺时针旋转后的对应点1A 落在射线OB 上,点A 绕点1A 顺时针旋转后的对应点2A 落在射线OB 上,点A 绕点2A 顺时针旋转后的对应点3A 落在射线OB 上,…,连接1AA 、2AA 、3AA …,以此作法,则1+∠n n A AA 等于 度.(用含n 的代数式表示,n 为正整数)321BA第18题图三、解答题(第19题10分,第20题12分,共22分)19.先化简,再求值:1112222+÷⎪⎪⎭⎫ ⎝⎛---+x x x x x x x ,其中()212101+--⎪⎭⎫ ⎝⎛=-πx20.某中学对全校1200名学生进行“校园安全知识”的教育活动,从1200名学生中随机抽取部分学生进行测试,成绩评定按从高分到低分排列分为A ,B ,C ,D 四个等级,绘制了图①、图②两幅不完整的统计图.请结合图中所给信息解答下列问题:20%30%DCBA2412人数D C B A 24181260图① 第20题图 图②(1)求本次被抽查的学生共有多少人? (2)将条形统计图和扇形统计图补充完整;(3)求扇形统计图中“A ”所在的扇形圆心角的度数; (4)估计全校“D ”等级的学生有多少人.四、解答题(第21题12分,第22题12分,共24分)21.晨光文具店用进货款1620元购进A 品牌的文具盒40个,B 品牌的文具盒60个.其中A 品牌文具盒的进货价比B 品牌文具盒的进货价多3元. (1)求A 、B 两种文具盒的进货单价;(2)已知A 品牌文具盒的售价为23元/个,若使这批文具盒全部售完后利润不低于500元,B 品牌文具盒的销售单价最少是多少?.22.如图,已知在ABC Rt ∆中,︒=∠30B ,︒=∠90ACB ,延长CA 到O ,使AC AO =,以O 为圆心,OA 长为半径作⊙O 交BA 延长线于点D ,连接CD . (1)求证:CD 是⊙O 的切线;(2)若4=AB ,求图中阴影部分的面积.第22题图五、解答题(满分12分)23.某海域有A 、B 、C 三艘船正在捕鱼作业,C 船突然出现故障,向A 、B 两船发出紧急求救信号,此时B 船位于A 船的北偏西72°方向,距A 船24海里的海域.C 船位于A 船的北偏东33°方向,同时又位于B 船的北偏东78°方向. (1)求ABC ∠的度数;(2)A 船以每小时30海里的速度前去救援,问多长时间能到出事地点.(结果精确到0.01小时)(参考数据:414.12≈,732.13≈)D O A B第23题图六、解答题(满分12分)24.国家推行“节能减排,低碳经济”政策后,低排量的汽车比较畅销,某汽车经销商购进A 、B 两种型号的低排量汽车,其中A 型汽车的进货单价比B 型汽车的进货单价多2万元;花50万元购进A 型汽车的数量与花40万元购进B 型汽车的数量相同.销售中发现A 型汽车的每周销量A y (台)与售价x (万元/台)满足函数关系20+-=x y A ,B 型汽车的每周销量B y (台)与售价x (万元/台)满足函数关系14+-=x y B(1)求A 、B 两种型号的汽车的进货单价;(2)已知A 型汽车的售价比B 型汽车的售价高2万元/台.设B 型汽车售价为t 万元/台,每周销售这两种车的总利润为W 万元,求W 与t 的函数关系式, A 、B 两种型号的汽车售价各为多少时,每周销售这两种汽车的总利润最大?最大利润是多少万元?七、解答题(满分12分)25.如图,在ABC ∆和ADE ∆中,AC AB =,AE AD =,︒=∠+∠180EAD BAC ,ABC ∆不动,ADE ∆绕点A 旋转,连接BE 、CD ,F 为BE 的中点,连接AF .(1)如图①,当︒=∠90BAE 时,求证:AF CD 2=;(2)当︒≠∠90BAE 时,(1)的结论是否成立?请结合图②说明理由.DE北北33°72°78°CA BF DE A CBF ACDE图① 第25题图 图②八、解答题(满分14分)26.如图,直线4-=x y 与x 轴、y 轴分别交于A 、B 两点,抛物线c bx x y ++=231经过A 、B 两点,与x 轴的另一个交点为C ,连接BC . (1)求抛物线的解析式及点C 的坐标;(2)点M 在抛物线上,连接MB ,当︒=∠+∠45CBO MBA 时,求点M 的坐标; (3)点P 从点C 出发,沿线段CA 由C 向A 运动,同时点Q 从点B 出发,沿线段BC 由B 向C 运动,P 、Q 的运动速度都是每秒1个单位长度,当Q 点到达C 点时,P 、Q 同时停止运动.试问在坐标平面内是否存在点D ,使P 、Q 运动过程中的某一时刻,以C 、D 、P 、Q 为顶点的四边形为菱形?若存在,直接写出点D 的坐标;若不存在,说明理由.y xBA C O yxBA C OyxBA C O第26题图 备用图 备用图。
辽宁省本溪市中考数学试卷及答案
辽宁省本溪市中考数学试卷及答案一、选择题(下列各题的备选答案中,只有一个答案是正确的,将正确答案的序号填入题后的括号内,每小题 3 分,共 30 分)1、一次数学考题考生约 12 万名,从中抽取 5000 名考生的数学成绩进行解析,在这个问题中样本指的是( )A5000 B5000 名考生的数学成绩 C12 万考生的数学成绩 D5000 名考生2、用配方法解一元二次方程 x 2-4x-1=0,配方后得到的方程是( )A(x―2) 2 =1 B(x―2) 2 =4 C(x―2) 2 =5 D(x―2) 2 =33、已知⊙O l与⊙O2的半径分别为 3cm和 4cm,圆心距为 8cm,则两圆的位置关系是( )A内含 B内切 C相交 D外离4、用下列同一种正多边形不能作平面镶嵌的是( )A正三角形 B正四边形 C正六边形 D正七边形6、如图,在⊙O 中,∠B=37º,则劣弧 AB 的度数为( )A106º B126º C74º D53º7、函数中自变量 x 的取值范围是( )8、如图,AB 是⊙O 的直径,C、D 是 AB 的三等分点,如果⊙O的半径为l,P 是线段 AB 上的任意—点,则图中阴影部分的面积为( )9、式子有意义,则点 P(a,b)在( )A第一象限 B第二象限 C第三象限 D第四象限10、如图,PA 切⊙O于点A,割线 PBC 经过圆心O,OB=PB=1,OA绕点O逆时针方向转60º到 OD,则 PD 的长为( )二、填空题(每小题 3 分共 24 分)11、如果―4 是关于 x 的一元二次方程 2x2+7x―k=0 的一个根,则 k 的值为______。
12、已知⊙O 的弦 AB 的长为 6cm,圆心 O 到 AB 的距离为 3cm,则⊙O 的半径为___cm。
13、用换元法解方程那么原方程可变形为_________。
14、已知正六边形的半径为 20cm,则它的外接圆与内切圆组成的圆环的面积是______cm 2。
辽宁省本溪市中考数学试卷及答案
辽宁省本溪市中考数学试卷及答案一、选择题(共10小题,每小题2分,满分20分)1.(2分)方程x2﹣2x=0的根是()A.x=0 B.x=2 C.x=0或x=2 D.x=0或x=﹣22.(2分)已知sina=,且a是锐角,则a=()A.75° B.60° C.45° D.30°3.(2分)下列方程中,有实数根的是()4.(2分)已知变量y和x成反比例,当x=3时,y=﹣6,那么当y=3时,x的值是()A.6 B.﹣6 C.9 D.﹣95.(2分)在半径为6cm的圆中,长为2πcm的弧所对的圆周角的度数是()A.30° B.45° C.60° D.90°6.(2分)在同一直角坐标系中,正比例函数y=﹣3x与反比例函数的图象的交点个数()A.3 B.2 C.1 D.07.(2分)如图,⊙O的直径为12cm,弦AB垂直平分半径OC,那么弦AB的长为()8.(2分)样本8,8,9,10,12,12,12,13的中位数和众数分别是()A.11,3 B.10,12 C.12,12 D.11,129.(2分)已知两圆的半径分别是2、3,圆心距是d,若两圆有公共点,则下列结论正确的是()A.d=1 B.d=5 C.1≤d≤5 D.1<d<510.(2分)李老师骑自行车上班,最初以某一速度匀速行进,中途由于自行车故障,停下修车耽误了几分钟,为了按时到校,李老师加快了速度,仍保持匀速行进,结果准时到校.在课堂上,李老师请学生画出自行车行进路程y千米与行进时间t的函数图象的示意图,同学们画出的示意图如下,你认为正确的是()二、填空题(共10小题,每小题2分,满分20分)11.(2分)函数的自变量x的取值范围是_____________.12.(2分)已知x≤1,化简=_____________.13.(2分)设x1,x2是方程2x2﹣4x﹣3=0的两个根,则=_____________.14.(2分)方程的解是___________.15.(2分)已知a<0,那么点P(﹣a2﹣2,2﹣a)关于x轴的对称点P′在第___________象限.16.(2分)已知:如图,⊙O的弦AB平分弦CD,AB=10,CD=8.且PA<PB,则PB﹣PA =__________.17.(2分)半径分别为3cm和4cm的圆,一条内公切线长为7cm,则这条内公切线与连心线所夹的锐角的度数是__________度.18.(2分)小华用一张直径为20cm的圆形纸片,剪出一个面积最大的正六边形,这个正六边形的面积是__________cm2.19.(2分)为了考察一个养鸡场里鸡的生长情况,从中抽取5只,称得它们的重量如下(单位:千克):3.0,3.4,3.1,3.3,3.2,在这个问题中,样本方差是__________.20.(2分)矩形ABCD中,AB=3,AD=2,则以该矩形的一边为轴旋转一周而所得到的圆柱的表面积为__________.三、解答题(共10小题,满分80分)21.(5分)已知,求a3b+ab3的值.22.(5分)已知:如图,P是⊙O外一点,PA切⊙O于A,AB是⊙O的直径,PB交⊙O于C,若PA=2cm,PC=1cm,怎样求出图中阴影部分的面积S?写出你的探求过程.23.(6分)解方程:24.(8分)为增强学生的身体素质,某校坚持长年的全员体育锻炼,井定期进行体能测试.下面是将某班学生的立定跳远成绩(精确到0.01米)进行整理后,分成三组,画出的频率分布直方图的一部分.已知从左到右4个小组的频率分别是0.05,0.15,0.30,0.35,第5小组的频数是9.(1)请将频率分布直方图补充完整;(2)该班参加这次测试的学生有多少人?(3)若成绩在2.00米以上(含2.00米)的为合格,问该班成绩的合格率是多少?(4)这次测试中,你能肯定该班学生成绩的众数和中位数各落在哪一个组内吗?(只需写出能或不能,不必说明理由)25.(8分)为了加强公民的节水意识,合理利用水资源,各地采用价格调控等手段达到节约用水的目的.某市规定如下用水收费标准:每户每月的用水不超过6立方米时,水费按每立方米a元收费;超过6立方米时,不超过的部分每立方米仍按a元收费,超过的部分每立方米按c元收费.该市某户今年3,4月份的用水量和水费如下表所示:设某户该月用水量为x(立方米),应交水费y(元).(1)求a,c的值,并写出用水不超过6立方米和超过6立方米时,y与x之间的关系式;(2)若该户5月份的用水量为8立方米,求该户5月份的水费是多少元?26.(8分)为了农田灌溉的需要,某乡利用一土堤修筑条渠道,在堤中间挖出深为1.2米,下底宽为2米,坡度为1:0.8的渠道(其横断面为等腰梯形),并把挖出来的上堆在两旁,使土堤高度比原来增加0.6米.(如图所示)求:(1)渠面宽EF;(2)修200米长的渠道需挖的土方数.27.(8分)某县位于沙漠边缘地带,治理沙漠、绿化家乡是全县人民的共同愿望,到1998年底,全县沙漠的绿化率已达30%,此后政府计划在近几年内,每年将当年年初未被绿化的沙漠面积的m%进行绿化,到底,全县沙漠的绿化率已达43.3%,求m值.(注:沙漠绿化率=)28.(10分)已知如图,抛物线y=ax2+bx+c过点A(﹣1,0),且经过直线y=x﹣3与坐标轴的两个交点B、C.(1)求抛物线的解析式;(2)求抛物线的顶点坐标;(3)若点M在第四象限内的抛物线上,且OM⊥BC,垂足为D,求点M的坐标.29.(10分)已知:如图(1),⊙O1与⊙O2相交于A、B两点,经过A点的直线分别交⊙O1、⊙O2于C、D两点(C、D不与B重合).连接BD,过C作BD的平行线交⊙O1于点E,连接BE.(1)求证:BE是⊙O2的切线;(2)如图(2),若两圆圆心在公共弦AB的同侧,其它条件不变,判断BE和⊙O2的位置关系;(不要求证明)(3)若点C为劣弧AB的中点,其它条件不变,连接AB、AE,AB与CE交于点F,如图(3),写出图中所有的相似三角形.(不另外连线,不要求证明)30.(12分)已知,如图,在直角坐标系中,以y轴上的点C为圆心,2为半径的圆与x 轴相切于原点O,点P在x轴的负半轴上,PA切⊙C于点A,AB为⊙C的直径,PC交OA于点D.(1)求证:PC⊥OA;(2)若△APO为等边三角形,求直线AB的解析式;(3)若点P在x轴的负半轴上运动,原题的其他条件不变,设点P的坐标为(x,0),四边形POCA的面积为S,求S与点P的横坐标x之间的函数关系式,并写出自变量的取值范围;(4)当点P在x轴的负半轴上运动时,原题的其他条件不变,解析并判断是否存在这样的一点P,使S四边形POCA=S△AOB?若存在,请直接写出点P的坐标;若不存在,请简要说明理由.。
辽宁省本溪市中考数学试卷及答案
辽宁省本溪市中考数学试卷及答案一、选择题(下列各题的备选答案中,只有一个答案是正确的,将正确答案的序号填入题后的括号内,每小题2 分,共20 分)1.下列二次根式中与是同类二次根式的是()2.若∠ A 是锐角,有sin A =cos A ,则∠ A 的度数是()A.30°B.45°C.60°D.90°3.函数中,自变量x 的取值范围是()A.x ≥-1 B.x >-1 且x ≠2C.x ≠2 D.x ≥-1 且x ≠24.在Rt△ ABC 中,C =90°,∠ A =30°,b=,则此三角形外接圆半径为()5.半径分别为1 cm 和5 cm 的两个圆相交,则圆心距d 的取值范围是()A.d <6 B.4<d <6 C.4≤ d <6 D.1<d <56.面积为2 的△ ABC ,一边长为x ,这边上的高为y ,则y 与x 的变化规律用图象表示大致是()7.已知关于x 的方程x2-2 x +k =0 有实数根,则k 的取值范围是()A.k <1 B.k ≤1 C.k ≤-1 D.k ≥18.如图,PA 切⊙ O 于点A ,PBC 是⊙ O 的割线且过圆心,PA =4,PB =2,则⊙ O 的半径等于()A.3 B.4 C.6 D.89.两个物体A 、B 所受压强分别为P A(帕)与P B(帕)(P A、P B为常数),它们所受压力F (牛)与受力面积S(米2)的函数关系图象分别是射线l A、l B,如图所示,则()A.P A<P B B.P A=P B C.P A>P B D.P A≤ P B10.若x1,x 2是方程2x2-4x+1=0 的两个根,则的值为()A.6 B.4 C.3 D.二、填空题(每小题 2 分,共20 分)11.看图,描出点A 关于原点的对称点A′ ,并标出坐标.12.解方程时,设y=,则原方程化成整式方程是__________.13.计算=__________.14.如图,在Rt△ABC中,∠ C=90°,以AC 所在直线为轴旋转一周所得到的几何体是__________.15.一组数据6,2,4,2,3,5,2,3 的众数是__________.16.已知圆的半径为6.5 cm ,圆心到直线l 的距离为4 cm,那么这条直线l 和这个圆的公共点的个数有_____个.17.要用圆形铁片截出边长为4 cm的正方形铁片,则选用的圆形铁片的直径最小要_____cm.18.圆内两条弦AB和CD 相交于P 点,AB 把CD分成两部分的线段长分别为2和6,那么AP =__________ .19.△ ABC 是半径为2 cm的圆内接三角形,若BC =,则∠A 的度数为_______.20.如图,已知OA、OB 是⊙ O的半径,且OA =5,∠ AOB =15°,AC ⊥ OB 于C ,则图中阴影部分的面积(结果保留π )S =__________.三、(第21 小题6 分,第22、23 小题各10 分,共26 分)21.对于题目“化简并求值:甲.乙两人的解答不同.甲的解答是:乙的解答是:谁的解答是错误的?为什么?22.看图,解答下列问题.(1)求经过A 、B 、C 三点的抛物线解析式;(2)通过配方,求该抛物线的顶点坐标和对称轴;(3)用平滑曲线连结各点,画出该函数图象.23.初中生的视力状况受到全社会的广泛关注,某市有关部门对全市3 万名初中生视力状况进行了一次抽样调查,下图是利用所得数据绘制的频数分布直方图(长方形的高表示该组人数),根据图中提供的信息回答下列问题:(1)本次调查共抽测了解多少名学生;(2)在这个问题中的样本指什么;(3)如果视力在4.9∽5.1(含4.9、 5.1)均属正常,那么全市有多少初中生的视力正常?四、(8 分)24.如图,在小山的东侧A 处有一热气球,以每分钟28 米的速度沿着与垂直方向夹角为30°的方向飞行,半小时后到达C 处,这时气球上的人发现,在A 处的正西方向有一处着火点B ,5 分钟后,在D 处测得着火点B 的俯角是15°,求热气球升空点A 与着火点B 的距离.(结果保留根号,参照数据:sin15°=,cos15°=,)五、(10 分)25.已知:如图,AB 是⊙ O 的半径,C 是⊙ O 上一点,连结AC ,过点C 作直线CD ⊥ AB 于D(AD<DB ),点E 是DB 上任意一点(点D 、B 除外),直线CE 交⊙ O 于点 F ,连结AF 与直线CD 交于点G .(1)求证:AC2=AG · AF ;(2)若点E 是AD (点A 除外)上任意一点,上述结论是否仍然成立?若成立,请画出图形并给予证明;若不成立,请说明理由.六、(10 分)26.随着我国人口增加速度的减慢,小学入学儿童数量有所减少,下表中的数据近似地呈现了某地区入学儿童的变化趋势.试用你所学的函数知识解决下列问题:(1)求入学儿童人数y (人)与年份x (年)的函数关系试;(2)利用所求函数关系式,预测试地区从哪一年起入学儿童的人数不超过1000 人?七、(12 分)27.某书店老板去批发市场购买某种图书,第一次购用100 元,按该书定价2.8 元现售,并快售完.由于该书畅销,第二次购书时,每本的批发价已比第一次高0.5 元,用去了150 元,所购数量比第一次多10 本.当这批书售出4/5时,出现滞销,便以定价的5 折售完剩余的图书,试问该老板第二次售书是赔钱了,还是赚钱了(不考虑其它因素)?若赔钱,赔多少?若赚钱,赚多少?八、(14 分)28.已知:如图,⊙ P 与x 轴相切于坐标原点O ,点A (0,2)是⊙ P 与x 轴的交点,点B (,0)在x 轴上,连结BP 交⊙ P 于点C ,连结AC 并延长交际x 轴于点D .(1)求线段BC 的长;(2)求直线AC 的函数解析式;(3)当点B 在x 轴上移动时,是否存在点B,使△BOP 相似于△AOD?若存在,求出符合条件的点的坐标;若不存在,说明理由.参照答案及评分标准一、选择题(每题2 分,共20 分)二、填空题(每题2 分,共20 分)11.A ′ (3,-2)(图略)12.2 y2-5y+2=013.114.圆锥15.216.217.18.3 或419.60°或120°20.注:两个答案的,答出一个给1 分.三、(26 分)21.(6 分)解:乙的解答是错误的.23.(10 分)解:(1)本次调查共抽测了240 名学生(2)样本是指240 名学生的视力(3)全市有7500 名初中生的视力正常四、(8 分)24.解:由解可知AD=(30+5)×28=980 过D 作DH ⊥ BA 于H在Rt△ DAH 中,DH =AD · sin 60°=五、(10 分)25.(1)证明:六、(10 分)(1)解法一:设y =kx+b由于直线y =kx + b 过(2000,2520),(2001,2330)两点∴ y =-190x +382520又因为y =190 x+382520 过点(2002,2140),所以y =-190 x +382520 较好的描述了这一变化趋势.故所求函数关系式为y =-190x +382520.解法二:设y =ax2+bx +c由于y =ax2+bx +c 过(2000,2520),(2001,2330),(2002,2140)三点,解得a =0,b=-190,c =382520,∴y=-190 x +382520因为y =-190 x +382520 过(2000,2520),(2001,2330),(2002,2140)三点,所以y =-190 x+382520 较好的描述了这一变化趋势.故所求函数关系式为y =-190x +382520.(2)设x年时,入学人数为1000 人,由题意得:-190 x +382520=1000 人,解得x =2008答:从2008 年起入学儿童的人数不超过1000 人.七、(12 分)27.。
辽宁省本溪市中考数学试卷(含答案)
22本溪市初中毕业生学业考试数学试卷(考试时间120分钟 试卷满分150分)一、选择题(下列各题的备选答案中,只有一个是正确的,请将正确答案的选项填在下表中相应题号下的空格内.每小题3分,共24分) A .-8 B.8 C.±8 D.-812.在平面直角坐标系中点A (-2,3)所在的象限是A.第一象限B.第二象限C.第三象限D.第四象限 3. 不等式2x-4≥0的解集在数轴上表示为A. B. C. D.4.一个正方体的平面展开图如图所示,将它折成正方体后“保”字的对面是 A. 碳 B.低 C.环 D.色(第4题图)5.八边形的内角和是A.360°B. 720°C.1080°D. 1440°6. 一个不透明的布袋中装着只有颜色不同的红、黄、白色三种小球,其中红色小球有8个,黄、白色小球的数目相同.为估计袋中黄色小球的数目,每次将袋中小球搅匀后摸出一个小球记下颜色,然后放回袋中,再次搅匀……多次试验发现摸到红球的频率是61,则估计黄色小球的数目是A.2个B.20个C.40个D.48个7.如图所示,已知圆锥的母线长6cm ,底面圆的半径为3cm ,则此圆锥侧面展开图的圆心角是 A.30° B.60° C.90° D.180°8.如图所示,若菱形OABC 的顶点O 为坐标原点,点C 在x 轴上,直线y=x 经过点A ,菱形面积是2,则经过点B 的反比例函数表达式为个图形中共有 个三角形三、解答题(17题6分、18题8分,共14分) 17.8 +3³(-31)-2-(2010-π)0-4sin45°18.化简求值:当a=2,求代数式169622-++a a a ÷823-+a a -42+a a 的值.四、解答题(每题10分,共20分)19. 如图所示,在边长为1的小正方形组成的网格中,△ABC 的顶点均在格点上,请按要求完成下列各题:(1)将△ABC 沿着BC 边所在的直线翻折180°,得到△A 1BC ,再将△A 1BC 绕着点B 逆时针旋转90°,得到△A 2BC 1.请依次画出△A 1BC 、△A 2BC 1.(2)求△A 1BC 旋转到△A 2BC 1过程中所扫过的面积(计算结果用π表示)(第20题图)20. 甲、乙二人玩抽牌游戏,甲手中的牌是2、2、3、4,乙手中的牌是3、4、5、5,两人分别从对方牌中任意抽取一张(彼此看不到对方的牌面),然后将牌上的数字相加,若和为奇数则甲赢,否则乙赢.(1)请用“列表法”或“树状图法”求出甲赢的概率.(2)这个游戏公平吗?若公平,请说明理由;若不公平,请在甲、乙手中各选择一张牌进行交换使游戏公平,写出一种方案即可(不必说明理由).五、解答题(每题10分,共20分)21. 为了解某地区20万读者对工具书、小说、诗歌、漫画四类图书的喜爱情况,根据老年人、成年人、青少年各年龄段的实际人口比例3:5:2,随机抽取一定数量的读者进行调查(每人只选一类图书),统计结果如下(所绘统计图不完整):(1)本次调查了名读者,其中青少年有名.(2)补全两幅统计图.(3)请估计该地区成年人中喜爱小说的读者大约有多少人?C22. 已知:如图所示,在△ABC 中,∠A=45°,以AB 为直径的⊙O 交AC 于点D ,且AD=DC ,CO 的延长线交⊙O 于点E ,过点E 作弦EF ⊥AB ,垂足为G. (1)求证:BC 是⊙O 的切线.(2)若AB=2,求EF 的长.(第22题图)六、解答题(23题10分,24题12分,共22分)23. 如图所示,一轮船向正东方向航行,在A 处测得灯塔P 在北偏东60°方向,航行40海里后到达B 处,此时测得灯塔P 在北偏东15°方向. (1)求灯塔P 到轮船的航线(直线AB )的距离PD 是多少?(2)当轮船在B 处继续向东航行时,一艘快艇从灯塔P 处 前往D 处,已知快艇的速度是轮船速度的2倍,但轮船比 快艇早15分钟到达D 处,求轮船的速度.(3≈1.73,结果精确到0.1海里/时) (第23题图)A24. 自6月1日起我省开始实施家电以旧换新政策,政府对以旧换新的家电给予补贴,具体要点如下表:100台.这批货的进价和售价如下表:y元,商场所获利润为w元(利润=售价-进价)。
2013辽宁省中考数学试题及答案
辽宁省大连市2013年中考数学试卷一、选择题(本题8小题,每小题3分,共24分,在每小题给出的四个选项中,只有一个选项正确)1.(3分)(2013•大连)﹣2的相反数是()A.﹣2B.C.D.2﹣考点:相反数.分析:一个数的相反数就是在这个数前面添上“﹣”号.解答:解:﹣2的相反数是2.故选D.点评:本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号.一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.2.(3分)(2013•大连)如图所示的几何体是由四个完全相同的正方体组成的,这个几何体的俯视图是()A.B.C.D.考点:简单组合体的三视图.分析:找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.解答:解:从上面看易得三个横向排列的正方形.故选A.点评:本题考查了三视图的知识,要求同学们掌握俯视图是从物体的上面看得到的视图.3.(3分)(2013•大连)计算(x2)3的结果是()A.x B.3x2C.x5D.x6考点:幂的乘方与积的乘方.分析:根据幂的乘方法则进行解答即可.解答:解:(x2)3=x6,故选:D.点评:本题考查的是幂的乘方法则,即幂的乘方法则:底数不变,指数相乘.4.(3分)(2013•大连)一个不透明的袋子中有3个红球和2个黄球,这些球除颜色外完全相同.从袋子中随机摸出一个球,它是黄球的概率为()A.B.C.D.考点:概率公式.分析:根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.解答:解;袋子中球的总数为:2+3=5,取到黄球的概率为:.故选:B.点评:此题主要考查了概率的求法,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A 出现m种结果,那么事件A的概率P(A)=.5.(3分)(2013•大连)如图,点O在直线AB上,射线OC平分∠DOB.若∠COB=35°,则∠AOD等于()A.35°B.70°C.110°D.145°考点:角平分线的定义.分析:首先根据角平分线定义可得∠BOD=2∠BOC=70°,再根据邻补角的性质可得∠AOD的度数.解答:解:∵射线OC平分∠DOB.∴∠BOD=2∠BOC,∵∠COB=35°,∴∠DOB=70°,∴∠AOD=180°﹣70°=110°,故选:C.点评:此题主要考查了角平分线定义,关键是掌握角平分线把角分成相等的两部分.6.(3分)(2013•大连)若关于x的方程x2﹣4x+m=0没有实数根,则实数m的取值范围是()A.m<﹣4B.m>﹣4C.m<4D.m>4考点:根的判别式.专题:计算题.分析:由方程没有实数根,得到根的判别式的值小于0,列出关于m的不等式,求出不等式的解集即可得到m的范围.解答:解:∵△=(﹣4)2﹣4m=16﹣4m<0,∴m>4.故选D点评:此题考查了根的判别式,熟练掌握根的判别式的意义是解本题的关键.7.(3分)(2013•大连)在一次“爱心互助”捐款活动中,某班第一小组8名同学捐款的金额(单位:元)如下表所示:金额/元56710人数2321这8名同学捐款的平均金额为()A.3.5元B.6元C.6.5元D.7元考点:加权平均数.分析:根据加权平均数的计算公式用捐款的总钱数除以8即可得出答案.解答:解:根据题意得:(5×2+6×3+7×2+10×1)÷8=6.59(元);故选C.点评:此题考查了加权平均数,掌握加权平均数的计算公式是解题的关键,属于基础题.8.(3分)(2013•大连)P是∠AOB内一点,分别作点P关于直线OA、OB的对称点P1、P2,连接OP1、OP2,则下列结论正确的是()A.OP1⊥OP2B.OP1=OP2C.OP1⊥OP2且OP1=OP2D.OP1≠OP2考点:轴对称的性质.分析:作出图形,根据轴对称的性质求出OP1、OP2的数量与夹角即可得解.解答:解:如图,∵点P关于直线OA、OB的对称点P1、P2,∴OP1=OP2=OP,∠AOP=∠AOP1,∠BOP=∠BOP2,∴∠P1OP2=∠AOP+∠AOP1+∠BOP+∠BOP2,=2(∠AOP+∠BOP),=2∠AOB,∵∠AOB度数任意,∴OP1⊥OP2不一定成立.故选B.点评:本题考查了轴对称的性质,是基础题,熟练掌握性质是解题的关键,作出图形更形象直观.二、填空题(本题8小题,每小题3分,共24分)9.(3分)(2013•大连)因式分解:x2+x=x(x+1).考点:因式分解-提公因式法.分析:根据观察可知原式公因式为x,直接提取可得.解答:解:x2+x=x(x+1).点评:本题考查了提公因式法分解因式,通过观察可直接得出公因式,结合观察法是解此类题目的常用的方法.10.(3分)(2013•大连)在平面直角坐标系中,点(2,﹣4)在第四象限.考点:点的坐标.分析:根据各象限内点的坐标特征解答.解答:解:点(2,﹣4)在第四象限.故答案为:四.点评:本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).11.(3分)(2013•大连)把16000000用科学记数法表示为 1.6×107.考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将16000000用科学记数法表示为:1.6×107.故答案为:1.6×107.点评:此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.(3分)(2013•大连)某林业部门统计某种幼树在一定条件下的移植成活率,结果如下表所示:移植总数(n)400750150035007000900014000成活数(m)3696621335320363358073126280.9230.8830.8900.9150.9050.8970.902成活的频率根据表中数据,估计这种幼树移植成活率的概率为0.9(精确到0.1).考点:利用频率估计概率.分析:对于不同批次的幼树移植成活率往往误差会比较大,为了减少误差,我们经常采用多批次计算求平均数的方法.解答:解:=(0.923+0.883+0.890+0.915+0.905+0.897+0.902)÷7≈0.9,∴这种幼树移植成活率的概率约为0.9.故本题答案为:0.9.点评:此题主要考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.13.(3分)(2013•大连)化简:x+1﹣=.考点:分式的加减法.专题:计算题.分析:先通分,再把分子相加减即可.解答:解:原式=﹣==.故答案为:.点评:本题考查的是分式的加减法,异分母分式加减把分母不相同的几个分式化成分母相同的分式,再把分子相加减即可.14.(3分)(2013•大连)用一个圆心角为90°半径为32cm的扇形作为一个圆锥的侧面(接缝处不重叠),则这个圆锥的底面圆的半径为8cm.考点:圆锥的计算.分析:半径为32cm,圆心角为90°的扇形的弧长是=16π,圆锥的底面周长等于侧面展开图的扇形弧长,因而圆锥的底面周长是16π,设圆锥的底面半径是r,则得到2πr=16π,求出r的值即可.解答:解:∵=16π,圆锥的底面周长等于侧面展开图的扇形弧长,∴圆锥的底面周长是16πcm,设圆锥的底面半径是r,则得到2πr=16π,解得:r=8(cm).故答案为:8.点评:本题考查了有关扇形和圆锥的相关计算.解题思路:解决此类问题时要紧紧抓住两者之间的两个对应关系:(1)圆锥的母线长等于侧面展开图的扇形半径;(2)圆锥的底面周长等于侧面展开图的扇形弧长.正确对这两个关系的记忆是解题的关键.15.(3分)(2013•大连)如图,为了测量河的宽度AB,测量人员在高21m的建筑物CD的顶端D处测得河岸B处的俯角为45°,测得河对岸A处的俯角为30°(A、B、C在同一条直线上),则河的宽度AB约为15.3m(精确到0.1m).(参考数据:≈1.41,,1.73)考点:解直角三角形的应用-仰角俯角问题.分析:在Rt△ACD中求出AC,在Rt△BCD中求出BC,继而可得出AB.解答:解:在Rt△ACD中,CD=21m,∠DAC=30°,则AC=CD≈36.3m;在Rt△BCD中,∠DBC=45°,则BC=CD=21m,故AB=AC﹣BC=15.3m.故答案为:15.3.点评:本题考查了解直角三角形的应用,解答本题关键是构造直角三角形,理解俯角的定义,能利用三角函数表示线段的长度.16.(3分)(2013•大连)如图,抛物线y=x2+bx+与y轴相交于点A,与过点A平行于x轴的直线相交于点B(点B在第一象限).抛物线的顶点C在直线OB上,对称轴与x轴相交于点D.平移抛物线,使其经过点A、D,则平移后的抛物线的解析式为y=x2﹣x+.考点:二次函数图象与几何变换.分析:先求出点A的坐标,再根据抛物线的对称性可得顶点C的纵坐标,然后利用顶点坐标公式列式求出b的值,再求出点D的坐标,根据平移的性质设平移后的抛物线的解析式为y=x2+mx+n,把点A、D的坐标代入进行计算即可得解.解答:解:∵令x=0,则y=,∴点A(0,),根据题意,点A、B关于对称轴对称,∴顶点C的纵坐标为×=,即=,解得b1=3,b2=﹣3,由图可知,﹣>0,∴b<0,∴b=﹣3,∴对称轴为直线x=﹣=,∴点D的坐标为(,0),设平移后的抛物线的解析式为y=x2+mx+n,则,解得,所以,y=x2﹣x+.故答案为:y=x2﹣x+.点评:本题考查了二次函数图象与几何变换,根据二次函数图象的对称性确定出顶点C的纵坐标是解题的关键,根据平移变换不改变图形的形状与大小确定二次项系数不变也很重要.三、解答题(本题共4小题,其中17、18、19题各9分,20题12分,共39分)17.(9分)(2013•大连)计算:()﹣1+(1+)(1﹣)﹣.考点:二次根式的混合运算;负整数指数幂.分析:分别进行负整数指数幂、平方差公式、二次根式的化简等运算,然后合并即可.解答:解:原式=5+1﹣3﹣2=3﹣2.点评:本题考查了二次根式的混合运算,涉及了负整数指数幂、平方差公式、二次根式的化简等知识,属于基础题,解题的关键是掌握各知识点的运算法则.18.(9分)(2013•大连)解不等式组:.考点:解一元一次不等式组.专题:计算题.分析:先分别求出各不等式的解集,再求其公共解集即可.解答:解:解不等式①得:x>2解不等式②得:x>4在数轴上分别表示①②的解集为:∴不等式的解集为:x>4.点评:求不等式的解集应遵循“同大取较大,同小取较小,小大大小中间找,大大小小解不了”的原则.19.(9分)(2013•大连)如图,▱ABCD中,点E、F分别在AD、BC上,且AE=CF.求证:BE=DF.考点:平行四边形的性质;全等三角形的判定与性质.专题:证明题.分析:根据平行四边形性质得出AD∥BC,AD=BC,求出DE=BF,DE∥BF,得出四边形DEBF是平行四边形,根据平行四边形的性质推出即可.解答:证明:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∵AE=CF,∴DE=BF,DE∥BF,∴四边形DEBF是平行四边形,∴BE=DF.点评:本题考查了平行四边形的性质和判定的应用,注意:平行四边形的对边平行且相等.20.(12分)(2013•大连)以下是根据《2012年大连市环境状况公报》中有关海水浴场环境质量和市区空气质量级别的数据制作的统计图表的一部分(2012年共366天).大连市2012年海水浴场环境质量监测结果统计表,监测时段:2012年7月至9月浴场名称优(%)良(%)差(%)浴场125750浴场230700浴场330700浴场440600浴场550500浴场630700浴场710900浴场8105040根据以上信息,解答下列问题:(1)2012年7月至9月被监测的8个海水浴场环境质量最好的是浴场5(填浴场名称),海水浴场环境质量为优的数据的众数为30%,海水浴场环境质量为良的数据的中位数为70%;(2)2012年大连市区空气质量达到优的天数为129天,占全年(366)天的百分比约为35.2%(精确到0.1%);(3)求2012年大连市区空气质量为良的天数(按四舍五入,精确到个位).考点:条形统计图;用样本估计总体;统计表;中位数;众数分析:(1)根据优所占的百分比越大,良的百分比越小,即可得出8个海水浴场环境质量最好的浴场;再根据众数的定义和中位数的定义即可得出答案;众数是一组数据中出现次数最多的数;中位数是中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数).(2)根据图形所给的数可直接得出2012年大连市区空气质量达到优的天数,总用得出的天数除以366,即可得出所占的百分比;(3)根据污染的天数所占的百分比求出污染的天数,再用总天数减去优的天数和污染的天数,即可得出良的天数.解答:解:(1)2012年7月至9月被监测的8个海水浴场环境质量最好的是浴场5,海水浴场环境质量为优的数据30出现了3次,出现的次数最多,则海水浴场环境质量为优的数据的众数为30;把海水浴场环境质量为良的数据从小到大排列为:50,50,60,70,70,70,75,90,海水浴场环境质量为良的数据的中位数为(70+70)÷2=70;故答案为:浴场5,30,70;(2)从条形图中可以看出2012年大连市区空气质量达到优的天数为129天,所占的百分比是×100%=35.2%;故答案为:129,35.2%;(3)污染的天数是:366×3.8%≈14(天),良的天数是366﹣129﹣14=223(天),答:2012年大连市区空气质量为良的天数是223天.点评:本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键;条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小;众数是一组数据中出现次数最多的数;中位数是中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数.四、解答题(本题共3小题,其中21、22题各9分,23题10分,共28分)21.(9分)(2013•大连)某超市购进A、B两种糖果,A种糖果用了480元,B种糖果用了1260元,A、B两种糖果的重量比是1:3,A种糖果每千克的进价比B种糖果每千克的进价多2元.A、B两种糖果各购进多少千克?考点:分式方程的应用分析:先设A种糖果购进x千克,则B种糖果购进3x千克,根据A、B两种糖果的重量比是1:3,A种糖果每千克的进价比B种糖果每千克的进价多2元,列出不等式,求出x的值,再进行检验即可得出答案.解答:解:设A种糖果购进x千克,则B种糖果购进3x千克,根据题意得:﹣=2,解得:x=30,经检验x=30是原方程的解,则B购进的糖果是:30×3=90(千克),答:A种糖果购进30千克,B种糖果购进90千克.点评:此题考查了分式方程的应用,分析题意,找到合适的等量关系是解决问题的关键,等量关系为:价格=.22.(9分)(2013•大连)如图,在平面直角坐标系xOy中,一次函数y=ax+b的图象与反比例函数y=的图象相交于点A(m,1)、B(﹣1,n),与x轴相交于点C(2,0),且AC=OC.(1)求该反比例函数和一次函数的解析式;(2)直接写出不等式ax+b≥的解集.考点:反比例函数与一次函数的交点问题专题:计算题.分析:(1)过A作AD垂直于x轴,如图所示,由C的坐标求出OC的长,根据AC=OC求出AC的长,由A的纵坐标为1,得到AD=1,利用勾股定理求出CD的长,有OC+CD求出OD的长,确定出m的值,将A于与C坐标代入一次函数解析式求出a于b的值,即可得出一次函数解析式;将A 坐标代入反比例函数解析式求出k的值,即可确定出反比例解析式;(2)将B坐标代入反比例解析式中求出n的值,确定出B坐标,利用图形即可得出所求不等式的解集.解答:解:(1)过A作AD⊥x轴,可得AD=1,∵C(2,0),即OC=2,∴OA=OC=,在Rt△ACD中,根据勾股定理得:CD=1,∴OD=OC+CD=2+1=3,∴A(3,1),将A与C坐标代入一次函数解析式得:,解得:a=1,b=﹣2,∴一次函数解析式为y=x﹣2;将A(3,1)代入反比例解析式得:k=3,则反比例解析式为y=;(2)将B(﹣1,n)代入反比例解析式得:n=﹣3,即B(﹣1,﹣3),根据图形得:不等式ax+b≥的解集为﹣1≤x<0或x≥3.点评:此题考查了反比例函数与一次函数的交点问题,涉及的知识有:坐标与图形性质,待定系数法求函数解析式,利用啦数形结合的思想,熟练掌握待定系数法是解本题的关键.23.(10分)(2013•大连)如图,AB是⊙O的直径,CD与⊙O相切于点C,DA⊥AB,DO及DO的延长线与⊙O分别相交于点E、F,EB与CF相交于点G.(1)求证:DA=DC;(2)⊙O的半径为3,DC=4,求CG的长.考点:切线的判定;勾股定理;垂径定理;相似三角形的判定与性质分析:(1)连接OC,∠DAO=∠DCO=90°,根据HL证Rt△DAO≌Rt△DCO,根据全等三角形的性质推出即可;(2)连接BF、CE、AC,由切线长定理求出DC=DA=4,求出DO=5,CM、AM的长,由勾股定理求出BC长,根据△BGC∽△EGF求出==,则CG=CF;利用勾股定理求出CF的长,则CG的长度可求得.解答:(1)证明:连接OC,∵DC是⊙O切线,∴OC⊥DC,∵OA⊥DA,∴∠DAO=∠DCO=90°,在Rt△DAO和Rt△DCO中∴Rt△DAO≌Rt△DCO(HL),∴DA=DC.(2)解:连接BF、CE、AC,由切线长定理得:DC=DA=4,DO⊥AC,∴DO平分AC,在Rt△DAO中,AO=3,AD=4,由勾股定理得:DO=5,∵由三角形面积公式得:DA•AO=DO•AM,则AM=,同理CM=AM=,AC=.∵AB是直径,∴∠ACB=90°,由勾股定理得:BC==.∵∠GCB=∠GEF,∠GFE=∠GBC,(圆周角定理)∴△BGC∽△EGF,∴===,在Rt△OMC中,CM=,OC=3,由勾股定理得:OM=,在Rt△EMC中,CM=,ME=OE﹣OM=3﹣=,由勾股定理得:CE=,在Rt△CEF中,EF=6,CE=,由勾股定理得:CF=.∵CF=CG+GF,=,∴CG=CF=×=.点评:本题考查了切线的判定和性质,切线长定理,勾股定理,全等三角形的性质和判定,相似三角形的性质和判定,圆周角定理等知识点的应用,主要考查学生综合运用定理进行推理和计算的能力,综合性比较强,难度偏大.五、解答题(本题共3小题,其中24题11分,25、26题各12分,共35分)24.(11分)(2013•大连)如图,一次函数y=﹣x+4的图象与x轴、y轴分别相交于点A、B.P是射线BO上的一个动点(点P不与点B重合),过点P作PC⊥AB,垂足为C,在射线CA上截取CD=CP,连接PD.设BP=t.(1)t为何值时,点D恰好与点A重合?(2)设△PCD与△AOB重叠部分的面积为S,求S与t的函数关系式,并直接写出t的取值范围.考点:一次函数综合题.分析:(1)首先求出点A、B的坐标,然后在Rt△BCP中,解直角三角形求出BC,CP的长度;进而利用关系式AB=BC+CD,列方程求出t的值;(2)点P运动的过程中,分为四个阶段,需要分类讨论:①当0<t≤时,如题图所示,重合部分为△PCD;②当<t≤4时,如答图1所示,重合部分为四边形ACPE;③当4<t≤时,如答图2所示,重合部分为△ACE;④当t>时,无重合部分.解答:解:(1)在一次函数解析式y=﹣x+4中,令x=0,得y=4;令y=0,得x=3,∴A(3,0),B(0,4).在Rt△AOB中,OA=3,OB=4,由勾股定理得:AB=5.在Rt△BCP中,CP=PB•sin∠ABO=t,BC=PB•cos∠ABO=t,∴CD=CP=t.若点D恰好与点A重合,则BC+CD=AB,即t+t=5,解得:t=,∴当t=时,点D恰好与点A重合.(2)当点P与点O重合时,t=4;当点C与点A重合时,由BC=BA,即t=5,得t=.点P在射线BO上运动的过程中:①当0<t≤时,如题图所示:=CP•CD=•t•t=t2;此时S=S△PCD②当<t≤4时,如答图1所示,设PC与x轴交于点E.BD=BC+CD=t+t=t,过点D作DN⊥y轴于点N,则ND=BD•sin∠ABO=t•=t,BN=BD•cos∠ABO=t•=t.∴PN=BN﹣BP=t﹣t=t,ON=BN﹣OB=t﹣4.∵ND∥x轴,∴,即,得:OE=28﹣7t.∴AE=OA﹣OE=3﹣(28﹣7t)=7t﹣25.﹣S△ADE=CP•CD﹣AE•ON=t2﹣(7t﹣25)(t﹣4)=t2+28t﹣50;故S=S△PCD③当4<t≤时,如答图2所示,设PC与x轴交于点E.AC=AB﹣BC=5﹣t,∵tan∠OAB==,∴CE=AC•tan∠OAB=(5﹣t)×=﹣t.=AC•CE=(5﹣t)•(﹣t)=t2﹣t+;故S=S△ACE④当t>时,无重合部分,故S=0.综上所述,S与t的函数关系式为:S=.点评:本题考查了典型的运动型综合题,且计算量较大,有一定的难度.解题关键在于:一,分析点P的运动过程,区分不同的阶段,分类讨论计算,避免漏解;二,善于利用图形面积的和差关系计算所求图形的面积;三,认真计算,避免计算错误.25.(12分)(2013•大连)将△ABC绕点B逆时针旋转α得到△DBE,DE的延长线与AC相交于点F,连接DA、BF.(1)如图1,若∠ABC=α=60°,BF=AF.①求证:DA∥BC;②猜想线段DF、AF的数量关系,并证明你的猜想;(2)如图2,若∠ABC<α,BF=mAF(m为常数),求的值(用含m、α的式子表示).考点:旋转的性质;全等三角形的判定与性质;等边三角形的判定与性质;解直角三角形.分析:(1)由旋转性质证明△ABD为等边三角形,则∠DAB=∠ABC=60°,所以DA∥BC;(2)①如答图1所示,作辅助线(在DF上截取DG=AF,连接BG),构造全等三角形△DBG≌△ABF,得到BG=BF,∠DBG=∠ABF;进而证明△BGF为等边三角形,则GF=BF=AF;从而DF=2AF;②与①类似,作辅助线,构造全等三角形△DBG≌△ABF,得到BG=BF,∠DBG=∠ABF,由此可知△BGF为顶角为α的等腰三角形,解直角三角形求出GF的长度,从而得到DF长度,问题得解.解答:(1)证明:①由旋转性质可知,∠DBE=∠ABC=60°,BD=AB∴△ABD为等边三角形,∴∠DAB=60°,∴∠DAB=∠ABC,∴DA∥BC.②猜想:DF=2AF.证明:如答图1所示,在DF上截取DG=AF,连接BG.由旋转性质可知,DB=AB,∠BDG=∠BAF.∵在△DBG与△ABF中,∴△DBG≌△ABF(SAS),∴BG=BF,∠DBG=∠ABF.∵∠DBG+∠GBE=α=60°,∴∠GBE+∠ABF=60°,即∠GBF=α=60°,又∵BG=BF,∴△BGF为等边三角形,∴GF=BF,又BF=AF,∴GF=AF.∴DF=DG+GF=AF+AF=2AF.(2)解:如答图2所示,在DF上截取DG=AF,连接BG.由(1),同理可证明△DBG≌△ABF,BG=BF,∠GBF=α.过点B作BN⊥GF于点N,∵BG=BF,∴点N为GF中点,∠FBN=.在Rt△BFN中,NF=BF•sin∠FBN=BFsin=mAFsin.∴GF=2NF=2mAFsin∴DF=DG+GF=AF+2mAFsin,∴=1+2msin.点评:本题是几何综合题,考查了旋转性质、全等三角形的判定与性质、等边三角形的判定与性质、解直角三角形等知识点.难点在于第(2)问,解题关键是构造全等三角形得到等腰三角形,同学们往往不能由此突破而陷入迷途.26.(12分)(2013•大连)如图,抛物线y=﹣x2+x﹣4与x轴相交于点A、B,与y轴相交于点C,抛物线的对称轴与x轴相交于点M.P是抛物线在x轴上方的一个动点(点P、M、C不在同一条直线上).分别过点A、B作直线CP的垂线,垂足分别为D、E,连接点MD、ME.(1)求点A,B的坐标(直接写出结果),并证明△MDE是等腰三角形;(2)△MDE能否为等腰直角三角形?若能,求此时点P的坐标;若不能,说明理由;(3)若将“P是抛物线在x轴上方的一个动点(点P、M、C不在同一条直线上)”改为“P是抛物线在x轴下方的一个动点”,其他条件不变,△MDE能否为等腰直角三角形?若能,求此时点P的坐标(直接写出结果);若不能,说明理由.考点:二次函数综合题.分析:(1)在抛物线解析式中,令y=0,解一元二次方程,可求得点A、点B的坐标;如答图1所示,作辅助线,构造全等三角形△AMF≌△BME,得到点M为为Rt△EDF斜边EF的中点,从而得到MD=ME,问题得证;(2)首先分析,若△MDE为等腰直角三角形,直角顶点只能是点M.如答图2所示,设直线PC 与对称轴交于点N,首先证明△ADM≌△NEM,得到MN=AM,从而求得点N坐标为(3,2);其次利用点N、点C坐标,求出直线PC的解析式;最后联立直线PC与抛物线的解析式,求出点P 的坐标.(3)当点P是抛物线在x轴下方的一个动点时,解题思路与(2)完全相同.解答:解:(1)抛物线解析式为y=﹣x2+x﹣4,令y=0,即﹣x2+x﹣4=0,解得x=1或x=5,∴A(1,0),B(5,0).如答图1所示,分别延长AD与EM,交于点F.∵AD⊥PC,BE⊥PC,∴AD∥BE,∴∠MAF=∠MBE.在△AMF与△BME中,,∴△AMF≌△BME(ASA),∴ME=MF,即点M为Rt△EDF斜边EF的中点,∴MD=ME,即△MDE是等腰三角形.(2)答:能.抛物线解析式为y=﹣x2+x﹣4=﹣(x﹣3)2+,∴对称轴是直线x=3,M(3,0);令x=0,得y=﹣4,∴C(0,﹣4).△MDE为等腰直角三角形,有3种可能的情形:①若DE⊥EM,由DE⊥BE,可知点E、M、B在一条直线上,而点B、M在x轴上,因此点E必然在x轴上,由DE⊥BE,可知点E只能与点O重合,即直线PC与y轴重合,不符合题意,故此种情况不存在;②若DE⊥DM,与①同理可知,此种情况不存在;③若EM⊥DM,如答图2所示:设直线PC与对称轴交于点N,∵EM⊥DM,MN⊥AM,∴∠EMN=∠DMA.在△ADM与△NEM中,∴△ADM≌△NEM(ASA),∴MN=MA.抛物线解析式为y=﹣x2+x﹣4=﹣(x﹣3)2+,故对称轴是直线x=3,∴M(3,0),MN=MA=2,∴N(3,2).设直线PC解析式为y=kx+b,∵点N(3,2),C(0,﹣4)在抛物线上,∴,解得k=2,b=﹣4,∴y=2x﹣4.将y=2x﹣4代入抛物线解析式得:2x﹣4=﹣x2+x﹣4,解得:x=0或x=,当x=0时,交点为点C;当x=时,y=2x﹣4=3.∴P(,3).综上所述,△MDE能成为等腰直角三角形,此时点P坐标为(,3).(3)答:能.如答题3所示,设对称轴与直线PC交于点N.与(2)同理,可知若△MDE为等腰直角三角形,直角顶点只能是点M.∵MD⊥ME,MA⊥MN,∴∠DMN=∠EMB.在△DMN与△EMB中,∴△DMN≌△EMB(ASA),∴MN=MB.∴N(3,﹣2).设直线PC解析式为y=kx+b,∵点N(3,﹣2),C(0,﹣4)在抛物线上,∴,解得k=,b=﹣4,∴y=x﹣4.将y=x﹣4代入抛物线解析式得:x﹣4=﹣x2+x﹣4,解得:x=0或x=,当x=0时,交点为点C;当x=时,y=x﹣4=.∴P(,).综上所述,△MDE能成为等腰直角三角形,此时点P坐标为(,).点评:本题是二次函数综合题型,考查了二次函数与一次函数的图象与性质、待定系数法、全等三角形的判定与性质、等腰直角三角形、解方程等知识点,题目难度较大.第(2)(3)问均为存在型问题,且解题思路完全相同,可以互相借鉴印证.PDF pdfFactory Pro 。
2013年辽宁省本溪市中考数学试题及参考答案(word解析版)
2013年辽宁省本溪市中考数学试题及参考答案与解析一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.13-的绝对值是()A.3 B.﹣3 C.13D.13-2.如图放置的圆柱体的左视图为()A.B.C.D.3.下列运算正确的是()A.a3•a2=a6B.2a(3a﹣1)=6a3﹣1 C.(3a2)2=6a4D.2a+3a=5a4.如图,直线AB∥CD,直线EF与AB,CD分别交于点E,F,EC⊥EF,垂足为E,若∠1=60°,则∠2的度数为()A.15°B.30°C.45°D.60°5.下列说法中,正确的是()A.对载人航天器“神舟十号”的零部件的检查适合采用抽样调查的方式B.某市天气预报中说“明天降雨的概率是80%”,表示明天该市有80%的地区降雨C.第一枚硬币,正面朝上的概率为1 2D.若甲组数据的方差S甲2=0.1,乙组数据的方差S乙2=0.01,则甲组数据比乙组数据稳定6.甲、乙两盒中各放入分别写有数字1,2,3的三张卡片,每张卡片除数字外其他完全相同.从甲盒中随机抽出一张卡片,再从乙盒中随机摸出一张卡片,摸出的两张卡片上的数字之和是3的概率是()A .19 B .29 C .13 D .497.如图,在菱形ABCD 中,∠BAD=2∠B ,E ,F 分别为BC ,CD 的中点,连接AE 、AC 、AF ,则图中与△ABE 全等的三角形(△ABE 除外)有( )A .1个B .2个C .3个D .4个8.某服装加工厂计划加工400套运动服,在加工完160套后,采用了新技术,工作效率比原计划提高了20%,结果共有了18天完成全部任务.设原计划每天加工x 套运动服,根据题意可列方程为( ) A .()16040018120%x x +=+ B .()16040016018120%x x -+=+ C .1604001601820%x x -+= D .()40040016018120%x x-+=+ 9.如图,⊙O 的半径是3,点P 是弦AB 延长线上的一点,连接OP ,若OP=4,∠APO=30°,则弦AB 的长为( )A .BC .D 10.如图,在矩形OABC 中,AB=2BC ,点A 在y 轴的正半轴上,点C 在x 轴的正半轴上,连接OB ,反比例函数ky x=(k≠0,x >0)的图象经过OB 的中点D ,与BC 边交于点E ,点E 的横坐标是4,则k 的值是( )A .1B .2C .3D .4二、填空题(共8小题,每小题3分,满分24分)11.在函数y =中,自变量x 的取值范围是 .12.一种花粉颗粒的直径约为0.0000065米,将0.0000065用科学记数法表示为 . 13.在平面直角坐标系中,点P (5,﹣3)关于原点对称的点的坐标是 .14.在一个不透明的袋子里装有黄色、白色乒乓球共40个,除颜色外其他完全相同.小明从这个袋子中随机摸出一球,放回.通过多次摸球实验后发现,摸到黄色球的概率稳定在15%附近,则袋中黄色球可能有 个.15.在平面直角坐标系中,把抛物线2112y x =-+向上平移3个单位,再向左平移1个单位,则所得抛物线的解析式是 .16.已知圆锥底面圆的半径为6cm ,它的侧面积为60πcm 2,则这个圆锥的高是 cm . 17.如图,在矩形ABCD 中,AB=10,AD=4,点P 是边AB 上一点,若△APD 与△BPC 相似,则满足条件的点P 有 个.18.如图,点B 1是面积为1的等边△OBA 的两条中线的交点,以OB 1为一边,构造等边△OB 1A 1(点O ,B 1,A 1按逆时针方向排列),称为第一次构造;点B 2是△OBA 的两条中线的交点,再以OB 2为一边,构造等边△OB 2A 2(点O ,B 2,A 2按逆时针方向排列),称为第二次构造;以此类推,当第n 次构造出的等边△OB n A n 的边OA n 与等边△OBA 的边OB 第一次重合时,构造停止.则构造出的最后一个三角形的面积是 .三、解答题(共2小题,共22分)19.(10分)(1()1122455cos π-⎛⎫---︒ ⎪⎝⎭;(2)先化简,再求值:22212121m m m m m m m ⎛⎫-⎛⎫+÷+ ⎪ ⎪-+-⎝⎭⎝⎭,其中m=﹣3.20.(12分)某校对九年级全体学生进行了一次学业水平测试,成绩评定分为A ,B ,C ,D 四个等级(A ,B ,C ,D 分别代表优秀、良好、合格、不合格)该校从九年级学生中随机抽取了一部分学生的成绩,绘制成以下不完整的统计图.请你根据统计图提供的信息解答下列问题; (1)本次调查中,一共抽取了 名学生的成绩;(2)将上面的条形统计图补充完整,写出扇形统计图中等级C的百分比.(3)若等级D的5名学生的成绩(单位:分)分别是55、48、57、51、55.则这5个数据的中位数是分,众数是分.(4)如果该校九年级共有500名学生,试估计在这次测试中成绩达到优秀的人数.四、解答题(共6小题,满分74分)21.(12分)如图,⊙O是△ACD的外接圆,AB是直径,过点D作直线DE∥AB,过点B作直线BE∥AD,两直线交于点E,如果∠ACD=45°,⊙O的半径是4cm(1)请判断DE与⊙O的位置关系,并说明理由;(2)求图中阴影部分的面积(结果用π表示).22.(12分)某中学响应“阳光体育”活动的号召,准备从体育用品商店购买一些排球、足球和篮球,排球和足球的单价相同,同一种球的单价相同,若购买2个足球和3个篮球共需340元,购买4个排球和5个篮球共需600元.(1)求购买一个足球,一个篮球分别需要多少元?(2)该中学根据实际情况,需从体育用品商店一次性购买三种球共100个,且购买三种球的总费用不超过600元,求这所中学最多可以购买多少个篮球?23.(12分)校车安全是近几年社会关注的热点问题,安全隐患主要是超速和超载.某中学九年级数学活动小组进行了测试汽车速度的实验,如图,先在笔直的公路l旁选取一点A,在公路l上确定点B、C,使得AC⊥l,∠BAC=60℃,再在AC上确定点D,使得∠BDC=75°,测得AD=40米,已知本路段对校车限速是50千米/时,若测得某校车从B到C匀速行驶用时10秒,问这辆车在本路段=1.41)24.(12分)某蔬菜经销商到蔬菜种植基地采购一种蔬菜,经销商一次性采购蔬菜的采购单价y (元/千克)与采购量x (千克)之间的函数关系图象如图中折线AB ﹣﹣BC ﹣﹣CD 所示(不包括端点A ). (1)当100<x <200时,直接写y 与x 之间的函数关系式: .(2)蔬菜的种植成本为2元/千克,某经销商一次性采购蔬菜的采购量不超过200千克,当采购量是多少时,蔬菜种植基地获利最大,最大利润是多少元?(3)在(2)的条件下,求经销商一次性采购的蔬菜是多少千克时,蔬菜种植基地能获得418元的利润?25.(12分)在△ABC 中,∠ACB=90°,∠A <45°,点O 为AB 中点,一个足够大的三角板的直角顶点与点O 重合,一边OE 经过点C ,另一边OD 与AC 交于点M . (1)如图1,当∠A=30°时,求证:MC 2=AM 2+BC 2;(2)如图2,当∠A≠30°时,(1)中的结论是否成立?如果成立,请说明理由;如果不成立,请写出你认为正确的结论,并说明理由;(3)将三角形ODE 绕点O 旋转,若直线OD 与直线AC 相交于点M ,直线OE 与直线BC 相交于点N ,连接MN ,则MN 2=AM 2+BN 2成立吗? 答: (填“成立”或“不成立”)26.(14分)如图,在平面直角坐标系中,点O 是原点,矩形OABC 的顶点A 在x 轴的正半轴上,顶点C 在y 的正半轴上,点B 的坐标是(5,3),抛物线235y x bx c =++经过A 、C 两点,与x 轴的另一个交点是点D ,连接BD .(1)求抛物线的解析式;(2)点M是抛物线对称轴上的一点,以M、B、D为顶点的三角形的面积是6,求点M的坐标;(3)点P从点D出发,以每秒1个单位长度的速度沿D→B匀速运动,同时点Q从点B出发,以每秒1个单位长度的速度沿B→A→D匀速运动,当点P到达点B时,P、Q同时停止运动,设运动的时间为t秒,当t为何值时,以D、P、Q为顶点的三角形是等腰三角形?请直接写出所有符合条件的值.参考答案与解析一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.13-的绝对值是()A.3 B.﹣3 C.13D.13-【知识考点】绝对值【思路分析】计算绝对值要根据绝对值的定义求解.第一步列出绝对值的表达式;第二步根据绝对值定义去掉这个绝对值的符号.【解答过程】解:11 33 -=.故13-的绝对值是13.故选:C.【总结归纳】此题考查了绝对值的定义,绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.如图放置的圆柱体的左视图为()A.B.C.D.【知识考点】简单几何体的三视图【思路分析】左视图是从左边看所得到的视图,根据左视图所看的位置找出答案即可.【解答过程】解:圆柱的左视图是矩形.故选:A.【总结归纳】此题主要考查了简单几何体的三视图,关键是掌握三视图所看的位置.3.下列运算正确的是()A.a3•a2=a6B.2a(3a﹣1)=6a3﹣1 C.(3a2)2=6a4D.2a+3a=5a【知识考点】单项式乘多项式;合并同类项;同底数幂的乘法;幂的乘方与积的乘方【思路分析】A、原式利用同底数幂的乘法法则计算得到结果,即可作出判断;B、原式利用单项式乘多项式法则计算得到结果,即可作出判断;C、原式利用积的乘方与幂的乘方运算法则计算得到结果,即可作出判断;D、原式合并同类项得到结果,即可作出判断.【解答过程】解:A、a3•a2=a5,本选项错误;B、2a(3a﹣1)=6a2﹣2a,本选项错误;C、(3a2)2=9a4,本选项错误;D、2a+3a=5a,本选项正确,故选D【总结归纳】此题考查了单项式乘多项式,合并同类项,同底数幂的乘法,以及幂的乘方与积的乘方,熟练掌握运算法则是解本题的关键.4.如图,直线AB∥CD,直线EF与AB,CD分别交于点E,F,EC⊥EF,垂足为E,若∠1=60°,则∠2的度数为()A.15°B.30°C.45°D.60°【知识考点】平行线的性质.【思路分析】根据对顶角相等求出∠3,再根据两直线平行,同旁内角互补解答.【解答过程】解:如图,∠3=∠1=60°(对顶角相等),∵AB∥CD,EC⊥EF,∴∠3+90°+∠2=180°,即60°+90°+∠2=180°,解得∠2=30°.故选B.【总结归纳】本题考查了两直线平行,同旁内角互补的性质,对顶角相等的性质,以及垂直的定义,是基础题.5.下列说法中,正确的是()A.对载人航天器“神舟十号”的零部件的检查适合采用抽样调查的方式B.某市天气预报中说“明天降雨的概率是80%”,表示明天该市有80%的地区降雨C.第一枚硬币,正面朝上的概率为1 2D.若甲组数据的方差S甲2=0.1,乙组数据的方差S乙2=0.01,则甲组数据比乙组数据稳定【知识考点】方差;全面调查与抽样调查;概率的意义;概率公式【思路分析】根据普查和抽样调查的意义可判断出A的正误;根据概率的意义可判断出B、C的正误;根据方差的意义,方差大则数据不稳定可判断出D的正误.【解答过程】解:A、对载人航天器“神舟十号”的零部件的检查,因为意义重大,适合采用全面调查的方式,故此选项错误;B、某市天气预报中说“明天降雨的概率是80%”,表示明天该市有80%的可能降水,故此选项错误;C、一枚硬币,正面朝上的概率为,故此选项正确;D、若甲组数据的方差S甲2=0.1,乙组数据的方差S乙2=0.01,则乙组数据比甲组数据稳定,故此选项错误;故选:C.【总结归纳】此题主要考查了方差、概率、全面调查和抽样调查,关键是掌握概率是频率(多个)的波动稳定值,是对事件发生可能性大小的量的表现;方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.6.甲、乙两盒中各放入分别写有数字1,2,3的三张卡片,每张卡片除数字外其他完全相同.从甲盒中随机抽出一张卡片,再从乙盒中随机摸出一张卡片,摸出的两张卡片上的数字之和是3的概率是()A.19B.29C.13D.49【知识考点】列表法与树状图法【思路分析】列表得出所有等可能的情况数,找出数字之和为3的情况数,求出所求的概率即可.【解答过程】解:列表如下:所有等可能的情况数有9种,其中数字之和为3的有2种,则P数字之和为3=.故选B.【总结归纳】此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.7.如图,在菱形ABCD中,∠BAD=2∠B,E,F分别为BC,CD的中点,连接AE、AC、AF,则图中与△ABE全等的三角形(△ABE除外)有()A.1个B.2个C.3个D.4个【知识考点】菱形的性质;全等三角形的判定【思路分析】先由菱形的性质得出AD∥BC,由平行线的性质得到∠BAD+∠B=180°,又∠BAD=2∠B,求出∠B=60°,则∠D=∠B=60°,△ABC与△ACD是全等的等边三角形,再根据E,F分别为BC,CD的中点,即可求出与△ABE全等的三角形(△ABE除外)有△ACE,△ACF,△ADF.【解答过程】解:∵四边形ABCD是菱形,∴AB=BC=CD=DA,∠D=∠B,AD∥BC,∴∠BAD+∠B=180°,∵∠BAD=2∠B,∴∠B=60°,∴∠D=∠B=60°,∴△ABC与△ACD是全等的等边三角形.∵E,F分别为BC,CD的中点,∴BE=CE=CF=DF=AB.在△ABE 与△ACE 中,,∴△ABE ≌△ACE (SAS ), 同理,△ACF ≌△ADF ≌△ABE ,∴图中与△ABE 全等的三角形(△ABE 除外)有3个. 故选C .【总结归纳】本题考查了菱形的性质,全等三角形的判定,难度适中,根据菱形的性质求出∠D=∠B=60°是解题的关键.8.某服装加工厂计划加工400套运动服,在加工完160套后,采用了新技术,工作效率比原计划提高了20%,结果共有了18天完成全部任务.设原计划每天加工x 套运动服,根据题意可列方程为( ) A .()16040018120%x x +=+ B .()16040016018120%x x -+=+ C .1604001601820%x x -+= D .()40040016018120%x x-+=+ 【知识考点】由实际问题抽象出分式方程【思路分析】关键描述语为:“共用了18天完成任务”;等量关系为:采用新技术前用的时间+采用新技术后所用的时间=18.【解答过程】解:采用新技术前用的时间可表示为:天,采用新技术后所用的时间可表示为:天.方程可表示为:,故选B .【总结归纳】列方程解应用题的关键步骤在于找相等关系.找到关键描述语,找到等量关系是解决问题的关键.本题要注意采用新技术前后工作量和工作效率的变化.9.如图,⊙O 的半径是3,点P 是弦AB 延长线上的一点,连接OP ,若OP=4,∠APO=30°,则弦AB 的长为( )A .BC .D 【知识考点】垂径定理;含30度角的直角三角形;勾股定理【思路分析】先过O作OC⊥AP,连结OB,根据OP=4,∠APO=30°,求出OC的值,在Rt△BCO 中,根据勾股定理求出BC的值,即可求出AB的值.【解答过程】解:过O作OC⊥AP于点C,连结OB,∵OP=4,∠APO=30°,∴OC=sin30°×4=2,∵OB=3,∴BC===,∴AB=2;故选A.【总结归纳】此题考查了垂经定理,用到的知识点是垂经定理、含30度角的直角三角形、勾股定理,解题的关键是作出辅助线,构造直角三角形.10.如图,在矩形OABC中,AB=2BC,点A在y轴的正半轴上,点C在x轴的正半轴上,连接OB,反比例函数kyx(k≠0,x>0)的图象经过OB的中点D,与BC边交于点E,点E的横坐标是4,则k的值是()A.1 B.2 C.3 D.4【知识考点】待定系数法求反比例函数解析式【思路分析】首先根据E点横坐标得出D点横坐标,再利用AB=2BC,得出D点纵坐标,进而得出k的值.【解答过程】解:∵在矩形OABC中,AB=2BC,反比例函数y=(k≠0,x>0)的图象经过OB 的中点D,与BC边交于点E,点E的横坐标是4,∴D点横坐标为:2,AB=OC=4,BC=AB=2,∴D点纵坐标为:1,∴k=xy=1×2=2.故选:B.【总结归纳】此题主要考查了点的坐标性质以及k与点的坐标性质,得出D点坐标是解题关键.二、填空题(共8小题,每小题3分,满分24分)11.在函数y=中,自变量x的取值范围是.【知识考点】函数自变量的取值范围;二次根式有意义的条件【思路分析】根据二次根式的性质,被开方数大于等于0可知:2x﹣1≥0,解得x的范围.【解答过程】解:根据题意得:2x﹣1≥0,解得,x≥.【总结归纳】本题考查的是函数自变量取值范围的求法.函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数为非负数.12.一种花粉颗粒的直径约为0.0000065米,将0.0000065用科学记数法表示为.【知识考点】科学记数法—表示较小的数【思路分析】根据科学记数法和负整数指数的意义求解.【解答过程】解:0.0000065=6.6×10﹣6.故答案为6.5×10﹣6.【总结归纳】本题考查了科学记数法﹣表示较小的数:用a×10n(1≤a<10,n为负整数)表示较小的数.13.在平面直角坐标系中,点P(5,﹣3)关于原点对称的点的坐标是.【知识考点】关于原点对称的点的坐标【思路分析】根据关于坐标原点对称的点的横坐标与纵坐标都互为相反数解答.【解答过程】解:点P(5,﹣3)关于原点对称的点的坐标是(﹣5,3).故答案为:(﹣5,3).【总结归纳】本题考查了关于原点对称的点的坐标,熟记关于坐标原点对称的点的横坐标与纵坐标都互为相反数是解题的关键.14.在一个不透明的袋子里装有黄色、白色乒乓球共40个,除颜色外其他完全相同.小明从这个袋子中随机摸出一球,放回.通过多次摸球实验后发现,摸到黄色球的概率稳定在15%附近,则袋中黄色球可能有个.【知识考点】利用频率估计概率【思路分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【解答过程】解:设袋中黄色球可能有x个.根据题意,任意摸出1个,摸到黄色乒乓球的概率是:15%=,解得:x=6. 故答案为:6.【总结归纳】此题考查了利用概率的求法估计总体个数,利用如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率P (A )=是解题关键. 15.在平面直角坐标系中,把抛物线2112y x =-+向上平移3个单位,再向左平移1个单位,则所得抛物线的解析式是 . 【知识考点】二次函数图象与几何变换【思路分析】先求出原抛物线的顶点坐标,再根据向左平移横坐标减,向上平移纵坐标加求出平移后的抛物线的顶点坐标,然后写出抛物线解析式即可. 【解答过程】解:∵抛物线y=﹣x 2+1的顶点坐标为(0,1),∴向上平移3个单位,再向左平移1个单位后的抛物线的顶点坐标为(﹣1,4), ∴所得抛物线的解析式为y=﹣(x+1)2+4. 故答案为y=﹣(x+1)2+4.【总结归纳】本题主要考查的了二次函数图象与几何变换,利用顶点坐标的平移确定函数图象的平移可以使求解更简便,平移规律“左加右减,上加下减”.16.已知圆锥底面圆的半径为6cm ,它的侧面积为60πcm 2,则这个圆锥的高是 cm . 【知识考点】圆锥的计算【思路分析】设圆锥的母线长为l ,由于圆锥的侧面展开图为扇形,扇形的弧长等于圆锥底面圆的周长,扇形的半径等于圆锥的母线长,则l•2π•6=60π,然后利用勾股定理计算圆 锥的高.【解答过程】解:设圆锥的母线长为l , 根据题意得l•2π•6=60π, 解得l=10, 所以圆锥的高==8(cm ).故答案为8.【总结归纳】本题考查了圆锥的计算:圆锥的侧面展开图为扇形,扇形的弧长等于圆锥底面圆的周长,扇形的半径等于圆锥的母线长.也考查了勾股定理.17.如图,在矩形ABCD 中,AB=10,AD=4,点P 是边AB 上一点,若△APD 与△BPC 相似,则满足条件的点P 有 个.【知识考点】相似三角形的判定【思路分析】设AP为x,表示出PB=10﹣x,然后分AD和PB是对应边,AD和BC是对应边两种情况,利用相似三角形对应边成比例列式求解即可.【解答过程】解:设AP为x,∵AB=10,∴PB=10﹣x,①AD和PB是对应边时,∵△APD与△BPC相似,∴=,即=,整理得,x2﹣10x+16=0,解得x1=2,x2=8,②AD和BC是对应边时,∵△APD与△BPC相似,∴=,即=,解得x=5,所以,当AP=2、5、8时,△APD与△BPC相似,满足条件的点P有3个.故答案为:3.【总结归纳】本题考查了相似三角形的判定,主要利用了相似三角形对应边成比例,难点在于要分情况讨论.18.如图,点B1是面积为1的等边△OBA的两条中线的交点,以OB1为一边,构造等边△OB1A1(点O,B1,A1按逆时针方向排列),称为第一次构造;点B2是△OBA的两条中线的交点,再以OB2为一边,构造等边△OB2A2(点O,B2,A2按逆时针方向排列),称为第二次构造;以此类推,当第n次构造出的等边△OB n A n的边OA n与等边△OBA的边OB第一次重合时,构造停止.则构造出的最后一个三角形的面积是.【知识考点】等边三角形的性质.【思路分析】由于点B1是△OBA两条中线的交点,则点B1是△OBA的重心,而△OBA是等边三角形,所以点B1也是△OBA的内心,∠BOB1=30°,∠A1OB=90°,由于每构造一次三角形,OB i 边与OB边的夹角增加30°,所以还需要(360﹣90)÷30=9,即一共1+9=10次构造后等边△OB n A n的边OA n与等边△OBA的边OB第一次重合;又因为任意两个等边三角形都相似,根据相似三角形的面积比等于相似比的平方,由△OB1A1与△OBA的面积比为,求得构造出的最后一个三角形的面积.【解答过程】解:∵点B1是面积为1的等边△OBA的两条中线的交点,∴点B1是△OBA的重心,也是内心,∴∠BOB1=30°,∵△OB1A1是等边三角形,∴∠A1OB=60°+30°=90°,∵每构造一次三角形,OB i 边与OB边的夹角增加30°,∴还需要(360﹣90)÷30=9,即一共1+9=10次构造后等边△OB n A n的边OA n与等边△OBA的边OB第一次重合,∴构造出的最后一个三角形为等边△OB10A10.如图,过点B1作B1M⊥OB于点M,∵cos∠B1OM=cos30°==,∴===,即=,∴=()2=,即S △OB1A1=S △OBA =,同理,可得=()2=,即S △OB2A2=S △OB1A1=()2=,…,∴S △OB10A10=S △OB9A9=()10=,即构造出的最后一个三角形的面积是.故答案为.【总结归纳】本题考查了等边三角形的性质,三角函数的定义,相似三角形的判定与性质等知识,有一定难度.根据条件判断构造出的最后一个三角形为等边△OB10A10及利用相似三角形的面积比等于相似比的平方,得出△OB1A1与△OBA 的面积比为 ,进而总结出规律是解题的关键. 三、解答题(共2小题,共22分)19.(10分)(1()1122455cos π-⎛⎫---︒ ⎪⎝⎭;(2)先化简,再求值:22212121m m m m m m m ⎛⎫-⎛⎫+÷+ ⎪ ⎪-+-⎝⎭⎝⎭,其中m=﹣3.【知识考点】分式的化简求值;实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值 【思路分析】(1)原式第一项利用立方根的定义化简,第二先利用零指数幂法则计算,第三项利用负指数幂法则计算,最后一项利用特殊角的三角函数值化简,计算即可得到结果;(2)原式括号中两项通分并利用同分母分式的加法法则计算,约分得到最简结果,将m 的值代入计算即可求出值.【解答过程】解:(1)原式=3+1﹣5+=﹣1;(2)原式=[+]÷=(+)÷=•=,当m=﹣3时,原式==.【总结归纳】此题考查了分式的化简求值,以及实数的运算,分式的加减运算关键是通分,通分的关键是找最简公分母;分式的乘除运算关键是约分,约分的关键是找公因式.20.(12分)某校对九年级全体学生进行了一次学业水平测试,成绩评定分为A,B,C,D四个等级(A,B,C,D分别代表优秀、良好、合格、不合格)该校从九年级学生中随机抽取了一部分学生的成绩,绘制成以下不完整的统计图.请你根据统计图提供的信息解答下列问题;(1)本次调查中,一共抽取了名学生的成绩;(2)将上面的条形统计图补充完整,写出扇形统计图中等级C的百分比.(3)若等级D的5名学生的成绩(单位:分)分别是55、48、57、51、55.则这5个数据的中位数是分,众数是分.(4)如果该校九年级共有500名学生,试估计在这次测试中成绩达到优秀的人数.【知识考点】条形统计图;用样本估计总体;扇形统计图;中位数;众数【思路分析】(1)根据等级B中男女人数之和除以所占的百分比即可得到调查的总学生数;(2)根据总学生数乘以A占的百分比求出等级A中男女的学生总数,进而求出等级A男生的人数,求出等级D占的百分比,确定出等级C占的百分比,乘以总人数求出等级C的男女之和人数,进而求出等级C的女生人数,补全条形统计图即可;(3)将等级D的五人成绩按照从小到大的顺序排列,找出最中间的数字即为中位数,找出出现次数最多的数字为众数;(4)用500乘以等级A所占的百分比,即可得到结果.【解答过程】解:(1)根据题意得:(12+8)÷40%=50(人),则本次调查了50名学生的成绩;(2)等级A的学生数为50×20%=10(人),即等级A男生为4人;∵等级D占的百分比为×100%=10%;∴等级C占的百分比为1﹣(40%+20%+10%)=30%,∴等级C的学生数为50×30%=15(人),即女生为7人,补全条形统计图,如图所示:(3)根据题意得:500×20%=100(人),则在这次测试中成绩达到优秀的人数有100人.【总结归纳】此题考查了条形统计图,扇形统计图,以及用样本估计总体,弄清题意是解本题的关键.四、解答题(共6小题,满分74分)21.(12分)如图,⊙O是△ACD的外接圆,AB是直径,过点D作直线DE∥AB,过点B作直线BE∥AD,两直线交于点E,如果∠ACD=45°,⊙O的半径是4cm(1)请判断DE与⊙O的位置关系,并说明理由;(2)求图中阴影部分的面积(结果用π表示).【知识考点】切线的判定;扇形面积的计算【思路分析】(1)连结OD,根据圆周角定理得∠ABD=∠ACD=45°,∠ADB=90°,可判断△ADB 为等腰直角三角形,所以OD⊥AB,而DE∥AB,则有OD⊥DE,然后根据切线的判定定理得到DE 为⊙O的切线;(2)先由BE∥AD,DE∥AB得到四边形ABED为平行四边形,则DE=AB=8cm,然后根据梯形的面积公式和扇形的面积公式利用S阴影部分=S梯形BODE﹣S扇形OBD进行计算即可.【解答过程】解:(1)DE与⊙O相切.理由如下:连结OD,则∠ABD=∠ACD=45°,∵AB是直径,∴∠ADB=90°,∴△ADB为等腰直角三角形,而点O为AB的中点,∴OD⊥AB,∵DE∥AB,∴OD⊥DE,∴DE为⊙O的切线;(2)∵BE∥AD,DE∥AB,∴四边形ABED为平行四边形,∴DE=AB=8cm,∴S阴影部分=S梯形BODE﹣S扇形OBD=(4+8)×4﹣=(24﹣4π)cm2.【总结归纳】本题考查了圆的切线的判定:过半径的外端点与半径垂直的直线为圆的切线.也考查了圆周角定理和扇形的面积公式.22.(12分)某中学响应“阳光体育”活动的号召,准备从体育用品商店购买一些排球、足球和篮球,排球和足球的单价相同,同一种球的单价相同,若购买2个足球和3个篮球共需340元,购买4个排球和5个篮球共需600元.(1)求购买一个足球,一个篮球分别需要多少元?(2)该中学根据实际情况,需从体育用品商店一次性购买三种球共100个,且购买三种球的总费用不超过600元,求这所中学最多可以购买多少个篮球?【知识考点】一元一次不等式的应用;二元一次方程组的应用.【思路分析】(1)设购买一个足球需要x元,则购买一个排球也需要x元,购买一个篮球y元,根据购买2个足球和3个篮球共需340元,4个排球和5个篮球共需600元,可得出方程组,解出即可;(2)设该中学购买篮球m个,根据购买三种球的总费用不超过600元,可得出不等式,解出即可.【解答过程】解:(1)设购买一个足球需要x元,则购买一个排球也需要x元,购买一个篮球y元,由题意得:,解得:,答:购买一个足球需要50元,购买一个篮球需要80元;。
2013年辽宁省本溪市中考数学模拟试卷(一)
2013年辽宁省本溪市中考数学模拟试卷(一)2013年辽宁省本溪市中考数学模拟试卷(一)一、选择题(共10小题,每小题3分,满分30分) 1.(3分)在实数中,无理数3.(3分)(2013•兰州)如图是由八个相同小正方体组合而成的几何体,则其左视图是( ).CD .4.(3分)(2004•临沂)下列五种图形:①平行四边形;②矩形;③菱形;④正方形;⑤等边三角形.其中既是中心对称26.(3分)(2012•定边县模拟)为了估计不透明的袋子里装有多少白球,先从袋中摸出10个球都做上标记,然后放7.(3分)如图,在半圆的直径上作4个正三角形,如这半圆周长为C 1,这4个正三角形的周长和为C 2,则C 1和C 2的大小关系是( )8.(3分)(2003•海淀区模拟)一列火车因事在途中耽误了5分钟,恢复行驶后速度增加5千米/时,这样行了30. C D .9.(3分)(2009•宝应县三模)如图所示,边长为2的正三角形与边长为1的正六边形重叠,且正六边形的中心是正三角形的一个顶点,则重叠部分的面积为().10.(3分)(2003•哈尔滨)下列各图是在同一直角坐标系内,二次函数y=ax 2+(a+c )x+c 与一次函数y=ax+c 的大.CD .二、填空题(共8小题,每小题3分,满分24分) 11.(3分)(2011•防城港)近似数0.618有 _________ 个有效数字.12.(3分)(2011•广西)分解因式:x 2y ﹣4xy+4y= _________ . 13.(3分)(2011•南宁)一组数据﹣2、0、﹣3、﹣2、﹣3、1、x 的众数是﹣3,则这组数据的中位数是 _________ . 14.(3分)(2011•聊城)如图,圆锥的底面半径OB=10cm ,它的侧面展开图的扇形的半径AB=30cm ,则这个扇形圆心角α的度数是 _________ .15.(3分)(2011•北海)在完全相同的四张卡片上分别写有如下四个命题:①半圆所对的弦是直径;②圆既是轴对称图形,也是中心对称图形;③弦的垂线一定经过这条弦所在圆的圆心;④圆内接四边形的对角互补.把这四张卡片放入一个不透明的口袋内搅匀,从口袋内任取一张卡片,则取出卡片上的命题是真命题的概率是 _________ . 16.(3分)(2011•安顺)如图,在Rt △ABC 中,∠C=90°,BC=6cm ,AC=8cm ,按图中所示方法将△BCD 沿BD 折叠,使点C 落在AB 边的C ′点,那么△ADC ′的面积是 _________ .17.(3分)(2011•黔东南州)顺次连接一矩形场地ABCD的边AB、BC、CD、DA的中点E、F、G、H,得到四边形EFGH,M为边EH的中点,点P为小明在对角线EG上走动的位置,若AB=10米,BC=米,当PM+PH 的和为最小值时,EP的长为_________.18.(3分)(2008•金华)如图,第(1)个多边形由正三角形“扩展”而来,边数记为a3,第(2)个多边形由正方形“扩展”而来,边数记为a4,…,依此类推,由正n边形“扩展”而来的多边形的边数记为a n(n≥3),当的结果是时,n的值_________.三、解答题(共8小题,满分96分)19.(10分)(2008•泰州)先化简,再求值:,其中x=2+.20.(12分)(2010•连云港)如图,大海中有A和B两个岛屿,为测量它们之间的距离,在海岸线PQ上点E处测得∠AEP=74°,∠BEQ=30°;在点F处测得∠AFP=60°,∠BFQ=60°,EF=1km.(1)判断AB,AE的数量关系,并说明理由;(2)求两个岛屿A和B之间的距离(结果精确到0.1km).(参考数据:≈1.73,cos74°≈0.28,tan74°≈3.49,sin76°≈0.97,cos76°≈0.24)21.(12分)(2007•河北)甲、乙两支篮球队在集训期内进行了五场比赛,将比赛成绩进行统计后,绘制成如图1、图2的统计图.(1)在图2中画出折线表示乙队在集训期内这五场比赛成绩的变化情况;(2)已知甲队五场比赛成绩的平均分x甲=90分,请你计算乙队五场比赛成绩的平均分x乙;(3)就这五场比赛,分别计算两队成绩的极差;(4)如果从甲、乙两队中选派一支球队参加篮球锦标赛,根据上述统计,从平均分、折线的走势、获胜场数和极差四个方面分别进行简要分析,你认为选派哪支球队参赛更能取得好成绩?22.(12分)(2009•河北)某公司装修需用A型板材240块、B型板材180块,A型板材规格是60cm×30cm,B型板材规格是40cm×30cm.现只能购得规格是150cm×30cm的标准板材.一张标准板材尽可能多地裁出A型、B型板材,共有下列三种裁法:(如图是裁法一的裁剪示意图)y张、按裁法三裁z张,且所裁出的A、B两种型号的板材刚好够用.(1)上表中,m=_________,n=_________;(2)分别求出y与x和z与x的函数关系式;(3)若用Q表示所购标准板材的张数,求Q与x的函数关系式,并指出当x取何值时Q最小,此时按三种裁法各裁标准板材多少张?23.(12分)(2009•三明)如图,在直角梯形ABCD中,AB∥CD,∠B=90°,AB=AD,∠BAD的平分线交BC于E,连接DE.(1)说明点D在△ABE的外接圆上;(2)若∠AED=∠CED,试判断直线CD与△ABE外接圆的位置关系,并说明理由.24.(12分)(2009•路南区一模)送家电下乡活动开展后,某家电经销商计划购进A、B、C三种家电共70台,每种家电至少要购进8台,且恰好用完资金45000元.设购进A种家电x台,B种家电y台,三种家电的进价和预售(2)求出y与x之间的函数关系式;(3)假设所购进家电全部售出,综合考虑各种因素,该家电经销商在购销这批家电过程中需另外指出各种费用共1000元.①求出预估利润P(元)与x(台)的函数关系式;(注:预估利润P=预售总额﹣购家电资金﹣各种费用)②求出预估利润的最大值,并写出此时购进三种家电各多少台.25.(12分)(2012•南长区一模)已知正方形ABCD的边长为6cm,点E是射线BC上的一个动点,连接AE交射线DC于点F,将△ABE沿直线AE翻折,点B落在点B′处.(1)当=1时,CF=_________cm,(2)当=2时,求sin∠DAB′的值;(3)当=x时(点C与点E不重合),请写出△ABE翻折后与正方形ABCD公共部分的面积y与x的关系式,(只要写出结论,不要解题过程).26.(14分)(2007•海南)如图,直线y=﹣x+4与x轴交于点A,与y轴交于点C,已知二次函数的图象经过点A、C和点B(﹣1,0).(1)求该二次函数的关系式;(2)设该二次函数的图象的顶点为M,求四边形AOCM的面积;(3)有两动点D、E同时从点O出发,其中点D以每秒个单位长度的速度沿折线OAC按O⇒A⇒C的路线运动,点E以每秒4个单位长度的速度沿折线OCA按O⇒C⇒A的路线运动,当D、E两点相遇时,它们都停止运动.设D、E同时从点O出发t秒时,△ODE的面积为S.①请问D、E两点在运动过程中,是否存在DE∥OC,若存在,请求出此时t的值;若不存在,请说明理由;②请求出S关于t的函数关系式,并写出自变量t的取值范围;③设S0是②中函数S的最大值,那么S0=_________.2013年辽宁省本溪市中考数学模拟试卷(一)参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分) 1.(3分)在实数中,无理数,解:∵=2,,3=在这一组数据中无理数有,﹣3.(3分)(2013•兰州)如图是由八个相同小正方体组合而成的几何体,则其左视图是( ).CD .4.(3分)(2004•临沂)下列五种图形:①平行四边形;②矩形;③菱形;④正方形;⑤等边三角形.其中既是中心对称26.(3分)(2012•定边县模拟)为了估计不透明的袋子里装有多少白球,先从袋中摸出10个球都做上标记,然后放有标记的球出现的频率为,÷7.(3分)如图,在半圆的直径上作4个正三角形,如这半圆周长为C1,这4个正三角形的周长和为C2,则C1和C2的大小关系是()为:∵8.(3分)(2003•海淀区模拟)一列火车因事在途中耽误了5分钟,恢复行驶后速度增加5千米/时,这样行了30.C D.,根据等量关系列式.,实际.﹣=9.(3分)(2009•宝应县三模)如图所示,边长为2的正三角形与边长为1的正六边形重叠,且正六边形的中心是正三角形的一个顶点,则重叠部分的面积为().中,底边上的高为=面积为××=.10.(3分)(2003•哈尔滨)下列各图是在同一直角坐标系内,二次函数y=ax +(a+c )x+c 与一次函数y=ax+c 的大. CD .,轴的交点为(﹣二、填空题(共8小题,每小题3分,满分24分)11.(3分)(2011•防城港)近似数0.618有 3 个有效数字.12.(3分)(2011•广西)分解因式:x 2y ﹣4xy+4y= y (x ﹣2)2.13.(3分)(2011•南宁)一组数据﹣2、0、﹣3、﹣2、﹣3、1、x 的众数是﹣3,则这组数据的中位数是 ﹣2 .14.(3分)(2011•聊城)如图,圆锥的底面半径OB=10cm,它的侧面展开图的扇形的半径AB=30cm,则这个扇形圆心角α的度数是120°.,(15.(3分)(2011•北海)在完全相同的四张卡片上分别写有如下四个命题:①半圆所对的弦是直径;②圆既是轴对称图形,也是中心对称图形;③弦的垂线一定经过这条弦所在圆的圆心;④圆内接四边形的对角互补.把这四张卡片放入一个不透明的口袋内搅匀,从口袋内任取一张卡片,则取出卡片上的命题是真命题的概率是..故答案为.16.(3分)(2011•安顺)如图,在Rt△ABC中,∠C=90°,BC=6cm,AC=8cm,按图中所示方法将△BCD沿BD折叠,使点C落在AB边的C′点,那么△ADC′的面积是6cm2.的面积═×D=17.(3分)(2011•黔东南州)顺次连接一矩形场地ABCD的边AB、BC、CD、DA的中点E、F、G、H,得到四边形EFGH,M为边EH的中点,点P为小明在对角线EG上走动的位置,若AB=10米,BC=米,当PM+PH的和为最小值时,EP的长为m.BC=10AH=5=EM=BC=10AH=5EH=EM=的长为故答案为18.(3分)(2008•金华)如图,第(1)个多边形由正三角形“扩展”而来,边数记为a3,第(2)个多边形由正方形“扩展”而来,边数记为a4,…,依此类推,由正n边形“扩展”而来的多边形的边数记为a n(n≥3),当的结果是时,n的值199.=﹣++=,+=+﹣…﹣=﹣,三、解答题(共8小题,满分96分)19.(10分)(2008•泰州)先化简,再求值:,其中x=2+.时,原式.20.(12分)(2010•连云港)如图,大海中有A和B两个岛屿,为测量它们之间的距离,在海岸线PQ上点E处测得∠AEP=74°,∠BEQ=30°;在点F处测得∠AFP=60°,∠BFQ=60°,EF=1km.(1)判断AB,AE的数量关系,并说明理由;(2)求两个岛屿A和B之间的距离(结果精确到0.1km).(参考数据:≈1.73,cos74°≈0.28,tan74°≈3.49,sin76°≈0.97,cos76°≈0.24).21.(12分)(2007•河北)甲、乙两支篮球队在集训期内进行了五场比赛,将比赛成绩进行统计后,绘制成如图1、图2的统计图.(1)在图2中画出折线表示乙队在集训期内这五场比赛成绩的变化情况;(2)已知甲队五场比赛成绩的平均分x甲=90分,请你计算乙队五场比赛成绩的平均分x乙;(3)就这五场比赛,分别计算两队成绩的极差;(4)如果从甲、乙两队中选派一支球队参加篮球锦标赛,根据上述统计,从平均分、折线的走势、获胜场数和极差四个方面分别进行简要分析,你认为选派哪支球队参赛更能取得好成绩?乙22.(12分)(2009•河北)某公司装修需用A型板材240块、B型板材180块,A型板材规格是60cm×30cm,B型板材规格是40cm×30cm.现只能购得规格是150cm×30cm的标准板材.一张标准板材尽可能多地裁出A型、B型板材,共有下列三种裁法:(如图是裁法一的裁剪示意图)y张、按裁法三裁z张,且所裁出的A、B两种型号的板材刚好够用.(1)上表中,m=,n=;(2)分别求出y与x和z与x的函数关系式;(3)若用Q表示所购标准板材的张数,求Q与x的函数关系式,并指出当x取何值时Q最小,此时按三种裁法各裁标准板材多少张?x+60﹣和x﹣﹣xx由题意,得﹣×﹣×23.(12分)(2009•三明)如图,在直角梯形ABCD中,AB∥CD,∠B=90°,AB=AD,∠BAD的平分线交BC于E,连接DE.(1)说明点D在△ABE的外接圆上;(2)若∠AED=∠CED,试判断直线CD与△ABE外接圆的位置关系,并说明理由.AE24.(12分)(2009•路南区一模)送家电下乡活动开展后,某家电经销商计划购进A、B、C三种家电共70台,每种家电至少要购进8台,且恰好用完资金45000元.设购进A种家电x台,B种家电y台,三种家电的进价和预售(2)求出y与x之间的函数关系式;(3)假设所购进家电全部售出,综合考虑各种因素,该家电经销商在购销这批家电过程中需另外指出各种费用共1000元.①求出预估利润P(元)与x(台)的函数关系式;(注:预估利润P=预售总额﹣购家电资金﹣各种费用)②求出预估利润的最大值,并写出此时购进三种家电各多少台.,25.(12分)(2012•南长区一模)已知正方形ABCD的边长为6cm,点E是射线BC上的一个动点,连接AE交射线DC于点F,将△ABE沿直线AE翻折,点B落在点B′处.(1)当=1时,CF=6cm,(2)当=2时,求sin∠DAB′的值;(3)当=x时(点C与点E不重合),请写出△ABE翻折后与正方形ABCD公共部分的面积y与x的关系式,(只要写出结论,不要解题过程).)当,得)当的值,即求的值,由,即得k=.得DM=,的值,即是求)当)当∴∴∵,DM=.,N=)当∵∴,,y=×y=∵,∴=,﹣∴y=.26.(14分)(2007•海南)如图,直线y=﹣x+4与x轴交于点A,与y轴交于点C,已知二次函数的图象经过点A、C和点B(﹣1,0).(1)求该二次函数的关系式;(2)设该二次函数的图象的顶点为M,求四边形AOCM的面积;(3)有两动点D、E同时从点O出发,其中点D以每秒个单位长度的速度沿折线OAC按O⇒A⇒C的路线运动,点E以每秒4个单位长度的速度沿折线OCA按O⇒C⇒A的路线运动,当D、E两点相遇时,它们都停止运动.设D、E同时从点O出发t秒时,△ODE的面积为S.①请问D、E两点在运动过程中,是否存在DE∥OC,若存在,请求出此时t的值;若不存在,请说明理由;②请求出S关于t的函数关系式,并写出自变量t的取值范围;③设S0是②中函数S的最大值,那么S0=.OEOD<∴,b=x x+4﹣+(+,××4+∴∴∴∴t=>两点相遇的时间为S=×t∴∴S=××=t+<可得∴∴××﹣××t+.×tt+.函数的最大值是:,时,t+,..参与本试卷答题和审题的老师有:wdxwwzy;MMCH;HLing;lbz;lanyan;张长洪;zhjh;137-hui;Liuzhx;lf2-9;gsls;CJX;自由人;lantin;心若在;蓝月梦;libaojia;bjy;lanchong;sjzx;星期八;HJJ;zcx;caicl;Linaliu(排名不分先后)菁优网2014年3月16日。
2013年辽宁省辽阳市中考数学试题及参考答案(word解析版)
2013年辽宁省辽阳市中考数学试题及参考答案与解析一、选择题(本大题共8小题,每小题3分,共24分,在每小题所列出的四个选项中,只有一个是正确的)1.-2的相反数是()A.-2 B.2 C.12-D.122.下列运算正确的是()A.(-x)2•x3=x5B.x3•x4=x12C.(xy3)2=xy6D.(-2x2)3=-6x63.下列几何体的主视图、俯视图和左视图都是长方形的是()A.B.C.D.4.数据4,5,8,6,4,4,6的中位数是()A.3 B.4 C.5 D.65.如图,将矩形纸片ABCD沿对角线BD折叠,点C落在点E处,BE与AD相交于点F,∠EDF=38°,则∠DBE的度数是()A.25°B.26°C.27°D.38°6.如图,在Rt△ABC中,∠C=90°,AD是△ABC的角平分线,AC=3,BC=4,则CD的长是()A.1 B.43C.32D.27.如图,A、B是反比例函数2yx=(x>0)图象上的两点,AC⊥y轴于点C,BD⊥y轴于点D,OB与AC相交于点E,记△AOE的面积为S1,四边形BDCE的面积为S2,则S1、S2的大小关系是()A.S1=S2B.S1<S2C.S1>S2D.无法确定8.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列结论:①abc<0;②b2-4ac>0;③3a+c<0;④16a+4b+c>0.其中正确结论的个数是()A.1个B.2个C.3个D.4个二、填空题(本大题共8小题,每小题3分,共24分)9.PM 2.5是指大气中直径小于或等于0.0000025m的颗粒物,将0.0000025用科学记数法表示为.10.因式分解:2x2-8=.11.数据2,3,4,6,a的平均数是4,则a=.12.已知点O是△ABC外接圆的圆心,若∠BOC=110°,则∠A的度数是.13.已知圆锥的侧面积为15πcm2,底面半径为3cm,则圆锥的高是.14.如图,在2×3的正方形网格格点上有两点A、B,在其它格点上随机取一点记为C,能使以A、B、C三点为顶点的三角形是等腰三角形的概率为.15.如图,已知正方形ABCD的边长为4,点P在BC边上,且BP=1,Q为对角线AC上的一个动点,则△BPQ周长的最小值为.16.如图,在△ABC中,∠C=90°,BC=1,AC=2,四边形CA1B1C1、A1A2B2C2、A2A3B3C3…都是正方形,且A1、A2、A3…在AC边上,B1、B2、B3…在AB边上.则线段B n C n的长用含n的代数式表示为.(n为正整数)三、解答题(本大题共2个小题,每小题8分,共16分)17()()2201301132π-⎛⎫--+- ⎪⎝⎭18.先化简,再求值:222212ab a b ab b a ab ab ⎛⎫+⎛⎫-÷+ ⎪ ⎪--⎝⎭⎝⎭,其中1a =,1b =. 四、解答题(本大题共2个小题,每小题10分,共20分)19.某市中小学开展“关注校车,关爱学生”为主题的交通安全教育宣传周活动.某中学为了了解本校学生的上学方式,在全校范围内随机抽查了部分学生,将收集的数据绘制成如图两幅不完整的统计图,请根据图中提供的信息,解答下列问题:(1)本次调查共抽查了多少名学生? (2)将图①、图②补充完整;(3)求图②中“骑自行车”所对应的扇形圆心角的度数;(4)如果该校共有1000名学生,请你估计乘公交车上学的学生约有多少名?20.不透明的口袋里装有红、黄、蓝三种颜色的小球若干个(小球除颜色外其余都相同),其中黄球2个,篮球1个.若从中随机摸出一个球,摸到篮球的概率是14. (1)求口袋里红球的个数;(2)第一次随机摸出一个球(不放回),第二次再随机摸出一个球,请用列表或画树状图的方法,求两次摸到的球恰是一黄一蓝的概率.五、解答题(本大题共2个小题,每小题10分,共20分)21.某商场第一次用10000元购进甲、乙两种商品,销售完成后共获利2200元,其中甲种商品每件进价60元,售价70元;乙种商品每件进价50元,售价65元. (1)求该商场购进甲、乙两种商品各多少件?(2)商场第二次以原进价购进甲、乙两种商品,且购进甲、乙商品的数量分别与第一次相同,甲种商品按原售价出售,而乙种商品降价销售,要使第二次购进的两种商品全部售出后,获利不少于1800元,乙种商品最多可以降价多少元?22.如图,已知CD 为⊙O 的直径,弦AB ⊥CD ,垂足为E ,连接AD 、AC ,点F 在DC 延长线上,连接AF ,且∠FAC=∠CAB .(1)求证:AF为⊙O的切线;(2)若AD=10,sin∠FAC=25,求AB的长.六、解答题(本大题共2个小题,每小题10分,共20分)23.如图,海中有一个小岛C,今有一货船由西向东航行,在A处测得小岛C在北偏东60°方向,货船向正东方向航行16海里到达B处,在B处测得小岛C在北偏东15°方向,求此时货船与小岛C的距离.(结果精确到0.01≈1.414 1.732)24.某商场以每台360元的价格购进一批计算器,原售价每台600元,现为了促销,商场采取如下方式:买一台单价为590元,买两台每台都为580元,依此类推,即每多买一台则所买各台单价均再减10元,但最低不能低于每台400元.某单位一次性购买该计算器x台,实际购买单价为y元.(x 为正整数)(1)求y与x的函数关系式;(2)若该单位一次性购买该计算器不超过20台,购买多少台时,商场获利最大?最大利润是多少?七、解答题(本题12分)25.已知△ABC为等腰直角三角形,∠ACB=90°,点P在BC边上(P不与B、C重合)或点P在△ABC内部,连接CP、BP,将CP绕点C逆时针旋转90°,得到线段CE;将BP绕点B顺时针旋转90°,得到线段BD,连接ED交AB于点O.(1)如图a,当点P在BC边上时,求证:OA=OB;(2)如图b,当点P在△ABC内部时,①OA=OB是否成立?请说明理由;②直接写出∠BPC为多少度时,AB=DE.八、解答题(本题14分)26.如图,直线y=-x+3与x轴交于点C,与y轴交于点A,点B的坐标为(2,3)抛物线y=-x2+bx+c 经过A、C两点.(1)求抛物线的解析式,并验证点B是否在抛物线上;(2)作BD⊥OC,垂足为D,连接AB,E为y轴左侧抛物线点,当△EAB与△EBD的面积相等时,求点E的坐标;(3)点P在直线AC上,点Q在抛物线y=-x2+bx+c上,是否存在P、Q,使以A、B、P、Q为顶点的四边形为平行四边形?若存在,直接写出点P的坐标;若不存在,请说明理由.参考答案与解析一、选择题(本大题共8小题,每小题3分,共24分,在每小题所列出的四个选项中,只有一个是正确的)1.-2的相反数是()A.-2 B.2 C.12D.12【知识考点】相反数.【思路分析】根据只有符号不同的两个数互为相反数,可得一个数的相反数.【解答过程】解:-2的相反数是2,故选:B.【总结归纳】本题考查了相反数,在一个数的前面加上负号就是这个数的相反数.2.下列运算正确的是()A.(-x)2•x3=x5B.x3•x4=x12C.(xy3)2=xy6D.(-2x2)3=-6x6【知识考点】同底数幂的乘法;幂的乘方与积的乘方.【思路分析】根据同底数幂的乘法的性质,幂的乘方的性质,积的乘方的性质,对各选项分析判断后利用排除法求解.【解答过程】解:A、(-x)2•x3=x2•x3=x5,选项正确;B、x3•x4=x7,选项错误;C、(xy3)2=x2y6,选项错误;D、(-2x2)3=-8x6,选项错误.故选:A.【总结归纳】本题考查了同底数幂的乘法,幂的乘方,积的乘方,理清指数的变化是解题的关键.3.下列几何体的主视图、俯视图和左视图都是长方形的是()A.B.C.D.【知识考点】简单几何体的三视图.【思路分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.【解答过程】解:A、圆柱主视图、左视图都是长方形,俯视图是圆,故此选项错误;B、四棱台主视图、左视图都是梯形,俯视图是“回”字形,故此选项错误;C、三棱柱主视图、左视图都是长方形,俯视图是三角形,故此选项错误;D、长方体主视图、俯视图和左视图都是长方形,故此选项正确;故选:D.【总结归纳】本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.4.数据4,5,8,6,4,4,6的中位数是()A.3 B.4 C.5 D.6【知识考点】中位数.【思路分析】根据中位数的概念求解.【解答过程】解:这组数据按照从小到大的顺序排列为:4,4,4,5,6,6,8,则中位数为:5.故选:C.【总结归纳】本题考查了中位数的知识:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.5.如图,将矩形纸片ABCD沿对角线BD折叠,点C落在点E处,BE与AD相交于点F,∠EDF=38°,则∠DBE的度数是()A.25°B.26°C.27°D.38°【知识考点】平行线的性质;翻折变换(折叠问题).【思路分析】根据翻折的性质可得∠1=∠2,根据两直线平行,内错角相等可得∠1=∠3,从而得到∠2=∠3,然后根据三角形的内角和定理列式计算即可得解.【解答过程】解:由翻折的性质得,∠1=∠2,∵矩形的对边AD∥BC,∴∠1=∠3,∴∠2=∠3,在△BDE中,∠2+∠3+∠EDF=180°-90°,即2∠2+38°=90°,解得∠2=26°,∴∠DBE=26°.故选:B.【总结归纳】本题考查了平行线的性质,翻折变换的性质,熟记性质并准确识图是解题的关键.6.如图,在Rt△ABC中,∠C=90°,AD是△ABC的角平分线,AC=3,BC=4,则CD的长是()A.1 B.43C.32D.2【知识考点】三角形的面积;角平分线的性质;勾股定理.【思路分析】过点D作DE⊥AB于E,根据角平分线上的点到角的两边距离相等可得DE=CD,利用勾股定理列式求出AB,再根据△ABC的面积公式列出方程求解即可.【解答过程】解:如图,过点D作DE⊥AB于E,∵∠C=90°,AD是△ABC的角平分线,∴DE=CD,由勾股定理得,5AB===,S△ABC=12AB•DE+12AC•CD=12AC•BC,即12×5•CD+12×3•CD=12×3×4,解得CD=32.故选:C.【总结归纳】本题考查了角平分线上的点到角的两边距离相等的性质,三角形的面积,勾股定理,熟记性质并根据三角形的面积列出方程是解题的关键.7.如图,A、B是反比例函数2yx=(x>0)图象上的两点,AC⊥y轴于点C,BD⊥y轴于点D,OB与AC相交于点E,记△AOE的面积为S1,四边形BDCE的面积为S2,则S1、S2的大小关系是()A.S1=S2B.S1<S2C.S1>S2D.无法确定【知识考点】反比例函数系数k的几何意义.【思路分析】根据图形、三角形的面积公式(反比例函数系数k的几何意义)易得△AOC和△OBD 的面积相等,都减去公共部分△OCE的面积可得S1、S2的大小关系.【解答过程】解:设点A的坐标为(x A,y A),点B的坐标为(x B,y B),∵A、B在反比例函数2yx=上,∴x A y A=2,x B y B=2,∴S△AOC=12x A y A=1;S△OBD=12x B y B=1.∴S△AOC=S△OBD,∴S△AOC-S△OCE=S△OBD-S△OCE,∴S△AOE=S梯形ECDB;又∵△AOE与梯形ECDB的面积分别为S1、S2,∴S1=S2.故选:A.【总结归纳】本题考查了反比例函数系数k的几何意义.解答本题时采用了“数形结合”的数学思想.8.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列结论:①abc<0;②b2-4ac>0;③3a+c<0;④16a+4b+c>0.其中正确结论的个数是()A.1个B.2个C.3个D.4个【知识考点】二次函数图象与系数的关系.【思路分析】由抛物线的开口方向,抛物线与y轴交点的位置、对称轴即可确定a、b、c的符号,即得abc的符号;由抛物线与x轴有两个交点判断即可;由抛物线的对称轴为直线x=1,可得b=-2a,然后把x=-1代入方程即可求得相应的y的符号;根据对称轴和图可知,抛物线与x轴的另一交点在3和4之间,所以当x=4时,y>0,即可得16a+4b+c >0.【解答过程】解:由开口向上,可得a>0,又由抛物线与y轴交于负半轴,可得c<0,然后由对称轴在y轴右侧,得到b与a异号,则可得b<0,abc>0,故①错误;由抛物线与x轴有两个交点,可得b2-4ac>0,故②正确;由抛物线的对称轴为直线x=1,可得b=-2a,再由当x=-1时y<0,即a-b+c<0,3a+c<0,故③正确;根据对称轴和图可知,抛物线与x轴的另一交点在3和4之间,所以当x=4时,y>0,即可得16a+4b+c >0,故④正确,故选:C.【总结归纳】本题考查了二次函数图象与系数的关系.二次函数y=ax2+bx+c(a≠0)系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点抛物线与x轴交点的个数确定.二、填空题(本大题共8小题,每小题3分,共24分)9.PM 2.5是指大气中直径小于或等于0.0000025m的颗粒物,将0.0000025用科学记数法表示为.【知识考点】科学记数法—表示较小的数.【思路分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答过程】解:0.0000025=2.5×10-6,故答案为:2.5×10-6.【总结归纳】本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.10.因式分解:2x2-8=.【知识考点】因式分解-提公因式法;因式分解-运用公式法.【思路分析】观察原式,找到公因式2,提出即可得出答案.【解答过程】解:原式=2(x2-4)=2(x+2)(x-2).【总结归纳】本题考查提公因式法和公式法分解因式,是基础题.11.数据2,3,4,6,a的平均数是4,则a=.【知识考点】算术平均数.【思路分析】根据平均数的概念求解.【解答过程】解:由题意得,234645a++++=,解得:a=5.故答案为:5.【总结归纳】本题考查了平均数的知识:平均数是指在一组数据中所有数据之和再除以数据的个数.它是反映数据集中趋势的一项指标.12.已知点O是△ABC外接圆的圆心,若∠BOC=110°,则∠A的度数是.【知识考点】圆周角定理;三角形的外接圆与外心.【思路分析】分类讨论:当△ABC为锐角三角形,即点A在优弧BC上,可根据圆周角定理求得∠A=12∠BCO=55°;当△ABC为钝角三角形,即点A在劣弧BC上,可根据圆内接四边形的性质得到∠A′=125°.【解答过程】解:当△ABC为锐角三角形,即点A在优弧BC上,则∠A=12∠BCO=12×110°=55°;当△ABC为钝角三角形,即点A在劣弧BC上,则∠A′=180°-∠A=180°-55°=125°,即∠A的度数为55°或125°.故答案为55°或125°.【总结归纳】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.13.已知圆锥的侧面积为15πcm2,底面半径为3cm,则圆锥的高是.【知识考点】圆锥的计算.【思路分析】圆锥的母线、底面半径、圆锥的高正好构成直角三角形的三边,求圆锥的高就可以转化为求母线长.圆锥的侧面的展开图是扇形,扇形的半径就等于母线长.【解答过程】解:侧面展开图扇形的弧长是6π,设母线长是r,则12×6π•r=15π,解得:r=5,根据勾股定理得到:圆锥的高4cm==,故答案为4cm.【总结归纳】本题考查了圆锥的计算,正确理解圆锥的母线,高,底面半径的关系,以及圆锥侧面展开图与圆锥的关系,是解题的关键.14.如图,在2×3的正方形网格格点上有两点A、B,在其它格点上随机取一点记为C,能使以A、B、C三点为顶点的三角形是等腰三角形的概率为.【知识考点】等腰三角形的判定;概率公式.【思路分析】首先找出可以组成的所有三角形的个数,然后再看其中的等腰三角形的个数,由此可得到所求的概率.【解答过程】解:∵在格点上随机取一点记为C,以A、B、C三点为顶点的三角形有4×3-2=10个,其中等腰三角形有4个(图中所示),∴以A、B、C三点为顶点的三角形是等腰三角形的概率为:42 105=.故答案为25.【总结归纳】本题考查了概率公式:概率=所求情况数与总情况数之比.同时考查了等腰三角形的判定.15.如图,已知正方形ABCD的边长为4,点P在BC边上,且BP=1,Q为对角线AC上的一个动点,则△BPQ周长的最小值为.【知识考点】正方形的性质;轴对称-最短路线问题.【思路分析】根据正方形的性质,点B 、D 关于AC 对称,连接PD 与AC 相交于点Q ,根据轴对称确定最短路线问题,点Q 即为所求的使△BPQ 周长的最小值的点,求出PC ,再利用勾股定理列式求出PD ,然后根据△BPQ 周长=PD+BP 计算即可得解. 【解答过程】 解:如图,连接PD 与AC 相交于点Q ,此时△BPQ 周长的最小,∵正方形ABCD 的边长为4,BP=1, ∴PC=4-1=3,由勾股定理得,5PD =,∴△BPQ 周长=BQ+PQ+BP=DQ+PQ+BP=PD+BP=5+1=6. 故答案为:6.【总结归纳】本题考查了轴对称确定最短路线问题,正方形的性质,熟记正方形的性质并确定出点Q 的位置是解题的关键.16.如图,在△ABC 中,∠C=90°,BC=1,AC=2,四边形CA 1B 1C 1、A 1A 2B 2C 2、A 2A 3B 3C 3…都是正方形,且A 1、A 2、A 3…在AC 边上,B 1、B 2、B 3…在AB 边上.则线段B n C n 的长用含n 的代数式表示为 .(n 为正整数)【知识考点】正方形的性质;相似三角形的判定与性质.【思路分析】根据题意得出△BB 1C 1∽△BAC ,进而求出B 1C 1=23,同理可得出:B 2C 2=223⎛⎫⎪⎝⎭,B 3C 3=323⎛⎫⎪⎝⎭…进而得出答案. 【解答过程】解:由题意可得:B 1C 1∥AC , ∴△BB 1C 1∽△BAC , ∴111BC B C BC AC=, ∵CC 1=B 1C 1,∴1111 121B C C B=-, 解得:B 1C 1=23,故A 1B 1=23,AA 1=43,同理可得出:B 2C 2=223⎛⎫ ⎪⎝⎭,B 3C 3=323⎛⎫⎪⎝⎭…∴线段B n C n 的长用含n 的代数式表示为:23n⎛⎫⎪⎝⎭.故答案为:23n⎛⎫⎪⎝⎭.【总结归纳】此题主要考查了相似三角形的判定与性质,得出线段BnCn 长的变化规律是解题关键. 三、解答题(本大题共2个小题,每小题8分,共16分)17()()2201301132π-⎛⎫--+- ⎪⎝⎭【知识考点】实数的运算;零指数幂;负整数指数幂.【思路分析】原式第一项利用平方根定义化简,第二项利用乘方的意义化简,第三项利用负指数幂法则计算,第四项利用零指数幂法则计算,最后一项利用立方根定义化简,计算即可得到结果. 【解答过程】解:原式=4-1-4+1-2 =-2.【总结归纳】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.18.先化简,再求值:222212ab a b ab b a ab ab ⎛⎫+⎛⎫-÷+ ⎪ ⎪--⎝⎭⎝⎭,其中1a =,1b =. 【知识考点】分式的化简求值.【思路分析】先把括号里面进行通分,再根据完全平方公式和平方差公式进行因式分解,然后把除法转化成乘法,再进行约分,最后把a 、b 的值代入进行计算即可.【解答过程】解:原式()()22222a bab a b b a b a a b ab ab ⎡⎤⎛⎫+=-÷+⎢⎥ ⎪--⎝⎭⎣⎦()()2222a b a b ab a b ab+-=÷- ()()()()22a b a b ab ab a b a b +-=-+ 2a b=+,把1a =,1b =代入上式得:原式2===. 【总结归纳】此题考查了分式的化简求值,用到的知识点是完全平方公式、平方差公式、通分、约分,解答此题的关键是把分式化到最简,然后代值计算. 四、解答题(本大题共2个小题,每小题10分,共20分)19.某市中小学开展“关注校车,关爱学生”为主题的交通安全教育宣传周活动.某中学为了了解本校学生的上学方式,在全校范围内随机抽查了部分学生,将收集的数据绘制成如图两幅不完整的统计图,请根据图中提供的信息,解答下列问题:(1)本次调查共抽查了多少名学生? (2)将图①、图②补充完整;(3)求图②中“骑自行车”所对应的扇形圆心角的度数;(4)如果该校共有1000名学生,请你估计乘公交车上学的学生约有多少名? 【知识考点】用样本估计总体;扇形统计图;条形统计图. 【思路分析】(1)利用频数÷所占百分比=总数计算即可;(2)步行人数=总数-骑车人数-乘公交车人数-其他;再计算出百分比填图即可; (3)用360°×“骑自行车”人数所占百分比; (4)利用样本估计总体的方法计算即可. 【解答过程】解:(1)12÷20%=60人; (2)步行人数:60-12-24-6=18, 所占百分比:18÷60×100%=30%;乘公交车人数所占百分比:24÷60×100%=40%, 如图所示:(3)“骑自行车”所对应的扇形圆心角的度数:360°×20%=72°;(4)乘公交车上学的学生人数:1000×40%=400名.【总结归纳】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.20.不透明的口袋里装有红、黄、蓝三种颜色的小球若干个(小球除颜色外其余都相同),其中黄球2个,篮球1个.若从中随机摸出一个球,摸到篮球的概率是14.(1)求口袋里红球的个数;(2)第一次随机摸出一个球(不放回),第二次再随机摸出一个球,请用列表或画树状图的方法,求两次摸到的球恰是一黄一蓝的概率.【知识考点】概率公式;列表法与树状图法.【思路分析】(1)设口袋里红球的个数为x,根据题意列出方程,求出方程的解得到x的值即可;(2)列表得出所有等可能的情况数,找出两次摸到的球恰是一黄一蓝的情况数,即可求出所求概率.【解答过程】解:(1)设红球有x个,根据题意得:11 214x=++,解得:x=1,经检验x=1是原方程的根.则口袋中红球有1个;(2)列表如下:所有等可能的情况有12种,其中两次摸到的球恰是一黄一蓝的情况有4种,则41123 P==.【总结归纳】此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.五、解答题(本大题共2个小题,每小题10分,共20分)21.某商场第一次用10000元购进甲、乙两种商品,销售完成后共获利2200元,其中甲种商品每件进价60元,售价70元;乙种商品每件进价50元,售价65元. (1)求该商场购进甲、乙两种商品各多少件?(2)商场第二次以原进价购进甲、乙两种商品,且购进甲、乙商品的数量分别与第一次相同,甲种商品按原售价出售,而乙种商品降价销售,要使第二次购进的两种商品全部售出后,获利不少于1800元,乙种商品最多可以降价多少元?【知识考点】二元一次方程组的应用;一元一次不等式的应用. 二元一次方程组的应用【思路分析】(1)设商场购进甲x 件,乙购进y 件.则根据“用10000元购进甲、乙两种商品、销售完成后共获利2200元”列出方程组;(2)设乙种商品降价z 元,则由“要使第二次购进的两种商品全部售出后,获利不少于1800元”列出不等式.【解答过程】解:(1)设商场购进甲x 件,乙购进y 件.则6050100001052200x y x y +⎧⎨+⎩==, 解得10080x y ⎧⎨⎩==.答:该商场购进甲、乙两种商品分别是100件、80件; (3)设乙种商品降价z 元,则 10×100+(15-z )×80≥1800, 解得 z≤5.答:乙种商品最多可以降价5元.【总结归纳】本题考查了二元一次方程组的应用,一元一次不等式的应用.本题属于商品销售中的利润问题,对于此类问题,隐含着一个等量关系:利润=售价-进价.22.如图,已知CD 为⊙O 的直径,弦AB ⊥CD ,垂足为E ,连接AD 、AC ,点F 在DC 延长线上,连接AF ,且∠FAC=∠CAB . (1)求证:AF 为⊙O 的切线; (2)若AD=10,sin ∠FAC=25,求AB 的长.【知识考点】切线的判定;解直角三角形.【思路分析】(1)连接OA、BC,证出∠EAO+∠FAC+∠CAB=90°,即∠FAO=90°,就可以得出AF为⊙O的切线;(2)由sin∠FAC=25,得出sin∠ADF=25,再求出AE=AD×sin∠ADF=10×25=4,AB=2AE=8.【解答过程】(1)证明:如图,连接OA,BC,∵直径CD⊥AB,∴AC=BC,∠AEO=90°,∴∠CAB=∠ADC,∠EAO+∠EOA=90°,∴∠FAC=∠CAB=∠ADC,∵OA=OD,∴∠OAD=∠ODA,∵∠EOA=∠OAD+∠ODA∴∠EAO+∠FAC+∠CAB=90°即∠FAO=90°∴AF为⊙O的切线.(2)解:∵∠ADF=∠FAC,sin∠FAC=25,∴sin∠ADF=25,∴AE=AD×sin∠ADF=10×25=4,∴AB=8.【总结归纳】本题主要考查了切线的判定,直径与弦的关系,直角三角形的知识,解题的关键是找出相等角.六、解答题(本大题共2个小题,每小题10分,共20分)23.如图,海中有一个小岛C,今有一货船由西向东航行,在A处测得小岛C在北偏东60°方向,货船向正东方向航行16海里到达B处,在B处测得小岛C在北偏东15°方向,求此时货船与小岛C的距离.(结果精确到0.01≈1.414 1.732)【知识考点】解直角三角形的应用-方向角问题.【思路分析】过点B作BE⊥AC于点E,在Rt△ABE中,∠CAB=30°,即可利用三角函数求得BE,再在Rt△BEC中利用三角函数即可求得BC的长.【解答过程】解:过B作BE⊥AC于点E.由题意可知:∠BAC=30°,∠C=45°,BE=AB•sin∠BAC=16×12=8(海里),∴CE=BE=8,∴BC=8×1.414=11.31(海里).答:此时货船与小岛C距离是11.31海里.【总结归纳】本题主要考查了方向角的定义,解一般三角形,求三角形的边或高的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线.24.某商场以每台360元的价格购进一批计算器,原售价每台600元,现为了促销,商场采取如下方式:买一台单价为590元,买两台每台都为580元,依此类推,即每多买一台则所买各台单价均再减10元,但最低不能低于每台400元.某单位一次性购买该计算器x台,实际购买单价为y元.(x 为正整数)(1)求y与x的函数关系式;(2)若该单位一次性购买该计算器不超过20台,购买多少台时,商场获利最大?最大利润是多少?【知识考点】二次函数的应用.【思路分析】(1)根据题意可得出实际购买单价=原价-10x,进而得出答案;(2)根据销量乘以每台利润进而得出总利润,即可求出即可.【解答过程】解:(1)∵原售价每台600元,现为了促销,商场采取如下方式:买一台单价为590元,买两台每台都为580元,依此类推,即每多买一台则所买各台单价均再减10元,∴y与x的函数关系式为:y=-10x+600(0≤x≤20);(2)设商场获利为W元,购买x台时,商场获利最大,则W=x(-10x+600-360)=-10x2+240x=-10(x-12)2+1440,∴当x=12时,W最大值=1440.【总结归纳】此题主要考查了二次函数的应用,根据题意得出W 与x 的函数关系是解题关键. 七、解答题(本题12分)25.已知△ABC 为等腰直角三角形,∠ACB=90°,点P 在BC 边上(P 不与B 、C 重合)或点P 在△ABC 内部,连接CP 、BP ,将CP 绕点C 逆时针旋转90°,得到线段CE ;将BP 绕点B 顺时针旋转90°,得到线段BD ,连接ED 交AB 于点O .(1)如图a ,当点P 在BC 边上时,求证:OA=OB ; (2)如图b ,当点P 在△ABC 内部时, ①OA=OB 是否成立?请说明理由; ②直接写出∠BPC 为多少度时,AB=DE .【知识考点】全等三角形的判定与性质;等腰直角三角形.【思路分析】(1)根据△ABC 为等腰直角三角形,则CA=CB ,∠A=∠ABC=45°,由旋转可知:CP=CE ,BP=BD ,则AE=BP ,可证明△AEO ≌△BDO ,则OA=OB ;(2)①连接AE ,易证△AEC ≌△BCP ,则AE=BP ,∠CAE=∠BPC ,可证明△AEO ≌△BDO ,则OA=OB ,所以成立;②设∠PCB=α,∠PBC=β,则四边形BCED 的四个内角可以分别用α、β表示,利用四边形内角和为360°求出α+β的度数,最后在△BPC 中,利用三角形内角和定理求出∠BPC 的度数. 【解答过程】(1)证明:∵△ABC 为等腰直角三角形, ∴CA=CB ,∠A=∠ABC=45°, 由旋转可知:CP=CE ,BP=BD , ∴CA-CE=CB-CP , 即AE=BP , ∴AE=BD .又∵∠CBD=90°,∴∠OBD=45°,在△AEO 和△BDO 中,45AOE BODA OBD AE BD ∠∠⎧⎪∠∠︒⎨⎪⎩====,∴△AEO ≌△BDO (AAS ), ∴OA=OB ;(2)成立,理由如下: 连接AE ,则△AEC ≌△BCP ,∴AE=BP,∠CAE=∠BPC,∵BP=BD,∴BD=AE,∵∠OAE=45°+∠CAE,∠OBD=90°-∠OBP=90°-(45°-∠BPC)=45°+∠PBC,∴∠OAE=∠OBD,在△AEO和△BDO中,AOE BODOAE OBD AE BD∠∠⎧⎪∠∠⎨⎪⎩===,∴△AEO≌△BDO(AAS),∴OA=OB,②当∠BPC=135°时,AB=DE.理由如下:解法一:当AB=DE时,由①知OA=OB,∴OA=OB=OE=OD.设∠PCB=α,由旋转可知,∠ACE=α.连接OC,则OC=OA=OB,∴OC=OE,∴∠DEC=∠OCE=45°+α.设∠PBC=β,则∠ABP=45°-β,∠OBD=90°-∠ABP=45°+β.∵OB=OD,∴∠D=∠OBD=45°+β.在四边形BCED中,∠DEC+∠D+∠DBC+∠BCE=360°,即:(45°+α)+(45°+β)+(90°+β)+(90°+α)=360°,解得:α+β=45°,∴∠BPC=180°-(α+β)=135°.解法二:当AB=DE时,四边形AEBD为矩形则∠DBE=90°=∠DBP,∴点P落在线段BE上.∵△ECP为等腰直角三角形,∴∠EPC=45°,∴∠BPC=180°-∠EPC=135°.【总结归纳】本题考查了全等三角形的判定和性质以及等腰直角三角形,是重点题,要熟练掌握.。
本溪中考数学试题及答案
本溪中考数学试题及答案本溪市中考数学试题一、选择题(每题3分,共30分)1. 下列哪个数是无理数?A. 0.33333B. πC. 1/3D. √42. 一个等腰三角形的两边长度分别为3和5,那么它的周长是多少?A. 11B. 13C. 16D. 143. 如果一个二次函数的图像开口向下,且顶点坐标为(2, -1),那么它的一般形式是什么?A. y = -(x-2)^2 - 1B. y = (x-2)^2 - 1C. y = -(x-2)^2 + 1D. y = (x-2)^2 + 14. 一个圆的半径为5,那么它的面积是多少?A. 25πB. 50πC. 75πD. 100π5. 下列哪个选项是正确的因式分解?A. x^2 - 4 = (x+2)(x-2)B. x^2 - 4 = (x+2)^2C. x^2 - 4 = (x-2)^2D. x^2 - 4 = x(x-4)6. 一个数的相反数是-3,那么这个数是多少?A. 3B. -3C. 0D. 67. 已知一个角的补角是120°,那么这个角的度数是多少?A. 60°B. 30°C. 45°D. 90°8. 一个长方体的长、宽、高分别为2、3、4,那么它的体积是多少?A. 24B. 12C. 8D. 69. 一个数的立方根是2,那么这个数是多少?A. 8B. 4C. 2D. 110. 下列哪个选项是正确的比例关系?A. 3:4 = 6:8B. 3:4 = 6:9C. 3:4 = 9:12D. 3:4 = 9:6二、填空题(每题3分,共15分)11. 一个数的绝对值是5,那么这个数可能是______或______。
12. 一个直角三角形的两个直角边长分别为3和4,那么它的斜边长是______。
13. 一个数的平方是16,那么这个数可能是______或______。
14. 一个圆的直径是10,那么它的半径是______。
2013年辽宁省本溪市中考数学模拟试卷(二)
2013年辽宁省本溪市中考数学模拟试卷(二)2013年辽宁省本溪市中考数学模拟试卷(二)一、选择题(本大题共10小题,每小题3分,共30分.) 1.(3分)的倒数的相反数是( ) .2.(3分)(2011•肇庆)我国第六次人口普查的结果表明,目前肇庆市的人口约为4050000人,这个数用科学记教3.(3分)(2011•肇庆)如图是一个几何体的实物图,则其主视图是( ).CD .5.(3分)(2011•肇庆)如图,已知直线a ∥b ∥c ,直线m 、n 与直线a 、b 、c 分别交于点A 、C 、E 、B 、D 、F ,AC=4,CE=6,BD=3,则BF=( )7.(3分)(2011•肇庆)如图,四边形ABCD 是圆内接四边形,E 是BC 延长线上一点,若∠BAD=105°,则∠DCE 的大小是( )8.(3分)(2011•肇庆)某住宅小区六月份1日至5日每天用水量变化情况如图所示.那么这5天平均每天的用水量是( )9.(3分)如图,在△ABC 中,AB=AC ,BC=10,AD 是底边上的高,AD=12,E 为AC 中点,则DE 的长为( )10.(3分)(2011•安徽)如图所示,P 是菱形ABCD 的对角线AC 上一动点,过P 垂直于AC 的直线交菱形ABCD 的边于M 、N 两点,设AC=2,BD=1,AP=x ,则△AMN 的面积为y ,则y 关于x 的函数图象的大致形状是( ).CD .二、填空题(本大题共8小题,每小题3分,共24分.)11.(3分)(2012•定西)分解因式:a 3﹣a= _________ . 12.(3分)(2011•肇庆)已知两圆的半径分别为1和3.若两圆相切,则两圆的圆心距为 _________ . 13.(3分)下列数据5,3,6,7,6,3,3,4,7,3,6的众数是 _________ ,中位数是 _________ . 14.(3分)(2012•长宁区二模)在一个不透明的袋子里,装有5个红球,3个白球,它们除颜色外大小,材质都相同,从中任意摸出一个球,摸到红球的概率是 _________ . 15.(3分)(2010•宁夏)将半径为10cm ,弧长为12π的扇形围成圆锥(接缝忽略不计),那么圆锥的母线与圆锥高的夹角的余弦值是 _________ . 16.(3分)如图,已知AB 是⊙O 的一条直径,延长AB 至C 点,使得AC=3BC ,CD 与⊙O 相切,切点为D .若CD=3,则线段BC 的长度等于 _________ .17.(3分)(2011•泉州)已知函数y=﹣3(x﹣2)2+4,当x=_________时,函数取得最大值为_________.18.(3分)(2011•东莞)如图(1),将一个正六边形各边延长,构成一个正六角星形AFBDCE,它的面积为1,取△ABC和△DEF各边中点,连接成正六角星形A1F1B1D1C1E1,如图(2)中阴影部分,取△A1B1C1和△D1E1F1各边中点,连接成正六角星形A2F2B2D2C2E2,如图(3)中阴影部分,如此下去…,则正六角星形A4F4B4D4C4E4的面积为_________.三、解答题(本题共8小题共96分)19.(12分)(1)计算:.(2)解分式方程:.20.(12分)如图,在边长为1个单位长度的小正方形组成的网格中,按要求画出△A1B1C1和△A2B2C2:(1)将△ABC先向右平移4个单位,再向上平移1个单位,得到△A1B1C1;(2)以图中的点O为位似中心,将△A1B1C1作位似变换且放大到原来的两倍,得到△A2B2C2;(3)△A2B2C2的周长为_________个单位长,面积为_________个平方单位.21.(12分)(2013•封开县二模)某校为了了解本校八年级学生课外阅读的喜欢,随机抽取了该校八年级部分学生进行问卷调查(每人只选一种书籍).如图所示是整理数据后绘制的两幅不完整的统计图,请你根据图中提供的信息,解答下列问题:(1)这次活动一共调查了_________名学生;(2)在扇形统计图中,“其他”所在扇形圆心角等于_________度;(3)补全条形统计图;(4)该年级有600人,请你估计该年级喜欢“科普常识”的学生人数约是_________人.22.(10分)(2011•盐城)如图,放置在水平桌面上的台灯的灯臂AB长为40cm,灯罩BC长为30cm,底座厚度为2cm,灯臂与底座构成的∠BAD=60°.使用发现,光线最佳时灯罩BC与水平线所成的角为30°,此时灯罩顶端C 到桌面的高度CE是多少cm?(结果精确到0.1cm,参考数据:≈1.732)23.(10分)(2011•东莞)如图,在平面直角坐标系中,点P的坐标为(﹣4,0),⊙P的半径为2,将⊙P沿x轴向右平移4个单位长度得⊙P1(1)画出⊙P1,并直接判断⊙P与⊙P1的位置关系;(2)设⊙P1与x轴正半轴,y轴正半轴的交点分别为A、B.求劣弧与弦AB围成的图形的面积(结果保留π)24.(14分)(2011•深圳)深圳某科技公司在甲地、乙地分别生产了17台、15台同一种型号的检测设备,全部运往大运赛场A、B两馆,其中运往A馆18台、运往B馆14台;运往A、B两馆的运费如表1:(1)设甲地运往A馆的设备有x台,请填写表2,并求出总运费元y(元)与x (台)的函数关系式;(2)要使总运费不高于20200元,请你帮助该公司设计调配方案,并写出有哪几种方案;(3)当x为多少时,总运费最小,最小值是多少?25.(12分)(1)正方形ABCD与等腰直角三角形PAQ如图1所示重叠在一起,其中∠PAQ=90°,点Q在BC上,连接PD,△ADP与△ABQ全等吗?请说明理由.(2)如图2,O为正方形ABCD对角线的交点,将一直角三角板FPQ的直角顶点F与点O重合转动三角板使两直角边始终与BC、AB相交于点M、N,使探索OM与ON的数量关系,并说明理由.(3)如图3,将(2)中的“正方形”改成“长方形”,其它的条件不变,且AB=4,AD=6,FM=x,FN=y,试求y与x 之间的函数关系式.26.(14分)(2011•深圳)如图1,抛物线y=ax2+bx+c(a≠0)的顶点为C(l,4),交x轴于A、B两点,交y轴于点D,其中点B的坐标为(3,0).(1)求抛物线的解析式;(2)如图2,过点A的直线与抛物线交于点E,交y轴于点F,其中点E的横坐标为2,若直线PQ为抛物线的对称轴,点G为直线PQ上的一动点,则x轴上是否存在一点H,使D、G,H、F四点所围成的四边形周长最小?若存在,求出这个最小值及点G、H的坐标;若不存在,请说明理由;(3)如图3,在抛物线上是否存在一点T,过点T作x轴的垂线,垂足为点M,过点M作MN∥BD,交线段AD 于点N,连接MD,使△DNM∽△BMD?若存在,求出点T的坐标;若不存在,请说明理由.2013年辽宁省本溪市中考数学模拟试卷(二)参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分.)1.(3分)的倒数的相反数是().首先求得的倒数是2.(3分)(2011•肇庆)我国第六次人口普查的结果表明,目前肇庆市的人口约为4050000人,这个数用科学记教3.(3分)(2011•肇庆)如图是一个几何体的实物图,则其主视图是()D..Cx=,即(,即5.(3分)(2011•肇庆)如图,已知直线a∥b∥c,直线m、n与直线a、b、c分别交于点A、C、E、B、D、F,AC=4,CE=6,BD=3,则BF=(),根据平行线分线段成比例定理,即可得∴∴,BF=BD+DF=3+=7.57.(3分)(2011•肇庆)如图,四边形ABCD是圆内接四边形,E是BC延长线上一点,若∠BAD=105°,则∠DCE 的大小是()8.(3分)(2011•肇庆)某住宅小区六月份1日至5日每天用水量变化情况如图所示.那么这5天平均每天的用水量是()9.(3分)如图,在△ABC中,AB=AC,BC=10,AD是底边上的高,AD=12,E为AC中点,则DE的长为()CD=BC=×AC=DE=AC=10.(3分)(2011•安徽)如图所示,P是菱形ABCD的对角线AC上一动点,过P垂直于AC的直线交菱形ABCD 的边于M、N两点,设AC=2,BD=1,AP=x,则△AMN的面积为y,则y关于x的函数图象的大致形状是().C D.∴y=AP MN=x∵y=AP MN=xx﹣二、填空题(本大题共8小题,每小题3分,共24分.)11.(3分)(2012•定西)分解因式:a3﹣a=a(a+1)(a﹣1).12.(3分)(2011•肇庆)已知两圆的半径分别为1和3.若两圆相切,则两圆的圆心距为4或2.13.(3分)下列数据5,3,6,7,6,3,3,4,7,3,6的众数是3,中位数是5.14.(3分)(2012•长宁区二模)在一个不透明的袋子里,装有5个红球,3个白球,它们除颜色外大小,材质都相同,从中任意摸出一个球,摸到红球的概率是.故答案为:15.(3分)(2010•宁夏)将半径为10cm,弧长为12π的扇形围成圆锥(接缝忽略不计),那么圆锥的母线与圆锥高的夹角的余弦值是.圆锥的高为:=8=.16.(3分)如图,已知AB是⊙O的一条直径,延长AB至C点,使得AC=3BC,CD与⊙O相切,切点为D.若CD=3,则线段BC的长度等于.OD=BC=OD=,故答案为:17.(3分)(2011•泉州)已知函数y=﹣3(x﹣2)2+4,当x=2时,函数取得最大值为4.18.(3分)(2011•东莞)如图(1),将一个正六边形各边延长,构成一个正六角星形AFBDCE,它的面积为1,取△ABC和△DEF各边中点,连接成正六角星形A1F1B1D1C1E1,如图(2)中阴影部分,取△A1B1C1和△D1E1F1各边中点,连接成正六角星形A2F2B2D2C2E2,如图(3)中阴影部分,如此下去…,则正六角星形A4F4B4D4C4E4的面积为.的面积为=,××=故答案为:三、解答题(本题共8小题共96分)19.(12分)(1)计算:.(2)解分式方程:.+×20.(12分)如图,在边长为1个单位长度的小正方形组成的网格中,按要求画出△A1B1C1和△A2B2C2:(1)将△ABC先向右平移4个单位,再向上平移1个单位,得到△A1B1C1;(2)以图中的点O为位似中心,将△A1B1C1作位似变换且放大到原来的两倍,得到△A2B2C2;(3)△A2B2C2的周长为(4+2)个单位长,面积为10个平方单位.==AB==2)个单位,2)个单位,4)个单位长,×﹣×4)21.(12分)(2013•封开县二模)某校为了了解本校八年级学生课外阅读的喜欢,随机抽取了该校八年级部分学生进行问卷调查(每人只选一种书籍).如图所示是整理数据后绘制的两幅不完整的统计图,请你根据图中提供的信息,解答下列问题:(1)这次活动一共调查了320名学生;(2)在扇形统计图中,“其他”所在扇形圆心角等于22.5度;(3)补全条形统计图;(4)该年级有600人,请你估计该年级喜欢“科普常识”的学生人数约是180人.所在扇形圆心角度数为×22.(10分)(2011•盐城)如图,放置在水平桌面上的台灯的灯臂AB长为40cm,灯罩BC长为30cm,底座厚度为2cm,灯臂与底座构成的∠BAD=60°.使用发现,光线最佳时灯罩BC与水平线所成的角为30°,此时灯罩顶端C 到桌面的高度CE是多少cm?(结果精确到0.1cm,参考数据:≈1.732)==,=∴,BF=20CE=CM+MD+DE=CM+BF+ED=15+20+223.(10分)(2011•东莞)如图,在平面直角坐标系中,点P的坐标为(﹣4,0),⊙P的半径为2,将⊙P沿x轴向右平移4个单位长度得⊙P1(1)画出⊙P1,并直接判断⊙P与⊙P1的位置关系;(2)设⊙P1与x轴正半轴,y轴正半轴的交点分别为A、B.求劣弧与弦AB围成的图形的面积(结果保留π)与弦,=劣弧与弦24.(14分)(2011•深圳)深圳某科技公司在甲地、乙地分别生产了17台、15台同一种型号的检测设备,全部运往大运赛场A、B两馆,其中运往A馆18台、运往B馆14台;运往A、B两馆的运费如表1:2,并求出总运费元y(元)与x (台)的函数关系式;(2)要使总运费不高于20200元,请你帮助该公司设计调配方案,并写出有哪几种方案;(3)当x为多少时,总运费最小,最小值是多少?25.(12分)(1)正方形ABCD与等腰直角三角形PAQ如图1所示重叠在一起,其中∠PAQ=90°,点Q在BC上,连接PD,△ADP与△ABQ全等吗?请说明理由.(2)如图2,O为正方形ABCD对角线的交点,将一直角三角板FPQ的直角顶点F与点O重合转动三角板使两直角边始终与BC、AB相交于点M、N,使探索OM与ON的数量关系,并说明理由.(3)如图3,将(2)中的“正方形”改成“长方形”,其它的条件不变,且AB=4,AD=6,FM=x,FN=y,试求y与x 之间的函数关系式.AD OH=∴∴∴26.(14分)(2011•深圳)如图1,抛物线y=ax2+bx+c(a≠0)的顶点为C(l,4),交x轴于A、B两点,交y轴于点D,其中点B的坐标为(3,0).(1)求抛物线的解析式;(2)如图2,过点A的直线与抛物线交于点E,交y轴于点F,其中点E的横坐标为2,若直线PQ为抛物线的对称轴,点G为直线PQ上的一动点,则x轴上是否存在一点H,使D、G,H、F四点所围成的四边形周长最小?若存在,求出这个最小值及点G、H的坐标;若不存在,请说明理由;(3)如图3,在抛物线上是否存在一点T,过点T作x轴的垂线,垂足为点M,过点M作MN∥BD,交线段AD 于点N,连接MD,使△DNM∽△BMD?若存在,求出点T的坐标;若不存在,请说明理由.∴∴∴,x=(H=,DG==DF+FH+GH+DG=2++=2+2 BD==3,∴,MN=DM=,×或时,﹣+4=,)参与本试卷答题和审题的老师有:zhjh;HLing;wdxwwzy;sd2011;CJX;gsls;yangwy;lantin;sks;星期八;bjy;hdq123;lanchong;zcx;ZJX;wangjc3;Linaliu;HJJ(排名不分先后)菁优网2014年3月16日。
辽宁省本溪市2013年中考数学试卷(WORD解析版)
辽宁省本溪市2013年中考数学试卷
一、选择题(共10小题,每小题3分,满分30分)
1.(3分)(2013?本溪)的绝对值是()
A.3B.﹣3 C.D.
考点:绝对值
分析:计算绝对值要根据绝对值的定义求解.第一步列出绝对值的表达式;第二步根据绝对值定义去掉这个绝对值的符号.
解答:
解:|﹣|=.
故﹣的绝对值是.
故选:C.
点评:此题考查了绝对值的定义,绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.
2.(3分)(2013?本溪)如图放置的圆柱体的左视图为()
A.B.C.D.
考点:简单几何体的三视图
分析:左视图是从左边看所得到的视图,根据左视图所看的位置找出答案即可.
解答:解:圆柱的左视图是矩形.
故选:A.
点评:此题主要考查了简单几何体的三视图,关键是掌握三视图所看的位置.
3.(3分)(2013?本溪)下列运算正确的是()
A.a3?a2=a6B.2a(3a﹣1)=6a3﹣1 C.(3a2)2=6a4D.2a+3a=5a。
辽宁辽阳中考数学2013年试题精品word版答案解析精编
AB CDEF第5题图AC DB第6题图y xAB OD CE第7题图yx-2 -1x =1 第8题图O2013年辽阳市中考数学试题及答案一、选择题(本大题共8小题,每小题3分,共24分,在每小题所列出的四个选项中,只有一个是正确的,请将正确答案的字母填入下表中相应题号下的空格内) 1.-2的相反数是A .-2B .2C .1 2D . 122.下列运算正确的是( )A .235()x x x -⋅=B . 3412x x x ⋅=C . 326()xy xy =D .236(2)6x x -=- 3.下列几何体的主视图、俯视图和左视图都是长方形的是4.数据4,5,8,6,4,4,6的中位数是( )A .3 B .4 C .5 D .6 5.如图,将矩形纸片ABCD 沿对角线BD 折叠,点C 落在点E 处,BE 与AD 相交于点F ,∠EDF =38°,则∠DBE 的度数是( ) A .25° B .26° C . 27° D .38°6.如图,在Rt △ABC 中,∠C =90°,AD 是△ABC 的角平分线,AC =3,BC =4,则CD 的长是( )A .1 B .43 C .2 D . 27.如图,A 、B 是反比例函数2y x=(x >0)图象上的两点,AC ⊥y 轴于点C ,BD ⊥y 轴于14题图ABAB CB 1 B 2 B 3A 1 A 2 A 3C 1C 2C 3第16题图AB CDP Q15题图点D ,OB 与AC 相交于点E ,记△AOE 的面积为S 1,四边形BDCE 的面积为S 2,则S 1、S 2的大小关系是( )A .S 1=S 2B . S 1<S 2C . S 1>S 2D . 无法确定 8.已知二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,有下列结论: ①0abc < ②240b ac -> ③3+0a c < ④1640a b c ++> 其中正确结论的个数是( )A .1个B . 2个C .3个D . 4个二、填空题(本大题共8小题,每小题3分,共24分)9. PM2.5是指大气中直径小于或等于0.000 002 5m 的颗粒物,将0.000 002 5用科学记数法表示为__________________. 10.分解因式:2 x 2-8=______________.11.数据2,3,4,6,a 的平均数是4,则a =__________.12.已知点O 是△ABC 外接圆的圆心,若∠BOC =110°,则∠A 的度数是____________ 13.已知圆锥的侧面积是15πcm 2,底面圆的半径是3cm ,则圆锥的高是________cm . 14.如图,在2×3的正方形网格格点上有两点A 、B ,在其它格点上随机取一点记为C ,能使以A 、B 、C 三点为顶点的三角形是等腰三角形的概率为______________.15.如图,已知正方形ABCD 的边长为4,点P 在BC 边上,且BP =1,Q 为对角线AC 上的一个动点,则△BPQ 周长的最小值为_____________16.如图,在△ABC 中,∠C =90°,BC =1,AC =2,四边形CA 1B 1C 1、A 1A 2B 2C 2、A 2A 3B 3C 3…都是正方形,且A 1、A 2、A 3…在AC 边上,B 1、B 2、B 3…在AB 边上.则线段B n C n 的长用含n 的代数式表示为____________.(n 为正整数) 三、解答题(本大题共2个小题,每小题8分,共16分)172013201(1)()(3)2π---+--18.先化简,再求值:2222()(1)2a b a b ab b a ab ab+-÷+--,其中1,1a b ==.四、解答题(本大题共2个小题,每小题10分,共20分)19.某市中小学开展“关注校车,关爱学生”为主题的交通安全教育宣传周活动.某中学为了了解本校学生的上学方式,在全校范围内随机抽查了部分学生,将收集的数据绘制成如下两幅不完整的统计图,请根据图中提供的信息,解答下列问题: (1)本次调查共抽查了多少名学生? (2)将图①、图②补充完整;(3)求图②中“骑自行车”所对应的扇形圆心角的度数;(4)如果该校共有1000名学生,请你估计乘公交车上学的学生约有多少名?20.不透明的口袋里装有红、黄、蓝三种颜色的小球若干个(小球除颜色外其余都相同),.(1)求口袋里红其中黄球2个,篮球1个.若从中随机摸出一个球,摸到篮球的概率是14球的个数;(2)第一次随机摸出一个球(不放回),第二次再随机摸出一个球,请用列表或画树状图的方法,求两次摸到的球恰是一黄一蓝的概率.五、解答题(本大题共2个小题,每小题10分,共20分)21.某商场第一次用10000元购进甲、乙两种商品,销售完成后共获利2200元,其中甲种商品每件进价60元,售价70元;乙种商品每件进价50元,售价65元.(1)求该商场购进甲、乙两种商品各多少件?(2)商场第二次以原进价购进甲、乙两种商品,且购进甲、乙商品的数量分别与第一次相同,甲种商品按原售价出售,而乙种商品降价销售,要使第二次购进的两种商品全部售出后,获利不少于1800元,乙种商品最多可以降价多少元?D22.如图,已知CD 为⊙O 的直径,弦AB ⊥CD ,垂足为E ,连接AD 、AC ,点F 在DC 延长线上,连接AF ,且∠FAC =∠CAB . (1)求证:AF 为⊙O 的切线;(2)若AD =10,sin ∠FAC =25,求AB 的长.六、解答题(本大题共2个小题,每小题10分,共20分)23.如图,海中有一个小岛C ,今有一货船由西向东航行,在A 处测得小岛C 在北偏东60° 方向,货船向正东方向航行16海里到达B 处,在B 处测得小岛C 在北偏东15°方向,求 此时货船与小岛C 的距离.(结果精确到0.01海里)1.732≈≈) 24.某商场以每台360元的价格购进一批计算器,原售价每台600元,现为了促销,商场采取如下方式:买一台单价为590元,买两台每台都为580元,依此类推,即每多买一台则所买各台单价均再减10元,但最低不能低于每台400元,某单位一次性购买该计算器x 台,实际购买单价为y 元.(x 为正整数)图a图bODABCDP E(1)求y 与x 的函数关系式;(2)若该单位一次性购买该计算器不超过20台,购买多少台时,商场获利最大?最大利润是多少?25.(12分)已知△ABC 为等腰直角三角形,∠ACB =90°,点P 在BC 边上(P 不与B 、C 重合)或点P 在△ABC 内部,连接CP 、BP ,将CP 绕点C 逆时针旋转90°,得到线段CE ;将BP 绕点B 顺时针旋转90°,得到线段BD ,连接ED 交AB 于点O . (1)如图a ,当点P 在BC 边上时,求证OA =OB ; (2)如图b ,当点P 在△ABC 内部时, ①OA =OB 是否成立?请说明理由; ②直接写出∠BPC 为多少度时,AB =DE .26.(14分)如图,直线y=-x+3与x轴交于点C,与y轴交于点A,点B的坐标为(2,3)抛物线y =-x2+bx+c经过A、C两点.(1)求抛物线的解析式,并验证点B是否在抛物线上;(2)作BD⊥OC,垂足为D,连接AB,E为y轴左侧抛物线点,当△EAB 与△EBD的面积相等时,求点E的坐标;(3)点P在直线AC上,点Q在抛物线y=-x2+bx+c上,是否存在P、Q,使以A、B、P、Q为顶点的四边形形若存在,直接写出点P 的坐标;若不存在,请说明理由.参考答案一、选择题(每小题3分,共24分)题号 1 2 3 4 5 6 7 8 答案 B A D C B C A C二、填空题(每小题3分,共24分)9、 2.5×10-6 10、2(x+2)(x-2)11、 5 12、55°或125°13、 4 14、2/515、 5 16 、三、解答题(本大题共2个小题,每小题8分,共16分)17、解:原式=218、四、解答题(本大题共2个小题,每小题10分,共20分)19、解:(1)60人(2)(3)360°×20%=72°(4)1000×40%=400名20、五、解答题(本大题共2个小题,每小题10分,共20分)21、22、六、解答题(本大题共2个小题,每小题10分,共20分)23、24、25、(12分)26、(14分)解:(1)在y=-x+3中,令x=0,得y=3;令y=0,得x=3 ∴A(0,3),C(3,0)∵抛物线y=-x2+bx+c经过A、C两点。
辽宁省本溪市中考数学真题试题(含解析)
辽宁省本溪市中考数学试卷一、选择题(本题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)下列各数是正数的是()A.0 B.5 C.﹣D.﹣2.(3分)下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.3.(3分)下列计算正确的是()A.x7÷x=x7B.(﹣3x2)2=﹣9x4C.x3•x3=2x6D.(x3)2=x64.(3分)6月8日,全国铁路发送旅客约9560000次,将数据9560000科学记数法表示为()A.9.56×106B.95.6×105C.0.956×107D.956×1045.(3分)下表是我市七个县(区)今年某日最高气温(℃)的统计结果:县(区)平山区明山区溪湖区南芬区高新区本溪县恒仁县气温(℃)26 26 25 25 25 23 22 则该日最高气温(℃)的众数和中位数分别是()A.25,25 B.25,26 C.25,23 D.24,256.(3分)不等式组的解集是()A.x>3 B.x≤4 C.x<3 D.3<x≤47.(3分)如图所示,该几何体的左视图是()A.B.C.D.8.(3分)下列事件属于必然事件的是()A.打开电视,正在播出系列专题片“航拍中国”B.若原命题成立,则它的逆命题一定成立C.一组数据的方差越小,则这组数据的波动越小D.在数轴上任取一点,则该点表示的数一定是有理数9.(3分)为推进垃圾分类,推动绿色发展.某化工厂要购进甲、乙两种型号机器人用来进行垃圾分类.用360万元购买甲型机器人和用480万元购买乙型机器人的台数相同,两种型号机器人的单价和为140万元.若设甲型机器人每台x万元,根据题意,所列方程正确的是()A.=B.=C.+=140 D.﹣140=10.(3分)如图,点P是以AB为直径的半圆上的动点,CA⊥AB,PD⊥AC于点D,连接AP,设AP=x,PA﹣PD=y,则下列函数图象能反映y与x之间关系的是()A.B.C.D.二、填空题(本題共8小题,每小题3分,共24分)11.(3分)若在实数范围内有意义,则x的取值范围为.12.(3分)函数y=5x的图象经过的象限是.13.(3分)如果关于x的一元二次方程x2﹣4x+k=0有实数根,那么k的取值范围是.14.(3分)在平面直角坐标系中,点A,B的坐标分别是A(4,2),B(5,0),以点O为位似中心,相们比为,把△ABO缩小,得到△A1B1O,则点A的对应点A1的坐标为.15.(3分)如图,BD是矩形ABCD的对角线,在BA和BD上分别截取BE,BF,使BE=BF;分别以E,F为圆心,以大于EF的长为半径作弧,两弧在∠ABD内交于点G,作射线BG 交AD于点P,若AP=3,则点P到BD的距离为.16.(3分)如图所示的点阵中,相邻的四个点构成正方形,小球只在点阵中的小正方形ABCD 内自由滚动时,则小球停留在阴影区域的概率为.17.(3分)如图,在平面直角坐标系中,等边△OAB和菱形OCDE的边OA,OE都在x轴上,点C在OB边上,S△ABD=,反比例函数y=(x>0)的图象经过点B,则k的值为.18.(3分)如图,点B1在直线l:y=x上,点B1的横坐标为2,过B1作B1A1⊥1,交x轴于点A1,以A1B1为边,向右作正方形A1B1B2C1,延长B2C1交x轴于点A2;以A2B2为边,向右作正方形A2B2B3C2,延长B3C2交x轴于点A3;以A3B3为边,向右作正方形A3B3B4C3延长B4C3交x轴于点A4;…;按照这个规律进行下去,点∁n的横坐标为(结果用含正整数n的代数式表示)三、解答题(第19题10分,第20题12分,共22分)19.(10分)先化简,再求值(﹣)÷,其中a满足a2+3a﹣2=0.20.(12分)某中学为了提高学生的综合素质,成立了以下社团:A.机器人,B.围棋,C.羽毛球,D.电影配音.每人只能加入一个社团.为了解学生参加社团的情况,从参加社团的学生中随机抽取了部分学生进行调查,并将调查结果绘制成如下两幅不完整的统计图,其中图(1)中A所占扇形的圆心角为36°.根据以上信息,解答下列问题:(1)这次被调查的学生共有人;(2)请你将条形统计图补充完整;(3)若该校共有1000学生加入了社团,请你估计这1000名学生中有多少人参加了羽毛球社团;(4)在机器人社团活动中,由于甲、乙、丙、丁四人平时的表现优秀,现决定从这四人中任选两名参加机器人大赛.用树状图或列表法求恰好选中甲、乙两位同学的概率.四、解答题(第21题12分,第22题12分,共24分)21.(12分)如图,在四边形ABCD中,AB∥CD,AD⊥CD,∠B=45°,延长CD到点E,使DE=DA,连接AE.(1)求证:AE=BC;(2)若AB=3,CD=1,求四边形ABCE的面积.22.(12分)小李要外出参加“建国70周年”庆祝活动,需网购一个拉杆箱,图①,②分别是她上网时看到的某种型号拉杆箱的实物图与示意图,并获得了如下信息:滑杆DE,箱长BC,拉杆AB的长度都相等,B,F在AC上,C在DE上,支杆DF=30cm,CE:CD=1:3,∠DCF=45°,∠CDF=30°,请根据以上信息,解决下列向题.(1)求AC的长度(结果保留根号);(2)求拉杆端点A到水平滑杆ED的距离(结果保留根号).五、解答题(满分12分)23.(12分)某工厂生产一种火爆的网红电子产品,每件产品成本16元、工厂将该产品进行网络批发,批发单价y(元)与一次性批发量x(件)(x为正整数)之间满足如图所示的函数关系.(1)直接写出y与x之间所满足的函数关系式,并写出自变量x的取值范围;(2)若一次性批发量不超过60件,当批发量为多少件时,工厂获利最大?最大利润是多少?六、解答题(满分12分)24.(12分)如图,点P为正方形ABCD的对角线AC上的一点,连接BP并延长交CD于点E,交AD的延长线于点F,⊙O是△DEF的外接圆,连接DP.(1)求证:DP是⊙O的切线;(2)若tan∠PDC=,正方形ABCD的边长为4,求⊙O的半径和线段OP的长.七、解答题(满分12分)25.(12分)在Rt△ABC中,∠BCA=90°,∠A<∠ABC,D是AC边上一点,且DA=DB,O 是AB的中点,CE是△BCD的中线.(1)如图a,连接OC,请直接写出∠OCE和∠OAC的数量关系:;(2)点M是射线EC上的一个动点,将射线OM绕点O逆时针旋转得射线ON,使∠MON=∠ADB,ON与射线CA交于点N.①如图b,猜想并证明线段OM和线段ON之间的数量关系;②若∠BAC=30°,BC=m,当∠AON=15°时,请直接写出线段ME的长度(用含m的代数式表示).八、解答题(满分14分)26.(14分)抛物线y=﹣x2+bx+c与x轴交于A(﹣1,0),B(5,0)两点,顶点为C,对称轴交x轴于点D,点P为抛物线对称轴CD上的一动点(点P不与C,D重合).过点C作直线PB的垂线交PB于点E,交x轴于点F.(1)求抛物线的解析式;(2)当△PCF的面积为5时,求点P的坐标;(3)当△PCF为等腰三角形时,请直接写出点P的坐标.辽宁省本溪市中考数学试卷参考答案与试题解析一、选择题(本题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.【解答】解:0既不是正数,也不是负数;5是正数;和都是负数.故选:B.2.【解答】解:A、不是中心对称图形,是轴对称图形,故本选项不符合题意;B、既是轴对称图形又是中心对称图形,故本选项符合题意;C、是中心对称图形,不是轴对称图形,故本选项不符合题意;D、不是中心对称图形,是轴对称图形,故本选项不符合题意.故选:B.3.【解答】解:A、x7÷x=x6,故此选项错误;B、(﹣3x2)2=9x4,故此选项错误;C、x3•x3=x6,故此选项错误;D、(x3)2=x6,故此选项正确;故选:D.4.【解答】解:将数据9560000科学记数法表示为9.56×106.故选:A.5.【解答】解:∵在这7个数中,25(℃)出现了3次,出现的次数最多,∴该日最高气温(℃)的众数是25;把这组数据按照从小到大的顺序排列位于中间位置的数是25,则中位数为:25;故选:A.6.【解答】解:,由①得:x>3,由②得:x≤4,则不等式组的解集为3<x≤4,故选:D.7.【解答】解:从左边看是一个矩形,中间有两条水平的虚线,故选:B.8.【解答】解:A、打开电视,正在播出系列专题片“航拍中国”,是随机事件,不合题意;B、若原命题成立,则它的逆命题一定成立,是随机事件,不合题意;C、一组数据的方差越小,则这组数据的波动越小,是必然事件,符合题意;D、在数轴上任取一点,则该点表示的数一定是有理数,是随机事件,不合题意;故选:C.9.【解答】解:设甲型机器人每台x万元,根据题意,可得:,故选:A.10.【解答】设:圆的半径为R,连接PB,则sin∠ABP=,∵CA⊥AB,即AC是圆的切线,则∠PDA=∠PBA=α,则PD=AP sinα=x×=x2,则y=PA﹣PD=﹣x2+x,图象为开口向下的抛物线,故选:C.二、填空题(本題共8小题,每小题3分,共24分)11.【解答】解:由题意得:x﹣2≥0,解得:x≥2,故答案为:x≥2.12.【解答】解:函数y=5x的图象经过一三象限,故答案为:一、三13.【解答】解:根据题意得:△=16﹣4k≥0,解得:k≤4.故答案为:k≤4.14.【解答】解:以点O为位似中心,相们比为,把△ABO缩小,点A的坐标是A(4,2),则点A的对应点A1的坐标为(4×,2×)或(﹣4×,﹣2×),即(2,1)或(﹣2,﹣1),故答案为:(2,1)或(﹣2,﹣1).15.【解答】解:结合作图的过程知:BP平分∠ABD,∵∠A=90°,AP=3,∴点P到BD的距离等于AP的长,为3,故答案为:3.16.【解答】解:如图所示,AD与直线的交点为E,AB与直线的交点为F,根据题意可知,AF=,∴=,∴小球停留在阴影区域的概率为:1﹣.故答案为:17.【解答】解:连接OD,∵△OAB是等边三角形,∴∠AOB=60°,∵四边形OCDE是菱形,∴DE∥OB,∴∠DEO=∠AOB=60°,∴△DEO是等边三角形,∴∠DOE=∠BAO=60°,∴OD∥AB,∴S△BDO=S△AOD,∵S四边形ABDO=S△ADO+S△ABD=S△BDO+S△AOB,∴S△AOB=S△ABD=,过B作BH⊥OA于H,∴OH=AH,∴S△OBH=,∵反比例函数y=(x>0)的图象经过点B,∴k的值为,故答案为:.18.【解答】解:过点B1、C1、C2、C3、C4分别作B1D⊥x轴,C1D1⊥x轴,C2D2⊥x轴,C3D3⊥x 轴,C4D4⊥x轴,……垂足分别为D、D1、D2、D3、D4……∵点B1在直线l:y=x上,点B1的横坐标为2,∴点B1的纵坐标为1,即:OD=2,B1D=1,图中所有的直角三角形都相似,两条直角边的比都是1:2,∴点C1的横坐标为:2++()0,点C2的横坐标为:2++()0+()0×+()1=+()0×+()1点C3的横坐标为:2++()0+()0×+()1+()1×+()2=+()0×+()1×++()2点C4的横坐标为:=+()0×+()1×+()2×+()3……点∁n的横坐标为:=+()0×+()1×+()2×+()3×+()4×……+()n﹣1=+[()0+()1×+()2+()3+()4……]+()n﹣1=故答案为:三、解答题(第19题10分,第20题12分,共22分)19.【解答】解:(﹣)÷=[]=()===,∵a2+3a﹣2=0,∴a2+3a=2,∴原式==1.20.【解答】解:(1)∵A类有20人,所占扇形的圆心角为36°,∴这次被调查的学生共有:20÷=200(人);故答案为:200;(2)C项目对应人数为:200﹣20﹣80﹣40=60(人);补充如图.(3)1000×=300(人)答:这1000名学生中有300人参加了羽毛球社团;(4)画树状图得:∵共有12种等可能的情况,恰好选中甲、乙两位同学的有2种,∴P(选中甲、乙)==.四、解答题(第21题12分,第22题12分,共24分)21.【解答】证明:(1)∵AB∥CD,∠B=45°∴∠C+∠B=180°∴∠C=135°∵DE=DA,AD⊥CD∴∠E=45°∵∠E+∠C=180°∴AE∥BC,且AB∥CD∴四边形ABCE是平行四边形∴AE=BC(2)∵四边形ABCE是平行四边形∴AB=CE=3∴AD=DE=AB﹣CD=2∴四边形ABCE的面积=3×2=622.【解答】解:(1)过F作FH⊥DE于H,∴∠FHC=∠FHD=90°,∵∠FDC=30°,DF=30,∴FH=DF=15,DH=DF=15,∵∠FCH=45°,∴CH=FH=15,∴,∵CE:CD=1:3,∴DE=CD=20+20,∵AB=BC=DE,∴AC=(40+40)cm;(2)过A作AG⊥ED交ED的延长线于G,∵∠ACG=45°,∴AG=AC=20+20,答:拉杆端点A到水平滑杆ED的距离为(20+20)cm.五、解答题(满分12分)23.【解答】解:(1)当0<x≤20且x为整数时,y=40;当20<x≤60且x为整数时,y=﹣x+50;当x>60且x为整数时,y=20;(2)设所获利润w(元),当0<x≤20且x为整数时,y=40,∴w=(40﹣16)×20=480元,当0<x≤20且x为整数时,y=40,∴当20<x≤60且x为整数时,y=﹣x+50,∴w=(y﹣16)x=(﹣x+50﹣16)x,∴w=﹣x2+34x,∴w=﹣(x﹣34)2+578,∵﹣<0,∴当x=34时,w最大,最大值为578元.答:一次批发34件时所获利润最大,最大利润是578元.六、解答题(满分12分)24.【解答】(1)连接OD,∵正方形ABCD中,CD=BC,CP=CP,∠DCP=∠BCP=45°,∴△CDP≌△CBP(SAS),∴∠CDP=∠CBP,∵∠BCD=90°,∴∠CBP+∠BEC=90°,∵OD=OE,∴∠ODE=∠OED,∠OED=∠BEC,∴∠BEC=∠OED=∠ODE,∴∠CDP+∠ODE=90°,∴∠ODP=90°,∴DP是⊙O的切线;(2)∵∠CDP=∠CBE,∴tan,∴CE=,∴DE=2,∵∠EDF=90°,∴EF是⊙O的直径,∴∠F+∠DEF=90°,∴∠F=∠CDP,在Rt△DEF中,,∴DF=4,∴==2,∴,∵∠F=∠PDE,∠DPE=∠FPD,∴△DPE∽△FPD,∴,设PE=x,则PD=2x,∴,解得x=,∴OP=OE+EP=.七、解答题(满分12分)25.【解答】解:(1)结论:∠ECO=∠OAC.理由:如图1中,连接OE.∵∠BCD=90°,BE=ED,BO=OA,∵CE=ED=EB=BD,CO=OA=OB,∴∠OCA=∠A,∵BE=ED,BO=OA,∴OE∥AD,OE=AD,∴CE=EO.∴∠EOC=∠OCA=∠ECO,∴∠ECO=∠OAC.故答案为:∠OCE=∠OAC.(2)如图2中,∵OC=OA,DA=DB,∴∠A=∠OCA=∠ABD,∴∠COA=∠ADB,∵∠MON=∠ADB,∴∠AOC=∠MON,∴∠COM=∠AON,∵∠ECO=∠OAC,∴∠MCO=∠NAO,∵OC=OA,∴△COM≌△AON(ASA),∴OM=ON.②如图3﹣1中,当点N在CA的延长线上时,∵∠CAB=30°=∠OAN+∠ANO,∠AON=15°,∴∠AON=∠ANO=15°,∴OA=AN=m,∵△OCM≌△OAN,∴CM=AN=m,在Rt△BCD中,∵BC=m,∠CDB=60°,∴BD=m,∵BE=ED,∴CE=BD=m,∴EM=CM+CE=m+m.如图3﹣2中,当点N在线段AC上时,作OH⊥AC于H.∵∠AON=15°,∠CAB=30°,∴∠ONH=15°+30°=45°,∴OH=HN=m,∵AH=m,∴CM=AN=m﹣m,∵EC=m,∴EM=EC﹣CM=m﹣(m﹣m)=m﹣m,综上所述,满足条件的EM的值为m+m或m﹣m.八、解答题(满分14分)26.【解答】解:(1)函数的表达式为:y=(x+1)(x﹣5)=﹣x2+x+;(2)抛物线的对称轴为x=1,则点C(2,2),设点P(2,m),将点P、B的坐标代入一次函数表达式:y=sx+t并解得:函数PB的表达式为:y=﹣mx+…①,∵CE⊥PE,故直线CE表达式中的k值为,将点C的坐标代入一次函数表达式,同理可得直线CE的表达式为:y=…②,联立①②并解得:x=2﹣,故点F(2﹣,0),S△PCF=×PC×DF=(2﹣m)(2﹣﹣2)=5,解得:m=5或﹣3(舍去5),故点P(2,﹣3);(3)由(2)确定的点F的坐标得:CP2=(2﹣m)2,CF2=()2+4,PF2=()2+m2,①当CP=CF时,即:(2﹣m )=()2+4,解得:m=0或(均舍去),②当CP=PF时,(2﹣m)2=()2+m2,解得:m =或3(舍去3),③当CF=PF时,同理可得:m=±2(舍去2),故点P(2,)或(2,﹣2).21 / 21。
2013中考数学一模讲解
2013年辽宁省本溪市中考数学二模试卷一、选择题(每题3分,共10题,满分30分)1.(3分)(2014•鼎湖区模拟)﹣3的倒数等于()A .﹣3 B.3 C.D.2.(3分)(2013•西藏)一种花瓣的花粉颗粒直径约为0.0000065米,0.0000065用科学记数法表示为()A.6.5×10﹣5B.6.5×10﹣6C.6.5×10﹣7D.65×10﹣63.(3分)(2013•白银)如图是由两个小正方体和一个圆锥体组成的立体图形,其主视图是()A .B.C.D.4.(3分)(2012•福州)下列计算正确的是()A .a+a=2a B.b3•b3=2b3C.a3÷a=a3D.(a5)2=a75.(3分)(2014•白银)下列图形中,既是轴对称图形又是中心对称图形的是()A .B.C.D.6.(3分)(2014•蜀山区一模)市开发区在一项工程招标时,接到甲、乙两个工程队的投标书,工程领导小组根据甲、乙两队的投标书测算,可有三种施工方案:①甲队单独完成这项工程,刚好如期完工;②乙队单独完成此项工程要比规定工期多用5天;③,剩下的工程由乙队单独做,也正好如期完工.某同学设规定的工期为x天,根据题意列出了方程:,则方案③中被墨水污染的部分应该是()A甲先做了4天B甲乙合做了4.. 天C .甲先做了工程的 D .甲乙合做了工程的7.(3分)(2013•本溪二模)已知两圆半径r 1、r 2分别是方程x 2﹣7x+10=0的两根,两圆的圆心距为5,则两圆的位置关系是( )A . 内切B . 相交C . 外切D . 外离 8.(3分)(2013•本溪二模)在1×2的正方形网格格点上放三枚棋子,按如图所示位置已放置了两枚棋子,若第三枚棋子随机放在其他格点上,则以这三枚棋子所在的格点为顶点的三角形是直角三角形的概率为( )A .B .C.D.9.(3分)(2013•兰州)已知A (﹣1,y 1),B (2,y 2)两点在双曲线y=上,且 y 1>y 2,则m 的取值范围是( )A . m <0B . m >0C . m >﹣ D. m <﹣10.(3分)(2013•本溪二模)甲乙两人在直线跑道上同起点、同终点、同方向匀速跑步500米,先到终点的人原地休息,已知甲先出发2秒,在跑步过程中,甲乙两人间的距离y (米)与乙出发的时间t (秒)之间的关系如图所示,给出以下结论: (1)a=8;(2)c=92;(3)b=123. 其中正确的是( )A . 仅有(1)(2)B . 仅有(2)(3)C . 仅有(1)(3)D . (1)(2)(3)二、填空题(每题3分,共8题,满分24分)11.(3分)(2014•博野县模拟)分解因式:mn 2﹣6mn+9m= .12.(3分)(2013•本溪二模)若式子有意义,则a的取值范围是.13.(3分)(2013•本溪二模)在一个不透明的袋子中装有3个除颜色外完全相同的小球,其中白球1个,黄球1个,红球1个.摸出一个球记下颜色后放回,再摸出一个球,则两次都摸到红球的概率是.14.(3分)(2013•本溪二模)一个圆锥的侧面展开图是半径为1的半圆,则该圆锥的底面半径是.15.(3分)(2013•本溪二模)实验中学举行歌咏比赛,以班级为单位参赛,评委组的评委给某班级的打分情况(满分100分)如表分数(分)89 92 95 96 97评委(位) 1 2 2 1 1从中去掉一个最高分和一个最低分,则余下的分数的平均分是分.16.(3分)(2014•南充模拟)如图(1)是四边形纸片ABCD,其中∠B=120°,∠D=50度.若将其右下角向内折出△PCR,恰使CP∥AB,RC∥AD,如图(2)所示,则∠C=度.17.(3分)(2013•本溪二模)如图,直线y1=kx+b与直线y2=mx交于点P(1,m),则不等式mx>kx+b的解集是.18.(3分)(2013•本溪二模)有一列图形,第一个图形是,第二个图形是,第三个图形是,则第四个图形是.三、(19题10分,20题12分,共2题,满分22分)19.(10分)(2013•本溪二模)先化简,再求值:()+,其中x=(﹣1)2012+tan60°.20.(12分)(2013•本溪二模)2013年4月20日,四川雅安发生了7.0级地震,我市某中学展开了爱心捐款活动,团干部小华对九年一班的捐款情况进行了统计,并把统计的结果只做了一个不完整的频数分布直方图和扇形统计图(如图),已知学生捐款最少的是5元,最多的不是25元.(1)九年一班共有多少名学生?(2)请补全频数分布直方图.(3)九年一班学生捐款的中位数所在的组别范围是多少?四、(每题12分,满分24分)21.(12分)(2013•本溪二模)如图,电线杆AB铅垂地矗立在坡角是15°的山坡上,太阳光与山坡成∠ACB=60°时,电线杆AB在山坡上的影子AC长8米.求电线杆AB的长.22.(12分)(2014•道里区三模)我市为创建全国卫生城市,有关部门计划购买甲、乙两种名贵树苗,栽种在入城大道的两侧,已知买甲种树苗、乙种树苗各1棵共需220元;买甲种树苗3棵,乙种树苗1棵共需420元,资料提示:甲、乙两种树苗的成活率分别为90%和95%.(1)购买两种树苗每棵各需多少元;(2)市相关部门研究决定:购买甲、乙两种树苗共800棵,购买树苗的钱数不得超过86500元,且这批树苗的成活率不低于92%,共有多少种购买方案?(3)直接写出最省钱的购买方案及此时买树苗的费用.五、(满分12分)23.(12分)(2013•本溪二模)如图,已知AD是△ABC中BC边上的高,以AD为直径的⊙O分别交AB、AC于点E、F,点G是BD的中点(1)求证,GE是⊙O的切线;(2)若∠B=30°,AD=4,求由线段GD、GE和弧DE围成的阴影部分面积.六、(满分12分)24.(12分)(2013•本溪二模)某宾馆有50个房间供旅客住宿,当每个房间的房价为每天180元时,房间会全部住满,当每个房间每天的房价每增加10元时,就有1个房间空闲;宾馆平均每日的各项支出共2560元,设宾馆每日住满x个房间时,日收益为y元.(日收益=日房间收入﹣平均每日各项支出)(1)宾馆每日住满x个房间时,每个房间的日收益为元(用含x的代数式表示)(2)当每日住满多少个房间时,宾馆日收益最大?最大是多少元?(3)当每日住满多少个房间时,宾馆的收益不盈也不亏?七、(满分12分)25.(12分)(2013•本溪二模)已知直线l经过正方形ABCD的顶点A,过点C作CE⊥直线l于点E,连接BE(1)如图1,当直线l∥BC时,CE+AB=BE;(2)如图2,当直线l绕着点A,逆时针旋转到如图位置时,请判断线段BE、AE、CE三者数量关系,并证明;(3)如图3,当直线l绕着点A,逆时针旋转到如图位置时,请补全图形并判断线段BE、AE、CE三者数量关系,不必证明.八、(满分14分)26.(14分)(2013•本溪二模)如图,在平面直角坐标系中,抛物线y=ax2+bx经过B(8、0),C(6、2)两点,点A是点C关于抛物线y=ax2+bx的对称轴的对称点,连接OA、AC、BC(1)求抛物线的解析式.(2)动点E从点O出发,速度为3个单位/秒,沿O→A→C匀速运动:动点F从点O出发,速度为4个单位/秒,沿O→B匀速运动,动点E、F同时出发,若设运动时间为t秒(0≤t≤2),△OEF的面积为S,请求出运动过程中S与t的关系式.(3)设P是抛物线对称轴上的一点,是否存在点P使以O、E、F、P为顶点的四边形是平行四边形?若不存在,请说明理由;若存在,直接写出点P的坐标.2013年辽宁省本溪市中考数学二模试卷参考答案一、选择题(每题3分,共10题,满分30分)1.C 2.B 3.B 4.A 5.A 6.B 7.B 8.C 9.D 10.D二、填空题(每题3分,共8题,满分24分)11.m(n-3)212.a≥1且a≠2 13.14.15.94 16.95 17.x>1 18.三、(19题10分,20题12分,共2题,满分22分)19.20.四、(每题12分,满分24分)21.22.五、(满分12分)23.六、(满分12分)24.(680-10x)七、(满分12分)25.八、(满分14分)26.。
中考数学-2013年辽宁本溪中考数学试卷及答案(word解析版)
2013年本溪中考试卷数学试题(考试时间120分钟,试题满分150分)第一部分选择题(共30分)一、选择题(本大题共10小题,每小题3分,共30分)1、31的绝对值是()A 、3B 、-3C 、31D 、31答案:C2、如图放置的圆柱体的左视图为()答案:A3、下列运算正确的是()A 、623aaaB 、16)13(22aa a C 、4226)3(aa D 、aaa532答案:D4、如图,直线AB//CD ,直线EF 与AB ,CD 分别交于点E ,F ,EG ⊥EF.若∠1=60°,则∠2的度数为()A 、15°B 、30°C 、45°D 、60°答案:B5、下列说法中,正确的是()A 、对载人航天器“神舟十号”的零部件的检查适合采用抽样调查的方式B 、某市天气预报中说“明天降雨的概率是80%”,表示明天该市有80%的地区会降雨C 、抛一枚硬币,正面朝上的概率为21D 、若甲组数据的方差1.02甲S,乙组数据的方差01.02乙S,则甲组数据比乙组数据稳定答案:C6、甲、乙两盒中各放入分别写有数字1、2、3的三张卡片,每张卡片除数字外其他完全相同,从甲盒中随机摸出一张卡片,再从乙盒中随机摸出一张卡片,摸出的两张卡片上的数字之和是3的概率是()A 、91B 、92C 、31D 、94答案:B7、如图,在菱形ABCD 中,∠BAD=2∠B ,E 、F 分别为BC 、CD 的中点,连接AE 、AC 、AF ,则图中与△ABE 全等的三角形(△ABE 除外)有()A 、1个B 、2个C 、3个D 、4个答案:C8、某服装加工厂计划加工400套运动服,在加工完160套后,采用了新技术,工作效率比原计划提高了20%,结果共用了18天完成全部任务.设原计划每天加工x 套运动服,根据题意可列方程为()A 、18%)201(400160x x B 、18%)201(160400160x x C 、18%20160400160x x D 、18%)201(160400400xx答案:B 9、如图,O的半径是3,点P 是弦AB 延长线上的一点,连接OP ,若OP=4,∠APO=30°,则弦AB 的长是()A 、52B 、5C 、132D 、13答案:A10、如图,在矩形OABC 中,AB=2BC ,点A 在y 轴的正半轴上,点C 在x 轴的正半轴上,连接OB ,反比例函数xk y)0,0(x k 的图像经过OB 的中点D ,与BC 边交于点E ,点E 的横坐标是4,则k 的值是()A 、1B 、2C 、3D 、4答案:B 第二部分非选择题(共120分)二、填空题(本大题共8小题,每小题3分,共24分)11、函数12x y中,自变量x 的取值范围是答案:12x12、一种花粉颗粒的直径约为0.0000065米,将0.0000065用科学记数法表示为答案:66.51013、在平面直角坐标系中,点P (5,-3)关于原点对称的点的坐标是答案:(-5,3)14、在一个不透明的袋子中装有黄色、白色乒乓球共40个,除颜色外其他完全相同.小明从这个袋子中随机摸出一球,放回,通过多次摸球试验后发现,摸到黄色球的频率稳定在15%附近,则口袋中黄色球可能有个.答案:615、在平面直角坐标系中,把抛物线1212xy向上平移3个单位,再向左平移1个单位,则所得抛物线的解析式是答案:21(1)42yx 16、已知圆锥底面圆的半径为6cm ,它额侧面积为60π2cm,则这个圆锥的高是cm答案:817、如图,在矩形ABCD 中,AB=10,AD=4,点P 是边AB 上一点,若△APD 与△BPC 相似,则满足条件的点P 有个答案:3 18、如图,点1B 是面积为1的等边△OBA 的两条中线的交点,以1OB 为一边,构造等边△11A OB (点O 、1B 、1A 按逆时针方向排列),称为第一次构造;点2B 是等边△11A OB 的两条中线的交点,再以2OB 为一边,构造等边△22A OB (点O 、2B 、2A 按逆时针方向排列),称为第二次构造;;依此类推,当第n 次构造出的等边△nn A OB 的边n OA 与等边△OBA 的边OB 第一次重合时,构造停止,则构造出的最后一个三角形的面积是答案:103三、解答题(第19题(1)5分,第19题(2)5分,第20题12分,共22分)19、(1)45tan 251)2(2713答案:解:原式=3+1-5-2×1=-3(2)先化简,再求值:mmmm m mm 21121222,其中3m 答案:原式=211211m m mm m m mmm =11211m m m m m =212m mm m =1mm 当3m 时,原式=3331420、某校对九年级全体学生进行了一次学业水平测试,成绩评定分为A 、B 、C 、D 四个等级(A 、B 、C 、D 分别代表优秀、良好、合格、不合格).该校从九年级学生中随机抽取了一部分学生的成绩,绘制成以下两幅不完整的统计图.请你根据统计图提供的信息解答下列问题:(1)本次调查中,一共抽取了名学生的成绩;(2)将上面的条形统计图补充完整,写出扇形统计图中等级C的百分比;(3)若等级D的5名学生的成绩(单位:分)分别是55、48、57、51、55,则这5个数据的中位数是分,众数是分;(4)如果该校九年级共有500名学生,试估计在这次测试中成绩达到优秀的人数.答案:(1)50(2)扇形统计图中国C类学生的百分比为:30%(3)55,55(4)500×20%=100(人)答:估计在这次测试中成绩达到优秀的人数约为100人.四、解答题(第21题12分,第22题12分,共24分)21、如图,O是△ACD的外接圆,AB是直径,过点D做直线DE//AB,过点B作直线BE//AD,两直线交于点E,两直线交于点 E.如果∠ACD=45°,O的半径是4cm.(1)请判断DE与O的位置关系,并说明理由;(2)求图中阴影部分的面积(结果用π表示).答案:解:(1)DE 与O 的位置关系为相切理由如下:连接OD 则224590AOD ACD DE //AB 90ODE AOD DE是O的切线(2)DE//AB ,BE //AD四边形ABED 为平行四边形8DE ABcm 90AOD 1809090BOD 29044360OBDS 扇形1=(48)4242ODEB S 梯形2==24-4()ODEB OBD S S S cm 阴影梯形扇形22、某中学响应“阳光体育”活动的号召,准备从体育用品商店购买一些排球、足球和篮球,排球和足球的单价相同,同一种球的单价相同.若购买2个足球和3个篮球共需340元;购买4个排球和5个篮球共需600元. (1)求购买一个足球、一个篮球分别需要多少元?(2)该中学根据实际情况,需从该体育用品商店一次性购买三种球共100个,且购买三种球的总费用不超过6000元,求这所中学最多可以购买多少个篮球?答案:解(1)设购买一个足球需要x 元,购买一个篮球需要y 元根据题意,得2334045600x y x y 解这个方程组得:5080x y 答:购买一个足球需要50元,购买一个篮球需要80元(2)设该中学购买篮球m 个根据题意,得8050(100)6000m m 解这个一元一次不等式得:1333mm 是整数33m(或m 的最大整数解是33)答:这所中学最多可以购买33个篮球。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
本溪中考试卷数学试题友情提示:一、认真对待每一次复习及考试。
.二、遇到不懂的题目或者知识点就是并解决它就是进步的机会。
三、试题卷中所有试题的答案填涂或书写在答题卷的相应位置,写在试题卷上无效. 四、请仔细审题,细心答题,相信你一定会有出色的表现!(考试时间120分钟,试题满分150分)第一部分 选择题(共30分)一、选择题(本大题共10小题,每小题3分,共30分)1、31-的绝对值是( )A 、3B 、-3C 、31D 、31-答案:C2、如图放置的圆柱体的左视图为( )答案:A3、下列运算正确的是( )A 、623a a a =• B 、16)13(22-=-a a aC 、4226)3(a a = D 、a a a 532=+答案:D4、如图,直线AB//CD ,直线EF 与AB ,CD 分别交于点E ,F ,EG ⊥EF.若∠1=60°,则∠2的度数为( )A 、15°B 、30°C 、45°D 、60°答案:B5、下列说法中,正确的是( )A 、对载人航天器“神舟十号”的零部件的检查适合采用抽样调查的方式B 、某市天气预报中说“明天降雨的概率是80%”,表示明天该市有80%的地区会降雨C 、抛一枚硬币,正面朝上的概率为21D 、若甲组数据的方差1.02=甲S ,乙组数据的方差01.02=乙S ,则甲组数据比乙组数据稳定答案:C6、甲、乙两盒中各放入分别写有数字1、2、3的三张卡片,每张卡片除数字外其他完全相同,从甲盒中随机摸出一张卡片,再从乙盒中随机摸出一张卡片,摸出的两张卡片上的数字之和是3的概率是( ) A 、91 B 、92 C 、31 D 、94 答案:B7、如图,在菱形ABCD 中,∠BAD=2∠B ,E 、F 分别为BC 、CD 的中点,连接AE 、AC 、AF ,则图中与△ABE 全等的三角形(△ABE 除外)有( )A 、1个B 、2个C 、3个D 、4个答案:C8、某服装加工厂计划加工400套运动服,在加工完160套后,采用了新技术,工作效率比原计划提高了20%,结果共用了18天完成全部任务.设原计划每天加工x 套运动服,根据题意可列方程为( ) A 、18%)201(400160=++x x B 、18%)201(160400160=+-+xx C 、18%20160400160=-+x x D 、18%)201(160400400=+-+xx 答案:B 9、如图,O 的半径是3,点P 是弦AB 延长线上的一点,连接OP ,若OP=4,∠APO=30°,则弦AB 的长是( )A 、52B 、5C 、132D 、13答案:A10、如图,在矩形OABC 中,AB=2BC ,点A 在y 轴的正半轴上,点C 在x 轴的正半轴上,连接OB ,反比例函数xky =)0,0(>≠x k 的图像经过OB 的中点D ,与BC 边交于点E ,点E 的横坐标是4,则k 的值是( )A 、1B 、2C 、3D 、4答案:B第二部分 非选择题(共120分)二、填空题(本大题共8小题,每小题3分,共24分)11、函数12-=x y 中,自变量x 的取值范围是 答案:12x ≥12、一种花粉颗粒的直径约为0.0000065米,将0.0000065用科学记数法表示为 答案:66.510-⨯13、在平面直角坐标系中,点P (5,-3)关于原点对称的点的坐标是 答案:(-5,3)14、在一个不透明的袋子中装有黄色、白色乒乓球共40个,除颜色外其他完全相同.小明从这个袋子中随机摸出一球,放回,通过多次摸球试验后发现,摸到黄色球的频率稳定在15%附近,则口袋中黄色球可能有 个. 答案:615、在平面直角坐标系中,把抛物线1212+-=x y 向上平移3个单位,再向左平移1个单位,则所得抛物线的解析式是 答案:21(1)42y x =-++16、已知圆锥底面圆的半径为6cm ,它额侧面积为60π2cm,则这个圆锥的高是cm 答案:817、如图,在矩形ABCD 中,AB=10,AD=4,点P 是边AB 上一点,若△APD 与△BPC 相似,则满足条件的点P 有 个答案:318、如图,点1B 是面积为1的等边△OBA 的两条中线的交点,以1OB 为一边,构造等边△11A OB (点O 、1B 、1A 按逆时针方向排列),称为第一次构造;点2B 是等边△11A OB 的两条中线的交点,再以2OB 为一边,构造等边△22A OB (点O 、2B 、2A 按逆时针方向排列),称为第二次构造; ;依此类推,当第n 次构造出的等边△n n A OB 的边n OA 与等边△OBA 的边OB 第一次重合时,构造停止,则构造出的最后一个三角形的面积是答案:103-三、解答题(第19题(1)5分,第19题(2)5分,第20题12分,共22分)19、(1) 45tan 251)2(2713-⎪⎭⎫⎝⎛--+-π答案:解:原式=3+1-5-2×1=-3(2)先化简,再求值:⎪⎭⎫⎝⎛+÷⎪⎪⎭⎫ ⎝⎛-++--m m m m m m m 21121222,其中3-=m答案:原式=()()()()211211m m m mm m m mm⎡⎤+-⎛⎫+÷+⎢⎥ ⎪-⎝⎭-⎢⎥⎣⎦=11211m mm m m++⎛⎫+÷⎪--⎝⎭=212m mm m+•-+=1mm-当3m=-时,原式=33314-=--20、某校对九年级全体学生进行了一次学业水平测试,成绩评定分为A、B、C、D四个等级(A、B、C、D分别代表优秀、良好、合格、不合格).该校从九年级学生中随机抽取了一部分学生的成绩,绘制成以下两幅不完整的统计图.请你根据统计图提供的信息解答下列问题:(1)本次调查中,一共抽取了名学生的成绩;(2)将上面的条形统计图补充完整,写出扇形统计图中等级C的百分比;(3)若等级D的5名学生的成绩(单位:分)分别是55、48、57、51、55,则这5个数据的中位数是分,众数是分;(4)如果该校九年级共有500名学生,试估计在这次测试中成绩达到优秀的人数.答案:(1)50(2)扇形统计图中国C类学生的百分比为:30%(3)55,55(4)500×20%=100(人)答:估计在这次测试中成绩达到优秀的人数约为100人.四、解答题(第21题12分,第22题12分,共24分)21、如图,O 是△ACD 的外接圆,AB 是直径,过点D 做直线DE//AB ,过点B 作直线BE//AD ,两直线交于点E ,两直线交于点E.如果∠ACD=45°,O 的半径是4cm. (1)请判断DE 与O 的位置关系,并说明理由; (2)求图中阴影部分的面积(结果用π表示).答案:解:(1)DE 与O 的位置关系为相切 理由如下:连接OD则224590AOD ACD ∠=∠=⨯=DE //AB90ODE AOD ∴∠=∠=DE ∴是O 的切线(2)DE //AB ,BE //AD ∴四边形ABED 为平行四边形 8DE AB cm ∴==90AOD ∠= 1809090BOD ∴∠=-= 29044360OBDS ππ⨯∴==扇形 1=(48)4242ODEB S +⨯=梯形2==24-4()ODEB OBD S S S cm π∴-阴影梯形扇形22、某中学响应“阳光体育”活动的号召,准备从体育用品商店购买一些排球、足球和篮球,排球和足球的单价相同,同一种球的单价相同.若购买2个足球和3个篮球共需340元;购买4个排球和5个篮球共需600元.(1)求购买一个足球、一个篮球分别需要多少元?(2)该中学根据实际情况,需从该体育用品商店一次性购买三种球共100个,且购买三种球的总费用不超过6000元,求这所中学最多可以购买多少个篮球? 答案:解(1)设购买一个足球需要x 元,购买一个篮球需要y 元 根据题意,得2334045600x y x y +=⎧⎨+=⎩解这个方程组得:5080x y =⎧⎨=⎩答:购买一个足球需要50元,购买一个篮球需要80元(2)设该中学购买篮球m 个根据题意,得8050(100)6000m m +-≤ 解这个一元一次不等式得:1333m ≤m 是整数33m ∴≤(或m 的最大整数解是33)答:这所中学最多可以购买33个篮球。
五、解答题(满分12分)23、校车安全是近几年社会关注的热点问题,安全隐患主要是超速和超载,某中学九年级数学活动小组进行了测试汽车速度的试验;如图,先在笔直的公路l 旁选取一点A ,在公路l 上确定点B 、C ,使得l AC ⊥,∠BAC=60°,再在AC 上确定点D ,使得∠BDC=75°,测得AD=40米.已知本路段对该校车限速是50千米/时,若测得某辆校车从B 到C 匀速行驶用时10秒,问这辆车在本路段是否超速?请说明理由.(参考数据:41.12=,73.13=)答案:解:这辆校车不超速,理由如下: 作DE AB ⊥于点E在3sin 402032RT ADE DE AD A ==⨯=中,756015ABD BDC A ∠=∠-∠=-= 90907515CBD BDC ∠=-∠=-=ABD CBD ∴∠=∠又,AC BC DE AB ⊥⊥203DC DE ∴==40203AC AD DC ∴=+=+在RT ABC 中,tan (403)3129.2BC AC A ==+≈汽车的速度是(129.210) 3.646.5÷⨯≈千米/时<50千米/时,所以这辆车没超速24、某蔬菜经销商到蔬菜种植基地采购一种蔬菜,经销商一次性采购蔬菜的采购单价y (元/千克)与采购量x (千克)之间的函数关系图像如图中折现AB —BC —CD 所示(不包括端点A ). (1)当100≤x ≤200时,直接写出y 与x 之间的函数关系式: ; (2)蔬菜的种植成本为2元/千克,某经销商一次性采购蔬菜的采购量不超过200千克,当采购量是多少时,蔬菜种植基地获利最大,最大利润是多少元?(3)在(2)的条件下,求经销商一次性采购的蔬菜是多少千克时,蔬菜种植基地能获得418元的利润?答案:(1)0.028y x =-+(2)设采购量是x 千克时,蔬菜种植基地获利w 元 当0100x <≤时,(62)4w x x =-= 当100x =时,w 有最大值400元当100200x <≤时,2(2)(0.026)0.02(150)450w y x x x x =-=-+=--+0.020a =-< 抛物线开口向下 ∴当x =150时,w 有最大值450综上可知一次性采购量是150千克时,蔬菜种植基地获最大利润450元 (3)418400>根据(2)可得:20.02(150)450418x --+= 解得12110,190x x ==答:采购商一次性采购的蔬菜是110千克或190千克时,蔬菜种植基地能获得418元的利润 七、解答题(满分12分)25、在ABC RT ∆中,∠ACB=90°,∠A <45°,点O 为AB 中点,一个足够大的三角板的直角顶点与点O 重合,一边OE 经过点C ,另一边OD 与AC 交于点M. (1)如图1,当∠A=30°时,求证:222BC AM MC +=;(2)如图2,当∠A ≠30°时,(1)中的结论是否成立?如果成立,请说明理由;如果不成立,请写出你认为正确的结论,并说明理由;(3)将三角形ODE 绕点O 旋转,若直线OD 与直线AC 相交于点M ,直线OE 与直线BC 相交于点N ,连接MN ,则222BN AM MN +=成立吗? 答: (填“成立”或“不成立”)答案:(1)证明:O 是RT ABC 斜边AB 的中点 OA OB OC ∴==90,903060B A ∠=∠=-=OBC ∴是等边三角形,60OC BC BOC ∴=∠=180906030AOM ∴∠=--= 30A AOM ∴∠=∠=AM OM ∴=在RT OCM 中 222MC OM OC =+222MC AM BC ∴=+(2)(1)中的结论还成立延长MO 到G ,使得OG=OM ,连接BG ,CG,,OG OM OA OB AOM BOG ==∠=∠AOM BOG ∴≅AM BG ∴= OBG A ∠=∠90A ABC ∠+∠=90OBG ABC ∴∠+∠= 即90GBC ∠=在RT CBG 中 222CG BC BG =+,OC OD OM OG ⊥=CM CG ∴=222MC AM BC ∴=+(3)成立八、解答题(满分14分)26、如图,在平面直角坐标系中,点O 是原点,矩形OABC 的顶点A 在x 轴的正半轴上,顶点C 在y 轴的正半轴上,点B 的坐标是(5,3),抛物线c bx xy++=253经过A 、C 两点,与x 轴的另一个交点是点D ,连接BD.(1) 求抛物线的解析式;(2) 点M 是抛物线对称轴上的一点,点M 、B 、D 为顶点的三角形的面积是6,求点M 的坐标;(3) 点P 从点D 出发,以每秒1个单位长度的速度沿B D →匀速运动,当点P 到达点B 时,P ,Q 同时停止运动.设运动的时间为t 秒,当t 为何值时,以D 、P 、Q 为顶点的三角形是等腰三角形?请直接写出所有符合条件的t 的值.答案:解:(1)OABC 是矩形,B (5,3) 5,3OA AB OC ∴===(0,3)C ∴ A(5,0)3255053b c c ⎧⨯++=⎪∴⎨⎪=⎩解得:185b =- 3c =所以所求抛物线的解析式为:2318355y x x =-+ (2)抛物线的对称轴是直线x=3 设对称轴与BD 的交点是G ,与x 轴交点为H(3,0)H ∴ (1,0)D ∴tan GH BA BDA DH DA∠== 324GH ∴= 32GH = G ∴的坐标为3(3,)2MBD 的面积是611222622MG MG MG ∴⨯⨯+⨯⨯== 3MG ∴= 所以点M 的坐标为(3,4.5)或(3,-1.5)(3)12511t =,272t =,35613t =精品 初中数学、英语、语文、物理、化学、等,复习、分类知识点、总结。