高三数学(文科)一轮学案【第4-6课时】余弦定理(2)

合集下载

高三数学一轮复习精品学案3:4.6 正弦定理、余弦定理及解三角形

高三数学一轮复习精品学案3:4.6 正弦定理、余弦定理及解三角形

4.6 正弦定理、余弦定理及解三角形导学目标1.掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题.2.能够运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的实际问题.主要考查有关定理的应用、三角恒等变换的能力、运算能力及转化的数学思想.解三角形常常作为解题工具用于立体几何中的计算或证明,或与三角函数联系在一起求距离、高度以及角度等问题,且多以应用题的形式出现.考点梳理1.正弦定理(1)正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,即.其中R是三角形外接圆的半径.(2)正弦定理的其他形式:①a=2R sin A,b=,c=;②sin A=a2R,sin B=,sin C=;③a∶b∶c=______________________.2.余弦定理(1)余弦定理:三角形中任何一边的平方等于其他两边的平方的和减去这两边与它们的夹角的余弦的积的两倍.即a2=,b2=,c2=.若令C=90°,则c2=,即为勾股定理.(2)余弦定理的变形:cos A=,cos B=,cos C =.若C为锐角,则cos C>0,即a2+b2______c2;若C为钝角,则cos C<0,即a2+b2______c2.故由a2+b2与c2值的大小比较,可以判断C为锐角、钝角或直角.(3)正、余弦定理的一个重要作用是实现边角____________,余弦定理亦可以写成sin2A=sin 2B +sin 2C -2sin B sin C cos A ,类似地,sin 2B =____________;sin 2C =__________________.注意式中隐含条件A +B +C =π.3.解斜三角形的类型(1)已知三角形的任意两个角与一边,用____________定理.只有一解.(2)已知三角形的任意两边与其中一边的对角,用____________定理,可能有___________________.如在△ABC 中,已知a ,b 和A 时,解的情况如表:A 为锐角A 为钝角或直角图形关系式 a =b sin A b sin A <a <ba ≥ba >b解的个数① ② ③ ④(3)已知三边,用____________定理.有解时,只有一解. (4)已知两边及夹角,用____________定理,必有一解. 4.三角形中的常用公式或变式(1)三角形面积公式S △= = =____________=____________=____________.其中R ,r 分别为三角形外接圆、内切圆半径.(2)A +B +C =π,则A =__________, A2=__________,从而sin A =____________, cos A =____________,tan A =____________; sin A 2=__________,cos A2=__________, tan A2=________.tan A +tan B +tan C =__________. (3)若三角形三边a ,b ,c 成等差数列,则2b =____________⇔2sin B =____________⇔2sin B 2=cos A -C 2⇔2cos A +C 2=cos A -C 2⇔tan A 2tan C 2=13.类型一 正弦定理的应用△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知A -C =90°,a +c =2b ,求C .在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .已知A =π4,b sin ⎝⎛⎭⎫π4+C -c sin ⎝⎛⎭⎫π4+B =a .(1)求证:B -C =π2;(2)若a =2,求△ABC 的面积.类型二 余弦定理的应用在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,且cos B cos C =-b2a +c. (1)求B 的大小;(2)若b =13,a +c =4,求△ABC 的面积.若△ABC 的内角A ,B ,C 所对的边a ,b ,c 满足(a +b )2-c 2=4,且C =60°,则ab 的值为( )A.43B .8-4 3C .1 D.23类型三 正、余弦定理的综合应用△ABC 的内角A 、B 、C 的对边分别为a ,b ,c ,已知a =b cos C +c sin B . (1)求B ;(2)若b =2,求△ABC 面积的最大值.设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,且a +c =6,b =2,cos B=79. (1)求a ,c 的值; (2)求sin(A -B )的值.类型四 判断三角形的形状在三角形ABC 中,若tan A ∶tan B =a 2∶b 2,试判断三角形ABC 的形状.在△ABC 中,若sin 2A +sin 2B <sin 2C ,则△ABC 的形状是( )A .锐角三角形B .直角三角形C .钝角三角形D .不能确定类型五 解三角形应用举例某港口O 要将一件重要物品用小艇送到一艘正在航行的轮船上.在小艇出发时,轮船位于港口O 北偏西30°且与该港口相距20 n mile 的A 处,并以30 n mile/h 的航行速度沿正东方向匀速行驶.假设该小艇沿直线方向以v n mile/h 的航行速度匀速行驶,经过t h 与轮船相遇.(1)若希望相遇时小艇的航行距离最小,则小艇航行速度的大小应为多少?(2)假设小艇的最高航行速度只能达到30 n mile/h ,试设计航行方案(即确定航行方向和航行速度的大小),使得小艇能以最短时间与轮船相遇,并说明理由.如图,渔船甲位于岛屿A的南偏西60°方向的B处,且与岛屿A相距12海里,渔船乙以10海里/小时的速度从岛屿A出发沿正北方向航行,若渔船甲同时从B处出发沿北偏东α的方向追赶渔船乙,刚好用2小时追上.(1)求渔船甲的速度;(2)求sinα的值.1.已知两边及其中一边的对角解三角形时,要注意解的情况,谨防漏解.2.在判断三角形的形状时,一般将已知条件中的边角关系利用正弦定理或余弦定理转化为角角关系(注意应用A+B+C=π这个结论)或边边关系,再用三角变换或代数式的恒等变形(如因式分解、配方等)求解,注意等式两边的公因式不要约掉,要移项提取公因式,否则有可能漏掉一种形状.3.要熟记一些常见结论,如三内角成等差数列,则必有一角为60°;若三内角的正弦值成等差数列,则三边也成等差数列;内角和定理与诱导公式结合产生的结论:sin A=sin(B+C),cos A=-cos(B+C),sin A2=cosB+C2,sin2A=-sin2(B+C),cos2A=cos2(B+C)等.4.应用正、余弦定理解斜三角形应用题的一般步骤:(1)分析:理解题意,分清已知与未知,画出示意图;(2)建模:根据已知条件与求解目标,把已知量与求解量尽量集中到一个三角形中,建立一个解斜三角形的模型;(3)求解:利用正、余弦定理有序地解出三角形,求得数学模型的解;(4)检验:检验上述所求得的解是否符合实际意义,从而得出实际问题的解.5.正、余弦定理是应用极为广泛的两个定理,它将三角形的边和角有机地联系起来,从而使三角与几何产生联系,为求与三角形有关的量(如面积、外接圆、内切圆半径和面积等)提供了理论依据,也是判断三角形形状、证明三角形中有关等式的重要依据.主要方法有:化角法,化边法,面积法,运用初等几何法.注意体会其中蕴涵的函数与方程思想、等价转化思想及分类讨论思想.在△ABC 中,A >B 是sin A >sin B 的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件在△ABC 中,已知b =6,c =10,B =30°,则解此三角形的结果有( ) A .无解 B .一解 C .两解D .一解或两解(2013·陕西)设△ABC 的内角A, B, C 所对的边分别为a, b, c, 若b cos C +c cos B =a sin A, 则△ABC 的形状为( )A .锐角三角形B .直角三角形C .钝角三角形D .不确定(2012·陕西)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .若a =2,B =π6,c=23,则b =________.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若a =2,b =2,sin B +cos B =2,则角A 的大小为________.答案考点梳理1.(1)a sin A =b sin B =csin C =2R(2)①2R sin B 2R sin C ②b 2R c2R③sin A ∶sin B ∶sin C2.(1)b 2+c 2-2bc cos A c 2+a 2-2ca cos B a 2+b 2-2ab cos C a 2+b 2(2)b 2+c 2-a 22bc c 2+a 2-b 22ca a 2+b 2-c 22ab > <(3)互化 sin 2C +sin 2A -2sin C sin A cos B sin 2A +sin 2B -2sin A sin B cos C3.(1)正弦 (2)正弦 一解、两解或无解 ①一解 ②二解 ③一解 ④一解 (3)余弦 (4)余弦4.(1)12ab sin C 12bc sin A 12ac sin B abc 4R 12(a +b +c )r(2)π-(B +C ) π2-B +C 2sin(B +C ) -cos(B +C )-tan(B +C ) cos B +C 2 sin B +C21tanB +C 2tan A tan B tan C (3)a +c sin A +sin C解:由a +c =2b 及正弦定理可得sin A +sin C =2sin B .又由于A -C =90°,B =180°-(A +C ),故cos C +sin C =sin A +sin C =2sin(A +C )=2sin(90°+2C )=2sin2(45°+C ).∴2sin(45°+C )=22sin(45°+C )cos(45°+C ), 即cos(45°+C )=12.又∵0°<C <90°,∴45°+C =60°,C =15°.『评析』利用正弦定理将边边关系转化为角角关系,这是解此题的关键.解:(1)证明:对b sin ⎝⎛⎭⎫π4+C -c sin ⎝⎛⎭⎫π4+B =a 应用正弦定理得sin B sin ⎝⎛⎭⎫π4+C -sin C sin ⎝⎛⎭⎫π4+B =sin A ,即sin B ⎝⎛⎭⎫22sin C +22cos C -sin C⎝⎛⎭⎫22sin B +22cos B =22,整理得sin B cos C -sin C cos B =1,即sin ()B -C =1.由于B ,C ∈⎝⎛⎭⎫0,3π4,∴B -C =π2. (2)∵B +C =π-A =3π4,又由(1)知B -C =π2,∴B =5π8,C =π8.∵a =2,A =π4,∴由正弦定理知b =a sin B sin A =2sin 5π8,c =a sin C sin A =2sin π8.∴S △ABC =12bc sin A =12×2sin 5π8×2sin π8×22=2sin5π8sin π8=2cos π8sin π8=22sin π4=12.解:(1)由余弦定理知,cos B =a 2+c 2-b 22ac ,cos C =a 2+b 2-c 22ab ,将上式代入cos B cos C =-b2a +c 得a 2+c 2-b 22ac ·2ab a 2+b 2-c 2=-b2a +c , 整理得a 2+c 2-b 2=-ac . ∴cos B =a 2+c 2-b 22ac =-ac 2ac =-12.∵B 为三角形的内角,∴B =23π.(2)将b =13,a +c =4,B =23π代入b 2=a 2+c 2-2ac cos B ,得13=42-2ac -2ac cos 23π,解得ac =3.∴S △ABC =12ac sin B =334.『评析』①根据所给等式的结构特点利用余弦定理将角化边进行变形是迅速解答本题的关键.②熟练运用余弦定理及其推论,同时还要注意整体思想、方程思想在解题过程中的运用.解:由余弦定理得c 2=a 2+b 2-2ab cos C =a 2+b 2-ab ,代入(a +b )2-c 2=4中得(a +b )2-(a 2+b 2-ab )=4,即3ab =4,∴ab =43.故选A .解:(1)由已知及正弦定理得sin A =sin B cos C +sin C sin B .① 又A =π-(B +C ),故sin A =sin(B +C )=sin B cos C +cos B sin C .② 由①,②和C ∈(0,π)得sin B =cos B . 又B ∈(0,π),所以B =π4.(2)△ABC 的面积S =12ac sin B =24ac .由已知及余弦定理得4=a 2+c 2-2ac cos π4.又a 2+c 2≥2ac ,故ac ≤42-2,当且仅当a =c 时,等号成立. 因此△ABC 面积的最大值为2+1.『评析』(1)化边为角与和角或差角公式的正向或反向多次联用是常用的技巧;(2)已知边及其对角求三角形面积最值是高考中考过多次的问题,既可用三角函数求最值,也可以用余弦定理化边后用不等式求最值.解:(1)由余弦定理b 2=a 2+c 2-2ac cos B ,得b 2=(a +c )2-2ac (1+cos B ),又a +c =6,b =2, cos B =79,所以ac =9,解得a =3,c =3.(2)在△ABC 中,sin B =1-cos 2B =429, 由正弦定理得sin A =a sin B b =223.因为a =c ,所以A 为锐角, 所以cos A =1-sin 2A =13.因此sin(A -B )=sin A cos B -cos A sin B =10227.解法一:由正弦定理,得a 2b 2=sin 2Asin 2B ,所以tan A tan B =sin 2A sin 2B,所以sin A cos B cos A sin B =sin 2A sin 2B,即sin2A =sin2B .所以2A =2B ,或2A +2B =π,因此A =B 或A +B =π2,从而△ABC 是等腰三角形或直角三角形.解法二:由正弦定理,得a 2b 2=sin 2A sin 2B ,所以tan A tan B =sin 2A sin 2B ,所以cos B cos A =sin Asin B ,再由正、余弦定理,得a 2+c 2-b 22ac b 2+c 2-a 22bc=ab,化简得(a 2-b 2)(c 2-a 2-b 2)=0,即a 2=b 2或c 2=a 2+b 2.从而△ABC 是等腰三角形或直角三角形.『评析』由已知条件,可先将切化弦,再结合正弦定理,将该恒等式的边都化为角,然后进行三角函数式的恒等变形,找出角之间的关系;或将角都化成边,然后进行代数恒等变形,可一题多解,多角度思考问题,从而达到对知识的熟练掌握.解:在△ABC中,∵sin 2A +sin 2B <sin 2C ,∴由正弦定理知a 2+b 2<c 2.∴cos C =a 2+b 2-c 22ab<0,即∠C 为钝角,△ABC 为钝角三角形.故选C .解法一:(1)设相遇时小艇航行的距离为S n mile ,则 S =900t 2+400-2·30t ·20·cos (90°-30°)=900t 2-600t +400=900⎝⎛⎭⎫t -132+300, 故当t =13时,S min =103,此时v =10313=30 3.即小艇以30 3 n mile/h 的速度航行,相遇时小艇的航行距离最小. (2)设小艇与轮船在B 处相遇,则v 2t 2=400+900t 2-2·20·30t ·cos(90°-30°),故v 2=900-600t +400t 2.∵0<v ≤30,∴900-600t +400t 2≤900,即2t 2-3t≤0, 解得t ≥23.又t =23时,v =30.故v =30时,t 取得最小值,且最小值等于23. 此时,在△OAB 中,有OA =OB =AB =20,故可设计航行方案如下:航行方向为北偏东30°,航行速度为30 n mile/h ,小艇能以最短时间与轮船相遇.解法二:(1)若相遇时小艇的航行距离最小,又轮船沿正东方向匀速行驶,则小艇航行方向为正北方向.设小艇与轮船在C 处相遇.在Rt △OAC 中,OC =20cos30°=103,AC =20sin30°=10.又AC =30t ,OC =vt ,此时,轮船航行时间t =1030=13,v =10313=30 3. 即小艇以30 3 n mile/h 的速度航行,相遇时小艇的航行距离最小.(2)假设v =30时,小艇能以最短时间与轮船在D 处相遇,此时AD =DO =30t .又∠OAD =60°,所以AD =DO =OA =20,解得t =23. 据此可设计航行方案如下:航行方向为北偏东30°,航行速度的大小为30 n mile/h.这样,小艇能以最短时间与轮船相遇. 证明如下:如图,由(1)得OC =103,AC =10,故OC >AC ,且对于线段AC 上任意点P ,有OP ≥OC >AC .而小艇的最高航行速度只能达到30 n mile/h ,故小艇与轮船不可能在A ,C 之间(包含C )的任意位置相遇.设∠COD =θ(0°<θ<90°),则在Rt △COD 中,CD =103tan θ,OD =103cos θ. 由于从出发到相遇,轮船与小艇所需要的时间分别为t =10+103tan θ30和t =103v cos θ,所以10+103tan θ30=103v cos θ. 由此可得,v =153sin (θ+30°). 又v ≤30,故sin(θ+30°)≥32,从而,30°≤θ<90°. 由于θ=30°时,tan θ取得最小值,且最小值为33. 于是,当θ=30°时,t =10+103tan θ30取得最小值,且最小值为23. 『评析』①这是一道有关解三角形的实际应用题,解题的关键是把实际问题抽象成纯数学问题,根据题目提供的信息,找出三角形中的数量关系,然后利用正、余弦定理求解.②解三角形的方法在实际问题中,有广泛的应用.在物理学中,有关向量的计算也要用到解三角形的方法.近年的高考中我们发现以解三角形为背景的应用题开始成为热点问题之一.③不管是什么类型的三角应用问题,解决的关键都是充分理解题意,将问题中的语言叙述弄明白,画出帮助分析问题的草图,再将其归结为属于哪类可解的三角形.④本题用几何方法求解也较简便.解:(1)依题意,∠BAC =120°,AB =12,AC =10×2=20,在△ABC 中,由余弦定理知BC 2=AB 2+AC 2-2AB ·AC ·cos ∠BAC =122+202-2×12×20×cos120°=784,BC =28.所以渔船甲的速度为v =282=14(海里/小时). (2)在△ABC 中,AB =12,∠BAC =120°,BC =28,∠BCA =α,由正弦定理得AB sin α=BC sin ∠BAC ,即12sin α=28sin120°,从而sin α=12sin120°28=3314.解:因为在同一三角形中,角大则边大,边大则正弦大,反之也成立,故是充要条件.故选C .解:由正弦定理知sin C =c ·sin B b =56,又由c >b >c sin B 知,C 有两解.也可依已知条件,画出△ABC ,由图知有两解.故选C .解:由已知和正弦定理可得sin B cos C +sin C cos B =sin A ·sin A ,即sin(B +C )=sin A sin A ,亦即sin A =sin A sin A .因为0<A <π,所以sin A =1,所以A =π2.所以三角形为直角三角形.故选B .解:由余弦定理知b 2=a 2+c 2-2ac cos B =22+()232-2×2×23×cos π6=4,b =2.故填2.解:∵sin B +cos B =2,∴2sin ⎝⎛⎭⎫B +π4=2,即sin ⎝⎛⎭⎫B +π4=1. 又∵B ∈(0,π),∴B +π4=π2,B =π4. 根据正弦定理a sin A =b sin B ,可得sin A =a sin B b =12. ∵a <b ,∴A <B .∴A =π6.故填π6.。

余弦定理的教案(通用3篇)

余弦定理的教案(通用3篇)

余弦定理的教案(通用3篇)余弦定理的篇1一、单元教学内容运算定律P——P二、单元教学目标1、探索和理解加法交换律、结合律,乘法交换律、结合律和分配律,能运用运算定律进行一些简便计算。

2、理解和掌握减法和除法的运算性质,并能应用这些运算性质进行简便计算。

3、会应用运算律进行一些简便运算,掌握运算技巧,提高计算能力。

4、在经历运算定律和运算性质的发现过程中,体验归纳、总结和抽象的数学思维方法。

5、在经历运算定律的字母公式形成过程中,能进行有条理地思考,并表达自己的思考结果。

6、经历简便计算过程,感受数的运算与日常生活的密切联系,并在活动中学会与他人合作。

7、在经历解决问题的过程中,体验运算律的价值,增强应用数学的意识。

三、单元教学重、难点1、理解加法交换律、结合律,乘法交换律、结合律和分配律,能运用运算定律进行一些简便计算。

2、理解和掌握减法和除法的运算性质,并能应用这些运算性质进行简便计算。

四、单元教学安排运算定律10课时第1课时加法交换律和结合律一、教学内容:加法交换律和结合律P17——P18二、教学目标:1、在解决实际问题的过程中,发现并掌握加法交换律和结合律,学会用字母表示加法交换律和结合律。

2、在探索运算律的过程中,发展分析、比较、抽象、概括能力,培养学生的符号感。

3、培养学生的观察能力和概括能力。

三、教学重难点重点:发现并掌握加法交换律、结合律。

难点:由具体上升到抽象,概括出加法交换律和加法结合律。

四、教学准备多媒体五、教学过程(一)导入新授1、出示教材第17页情境图。

师:在我们班里,有多少同学会骑自行车?你最远骑到什么地方?师生交流后,课件出示李叔叔骑车旅行的场景:骑车是一项有益健康的运动,你看,这位李叔叔正在骑车旅行呢!2、获取信息。

师:从中你知道了哪些数学信息?(学生回答)3、师小结信息,引出课题:加法交换律和结合律。

(二)探索发现第一环节探索加法交换律1、课件继续出示:“李叔叔今天上午骑了40km,下午骑了56km,一共骑了多少千米?”学生口头列式,教师板书出示: 40+56=96(千米) 56+40=96(千米)你能用等号把这两道算式写成一个等式吗? 40+56=56+40 你还能再写出几个这样的等式吗?学生独自写出几个这样的等式,并在小组内交流各自写出的等式,互相检验写出的等式是否符合要求。

《余弦定理》教学设计、导学案、同步练习

《余弦定理》教学设计、导学案、同步练习

《6.4.3 余弦定理、正弦定理》教学设计第一课时余弦定理【教材分析】本节课选自《普通高中课程标准数学教科书-必修第二册》(人教A版)第六章《平面向量及其应用》,本节课主要学习余弦定理及利用余弦定理的应用。

本节课在证明了余弦定理及其推论以后,教科书从余弦定理与勾股定理的比较中,提出了一个考问题“勾股定理指出了直角三角形中三边平方之间的关系,余弦定理则指出了一般三角形中三边平方之间的关系,如何看这两个定理之间的关系?”并进而指出,“从余弦定理以及余弦函数的性质可知,如果一个三角形两边的平方和等于第三边的平方,那么第三边所对的角是直角;如果小于第三边的平方,那么第三边所对的角是钝角;如果大于第三边的平方那么第三边所对的角是锐角。

由上可知,余弦定理是勾股定理的推广”,还要启发引导学生注意余弦定理的各种变形式并总结余弦定理的适用题型的特点,在解题时正确选用余弦定理达到求解,求证目的启发学生在证明余弦定理时能与向量数量积的知识产生联系,在应用向量知识的同时注意使学生体会三角函数、正弦定理、向量数量积等多处知识之间的联系。

【教学目标与核心素养】【教学重点】:余弦定理的发现和证明过程及其基本应用;【教学难点】:利用向量的数量积推导余弦定理的思想方法及利用余弦定理求解三角形的思路。

【教学过程】【答案】。

相同起点,尾尾相连,指向被减向量。

2.向量的数量积【答案】 3.证明三角形全等的方法有哪些? 【答案】ASA ,AAS ,SAS ,SSS 。

二、探索新知探究1.在三角形ABC 中,三个角A ,B ,C 所对的边分别为a ,b ,c ,怎样用a ,b 和C 表示c ?【解析】,所以。

同理可证:余弦定理:三角形中任何一边的平方,等于其他两边平方的和减去这两边与它们夹角的余弦的积的两倍,即应用:已知两边和一个夹角,求第三边.思考1:余弦定理指出了三角形的三条边与其中的一个角之间的关系,应用余弦定理,我们可以解决已知三角形的三边确定三角形的角的问题,怎么确定呢?由余弦定理变形得BA OB OA =-θcos ||||b a b a =⋅→→→→→→→→→-====b a c c AB b CA a CB 那么如图,设,,,Cab b a ba b b a a b a b a c c c cos 22222-+=⋅-⋅+⋅=⎪⎭⎫ ⎝⎛-⋅⎪⎭⎫ ⎝⎛-=⋅=→→→→→→→→→→→→→C ab b a c cos 2222-+=Bac c a b A bc c b a cos 2cos 2222222-+=-+=Cab b a c B ac c a b A bc c b a cos 2cos 2cos 2222222222-+=-+=-+=bcac b A 2cos 222-+=所以,例2.在中,已知a =7,b =8,锐角C 满足,求B 。

高三数学一轮复习精品教案1:正弦定理和余弦定理教学设计

高三数学一轮复习精品教案1:正弦定理和余弦定理教学设计

4.6正弦定理和余弦定理1.正弦定理a sin A =b sin B =c sin C=2R ,其中R 是三角形外接圆的半径.由正弦定理可以变形: (1)a ∶b ∶c =sin_A ∶sin_B ∶sin_C ; (2)a =2R sin_A ,b =2R sin_B ,c =2R sin_C . 2.余弦定理a 2=b 2+c 2-2bc cos_A ,b 2=a 2+c 2-2ac cos_B ,c 2=a 2+b 2-2ab cos_C .余弦定理可以变形:cos A =b 2+c 2-a 22bc ,cos B =a 2+c 2-b 22ac ,cos C =a 2+b 2-c 22ab.3.三角形中常用的面积公式 (1)S =12ah (h 表示边a 上的高);(2)S =12bc sin A =12ac sin B =12ab sin C ;(3)S =12r (a +b +c )(r 为三角形的内切圆半径).1.由正弦定理解已知三角形的两边和其中一边的对角求另一边的对角时易忽视解的判断.2.在判断三角形形状时,等式两边一般不要约去公因式,应移项提取公因式,以免漏解.『试一试』1.如图,在△ABC 中,D 是边AC 上的点,且AB =AD,2AB =3BD ,BC =2BD ,则sin C 的值为________.『解析』设BD =1,则AB =AD =32,BC =2.在△ABD 中,解得sin A =223,在△ABC 中,由正弦定理AB sin C =BC sin A ,得sin C =66.『答案』662.(2013·扬州三模)如果满足∠ABC =60°,AB =8,AC =k 的△ABC 有两个,那么实数k 的取值范围是________.『解析』由条件得8sin 60°<k <8,从而k 的取值范围是(43,8). 『答案』(43,8)1.把握三角形中的边角关系在三角形中,大角对大边,大边对大角;大角的正弦值也较大,正弦值较大的角也较大,即在△ABC 中,A >B ⇔a >b ⇔sin A >sin B .2.选用正弦定理或余弦定理的原则如果式子中含有角的余弦或边的二次式,要考虑用余弦定理;如果遇到的式子中含有角的正弦或边的一次式时,则考虑用正弦定理;以上特征都不明显时,则要考虑两个定理都有可能用到.『练一练』1.在△ABC 中,a =32,b =23,cos C =13,则△ABC 的面积为________.『答案』432.设△ABC 的内角A ,B ,C 所对边的长分别为a ,b ,c .若b +c =2a ,3sin A =5sin B ,则角C =________.『解析』由3sin A =5sin B 可得3a =5b ,又b +c =2a ,所以可令a =5t (t >0),则b =3t ,c =7t ,可得cos C =a 2+b 2-c 22ab=5t2+3t 2-7t 22×5t ×3t=-12,故C =2π3.『答案』2π3考点一利用正弦、余弦定理解三角形『典例』 (2013·徐州摸底)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知a cos C -b cos C =c cos B -c cos A ,且C =120°.(1)求角A ; (2)若a =2,求c .『解析』 (1)由正弦定理及a cos C -b cos C =c cos B -c cos A 得sin A cos C -sin B cos C =sin C cos B -sin C cos A .所以sin(A +C )=sin(B +C ).因为A ,B ,C 是三角形的内角,所以A +C =B +C ,所以A =B . 又因为C =120°,所以A =30°.(2)由(1)知a =b =2,所以c 2=a 2+b 2-2ab cos C =4+4-2×2×2cos 120°=12,所以c =2 3.『备课札记』 『类题通法』1.应熟练掌握正、余弦定理及其变形.解三角形时,有时可用正弦定理,有时也可用余弦定理,应注意用哪一个定理更方便、简捷.2.已知两角和一边,该三角形是确定的,其解是唯一的;已知两边和一边的对角,该三角形具有不唯一性,通常根据三角函数值的有界性和大边对大角定理进行判断.『针对训练』(2013·南京、盐城一模)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c . (1)若cos ⎝⎛⎭⎫A +π6 =sin A ,求A 的值; (2)若cos A =14,4b =c ,求sin B 的值.『解析』(1)因为cos ⎝⎛⎭⎫A +π6=sin A , 即cos A cos π6-sin A sin π6=sin A ,所以32cos A =32sin A . 显然cos A ≠0,否则由cos A =0得sin A =0,与sin 2 A +cos 2 A =1矛盾,所以tan A =33. 因为0<A <π,所以A =π6.(2)因为cos A =14,4b =c ,根据余弦定理得a 2=b 2+c 2-2bc cos A =15b 2,所以a =15b .因为cos A =14,所以sin A =1-cos 2 A =154.由正弦定理得15b sin A =b sin B ,所以sin B =14. 考点二利用正弦、余弦定理判定三角形的形状『典例』 在△ABC 中,a ,b ,c 分别为内角A ,B ,C 的对边,且2a sin A =(2b -c )sin B +(2c -b )sin C .(1)求角A 的大小;(2)若sin B +sin C =3,试判断△ABC 的形状. 『解析』 (1)∵2a sin A =(2b -c )sin B +(2c -b )sin C ,得2a 2=(2b -c )b +(2c -b )c , 即bc =b 2+c 2-a 2, ∴cos A =b 2+c 2-a 22bc =12,∴A =60°.(2)∵A +B +C =180°, ∴B +C =180°-60°=120°. 由sin B +sin C =3, 得sin B +sin(120°-B )=3,∴sin B +sin 120°cos B -cos 120°sin B = 3. ∴32sin B +32cos B =3, 即sin(B +30°)=1.又∵0°<B <120°,30°<B +30°<150°, ∴B +30°=90°, 即B =60°. ∴A =B =C =60°, ∴△ABC 为正三角形.『备课札记』在本例条件下,若sin B ·sin C =sin 2A ,试判断△ABC 的形状. 『解析』由正弦定理,得bc =a 2, 又b 2+c 2=a 2+bc , ∴b 2+c 2=2bc .∴(b -c )2=0.即b =c ,又A =60°, ∴△ABC 是等边三角形. 『类题通法』判定三角形形状的两种常用途径(1)通过正弦定理和余弦定理,化边为角,利用三角变换得出三角形内角之间的关系进行判断.(2)利用正弦定理、余弦定理,化角为边,通过代数恒等变换,求出边与边之间的关系进行判断.提醒:在判断三角形形状时一定要注意解是否唯一,并注重挖掘隐含条件.另外,在变形过程中要注意角A ,B ,C 的范围对三角函数值的影响.『针对训练』(2014·镇江期末)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,满足b cos C +12c =a .(1)求角B ;(2)若a ,b ,c 成等比数列,判断△ABC 的形状.『解析』(1)法一:由正弦定理得sin B cos C +12sin C =sin A .而sin A =sin(B +C )=sin B cos C +cos B sin C . 故cos B sin C =12sin C .在△ABC 中,sin C ≠0,故cos B =12.因为0<B <π,所以B =π3.法二:由余弦定理得b ·a 2+b 2-c 22ab +12c =a .化简得a 2+b 2-c 2+ac =2a 2,即b 2-c 2+ac =a 2, 所以cos B =a 2+c 2-b 22ac =12.因为0<B <π,所以B =π3.(2)由题知b 2=ac .由(1)知b 2=a 2+c 2-ac ,所以a 2+c 2-2ac =0,即a =c , 所以a =b =c ,所以△ABC 是等边三角形.考点三与三角形面积有关的问题『典例』 (2013·苏州暑假调查)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若B =60°且cos(B +C )=-1114.(1)求cos C 的值;(2)若a =5,求△ABC 的面积.『解析』 (1)在△ABC 中,由cos(B +C )=-1114.得sin(B +C )=1-cos 2B +C =1-⎝⎛⎭⎫-11142=5314.又B =60°,所以cos C =cos 『(B +C )-B 』=cos(B +C )cos B +sin(B +C )sin B =-1114×12+5314×32=17.(2)因为cos C =17,C 为△ABC 的内角,sin(B +C )=5314,所以sin C =1-cos 2C = 1-⎝⎛⎭⎫172=437,sin A =sin(B +C )=5314.在△ABC 中,由正弦定理a sin A =c sin C 得55314=c 437, 所以c =8.又a =5,sin B =32, 所以△ABC 的面积为S =12ac sin B =12 ×5×8×32=10 3. 『备课札记』 『类题通法』三角形面积公式的应用原则(1)对于面积公式S =12ab sin C =12ac sin B =12bc sin A ,一般是已知哪一个角就使用哪一个公式.(2)与面积有关的问题,一般要用到正弦定理或余弦定理进行边和角的转化. 『针对训练』(2013·南通一调)在△ABC 中,A ,B ,C 所对的边分别是a ,b ,c ,且b cos B 是a cos C ,c cos A 的等差中项.(1)求B 的大小;(2)若a +c =10,b =2,求△ABC 的面积. 『解析』(1)由题意得a cos C +c cos A =2b cos B .由正弦定理得sin A cos C +sin C cos A =2sin B cos B ,即sin(A +C )=2sin B cos B . 因为A +C =π-B,0<B <π,所以sin(A +C )=sin B ≠0,所以cos B =12,所以B =π3.(2)由B =π3得a 2+c 2-b 22ac =12,即a +c2-2ac -b 22ac=12, 所以ac =2.所以S △ABC =12ac sin B =32.『课堂练通考点』1.在△ABC 中,a =1,c =2,B =60°,则b =________. 『解析』由余弦定理得b =12+22-2×1×2cos 60°= 3. 『答案』32.(2014·无锡调研)在△ABC 中,A =45°,C =105°,BC =2,则AC 的长度为________. 『解析』在△ABC 中,由A =45°,C =105°得B =30°.由正弦定理AC sin B =BC sin A 得AC 12=222,所以AC =1.『答案』13.(2014·镇江质检)在△ABC 中,sin A ∶sin B ∶sin C =2∶3∶4,则cos C =________. 『解析』由正弦定理a sin A =b sin B =csin C, 得sin A ∶sin B ∶sin C =a ∶b ∶c ,令a =2,b =3,c =4, 再利用余弦定理得cos C =-14.『答案』-144.(2013·山东高考改编)△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若B =2A ,a =1,b =3,则c =________.『解析』由已知及正弦定理得1sin A =3sin B =3sin 2A =32sin A cos A ,所以cos A =32,A =30°.结合余弦定理得12=(3)2+c 2-2c ×3×32,整理得c 2-3c +2=0,解得c =1或c =2. 当c =1时,△ABC 为等腰三角形,A =C =30°,B =2A =60°,不满足内角和定理,故c =2.『答案』25.(2013·南通一调)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,tan C =sin A +sin Bcos A +cos B .(1)求角C 的大小;(2)若△ABC 的外接圆直径为1,求a 2+b 2的取值范围. 『解析』(1)因为tan C =sin A +sin Bcos A +cos B ,即sin C cos C =sin A +sin Bcos A +cos B. 所以sin C cos A +sin C cos B =cos C sin A +cos C sin B , 即sin C cos A -cos C sin A =cos C sin B -sin C cos B , 所以sin(C -A )=sin(B -C ).所以C -A =B -C 或C -A =π-(B -C )(不成立), 即2C =A +B ,所以C =π3.(2)由C =π3,设A =π3+α,B =π3-α,0<A <2π3,0<B <2π3,知-π3<α<π3.因为a =2R sin A =sin A ,b =2R sin B =sin B , 所以a 2+b 2=sin 2A +sin 2 B =1-cos 2A 2+1-cos 2B2=1-12⎣⎡⎦⎤cos ⎝⎛⎭⎫2π3+2α+cos ⎝⎛⎭⎫2π3-2α =1+12cos 2α.由-π3<α<π3知-2π3<2α<2π3,-12<cos 2α≤1,故34<a 2+b 2≤32.。

高三数学一轮复习学案:正弦定理、余弦定理

高三数学一轮复习学案:正弦定理、余弦定理

高三数学一轮复习学案:正弦定理、余弦定理一、考试要求:了解利用向量知识推导正弦定理和余弦定理;掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题二、知识梳理: 1. 正弦定理: ____________________.强调几个问题:(1)正弦定理适合于任何三角形;(2)可以证明R Aa__sin =(R 为ABC ∆的外接圆半径);(3)每个等式可视为一个方程:知三求一; (4)公式的变形:①2sin ,2sin ,2sin a R A b R B c R C ===;②sin ,sin ,sin 222a b c A B C R R R ===;③sin sin sin ::::A B C a b c =.(5)三角形面积公式:=∆ABC S ____ ____=______ ___=_____ ___. (6)正弦定理的应用范围: ①已知两角和任一边,求其它两边和一角。

②已知两边和其中一边的对角,求另一边的对角。

2. 余弦定理: =2a _____________________;=2b ____________________; =2c _____________________.强调几个问题:(1)熟悉定理的结构,注意“平方”“夹角”“余弦”等;(2)知三求一;(3)当夹角为90 时,即三角形为直角三角形时即为勾股定理(特例);(4)变形:bc a c b A 2cos 222-+= acb c a B 2cos 222-+=ac c b a C 2cos 222-+=.(5)余弦定理的应用范围:①已知三边,求三个角;②已知两边和它们的夹角,求第三边和其他两个角.3. 解斜三角形(1).两角和任意一边,求其它两边和一角;(2).两边和其中一边对角,求另一边的对角,进而可求其它的边和角。

(见图示)已知a, b 和A, 用正弦定理求B 时的各种情况: ①若A 为锐角时:⎪⎪⎩⎪⎪⎨⎧≥<<=<)( b a ) ,( b a bsinA )( bsinA a sin 锐角一解一钝一锐二解直角一解无解A b a已知边a,b 和∠A有两个解仅有一个解无解CH=bsinA<a<b a=CH=bsinA a<CH=bsinA②若A 为直角或钝角时:⎩⎨⎧>≤)( b a 锐角一解无解b a三、基础检测:1. 在 中, ,则 等于( )A .B .C .D .2. 若 是 ( )A .等边三角形B .有一内角是30°C .等腰直角三角形D .有一内角是30°的等腰三角形 3. 在,面积,则BC 长为( )A .B .75C .51D .494.在 中,已知角 则角A 的值是( )A .15°B .75°C .105°D .75°或15°5. 中,sinB=23sin ,21=C ,则a :b :c 为( )A.1:3:2B.1:1:3C.1:2:3D.2:1:3或1:1:36. 如图,在△ABC 中,D 是边AC 上的点,且,2,2AB CD AB BC BD ===,则sin C 的值为A .3B .6C .3D .67.若的三个内角成等差数列,且最大边为最小边的2倍,则三内角之比为________。

高中数学《余弦定理》教案

高中数学《余弦定理》教案

高中数学《余弦定理》教案第一章:导入与概念介绍1.1 导入教师通过一个实际问题引入余弦定理的概念,例如在直角三角形中,斜边与两个直角边的关系。

引导学生思考如何用数学表达式来描述这个关系。

1.2 余弦定理的概念教师介绍余弦定理的定义,即在三角形中,任意一边的平方等于其他两边平方和与这两边乘积的余弦的两倍之和。

用数学表达式表示为:a^2 = b^2 + c^2 2bccosA。

第二章:证明与推导2.1 余弦定理的证明教师引导学生思考如何证明余弦定理。

通过画图和几何推理,引导学生理解并证明余弦定理。

可以使用三角形的正弦定理和余弦定理的平方关系来证明。

2.2 余弦定理的推导教师引导学生利用余弦定理推导出其他相关的定理,例如正弦定理。

引导学生理解余弦定理与其他定理之间的关系。

第三章:余弦定理的应用3.1 求解三角形的问题教师通过例题展示如何使用余弦定理求解三角形的问题。

引导学生运用余弦定理计算三角形的边长和角度。

3.2 求解三角形的面积教师引导学生利用余弦定理推导出三角形的面积公式,并引导学生运用该公式计算三角形的面积。

第四章:余弦定理的拓展4.1 余弦定理在几何中的应用教师引导学生思考余弦定理在几何中的应用,例如求解三角形的面积、角度等问题。

4.2 余弦定理在物理中的应用教师引导学生思考余弦定理在物理中的应用,例如振动问题、波动问题等。

第五章:巩固与练习5.1 巩固知识教师通过例题和练习题帮助学生巩固余弦定理的理解和应用。

引导学生运用余弦定理解决不同类型的问题。

5.2 练习题教师布置一些练习题,让学生独立完成,巩固对余弦定理的理解和应用。

第六章:解三角形问题6.1 解三角形的概念教师介绍解三角形的概念,即通过已知的三角形一边和两个角,求解其他两边和角度。

引导学生理解解三角形的重要性。

6.2 利用余弦定理解三角形教师通过例题展示如何利用余弦定理解三角形问题。

引导学生运用余弦定理计算三角形的边长和角度。

第七章:余弦定理与向量7.1 向量与余弦定理的关系教师介绍向量与余弦定理的关系,即向量的点积与余弦定理的关系。

高中数学余弦定理教案(优秀5篇)

高中数学余弦定理教案(优秀5篇)

高中数学余弦定理教案(优秀5篇)高中数学余弦定理教案篇一一、说教材(一)教材地位与作用《余弦定理》是必修5第一章《解三角形》的第一节内容,前面已经学习了正弦定理以及必修4中的任意角、诱导公式以及恒等变换,为后面学习三角函数奠定了基础,因此本节课有承上启下的作用。

本节课是解决有关斜三角形问题以及应用问题的一个重要定理,它将三角形的边和角有机地联系起来,实现了边与角的互化,从而使三角与几何产生联系,为求与三角形有关的量提供了理论依据,同时也为判断三角形形状,证明三角形中的有关等式提供了重要依据。

(二)教学目标根据上述教材内容分析以及新课程标准,考虑到学生已有的认知结构,心理特征及原有知识水平,我将本课的教学目标定为:⒈知识与技能:掌握余弦定理的内容及公式;能初步运用余弦定理解决一些斜三角形⒈过程与方法:在探究学习的过程中,认识到余弦定理可以解决某些与测量和几何计算有关的实际问题,帮助学生提高运用有关知识解决实际问题的能力。

⒈情感、态度与价值观:培养学生的探索精神和创新意识;在运用余弦定理的过程中,让学生逐步养成实事求是,扎实严谨的科学态度,学习用数学的思维方式解决问题,认识世界;通过本节的运用实践,体会数学的科学价值,应用价值;(三)本节课的重难点教学重点是:运用余弦定理探求任意三角形的边角关系,解决与之有关的计算问题,运用余弦定理解决一些与测量以及几何计算有关的实际问题。

教学难点是:灵活运用余弦定理解决相关的实际问题。

教学关键是:熟练掌握并灵活应用余弦定理解决相关的实际问题。

下面为了讲清重点、难点,使学生能达到本节设定的教学目标,我再从教法和学法上谈谈:二、说学情从知识层面上看,高中学生通过前一节课的学习已经掌握了余弦定理及其推导过程;从能力层面上看,学生初步掌握运用余弦定理解决一些简单的斜三角形问题的技能;从情感层面上看,学生对教学新内容的学习有相当的兴趣和积极性,但在探究问题的能力以及合作交流等方面的发展不够均衡。

高三数学第一轮复习讲解 正弦定理和余弦定理

高三数学第一轮复习讲解 正弦定理和余弦定理

课题:书法---写字基本知识课型:新授课教学目标:1、初步掌握书写的姿势,了解钢笔书写的特点。

2、了解我国书法发展的历史。

3、掌握基本笔画的书写特点。

重点:基本笔画的书写。

难点:运笔的技法。

教学过程:一、了解书法的发展史及字体的分类:1、介绍我国书法的发展的历史。

2、介绍基本书体:颜、柳、赵、欧体,分类出示范本,边欣赏边讲解。

二、讲解书写的基本知识和要求:1、书写姿势:做到“三个一”:一拳、一尺、一寸(师及时指正)2、了解钢笔的性能:笔头富有弹性;选择出水顺畅的钢笔;及时地清洗钢笔;选择易溶解的钢笔墨水,一般要固定使用,不能参合使用。

换用墨水时,要清洗干净;不能将钢笔摔到地上,以免笔头折断。

三、基本笔画书写1、基本笔画包括:横、撇、竖、捺、点等。

2、教师边书写边讲解。

3、学生练习,教师指导。

(姿势正确)4、运笔的技法:起笔按,后稍提笔,在运笔的过程中要求做到平稳、流畅,末尾处回锋收笔或轻轻提笔,一个笔画的书写要求一气呵成。

在运笔中靠指力的轻重达到笔画粗细变化的效果,以求字的美观、大气。

5、学生练习,教师指导。

(发现问题及时指正)四、作业:完成一张基本笔画的练习。

板书设计:写字基本知识、一拳、一尺、一寸我的思考:通过导入让学生了解我国悠久的历史文化,激发学生学习兴趣。

这是书写的起步,让学生了解书写工具及保养的基本常识。

基本笔画书写是整个字书写的基础,必须认真书写。

课后反思:学生书写的姿势还有待进一步提高,要加强训练,基本笔画也要加强训练。

课题:书写练习1课型:新授课教学目标:1、教会学生正确书写“杏花春雨江南”6个字。

2、使学生理解“杏花春雨江南”的意思,并用钢笔写出符合要求的的字。

重点:正确书写6个字。

难点:注意字的结构和笔画的书写。

教学过程:一、小结课堂内容,评价上次作业。

二、讲解新课:1、检查学生书写姿势和执笔动作(要求做到“三个一”)。

2、书写方法是:写一个字看一眼黑板。

(老师读,学生读,加深理解。

高三数学一轮复习精品教案8:4.6 正弦定理、余弦定理及解三角形教学设计

高三数学一轮复习精品教案8:4.6 正弦定理、余弦定理及解三角形教学设计

4.6 正弦定理、余弦定理及解三角形『教学目标』考查利用正弦定理、余弦定理解决实际问题中的角度、方向、距离及测量问题.『复习指导』1.本讲联系生活实例,体会建模过程,掌握运用正弦定理、余弦定理解决实际问题的基本方法.2.加强解三角形及解三角形的实际应用,培养数学建模能力.『基础梳理』1.用正弦定理和余弦定理解三角形的常见题型测量距离问题、高度问题、角度问题、计算面积问题、航海问题、物理问题等.2.实际问题中的常用角(1)仰角和俯角在视线和水平线所成的角中,视线在水平线上方的角叫仰角,在水平线下方的角叫俯角(如图(1)).(2)方位角指从正北方向顺时针转到目标方向线的水平角,如B点的方位角为α(如图(2)).(3)方向角:相对于某正方向的水平角,如南偏东30°,北偏西45°,西偏东60°等.(4)坡度:坡面与水平面所成的二面角的度数.一个步骤解三角形应用题的一般步骤:(1)阅读理解题意,弄清问题的实际背景,明确已知与未知,理清量与量之间的关系.(2)根据题意画出示意图,将实际问题抽象成解三角形问题的模型.(3)根据题意选择正弦定理或余弦定理求解.(4)将三角形问题还原为实际问题,注意实际问题中的有关单位问题、近似计算的要求等.两种情形解三角形应用题常有以下两种情形(1)实际问题经抽象概括后,已知量与未知量全部集中在一个三角形中,可用正弦定理或余弦定理求解.(2)实际问题经抽象概括后,已知量与未知量涉及到两个或两个以上的三角形,这时需作出这些三角形,先解够条件的三角形,然后逐步求解其他三角形,有时需设出未知量,从几个三角形中列出方程(组),解方程(组)得出所要求的解.『考向探究』考向一测量距离问题『例1』►如图所示,为了测量河对岸A,B两点间的距离,在这岸定一基线CD,现已测出CD=a和∠ACD=60°,∠BCD=30°,∠BDC=105°,∠ADC=60°,试求AB的长.『训练1』如图,A,B,C,D都在同一个与水平面垂直的平面内,B、D为两岛上的两座灯塔的塔顶,测量船于水面A处测得B点和D点的仰角分别为75°,30°,于水面C处测得B点和D点的仰角均为60°,AC=0.1 km.试探究图中B、D间距离与另外哪两点间距离相等,然后求B,D的距离.考向二测量高度问题『例2』►如图,山脚下有一小塔AB,在塔底B测得山顶C的仰角为60°,在山顶C测得塔顶A的俯角为45°,已知塔高AB=20 m,求山高CD.『训练2』如图所示,测量河对岸的塔高AB时,可以选与塔底B在同一水平面内的两个测点C与D,现测得∠BCD=α,∠BDC=β,CD=s,并在点C测得塔顶A的仰角为θ,求塔高AB.考向三正、余弦定理在平面几何中的综合应用『例3』►如图所示,在梯形ABCD中,AD∥BC,AB=5,AC=9,∠BCA=30°,∠ADB =45°,求BD的长.『训练3』如图,在△ABC中,已知∠B=45°,D是BC边上的一点,AD=10,AC=14,DC=6,求AB的长.规范解答——如何运用解三角形知识解决实际问『问题研究』1解三角形实际应用问题的一般步骤是:审题——建模准确地画出图形——求解——检验作答.2三角形应用题常见的类型:①实际问题经抽象概括后,已知量与未知量全部集中在一个三角形中,可用正弦定理或余弦定理解之;②实际问题经抽象概括后,已知量与未知量涉及两个三角形,这时需按顺序逐步在两个三角形中求出问题的解;③实际问题经抽象概括后,涉及的三角形只有一个,但由题目已知条件解此三角形需连续使用正弦定理或余弦定理.『解决方案』航海、测量问题利用的就是目标在不同时刻的位置数据,这些数据反映在坐标系中就构成了一些三角形,根据这些三角形就可以确定目标在一定的时间内的运动距离,因此解题的关键就是通过这些三角形中的已知数据把测量目标归入到一个可解三角形中.『示例』►(本题满分12分)如图,甲船以每小时302海里的速度向正北方航行,乙船按固定方向匀速直线航行.当甲船位于A1处时,乙船位于甲船的北偏西105°方向的B1处,此时两船相距20海里,当甲船航行20分钟到达A2处时,乙船航行到甲船的北偏西120°方向的B2处,此时两船相距102海里.问:乙船每小时航行多少海里?『试一试』如图所示,位于A处的信息中心获悉:在其正东方向相距40海里的B处有一艘渔船遇险,在原地等待营救.信息中心立即把消息告知在其南偏西30°、相距20海里的C 处的乙船,现乙船朝北偏东θ的方向即沿直线CB前往B处救援,求cos θ.答案『例1』『审题视点』 在△BCD 中,求出BC ,在△ABC 中,求出AB .解 在△ACD 中,已知CD =a ,∠ACD =60°,∠ADC =60°,所以AC =a .∵∠BCD =30°,∠BDC =105°∴∠CBD =45°在△BCD 中,由正弦定理可得BC =a sin 105°sin 45°=3+12a .在△ABC 中,已经求得AC 和BC ,又因为∠ACB =30°,所以利用余弦定理可以求得A ,B 两点之间的距离为AB =AC 2+BC 2-2AC ·BC ·cos 30°=22a . (1)利用示意图把已知量和待求量尽量集中在有关的三角形中,建立一个解三角形的模型.(2)利用正、余弦定理解出所需要的边和角,求得该数学模型的解. 『训练1』解 在△ACD 中,∠DAC =30°,∠ADC =60°-∠DAC =30°,所以CD =AC =0.1 km.又∠BCD =180°-60°-60°=60°,故CB 是△CAD 底边AD 的中垂线,所以BD =BA . 又∵∠ABC =15°在△ABC 中,AB sin ∠BCA =ACsin ∠ABC ,所以AB =AC sin 60°sin 15°=32+620(km),同理,BD =32+620(km).故B 、D 的距离为32+620 km.『例2』『审题视点』 过点C 作CE ∥DB ,延长BA 交CE 于点E ,在△AEC 中建立关系. 解如图,设CD =x m , 则AE =x -20 m ,tan 60°=CDBD,∴BD =CD tan 60°=x 3=33x (m). 在△AEC 中,x -20=33x , 解得x =10(3+3) m .故山高CD 为10(3+3) m.(1)测量高度时,要准确理解仰、俯角的概念;(2)分清已知和待求,分析(画出)示意图,明确在哪个三角形内应用正、余弦定理. 『训练2』解 在△BCD 中,∠CBD =π-α-β, 由正弦定理得BC sin ∠BDC =CDsin ∠CBD ,所以BC =CD sin ∠BDC sin ∠CBD =s ·sin βsin α+β在Rt △ABC 中,AB =BC tan ∠ACB =s tan θsin βsin α+β.『例3』『审题视点』 由于AB =5,∠ADB =45°,因此要求BD ,可在△ABD 中,由正弦定理求解,关键是确定∠BAD 的正弦值.在△ABC 中,AB =5,AC =9,∠ACB=30°,因此可用正弦定理求出sin ∠ABC ,再依据∠ABC 与∠BAD 互补确定sin ∠BAD 即可. 解 在△ABC 中,AB =5,AC =9,∠BCA =30°. 由正弦定理,得AB sin ∠ACB =AC sin ∠ABC ,sin ∠ABC =AC ·sin ∠BCA AB =9sin 30°5=910.∵AD ∥BC ,∴∠BAD =180°-∠ABC , 于是sin ∠BAD =sin ∠ABC =910. 同理,在△ABD 中,AB =5,sin ∠BAD =910,∠ADB =45°,由正弦定理:AB sin ∠BDA =BDsin ∠BAD,解得BD =922.故BD 的长为922.要利用正、余弦定理解决问题,需将多边形分割成若干个三角形,在分割时,要注意有利于应用正、余弦定理. 『训练3』解 在△ADC 中,AD =10, AC =14,DC =6,由余弦定理得cos ∠ADC =AD 2+DC 2-AC 22AD ·DC=100+36-1962×10×6=-12,∴∠ADC =120°,∴∠ADB =60°.在△ABD 中,AD =10,∠B =45°,∠ADB =60°, 由正弦定理得AB sin ∠ADB =AD sin B ,∴AB =AD ·sin ∠ADB sin B =10sin 60°sin 45°=10×3222=5 6. 『示例』(1)分清已知条件和未知条件(待求).(2)将问题集中到一个三角形中.(3)利用正、余弦定理求解.『解答示范』 如图,连接A 1B 2由已知A 2B 2=102,A 1A 2=302×2060=102,∴A 1A 2=A 2B 2. 又∠A 1A 2B 2=180°-120°=60°, ∴△A 1A 2B 2是等边三角形,∴A 1B 2=A 1A 2=10 2.由已知,A 1B 1=20, ∠B 1A 1B 2=105°-60°=45°,(8分) 在△A 1B 2B 1中,由余弦定理得B 1B 22=A 1B 21+A 1B 22-2A 1B 1·A 1B 2·cos 45°=202+(102)2-2×20×102×22=200, ∴B 1B 2=10 2.因此,乙船的速度为10220×60=302(海里/时).(12分)利用解三角形知识解决实际问题要注意根据条件画出示意图,结合示意图构造三角形,然后转化为解三角形的问题进行求解. 『试一试』『尝试解答』 如图所示,在△ABC 中,AB =40,AC =20,∠BAC =120°,由余弦定理,得BC 2=AB 2+AC 2-2AB ·AC ·cos 120°=2 800,所以BC =207.由正弦定理,得sin ∠ACB =AB BC ·sin ∠BAC =217. 由∠BAC =120°,知∠ACB 为锐角,故cos ∠ACB =277.故cos θ=cos(∠ACB +30°)=cos ∠ACB cos 30°-sin ∠ACB sin 30° =277×32-217×12=2114.。

人教版高中数学余弦定理教案

人教版高中数学余弦定理教案

人教版高中数学余弦定理教案一、教学目标1. 理解余弦定理的概念和意义,掌握余弦定理的表达式。

2. 能够运用余弦定理解决三角形中的边角关系问题。

3. 培养学生的逻辑思维能力和解决实际问题的能力。

二、教学内容1. 余弦定理的定义和表达式2. 余弦定理的应用3. 余弦定理在三角形中的证明三、教学重点与难点1. 重点:余弦定理的概念和意义,余弦定理的表达式。

2. 难点:运用余弦定理解决实际问题,余弦定理在三角形中的证明。

四、教学方法1. 采用问题驱动法,引导学生通过思考和讨论来理解和掌握余弦定理。

2. 通过举例和练习题,培养学生的实际应用能力。

3. 利用几何图形和动画演示,帮助学生直观地理解余弦定理。

五、教学过程1. 导入:通过一个实际问题,引导学生思考三角形中的边角关系。

2. 讲解:介绍余弦定理的定义和表达式,解释余弦定理的意义。

3. 演示:利用几何图形和动画演示余弦定理的应用和证明过程。

4. 练习:给出一些练习题,让学生运用余弦定理解决问题。

5. 总结:回顾本节课的内容,强调余弦定理的重要性和应用范围。

教案示例:一、教学目标1. 理解余弦定理的概念和意义,掌握余弦定理的表达式。

2. 能够运用余弦定理解决三角形中的边角关系问题。

3. 培养学生的逻辑思维能力和解决实际问题的能力。

二、教学内容1. 余弦定理的定义和表达式2. 余弦定理的应用3. 余弦定理在三角形中的证明三、教学重点与难点1. 重点:余弦定理的概念和意义,余弦定理的表达式。

2. 难点:运用余弦定理解决实际问题,余弦定理在三角形中的证明。

四、教学方法1. 采用问题驱动法,引导学生通过思考和讨论来理解和掌握余弦定理。

2. 通过举例和练习题,培养学生的实际应用能力。

3. 利用几何图形和动画演示,帮助学生直观地理解余弦定理。

五、教学过程1. 导入:通过一个实际问题,引导学生思考三角形中的边角关系。

问题:在三角形ABC中,已知边长AB=5,边长BC=8,角C=45°,求边长AC 的长度。

高三数学一轮 4.6 正弦定理和余弦定理导学案 理 北师大版

高三数学一轮 4.6 正弦定理和余弦定理导学案 理 北师大版

§4.6 正弦定理和余弦定理2014高考会这样考 1.考查正弦定理、余弦定理的推导;2.利用正、余弦定理判断三角形的形状和解三角形;3.在解答题中对正弦定理、余弦定理、面积公式以及三角函数中恒等变换、诱导公式等知识点进行综合考查.复习备考要这样做 1.理解正弦定理、余弦定理的意义和作用;2.通过正弦、余弦定理实现三角形中的边角转换,和三角函数性质相结合.1. 正弦定理:a sin A =b sin B =csin C=2R ,其中R 是三角形外接圆的半径.由正弦定理可以变形:(1)a ∶b ∶c =sin_A ∶sin _B ∶sin _C ;(2)a =2R sin_A ,b =2R sin_B ,c =2R sin_C ;(3)sin A =a 2R ,sin B =b 2R ,sin C =c2R 等形式,以解决不同的三角形问题.2. 余弦定理:a 2=b 2+c 2-2bc cos_A ,b 2=a 2+c 2-2ac cos_B ,c 2=a 2+b 2-2ab cos_C .余弦定理可以变形:cos A =b 2+c 2-a 22bc ,cos B =a 2+c 2-b 22ac ,cos C =a 2+b 2-c 22ab.3. S △ABC =12ab sin C =12bc sin A =12ac sin B =abc 4R =12(a +b +c )·r (r 是三角形内切圆的半径),并可由此计算R 、r .4. 在△ABC 中,已知a 、b 和A 时,解的情况如下:A 为锐角 A 为钝角或直角图形关系式 a =b sin Ab sin A <a <ba ≥ba >b解的个数一解两解一解一解1.在三角形中,大角对大边,大边对大角;大角的正弦值也较大,正弦值较大的角也较大,即在△ABC 中,A >B ⇔a >b ⇔sin A >sin B .2. 根据所给条件确定三角形的形状,主要有两种途径:(1)化边为角;(2)化角为边,并常用正弦(余弦)定理实施边、角转换.1. 在△ABC 中,若A =60°,a =3,则a +b +csin A +sin B +sin C=________.答案 2解析 由正弦定理及等比性质知a sin A =bsin B =c sin C =a +b +c sin A +sin B +sin C=2R ,而由A =60°,a =3, 得a +b +c sin A +sin B +sin C =2R =a sin A =3sin 60°=2.2. (2012·福建)已知△ABC 的三边长成公比为2的等比数列,则其最大角的余弦值为________. 答案 -24解析 设三角形的三边长从小到大依次为a ,b ,c , 由题意得b =2a ,c =2a . 在△ABC 中,由余弦定理得cos C =a 2+b 2-c 22ab =a 2+2a 2-4a 22×a ×2a=-24.3. (2012·重庆)设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且cos A =35,cos B =513,b =3,则c =________.答案145解析 在△ABC 中,∵cos A =35>0,∴sin A =45.∵cos B =513>0,∴sin B =1213.∴sin C =sin[π-(A +B )]=sin(A +B ) =sin A cos B +cos A sin B =45×513+35×1213=5665. 由正弦定理知b sin B =csin C ,∴c =b sin Csin B =3×56651213=145.4. (2011·课标全国)在△ABC 中,B =60°,AC =3,则AB +2BC 的最大值为________.答案 27 解析 由正弦定理知ABsin C =3sin 60°=BC sin A, ∴AB =2sin C ,BC =2sin A .又A +C =120°,∴AB +2BC =2sin C +4sin(120°-C ) =2(sin C +2sin 120°cos C -2cos 120°sin C ) =2(sin C +3cos C +sin C )=2(2sin C +3cos C )=27sin(C +α), 其中tan α=32,α是第一象限角, 由于0°<C <120°,且α是第一象限角, 因此AB +2BC 有最大值27.5. 已知圆的半径为4,a 、b 、c 为该圆的内接三角形的三边,若abc =162,则三角形的面积为( )A .2 2B .8 2 C. 2D.22答案 C解析 ∵a sin A =b sin B =c sin C =2R =8,∴sin C =c8,∴S △ABC =12ab sin C =116abc =116×162= 2.题型一 利用正弦定理解三角形例1 在△ABC 中,a =3,b =2,B =45°.求角A 、C 和边c .思维启迪:已知两边及一边对角或已知两角及一边,可利用正弦定理解这个三角形,但要注意解的个数的判断.解 由正弦定理得a sin A =b sin B ,3sin A =2sin 45°,∴sin A =32. ∵a >b ,∴A =60°或A =120°.当A =60°时,C =180°-45°-60°=75°,c =b sin C sin B =6+22; 当A =120°时,C =180°-45°-120°=15°,c =b sin C sin B =6-22.探究提高 (1)已知两角及一边可求第三角,解这样的三角形只需直接用正弦定理代入求解即可.(2)已知两边和一边对角,解三角形时,利用正弦定理求另一边的对角时要注意讨论该角,这是解题的难点,应引起注意.已知a ,b ,c 分别是△ABC 的三个内角A ,B ,C 所对的边,若a =1,b =3,A +C =2B ,则角A 的大小为________.答案π6解析 ∵A +C =2B 且A +B +C =π,∴B =π3.由正弦定理知:sin A =a sin Bb =12, 又a <b ,∴A <B ,∴A =π6.题型二 利用余弦定理求解三角形例2 在△ABC 中,a 、b 、c 分别是角A 、B 、C 的对边,且cos B cos C =-b2a +c.(1)求角B 的大小;(2)若b =13,a +c =4,求△ABC 的面积.思维启迪:由cos B cos C =-b2a +c ,利用余弦定理转化为边的关系求解.解 (1)由余弦定理知:cos B =a 2+c 2-b 22ac ,cos C =a 2+b 2-c 22ab.将上式代入cos B cos C =-b2a +c得:a 2+c 2-b 22ac ·2ab a 2+b 2-c 2=-b 2a +c, 整理得:a 2+c 2-b 2=-ac .∴cos B =a 2+c 2-b 22ac =-ac 2ac =-12.∵0<B <π,∴B =23π.(2)将b =13,a +c =4,B =23π代入b 2=a 2+c 2-2ac cos B ,得b 2=(a +c )2-2ac -2ac cos B ,∴13=16-2ac ⎝ ⎛⎭⎪⎫1-12,∴ac =3. ∴S △ABC =12ac sin B =334.探究提高 (1)根据所给等式的结构特点利用余弦定理将角化边进行变形是迅速解答本题的关键.(2)熟练运用余弦定理及其推论,同时还要注意整体思想、方程思想在解题过程中的运用.已知A ,B ,C 为△ABC 的三个内角,其所对的边分别为a ,b ,c ,且2cos2A2+cos A =0. (1)求角A 的值;(2)若a =23,b +c =4,求△ABC 的面积. 解 (1)由2cos 2A2+cos A =0,得1+cos A +cos A =0,即cos A =-12,∵0<A <π,∴A =2π3.(2)由余弦定理得,a 2=b 2+c 2-2bc cos A ,A =2π3,则a 2=(b +c )2-bc ,又a =23,b +c =4, 有12=42-bc ,则bc =4, 故S △ABC =12bc sin A = 3.题型三 正弦定理、余弦定理的综合应用例3 (2012·课标全国)已知a ,b ,c 分别为△ABC 三个内角A ,B ,C 的对边,a cos C +3a sin C -b -c =0. (1)求A ;(2)若a =2,△ABC 的面积为3,求b ,c .思维启迪:利用正弦定理将边转化为角,再利用和差公式可求出A ;面积公式和余弦定理相结合,可求出b ,c .解 (1)由a cos C +3a sin C -b -c =0及正弦定理得sin A cos C +3sin A sin C -sin B -sin C =0. 因为B =π-A -C ,所以3sin A sin C -cos A sin C -sin C =0.由于sin C ≠0,所以sin ⎝⎛⎭⎪⎫A -π6=12.又0<A <π,故A =π3.(2)△ABC 的面积S =12bc sin A =3,故bc =4.而a 2=b 2+c 2-2bc cos A ,故b 2+c 2=8. 解得b =c =2.探究提高 在已知关系式中,若既含有边又含有角.通常的思路是将角都化成边或将边都化成角,再结合正、余弦定理即可求角.在△ABC 中,内角A ,B ,C 所对的边长分别是a ,b ,c .(1)若c =2,C =π3,且△ABC 的面积为3,求a ,b 的值;(2)若sin C +sin(B -A )=sin 2A ,试判断△ABC 的形状. 解 (1)∵c =2,C =π3,∴由余弦定理c 2=a 2+b 2-2ab cos C 得a 2+b 2-ab =4. 又∵△ABC 的面积为3,∴12ab sin C =3,ab =4.联立方程组⎩⎪⎨⎪⎧a 2+b 2-ab =4,ab =4,解得a =2,b =2.(2)由sin C +sin(B -A )=sin 2A , 得sin(A +B )+sin(B -A )=2sin A cos A ,即2sin B cos A =2sin A cos A ,∴cos A ·(sin A -sin B )=0, ∴cos A =0或sin A -sin B =0, 当cos A =0时,∵0<A <π, ∴A =π2,△ABC 为直角三角形;当sin A -sin B =0时,得sin B =sin A , 由正弦定理得a =b , 即△ABC 为等腰三角形.∴△ABC 为等腰三角形或直角三角形.代数化简或三角运算不当致误典例:(12分)在△ABC 中,若(a 2+b 2)sin(A -B )=(a 2-b 2)·sin(A +B ),试判断△ABC 的形状.审题视角 (1)先对等式化简,整理成以单角的形式表示.(2)判断三角形的形状可以根据边的关系判断,也可以根据角的关系判断,所以可以从以 下两种不同方式切入:一、根据余弦定理,进行角化边;二、根据正弦定理,进行边化角. 规范解答解 ∵(a 2+b 2)sin(A -B )=(a 2-b 2)sin(A +B ),∴b 2[sin(A +B )+sin(A -B )]=a 2[sin(A +B )-sin(A -B )], ∴2sin A cos B ·b 2=2cos A sin B ·a 2, 即a 2cos A sin B =b 2sin A cos B .[4分]方法一 由正弦定理知a =2R sin A ,b =2R sin B , ∴sin 2A cos A sinB =sin 2B sin A cos B , 又sin A sin B ≠0,∴sin A cos A =sin B cos B , ∴sin 2A =sin 2B .[8分]在△ABC 中,0<2A <2π,0<2B <2π,∴2A =2B 或2A =π-2B ,∴A =B 或A +B =π2.∴△ABC 为等腰或直角三角形.[12分] 方法二 由正弦定理、余弦定理得:a 2b b 2+c 2-a 22bc =b 2a a 2+c 2-b 22ac,[6分]∴a 2(b 2+c 2-a 2)=b 2(a 2+c 2-b 2), ∴(a 2-b 2)(a 2+b 2-c 2)=0, ∴a 2-b 2=0或a 2+b 2-c 2=0.[10分] 即a =b 或a 2+b 2=c 2.∴△ABC 为等腰或直角三角形.[12分]温馨提醒 (1)利用正弦、余弦定理判断三角形形状时,对所给的边角关系式一般都要先化为纯粹的边之间的关系或纯粹的角之间的关系,再判断.(2)本题也可分析式子的结构特征,从式子看具有明显的对称性,可判断图形为等腰或直角三角形.(3)易错分析:①方法一中由sin 2A =sin 2B 直接得到A =B ,其实学生忽略了2A 与2B 互补的情况,由于计算问题出错而结论错误.方法二中由c 2(a 2-b 2)=(a 2+b 2)(a 2-b 2)不少同学直接得到c 2=a 2+b 2,其实是学生忽略了a 2-b 2=0的情况,由于化简不当致误.②结论表述不规范.正确结论是△ABC 为等腰三角形或直角三角形,而不少学生回答为:等腰直角三角形.高考中的解三角形问题典例:(12分)(2012·辽宁)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .角A ,B ,C 成等差数列. (1)求cos B 的值;(2)边a ,b ,c 成等比数列,求sin A sin C 的值.考点分析 本题考查三角形的性质和正弦定理、余弦定理,考查转化能力和运算求解能力.解题策略 根据三角形内角和定理可直接求得B ;利用正弦定理或余弦定理转化到只含角或只含边的式子,然后求解. 规范解答解 (1)由已知2B =A +C ,A +B +C =180°,解得B =60°, 所以cos B =12.[4分](2)方法一 由已知b 2=ac ,及cos B =12,根据正弦定理得sin 2B =sin A sin C ,[8分] 所以sin A sin C =1-cos 2B =34.[12分]方法二 由已知b 2=ac ,及cos B =12,根据余弦定理得cos B =a 2+c 2-b 22ac =a 2+c 2-ac 2ac =12,解得a =c ,[8分]所以A =C =B =60°,故sin A sin C =34.[12分]解后反思 (1)在解三角形的有关问题中,对所给的边角关系式一般要先化为只含边之间的关系或只含角之间的关系,再进行判断.(2)在求解时要根据式子的结构特征判断使用哪个定理以及变形的方向.方法与技巧1.应熟练掌握和运用内角和定理:A +B +C =π,A2+B 2+C 2=π2中互补和互余的情况,结合诱导公式可以减少角的种数.2.正、余弦定理的公式应注意灵活运用,如由正、余弦定理结合得sin 2A =sin 2B +sin 2C - 2sin B ·sin C ·cos A ,可以进行化简或证明. 失误与防范1.在利用正弦定理解已知三角形的两边和其中一边的对角求另一边的对角,进而求出其他的边和角时,有时可能出现一解、两解,所以要进行分类讨论.2.利用正、余弦定理解三角形时,要注意三角形内角和定理对角的范围的限制.A 组 专项基础训练 (时间:35分钟,满分:57分)一、选择题(每小题5分,共20分)1. (2012·广东)在△ABC 中,若∠A =60°,∠B =45°,BC =32,则AC 等于( ) A .4 3B .2 3C. 3D.32答案 B解析 在△ABC 中,AC sin B =BCsin A , ∴AC =BC ·sin Bsin A =32×2232=2 3.2. (2011·浙江)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .若a cos A =b sin B ,则sin A cos A +cos 2B 等于( ) A .-12B.12C .-1D .1答案 D解析 ∵a cos A =b sin B ,∴sin A cos A =sin B sin B , 即sin A cos A -sin 2B =0,∴sin A cos A -(1-cos 2B )=0, ∴sin A cos A +cos 2B =1.3. 在△ABC 中,a ,b ,c 分别为角A ,B ,C 所对的边,若a =2b cos C ,则此三角形一定是( )A .等腰直角三角形B .直角三角形C .等腰三角形D .等腰三角形或直角三角形答案 C解析 因为a =2b cos C ,所以由余弦定理得a =2b ·a 2+b 2-c 22ab,整理得b 2=c 2,因此三角形一定是等腰三角形.4. (2012·湖南)△ABC 中,AC =7,BC =2,B =60°,则BC 边上的高等于( )A.32B.332C.3+62D.3+394答案 B解析 设AB =a ,则由AC 2=AB 2+BC 2-2AB ·BC cos B 知7=a 2+4-2a ,即a 2-2a -3=0,∴a =3(负值舍去). ∴BC 边上的高为AB ·sin B =3×32=332. 二、填空题(每小题5分,共15分)5. (2011·北京)在△ABC 中,若b =5,∠B =π4,sin A =13,则a =________.答案523解析 根据正弦定理应有a sin A =bsin B, ∴a =b sin Asin B =5×1322=523.6. (2011·福建)若△ABC 的面积为3,BC =2,C =60°,则边AB 的长度等于________.答案 2解析 由于S △ABC =3,BC =2,C =60°, ∴3=12×2·AC ·32,∴AC =2,∴△ABC 为正三角形.∴AB =2.7. 在△ABC 中,若AB =5,AC =5,且cos C =910,则BC =________.答案 4或5解析 设BC =x ,则由余弦定理AB 2=AC 2+BC 2-2AC ·BC cos C 得5=25+x 2-2·5·x ·910,即x 2-9x +20=0,解得x =4或x =5.三、解答题(共22分)8. (10分)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且满足cos A 2=255,AB →·AC→=3.(1)求△ABC 的面积; (2)若b +c =6,求a 的值.解 (1)∵cos A 2=255,∴cos A =2cos 2A 2-1=35,∴sin A =45.又AB →·AC →=3,∴bc cos A =3,∴bc =5.∴S △ABC =12bc sin A =12×5×45=2.(2)由(1)知,bc =5,又b +c =6, 根据余弦定理得a 2=b 2+c 2-2bc cos A =(b +c )2-2bc -2bc cos A=36-10-10×35=20,∴a =2 5.9. (12分)在△ABC 中,a 、b 、c 分别为角A 、B 、C 的对边,4sin2B +C2-cos 2A =72. (1)求A 的度数;(2)若a =3,b +c =3,求b 、c 的值. 解 (1)∵B +C =π-A ,即B +C 2=π2-A2,由4sin2B +C2-cos 2A =72,得4cos 2A 2-cos 2A =72,即2(1+cos A )-(2cos 2A -1)=72,整理得4cos 2A -4cos A +1=0,即(2cos A -1)2=0. ∴cos A =12,又0°<A <180°,∴A =60°.(2)由A =60°,根据余弦定理cos A =b 2+c 2-a 22bc ,即b 2+c 2-a 22bc =12,得b 2+c 2-bc =3,①又b +c =3,② ∴b 2+c 2+2bc =9.③ ①-③整理得bc =2.④解②④联立方程组得⎩⎪⎨⎪⎧b =1,c =2,或⎩⎪⎨⎪⎧b =2,c =1.B 组 专项能力提升 (时间:25分钟,满分:43分)一、选择题(每小题5分,共15分)1. (2012·上海)在△ABC 中,若sin 2A +sin 2B <sin 2C ,则△ABC 的形状是( )A .钝角三角形B .直角三角形C .锐角三角形D .不能确定答案 A解析 由正弦定理知a sin A =b sin B =csin C =2R ,∴sin A =a 2R ,sin B =b 2R ,sin C =c2R .∵sin 2A +sin 2B <sin 2C ,∴a 24R 2+b 24R 2<c 24R2,∴a 2+b 2<c 2, ∴cos C =a 2+b 2-c 22ab<0,∴C 为钝角,∴△ABC 为钝角三角形.2. (2011·辽宁)△ABC 的三个内角A ,B ,C 所对的边分别为a ,b ,c ,a sin A sin B +b cos 2A=2a ,则ba等于 ( )A .2 3B .2 2C. 3D. 2答案 D解析 ∵a sin A sin B +b cos 2A =2a , ∴sin A sin A sinB +sin B cos 2A =2sin A ,∴sin B =2sin A ,∴b a =sin Bsin A= 2.3. (2012·湖北)设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若三边的长为连续的三个正整数,且A >B >C,3b =20a cos A ,则sin A ∶sin B ∶sin C 为( )A .4∶3∶2B .5∶6∶7C .5∶4∶3D .6∶5∶4答案 D解析 ∵A >B >C ,∴a >b >c .设a =b +1,c =b -1,由3b =20a cos A 得3b =20(b +1)×b 2+b -12-b +122b b -1.化简,得7b 2-27b -40=0.解得b =5或b =-87(舍去),∴a =6,c =4.∴sin A ∶sin B ∶sin C =6∶5∶4. 二、填空题(每小题5分,共15分)4. 在△ABC 中,a 、b 、c 分别为∠A 、∠B 、∠C 的对边长,已知a ,b ,c 成等比数列,且a 2-c 2=ac -bc ,则∠A =________,△ABC 的形状为__________.答案 60° 正三角形解析 ∵a ,b ,c 成等比数列,∴b 2=ac . 又a 2-c 2=ac -bc ,∴b 2+c 2-a 2=bc .在△ABC 中,由余弦定理得cos A =b 2+c 2-a 22bc =bc 2bc =12,∴∠A =60°.由b 2=ac ,即a =b 2c,代入a 2-c 2=ac -bc ,整理得(b -c )(b 3+c 3+cb 2)=0, ∴b =c .∴△ABC 为正三角形.5. 在△ABC 中,若∠A =60°,b =1,S △ABC =3,则a +b +csin A +sin B +sin C的值为________.答案2393解析 ∵S △ABC =3,即12bc sin A =3,∴c =4.由余弦定理a 2=b 2+c 2-2bc cos A =13,∴a =13, ∴a +b +c sin A +sin B +sin C =a sin A =2133=2393.6. 在锐角△ABC 中,角A 、B 、C 的对边分别为a 、b 、c .若b a +a b =6cos C ,则tan C tan A +tan C tan B的值是______. 答案 4解析 由b a +a b=6cos C ,得b 2+a 2=6ab cos C . 化简整理得2(a 2+b 2)=3c 2,将tan C tan A +tan C tan B 切化弦,得sin C cos C ·(cos A sin A +cos B sin B )=sin C cos C ·sin A +Bsin A sin B=sin C cos C ·sin C sin A sin B =sin 2C cos C sin A sin B . 根据正、余弦定理得sin 2Ccos C sin A sin B =c 2ab ·a 2+b 2-c 22ab =2c 2a 2+b 2-c 2=2c232c 2-c2=4. 三、解答题7. (13分)(2012·浙江)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .已知cos A =23,sin B =5cos C . (1)求tan C 的值;(2)若a =2,求△ABC 的面积. 解 (1)因为0<A <π,cos A =23,得sin A =1-cos 2A =53. 又5cos C =sin B =sin(A +C ) =sin A cos C +cos A sin C =53cos C +23sin C , 所以tan C = 5.(2)由tan C =5,得sin C =56,cos C =16.于是sin B =5cos C =56,由a =2及正弦定理a sin A =csin C ,得c = 3.设△ABC 的面积为S ,则S =12ac sin B =52.。

关于高中数学余弦定理教案5篇

关于高中数学余弦定理教案5篇

关于高中数学余弦定理教案5篇关于高中数学余弦定理教案5篇通过编写教案,教师可以清晰地规划教学内容、目标和步骤,确保教学的有序进行。

下面是小编为大家整理的高中数学余弦定理教案,如果大家喜欢可以分享给身边的朋友。

高中数学余弦定理教案(精选篇1)一、教材分析《余弦定理》选自人教A版高中数学必修五第一章第一节第一课时。

本节课的主要教学内容是余弦定理的内容及证明,以及运用余弦定理解决“两边一夹角”“三边”的解三角形问题。

余弦定理的学习有充分的基础,初中的勾股定理、必修一中的向量知识、上一课时的正弦定理都是本节课内容学习的知识基础,同时又对本节课的学习提供了一定的方法指导。

其次,余弦定理在高中解三角形问题中有着重要的地位,是解决各种解三角形问题的常用方法,余弦定理也经常运用于空间几何中,所以余弦定理是高中数学学习的一个十分重要的内容。

二、教学目标知识与技能:1、理解并掌握余弦定理和余弦定理的推论。

2、掌握余弦定理的推导、证明过程。

3、能运用余弦定理及其推论解决“两边一夹角”“三边”问题。

过程与方法:1、通过从实际问题中抽象出数学问题,培养学生知识的迁移能力。

2、通过直角三角形到一般三角形的过渡,培养学生归纳总结能力。

3、通过余弦定理推导证明的过程,培养学生运用所学知识解决实际问题的能力。

情感态度与价值观:1、在交流合作的过程中增强合作探究、团结协作精神,体验解决问题的成功喜悦。

2、感受数学一般规律的美感,培养数学学习的兴趣。

三、教学重难点重点:余弦定理及其推论和余弦定理的运用。

难点:余弦定理的发现和推导过程以及多解情况的判断。

四、教学用具普通教学工具、多媒体工具(以上均为命题教学的准备)高中数学余弦定理教案(精选篇2)一、教材分析1.地位及作用余弦定理是人教A版数学必修5主要内容之一,是解决有关斜三角形问题的两个重要定理之一,也是初中勾股定理内容的直接延拓,它是三角函数一般知识和平面向量知识在三角形中的具体运用,是解可转化为三角形计算问题的其它数学问题及生产、生活实际问题的重要工具具有广泛的应用价值,起到承上启下的作用。

高三第一轮复习正余弦定理教案

高三第一轮复习正余弦定理教案

高三新数学第一轮复习教案---------正、余弦定理及应用一.课标要求:(1)通过对任意三角形边长和角度关系的探索,掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题;(2)能够运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的实际问题。

二.命题走向对本讲内容的考察主要涉及三角形的边角转化、三角形形状的判断、三角形内三角函数的求值以及三角恒等式的证明问题,立体几何体的空间角以及解析几何中的有关角等问题。

今后高考的命题会以正弦定理、余弦定理为知识框架,以三角形为主要依托,结合实际应用问题考察正弦定理、余弦定理及应用。

题型一般为选择题、填空题,也可能是中、难度的解答题。

三.要点精讲1.直角三角形中各元素间的关系:如图,在△ABC 中,C =90°,AB =c ,AC =b ,BC =a 。

(1)三边之间的关系:a 2+b 2=c 2。

(勾股定理)(2)锐角之间的关系:A +B =90°;(3)边角之间的关系:(锐角三角函数定义)sin A =cos B =c a ,cos A =sin B =c b ,tan A =ba 。

2.斜三角形中各元素间的关系:如图6-29,在△ABC 中,A 、B 、C 为其内角,a 、b 、c 分别表示A 、B 、C 的对边。

(1)三角形内角和:A +B +C =π。

sin()A B +=sin C ;cos()A B +=cos C -(2)正弦定理:在一个三角形中,各边和它所对角的正弦的比相等。

形式一:R C c B b A a 2sin sin sin === (解三角形的重要工具)形式二:⎪⎩⎪⎨⎧===C R c B R b A R a sin 2sin 2sin 2 (边角转化的重要工具) (R 为外接圆半径)(3)余弦定理:三角形任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦的积的两倍。

形式一:a 2=b 2+c 2-2bc cos A ;b 2=c 2+a 2-2ca cos B ;c 2=a 2+b 2-2ab cos C 。

高考数学一轮复习 第四章 三角函数、解三角形 第6讲 正弦定理和余弦定理教学案 理

高考数学一轮复习 第四章 三角函数、解三角形 第6讲 正弦定理和余弦定理教学案 理

第6讲 正弦定理和余弦定理一、知识梳理1.正弦定理和余弦定理定理正弦定理余弦定理内容a sin A =b sin B =csin C =2R (R 为△ABC 外接圆半径)a 2=b 2+c 2-2bc cos_A ; b 2=c 2+a 2-2ca cos_B ; c 2=a 2+b 2-2ab cos_C变形形式a =2R sin_A ,b =2R sin_B ,c =2R sin_C ;sin A =a 2R ,sin B =b2R,sin C =c2R; a ∶b ∶c =sin_A ∶sin_B ∶sin_C ; a +b +c sin A +sin B +sin C =asin Acos A =b 2+c 2-a 22bc ;cos B =c 2+a 2-b 22ca ;cos C =a 2+b 2-c 22ab2.三角形解的判断A 为锐角 A 为钝角或直角图形关系式 a =b sin Ab sin A <a <ba ≥ba >b解的个数一解两解一解一解(1)S =12ah (h 表示边a 上的高).(2)S =12bc sin A =12ac sin_B =12ab sin C .(3)S =12r (a +b +c )(r 为三角形的内切圆半径).常用结论1.三角形内角和定理 在△ABC 中,A +B +C =π; 变形:A +B 2=π2-C2.2.三角形中的三角函数关系 (1)sin(A +B )=sin C ; (2)cos(A +B )=-cos C ; (3)sinA +B2=cos C 2;(4)cosA +B2=sin C2.3.三角形中的射影定理在△ABC 中,a =b cos C +c cos B ;b =a cos C +c cos A ; c =b cos A +a cosB .二、教材衍化1.在△ABC 中,AB =5,AC =3,BC =7,则∠BAC =( ) A.π6 B .π3C.2π3D .5π6解析:选C.因为在△ABC 中,设AB =c =5,AC =b =3,BC =a=7,所以由余弦定理得cos ∠BAC =b 2+c 2-a 22bc =9+25-4930=-12,因为∠BAC 为△ABC 的内角,所以∠BAC =23π.2.在△ABC 中,A =60°,AC =4,BC =23,则△ABC 的面积等于________.解析:因为23sin 60°=4sin B ,所以sin B =1,所以B =90°,所以AB =2,所以S △ABC =12×2×23=2 3.答案:23 一、思考辨析判断正误(正确的打“√”,错误的打“×”)(1)在△ABC 中,已知a ,b 和角B ,能用正弦定理求角A ;已知a ,b 和角C ,能用余弦定理求边c .( )(2)在三角形中,已知两角和一边或已知两边和一角都能解三角形.( )(3)在△ABC 中,sin A >sin B 的充分不必要条件是A >B .( ) (4)在△ABC 中,a 2+b 2<c 2是△ABC 为钝角三角形的充分不必要条件.( )(5)在△ABC 的角A ,B ,C ,边长a ,b ,c 中,已知任意三个可求其他三个.( )答案:(1)√ (2)√ (3)× (4)√ (5)×二、易错纠偏常见误区|K(1)利用正弦定理求角时解的个数弄错; (2)在△ABC 中角与角的正弦关系弄错; (3)判断三角形形状时弄错.1.在△ABC 中,已知b =40,c =20,C =60°,则此三角形的解的情况是( )A .有一解B .有两解C .无解D .有解但解的个数不确定解析:选C.由正弦定理得b sin B =csin C ,所以sin B =b sin Cc =40×3220=3>1.所以角B 不存在,即满足条件的三角形不存在.2.在△ABC 中,若sin A =sin B ,则A ,B 的关系为________;若sin A >sin B ,则A ,B 的关系为________.解析:sin A =sin B ⇔a =b ⇔A =B ; sin A >sin B ⇔a >b ⇔A >B . 答案:A =B A >B3.在△ABC 中,a cos A =b cos B ,则这个三角形的形状为________.解析:由正弦定理,得sin A cos A =sin B cos B , 即sin 2A =sin 2B ,所以2A =2B 或2A =π-2B , 即A =B 或A +B =π2,所以这个三角形为等腰三角形或直角三角形. 答案:等腰三角形或直角三角形利用正、余弦定理求解三角形(多维探究) 角度一 求边长(一题多解)在△ABC 中,内角A ,B ,C 的对边a ,b ,c成公差为2的等差数列,C =120°.(1)求边长a ;(2)求AB 边上的高CD 的长.【解】 (1)由题意得b =a +2,c =a +4,由余弦定理cos C =a 2+b 2-c 22ab 得cos 120°=a 2+(a +2)2-(a +4)22a (a +2),即a 2-a -6=0,所以a =3或a =-2(舍去),所以a =3.(2)法一:由(1)知a =3,b =5,c =7, 由三角形的面积公式得 12ab sin ∠ACB =12c ×CD ,所以CD =ab sin ∠ACBc =3×5×327=15314,即AB 边上的高CD =15314.法二:由(1)知a =3,b =5,c =7,由正弦定理得3sin A =7sin ∠ACB =7sin 120°,即sin A =3314,在Rt △ACD 中,CD =AC sin A =5×3314=15314,即AB 边上的高CD =15314.角度二 求角度(2019·高考全国卷Ⅰ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,设(sin B -sin C )2=sin 2A -sinB sinC .(1)求A ;(2)若2a +b =2c ,求sin C .【解】 (1)由已知得sin 2B +sin 2C -sin 2A =sinB sinC ,故由正弦定理得b 2+c 2-a 2=bc .由余弦定理得cos A =b 2+c 2-a 22bc =12.因为0°<A <180°,所以A =60°.(2)由(1)知B =120°-C ,由题设及正弦定理得2sin A +sin(120°-C )=2sin C ,即62+32cos C +12sin C =2sin C ,可得cos(C +60°)=-22.由于0°<C <120°,所以sin(C +60°)=22,故sin C =sin(C +60°-60°)=sin(C +60°)cos 60°-cos(C +60°)sin 60° =6+24.(1)正弦定理、余弦定理的作用是在已知三角形部分元素的情况下求解其余元素,基本思想是方程思想,即根据正弦定理、余弦定理列出关于未知元素的方程,通过解方程求得未知元素.(2)正弦定理、余弦定理的另一个作用是实现三角形边角关系的互化,解题时可以把已知条件化为角的三角函数关系,也可以把已知条件化为三角形边的关系.(3)涉及最值问题时,常利用基本不等式或表示为三角形的某一内角的三角函数形式求解.1.(2020·安徽安庆二模)若△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,已知b sin 2A =a sin B ,且c =2b ,则ab等于 ( )A.32 B .43C. 2 D .3解析:选D.由b sin 2A =a sin B ,及正弦定理得2sin B sin A cos A =sin A sin B ,得cos A =12.又c =2b ,所以由余弦定理得a 2=b 2+c 2-2bc cos A =b 2+4b 2-4b 2×12=3b 2,得a b= 3.故选D.2.(2020·河南郑州一模)在△ABC 中,三内角A ,B ,C 的对边分别为a ,b ,c ,且b 2+c 2-3bc =a 2,bc =3a 2,则角C 的大小是( )A.π6或2π3 B .π3C.2π3D .π6解析:选A.由b 2+c 2-3bc =a 2,得b 2+c 2-a 2=3bc ,则cosA =b 2+c 2-a 22bc =3bc 2bc =32,则A =π6,由bc =3a 2,得sin B sin C =3sin 2A =3×14=34,即4sin(π-C -A )sin C =3,即4sin(C +A )sin C =4sin ⎝ ⎛⎭⎪⎫C +π6sin C =3,即4⎝⎛⎭⎪⎪⎫32sin C +12cos C sin C =23sin 2C +2sin C cos C =3,即3(1-cos 2C )+sin 2C =3-3cos 2C +sin 2C =3,则- 3 cos 2C +sin 2C =0,则3cos 2C =sin 2C ,则tan 2C =3, 即2C =π3或4π3,即C =π6或2π3,故选A.判断三角形的形状(典例迁移)(2020·重庆六校联考)在△ABC 中,cos 2B 2=a +c 2c(a ,b ,c分别为角A ,B ,C 的对边),则△ABC 的形状为( )A .直角三角形B .等边三角形C .等腰三角形D .等腰三角形或直角三角形【解析】 已知等式变形得cos B +1=a c +1,即cos B =a c①.由余弦定理得cos B =a 2+c 2-b 22ac ,代入①得a 2+c 2-b 22ac =ac ,整理得b 2+a 2=c 2,即C 为直角,则△ABC 为直角三角形.【答案】 A【迁移探究1】 (变条件)将“cos 2B 2=a +c2c”改为“c -a cos B=(2a -b )cos A ”,试判断△ABC 的形状.解:因为c -a cos B =(2a -b )cos A ,C =π-(A +B ),所以由正弦定理得sin C -sin A cos B =2sin A cos A -sin B cosA ,所以sin A cos B +cos A sin B -sin A cos B =2sin A cos A -sin B cos A ,所以cos A (sin B -sin A )=0, 所以cos A =0或sin B =sin A , 所以A =π2或B =A 或B =π-A (舍去),所以△ABC 为等腰或直角三角形.【迁移探究2】 (变条件)将“cos 2B 2=a +c 2c ”改为“sin Asin B=ac,(b +c +a )(b +c -a )=3bc ”,试判断△ABC 的形状. 解:因为sin A sin B =a c ,所以a b =ac ,所以b =c .又(b +c +a )(b +c -a )=3bc , 所以b 2+c 2-a 2=bc ,所以cos A =b 2+c 2-a 22bc =bc 2bc =12.因为A ∈(0,π),所以A =π3,所以△ABC 是等边三角形.(1)判定三角形形状的2种常用途径 (2)判定三角形形状的3个注意点①“角化边”后要注意用因式分解、配方等方法得出边的相应关系;②“边化角”后要注意用三角恒等变换公式、三角形内角和定理及诱导公式推出角的关系;③还要特别注意“等腰直角三角形”与“等腰三角形或直角三角形”的区别.(2020·河南洛阳一模)在△ABC 中,已知2a cos B=c, sin A sin B (2-cos C )=sin 2C 2+12,则△ABC 为( )A .等边三角形B .等腰直角三角形C .锐角非等边三角形D .钝角三角形解析:选B.将已知等式2a cos B =c 利用正弦定理化简得2sinA cosB =sinC ,因为sin C =sin ()A +B =sin A cos B +cos A sin B , 所以2sin A cos B =sin A cos B +cos A sin B , 即sin A cos B -cos A sin B =sin(A -B )=0, 因为A 与B 都为△ABC 的内角, 所以A -B =0,即A =B .因为sin A sin B (2-cos C )=sin 2C 2+12,所以sin A sin B (2-cos C )=12(1-cos C )+12=1-12cos C ,所以-12[]cos ()A +B -cos (A -B )(2-cos C )=1-12cos C ,所以-12(-cos C -1)(2-cos C )=1-12cos C ,即(cos C +1)(2-cos C )=2-cos C ,整理得cos 2C -2cos C =0,即cos C (cos C -2)=0,所以cosC =0或cos C =2(舍去),所以C =90°,则△ABC 为等腰直角三角形,故选B.与三角形面积有关的问题(师生共研)(2019·高考全国卷Ⅲ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知a sinA +C2=b sin A .(1)求B ;(2)若△ABC 为锐角三角形,且c =1,求△ABC 面积的取值范围.【解】 (1)由题设及正弦定理得 sin A sinA +C2=sin B sin A .因为sin A ≠0,所以sin A +C2=sin B .由A +B +C =180°, 可得sinA +C2=cos B 2,故cos B 2=2sin B 2cos B2.因为cos B 2≠0,故sin B 2=12,因此B =60°.(2)由题设及(1)知△ABC 的面积S △ABC =34a .由正弦定理得a =c sin A sin C =sin (120°-C )sin C =32tan C +12.由于△ABC 为锐角三角形,故0°<A <90°,0°<C <90°. 由(1)知A +C =120°,所以30°<C <90°,故12<a <2,从而38<S △ABC <32. 因此,△ABC面积的取值范围是⎝⎛⎭⎪⎪⎫38,32.求解三角形面积问题的基本思维(1)若已知一个角(角的大小或该角的正弦值,余弦值),一般结合题意求这个角的两边或两边之积,再代入公式求解;(2)若已知三边,可先求一个角的余弦值,再求正弦值,最后代入公式得面积;(3)若求面积的最值,一般表示为一个内角的三角函数,利用三角函数的性质求解,也可结合基本不等式求解.1.(2020·福建厦门一模)在△ABC 中,cos B =14,b =2,sinC =2sin A ,则△ABC 的面积等于( )A.14 B .12C.32D .154解析:选D.在△ABC 中,cos B =14,b =2,sin C =2sin A ,由正弦定理得c =2a ;由余弦定理得b 2=a 2+c 2-2ac ·cos B =a2+4a 2-2a ·2a ·14=4a 2=4,解得a =1,可得c =2,所以△ABC 的面积为S =12ac sin B =12×1×2×1-⎝ ⎛⎭⎪⎫142=154.故选D. 2.(2020·陕西汉中一模)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,3b sin A =a ·(2-cos B ).(1)求角B 的大小;(2)D 为边AB 上一点,且满足CD =2,AC =4,锐角三角形△ACD 的面积为15,求BC 的长.解:(1)由正弦定理得3sin B sin A =sin A (2-cos B ), 因为A ∈(0,π),则sin A >0,所以3sin B =2-cos B , 所以2sin ⎝ ⎛⎭⎪⎫B +π6=2,所以sin ⎝⎛⎭⎪⎫B +π6=1,因为B ∈(0,π),所以B +π6=π2,解得B =π3.(2)由题意,可得S △ACD =12CD ·CA sin ∠ACD=12×2×4sin ∠ACD =15,解得sin ∠ACD =154.又因为△ACD 为锐角三角形,所以cos ∠ACD =1-sin 2∠ACD =14,在△ACD 中,由余弦定理得AD 2=CA 2+CD 2-2CA ·CD ·cos ∠ACD =42+22-2×2×4×14=16,所以AD =4,在△ACD 中,由正弦定理得CD sin A =ADsin ∠ACD,则sin A =CD AD ·sin ∠ACD =158,在△ABC 中,由正弦定理得BC sin A =ACsin B,所以BC =AC sin Asin B= 5.三角形中最值问题一、求角的三角函数的最值若△ABC 的内角满足sin A +2sin B =2sin C ,则cos C 的最小值是________.【解析】 由sin A +2sin B =2sin C ,结合正弦定理可得a +2b =2c ,所以cos C =a 2+b 2-c 22ab =3a 2+2b 28ab -24≥6-24( 3a = 2b 时取等号),故cos C 的最小值是6-24.【答案】6-24在△ABC 中,a 2+c 2=b 2+2ac . (1)求B 的大小;(2)求2cos A +cos C 的最大值. 【解】 (1)由余弦定理和已知条件可得cos B =a 2+c 2-b 22ac =2ac 2ac =22,又因为0<B <π,所以B =π4.(2)由(1)知A +C =3π4,所以2cos A +cos C =2cos A +cos ⎝ ⎛⎭⎪⎫3π4-A=2cos A -22cos A +22sin A=22cos A +22sin A =cos ⎝⎛⎭⎪⎫A -π4.因为0<A <3π4,所以当A =π4时,2cos A +cos C 取得最大值1.此类问题主要考查余弦定理、三角形内角和定理、辅助角公式以及三角函数的最值和基本不等式;解此类问题的关键是熟练地运用余弦定理、两角差的正余弦公式以及辅助角公式.二、求边的最值(1)在△ABC 中,B =60°,AC =3,则AB +2BC 的最大值为________.(2)如图,四边形ABCD 的对角线交点位于四边形的内部,AB =BC =1,AC =CD ,AC ⊥CD ,当∠ABC 变化时,BD 的最大值为________.【解析】 (1)因为BC sin A =AB sin C =ACsin B =3sin 60°,所以AB =2sin C ,BC =2sin A ,因此AB +2BC =2sin C +4sin A =2sin ⎝ ⎛⎭⎪⎫2π3-A +4sin A =5sin A +3cos A =27sin(A +φ),因为φ∈(0,2π),A ∈⎝⎛⎭⎪⎫0,2π3,所以AB +2BC 的最大值为27.(2)设∠ACB =θ⎝⎛⎭⎪⎫0<θ<π2,则∠ABC =π-2θ,∠DCB =θ+π2,由余弦定理可知,AC 2=AB 2+BC 2-2AB ·BC cos ∠ABC ,即AC =DC =2+2cos 2θ=2cos θ⎝⎛⎭⎪⎫0<θ<π2,由余弦定理知,BD 2=BC2+DC 2-2BC ·DC cos ∠DCB ,即BD 2=4cos 2θ+1-2×1×2cosθ·cos ⎝⎛⎭⎪⎫θ+π2=2cos 2θ+2sin 2θ+3=22sin ⎝⎛⎭⎪⎫2θ+π4+3.由0<θ<π2,可得π4<2θ+π4<5π4,则()BD 2max =22+3,此时θ=π8,因此(BD )max =2+1.【答案】 (1)27 (2)2+1边的最值一般通过三角形中的正、余弦定理将边转化为角的三角函数值,再结合角的范围求解.有时也可利用均值不等式求解.三、求三角形面积的最值在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且2c cosB =2a +b ,若△ABC 的面积S =3c ,则ab 的最小值为________.【解析】 在△ABC 中,2c cos B =2a +b ,由正弦定理,得2sinC cos B =2sin A +sinB .又A =π-(B +C ),所以sin A =sin [π-(B +C )]=sin(B +C ),所以2sin C cos B =2sin(B +C )+sin B =2sin B cos C +2cos B sin C +sin B ,得2sin B cos C +sin B =0,因为sin B ≠0,所以cos C =-12,又0<C <π,所以C =23π.由S =3c =12ab sin C =12ab ×32,得c =ab4.由余弦定理得,c 2=a 2+b 2-2ab cos C =a 2+b 2+ab ≥2ab +ab =3ab (当且仅当a =b时取等号),所以⎝ ⎛⎭⎪⎫ab 42≥3ab ,得ab ≥48,所以ab 的最小值为48.【答案】 48利用三角函数的有关公式,结合三角形的面积公式及正、余弦定理,将问题转化为边或角的关系,利用函数或不等式是解决此类问题的一种常规方法.[基础题组练]1.(2020·湖北武汉调研测试)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .已知a =3b ,A -B =π2,则角C =( )A.π12 B .π6 C.π4D .π3解析:选B.因为在△ABC 中,A -B =π2,所以A =B +π2,所以sin A =sin ⎝⎛⎭⎪⎫B +π2=cos B ,因为a =3b ,所以由正弦定理得sin A =3sin B ,所以cos B =3sin B ,所以tan B =33,因为B ∈(0,π),所以B =π6,所以C =π-⎝ ⎛⎭⎪⎫π6+π2-π6=π6,故选B.2.(2020·江西上饶一模)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,△ABC 的面积为S ,若2S =(a +b )2-c 2,则tan C 的值是( )A.43 B .34C .-43D .-34解析:选C.因为S =12ab sin C ,c 2=a 2+b 2-2ab cos C ,所以由2S =(a +b )2-c 2,可得ab sin C =(a +b )2-(a 2+b 2-2ab ·cos C ),整理得sin C -2cos C =2,所以(sin C -2cos C )2=4, 所以(sin C -2cos C )2sin 2C +cos 2C =4,sin 2C +4cos 2C -4sin C cos C sin 2C +cos 2C =4,化简得3tan 2C +4tan C =0,因为C ∈(0,π),所以tan C =-43,故选C.3.设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若b cosC +c cos B =a sin A ,则△ABC 的形状为( )A .锐角三角形B .直角三角形C .钝角三角形D .不确定解析:选B.因为b cos C +c cos B =a sin A ,所以由正弦定理得sin B cos C +sin C cos B =sin 2A ,所以sin(B +C )=sin 2A .又sin(B +C )=sin A 且sin A ≠0,所以sin A =1,所以A =π2,所以△ABC 为直角三角形,故选B.4.在△ABC 中,角A ,B ,C 所对应的边分别为a ,b ,c .若角A ,B ,C 依次成等差数列,且a =1,b =3,则S △ABC =( )A. 2 B .3 C.32D .2解析:选C.因为A ,B ,C 依次成等差数列,所以B =60°,所以由余弦定理得b 2=a 2+c 2-2ac cos B ,得c =2,所以由正弦定理得S △ABC =12ac sin B =32,故选C.5.在△ABC 中,已知a ,b ,c 分别为角A ,B ,C 的对边且∠A =60°,若S △ABC =332且2sin B =3sin C ,则△ABC 的周长等于( )A .5+7B .12C .10+7D .5+27解析:选A.在△ABC 中,∠A =60°.因为2sin B =3sin C ,故由正弦定理可得2b =3c ,再由S △ABC =332=12bc ·sin A ,可得bc =6,所以b =3,c =2.由余弦定理可得a 2=b 2+c 2-2bc ·cos A=7,所以a =7,故△ABC 的周长为a +b +c =5+7,故选A.6.(2020·河北衡水模拟)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c 且有a =1,3sin A cos C +(3sin C +b )cos A =0,则A =________.解析:由3sin A cos C +(3sin C +b )cos A =0,得3sin A cosC +3sin C cos A =-b cos A ,所以3sin (A +C )=-b cos A ,即3sin B =-b cos A ,又a sin A =bsin B ,所以3cos A =-b sin B =-asin A ,从而sin A cos A =-13⇒tan A =-33,又因为0<A <π,所以A =5π6.答案:5π67.(2019·高考全国卷Ⅱ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .若b =6,a =2c ,B =π3,则△ABC 的面积为________.解析:法一:因为a =2c ,b =6,B =π3,所以由余弦定理b2=a 2+c 2-2ac cos B ,得62=(2c )2+c 2-2×2c ×c cos π3,得c =23,所以a =43,所以△ABC 的面积S =12ac sin B =12×43×23×sin π3=6 3.法二:因为a =2c ,b =6,B =π3,所以由余弦定理b 2=a 2+c2-2ac cos B ,得62=(2c )2+c 2-2×2c ×c cos π3,得c =23,所以a =43,所以a 2=b 2+c 2,所以A =π2,所以△ABC 的面积S =12×23×6=6 3.答案:638.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且a cos B -c -b2=0,a 2=72bc ,b >c ,则bc=________.解析:由a cos B -c -b2=0及正弦定理可得sin A cos B -sin C-sin B 2=0.因为sin C =sin(A +B )=sin A cos B +cos A sin B ,所以-sin B 2-cos A sin B =0,所以cos A =-12,即A =2π3.由余弦定理得a 2=72bc =b 2+c 2+bc ,即2b 2-5bc +2c 2=0,又b >c ,所以bc=2. 答案:29.(2020·河南郑州一模)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知△ABC 的面积为S ,且满足sin B =b 24S.(1)求sin A sin C ;(2)若4cos A cos C =3,b =15,求△ABC 的周长. 解:(1)因为△ABC 的面积为S =12ac sin B ,sin B =b24S,所以4×⎝ ⎛⎭⎪⎫12ac sin B ×sin B =b 2,所以ac =b 22sin 2B,所以由正弦定理可得sin A sin C =sin 2B 2sin 2B =12.(2)因为4cos A cos C =3,sin A sin C =12,所以cos B =-cos(A +C )=sin A sin C -cos A cos C =12-34=-14, 因为b =15,所以ac =b 22sin 2B =b 22(1-cos 2B )=(15)22×⎝ ⎛⎭⎪⎫1-116=8,所以由余弦定理可得15=a 2+c 2+12ac =(a +c )2-32ac =()a +c 2-12,解得a +c =33,所以△ABC 的周长为a +b +c =33+15. 10.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c 且a 2+c 2-b 2=ab cos A +a 2cosB .(1)求角B ;(2)若b =27,tan C =32,求△ABC 的面积. 解:(1)因为a 2+c 2-b 2=ab cos A +a 2cos B ,所以由余弦定理,得2ac cos B =ab cos A +a 2cos B ,又a ≠0,所以2c cos B =b cos A +a cos B .由正弦定理,得2sin C cos B =sin B cos A +sin A cos B =sin(A +B )=sin C ,又C ∈(0,π),sin C >0,所以cos B =12.因为B ∈()0,π,所以B =π3.(2)由tan C =32,C ∈(0,π),得sin C =217,cos C =277,所以sin A =sin(B +C )=sin B cos C +cos B sin C =32×277+12×217=32114.由正弦定理a sin A =b sin B ,得a =b sin Asin B =27×3211432=6,所以△ABC 的面积为12ab sin C =12×6×27×217=6 3.[综合题组练]1.(2020·安徽六安模拟)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若2a -c b =cos Ccos B ,b =4,则△ABC 的面积的最大值为( )A .4 3B .23C .2D .3解析:选A.因为在△ABC 中,2a -c b =cos Ccos B ,所以(2a -c )cos B =b cos C ,所以(2sin A -sin C )cos B =sin B cos C ,所以2sin A cos B =sin C cos B +sin B cos C =sin(B +C )=sin A ,所以cos B =12,即B =π3,由余弦定理可得16=a 2+c 2-2ac cosB =a 2+c 2-ac ≥2ac -ac ,所以ac ≤16,当且仅当a =c 时取等号,所以△ABC 的面积S =12ac sin B =34ac ≤4 3.故选A.2.(2020·江西抚州二模)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知3a cos A =b cos C +c cos B ,b +c =3,则a 的最小值为( )A .1B .3C .2D .3解析:选B.在△ABC 中,因为3a cos A =b cos C +c cos B , 所以3sin A cos A =sin B cos C +sin C cos B =sin(B +C )=sin A ,即3sin A cos A =sin A ,又A ∈(0,π),所以sin A ≠0,所以cos A =13.因为b +c =3,所以两边平方可得b 2+c 2+2bc =9,由b 2+c2≥2bc ,可得9≥2bc +2bc =4bc ,解得bc ≤94,当且仅当b =c 时等号成立,所以由a 2=b 2+c 2-2bc cos A ,可得a 2=b 2+c 2-23bc =(b+c )2-8bc 3≥9-83×94=3,当且仅当b =c 时等号成立,所以a 的最小值为 3.故选B.3.(2020·湖北恩施2月质检)在锐角△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若cos B =13,b =4,S △ABC =42,则△ABC的周长为________.解析:由cos B =13,得sin B =223,由三角形面积公式可得12ac sin B =12ac ·223=42,则ac =12①,由b 2=a 2+c 2-2ac cos B ,可得16=a 2+c 2-2×12×13,则a 2+c 2=24②,联立①②可得a=c =23,所以△ABC 的周长为43+4.答案:43+44.已知△ABC 的内角A ,B ,C 的对边分别是a ,b ,c ,且(a2+b 2-c 2)(a cos B +b cos A )=abc .若a +b =2,则c 的取值范围为________.解析:在△ABC 中,因为(a 2+b 2-c 2)(a cos B +b cos A )=abc ,所以a 2+b 2-c 2ab(a cos B +b cos A )=c ,由正、余弦定理可得2cos C (sin A cos B +sin B cos A )=sinC ,所以2cos C sin(A +B )=sin C ,即2cos C sin C =sin C ,又sin C ≠0,所以cos C =12,因为C ∈(0,π),所以C =π3,B =2π3-A ,所以由正弦定理a sin A =b sin ⎝ ⎛⎭⎪⎫2π3-A =c 32,可得a =c sin A32,b =c sin ⎝ ⎛⎭⎪⎫2π3-A 32,因为a +b =2,所以c sin A32+c sin ⎝ ⎛⎭⎪⎫2π3-A 32=2,整理得c =3sin A +sin ⎝ ⎛⎭⎪⎫2π3-A =332sin A +32cos A =1sin ⎝⎛⎭⎪⎫A +π6,因为A ∈⎝ ⎛⎭⎪⎫0,2π3,所以A +π6∈⎝ ⎛⎭⎪⎫π6,5π6,可得sin ⎝⎛⎭⎪⎫A +π6∈⎝ ⎛⎦⎥⎤12,1,所以c =1sin ⎝⎛⎭⎪⎫A +π6∈[1,2).答案:[1,2)5.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知b sin A =a cos ⎝⎛⎭⎪⎫B -π6.(1)求角B 的大小;(2)设a =2,c =3,求b 和sin(2A -B )的值.解:(1)在△ABC 中,由正弦定理a sin A =bsin B,可得b sin A=a sin B ,又由b sin A =a cos ⎝ ⎛⎭⎪⎫B -π6,得a sin B =a cos ⎝⎛⎭⎪⎫B -π6,即sin B =cos ⎝⎛⎭⎪⎫B -π6,可得tan B = 3.又因为B ∈(0,π),可得B =π3.(2)在△ABC 中,由余弦定理及a =2,c =3,B =π3,有b 2=a2+c 2-2ac cos B =7,故b =7.由b sin A =a cos ⎝⎛⎭⎪⎫B -π6,可得sin A =37.因为a <c ,故cos A =27.因此sin 2A =2sin A cos A =437,cos 2A =2cos 2A -1=17,所以sin(2A -B )=sin 2A cos B -cos 2A sin B =437×12-17×32=3314.6.在△ABC 中,内角A ,B ,C 的对边分别是a ,b ,c ,A =60°. (1)若△ABC 的面积为33,a =13,求b -c ;(2)若△ABC 是锐角三角形,求sin B sin C 的取值范围. 解:(1)由S △ABC =33,得12bc sin A =33,即12bc sin 60°=33,得bc =12. 由余弦定理,得a 2=b 2+c 2-2bc cos A ,即b 2+c 2-bc =13, 所以(b -c )2=13-bc =1,所以b -c =1或b -c =-1. (2)因为A =60°,所以B +C =120°,所以C =120°-B . 所以sin B sin C =sin B sin(120°-B )=sin B ⎝⎛⎭⎪⎪⎫32cos B +12sin B =34sin 2B +1-cos 2B 4 =12⎝ ⎛⎭⎪⎪⎫32sin 2B -12cos 2B +12=12sin ()2B -30°+14.因为△ABC 是锐角三角形,所以C =120°-B <90°,得B >30°, 所以30°<B <90°,则30°<2B -30°<150°, 所以12<sin(2B -30°)≤1,14<12sin(2B -30°)≤12,所以12<12sin(2B -30°)+14≤34,所以sin B sin C 的取值范围是⎝ ⎛⎦⎥⎤12,34.。

高中数学《余弦定理》教案

高中数学《余弦定理》教案

高中数学《余弦定理》教案一、教学目标1. 让学生理解余弦定理的定义及其在几何中的应用。

2. 培养学生运用余弦定理解决实际问题的能力。

3. 引导学生通过探究、合作、交流的方式,发现余弦定理的规律。

二、教学内容1. 余弦定理的定义及公式。

2. 余弦定理在直角三角形中的应用。

3. 余弦定理在非直角三角形中的应用。

三、教学重点与难点1. 重点:余弦定理的定义及其应用。

2. 难点:余弦定理在非直角三角形中的应用。

四、教学方法1. 采用探究式教学法,引导学生主动发现余弦定理的规律。

2. 运用案例教学法,以实际问题为例,讲解余弦定理的应用。

3. 利用多媒体辅助教学,直观展示余弦定理的应用场景。

五、教学过程1. 导入:通过一个实际问题,引发学生对余弦定理的思考。

2. 新课讲解:(1)介绍余弦定理的定义及公式。

(2)讲解余弦定理在直角三角形中的应用。

(3)引导学生探究余弦定理在非直角三角形中的应用。

3. 案例分析:分析实际问题,运用余弦定理解决问题。

4. 练习与讨论:布置相关习题,让学生巩固所学知识,并进行讨论交流。

六、课后作业1. 复习本节课的内容,掌握余弦定理的定义及应用。

2. 完成课后习题,巩固所学知识。

3. 探索余弦定理在生活中的应用,下周分享给大家。

七、教学评价1. 课堂表现:观察学生在课堂上的参与程度、提问回答等情况。

2. 作业完成情况:检查学生课后作业的完成质量。

3. 课后分享:评价学生在探索余弦定理在生活中应用的成果。

八、教学反思在教学过程中,关注学生的学习反馈,及时调整教学方法,确保教学效果。

针对学生的掌握情况,适当增加拓展内容,提高学生的数学素养。

九、教学进度安排1. 第一课时:介绍余弦定理的定义及公式。

2. 第二课时:讲解余弦定理在直角三角形中的应用。

3. 第三课时:引导学生探究余弦定理在非直角三角形中的应用。

4. 第四课时:案例分析,运用余弦定理解决实际问题。

十、教学资源1. PPT课件。

高中数学高考一轮复习:《正弦定理和余弦定理》复习课教学设计(精编文档).doc

高中数学高考一轮复习:《正弦定理和余弦定理》复习课教学设计(精编文档).doc

【最新整理,下载后即可编辑】《正弦定理和余弦定理》复习课教学设计学生通过必修5的学习,对正弦定理、余弦定理的内容已经了解,但对于如何灵活运用定理解决实际问题,怎样合理选择定理进行边角关系转化从而解决三角形综合问题,学生还需通过复习提点有待进一步理解和掌握。

作为复习课一方面要将本章知识作一个梳理,另一方面要通过整理归纳帮助学生学会分析问题,合理选用并熟练运用正弦定理、余弦定理等知识和方法解决三角形综合问题和实际应用问题。

数学思想方法的教学是中学数学教学中的重要组成部分,有利于学生加深数学知识的理解和掌握。

虽然是复习课,但我们不能一味的讲题,在教学中应体现以下教学思想:⑴重视教学各环节的合理安排:设疑探究拓展实践循环此流程在生活实践中提出问题,再引导学生带着问题对新知进行探究,然后引导学生回顾旧知识与方法,引出课题。

激发学生继续学习新知的欲望,使学生的知识结构呈一个螺旋上升的状态,符合学生的认知规律。

⑵重视多种教学方法有效整合,以讲练结合法、分析引导法、变式训练法等多种方法贯穿整个教学过程。

⑶重视提出问题、解决问题策略的指导。

⑷重视加强前后知识的密切联系。

对于新知识的探究,必须增加足够的预备知识,做好衔接。

要对学生已有的知识进行分析、整理和筛选,把对学生后继学习中有需要的知识选择出来,在新知识介绍之前进行复习。

⑸注意避免过于繁琐的形式化训练。

从数学教学的传统上看解三角形内容有不少高度技巧化、形式化的问题,我们在教学过程中应该注意尽量避免这一类问题的出现。

二、实施教学过程剖析:研究三角形问题一般有两种思路.一是边化角,二是角化边.证明:用正弦定理,a=2R sin A,b=2R sin B,c=2R sin C,代入a2=b(b+c)中,得sin2A=sin B(sin B+sin C)sin2A-sin2B=sin B sin C 因为A、B、C为三角形的三内角,所以sin(A+B)≠0.所以sin(A-B)=sin B.所以只能有A-B=B,即A=2B.评述:利用正弦定理,将命题中边的关系转化为角间关系,从而全部利用三角公式变换求解.思考讨论:该题若用余弦定理如何解决?【例2】已知a、b、c分别是△ABC的三个内角A、B、C所对的边,(1)若△ABC的面积为,c=2,A=600,求边a,b的值;(2)若a=ccosB,且b=csinA,试判断△ABC的形状。

高三数学一轮复习精品学案4:§4.6 课时1正弦定理和余弦定理

高三数学一轮复习精品学案4:§4.6 课时1正弦定理和余弦定理

§4.6正弦定理、余弦定理及解三角形课时1正弦定理、余弦定理教材过关1.正弦定理a sin A =b sin B =c sin C=2R ,其中R 是三角形外接圆的半径.由正弦定理可以变形: (1)a ∶b ∶c = ;(2)a = ,b = ,c = .2.余弦定理a 2= ,b 2= ,c 2= .余弦定理可以变形:cos A =b 2+c 2-a 22bc ,cos B =a 2+c 2-b 22ac ,cos C =a 2+b 2-c 22ab. 3.三角形中常用的面积公式(1)S =12ah (h 表示边a 上的高); (2)S =12bc sin A =12ac sin B =12ab sin C ; (3)S =12r (a +b +c )(r 为三角形的内切圆半径). 小题体验1.设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .若a =2,c =2 3,cos A =32且b <c ,则b =( )A .3B .22C .2 D.3 2.在△ABC 中,a =32,b =23,cos C =13,则△ABC 的面积为( ) A .33B .23C .43 D.33.在△ABC 中,已知A =60°,B =45°,c =20,则a =________.易错易混点1.由正弦定理解已知三角形的两边和其中一边的对角求另一边的对角时易忽视解的判断.2.在判断三角形形状时,等式两边一般不要约去公因式,应移项提取公因式,以免漏解.3.利用正、余弦定理解三角形时,要注意三角形内角和定理对角的范围的限制.小题纠偏1.在△ABC 中,若a =18,b =24,A =45°,则此三角形有( )A .无解B .两解C .一解D .解的个数不确定2.设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .若a =3,sin B =12,C =π6,则b =________. 考点突破考点一 利用正、余弦定理解三角形典例引领在△ABC 中,∠A =3π4,AB =6,AC =32,点D 在BC 边上,AD =BD ,求AD 的长.由题悟法正、余弦定理的应用原则(1)解三角形时,如果式子中含有角的余弦或边的二次式,要考虑用余弦定理;如果式子中含有角的正弦或边的一次式时,则考虑用正弦定理;以上特征都不明显时,则要考虑两个定理都有可能用到.(2)三角形解的个数的判断:已知两角和一边,该三角形是确定的,其解是唯一的;已知两边和一边的对角,该三角形具有不唯一性,通常根据三角函数值的有界性和大边对大角定理进行判断.即时应用设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且b sin A =3a cos B .(1)求角B 的大小;(2)若b =3,sin C =2sin A ,求a ,c 的值.考点二 利用正弦、余弦定理判定三角形的形状典型母题设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若b cos C +c cos B =a sin A ,则△ABC 的形状为( )A .锐角三角形B .直角三角形C .钝角三角形D .不确定类题通法判定三角形形状的2种常用途径注意在判断三角形形状时一定要注意解是否唯一,并注重挖掘隐含条件.另外,在变形过程中要注意角A,B,C的范围对三角函数值的影响.越变越明变式1母题的条件变为“若2sin A cos B=sin C”,那么△ABC一定是()A.直角三角形B.等腰三角形C.等腰直角三角形D.等边三角形变式2母题的条件变为“若a2+b2-c2=ab,且2cos A sin B=sin C”,确定△ABC的形状.变式3母题的条件变为“若△ABC的三个内角满足sin A∶sin B∶sin C=5∶11∶13”,则△ABC()A.一定是锐角三角形B.一定是直角三角形C.一定是钝角三角形D.可能是锐角三角形,也可能是钝角三角形考点三与三角形面积有关的问题典例引领△ABC中,D是BC上的点,AD平分∠BAC,△ABD面积是△ADC面积的2倍.(1)求sin B sin C;(2)若AD=1,DC=22,求BD和AC的长.由题悟法三角形面积公式的应用原则(1)对于面积公式S =12ab sin C =12ac sin B =12bc sin A ,一般是已知哪一个角就使用哪一个公式. (2)与面积有关的问题,一般要用到正弦定理或余弦定理进行边和角的转化.即时应用在△ABC 中,内角A ,B ,C 的对边长分别为a ,b ,c ,且(2b -c )cos A =a cos C .(1)求角A 的大小;(2)若a =3,b =2c ,求△ABC 的面积.——★ 参 考 答 案 ★——教材过关1.(1)sin_A ∶sin_B ∶sin_C(2)2R sin A 2R sin B 2R sin C2.b 2+c 2-2bc cos A a 2+c 2-2ac cos B a 2+b 2-2ab cos C小题体验1.C『解析』 由a 2=b 2+c 2-2bc cos A ,得4=b 2+12-6b ,解得b =2或4.又b <c ,∴b =2.2. C3. 10(32-6)小题纠偏1.B『解析』 ∵a sin A =b sin B, ∴sin B =b a sin A =2418sin 45°,∴sin B =223. 又∵a <b ,∴B 有两个解,即此三角形有两解.2.1『解析』在△ABC 中,∵sin B =12,0<B <π, ∴B =π6或B =5π6. 又∵B +C <π,C =π6,∴B =π6, ∴A =π-π6-π6=2π3. ∵a sin A =b sin B ,∴b =a sin B sin A=1. 考点突破考点一 利用正、余弦定理解三角形典例引领解:设△ABC 的内角∠BAC ,B ,C 所对边的长分别是a ,b ,c ,由余弦定理得a 2=b 2+c 2-2bc cos ∠BAC=(32)2+62-2×32×6×cos 3π4=18+36-(-36)=90,所以a =310.又由正弦定理得sin B =b sin ∠BAC a =3310=1010,由题设知0<B <π4, 所以cos B =1-sin 2B = 1-110=31010. 在△ABD 中,因为AD =BD ,所以∠ABD =∠BAD ,所以∠ADB =π-2B ,故由正弦定理得AD =AB ·sin B sin π-2B=6sin B 2sin B cos B =3cos B =10. 即时应用解:(1)∵b sin A =3a cos B ,由正弦定理得sin B sin A =3sin A cos B .在△ABC 中,sin A ≠0,即得tan B =3,∴B =π3. (2)∵sin C =2sin A ,由正弦定理得c =2a ,由余弦定理b 2=a 2+c 2-2ac cos B ,即9=a 2+4a 2-2a ·2a cos π3, 解得a =3,∴c =2a =2 3.考点二 利用正弦、余弦定理判定三角形的形状典型母题 B『解析』由正弦定理得sin B cos C +sin C cos B =sin 2A ,∴sin(B +C )=sin 2A ,即sin(π-A )=sin 2A ,sin A =sin 2A .∵A ∈(0,π),∴sin A >0,∴sin A =1,即A =π2. 越变越明变式1 B『解析』 法一:由已知得2sin A cos B =sin C =sin(A +B )=sin A cos B +cos A sin B ,即sin(A -B )=0,因为-π<A -B <π,所以A =B .法二:由正弦定理得2a cos B =c ,再由余弦定理得2a ·a 2+c 2-b 22ac=c ⇒a 2=b 2⇒a =b . 变式2 解:法一:利用边的关系来判断:由正弦定理得sin C sin B =c b,由2cos A sin B =sin C ,有cos A =sin C 2sin B =c 2b. 又由余弦定理得cos A =b 2+c 2-a 22bc, ∴c 2b =b 2+c 2-a 22bc, 即c 2=b 2+c 2-a 2,所以a 2=b 2,所以a =b .又∵a 2+b 2-c 2=ab .∴2b 2-c 2=b 2,所以b 2=c 2,∴b =c ,∴a =b =c .∴△ABC 为等边三角形.法二:利用角的关系来判断:∵A +B +C =180°,∴sin C =sin(A +B ),又∵2cos A sin B =sin C ,∴2cos A sin B =sin A cos B +cos A sin B ,∴sin(A -B )=0.又∵A 与B 均为△ABC 的内角,所以A =B ,又由a 2+b 2-c 2=ab ,由余弦定理,得cos C =a 2+b 2-c 22ab =ab 2ab =12, 又0°<C <180°,所以C =60°,∴△ABC 为等边三角形.变式3 C『解析』在△ABC 中,sin A ∶sin B ∶sin C =5∶11∶13,∴a ∶b ∶c =5∶11∶13,故设a =5k ,b =11k ,c =13k (k >0),由余弦定理可得cos C =a 2+b 2-c 22ab =25k 2+121k 2-169k 22×5×11k 2=-23110<0, 又∵C ∈(0,π),∴C ∈⎝⎛⎭⎫π2,π,∴△ABC 为钝角三角形.方法总结:本题以比例形式呈现,求解时,常根据比例的性质引入k ,从而转化三边长,再利用正、余弦定理求解.考点三 与三角形面积有关的问题典例引领解:(1)S △ABD =12AB ·AD sin ∠BAD , S △ADC =12AC ·AD sin ∠CAD . 因为S △ABD =2S △ADC ,∠BAD =∠CAD , 所以AB =2AC .由正弦定理,得sin B sin C =AC AB =12. (2)因为S △ABD ∶S △ADC =BD ∶DC ,所以BD = 2. 在△ABD 和△ADC 中,由余弦定理,知 AB 2=AD 2+BD 2-2AD ·BD cos ∠ADB , AC 2=AD 2+DC 2-2AD ·DC cos ∠ADC . 故AB 2+2AC 2=3AD 2+BD 2+2DC 2=6. 由(1),知AB =2AC ,所以AC =1. 即时应用解:(1)由(2b -c )cos A =a cos C ,得2sin B cos A =sin A cos C +sin C cos A , 即2sin B cos A =sin(A +C ),所以2sin B cos A =sin B ,因为0<B <π,所以sin B ≠0,所以cos A =12,因为0<A <π,所以A =π3. (2)因为a =3,b =2c ,由(1)得A =π3, 所以cos A =b 2+c 2-a 22bc =4c 2+c 2-94c 2=12, 解得c =3,所以b =2 3.所以S △ABC =12bc sin A =12×23×3×32=332.。

高三数学一轮教学资料 正弦定理和余弦定理活动导学案(无答案)

高三数学一轮教学资料 正弦定理和余弦定理活动导学案(无答案)

《正弦定理与余弦定理》活动导学案【学习目标】1.掌握正弦定理,余弦定理,并能运用正弦定理,余弦定理解斜三角形;2.解三角形的基本途径:根据所给条件灵活运用正弦定理或余弦定理,然后通过化边为角或化角为边,实施边和角互化.【重难点】选择适当的定理解决三角形的角、边问题。

【课时安排】1-2课时【活动过程】一.自学质疑:1.在△ABC 中,边,,a b c 所对角为,,A B C ,且sin cos cos A B C a b c==,则A ∠=____. 2、在△ABC 中,已知BC =12,A =60°,B =45°,则AC = .3.在ABC ∆中,若sin :sin :sin 5:7:8A B C =,则B ∠的大小是____________.4.△ABC 中,a ,b ,c 分别为∠A ,∠B ,∠C 的对边.如果a ,b ,c 成等差数列,∠B=30°,△ABC 的面积为23,那么b = _____. 5.在△ABC 中,若22tan tan ba B A =,则△ABC 的形状是 . 6.(2013·南京、盐城一模)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .(1)若cos ⎝⎛⎭⎪⎫A +π6 =sin A ,求A 的值;(2)若c os A =14,4b =c ,求sin B 的值.探究一1.在ABC ∆中,若︒===30,1,3A AC AB ,则ABC ∆的面积为 .2.在ABC ∆中,若︒===60,3,2B b a ,则=A .3.在ABC ∆中,若︒===30,15,5A b a ,则=c .4.若cC b B a A cos cos sin ==,则ABC ∆为 三角形. 5.已知ABC ∆中,C B A ∠∠∠、、的对边分别为c b a ,,.若26+==c a ,且︒=∠75A ,求b .6.在ABC ∆中,c b a ,,分别为内角C B A ,,的对边,C b c B c b A a sin )2(sin )2(sin 2+++=.(1)求A 的大小;(2)若1sin sin =+C B ,试判断ABC ∆的形状..探究二1.在ABC ∆中,若,31sin ,4,5===A B b π则=a . 2.已知锐角三角形ABC 的面积为33,3,4==AC BC ,则角=C .3.在ABC ∆中,若C B A 222sin sin sin <+,则ABC ∆的形状为 . 4.在ABC ∆中,已知31tan ,21tan ==B A ,则其最长边与最短边的比值为 . 5在ABC ∆中,c b a ,,分别为内角C B A ,,的对边,已B b a C A sin )()sin (sin 2222-=-,ABC ∆的外接圆半径为2.(1) 求角C ;(2)求ABC ∆的面积的最大值探究三1.在ABC ∆中,c b a ,,分别是角C B A ,,,且2223a bc c b =++,则=A .2.在ABC ∆中,已知4:3:2sin :sin :sin =C B A ,则=C cos .3.在ABC ∆中,4,13,3===AC BC AB ,则边AC 上的高为 .4.在ABC ∆中,角C B A ,,的对边分别为c b a ,,.当c b a ,,成等比数列时,且a c 2=,则=B cos . 5在ABC ∆中,角C B A ,,的对边分别为c b a ,,.已知c b a ,,成等比数列,且bc ac c a -=-22,(1)求角A ;(2)求cB b sin 的值.6.在ABC ∆中,角C B A ,,的对边分别为c b a ,,,且ca b C B +-=2cos cos (1)求角B 的大小;(2)若4,13=+=c a b ,求三角形的面积.探究四1.在ABC ∆中,若B C bc b a sin 32sin ,322==-,则角=A .2.在△ABC 中,a =1,c =2,B =60°,则b =________.3.在ABC ∆中,若面积)(41222c b a S -+=,则角=C . 4.设12,,12-+a a a 为钝角三角形的三条边,则实数a 的取值范围是 .5.在锐角三角形ABC 中,若C b a a b cos 6=+,则=+B C A C tan tan tan tan .6.(2014·无锡调研)在△ABC 中,A =45°,C =105°,BC =2,则AC 的长度为________.7.(2014·镇江质检)在△ABC 中,sin A ∶sin B ∶sin C =2∶3∶4,则cos C =________.8.(2013·山东高考改编)△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若B =2A ,a =1,b =3,则c =________.9.在△ABC 中,a ,b ,c 分别为∠A ,∠B ,∠C 的对边,已知20a c +=,2C A =,3cos 4A =. (1)求c a 的值; (2)求b 的值.10.设ABC ∆的三个内角,,A B C 所对的边分别为,,a b c ,且满足(2)0a c BC BA cCA CB +⋅+⋅= . (Ⅰ)求角B 的大小; (Ⅱ)若23b =,试求AB CB ⋅ 的最小值.11.(2013·南通一调)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,tan C =sin A +sin B cos A +cos B.(1)求角C的大小; (2)若△ABC的外接圆直径为1,求a2+b2的取值范围.。

2020届高三数学(文科)一轮复习通用版4.7正弦定理和余弦定理学案

2020届高三数学(文科)一轮复习通用版4.7正弦定理和余弦定理学案

第七节正弦定理和余弦定理一、基础知识批注——理解深一点1.正弦定理asin A=bsin B=csin C=2R(R为△ABC外接圆的半径).正弦定理的常见变形(1)a=2R sin A,b=2R sin B,c=2R sin C;(2)sin A=a2R,sin B=b2R,sin C=c2R;(3)a∶b∶c=sin A∶sin B∶sin C;(4)a+b+csin A+sin B+sin C=asin A.2.余弦定理a2=b2+c2-2bc cos A;b2=c2+a2-2ca cos B;c2=a2+b2-2ab cos C.3.三角形的面积公式(1)S△ABC=12ah a(h a为边a上的高);(2)S△ABC=12ab sin C=12bc sin A=12ac sin B;(3)S=12r(a+b+c)(r为三角形的内切圆半径).二、常用结论汇总——规律多一点1.三角形内角和定理在△ABC 中,A +B +C =π;变形:A +B 2=π2-C2.2.三角形中的三角函数关系(1)sin(A +B )=sin C ;(2)cos(A +B )=-cos C ; (3)sinA +B 2=cosC 2;(4)cos A +B 2=sin C2. 3.三角形中的射影定理在△ABC 中,a =b cos C +c cos B ;b =a cos C +c cos A ;c =b cos A +a cos B . 4.用余弦定理判断三角形的形状在△ABC 中,a ,b ,c 分别为角A ,B ,C 的对边,当b 2+c 2-a 2>0时,可知A 为锐角;当b 2+c 2-a 2=0时,可知A 为直角;当b 2+c 2-a 2<0时,可知A 为钝角.三、基础小题强化——功底牢一点(一)判一判(对的打“√”,错的打“×”)(1)三角形中三边之比等于相应的三个内角之比.( ) (2)在△ABC 中,若sin A >sin B ,则A >B .( )(3)在△ABC 的六个元素中,已知任意三个元素可求其他元素.( ) (4)当b 2+c 2-a 2>0时,三角形ABC 为锐角三角形.( ) (5)在三角形中,已知两边和一角就能求三角形的面积.( ) 答案:(1)× (2)√ (3)× (4)× (5)√ (二)选一选1.已知△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若A =π6,B =π4,a =1,则b =( )A .2B .1 C. 3D. 2解析:选D 由正弦定理,得b =a sin B sin A =2212= 2.2.(2018·全国卷Ⅱ改编)在△ABC 中,cos C =-35,BC =1,AC =5,则AB =( )A .4 2 B.30 C.29D .2 5解析:选A 在△ABC 中,由余弦定理,得AB 2=AC 2+BC 2-2AC ·BC ·cos C =52+12-2×5×1×⎝⎛⎭⎫-35=32,∴AB =32=4 2.3.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若a =18,b =24,A =45°,则此三角形解的情况为( )A .无解B .有两解C .有一解D .解的个数不确定解析:选B ∵a sin A =bsin B ,∴sin B =b a sin A =2418sin 45°=223.又∵a <b ,∴B 有两个解, 即此三角形有两解. (三)填一填4.(2017·全国卷Ⅲ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知C =60°,b =6,c =3,则A =________.解析:由正弦定理,得sin B =b sin Cc =6sin 60°3=22, 因为0°<B <180°,且b <c ,所以B <C ,故B =45°, 所以A =180°-60°-45°=75°. 答案:75°5.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,已知c =5,B =2π3,△ABC 的面积为1534,则b =________.解析:由三角形的面积公式,得S △ABC =12ac sin B =12×a ×5×sin 2π3=534a =1534,解得a =3.由b 2=a 2+c 2-2ac cos B =32+52-2×3×5×⎝⎛⎭⎫-12=49,得b =7. 答案:7第一课时 正弦定理和余弦定理(一)考点一 利用正、余弦定理解三角形 考法(一) 正弦定理解三角形[典例] (1)(2019·江西重点中学联考)在△ABC 中,a =3,b =2,A =30°,则cos B =________.(2)设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .若a =3,sin B =12,C =π6,则b=________.[解析] (1)由正弦定理可得sin B =b sin A a =2×sin 30°3=13,∵a =3>b =2,∴B <A ,即B 为锐角,∴cos B =1-sin 2B =223.(2)∵sin B =12且B ∈(0,π),∴B =π6或B =5π6,又∵C =π6,∴B =π6,A =π-B -C =2π3.又a =3,由正弦定理得a sin A =bsin B ,即3sin 2π3=b sinπ6,解得b =1. [答案] (1)223 (2)1[解题技法]1.利用正弦定理解决的2类问题及其解题步骤(1)应用正弦定理求角时容易出现增解或漏解的错误,要根据条件和三角形的限制条件合理取舍.(2)求角时易忽略角的范围而导致错误,需要根据大边对大角,大角对大边的规则,画图帮助判断.考法(二) 余弦定理解三角形[典例] (1)(2019·山西五校联考)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若b cos A +a cos B =c 2,a =b =2,则△ABC 的周长为( )A .7.5B .7C .6D .5(2)(2018·泰安二模)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且c -b2c -a=sin Asin B +sin C,则角B =________.[解析] (1)∵b cos A +a cos B =c 2,∴由余弦定理可得b ·b 2+c 2-a 22bc +a ·a 2+c 2-b 22ac=c 2,整理可得2c 2=2c 3,解得c =1,则△ABC 的周长为a +b +c =2+2+1=5.(2)由正弦定理可得c -b2c -a =sin A sin B +sin C =ab +c, ∴c 2-b 2=2ac -a 2,∴c 2+a 2-b 2=2ac , ∴cos B =a 2+c 2-b 22ac =22,∵0<B <π,∴B =π4.[答案] (1)D (2)π4[解题技法]利用余弦定理解决的2类问题及其解题步骤斜三角形把我问,两个定理有区分; 余弦定理多见边,正弦定理角必现; 边边角,解难辨,正弦值,先计算; 边角会聚综合题,正弦定理来统一.[题组训练]1.(口诀第2句)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若b 2=ac ,c =2a ,则cos C =( )A.24B .-24C.34D .-34解析:选B 由题意得,b 2=ac =2a 2,即b =2a ,∴cos C =a 2+b 2-c 22ab =a 2+2a 2-4a 22a ×2a=-24.2.(口诀第2句)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知sin B +sin A (sin C -cos C )=0,a =2,c =2,则C =( )A.π12 B.π6C.π4D.π3解析:选B 因为sin B +sin A (sin C -cos C )=0, 所以sin(A +C )+sin A sin C -sin A cos C =0,所以sin A cos C +cos A sin C +sin A sin C -sin A cos C =0,整理得sin C (sin A +cos A )=0.因为sin C ≠0,所以sin A +cos A =0,所以t a n A =-1, 因为A ∈(0,π),所以A =3π4,由正弦定理得sin C =c ·sin A a =2×222=12, 又0<C <π4,所以C =π6.3.(口诀第3、4句)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,已知sin 2B +sin 2C =sin 2A +sin B sin C .(1)求角A 的大小;(2)若cos B =13,a =3,求c 的值.解:(1)由正弦定理可得b 2+c 2=a 2+bc , 由余弦定理得cos A =b 2+c 2-a 22bc =12,因为A ∈(0,π),所以A =π3.(2)由(1)可知sin A =32, 因为cos B =13,B 为△ABC 的内角,所以sin B =223,故sin C =sin(A +B )=sin A cos B +cos A sin B =32×13+12×223=3+226. 由正弦定理a sin A =c sin C 得c =a sin C sin A =3×(3+22)32×6=1+263.考点二 判定三角形的形状[典例] (1)设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若b cos C +c cos B =a sin A ,则△ABC 的形状为( )A .锐角三角形B .直角三角形C .钝角三角形D .不确定(2)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若sin A sin B =ac ,(b +c +a )(b +c -a )=3bc ,则△ABC 的形状为( )A .直角三角形B .等腰非等边三角形C .等边三角形D .钝角三角形[解析] (1)法一:因为b cos C +c cos B =a sin A ,由正弦定理知sin B cos C +sin C cos B =sin A sin A , 得sin(B +C )=sin A sin A .又sin(B +C )=sin A ,得sin A =1, 即A =π2,因此△ABC 是直角三角形.法二:因为b cos C +c cos B =b ·a 2+b 2-c 22ab +c ·a 2+c 2-b 22ac =2a 22a =a ,所以a sin A =a ,即sin A =1,故A =π2,因此△ABC 是直角三角形.(2)因为sin A sin B=a c ,所以a b =ac ,所以b =c .又(b +c +a )(b +c -a )=3bc ,所以b 2+c 2-a 2=bc , 所以cos A =b 2+c 2-a 22bc =bc 2bc =12.因为A ∈(0,π),所以A =π3,所以△ABC 是等边三角形.[答案] (1)B (2)C[变透练清]1.(变条件)若本例(1)条件改为“a sin A +b sin B <c sin C ”,那么△ABC 的形状为________.解析:根据正弦定理可得a 2+b 2<c 2,由余弦定理得cos C =a 2+b 2-c 22ab <0,故C 是钝角,所以△ABC 是钝角三角形. 答案:钝角三角形2.(变条件)若本例(1)条件改为“c -a cos B =(2a -b )cos A ”,那么△ABC 的形状为________.解析:因为c -a cos B =(2a -b )cos A , C =π-(A +B ),所以由正弦定理得sin C -sin A cos B =2sin A cos A -sin B ·cos A , 所以sin A cos B +cos A sin B -sin A cos B =2sin A cos A -sin B cos A ,所以cos A (sin B -sin A )=0, 所以cos A =0或sin B =sin A , 所以A =π2或B =A 或B =π-A (舍去),所以△ABC 为等腰或直角三角形. 答案:等腰或直角三角形3.(变条件)若本例(2)条件改为“cos A cos B =ba =2”,那么△ABC 的形状为________.解析:因为cos A cos B =b a ,由正弦定理得cos A cos B =sin B sin A ,所以sin 2A =sin 2B .由ba =2,可知a ≠b ,所以A ≠B .又因为A ,B ∈(0,π),所以2A =π-2B ,即A +B =π2,所以C =π2,于是△ABC 是直角三角形.答案:直角三角形 [解题技法]1.判定三角形形状的2种常用途径2.判定三角形的形状的注意点在判断三角形的形状时一定要注意解是否唯一,并注重挖掘隐含条件.另外,在变形过程中要注意角A ,B ,C 的范围对三角函数值的影响,在等式变形中,一般两边不要约去公因式,应移项提取公因式,以免漏解.[课时跟踪检测]A 级——保大分专练1.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .若sin A a =cos Bb ,则B 的大小为( )A .30°B .45°C .60°D .90°解析:选B 由正弦定理知,sin A sin A =cos Bsin B ,∴sin B =cos B ,∴B =45°.2.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .已知b =40,c =20,C =60°,则此三角形的解的情况是( )A .有一解B .有两解C .无解D .有解但解的个数不确定解析:选C 由正弦定理得b sin B =c sin C, ∴sin B =b sin Cc =40×3220=3>1.∴角B 不存在,即满足条件的三角形不存在.3.(2018·重庆六校联考)在△ABC 中,cos B =ac (a ,b ,c 分别为角A ,B ,C 的对边),则△ABC 的形状为( )A .直角三角形B .等边三角形C .等腰三角形D .等腰三角形或直角三角形解析:选A 因为cos B =ac ,由余弦定理得a 2+c 2-b 22ac =a c ,整理得b 2+a 2=c 2,即C 为直角,则△ABC 为直角三角形.4.在△ABC 中,a ,b ,c 分别是内角A ,B ,C 的对边.若b sin A =3c sin B ,a =3, cos B =23,则b =( )A .14B .6 C.14D. 6解析:选D ∵b sin A =3c sin B ⇒ab =3bc ⇒a =3c ⇒c =1,∴b 2=a 2+c 2-2ac cos B =9+1-2×3×1×23=6,∴b = 6.5.(2019·莆田调研)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,若a sin B cos C +c sin B cos A =12b ,且a >b ,则B =( )A.π6B.π3C.2π3D.5π6解析:选A ∵a sin B cos C +c sin B cos A =12b ,∴根据正弦定理可得sin A sin B cos C +sinC sin B cos A =12sin B ,即sin B (sin A cos C +sin C cos A )=12sin B .∵sin B ≠0,∴sin(A +C )=12,即sin B =12.∵a >b ,∴A >B ,即B 为锐角,∴B =π6.6.(2019·山西大同联考)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若2(b cos A +a cos B )=c 2,b =3,3cos A =1,则a =( )A. 5 B .3 C.10D .4解析:选B 由正弦定理可得2(sin B cos A +sin A cos B )=c sin C , ∵2(sin B cos A +sin A cos B )=2sin(A +B )=2sin C ,∴2sin C =c sin C ,∵sin C >0,∴c =2,由余弦定理得a 2=b 2+c 2-2bc cos A =32+22-2×3×2×13=9,∴a =3.7.在△ABC 中,AB =6,A =75°,B =45°,则AC =________. 解析:C =180°-75°-45°=60°, 由正弦定理得AB sin C =ACsin B ,即6sin 60°=AC sin 45°,解得AC =2. 答案:28.设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且a =2,cos C =-14,3sin A =2sin B ,则c =________.解析:∵3sin A =2sin B ,∴3a =2b . 又∵a =2,∴b =3.由余弦定理可知c 2=a 2+b 2-2ab cos C , ∴c 2=22+32-2×2×3×⎝⎛⎭⎫-14=16,∴c =4. 答案:49.(2018·浙江高考)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .若a =7,b =2,A =60°,则sin B =________,c =________.解析:由正弦定理a sin A =bsin B ,得sin B =b a ·sin A =27×32=217.由余弦定理a 2=b 2+c 2-2bc cos A , 得7=4+c 2-4c ×cos 60°,即c 2-2c -3=0,解得c =3或c =-1(舍去). 答案:2173 10.在△ABC 中,a ,b ,c 分别为角A ,B ,C 所对的边,sin A ,sin B ,sin C 成等差数列,且a =2c ,则cos A =________.解析:因为sin A ,sin B ,sin C 成等差数列,所以2sin B =sin A +sin C .由正弦定理得a +c =2b ,又因为a =2c ,可得b =32c ,所以cos A =b 2+c 2-a 22bc =94c 2+c 2-4c 22×32c 2=-14.答案:-1411.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且A =2B . (1)求证:a =2b cos B ; (2)若b =2,c =4,求B 的值.解:(1)证明:因为A =2B ,所以由正弦定理a sin A =b sin B ,得a sin 2B =bsin B ,所以a =2b cos B .(2)由余弦定理,a 2=b 2+c 2-2bc cos A , 因为b =2,c =4,A =2B ,所以16c os 2B =4+16-16cos 2B ,所以c os 2B =34,因为A +B =2B +B <π,所以B <π3,所以cos B =32,所以B =π6.12.(2019·绵阳模拟)在△ABC 中,a ,b ,c 分别为内角A ,B ,C 的对边,且2a sin A =(2b +c )sin B +(2c +b )sin C .(1)求A 的大小;(2)若sin B +sin C =1,试判断△ABC 的形状.解:(1)由已知,结合正弦定理,得2a 2=(2b +c )b +(2c +b )c ,即a 2=b 2+c 2+bc . 又由余弦定理,得a 2=b 2+c 2-2bc cos A , 所以bc =-2bc cos A ,即cos A =-12.由于A 为△ABC 的内角,所以A =2π3.(2)由已知2a sin A =(2b +c )sin B +(2c +b )sin C ,结合正弦定理,得2sin 2A =(2sin B +sin C )sin B +(2sin C +sin B )sin C , 即sin 2A =sin 2B +sin 2C +sin B sin C =sin 22π3=34.又由sin B +sin C =1,得sin 2B +sin 2C +2sin B sin C =1,所以sin B sin C =14,结合sin B +sin C =1,解得sin B =sin C =12.因为B +C =π-A =π3,所以B =C =π6,所以△ABC 是等腰三角形.B 级——创高分自选1.(2019·郑州质量预测)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .若2c os 2A +B2-cos 2C =1,4sin B =3sin A ,a -b =1,则c 的值为( )A.13B.7C.37D .6解析:选A 由2c os 2A +B2-cos 2C =1,得1+c os(A +B )-(2c os 2C -1)=2-2c os 2C -cos C =1,即2c os 2C +cos C -1=0,解得cos C =12或cos C =-1(舍去).由4sin B =3sin A及正弦定理,得4b =3a ,结合a -b =1,得a =4,b =3.由余弦定理,知c 2=a 2+b 2-2ab cos C =42+32-2×4×3×12=13,所以c =13.2.(2019·长春模拟)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,且c =3,2sin A a =t a n Cc,若sin(A -B )+sin C =2sin 2B ,则a +b =________. 解析:∵2sin A a =t a n C c =sin C c cos C ,且由正弦定理可得a =2R sin A ,c =2R sin C (R 为△ABC的外接圆的半径),∴cos C =12.∵C ∈(0,π),∴C =π3.∵sin(A -B )+sin C =2sin 2B ,sin C =sin(A+B ),∴2sin A cos B =4sin B cos B .当cos B =0时,B =π2,则A =π6,∵c =3, ∴a=1,b =2,则a +b =3.当cos B ≠0时,sin A =2sin B ,即a =2b .∵cos C =a 2+b 2-c 22ab =12,∴b 2=1,即b =1,∴a =2,则a +b =3.综上,a +b =3.答案:33.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且2a cos C -c =2b . (1)求角A 的大小;(2)若c =2,角B 的平分线BD =3,求a .解:(1)2a cos C -c =2b ⇒2sin A cos C -sin C =2sin B ⇒2sin A cos C -sin C =2sin(A +C )=2sin A cos C +2cos A sin C ,∴-sin C =2cos A sin C , ∵sin C ≠0,∴cos A =-12,又A ∈(0,π),∴A =2π3. (2)在△ABD 中,由正弦定理得,AB sin ∠ADB =BDsin A ,∴sin ∠ADB =AB sin A BD =22. 又∠ADB ∈(0,π),A =2π3,∴∠ADB =π4,∴∠ABC =π6,∠ACB =π6,b =c =2,由余弦定理,得a 2=c 2+b 2-2c ·b ·cos A =(2)2+(2)2-2×2×2c os 2π3=6,∴a = 6.第二课时 正弦定理和余弦定理(二)考点一 有关三角形面积的计算[典例] (1)(2019·广州调研)△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,已知b=7,c =4,cos B =34,则△ABC 的面积等于( )A .37 B.372C .9D.92(2)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .若△ABC 的面积为34(a 2+c 2-b 2),则B =________.[解析] (1)法一:由余弦定理b 2=a 2+c 2-2ac cos B ,代入数据,得a =3,又cos B =34,B ∈(0,π),所以sin B =74,所以S △ABC =12ac sin B =372. 法二:由cos B =34,B ∈(0,π),得sin B =74,由正弦定理b sin B =c sin C 及b =7,c =4,可得sin C =1,所以C =π2,所以sin A =cos B =34,所以S △ABC =12bc sin A =372.(2)由余弦定理得cos B =a 2+c 2-b 22ac ,∴a 2+c 2-b 2=2ac cos B . 又∵S =34(a 2+c 2-b 2),∴12ac sin B =34×2ac cos B , ∴t a n B =3,∵B ∈()0,π,∴B =π3.[答案] (1)B (2)π3[变透练清]1.(变条件)本例(1)的条件变为:若c =4,sin C =2sin A ,sin B =154,则S △ABC =________. 解析:因为sin C =2sin A ,所以c =2a ,所以a =2,所以S △ABC =12ac sin B =12×2×4×154=15.答案:152.(变结论)本例(2)的条件不变,则C 为钝角时,ca 的取值范围是________. 解析:∵B =π3且C 为钝角,∴C =2π3-A >π2,∴0<A <π6.由正弦定理得c a =sin ⎝⎛⎭⎫2π3-A sin A=32cos A +12sin A sin A =12+32·1t a n A.∵0<t a n A <33,∴1t a n A>3, ∴c a >12+32×3=2,即c a >2.答案:(2,+∞)3.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,(2b -a )cos C =c cos A . (1)求角C 的大小;(2)若c =3,△ABC 的面积S =433,求△ABC 的周长. 解:(1)由已知及正弦定理得(2sin B -sin A )cos C =sin C cos A , 即2sin B cos C =sin A cos C +sin C cos A =sin(A +C )=sin B , ∵B ∈(0,π),∴sin B >0,∴cos C =12,∵C ∈(0,π),∴C =π3.(2)由(1)知,C =π3,故S =12ab sin C =12ab sin π3=433,解得ab =163. 由余弦定理可得c 2=a 2+b 2-2ab cos C =a 2+b 2-ab =(a +b )2-3ab , 又c =3,∴(a +b )2=c 2+3ab =32+3×163=25,得a +b =5.∴△ABC 的周长为a +b +c =5+3=8.[解题技法]1.求三角形面积的方法(1)若三角形中已知一个角(角的大小或该角的正、余弦值),结合题意求解这个角的两边或该角的两边之积,代入公式求面积.(2)若已知三角形的三边,可先求其一个角的余弦值,再求其正弦值,代入公式求面积.总之,结合图形恰当选择面积公式是解题的关键.2.已知三角形面积求边、角的方法(1)若求角,就寻求夹这个角的两边的关系,利用面积公式列方程求解.(2)若求边,就寻求与该边(或两边)有关联的角,利用面积公式列方程求解. 考点二 平面图形中的计算问题[典例] (2018·广东佛山质检)如图,在平面四边形ABCD 中,∠ABC=3π4,AB ⊥AD ,AB =1. (1)若AC =5,求△ABC 的面积; (2)若∠ADC =π6,CD =4,求sin ∠CAD .[解] (1)在△ABC 中,由余弦定理得,AC 2=AB 2+BC 2-2AB ·BC ·c os ∠ABC , 即5=1+BC 2+2BC ,解得BC =2,所以△ABC 的面积S △ABC =12AB ·BC ·sin ∠ABC =12×1×2×22=12.(2)设∠CAD =θ,在△ACD 中,由正弦定理得AC sin ∠ADC =CDsin ∠CAD ,即AC sin π6=4sin θ, ① 在△ABC 中,∠BAC =π2-θ,∠BCA =π-3π4-⎝⎛⎭⎫π2-θ=θ-π4, 由正弦定理得AC sin ∠ABC =ABsin ∠BCA ,即AC sin 3π4=1sin ⎝⎛⎭⎫θ-π4,② ①②两式相除,得sin 3π4sin π6=4sin ⎝⎛⎭⎫θ-π4sin θ,即4⎝⎛⎭⎫22sin θ-22cos θ=2sin θ,整理得sin θ=2cos θ. 又因为sin 2θ+c os 2θ=1,所以sin θ=255,即sin ∠CAD =255.[解题技法]与平面图形有关的解三角形问题的关键及思路求解平面图形中的计算问题,关键是梳理条件和所求问题的类型,然后将数据化归到三角形中,利用正弦定理或余弦定理建立已知和所求的关系.具体解题思路如下:(1)把所提供的平面图形拆分成若干个三角形,然后在各个三角形内利用正弦、余弦定理求解;(2)寻找各个三角形之间的联系,交叉使用公共条件,求出结果.[提醒] 做题过程中,要用到平面几何中的一些知识点,如相似三角形的边角关系、平行四边形的一些性质,要把这些性质与正弦、余弦定理有机结合,才能顺利解决问题.[题组训练]1.如图,在△ABC 中,D 是边AC 上的点,且AB =AD,2AB =3BD ,BC =2BD ,则sin C 的值为________.解析:设AB =a ,∵AB =AD,2AB =3BD ,BC =2BD , ∴AD =a ,BD =2a 3,BC =4a 3. 在△ABD 中,c os ∠ADB =a 2+4a 23-a 22a ×2a 3=33,∴sin ∠ADB =63,∴sin ∠BDC =63. 在△BDC 中,BD sin C =BCsin ∠BDC,∴sin C =BD ·sin ∠BDC BC =66. 答案:662.如图,在平面四边形ABCD 中,DA ⊥AB ,DE =1,EC =7,EA=2,∠ADC =2π3,且∠CBE ,∠BEC ,∠BCE 成等差数列. (1)求sin ∠CED ; (2)求BE 的长. 解:设∠CED =α.因为∠CBE ,∠BEC ,∠BCE 成等差数列, 所以2∠BEC =∠CBE +∠BCE ,又∠CBE +∠BEC +∠BCE =π,所以∠BEC =π3.(1)在△CDE 中,由余弦定理得EC 2=CD 2+DE 2-2CD ·DE ·c os ∠EDC , 即7=CD 2+1+CD ,即CD 2+CD -6=0, 解得CD =2(CD =-3舍去). 在△CDE 中,由正弦定理得ECsin ∠EDC =CDsin α,于是sin α=CD ·sin 2π3EC =2×327=217,即sin ∠CED =217.(2)由题设知0<α<π3,由(1)知cos α=1-sin 2α=1-2149=277,又∠AEB =π-∠BEC -α=2π3-α, 所以c os ∠AEB =c os ⎝⎛⎭⎫2π3-α=c os 2π3cos α+sin 2π3sin α=-12×277+32×217=714. 在Rt △EAB 中,c os ∠AEB =EA BE =2BE =714,所以BE =47.考点三 三角形中的最值、范围问题[典例] (1)在△ABC 中,内角A ,B ,C 对应的边分别为a ,b ,c ,A ≠π2,sin C +sin(B-A )=2sin 2A ,则角A 的取值范围为( )A.⎝⎛⎦⎤0,π6 B.⎝⎛⎦⎤0,π4 C.⎣⎡⎦⎤π6,π4D.⎣⎡⎦⎤π6,π3(2)已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且cos 2A +cos 2B =2cos 2C ,则cos C 的最小值为( )A.32B.22C.12D .-12[解析] (1)在△ABC 中,C =π-(A +B ),所以sin(A +B )+sin(B -A )=2sin 2A ,即2sin B cos A =22sin A cos A ,因为A ≠π2,所以cos A ≠0,所以sin B =2sin A ,由正弦定理得,b =2a ,所以A 为锐角.又因为sin B =2sin A ∈(0,1],所以sin A ∈⎝⎛⎦⎤0,22,所以A ∈⎝⎛⎦⎤0,π4. (2)因为cos 2A +cos 2B =2cos 2C ,所以1-2sin 2A +1-2sin 2B =2-4sin 2C ,得a 2+b 2=2c 2,cos C =a 2+b 2-c 22ab =a 2+b 24ab ≥2ab 4ab =12,当且仅当a =b 时等号成立,故选C.[答案] (1)B (2)C[解题技法]1.三角形中的最值、范围问题的解题策略解与三角形中边角有关的量的取值范围时,主要是利用已知条件和有关定理,将所求的量用三角形的某个内角或某条边表示出来,结合三角形边角取值范围等求解即可.2.求解三角形中的最值、范围问题的注意点(1)涉及求范围的问题,一定要搞清已知变量的范围,利用已知的范围进行求解, 已知边的范围求角的范围时可以利用余弦定理进行转化.(2)注意题目中的隐含条件,如A +B +C =π,0<A <π,b -c <a <b +c ,三角形中大边对大角等.[题组训练]1.在钝角△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,B 为钝角,若a cos A = b sin A ,则sin A +sin C 的最大值为( )A. 2B.98C .1D.78解析:选B ∵a cos A =b sin A ,由正弦定理可得,sin A cos A =sin B sin A ,∵sin A ≠0,∴cos A =sin B ,又B 为钝角,∴B =A +π2,sin A +sin C =sin A +sin(A +B )=sin A +cos 2A=sin A +1-2sin 2A =-2⎝⎛⎭⎫sin A -142+98,∴sin A +sin C 的最大值为98. 2.(2018·哈尔滨三中二模)在△ABC 中,已知c =2,若sin 2A +sin 2B -sin A sin B =sin 2C ,则a +b 的取值范围为________.解析:∵sin 2A +sin 2B -sin A sin B =sin 2C ,∴a 2+b 2-ab =c 2,∴cos C =a 2+b 2-c 22ab =12,又∵C ∈(0,π),∴C =π3.由正弦定理可得a sin A =b sin B =2sin π3=433,∴a =433sin A ,b =433sinB .又∵B =2π3-A ,∴a +b =433sin A +433sin B =433sin A +433sin ⎝⎛⎭⎫2π3-A =4sin ⎝⎛⎭⎫A +π6.又∵A ∈⎝⎛⎭⎫0,2π3,∴A +π6∈⎝⎛⎭⎫π6,5π6,∴sin ⎝⎛⎭⎫A +π6∈⎝⎛⎦⎤12,1,∴a +b ∈(2,4]. 答案:(2,4]3.已知在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且cos B b +cos C c =sin A3sin C. (1)求b 的值;(2)若cos B +3sin B =2,求△ABC 面积的最大值.解:(1)由题意及正、余弦定理得a 2+c 2-b 22abc +a 2+b 2-c 22abc =3a 3c ,整理得2a 22abc =3a 3c ,所以b = 3.(2)由题意得cos B +3sin B =2sin ⎝⎛⎭⎫B +π6=2, 所以sin ⎝⎛⎭⎫B +π6=1, 因为B ∈(0,π),所以B +π6=π2,所以B =π3.由余弦定理得b 2=a 2+c 2-2ac cos B , 所以3=a 2+c 2-ac ≥2ac -ac =ac , 即ac ≤3,当且仅当a =c =3时等号成立. 所以△ABC 的面积S △ABC =12ac sin B =34ac ≤334,当且仅当a =c =3时等号成立. 故△ABC 面积的最大值为334.考点四 解三角形与三角函数的综合应用考法(一) 正、余弦定理与三角恒等变换[典例] (2018·天津高考)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知 b sin A =ac os ⎝⎛⎭⎫B -π6.(1)求角B 的大小;(2)设a =2,c =3,求b 和sin(2A -B )的值. [解] (1)在△ABC 中,由正弦定理a sin A =bsin B ,可得b sin A =a sin B .又因为b sin A =ac os ⎝⎛⎭⎫B -π6, 所以a sin B =ac os ⎝⎛⎭⎫B -π6, 即sin B =32cos B +12sin B , 所以t a n B = 3.因为B ∈(0,π),所以B =π3.(2)在△ABC 中,由余弦定理及a =2,c =3,B =π3,得b 2=a 2+c 2-2ac cos B =7,故b =7. 由b sin A =ac os ⎝⎛⎭⎫B -π6,可得sin A =37. 因为a <c ,所以cos A =27. 所以sin 2A =2sin A cos A =437,cos 2A =2c os 2A -1=17. 所以sin(2A -B )=sin 2A cos B -cos 2A sin B =437×12-17×32=3314. 考法(二) 正、余弦定理与三角函数的性质[典例] (2018·辽宁五校联考)已知函数f (x )=c os 2x +3sin(π-x )c os(π+x )-12.(1)求函数f (x )在[0,π]上的单调递减区间;(2)在锐角△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,已知f (A )=-1,a =2,b sin C =a sin A ,求△ABC 的面积.[解] (1)f (x )=c os 2x -3sin x cos x -12=1+cos 2x 2-32sin 2x -12=-sin ⎝⎛⎭⎫2x -π6, 令2k π-π2≤2x -π6≤2k π+π2,k ∈Z ,得k π-π6≤x ≤k π+π3,k ∈Z ,又∵x ∈[0,π],∴函数f (x )在[0,π]上的单调递减区间为⎣⎡⎦⎤0,π3和⎣⎡⎦⎤5π6,π. (2)由(1)知f (x )=-sin ⎝⎛⎭⎫2x -π6, ∴f (A )=-sin ⎝⎛⎭⎫2A -π6=-1, ∵△ABC 为锐角三角形,∴0<A <π2,∴-π6<2A -π6<5π6,∴2A -π6=π2,即A =π3.又∵b sin C =a sin A ,∴bc =a 2=4, ∴S △ABC =12bc sin A = 3.[解题技法]解三角形与三角函数综合问题的一般步骤[对点训练]在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,(2a -c )cos B -b cos C =0. (1)求角B 的大小;(2)设函数f (x )=2sin x cos x cos B -32cos 2x ,求函数f (x )的最大值及当f (x )取得最大值时x 的值.解:(1)因为(2a -c )cos B -b cos C =0, 所以2a cos B -c cos B -b cos C =0, 由正弦定理得2sin A cos B -sin C cos B -cos C sin B =0, 即2sin A cos B -sin(C +B )=0,又因为C +B =π-A ,所以sin(C +B )=sin A . 所以sin A (2cos B -1)=0.在△ABC 中,sin A ≠0,所以cos B =12,又因为B ∈(0,π),所以B =π3.(2)因为B =π3,所以f (x )=12sin 2x -32cos 2x =sin ⎝⎛⎭⎫2x -π3, 令2x -π3=2k π+π2(k ∈Z),得x =k π+5π12(k ∈Z),即当x =k π+5π12(k ∈Z)时,f (x )取得最大值1. [课时跟踪检测]A 级——保大分专练1.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,cos 2A =sin A ,bc =2,则 △ABC 的面积为( )A.12 B.14C .1D .2解析:选A 由cos 2A =sin A ,得1-2sin 2A =sin A ,解得sin A =12(负值舍去),由bc=2,可得△ABC 的面积S =12bc sin A =12×2×12=12.2.在△ABC 中,a ,b ,c 分别是角A ,B ,C 所对的边,若(2a +c )cos B +b cos C =0,则角B 的大小为( )A.π6 B.π3C.2π3D.5π6解析:选C 由已知条件和正弦定理,得(2sin A +sin C )cos B +sin B cos C =0.化简,得2sin A cos B +sin A =0.因为角A 为三角形的内角,所以sin A ≠0,所以cos B =-12,所以B=2π3. 3.在锐角△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若sin A =223,a =3,S △ABC =22,则b 的值为( )A .6B .3C .2D .2或3解析:选D 因为S △ABC =12bc sin A =22,所以bc =6,又因为sin A =223,A ∈⎝⎛⎭⎫0,π2, 所以cos A =13,因为a =3,所以由余弦定理得9=b 2+c 2-2bc cos A =b 2+c 2-4,b 2+c 2=13,可得b =2或b =3. 4.(2018·昆明检测)在△ABC 中,已知AB =2,AC =5,t a n ∠BAC =-3,则BC 边上的高等于( )A .1 B. 2 C. 3D .2解析:选A 法一:因为t a n ∠BAC =-3,所以sin ∠BAC =310,c os ∠BAC =-110.由余弦定理,得BC 2=AC 2+AB 2-2AC ·ABc os ∠BAC =5+2-2×5×2×⎝⎛⎭⎫-110=9,所以BC =3,所以S △ABC =12AB ·AC sin ∠BAC =12×2×5×310=32,所以BC 边上的高h =2S △ABC BC=2×323=1.法二:在△ABC 中,因为t a n ∠BAC =-3<0,所以∠BAC 为钝角,因此BC 边上的高小于2,结合选项可知选A.5.(2018·重庆九校联考)已知a ,b ,c 分别是△ABC 的内角A ,B ,C 的对边,且a sin B =3b cos A ,当b +c =4时,△ABC 面积的最大值为( )A.33B.32C. 3D .2 3解析:选C 由a sin B =3b cos A ,得sin A sin B =3sin B cos A ,∴t a n A =3,∵0<A <π,∴A =π3,故S △ABC =12bc sin A =34bc ≤34⎝ ⎛⎭⎪⎫b +c 22=3(当且仅当b =c =2时取等号),故选C.6.(2019·安徽名校联盟联考)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若bc =1,b +2c cos A =0,则当角B 取得最大值时,△ABC 的周长为( )A .2+ 3B .2+ 2C .3D .3+ 2解析:选A 由b +2c cos A =0,得b +2c ·b 2+c 2-a 22bc =0,整理得2b 2=a 2-c 2.由余弦定理,得cos B =a 2+c 2-b 22ac =a 2+3c 24ac ≥23ac 4ac =32,当且仅当a =3c 时等号成立,此时角B取得最大值,将a =3c 代入2b 2=a 2-c 2可得b =c .又因为bc =1,所以b =c =1,a =3,故△ABC 的周长为2+ 3.7.在△ABC 中,B =120°,AC =7,AB =5,则△ABC 的面积为________. 解析:由余弦定理知72=52+BC 2-2×5×BC ×cos 120°, 即49=25+BC 2+5BC ,解得BC =3(负值舍去). 故S △ABC =12AB ·BC sin B =12×5×3×32=1534.答案:15348.(2019·长春质量检测)在△ABC 中,三个内角A ,B ,C 的对边分别为a ,b ,c ,若 12b cos A =sin B ,且a =23,b +c =6,则△ABC 的面积为________. 解析:由题意可知cos A 2=sin B b =sin Aa ,因为a =23,所以t a n A =3,因为0<A <π,所以A =π3,由余弦定理得12=b 2+c 2-bc =(b +c )2-3bc ,又因为b +c =6,所以bc =8,从而△ABC 的面积为12bc sin A =12×8×sin π3=2 3.答案:2 39.已知在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,∠BAC =π2,点D 在边BC 上,AD =1,且BD =2DC ,∠BAD =2∠DAC ,则sin Bsin C=________.解析:由∠BAC =π2及∠BAD =2∠DAC ,可得∠BAD =π3,∠DAC =π6.由BD =2DC ,令DC=x ,则BD =2x .因为AD =1,在△ADC 中,由正弦定理得1sin C =x sin π6,所以sin C =12x,在△ABD 中,sin B =sin π32x =34x ,所以sin B sin C =34x 12x=32.答案:3210.(2018·河南新乡二模)如图所示,在△ABC 中,C =π3,BC =4,点D在边AC 上,AD =DB ,DE ⊥AB ,E 为垂足,若DE =22,则cos A =________.解析:∵AD =DB ,∴∠A =∠ABD ,∠BDC =2∠A .设AD =DB =x , ∴在△BCD 中,BC sin ∠BDC =DB sin C ,可得4sin 2A =x sinπ3. ①在△AED 中,DE sin A =AD sin ∠AED ,可得22sin A =x1. ②联立①②可得42sin A cos A =22sin A 32,解得cos A =64.答案:64 11.(2019·南宁摸底联考)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知 c (1+cos B )=b (2-cos C ).(1)求证:2b =a +c ;(2)若B =π3,△ABC 的面积为43,求b .解:(1)证明:∵c (1+cos B )=b (2-cos C ),∴由正弦定理可得sin C +sin C cos B =2sin B -sin B cos C , 即sin C cos B +sin B cos C +sin C =sin(B +C )+sin C =2sin B , ∴sin A +sin C =2sin B ,∴a +c =2b .(2)∵B =π3,∴△ABC 的面积S =12ac sin B =34ac =43,∴ac =16.由余弦定理可得b 2=a 2+c 2-2ac cos B =a 2+c 2-ac =(a +c )2-3ac . ∵a +c =2b ,∴b 2=4b 2-3×16,解得b =4.12.在△ABC 中,AC =6,cos B =45,C =π4.(1)求AB 的长; (2)求c os ⎝⎛⎭⎫A -π6的值. 解:(1)因为cos B =45,0<B <π,所以sin B =35.由正弦定理得AC sin B =AB sin C ,所以AB =AC ·sin Csin B =6×2235=5 2.(2)在△ABC 中,因为A +B +C =π,所以A =π-(B +C ), 又因为cos B =45,sin B =35,所以cos A =-c os(B +C )=-c os ⎝⎛⎭⎫B +π4=-cos Bc os π4+sin B sin π4=-45×22+35×22=-210. 因为0<A <π,所以sin A =1-c os 2A =7210. 因此,c os ⎝⎛⎭⎫A -π6=cos Ac os π6+sin A sin π6=-210×32+7210×12=72-620.B 级——创高分自选1.在锐角三角形ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若B =2A ,则2ba 的取值范围是( )A .(2,2)B .(2,6)C .(2,3)D .(6,4)解析:选B ∵B =2A ,∴sin B =sin 2A =2sin A cos A ,∴ba =2cos A .又C =π-3A ,C 为锐角,∴0<π-3A <π2⇒π6<A <π3,又B =2A ,B 为锐角,∴0<2A <π2⇒0<A <π4,∴π6<A <π4,22<cosA <32,∴2<b a <3,∴2<2b a < 6. 2.△ABC 的三个内角A ,B ,C 所对的边分别为a ,b ,c ,a sin A sin B +bc os 2A =2a ,则角A 的取值范围是________.解析:由已知及正弦定理得sin 2A sin B +sin Bc os 2A =2sin A ,即sin B (sin 2A +c os 2A )=2sin A ,∴sin B =2sin A ,∴b =2a ,由余弦定理得cos A =b 2+c 2-a 22bc =4a 2+c 2-a 24ac =3a 2+c 24ac ≥23ac 4ac =32,当且仅当c =3a 时取等号.∵A 为三角形的内角,且y =cos x 在(0,π)上是减函数,∴0<A ≤π6,则角A 的取值范围是⎝⎛⎦⎤0,π6. 答案:⎝⎛⎦⎤0,π63.(2018·昆明质检)如图,在平面四边形ABCD 中,AB ⊥BC ,AB =2,BD =5,∠BCD =2∠ABD ,△ABD 的面积为2.(1)求AD 的长; (2)求△CBD 的面积.解:(1)由已知S △ABD =12AB ·BD ·sin ∠ABD =12×2×5×sin ∠ABD =2,可得sin ∠ABD =255,又∠BCD =2∠ABD ,所以∠ABD ∈⎝⎛⎭⎫0,π2,所以c os ∠ABD =55. 在△ABD 中,由余弦定理AD 2=AB 2+BD 2-2·AB ·BD ·c os ∠ABD ,可得AD 2=5,所以AD = 5.(2)由AB ⊥BC ,得∠ABD +∠CBD =π2,所以sin ∠CBD =c os ∠ABD =55. 又∠BCD =2∠ABD ,所以sin ∠BCD =2sin ∠ABD ·c os ∠ABD =45,∠BDC =π-∠CBD -∠BCD =π-⎝⎛⎭⎫π2-∠ABD -2∠ABD =π2-∠ABD =∠CBD , 所以△CBD 为等腰三角形,即CB =CD . 在△CBD 中,由正弦定理BD sin ∠BCD =CD sin ∠CBD ,得CD =BD ·sin ∠CBDsin ∠BCD=5×5545=54, 所以S △CBD =12CB ·CD ·sin ∠BCD =12×54×54×45=58.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

主备人:严锦华 审核人:仉浪
【知识点回顾】
利用余弦定理,可以解决以下两类解斜三角形的问题: (1)已知三边,求三个角;
(2)已知两边和它们的夹角,求第三边和其他两个角.
【基础知识】
1. 在△ABC 中,已知222
sin sin sin sin B C A A C --=,则A 的大小为____________.
2. 已知等腰三角形的底边长为6,一腰长为12,则它的外接圆半径为__________.
3. 在△ABC 中,BC =3,AB =2,
)16(5
2
sin sin +=B C ,∠A =_____________. 4. 如图2-1-4在ABC ∆中,A 、B 、C 的对边分别为a 、b 、c ,若74==b c ,,BC 边上的中
线AD 的长为
2
7
,则边长a=_________________. 5.在△ABC 中,若1cos cos cos 222=++C B A ,则△ABC 的形状是___________________.
6. 设m 、m+1、m+2是钝角三角形的三边长,则实数m 的取值范围是____________________. 【例题分析】
例1 在ABC ∆中,3
1tan 21tan ==B A ,,且最长边为1,求: (1)C 的大小; (2)最短边的边长.
例 2 在△ABC 中,BC =a ,AC =b ,且a ,b 是方程02322
=+-x x 的两根,
()1cos 2=+B A ,
(1) 求角C 的度数; (2) 求AB 的长; (3)求△ABC 的面积.
例3 在四边形ABCD 中,∠ADB=∠BCD=75︒,∠ACB=∠BDC=45︒,DC=3,求: (1) AB 的长;
(2) 四边形AB CD 的面积.
例4 在△ABC 中,若已知三边为连续正整数,最大角为钝角, (1)求最大角的余弦值;
(2)求以此最大角为内角,夹此角两边之和为4的平行四边形的最大面积.
【巩固迁移】
1. 已知ABC ∆中,A 、B 、C 的对边分别为a 、b 、c ,
222
4
ABC a b c S ∆+-=,那么角C =___________.
2.在△ABC 中,三个角满足2A =B +C ,且最大边与最小边分别是方程3x 2
-27x +32=0的两个根,则a =___ _____.
3.0<a <3是使a ,a +1,a +2为钝角三角形的三边的_______________________条件. 4. 在ABC ∆中,已知acosA = bcosB 用两种方法判断该三角形的形状.
5.如图,已知圆内接四边形ABCD的边长分别为AB=2,BC=6,AD =CD=4,如何求出四边形ABCD的面积?
【反思总结】。

相关文档
最新文档