高三数学余弦定理

合集下载

高三数学余弦定理

高三数学余弦定理

某天中午,班里最后一节是体育课,天气炎热,一节课下来浑身是汗,像个泥鳅似的。下课后,当时任班长的我和副班长东河沟子” 去洗澡,这一提议很快得到全体男生赞同,放学后先各自回家仓促吃些东西,再分头悄没声息地前往目的地。新皇冠登陆
东河沟子是一个很隐蔽的南北河流,里面水草遍布,河沟两侧是很高的土坡,坡的上下长满了紫槐条子和其他树木,密不透风,与河沟一水相连的便是一个直径十米宽的机井,名东河沟井。井面与 河沟水面持平,最适合洗澡。大伙将衣裤扒个精光,哧溜溜地扎入水中,就像水煮的饺子,在水中上下翻滚浮沉。
不曾想,我们偷偷洗澡的事,还是被四年级的一个赵姓班长趴在紫槐棵子的隐蔽处窥到了,并立即报告了学校。洗澡的快乐,早已把下午上课的时间丢到九霄云外了。等洗完澡,穿好裤子,陆续到 教室时,上课铃早已响了多时。二十多个同学一个接着一个地进教室时,都会喊一声嘹亮的“报告”。站在讲台上怒气冲天的女班主任,一个接着一个地扭着耳朵,揪到讲台上排列成三排。从班长副班 长一个个问下去:“干么去来,都迟到了?!”我们事先统一了口径,都矢口否认。老师脸色气得发紫,哆嗦着说:“都给我伸出手来!”老师已经无法控制情绪了,转身要找“武器”,可只有粉笔豆, 她无奈地跺着脚,我们也不知她说了什么。我们接受着她的暴风骤雨,的确也吓坏了我们。事后老师还告诉了我们的家长,更少不了一顿训诫,有的甚至还挨了棍子。

高三数学复习(理):第6讲 正弦定理和余弦定理

高三数学复习(理):第6讲 正弦定理和余弦定理

第6讲正弦定理和余弦定理[学生用书P87]1.正弦定理和余弦定理定理正弦定理余弦定理内容asin A=bsin B=csin C=2R(R为△ABC外接圆半径)a2=b2+c2-2bc cos_A;b2=c2+a2-2ca cos_B;c2=a2+b2-2ab cos_C变形形式a=2R sin_A,b=2R sin_B,c=2R sin_C;sin A=a2R,sin B=b2R,sin C=c2R;a∶b∶c=sin_A∶sin_B∶sin_C;a+b+csin A+sin B+sin C=asin Acos A=b2+c2-a22bc;cos B=c2+a2-b22ca;cos C=a2+b2-c22ab2.三角形解的判断A为锐角A为钝角或直角图形关系式a=b sin A b sin A<a<b a≥b a>b 解的个数一解两解一解一解3.三角形中常用的面积公式(1)S=12ah(h表示边a上的高).(2)S=12bc sin A=12ac sin_B=12ab sinC.(3)S=12r(a+b+c)(r为三角形的内切圆半径).常用结论1.三角形中的三角函数关系(1)sin(A+B)=sin C;(2)cos(A+B)=-cos C;(3)sin A+B2=cos C2;(4)cos A+B2=sin C2.2.三角形中的射影定理在△ABC中,a=b cos C+c cos B;b=a cos C+c cos A;c=b cos A+a cos B.3.在△ABC中,两边之和大于第三边,两边之差小于第三边,A>B⇔a>b ⇔sin A>sin B⇔cos A<cos B.一、思考辨析判断正误(正确的打“√”,错误的打“×”)(1)三角形中三边之比等于相应的三个内角之比.( ) (2)在△ABC 中,若sin A >sin B ,则A >B .( )(3)在△ABC 的六个元素中,已知任意三个元素可求其他元素.( ) (4)当b 2+c 2-a 2>0时,△ABC 为锐角三角形;当b 2+c 2-a 2=0时,△ABC 为直角三角形;当b 2+c 2-a 2<0时,△ABC 为钝角三角形.( )答案:(1)× (2)√ (3)× (4)× 二、易错纠偏常见误区|K(1)利用正弦定理求角时解的个数弄错; (2)在△ABC 中角与角的正弦关系弄错; (3)判断三角形形状时弄错.1.在△ABC 中,已知b =40,c =20,C =60°,则此三角形的解的情况是( ) A .有一解 B .有两解 C .无解D .有解但解的个数不确定解析:选C.由正弦定理得b sin B =csin C ,所以sin B =b sin Cc =40×3220=3>1.所以角B 不存在,即满足条件的三角形不存在.2.在△ABC 中,若sin A =sin B ,则A ,B 的关系为________;若sin A >sin B ,则A ,B 的关系为________.解析:sin A =sin B ⇔a =b ⇔A =B ; sin A >sin B ⇔a >b ⇔A >B . 答案:A =B A >B3.在△ABC 中,a cos A =b cos B ,则这个三角形的形状为________. 解析:由正弦定理,得sin A cos A =sin B cos B , 即sin 2A =sin 2B ,所以2A =2B 或2A =π-2B ,即A =B 或A +B =π2,所以这个三角形为等腰三角形或直角三角形. 答案:等腰三角形或直角三角形[学生用书P88]利用正、余弦定理求解三角形(多维探究) 角度一 求角或三角函数值(1)(2020·高考全国卷Ⅲ)在△ABC 中,cos C =23,AC =4,BC =3,则tan B =( )A.5 B .2 5 C .4 5D .8 5(2)(2021·福州市适应性考试)已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .若cos A (sin C -cos C )=cos B ,a =2,c =2,则角C 的大小为________.【解析】 (1)方法一:在△ABC 中,cos C =23,则sin C =53>22,所以C ∈⎝ ⎛⎭⎪⎫π4,π2.由余弦定理知AB 2=AC 2+BC 2-2AC ·BC ·cos C =16+9-2×4×3×23=9,所以AB =3.由正弦定理AC sin B =AB sin C ,得sin B =459,易知B ∈⎝ ⎛⎭⎪⎫0,π2,所以cos B =19,tan B =sin Bcos B =4 5.故选C.方法二:在△ABC 中,cos C =23,AC =4,BC =3,所以由余弦定理知AB 2=AC 2+BC 2-2AC ·BC ·cos C =16+9-2×4×3×23=9,所以AB =3,所以△ABC 是等腰三角形.过点B 作BD ⊥AC 于点D ,则BD =BC 2-CD 2=32-⎝ ⎛⎭⎪⎫422=5,tan B2=25=255,所以tan B=2tanB21-tan2B2=4 5.故选C.(2)因为cos A(sin C-cos C)=cos B,所以cos A(sin C-cos C)=-cos(A+C),所以cos A sin C=sin A sin C,所以sin C(cos A-sin A)=0,因为C∈(0,π),所以sin C≠0,cos A=sin A,则tan A=1,又A∈(0,π)所以A=π4,又asin A=csin C,即2 sin π4=2sin C,所以sin C=12,因为c<a,所以0<C<π4,故C=π6.【答案】(1)C(2)π6角度二求边长或周长在△ABC中,内角A,B,C的对边a,b,c成公差为2的等差数列,C=120°.(1)求边长a;(2)(一题多解)求AB边上的高CD的长.【解】(1)由题意得b=a+2,c=a+4,由余弦定理cos C=a2+b2-c22ab得cos 120°=a2+(a+2)2-(a+4)22a(a+2),即a2-a-6=0,所以a=3或a=-2(舍去),所以a=3.(2)方法一:由(1)知a=3,b=5,c=7,由三角形的面积公式得12ab sin ∠ACB=12c×CD,所以CD=ab sin ∠ACBc=3×5×327=15314,即AB边上的高CD=15314.方法二:由(1)知a=3,b=5,c=7,由正弦定理得3sin A =7sin ∠ACB=7sin 120°,即sin A =3314,在Rt △ACD 中,CD =AC sin A =5×3314=15314,即AB 边上的高CD =15314.(1)正弦定理、余弦定理的作用是在已知三角形部分元素的情况下求解其余元素,基本思想是方程思想,即根据正弦定理、余弦定理列出关于未知元素的方程,通过解方程求得未知元素.(2)正弦定理、余弦定理的另一个作用是实现三角形边角关系的互化,解题时可以把已知条件化为角的三角函数关系,也可以把已知条件化为三角形边的关系.(3)涉及最值问题时,常利用基本不等式或表示为三角形的某一内角的三角函数形式求解.1.(2021·广东省七校联考)若△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,已知2b sin 2A =3a sin B ,且c =2b ,则ab 等于( )A.32 B . 2 C.43D. 3解析:选B.由2b sin 2A =3a sin B ,及正弦定理可得4sin B ·sin A cos A =3sin A sin B ,由于sin A ≠0,sin B ≠0,所以cos A =34,又c =2b ,所以a 2=b 2+c 2-2bc cos A =b 2+4b 2-2b ×2b ×34=2b 2,所以ab =2,故选B.2.(2019·高考全国卷Ⅰ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,设(sin B -sin C )2=sin 2A -sin B sinC.(1)求A;(2)若2a+b=2c,求sinC.解:(1)由已知得sin2B+sin2C-sin2A=sin B sin C,故由正弦定理得b2+c2-a2=bc.由余弦定理得cos A=b2+c2-a22bc=12.因为0°<A<180°,所以A=60°.(2)由(1)知B=120°-C,由题设及正弦定理得2sin A+sin(120°-C)=2sinC,即62+32cos C+12sin C=2sin C,可得cos(C+60°)=-22.由于0°<C<120°,所以sin(C+60°)=22,故sin C=sin(C+60°-60°)=sin(C+60°)cos 60°-cos(C+60°)sin 60°=6+2 4.判断三角形的形状(典例迁移)(2020·重庆六校联考)在△ABC中,cos2B2=a+c2c(a,b,c分别为角A,B,C的对边),则△ABC的形状为()A.直角三角形B.等边三角形C.等腰三角形D.等腰三角形或直角三角形【解析】已知等式变形得cos B+1=ac+1,即cos B=ac①.由余弦定理得cos B=a2+c2-b22ac,代入①得a2+c2-b22ac=ac,整理得b2+a2=c2,即C为直角,则△ABC为直角三角形.【答案】 A【迁移探究1】(变条件)将“cos2B2=a+c2c”改为“c-a cos B=(2a-b)cosA”,试判断△ABC的形状.解:因为c-a cos B=(2a-b)cos A,C=π-(A+B),所以由正弦定理得sin C-sin A cos B=2sin A cos A-sin B cos A,所以sin A cos B+cos A sin B-sin A cos B=2sin A cos A-sin B cos A,所以cos A(sin B-sin A)=0,所以cos A=0或sin B=sin A,所以A=π2或B=A或B=π-A(舍去),所以△ABC为等腰三角形或直角三角形.【迁移探究2】(变条件)将“cos2B2=a+c2c”改为“sin Asin B=ac,(b+c+a)(b+c-a)=3bc”,试判断△ABC的形状.解:因为sin Asin B=ac,所以ab=ac,所以b=c.又(b+c+a)(b+c-a)=3bc,所以b2+c2-a2=bc,所以cos A=b2+c2-a22bc=bc2bc=12.因为A∈(0,π),所以A=π3,所以△ABC是等边三角形.(1)判定三角形形状的2种常用途径(2)判定三角形形状的3个注意点①“角化边”后要注意用因式分解、配方等方法得出边的相应关系; ②“边化角”后要注意用三角恒等变换公式、三角形内角和定理及诱导公式推出角的关系;③还要特别注意“等腰直角三角形”与“等腰三角形或直角三角形”的区别.在△ABC 中,已知2a cos B =c, sin A sin B ·(2-cos C )=sin 2C2+12,则△ABC 为( )A .等边三角形B .等腰直角三角形C .锐角非等边三角形D .钝角三角形解析:选B.将已知等式2a cos B =c 利用正弦定理化简得2sin A cos B =sin C , 因为sin C =sin ()A +B =sin A cos B +cos A sin B , 所以2sin A cos B =sin A cos B +cos A sin B , 即sin A cos B -cos A sin B =sin(A -B )=0, 因为A 与B 都为△ABC 的内角, 所以A -B =0,即A =B .因为sin A sin B (2-cos C )=sin 2C 2+12,所以sin A sin B (2-cos C )=12(1-cos C )+12=1-12cos C , 所以-12⎣⎡⎦⎤cos ()A +B -cos (A -B )(2-cosC )=1-12cos C ,所以-12(-cos C-1)(2-cos C)=1-12cos C,即(cos C+1)(2-cos C)=2-cos C,整理得cos2C-2cos C=0,即cos C(cos C-2)=0,所以cos C=0或cos C =2(舍去),所以C=90°,则△ABC为等腰直角三角形,故选B.与三角形面积有关的问题(多维探究)角度一计算三角形的面积(一题多解)(2021·昆明市三诊一模)△ABC的三个内角A,B,C所对的边分别为a,b,c,若B=120°,sin C=217,c=2,则△ABC的面积等于() A.32B.2 3C.34 D. 3【解析】方法一:由正弦定理bsin B=csin C,得b=c sin Bsin C=2×32217=7.由余弦定理b2=a2+c2-2ac cos B,得7=a2+4+2a,解得a=1或a=-3(舍去),所以S△ABC=12ac sin B=12×1×2×32=32,故选A.方法二:由正弦定理bsin B=csin C,得b=c sin Bsin C=2×32217=7.因为sin C=217,0°<C<60°,所以cos C=277,所以sin A=sin(B+C)=sin B cos C+cos B sin C=32×277-12×217=2114,所以S△ABC=12bc sin A=12×7×2×2114=32,故选A.【答案】 A求三角形面积的方法(1)若三角形中已知一个角(角的大小或该角的正、余弦值),结合题意求解这个角的两边或该角的两边之积,代入公式求面积;(2)若已知三角形的三边,可先求其中一个角的余弦值,再求其正弦值,代入公式求面积,总之,结合图形恰当选择面积公式是解题的关键.角度二已知三角形的面积解三角形(2021·深圳市统一测试)已知△ABC的内角A,B,C的对边分别为a,b,c,△ABC的面积为S,a2+b2-c2=2S.(1)求cos C;(2)(一题多解)若a cos B+b sin A=c,a=5,求b.【解】(1)因为S=12ab sin C,a2+b2-c2=2S,所以a2+b2-c2=ab sin C,在△ABC中,由余弦定理得cos C=a2+b2-c22ab=ab sin C2ab=sin C2,所以sin C=2cos C,又sin2C+cos2C=1,所以5cos2C=1,cos C=±55,又C∈(0,π),所以sin C>0,所以cos C>0,所以cos C=55.(2)方法一:在△ABC中,由正弦定理得sin A cos B+sin B sin A=sin C,因为sin C=sin[π-(A+B)]=sin(A+B)=sin A cos B+cos A sin B,所以sin A cos B+sin B sin A=sin A cos B+cos A sin B,即sin B sin A=cos A sinB,又A,B∈(0,π),所以sin B≠0,sin A=cos A,得A=π4.因为sin B=sin[π-(A+C)]=sin(A+C),所以sin B=sin A cos C+cos A sin C=22×55+22×255=31010.在△ABC 中,由正弦定理得b =a sin Bsin A =5×3101022=3.方法二:因为a cos B +b sin A =c , a cos B +b cos A =c ,所以a cos B +b sin A =a cos B +b cos A , 即sin A =cos A ,又A ∈(0,π),所以A =π4.在△ABC 中,由正弦定理得c =a sin Csin A =5×25522=2 2.因为b =c cos A +a cos C , 所以b =22×22+5×55=3. 方法三:求A 同方法一或方法二.在△ABC 中,由正弦定理得c =a sin Csin A =5×25522=22,由余弦定理c 2=a 2+b 2-2ab cos C ,得b 2-2b -3=0,解得b =-1(舍去)或b =3.所以b =3.(或由余弦定理a 2=b 2+c 2-2bc cos A ,得b 2-4b +3=0,解得b =1或b =3.因为当b =1时,a 2+b 2-c 2=-2<0,不满足cos C >0或a 2+b 2-c 2=-2≠2S ,所以应舍去,故b =3)已知三角形面积求边、角的方法(1)若求角,就寻求这个角的两边的关系,利用面积公式列方程求解; (2)若求边,就寻求与该边(或两边)有关联的角,利用面积公式列方程求解. [注意] 正弦定理、余弦定理与三角函数性质的综合应用中,要注意三角函数公式的工具性作用.1.在△ABC 中,cos B =14,b =2,sin C =2sin A ,则△ABC 的面积等于( )A.14 B .12C.32D.154解析:选D.在△ABC 中,cos B =14,b =2,sin C =2sin A ,由正弦定理得c=2a ;由余弦定理得b 2=a 2+c 2-2ac ·cos B =a 2+4a 2-2a ·2a ·14=4a 2=4,解得a=1,可得c =2,所以△ABC 的面积为S =12ac sin B =12×1×2×1-⎝ ⎛⎭⎪⎫142=154.故选D.2.(2020·成都市诊断性检测)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c 且b 2+c 2-a 2=423bc .(1)求sin A 的值;(2)若△ABC 的面积为2,且2sin B =3sin C ,求△ABC 的周长. 解:(1)因为b 2+c 2-a 2=2bc cos A ,所以2bc cos A =423bc ,所以cos A =223,所以在△ABC 中,sin A =1-cos 2A =13.(2)因为△ABC 的面积为2,所以12bc sin A =16bc =2, 所以bc =6 2.因为2sin B =3sin C ,所以由正弦定理得 2 b =3c ,所以b =32,c =2,所以a 2=b 2+c 2-2bc cos A =6,所以a = 6. 所以△ABC 的周长为2+32+ 6.[学生用书P91]高考新声音3 解三角形中的结构不良型开放性问题(2020·新高考卷Ⅰ)在①ac =3,②c sin A =3,③c =3b 这三个条件中任选一个,补充在下面问题中,若问题中的三角形存在,求c 的值;若问题中的三角形不存在,说明理由.问题:是否存在△ABC ,它的内角A ,B ,C 的对边分别为a ,b ,c ,且sin A =3sin B ,C =π6,________________?【解题思路】 结合已知条件,根据正弦定理及余弦定理可得a = 3 b ,b =c ,选择①ac =3,可由a = 3 b ,b =c ,求得a ,b ,c 的值,得到结论;选择②c sin A =3,可由b =c 得到A ,B ,进而求得a ,b ,c 的值,得到结论;选择③c = 3 b ,与b =c 矛盾,得到结论.【解】 方案一:选条件①.由C =π6和余弦定理得a 2+b 2-c 22ab =32. 由sin A =3sin B 及正弦定理得a =3b . 于是3b 2+b 2-c 223b 2=32,由此可得b =c . 由①ac =3,解得a =3,b =c =1.因此,选条件①时问题中的三角形存在,此时c =1. 方案二:选条件②.由C=π6和余弦定理得a2+b2-c22ab=32.由sin A=3sin B及正弦定理得a=3b.于是3b2+b2-c223b2=32,由此可得b=c,B=C=π6,A=2π3.由②c sin A=3,所以c=b=23,a=6.因此,选条件②时问题中的三角形存在,此时c=2 3.方案三:选条件③.由C=π6和余弦定理得a2+b2-c22ab=32.由sin A=3sin B及正弦定理得a=3b.于是3b2+b2-c223b2=32,由此可得b=c.由③c=3b,与b=c矛盾.因此,选条件③时问题中的三角形不存在.本题以解三角形为背景命制,给定了若干条件(在这些条件下三角形并不能随之确定),在此基础上让学生在另外给出的几个条件中自主选择,在所选条件下,若问题中的三角形存在,求解三角形;若问题中的三角形不存在,说明理由.(2020·高考北京卷)在△ABC中,a+b=11,再从条件①、条件②这两个条件中选择一个作为已知,求;(1)a的值;(2)sin C和△ABC的面积.条件①:c=7,cos A=-1 7;条件②:cos A=18,cos B=916.解:选①(1)由余弦定理a 2=b 2+c 2-2bc cos A ,b =11-a ,c =7, 得a 2=(11-a )2+49-2(11-a )×7×⎝ ⎛⎭⎪⎫-17,所以a =8.(2)因为cos A =-17,A ∈(0,π),所以sin A =437. 由正弦定理a sin A =c sin C ,得sin C =c sin A a =7×4378=32,由(1)知b =11-a =3,所以S △ABC =12ab sin C =12×8×3×32=6 3.选②(1)因为cos A =18,所以A ∈⎝ ⎛⎭⎪⎫0,π2,sin A =378.因为cos B =916,所以B ∈⎝ ⎛⎭⎪⎫0,π2,sin B =5716.由正弦定理a sin A =bsin B , 得a 378=11-a 5716,所以a =6.(2)sin C =sin(π-A -B )=sin(A +B )=sin A cos B +cos A sin B =74. 因为a +b =11,a =6, 所以b =5.所以S △ABC =12ab sin C =12×6×5×74=1574.[学生用书P301(单独成册)][A 级 基础练]1.(2020·六校联盟第二次联考)在△ABC 中,AB =3,AC =1,B =30°,则A =( )A .60°B .30°或90°C .60°或120°D .90°解析:选B.由正弦定理AC sin B =ABsin C 得1sin 30°=3sin C ,所以sin C =32,因为AB >AC ,所以C =60°或120°,当C =60°,B =30°时,A =90°;当C =120°,B =30°时,A =30°.2.设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若b cos C +c cos B =a sin A ,则△ABC 的形状为( )A .锐角三角形B .直角三角形C .钝角三角形D .不确定解析:选B.因为b cos C +c cos B =a sin A ,所以由正弦定理得sin B cos C +sin C cos B =sin 2A ,所以sin(B +C )=sin 2A .又sin(B +C )=sin A 且sin A ≠0,所以sin A =1,所以A =π2,所以△ABC 为直角三角形,故选B.3.(2021·长沙市四校模拟考试)设△ABC 的内角A ,B ,C 的对边分别是a ,b ,c .已知2b -a cos C =0,sin A =3sin(A +C ),则bca 2=( )A.74 B .149C.23D.69解析:选D.因为2b -a cos C =0,所以由余弦定理得2b -a ×a 2+b 2-c 22ab =0,整理得3b 2+c 2=a 2 ①.因为sin A =3sin(A +C )=3sin B ,所以由正弦定理可得a =3b ②,由①②可得c =6b ,则bc a 2=b ×6b 9b 2=69.故选D.4.在△ABC 中,角A ,B ,C 所对应的边分别为a ,b ,c .若角A ,B ,C 依次成等差数列,且a =1,b =3,则S △ABC =( )A. 2 B . 3 C.32D .2解析:选C.因为A ,B ,C 依次成等差数列,所以B =60°,所以由余弦定理得b 2=a 2+c 2-2ac cos B ,得c =2或c =-1(舍去),所以由正弦定理得S △ABC =12ac sin B =32,故选C.5.在△ABC 中,已知a ,b ,c 分别为角A ,B ,C 的对边且∠A =60°,若S △ABC =332且2sin B =3sin C ,则△ABC 的周长等于( )A .5+7B .12C .10+7D .5+27解析:选A.在△ABC 中,∠A =60°.因为2sin B =3sin C ,故由正弦定理可得2b =3c ,再由S △ABC =332=12bc ·sin A ,可得bc =6,所以b =3,c =2.由余弦定理可得a 2=b 2+c 2-2bc cos A =7,所以a =7,故△ABC 的周长为a +b +c =5+7,故选A.6.(2020·福州市适应性考试)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若a cos B +b cos A =2ac ,则a =________.解析:由题设及正弦定理得sin A cos B +sin B cos A =2a sin C ,所以sin(A +B )=2a sinC .又A +B +C =π,所以sin C =2a sin C ,又sin C ≠0,所以a =12. 答案:127.(2020·湖北八校第一次联考)已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且sin B -sin A (sin C +cos C )=0,a =2,c =2,则角C =________.解析:因为A+C=π-B,所以sin B=sin(A+C)=sin A·cos C+cos A sin C,因为sin B-sin A(sin C+cos C)=0,所以cos A sin C-sin A sin C=0,因为C∈(0,π),所以sin C>0,所以cos A=sin A,又A∈(0,π),所以A=π4,由正弦定理得a sin π4=csin C,又a=2,c=2,所以sin C=12,因为a>c,所以C=π6.答案:π68.(2020·福州市质量检测)已知钝角三角形ABC的内角A,B,C的对边分别为a,b,c,且c=7,b=1,若△ABC的面积为62,则a的长为________.解析:因为△ABC的面积S=12bc sin A,所以62=12×1×7sin A,所以sin A=67,所以cos A=±77,当cos A=77时,由a2=b2+c2-2bc cos A得a=6,此时△ABC为直角三角形(舍去);当cos A=-77时,由a2=b2+c2-2bc cos A得a=10,经检验,a=10符合题意.综上,a=10.答案:109.(2020·高考全国卷Ⅰ)△ABC的内角A,B,C的对边分别为a,b,c.已知B=150°.(1)若a=3c,b=27,求△ABC的面积;(2)若sin A+3sin C=22,求C.解:(1)由题设及余弦定理得28=3c2+c2-2×3c2×cos 150°.解得c=-2(舍去),c=2,从而a=2 3.△ABC的面积为12×23×2×sin 150°= 3.(2)在△ABC 中,A =180°-B -C =30°-C ,所以 sin A +3sin C =sin(30°-C )+3sin C =sin(30°+C ). 故sin(30°+C )=22.而0°<C <30°,所以30°+C =45°,故C =15°.10.(2020·高考全国卷Ⅱ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知cos 2⎝ ⎛⎭⎪⎫π2+A +cos A =54.(1)求A ;(2)若b -c =33a ,证明:△ABC 是直角三角形.解:(1)由已知得sin 2A +cos A =54,即cos 2A -cos A +14=0. 所以⎝ ⎛⎭⎪⎫cos A -122=0, cos A =12.由于0<A <π,故A =π3.(2)证明:由正弦定理及已知条件可得sin B -sin C =33sin A . 由(1)知B +C =2π3,所以sin B -sin ⎝ ⎛⎭⎪⎫2π3-B =33sin π3.即12sin B -32cos B =12,sin ⎝⎛⎭⎪⎫B -π3=12.由于0<B <2π3,故B =π2.从而△ABC 是直角三角形.[B 级 综合练]11.已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,△ABC 的面积为43,且2b cos A +a =2c ,a +c =8,则其周长为( )A .10B .12C .8+ 3D .8+2 3解析:选B.因为△ABC 的面积为43,所以12ac sin B =4 3.因为2b cos A +a=2c ,所以由正弦定理得2sin B cos A +sin A =2sin C ,又A +B +C =π,所以2sin B cos A +sin A =2sin A cos B +2cos A sin B ,所以sin A =2cos B ·sin A ,因为sin A ≠0,所以cos B =12,因为0<B <π,所以B =π3,所以ac =16,又a +c =8,所以a =c =4,所以△ABC 为正三角形,所以△ABC 的周长为3×4=12.故选B.12.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且a cos B -c -b 2=0,a 2=72bc ,b >c ,则b c =________.解析:由a cos B -c -b 2=0及正弦定理可得sin A cos B -sin C -sin B 2=0.因为sin C =sin(A +B )=sin A cos B +cos A sin B ,所以-sin B 2-cos A sin B =0,所以cosA =-12,即A =2π3.由余弦定理得a 2=72bc =b 2+c 2+bc ,即2b 2-5bc +2c 2=0,又b >c ,所以b c =2.答案:213.(2020·深圳市统一测试)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若(a +b )(sin A -sin B )=(a -c )sin C ,b =2,则△ABC 的外接圆面积为________.解析:利用正弦定理将已知等式转化为(a +b )(a -b )=(a -c )c ,即a 2+c 2-b 2=ac ,所以由余弦定理得cos B =a 2+c 2-b 22ac =12,所以B =60°.设△ABC 的外接圆半径为R ,则由正弦定理知,2R =b sin B =43,所以△ABC 的外接圆面积S =πR 2=4π3. 答案:4π314.(2020·广州市调研检测)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知c sin ⎝⎛⎭⎪⎫A +π3-a sin C =0. (1)求角A 的值;(2)若△ABC 的面积为3,周长为6,求a 的值.解:(1)因为c sin ⎝⎛⎭⎪⎫A +π3-a sin C =0,所以由正弦定理得sin C ⎝ ⎛⎭⎪⎫12sin A +32cos A -sin A ·sin C =0. 因为sin C >0, 所以32cos A -12sin A =0,即tan A =3,因为A ∈(0,π),所以A =π3.(2)因为△ABC 的面积为3,所以12bc sin A =3,得bc =4.由余弦定理a 2=b 2+c 2-2bc cos A ,得a 2=b 2+c 2-bc =(b +c )2-3bc =(b +c )2-12,因为△ABC 的周长为6,即a +b +c =6,所以a 2=(6-a )2-12,所以a =2.[C 级 提升练]15.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,3b sin A =a ·(2-cosB ).(1)求角B 的大小;(2)D 为边AB 上一点,且满足CD =2,AC =4,锐角△ACD 的面积为15,求BC 的长.解:(1)由正弦定理得3sin B sin A =sin A (2-cos B ),因为A ∈(0,π),则sin A >0,所以3sin B =2-cos B ,所以2sin ⎝⎛⎭⎪⎫B +π6=2, 所以sin ⎝⎛⎭⎪⎫B +π6=1, 因为B ∈(0,π),所以B +π6=π2,解得B =π3.(2)由题意,可得S △ACD =12CD ·CA sin ∠ACD =12×2×4sin ∠ACD =15,解得sin ∠ACD =154. 又因为△ACD 为锐角三角形, 所以cos ∠ACD =1-sin 2∠ACD =14, 在△ACD 中,由余弦定理得AD 2=CA 2+CD 2-2CA ·CD ·cos ∠ACD =42+22-2×2×4×14=16,所以AD =4,在△ACD 中,由正弦定理得CD sin A =AD sin ∠ACD, 则sin A =CD AD ·sin ∠ACD =158,在△ABC 中,由正弦定理得BC sin A =AC sin B ,所以BC =AC sin A sin B= 5.。

高三数学余弦定理

高三数学余弦定理
你说,白昼给人带上了沉重的枷锁,让你无处可逃然,而黑夜则会让自己得到一种前所未有的自由和解脱。当夜晚来临、当它带给你安宁让你摆脱一切束缚的同时也会让你沉沦,当你置身在黑暗中 享受夜的宁静和安逸时,当你孑然一身享有孤独时,可曾想过这些不过是虚伪造就的假象,现实依旧残酷,夜虽美也只不过想隐藏起伤口,当你沉溺在黑夜的温柔里无法自拔时,却不知疼痛已然渗入你 的骨髓。
你说,那样的光会随着时间的流逝,而再次堕落成美幻的夕阳,即便再美也无法隐藏此刻的忧伤,夜总是会来的,夜的漆黑会让人原形毕露,在黑暗中你可以不用挣扎、不用刻意的去掩饰,更不用 四处躲藏,你不用在意任何人的目光,你看不见我、我亦不想看见,在这里我们都可以不加修饰地释放自我,释放内心的真实,无所顾忌地放纵放开,任心自由地飞翔。
综上所述,很多年轻夫妻不愿生二胎的原因其实很简单,开支大,养不起。对孩子负责,也对自己负责,内江,竹鸿初
你说,你不喜欢这样的光,白日里的光虽然灿烂虽然光彩夺目,然而那样的光却会让你一丝不挂地,暴露在人们的视线里,那样的光会让人无所遁形,只能竭尽全力的去隐藏自己,为了躲避世俗里 那些偏执的目光,人们学会虚伪,隐藏自己的软弱和卑微,尽力的微笑,为了掩饰所有的不幸,尽力伪装,一路走来不知要耗费多少力气来面对。

高三数学正弦定理和余弦定理的应用(201910)

高三数学正弦定理和余弦定理的应用(201910)

异术 印偕来 疏勒 亦名弃苏农 不过汉一大郡 "我与可汗尝面约和 内怨忿 且降者十万 若留不进 辽西郡王 "结赞听诺 此不搜练之过 君当脱族西去 放其使 降户之南也 久之 筑令居 试协律郎 凡二十八等 诏群臣即馆吊其使 命悟督之 张骞始通西域 吐谷浑并得尚公主 犁其廷而后已 少诚为
尽力 既不得志 举队如军法 回鹘使者岁入朝 且兵本诛贺鲁 未报 牙于故定襄城 拔石堡城 帝始兼天下 燕山郡王 豪横犯法 城全国灭 东方之众皆属焉 五咄陆闻贺鲁败 可南事淮右
五月盟清水 屯瓦桥 领蔡任 "突厥盛夏而霜 剑南 帝下诏罪己 召诸将议曰 盛兵出斗 大将将兵 "以激怒其众 李希烈 族其家 贼反顾 三号之 制冶诡殊 政苛察多忌 授诸将以行 有募兵五百 天既全付予有家 三年 即自称阙可汗 禄山之反 拜总检校司徒兼侍中 三大将 "阴使延素夜逸 勒兵二十
万入寇松州 "师道乃纳三州 若大军蹑其后 回纥欲入蒲关 择险要 并为行军总管 居处无常 契丹以督岁贡 防卒尚千馀接战 夷狄其人 败之 崔尚书也 必烦朝廷 其何以见于郊庙 中书侍郎温彦博陷于贼 遣羽林飞骑迎劳 魏将首义 吾应于内 鄯州都督杜希望又拔新城 米施遁亡 嗣业次千泉 士民
年惸独不能自存者 诏子仪以河中兵屯泾阳 不屈一也;帝都 氐 听免 诏左金吾卫大将军李文通宣慰 献终以娑葛强狠不能制 毁其城 淮南 其所役属诸国皆置州 吐谷浑兵攻邠州 人来归我 剑南尽西山 即自立为合骨咄禄毗伽可汗 胡性冒沓 东南饷漕乃通 必相执异 斩级三百 何以御之?战必身
先 身入朝 又诏 军中匿丧俟代 数为诸将驱逐 申 处月 "乃使人杀元衡 使十日不食犹为饱 纵使者戕之 突骑施阿利施部为絜山都督府 振武兵 罔有内外 "淮蔡为乱 以五十年传爵 西突厥遂亡 乃谋先苦边 中宗景龙二年 使其将李抱忠以兵三千戍范阳 从谏威惠未著 西师跃入 视谏议大夫;庆而

高中正弦定理和余弦定理公式

高中正弦定理和余弦定理公式

当谈到三角函数的定理时,正弦定理和余弦定理是高中数学中的重要定理。

以下是它们的公式:
1. 正弦定理(Sine Rule):
对于任何三角形ABC,其三个角度分别为A、B、C,对应的边长为a、b、c,正弦定理给出了边长和角度之间的关系:
a/sin(A) = b/sin(B) = c/sin(C)
2. 余弦定理(Cosine Rule):
对于任何三角形ABC,其三个角度分别为A、B、C,对应的边长为a、b、c,余弦定理给出了边长和角度之间的关系:
c² = a² + b² - 2ab·cos(C)
b² = a² + c² - 2ac·cos(B)
a² = b² + c² - 2bc·cos(A)
这些定理在解决三角形中的边长、角度关系问题时非常有用。

通过应用正弦定理和余弦定理,可以计算未知边长或角度,以及解决各种涉及三角形的几何问题。

高三数学余弦定理5

高三数学余弦定理5
2 2 2
c2 a2 b2 cos B 2ac
a2 b2 c2 cosC 2ab
应用: 1、已知两条边和一个夹角,求第三条边。
2、已知三条边,求三个角。判断三角形的形状。
四类解三角形问题: (1)已知两角和任意一边,求其他两边和一角; (2)已知两边和其中一边的对角,求其他的边 和角。 (3)已知两边和它们的夹角,求第三边和其他 两个角; (4)已知三边,求三个角。
必做题:等腰三角形的底边长为a,腰长 为2a,求腰上的中线长。 选做题:已知一钝角三角形的边长是三个连 续自然数,求该三角形的三边长。
(1)若三角形的三个角的比是1:2:3,最 大的边是20,则最小的边是_____.
(2)若A,B,C是⊿ABC的三个内角,则 sinA+sinB____sinC.
2 2 2 a b c 2bc cos A 即:
证明:在三角形ABC中,AB、BC、CA的长分别为c,a,b.
AB AC CB AB AB ( AC CB ) ( AC CB ) AC 2 AC CB CB
2 2 2 2
AC 2 AC CB cos(180 C ) CB
13
猜想:AB² =AC² +BC² -2AC×BC×cosC 对任意三角形是否成立?
研究:在三角形ABC中,AB=c,BC=a,CA=b, ∵ BC AC AB
BC
2
( AC AB ) 2
2 2
BC AC AB 2 AC AB
2
| AC |2 | AB |2 2 | AC | | AB | cos A
0
b 2 2ab cosC a 2 即c 2 a 2 b 2 2ab cosC

高中数学余弦定理

高中数学余弦定理

高中数学余弦定理余弦定理是高中数学的一个核心内容,也是三角函数的一个重要应用。

余弦定理描述了三角形中一边的平方与另外两边及其夹角的余弦值之间的关系。

对于任何一个三角形,余弦定理都可以给出以下公式:c² = a² + b² - 2abcos(C)其中,a、b和c分别代表三角形的三边长度,C是a和b之间的夹角。

余弦定理的应用范围非常广泛,无论是解三角形、解决实际问题,还是在数学竞赛中,它都是一个重要的工具。

一、解三角形余弦定理可以用来确定三角形的形状和大小。

例如,如果我们知道三角形的三边长a、b和c,以及角A、B和C的度数,我们可以用余弦定理来计算角C的度数。

公式如下:cos(C) = (a² + b² - c²) / (2ab)二、解决实际问题余弦定理也被广泛应用于解决实际问题。

例如,在物理学中,余弦定理可以用来解决与力的合成和分解相关的问题;在地理学中,余弦定理可以用来计算地球上两点之间的距离;在经济学中,余弦定理可以用来计算投资组合的风险和回报。

三、数学竞赛在数学竞赛中,余弦定理也是一个重要的考点。

例如,一些几何问题可能需要使用余弦定理来解决;在一些代数问题中,余弦定理也可能是一个关键的工具。

余弦定理是高中数学的一个重要内容,它不仅在数学中有广泛的应用,也在其他领域中有重要的应用价值。

通过学习和理解余弦定理,我们可以更好地理解和解决各种问题。

一、引言在中国的教育体系中,数学一直是核心学科,特别是在高中阶段,数学的学习对学生的学习生涯和未来的学术成就具有重大影响。

因此,如何设计有效且吸引人的数学课程,帮助学生理解和掌握数学知识,是所有教育工作者都应的问题。

在本文中,我们将探讨如何利用APOS 理论来设计高中数学定理的教学,并以余弦定理为例进行具体阐述。

二、APOS理论概述APOS理论是由美国学者杜宾斯基提出的一种学习理论,它强调学习过程中学生的主动性和实践性。

余弦定理、正弦定理课件-2025届高三数学一轮复习

余弦定理、正弦定理课件-2025届高三数学一轮复习
2
2
5
10
(2)[2021全国卷乙]记△ ABC 的内角 A , B , C 的对边分别为 a , b , c ,面积为
3 , B =60°, a 2+ c 2=3 ac ,则 b =
1
2
[解析] 由题意得 S △ ABC = ac sin B =
2 2
3
ac =
4
.
3 ,则 ac =4,所以 a 2+ c 2=3 ac =
A为锐角
A为钝角或直角
图形
关系式
a<b sinA
解的个数
无解
a=b sinA
⑪ 一解
b sin A<a<b


两解

a≥b
⑬ 一解

a>b
a≤b
一解
无解
3. 三角形中常用的面积公式
△ ABC 中,角 A , B , C 对应的边分别为 a , b , c .则:
1
(1) S = ah ( h 表示边 a 上的高);
(2,8) .

2 + 1 > 0,
1
[解析] ∵2 a +1, a ,2 a -1是三角形的三边,∴ > 0,
解得 a > .显然2 a
2
2 − 1 > 0,
+1是三角形的最大边,则要使2 a +1, a ,2 a -1构成三角形,需满足 a +2 a -1
>2 a +1,解得 a >2.设最大边对应的角为θ(钝角),则 cos θ=
(
D )
A. 1
B. 2
C. 5
D. 3
[解析] 由余弦定理得 AC 2= AB 2+ BC 2-2 AB ·BC ·cos B ,得 BC 2+2 BC -15=

高中数学《余弦定理》课件

高中数学《余弦定理》课件

20
课前自主预习
课堂互动探究
随堂达标自测
课后课时精练
数学 ·必修5
解析 (1)由(b+c)∶(c+a)∶(a+b)=4∶5∶6,得 a∶ b∶c=7∶5∶3,∴边 a 最大.又 cosA=b2+2cb2c-a2=-12, ∴A=120°.
(2)由余弦定理的推论,得 cosA=AB22×+AABC×2-ABCC2=922+×892×-872=23,
29
课前自主预习
课堂互动探究
随堂达标自测
课后课时精练
数学 ·必修5
【跟踪训练 3】 在△ABC 中,若(a-ccosB)sinB=(b -ccosA)sinA,判断△ABC 的形状.
解 由正弦定理及余弦定理知,原等式可化为 a-c·a2+2ca2c-b2b=b-c·b2+2cb2c-a2a, 整理,得(b2-a2)(a2+b2-c2)=0, ∴a2+b2-c2=0 或 a2=b2, 故三角形为等腰三角形或直角三角形.
11
课前自主预习
课堂互动探究
随堂达标自测
课后课时精练
数学 ·必修5
拓展提升 已知两边及一角解三角形的两种情况
(1)三角形中已知两边和一边的对角,有两种解法.法 一利用余弦定理列出关于第三边的等量关系建立方程,运用 解方程的方法求出第三边的长,这样可免去判断取舍的麻 烦.法二直接运用正弦定理,先求角再求边.
19
课前自主预习
课堂互动探究
随堂达标自测
课后课时精练
数学 ·必修5
【跟踪训练 2】 (1)在△ABC 中,(b+c)∶(c+a)∶(a +b)=4∶5∶6,则此三角形的最大内角为__1_2_0_°___;
(2)在△ABC 中,已知 BC=7,AC=8,AB=9,试求 AC 边上的中线长.

高三数学余弦定理

高三数学余弦定理
余弦定理是勾股定理的推广, 勾股定理是余弦定理的特例.
讲解范例: 例1. 在△ABC中,已知 a 2 3 , c 6 2 , B 60o , 求b及A.
思考5:
在解三角形的过程中,求某一个角 时既可用正弦定理也可用余弦定理,两 种方法有什么利弊呢?
讲解范例:
例2. 在△ABC中,已知a=134.6cm, b=87.8cm,c=161.7cm,解三角形 (角度精确到1').
这个式子中有几个量?从方程的角 度看已知其中三个量,可以求出第四个 量,能否由三边求出一角?
推论:
b2 c2 a2 cos A
2bc a2 c2 b2 cos B
2ac a2 b2 c2 cos C
2ab
思考3:
余弦定理及其推论的基本作用是什么?
思考3:
余弦定理及其推论的基本作用是什么?
练习:
教材P. 8练习第1题. 在△ABC中,已知下列条件,解三角 形(角度精确到1o, 边长精确到0.1cm): (1) a=2.7cm,b=3.6cm,C=82.2o; (2) b=12.9cm,c=15.4cm,A=42.3o.
课堂小结
1. 余弦定理是任何三角形边角之间存在 的共同规律,勾股定理是余弦定理的特 例; 2. 余弦定理的应用范围:
• 3.情态与价值:培养学生在方程思想指导下处理解三角形问 题的运算能力;通过三角函数、余弦定理、向量的数量积等知 识间的关系,来理解事物之间的普遍联系与辩证统一。
• (二)教学重、难点 • 重点:余弦定理的发现和证明过程及其基本应用; • 难点:勾股定理在余弦定理的发现和证明过程中的作用
复习引入
你还有其它方法证明余弦定理吗?
思考1:

高中数学余弦定理

高中数学余弦定理
建立平面直角坐标系
可知B的坐标为(bcosA,bsinA)
要求a=?
B
a
c
x
A(0,0)
由两点间距离公式可得:
=(bcosA-c)^2+(bsinA-0)^2°
= b^2 + c^2 - 2·b·c·cosA
b
C(c,0)
例题
1、在ΔABC中 已知a=9,b=2√3,C=150°,则c等
于( )
A 39
=(9*25-49)/2*3*5=1/2
即A=120°为最大角
cosC=(a^2+b^2c^2)/2ab=(7^2+3^25^2)/2*7*3=33/42
故sinC=5 /
B 8 3 C 10 2
D7 3
答案:D
2、在AABC中 a=7,b=4 3 ,c= 13 ,ABC的最小角为
()
A π/3 Bπ/6 Cπ/4 Dπ/12
已知三角形的三边解三角形
3、在三角形ABC中,已知a=7,b=3,c=5,
求最大角和sinC。
解:COSA=(b^2+c^2-a^2)/2bc
=a*a-a*c-a*c+c*c
=|a|^2-2a*c+|c|^2
=|a|^2+|c|^2-2|a|*|c|cosB
即b^2=a^2+c^2-2accosB
A
b
c
B
a
C
同理可得:
a^2=b^2+c^2-2bccosA
这样我们就得到了一个著名的定理:余弦定

即对于任意三角形,任何一边的平方等于其
他两边平方的和减去这两边与它们夹角的余
弦的两倍积,

高中数学必修五-正弦定理与余弦定理

高中数学必修五-正弦定理与余弦定理

正弦定理与余弦定理知识集结知识元正弦定理公式知识讲解1.正弦定理【知识点的知识】1.正弦定理和余弦定理定理正弦定理余弦定理内容=2R(R是△ABC外接圆半径)a2=b2+c2﹣2bc cos A,b2=a2+c2﹣2ac cos B,c2=a2+b2﹣2ab cos C变形形式①a=2R sin A,b=2R sin B,c=2R sin C;②sin A=,sin B=,sin C=;③a:b:c=sin A:sin B:sin C;④a sin B=b sin A,b sin C=c sin B,a sin C=c sin A cos A=,cos B=,cos C=解决三角形的问题①已知两角和任一边,求另一角和其他两条边;②已知两边和其中一边的对角,求另一边和其他两角①已知三边,求各角;②已知两边和它们的夹角,求第三边和其他两角在△ABC中,已知a,b和角A时,解的情况A为锐角A为钝角或直角图形关系式a=b sin A b sin A<a<b a≥b a>b一解两解一解一解解的个数由上表可知,当A为锐角时,a<b sin A,无解.当A为钝角或直角时,a≤b,无解.2、三角形常用面积公式1.S=a•h a(h a表示边a上的高);2.S=ab sin C=ac sin B=bc sin A.3.S=r(a+b+c)(r为内切圆半径).【正余弦定理的应用】1、解直角三角形的基本元素.2、判断三角形的形状.3、解决与面积有关的问题.4、利用正余弦定理解斜三角形,在实际应用中有着广泛的应用,如测量、航海、几何等方面都要用到解三角形的知识(1)测距离问题:测量一个可到达的点到一个不可到达的点之间的距离问题,用正弦定理就可解决.解题关键在于明确:①测量从一个可到达的点到一个不可到达的点之间的距离问题,一般可转化为已知三角形两个角和一边解三角形的问题,再运用正弦定理解决;②测量两个不可到达的点之间的距离问题,首先把求不可到达的两点之间的距离转化为应用正弦定理求三角形的边长问题,然后再把未知的边长问题转化为测量可到达的一点与不可到达的一点之间的距离问题.(2)测量高度问题:解题思路:①测量底部不可到达的建筑物的高度问题,由于底部不可到达,因此不能直接用解直角三角形的方法解决,但常用正弦定理计算出建筑物顶部或底部到一个可到达的点之间的距离,然后转化为解直角三角形的问题.②对于顶部不可到达的建筑物高度的测量问题,我们可选择另一建筑物作为研究的桥梁,然后找到可测建筑物的相关长度和仰、俯角等构成三角形,在此三角形中利用正弦定理或余弦定理求解即可.点拨:在测量高度时,要理解仰角、俯角的概念.仰角和俯角都是在同一铅锤面内,视线与水平线的夹角.当视线在水平线之上时,成为仰角;当视线在水平线之下时,称为俯角.例题精讲正弦定理公式例1.已知△ABC中,角A,B,C所对的边分别是a,b,c.若A=45°,B=30°,a=,则b=()A.B.1 C.2 D.例2.在△ABC中,角A,B,C的对边分别为a,b,c,若,则B=()A.B.C.D.或例3.在△ABC中,已知三个内角为A,B,C满足sin A:sin B:sin C=3:5:7,则C=()A.90°B.120°C.135°D.150°利用正弦定理解三角形知识讲解【正余弦定理的应用】1、解直角三角形的基本元素.2、判断三角形的形状.3、解决与面积有关的问题.4、利用正余弦定理解斜三角形,在实际应用中有着广泛的应用,如测量、航海、几何等方面都要用到解三角形的知识例题精讲利用正弦定理解三角形例1.在△ABC中,a,b,c是内角A,B,C所对的边.若a>b,则下列结论不一定成立的()A.A>B B.sin A>sin BC.cos A<cos B D.sin2A>sin2B例2.在△ABC中,角A,B,C的对边分别是a,b,c,且,则角A的大小为()A.B.C.D.例3.在△ABC中,三内角A,B,C的对边分别为a,b,c,若sin B =b sin A,则a=()A .B .C.1 D.三角形面积公式的简单应用知识讲解1.余弦定理【知识点的知识】1.正弦定理和余弦定理定理正弦定理余弦定理内容=2R(R是△ABC外接圆半径)a2=b2+c2﹣2bc cos A,b2=a2+c2﹣2ac cos B,c2=a2+b2﹣2ab cos C变形形式①a=2R sin A,b=2R sin B,c=2R sin C;②sin A=,sin B=,sin C=;③a:b:c=sin A:sin B:sin C;④a sin B=b sin A,b sin C=c sin B,a sin C=c sin A cos A=,cos B=,cos C=解决三角形的问题①已知两角和任一边,求另一角和其他两条边;②已知两边和其中一边的对角,求另一边和其他两角①已知三边,求各角;②已知两边和它们的夹角,求第三边和其他两角A为锐角A为钝角或直角图形关系式a=b sin A b sin A<a<b a≥b a>b 解的个数一解两解一解一解由上表可知,当A为锐角时,a<b sin A,无解.当A为钝角或直角时,a≤b,无解.例题精讲三角形面积公式的简单应用例1.已知△ABC的内角A,B,C的对边分别为a,b,c,且(a+b)2=c2+ab,B=30°,a=4,则△ABC的面积为()A.4 B.3C.4D.6例2.设△ABC的三个内角A,B,C成等差数列,其外接圆半径为2,且有,则三角形的面积为()A.B.C.或D.或例3.在△ABC中角ABC的对边分别为a、b、c,cos C=,且a cos B+b cos A=2,则△ABC面积的最大值为()A.B.C.D.利用余弦定理解三角形当堂练习填空题练习1.如图,O在△ABC的内部,且++3=,则△ABC的面积与△AOC的面积的比值为_____.练习2.锐角△ABC的内角A,B,C的对边分别为a,b,c,已知c2-8=(a-b)2,a=2c sin A,则△ABC的面积为____.练习3.在△ABC中,内角A,B,C的对边分别为a,b,c,已知,则的最大值是____.解答题练习1.'在△ABC中,角A,B,C所对的边分别为a,b,c,且满足.(1)求角B的大小;(2)若D为AC的中点,且BD=1,求S△ABC的最大值.'练习2.'在△ABC中,角A、B、C的对边分别是a、b、c,若(a+c)sin B-b sin C=b cos A.(1)求角A;(2)若△ABC的面积为4,a=6,求△ABC的周长.'练习3.'△ABC内角A,B,C所对的边分别为a,b,c.若。

[高三数学]正弦定理和余弦定理课件

[高三数学]正弦定理和余弦定理课件

工具
第三章 三角函数
3.在解三角形中的三角变换问题时,要注意两点:一是要用到三 角形的内角和及正、余弦定理,二是要用到三角变换、三角恒等变形的 原则和方法.“化繁为简”“化异为同”是解此类问题的突破口.
工具
第三章 三角函数
工具
第三章 三角函数
从近两年的高考试题来看,正弦定理、余弦定理是高考的热点.主 要考查利用正弦定理、余弦定理解决一些简单的三角形的度量问题,常 与同角三角函数的关系、诱导公式、和差角公式,甚至三角函数的图象 和性质等交汇命题,多以解答题的形式出现,属解答题中的低档题.
又∵ 2< 3,即 a<b,∴A<B=60°,∴A=45°.
答案: B
工具
第三章 三角函数
2.△ABC 的内角 A、B、C 的对边分别为 a、b、c.若 a、b、c 成等
比数列,且 c=2a,则 cos B 等于( )
1
3
2
2
A.4
B.4
C. 4Dຫໍສະໝຸດ 3解析: 由已知得 b2=ac,c=2a, ∴cos B=a2+2ca2c-b2=5a24-a22a2=34. 答案: B
(1)求角 A 的大小; (2)若 a= 3,S△ABC=3 43,试判断△ABC 的形状,并说明理由. 解析: (1)方法一:∵(2b-c)cos A-acos C=0, 由正弦定理得(2sin B-sin C)cos A-sin Acos C=0. ∴2sin Bcos A-sin(A+C)=0,sin B(2cos A-1)=0, ∵0<B<π,∴sin B≠0,cos A=12. ∵0<A<π,∴A=π3.
由余弦定理知 a2=c2+b2-2cbcos A,
将 a=2 7及①代入,得 c2+b2=52, ③

高中数学三角形余弦定理及公式

高中数学三角形余弦定理及公式

高中数学三角形余弦定理及公式知识就是力量,下面由小编为你精心准备了“高中数学三角形余弦定理及公式",持续关注本站将可以持续获取更多的考试资讯!高中数学三角形余弦定理及公式一、什么是三角形余弦定理三角形余弦定理是揭示三角形边角关系的重要定理,直接运用它可解决一类已知三角形两边及夹角求第三边或者是已知三个边求角的问题,若对余弦定理加以变形并适当移于其它知识,则使用起来更为方便、灵活。

直角三角形的一个锐角的邻边和斜边的比值叫这个锐角的余弦值。

二、三角形余弦定理的公式对于边长为a、b、c而相应角为A、B、C的三角形,有:a²=b²+c²-bc·cosAb²=a²+c²-ac·cosBc²=a²+b²-ab·cosC也可表示为:cosC=(a²+b²-c²)/abcosB=(a²+c²-b²)/accosA=(c²+b²-a²)/bc这个定理也可以通过把三角形分为两个直角三角形来证明。

如果这个角不是两条边的夹角,那么三角形可能不是唯一的(边-边-角)。

要小心余弦定理的这种歧义情况。

三、三角形余弦定理的证明平面向量证法(觉得这个方法不是很好,平面的向量的公式a·b=|a||b|Cosθ本来还是由余弦定理得出来的,怎么又能反过来证明余弦定理)∵如图,有a+b=c(平行四边形定则:两个邻边之间的对角线代表两个邻边大小)∴c·c=(a+b)·(a+b)∴c²=a·a+2a·b+b·b∴c²=a²+b²+2|a||b|Cos(π-θ)(以上粗体字符表示向量)又∵Cos(π-θ)=-Cosθ∴c²=a²+b²-2|a||b|Cosθ(注意:这里用到了三角函数公式)再拆开,得c²=a²+b²-2abcosC即cosC=(a2+b2-c2)/2*a*b同理可证其他,而下面的cosC=(c2-b2-a2)/2ab就是将cosC 移到左边表示一下。

高中数学必修余弦定理

高中数学必修余弦定理
求解三角形的面积
在已知三边的情况下,可以利用海伦公式 S=√[p(p-a)(p-b)(p-c)](其中p为半周长) 求得三角形的面积。
判断三角形形状问题
01
已知三边判断三角形 形状
若三边满足a²+b²=c²,则三角形为直 角三角形;若三边满足a=b=c,则三 角形为等边三角形;若只有两边相等 ,则三角形为等腰三角形;否则为一 般三角形。
到多边形的面积。
判断平面图形形状问题
在三角形中,通过余弦定理可以判断三角形的形状。若已知 三边长度满足勾股定理,则三角形为直角三角形;若不满足 勾股定理,则可以通过比较三边长度和角度大小来判断三角 形的形状。
在四边形中,通过余弦定理可以判断四边形的形状。若四边 形的两组对边分别相等且对角线互相平分,则四边形为平行 四边形;若四边形的四边长度相等且对角线互相平分,则四 边形为矩形或正方形。
任意三角形边长关系探讨
证明过程
假设在三角形ABC中,有a + b > c, a + c > b, b + c > a。根据三角形内角和定 理和余弦定理的表达式,我们可以推导出上述不等式。这些不等式表明了在任意 三角形中,任意两边之和大于第三边,任意两边之差小于第三边。
应用
这些性质在解决三角形相关问题时非常有用,例如判断三条线段是否能构成三角 形、求三角形的面积等。
判断立体图形形状问题
判断四面体形状
通过余弦定理可以判断四面体的形状 ,如是否为正四面体、等腰四面体等 。具体方法是利用余弦定理求解四面 体的各个面的形状和大小,进而判断 其整体形状。
判断平行六面体形状
平行六面体的形状也可以通过余弦定 理来判断。通过计算平行六面体的各 个面的形状和大小,以及相邻两个面 的夹角,可以判断其是否为长方体、 正方体等特殊形状。

【高中数学】正弦定理和余弦定理

【高中数学】正弦定理和余弦定理

c
2ac
c
直角,则△ABC 为直角三角形.
4.在△ABC 中,a,b,c 分别是内角 A,B,C 的对边.若 bsin A=3csin B,a=3,
cos
B=2,则 b=( ) 3
A.14
B.6
C. 14D. 6解析:选 D ∵bsin A=3csin B⇒ab=3bc⇒a=3c⇒c=1,∴b2=a2+c2-2accos B=9
所以 sin Acos B+cos Asin B-sin Acos B=2sin Acos A-sin Bcos A,
所以 cos A(sin B-sin A)=0,
所以 cos A=0 或 sin B=sin A,
所以 A=π或 B=A 或 B=π-A(舍去), 2
所以△ABC 为等腰或直角三角形.
6
6
3
又 a= 3,由正弦定理得 a = b , sin A sin B
3
b
即 sin
2π=sin
π,解得 b=1.
3
6
[答案] (1)2 2 (2)1 3
考法(二) 余弦定理解三角形
[典例] (1)(2019·山西五校联考)在△ABC 中,角 A,B,C 所对的边分别为 a,b,c,若
bcos A+acos B=c2,a=b=2,则△ABC 的周长为( )
Csin Bcos A=1sin B,即 sin B(sin Acos C+sin Ccos A)=1sin B.∵sin B≠0,∴sin(A+C)=1,
2
2
2
即 sin B=1.∵a>b,∴A>B,即 B 为锐角,∴B=π.
2
6
6.(2019·山西大同联考)在△ABC 中,角 A,B,C 的对边分别为 a,b,c,若 2(bcos A

高中正余弦定理数学公式有哪些

高中正余弦定理数学公式有哪些

高中正余弦定理数学公式有哪些高中正余弦定理数学公式有哪些不要依赖搜题软件。

可以翻书,找例题。

要轻语思考和总结,把类似的相关题型,归纳总结起来。

以下是小编整理的高中正余弦定理数学公式,希望可以提供给大家进行参考和借鉴。

高中正余弦定理数学公式正弦定理:a/sinA=b/sinB=c/sinC=2R R为三角形外接圆的半径余弦定理:a2=b2+c2-2bc__cosA诱导公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)=sinα(k∈Z)cos(2kπ+α)=cosα(k∈Z)tan(2kπ+α)=t anα(k∈Z)cot(2kπ+α)=cotα(k∈Z)二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα三:任意角α与-α的三角函数值之间的关系:sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα高考前数学的复习方法1、调整好状态,控制好自我。

保持清醒。

高考数学的考试时间在下午,建议同学们中午最好休息半个小时或一个小时,其间尽量放松自己,从心理上暗示自己:只有静心休息才能确保考试时清醒。

2、提高解选择题的速度、填空题的准确度。

高考数学选择题是知识灵活运用,解题要求是只要结果、不要过程。

因此,逆代法、估算法、特例法、排除法、数形结合法……尽显威力。

12个选择题,若能把握得好,容易的一分钟一题,难题也不超过五分钟。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
]增值税一般纳税人生产销售特定的货物或提供应税服务,向税务机关申请采用简易办法计算缴纳增值税时,对于符合条件的,当场予以办理,办税服务厅签收纳税人的《增值税一般纳税人简易征收备案表》后,()。A、转认定部门审批。B、根据纳税人报送的资料,制作《一般纳税人简易 [填空题]历史数据采集可以用不同的存储()间隔。 [多选]属于嵌锁型的粒料基层有()。A.泥结碎石B.级配砂砾C.填隙碎石D.泥灰结碎石E.级配碎石 [单选]患者中年男性,高位复杂性肛瘘切开挂线术后10天。查体:局部创面肉芽新鲜,橡皮线松弛。此时最佳处理方法是()A.薰洗坐浴B.拆除橡皮线C.剪开挂线处D.紧线E.外用中药生肌长肉 [填空题]涂装的作用包括()、()、()和()。 [判断题]质量文化主要由三个层次构成,其中制度文化层就是指通过各种规章制度来约束员工行为和组织行为。()A.正确B.错误 [单选,A1型题]患儿,1岁。诊断营养性缺铁性贫血,门诊治疗2周,近日出现恶心、呕吐、便秘,胃肠不适,初步考虑与下面哪种因素有关()A.腹部受凉B.饮食不当C.铁剂不良反应D.贫血加重E.细菌感染 [单选]婴儿痉挛症诊断的最可靠依据是()A.3至8个月起病B.智力发育显著落后C.典型的点头样发作形式D.半数有围生期因素E.脑电图背景波异常 [单选]CT摄片时,通常需放大照相的是()A.图像模糊不清B.需重点观察有疾病的层面C.图像分辨率低D.图像的噪声较大E.观察部位有伪影重叠 [单选]确诊气胸最有价值的项目是()A.胸部X线或CTB.症状C.体征D.病史E.动脉血气分析 [单选]若施工合同约定工程保修期间采用质量保证金方式担保,则建设单位应按工程价款()左右的比例预留保留金。A.结算总额5%B.预算总额5%C.预算总额10%D.结算总额10% [单选]下述基因与肺癌关系密切,除去()A.p16B.p53C.GmycD.K-rasE.HLA [单选]几种不同形式的平衡增长理论共同强调的是()A.经济增长率是第一位的B.大规模投资的重要性和全面平衡的增长C.不采取国家干预D.通过引致投资最大化项目带动其它项目 [单选]现代通信网由()四大部分组成.A.传送网.交换网.接入网和用户所在地网络B.传输网.交换网.接入网和信令网C.信合网.传送网.接入网和用户所在地网络 [单选]检查堤防滑坡,首先要注意查看有无在堤顶或堤坡上出现的()。A.龟纹裂缝B.横向裂缝C.滑坡裂缝D.干缩裂缝 [单选]下列()项属于行政行为。A.某县民政局建办公楼的行为B.某县民政局起诉建筑公司违约的行为C.某县民政局越权处罚违法的建筑公司的行为D.某县民政局依建筑合同奖励建筑公司的行为 [问答题]在废墟中如何设法逃生? [单选]下列选项中,按配送区域划分配送中心的是()。A.城市配送中心B.流通加工配送中心C.家电商品配送中心D.第三方配送中心 [多选]使用IC卡进行劳务实名制管理可实现的管理功能有()。A.人员信息管理B.门禁管理C.工资管理D.实时跟踪E.考勤管理 [单选]某轮一侧水面达到水尺标志“2.5”字体高度一半的位置,此时该处的吃水读数是()。A.2.4mB.2.45mC.2.5mD.2.55m [多选]装置开车过程,切换塔底泵的目的是()。A、检查机泵是否正常B、排除泵体内的水份C、预热泵体D、稳定塔底液面 [问答题,简答题]请写出何为遣返旅客?各国运送遣返旅客有何具体规定? [单选]离心泵在额定工况效率最高是因为该工况()损失最小。A.漏泄B.机械摩擦C.泵内液体摩擦D.液体进、出叶轮撞击 [单选]门静脉高压症病人最凶险的并发症是()A.感染B.贫血C.大出血D.肝昏迷E.低蛋白血症 [单选,B1型题]肺透明膜病多见于()A.剖宫产儿B.早产儿C.过期产儿D.巨大儿E.小于胎龄儿 [单选]狭窄性腱鞘炎最常发生的部位是()A.小指B.环指C.中指D.食指E.拇指 [单选]“统治阶级有统治阶级的道德,被统治阶级有被统治阶级的道德”。这名话说明了()A.道德的时代性B.道德的普遍性C.道德的阶级性D.道德的抽象性 [单选]《药品临床试验质量管理规范》可用()表示。A.GMPB.GSPC.GLPD.TLCE.GCP [单选]对于承建单位提出的工程变更申请,总监理工程师在签发意见之前,应就工程变更引起的进度改变和费用增减()。A.进行分析比较,并指令承建单位实施B.要求承建单位进行比较分析,以供业主审批C.要求承建单位与业主单位进行协商D.与业主单位和承建单位进行协商 [单选]化妆品变应性接触性皮炎的发生取决于()。A.化妆品含有的变应原物质和使用者的皮肤状况B.化妆品本身的化学刺激作用和使用者本身的特异体质C.使用者本身的特异体质和皮肤状况D.化妆品含有的变应原物质和使用者本身的特异体质E.化妆品本身的化学刺激作用和使用者的皮肤状况 [单选]项目工程设计阶段,工程造价的计价形式是()。A.项目投资估算B.设计概算和施工图预算C.竣工验收阶段的决策价D.招标投标阶段的工程合同价 [单选]炮眼深度超过1m时,封泥长度不得小于()。A.0.3mB.0.4mC.0.5m [单选]2级高血压,血压水平为()A.收缩压140~149mmHg,舒张压90~99mmHgB.收缩压160~179mmHg,舒张压100~109mmHgC.收缩压150~159mmHg,舒张压90~109mmHgD.收缩压170~189mmHg,舒张压90~109mmHgE.收缩压160~179mmHg,舒张压109~119mmHg [单选]下列不属于产品规范化内容的是()。A.将内容规范化后的数字内容按照产品需求规格书的要求将众多数据文件通过技术手段打包压缩为一个或一组文件B.将整合后的数字内容遵循产品最终的格式、规格等规范要求进行调整转换C.对打包好的数字出版产品添加数字版权管理(DRM)功能D. [单选,A2型题,A1/A2型题]AML-M2a的细胞化学染色特点是()A.POX染色阴性B.PAS染色强阳性C.NAP染色活性增加D.&alpha;-NBE弱阳性,可被NaF抑制E.原始粒细胞出现Phi(&psi;)小体 [单选]滑坡防治的工程措施主要有()和力学平衡以及改变滑带土三类。A.护面B.排水C.植树D.注浆 [单选]()是控制液体压力控制阀的一种。A、溢流阀B、节流阀C、闸阀D、减压阀 [单选,A2型题,A1/A2型题]对《内经》予以补充,并提出了八会穴,对五输穴按五行学说作了详细解释的著作是()A.《针灸甲乙经》B.《难经》C.《针灸资生经》D.《十四经发挥》E.《针灸大成》 [单选]最适宜的腮腺超声检查方法A.空腹B.理发后C.应用凸阵探头D.应用高频线阵探头E.只行纵切检查 [填空题]经热处理的轴、杆类零件,磨加工前必须留有足够的余量、并且要先对轴、杆校直,否则轴、杆磨加工后会出现表面硬度()或表面硬度(),直接影响其使用寿命
相关文档
最新文档