答案 概率论(A卷)(08级统计学)

合集下载

2008-2009-1概率论与数理统计(A)卷答案

2008-2009-1概率论与数理统计(A)卷答案

2008-2009-1概率论与数理统计(A )参考答案一.填空题(每空3分,共30分)1.0.58; 2.0.8; 3.310,12; 4.510.9-; 5.0.2; 6.201()0X x x f x <<⎧=⎨⎩其它; 7.2λ=; 8.13, 2二.(本题10分)已知一批产品中90%是合格品,检查时,一个合格品被误认为是次品的概率为0.05,一个次品被误认为是合格品的概率为0.02,求 (1)一个产品经检查后被认为是合格品的概率;(2)一个经检查后被认为是合格品的产品确是合格品的概率。

解:设A =‘任取一产品,经检验认为是合格品’ B =‘任取一产品确是合格品’则(1) ()()(|)()(|)P A P B P A B P B P A B =+……………………………(2分) 0.90.950.10.020.857.=⨯+⨯= ………………… …………(3分)(2) ()0.90.95(|)0.9977()0.857P AB P B A P A ⨯=== ……………………(5分) 三.(本题15分)已知连续型随机变量X 的概率密度 20()0xae x f x x -⎧⎪>=⎨⎪≤⎩,求:(1)常数a ;(2)X 的分布函数()F x ;(3){12}P X <≤;(4)2Y X =的概率密度。

解:(1)由2()1xf x dx ae dx +∞+∞--∞==⎰⎰,得12a =………… … …………(4分) (2)2201010()()20000x x x xe dx x e x F xf x dx x x ---∞⎧⎧≥⎪⎪-≥===⎨⎨⎪⎪<⎩<⎩⎰⎰…………(4分)(以上两步只写结论也给分)(3)111122{12}(2)(1)1(1)P X F F e e e e ----<≤=-=---=- …………(3分)(4)2(){}{}Y F y P Y y P X y =≤=≤ i 〉0y ≤时,()0Y F y =ii 〉0y >时,2(){12x Y F y P X e dx e e-=≤≤==-=-所以()()00Y Yyf y F yy⎧>'==≤⎩……………………(4分) 四.(本题15分)已知(,)X Y为二维离散型随机变量,分布律如下:(1)求常数C;(2)求{}P X Y=的值;(3)求()E X及()D X;(4)求()E XY及(,)Cov X Y。

2008级数理统计试题(A)答案

2008级数理统计试题(A)答案

山西财经大学2010—2011 学年第一学期期末数理统计(A)课程试卷1、本卷考试形式为考试时间为2、考生不得将装订成册的试卷拆散,不得将试卷或答题卡带出考场。

3、考生只允许在密封线以外答题,答在密封线以内的将不予评分。

4、考生答题时一律使用蓝色、黑色钢笔或圆珠笔(制图、制表等除外)。

5、考生禁止携带手机、耳麦等通讯器材。

否则,视为作弊。

6、可以使用无存贮功能的计算器。

一、填空题(共10小题,每题2分,共计20分)二、选择题(共10小题,每题2分,共计20分)三、计算题(共2小题,每题10分,共计20分)四、应用题(共3小题,每题10分,共计30分)五、证明题(共1小题,每题10分,共计10分)一、填空题(共10小题,每题2分,共计20分)1、设来自总体X 的一个样本观察值为:2.1,5.4,3.2,9.8,3.5,则样本均值 = 4.8 。

2、设61,,X X 为总体)1,0(~N X 的一个样本,且cY 服从2χ分布,这里,26542321)()(X X X X X X Y +++++=,则=c 1/3 。

3、参数估计是统计推断的重要内容,包括参数的点估计和区间估计两类。

4、从总体中随机抽取样本容量n 的样本,用修正样本方差∑=--=n i iX X n S 122)(11~来估计总体方差2σ,则2~S 是2σ的无偏(有效、一致)估计量。

5、设总体是)2,(~μN X ,321,,x x x 是总体的简单随机样本,1ˆμ, 2ˆμ是总体参数μ的两个估计量,且1ˆμ=321414121x x x ++,2ˆμ=321313131x x x ++,其中较有效的估计量是__2ˆμ_______。

6、已知),(~2σμN X ,但2σ未知,令0100:,:μμμμ>≤H H ,抽取样本的容量为n ,则其检验统计量为nS X T /~0μ-=,其中∑=--=n i i X X n S 122)(11~。

2007-08概率统计A卷试题及答案

2007-08概率统计A卷试题及答案

2007 – 2008学年第一学期《概率论与数理统计A 》试卷答案一、填空题(每小题3分,满分21分,把答案填在题中横线上)1.设()()P A P B p ==,且,A B 至少有一个发生的概率为0.2,,A B 至少有一个不发生的概率为0.6,则p = 0.3 . 解 已知()0.2,()0.6P A B P A B == ,0.2()()()()2()P A B P A P B P AB p P AB ==+-=- ,0.6()1()1()P A B P A B P AB ==-=- ,()0.4P AB =, 0.3p =2.11个人随机地围一圆桌而坐,则甲乙两人相邻而坐的概率为 0.2 .解 设A 表示事件“甲乙相邻而坐”。

样本空间所包含的基本事件数为11!,事件A 包含的基本事件数为1129!⨯⨯11292()0.21110P A ⨯⨯===!! 3.设随机变量~(,)X B n p ,则对任意实数x ,有limn x P →∞⎫≤=⎬⎭()x Φ或22t xdt -⎰. 4.设随机变量X Y 与的方差和相关系数分别为XY ()3,()4,0D X D Y ρ===,则(21)D X Y -+= 16 .解 (21)(2)D X Y D X Y -+=-(2)()2cov(2,)D X D Y X Y =+- 4()()4cov(,)D X D Y X Y =+-4()()4XY D X D Y ρ=+-=165.设~(0,1)X N ,1.96是标准正态分布的上0.025分位点,则{}1.96P X =≤ 0.975 .解 1.96是标准正态分布的上0.025分位点,即{}0.0251.96P X =≥{}1.96P X =≤{}110.0250.9751.96P X -=-=>6.设12(,,,)n X X X 是来自总体2(,)N μσ的样本,则当常数k =11n -时, 221()ni i k X X σ==-∑ 是参数2σ的无偏估计量.7.设总体2~(,)X N μσ,12(,,,)n X X X 是来自总体X 的样本,X 为样本均值,2S 为样本方差,2σ未知,若检验假设0010:,:H H μμμμ=≠~ t (n-1).二、选择题(每小题3分,满分18分)X Y 与满足条件()()()D X Y D X D Y +=+, 则下面结论不成立的是( C )(A )X Y 与不相关.(B )()()()E XY E X E Y =.(C )X Y 与相互独立. (D )cov(,)0X Y =.2.设随机变量X 的概率密度为cos ,||,2()0,||.2k x x f x x ππ⎧≤⎪⎪=⎨⎪>⎪⎩ 则k 等于( B )(A )14. (B )12. (C )0. (D )1.3.某班12名战士各有一支归自己使用的枪,枪的外形完全一样,在一次夜间紧急集合中,每人随机地取了一支枪,则拿到是自己枪的人数的数学期望是( D ) (A )112. (B )0. (C )12. (D )1. 解 设1,i 0,i i X ⎧=⎨⎩第个战士拿到自己的枪,第个战士没拿到自己的枪,1,2,,12i = ,则1(),12i E X = 设X 表示拿到自己枪的人数.则121i i X X ==∑1212111()()12112i i i i E X E X E X ==⎛⎫===⨯= ⎪⎝⎭∑∑4.设X Y 与为相互独立的随机变量,其分布函数分别为()X F x 和()Y F y ,则随机变量max(,)Z X Y =的分布函数为( A ) (A )()()()Z X Y F z F z F z =.(B )[][]()1()1()Z X Y F z F z F z =--.(C )()1()()Z X Y F z F z F z =-.(D )()()()Z X Y F z F z F z =+.5.设1210(,,,)X X X 是来自总体2(0,)N σ的样本,则下面结论正确的是( C )(A )1022211~(9)kk Xχσ=∑.(B )1021~(9)k k X t =∑.(C )1022211~(10)k k X χσ=∑. (D )1021~(10)k k X t =∑.6.设总体2~(,)X N μσ,μ为未知参数,样本12,,,n X X X 的方差为2S ,对给定的显著水平α,检验假设2201:2,:2H H σσ=<的拒绝域是( B ) (A )221/2(1)a n χχ-≤-. (B )221(1)a n χχ-≤-. (C )221/2()a n χχ-≤.(D )221()a n χχ-≤.三、计算题(每小题10分,满分50分)1.一个系统中有三个相互独立的元件,元件损坏的概率都是0.2.当一个元件损坏时,系统发生故障的概率为0.25; 当两个元件损坏时,系统发生故障的概率为0.6; 当三个元件损坏时,系统发生故障的概率为0.95; 当三个元件都不损坏时,系统不发生故障. 求系统发生故障的概率. 解 设A 表示“系统发生故障”的事件,i B 表示“有i 个元件发生故障”的事件,1,2,3i =;由全概率公式 112233()()()()()()()P A P B P A B P B P A B P B P A B =++ 由已知,1()0.25P A B =,2()0.6P A B =,3()0.95P A B =1213()0.20.80.384P B C =⨯⨯= ,2223()0.20.80.096P B C =⨯⨯= ,3333()0.20.008P B C ==所以1612.095.0008.06.0096.025.0384.0)(=⨯+⨯+⨯=A P 2.设随机变量X 的分布律为X -1 0 1 2P 0.1 2.0 a b若()1E X =,(1)求常数a , b ; (2)求Y=X 2 的分布律.解 (1)由 0.10.21a b +++=,()E X =10.100.212a b -⨯+⨯+⨯+⨯=1,解得a =0.3, b =0.4. (2) Y=X 2的可取值为0,1,4.{}0P Y =={}0P X ==0.2,{}1P Y =={}1P X =-+{}1P X ==0.1+0.3=0.4, {}4P Y =={}==2X P 0.4, 因此Y=X 2 的分布律为Y 0 1 4 P 2.0 0.4 0.43.设二维随机变量(,)X Y 的联合概率密度函数为,0<1,(,)0,Ax x y f x y <<⎧=⎨⎩其他.(1)求常数A ; (2)求关于,X Y 的边缘概率密度函数;(3)判断X Y 与是否相互独立;(4)求{1}P X Y +≤. 解(1)由(,)d d 1f x y x y +∞+∞-∞-∞=⎰⎰,有 1001d d 6yAy Ax x ==⎰⎰,得6A =; (2)()X f x =(,)d f x y y +∞-∞⎰, 当0x ≤或1x ≥时,()X f x =0,当01x <<时,1()6d 6(1)X x f x x y x x ==-⎰, 所以6(1),01;()0.X x x x f x -<<⎧=⎨⎩其它同理 23,01;()0.Y y y f y ⎧<<=⎨⎩其它(3)由(,)()()X Y f x y f x f y ≠,所以X Y 与不相互独立 (4)11201(1)6d d 4xx P X Y x x y -+≤==⎰⎰.4.设随机变量X Y 与相互独立,其概率密度分别为0;e ,()0,0.xX x f x x ->⎧=⎨≤⎩ 20;1e ,()20,0.yY y f y y ->⎧⎪=⎨⎪≤⎩求Z X Y =+的概率密度.解法1 由卷积公式 ()()()d Z X Y f z f x f z x x +∞-∞=-⎰因为e >0;()00.xX x f x x -⎧=⎨≤⎩ 21e>0;()200.yY y f y y -⎧⎪=⎨⎪≤⎩所以 0()()()d e ()d xZ X Y Y f z f x f z x x f z x x -+∞+∞-∞=-=-⎰⎰e ()d t zY z t z x f t t --∞=--⎰令e()d t zzY f t t --∞=⎰当0z ≤时 ()e ()d 0t zzZ Y f z f t t --∞==⎰ 当0z >时 201()e ()d ee d 2tt zt zzzZ Y f z f t t t ----∞==⎰⎰2e (e 1),z z -=- ()()()d Z X Yf z f x f z x x +∞-∞=-⎰2e (e 1),0,0,0.zz z z -⎧⎪->=⎨⎪≤⎩解法2 先求Z 的分布函数()Z F z . 联合密度函数为21,0,0,(,)()()20,,y x X Y e e x y f x y f x f y --⎧>>⎪==⎨⎪⎩其它(){}{}(,)Z x y zF z P Z z P X Y z f x y dxdy +≤=≤=+≤=⎰⎰当0z ≤时, ()(,)0,Z x y zF z f x y dxdy +≤==⎰⎰当0z >时, 21()(,)2yx Z x y zDF z f x y dxdy e e dxdy --+≤==⎰⎰⎰⎰20012yzz x x e dx e dy ---=⎰⎰221z ze e --=-+分布函数为 221,0()0,0z z Z e e z F z z --⎧⎪-+>=⎨⎪≤⎩再求导,得概率密度 2e (e 1),0,()()0,0.zz Z Z z f z F z z -⎧⎪->'==⎨⎪≤⎩5.设12(,,,)n X X X 是来自总体2(,)N μσ的样本,求μ和2σ的最大似然估计量. 解 设12,,,n x x x ,相应的样本观测值,则似然函数为2()22122221L(,)11exp ()22i x ni nni i x μσμσμπσσ--===⎛⎫⎧⎫=--⎨⎬⎪⎝⎭⎩⎭∑取对数,得222211ln L(,)(ln 2ln )()22n i i n x μσπσμσ==-+--∑将2ln L(,)μσ分别对μ与2σ求偏导数,并令其等于零, 得方程组2122241ln 1()0ln 1()022ni i ni i L x L n x μμσμσσσ==∂⎧=-=⎪∂⎪⎨∂⎪=-+-=⎪∂⎩∑∑ 解此方程组,得到参数μ和2σ的最大似然估计值是12211ˆ;1().n i i ni i x x n x x n μσ==⎧==⎪⎪⎨⎪=-⎪⎩∑∑ 因此,μ和2σ的最大似然估计量是12211ˆ;1().n i i ni i X X n X X n μσ==⎧==⎪⎪⎨⎪=-⎪⎩∑∑四、证明题(共2道小题,满分11分)1.(6分)若(|)(|)P A B P A B >,试证(|)(|)P B A P B A >. 证明 因为()(|)()()()()()(|)()1()1()P AB P A B P B P AB P A AB P A P AB P A B P B P B P B =--===--由 (|)(|)P A B P A B >, 所以得()()()()1()P AB P A P AB P B P B ->- ()()()()()()()P AB P B P AB P A P B P B P AB ->- ()()()P AB P A P B ∴>从而 ()()()()()()()P AB P A P AB P A P B P A P AB ->-即()()()()P AB P A P A P BA > ()()()()P AB P BA P A P A > 所以(|)(|)P B A P B A >.2.(5分)设12(,,,)n X X X 是来自总体(0,1)N 的样本,证明{}21202ni i n P X n n=-<<≥∑. 证明 根据2221~()ni X n χχ=∑,且22(),()2E n D n χχ==,由切比雪夫不等式,有{}{}2221|()|02ni P P E nX n χχ=-<<<∑22()21D n n nχ-≥-=.。

2024年概率论与数理统计试卷参考答案与评分标准

2024年概率论与数理统计试卷参考答案与评分标准

2023─2024学年第二学期《概率论与数理统计》课程考试试卷(A 卷)参考答案与评分标准一、填空题(每空3分,共30分)1.在显著性检验中,若要使犯两类错误的概率同时变小,则只有增加样本容量.2.设随机变量X 具有数学期望()E X μ=与方差2()D X σ=,则有切比雪夫不等式{}2P X μσ-≥≤14.3.设X 为连续型随机变量,a 为实常数,则概率{}P X a ==0.4.设X 的分布律为,{}1,2,k k P X x p k === ,2Y X =,若1nkk k xp ∞=∑绝对收敛(n为正整数),则()E Y =21kk k xp ∞=∑.5.某学生的书桌上放着7本书,其中有3本概率书,现随机取2本书,则取到的全是概率书的概率为17.6.设X 服从参数为λ的poisson 分布,则(2)E X =2λ.7.设(2,3)Y N ,则数学期望2()E Y =7.8.(,)X Y 为二维随机变量,概率密度为(,)f x y ,X 与Y 的协方差(,)Cov X Y 的积分表达式为(())(())(,)d d x E x y E y f x y x y +∞+∞-∞-∞--⎰⎰.9.设X 为总体N (3,4)中抽取的样本14,,X X 的均值,则{}15P X ≤≤=2(2)1Φ-.(计算结果用标准正态分布的分布函数()x Φ表示)10.随机变量2(0,)X N σ ,n X X X ,,,21 为总体X 的一个样本,221()(1)ni i Y k X χ==∑ ,则常数k =21n σ.A 卷第1页共4页二、概率论试题(45分)1、(8分)题略解:用A B C 、、,分别表示三人译出该份密码,所求概率为P A B C ()(2分)由概率公式P A B C P ABC P A P B P C ()=1-()=1-()()()(4分)1-1-1-p q r =1-()()()(2分)2、(8分)设随机变量()1,()2,()3,()4,0.5XY E X D X E Y D Y ρ=====,求数学期望()E X Y +与方差(23)D X Y -.解:(1)()E X Y +=E X E Y ()+()=1+3=4(3分)(2)(23)4()9()12ov(,)D X Y D X D Y C X Y -=+-(3分)8361244XY ρ=+--(2分)3、(8分)某种电器元件的寿命服从均值为100h 的指数分布,现随机地取16只,它们的寿命i T 相互独立,记161ii T T ==∑,用中心极限定理计算{1920}P T ≥的近似值(计算结果用标准正态分布的分布函数()x Φ表示).解:i i ET D T E T D T 2()=100,()=100,()=1600,()=160000(3分){1920}0.8}1P T P ≥=≈-Φ(0.8)(5分)(4分)4、(10分)设随机变量X 具有概率密度11()0x x f x ⎧-≤≤=⎨⎩,,其它,21Y X =+.(1)求Y 的概率密度()Y f y ;(2)求概率312P Y ⎧⎫-<<⎨⎩⎭.解:(1)12Y Y y F y y F y ≤>时()=0,时()=1(1分)A 卷第2页共4页212,{}{1}()d Y y F y P Y y P X y f x x<≤≤=+≤=()=(2分)02d 1x x y ==-(2分)概率密度函数2()=Y Y y f y F y ≤⎧'⎨⎩1,1<()=0,其它(2分)(2)3102Y YP Y F F ⎧⎫-<<=-=⎨⎬⎩⎭311()-(-1)=222.(3分)5、(11分)设随机变量(,)X Y 具有概率分布如下,且{}1103P X Y X +===.XY-101013p114q112(1)求常数,p q ;(2)求X 与Y 的协方差(,)Cov X Y ,并问X 与Y 是否独立?解:(1)1111134123p q p q ++++=+=,即(2分)由{}{}{}{}{}101011010033P X Y X P Y X pP X Y X P X P X p +====+========+,,(2分)可得16p q ==(1分)X 01Y -11P1212P7121614(2)EX 1()=2,E Y 1()=-3,E XY 1()=-6(3分),-Cov X Y E XY E X E Y ()=()()()=0(2分)由..ij i j P P P ≠可知X 与Y 不独立(1分)三、数理统计试题(25分)1、(8分)题略.A 卷第3页共4页证明:222(1)(0,1),(1)X n S N n χσ-- ,22(1)X n S σ-相互独立(4分)2(1)Xt n - ,即(1)X t n - (4分)2、(10分)题略解:似然函数2221()(,)2n i i x L μμσσ=⎧⎫-=-⎨⎬⎩⎭∑2221()ln ln(2)ln() 222ni i x n n L μπσσ=-=---∑(4分)由2222411()ln ln 0,022n ni i i i x x L L nμμμσσσσ==--∂∂===-+=∂∂∑∑可得221111ˆˆ,()n n i i i i x x n n μσμ====-∑∑为2,μσ的最大似然估计(2分)由221ˆˆ(),()n nE E μμσσ-==可知11ˆni i x n μ==∑为μ的无偏估计量,2211ˆ()ni i x n σμ==-∑为2σ的有偏估计量(4分)3、(7分)题略解:01: 4.55: 4.55H H μμ=≠(2分)检验统计量x z =,拒绝域0.025 1.96z z ≥=(2分)而0.185 1.960.036z ==>(1分)因而拒绝域0H ,即不认为总体的均值仍为4.55(2分)A 卷第4页共4页。

山东建筑大学2007-2008(1)概率论与数理统计试题(A卷)解答

山东建筑大学2007-2008(1)概率论与数理统计试题(A卷)解答

1 3
(B)
2 5
(C)
1 5
( D)
4 15
二.填空题(每小题 3 分,共 15 分) 1. 一个均匀骰子,掷一次,朝上那面点数不小于 2 的概率是___5/6_____. 2. 射击两次,事件 Ai 表示第 i 次命中目标(i=1,2) ,则事件“至多命中一次”可表示为
A1 A2
.
3. 设 P ( A) 0.5, P ( B ) 0.6, P ( A B ) 0.9 , 则 P(B-A)=___0.4_______. 4. 设随机变量 X~N(0,1) ,φ(x)为其分布函数,则φ(x)+φ(-x)=___1____. 5. 设 X 与 Y 相互独立,且 D(X)=3,D(Y)=5,则 D(2X-Y+1)=_17___. 三.解答下列各题(每小题 6 分,共 30 分) 1. 一口袋装有 4 只白球, 5 只红球. 从袋中任取一只球后, 放回去, 再从中任取一只球. 求下列事 件的概率: 1) 取出两只都是红球; 2) 取出的是一只白球, 一只红球. 解:以 A 表示事件“取出两只都是红球” ,以 B 表示“取出的是一只白球, 一只红球” 。 由于是有放回取球,因而样本点总数 n=9×9=81。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。2 分 有利于事件 A 的样本点数 k1=5×5=25 事件 A 发生的概率为 P(A)=k1/n=25/81。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。4 分 有利于事件 B 的样本点数 k2=2×4×5=40 事件 B 发生的概率为 P(B)=k1/n=40/81。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。6 分 2. 有两个口袋,甲袋中盛有 2 个白球,1 个黑球;乙袋中盛有 1 个白球,2 个黑球。由甲袋中任 取一球放入乙袋,再从乙袋任取一球,求从乙袋中取得白球的概率。 解:以 A 表示 “从乙袋中取得白球” ,以 B1、B2 分别表示从甲袋中取得白球、黑球。 由于 B1∪B2=Ω, 可用全概率公式 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。2 分 P(A)=P(B1)×P(A|B1)+P(B2)×P(A|B2) =2/3×2/4+1/3×1/4 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。4 分 =5/12 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。6 分

长江大学08-09概率论与数理统计试卷A参考答案与

长江大学08-09概率论与数理统计试卷A参考答案与

2008─2009学年第二学期《概率论与数理统计》 课程考试试卷(A 卷)参考答案与评分标准经济yq供查阅的参考数值:(220.0250.975(0.5)0.69,(9)19,(9) 2.7χχΦ===) 一、填空题(每空 3 分,共30分)1. ~X N μσ2(,),1,,n X X 是总体X 的简单随机样本,2,X S 分别为样本均值与样本方差,2σ未知,则关于原假设0μμ=的检验统计量t =X -.2. ~X N μσ2(,),1,,n X X 是总体X 的简单随机样本,2,X S 分别为样本均值与样本方差,2σ已知,则关于原假设0μμ=的检验统计量Z =X - .3. 设X 的分布律为,{}1,,k k P X x p k n ===,则1nk k p =∑= 1.4. 某学生的书包中放着8本书,其中有5本概率书, 2本物理书,1本英语书,现随机取1本书,则取到概率书的概率为585. 设随机变量X 的分布函数为()F x ,则()F +∞= 1 . 6. 设X 在(0,1)上服从均匀分布,则()D X =112.7. 设(0,1)XN ,(1,2)YN ,相关系数1XY ρ=,则方差D X Y +(8. X 与Y 独立同分布,X 的密度函数为,0()0,0x e x f x x λλ-⎧>=⎨≤⎩,λ(>0),{}min ,Z X Y =,则数学期望()E Z =12λ. 9. (,)X Y 概率密度为(,)f x y ,则X 的概率密度()X f x =(,)d f x y y +∞-∞⎰.10. X 与Y 独立且均服从标准正态分布,则22X Y +服从2χ(2)分布.A 卷第1页共4页二、概率论试题(45分)1、(8分) 某人群患某种疾病的概率约为0.1%,人群中有20%为吸烟者,吸烟者患该种疾病的概率约为0.4%,求不吸烟者患该种疾病的概率(用A 表示人群中的吸烟者, 用C 表示某人群患该种疾病,P C ()=0.1%).解:P C ()=0.1%,P A ()=0.2,P C A ()=0.4% (2分) 由全概率公式 P C P C A P A P C A P A ()=()()+()() (4分) 可得 P C A ()=0.025% (2分) 2、(10分) 设随机变量X 的分布函数为1()0.4()0.6()2x F x x -=Φ+Φ,其中()x Φ为标准正态分布的分布函数,求X 的密度函数()f x 、数学期望()E X 与方差()D X (记x x ϕ'Φ()=()).解: X 的密度函数1()()0.4()0.3()2x f x F x x ϕϕ-'==+ (2分) 数学期望1()()d 0.3()d 2x E X xf x x x x ϕ+∞+∞-∞-∞-==⎰⎰(2分) =0.6(21)()dt 0.6t t ϕ+∞-∞+=⎰ (2分) 22221()()d 0.4()d 0.3()d 2x E X x f x x x x x x x ϕϕ+∞+∞+∞-∞-∞-∞-==+⎰⎰⎰=20.40.6(21)()dt 0.40.6(41) 3.4t t ϕ+∞-∞++=++=⎰(3分)方差2()D X EX E X =2()-()=3.4-0.36=3.04 (1分) 3、(9分)设随机变量(,)X Y 具有概率密度2201(,)0x y f x y π⎧≤+≤⎪=⎨⎪⎩1,,其它.(1)求X 的边缘概率密度;(2)验证X 与Y 是不相关的,但X 与Y 不是相互独立的.解:(1)X的概率密度为,11()0X y x f x π⎧⎪-≤≤=⎨⎪⎩=,其它(2分) A 卷第2页共4页(2)E X ()=0, E Y ()=0, E XY ()=0 (3分)-Cov X E XY E X E Y ()=()()()=0,即X 与Y 是不相关的 (2分)由(,)()()X Y f x y f x f y ≠可知X 与Y 不相互独立 (2分)3、 (9分) 一加法器同时收到48个噪声电压(1,,48)k V k =,它们相互独立且都在区间(0,10)服从均匀分布,记481k k V V ==∑,用中心极限定理计算{250}P V ≥的近似值.( 说明24020V -近似服从正态分布可得4分。

概率论与数理统计试题-a_(含答案)

概率论与数理统计试题-a_(含答案)

概率论与数理统计试题-a_(含答案)深圳⼤学期末考试试卷参考解答及评分标准开/闭卷闭卷A/B 卷 A 课程编号 2219002801-2219002811课程名称概率论与数理统计学分 3命题⼈(签字) 审题⼈(签字) 年⽉⽇基本题6⼩题,每⼩题5分,满分30分。

在每⼩题给出的四个选项中,只有⼀(每道选择题选对满分,选0分)事件表达式A B 的意思是 ( ) 事件A 与事件B 同时发⽣ (B) 事件A 发⽣但事件B 不发⽣事件B 发⽣但事件A 不发⽣ (D) 事件A 与事件B ⾄少有⼀件发⽣ D ,根据A B 的定义可知。

假设事件A 与事件B 互为对⽴,则事件A B ( ) 是不可能事件 (B) 是可能事件发⽣的概率为1 (D) 是必然事件 A ,这是因为对⽴事件的积事件是不可能事件。

已知随机变量X ,Y 相互独⽴,且都服从标准正态分布,则X 2+Y 2服从 ( ) ⾃由度为1的χ2分布 (B) ⾃由度为2的χ2分布⾃由度为1的F 分布 (D) ⾃由度为2的F 分布选B ,因为n 个相互独⽴的服从标准正态分布的随机变量的平⽅和服从⾃由度为n 的2分布。

已知随机变量X ,Y 相互独⽴,X ~N (2,4),Y ~N (-2,1), 则( ) X +Y ~P (4) (B) X +Y ~U (2,4) (C) X +Y ~N (0,5) (D) X +Y ~N (0,3)选C ,因为相互独⽴的正态变量相加仍然服从正态分布,⽽E (X +Y )=E (X )+E (Y )=2-2=0, (X +Y )=D (X )+D (Y )=4+1=5, 所以有X +Y ~N (0,5)。

样本(X 1,X 2,X 3)取⾃总体X ,E (X )=µ, D (X )=σ2, 则有( ) X 1+X 2+X 3是µ的⽆偏估计(B) 1233X X X ++是µ的⽆偏估计22X 是σ2的⽆偏估计(D)21233XXX+是σ2的⽆偏估计答:选B,因为样本均值是总体期望的⽆偏估计,其它三项都不成⽴。

2007—2008学年概率论第一学期期终考试及参考答案

2007—2008学年概率论第一学期期终考试及参考答案

¯ ∼ N (0, 1), X ¯ − 1 ∼ N (−1, 1). (2) X 7. (1) E (X ) =
θ , θ +1
ˆ MM = θ
¯ X ¯; 1−X n i =1
(2) ln L(θ) = n ln θ + (θ − 1)
ln Xi , θ MLE = −
n i=1
n . ln Xi
1

专业

班级


姓名


学号


得分
概率论与数理统计(卷A): 20080114
本试卷共8大题(第1, 2, 5, 6题每题10分, 第3, 4, 7, 8题每题15分) 可能用到的分位点表如下: z0.05 = 1.645 z0.0025 = 1.960 t0.025 (27) = 2.0518 t0.05 (27) = 1.7033 t0.025 (28) = 2.0484 t0.025 (29) = 2.0452 t0.05 (29) = 1.6991 t0.05 (13) = 1.7709 F0.025 (11, 16) = 211) = 3.28 F0.025 (7, 6) = 5.70 F0.025 (6, 7) = 5.12 1. 设A, B为两事件, 已知P(A) = 0.3, P( B) = 0.5, 计算: (1) 若A, B相互独立, 求P(A ∪ B); ¯ ). (2) 若P(A| B) = 0.4, 求P(A| B
3 8. 某厂利用两条自动化流水线灌装番茄酱, 从两条自动化流水线上分别抽取样 本(X1 , · · · , X12 )与(Y1 , · · · , Y17 ), 观测后算得 x ¯ = 10.6(g), y ¯ = 9.5(g), s2 1 = 2.4, 2 s2 = 4.7, 假 设 这 两 条 流 水 线 上 灌 装 的 番 茄 酱 的 重 量 分 别 服 从 正 态 分 2 2 2 布N (µ1 , σ2 1 )与 N (µ2 , σ2 ), 且相互独立. µ1 , σ1 , µ2 , σ2 均未知. 求:

08级本科《概率论与数理统计》A卷答案(教考分离)

08级本科《概率论与数理统计》A卷答案(教考分离)

上海立信会计学院2009~2010学年第二学期2008级本科《概率论与数理统计》期终考试试卷(A )(本场考试属闭卷考试,考试时间120分钟,可使用计算器) 共8页学院 班级 学号 姓名一、单项选择题(每题2分,共10分)在每小题列出的四个选项中只有一个选项是符合题目要求的,请将正确选项前的字母填在题后的括号内。

1.对于事件设B A ,,下列命题正确的是 ( ) A .若B A ,互不相容,则A 与B 也互不相容 B .若B A ,相容,则A 与B 也相容C .若B A ,互不相容,且概率都大于零,则A 与B 也相互独立D .若B A ,相互独立,则A 与B 也相互独立2.将一枚骰子掷两次,记21X X 、分别第一、第二掷出的点数。

记:}10{21=+=X X A ,}{21X X B <=。

则=)|(A B P ( )A .31 B .41 C .52 D .65 3.设随机变量X 与Y 均服从正态分布,)2,(~2μN X ,)5,(~2μN Y ,记}2{1-≤=μX P p ,}5{2+≥=μY P p ,则 ( )A .对任何实数μ,都有21p p =B .对任何实数μ,都有21p p <C .只对μ的个别值才有21p p =D .对任何实数μ,都有21p p > 4.设随机变量21,X X 独立,且21}1{}0{====i i X P X P (2,1=i ),那么下列结论正确的是 ( )A .21X X =B .1}{21==X X PC .21}{21==X X P D .以上都不正确 5.设21,X X 取自正态总体)2,(μN 的容量为2的样本,下列四个无偏估计中较优的是( )A .2114341ˆX X +=μB .2122121ˆX X +=μC .21332ˆX X +=μD .2147374ˆX X +=μ 二、填空题(每题2分,共10分)1.设B A ,为随机事件,5.0)(=A P ,6.0)(=B P ,8.0)|(=A B P ,则=)(B A P2.设离散型随机变量X 的分布列为kA k X P )2/1(}{==( ,2,1=k ),则常数=A3.设X 的概率密度为21)(x ex f -=π,则=)(X D4.已知随机变量X 的密度为⎩⎨⎧<<=其它010)(x x a x f ,则=a5.设随机变量X 和Y 相互独立且都服从正态分布)3,0(2N ,而91,,X X 和91,,Y Y 分别是来自总体X 和Y 简单随机样本,则统计量292191YY X X U ++++=服从 分布。

概率论期末考试试卷(A卷)答案

概率论期末考试试卷(A卷)答案

设随机变量 X 服从泊松分布,且 P ( X ≤ 1) = 4 P ( X = 2) ,求 P( X = 3) 的值。 (提示:若 X ∼ π (λ ) ,即 P ( X = k ) = λ k e − λ , k = 0,1, 2, )
k! 解答: P( X ≤ 1) = P( X = 0) + P( X = 1) = e−λ + λe−λ , P( X = 2) = λ2 e−λ
2、在一标准字典中有 55 个由两个不相同的字母所组成的单词,若从 26 个英文字母中任取
两个字母予以排列,能排列上述单词的概率是 11/130
。。
3、已知随机变量 X ,Y 相互独立,且 X ∼ N (1, 3) ,Y ∼ N (2, 4) ,若 Z = 3X − 2Y ,则 Z 服
从分布为 N (−1, 43)
∫ ∫ 故: P ⎧⎨0 < X < 1 ,e < Y < 6⎫⎬ =
1 2
6 2xe−( y−5)dxdy = 1 (1− e−1)

2
⎭ 05
4
……………………………… 2 分
(2)因为: E(3X + Y ) = E(3X ) + E(Y ) = 3E( X ) + E(Y )
……………………………… 3 分
第5页共6页

∫ ∫ ∫ ∫ E(X ) =
+∞
+∞
xf (x, y)dxdy =
1
+∞ 2x2e−( y−5)dxdy
−∞ −∞
05
∫ ∫ = 1 +∞ 2x2e−( y−5)dxdy = 2
05
3
∫ ∫ ∫ ∫ E(Y ) =

华农-2008-2009概率论与数理统计期末试卷解答

华农-2008-2009概率论与数理统计期末试卷解答

华南农业大学2008(1)概率论与数理统计A 试卷参考答案一、填空题('63⨯=18分)1. 0.9762. 0.3753. 21e --4. 175. 16. 8二.选择题('63⨯=18分)1. D2.B3.A4.D5.D6.A 三.(5分)解:X 的概率分布为3323()()()0,1,2,3.55k k kP X k C k -===即01232754368125125125125X P26355EX =⨯=……………1分 231835525DX =⨯⨯=四、(10分)解 设B ={此人出事故},A1,A2分别表示此人来自第一类人和第二类人 由已知,有1()0.3P A =,2()0.7P A =,1()0.05P B A =,2()0.01P B A =,(1)由全概率公式有1122()()()()()0.30.050.70.010.022P B P A P B A P A P B A =+=⨯+⨯=(2)由贝叶斯公式有111()()0.30.0515()0.682.()0.02222P A P B A P A B P B ⨯===≈答:从两类人中任意抽取一人,此人一年内出事故的概率为0.022; 若已知此人出事故,此人来自第一类人的概率约为0.682. 五、(10分) 解:(1)222001()(1)()222a f x dx ax dx x x a +∞-∞==+=+=+⎰⎰ 12a ∴=-(2)X 的分布函数为200,0,0,0,()()(1),02,,02,241,2.1, 2.x xx x x u F x f u du du x x x x x -∞≤⎧≤⎧⎪⎪⎪⎪==-<≤=-<≤⎨⎨⎪⎪>>⎪⎪⎩⎩⎰⎰(3)32111(13)()(1)24x P x f x dx dx <<==-=⎰⎰六、(14分)解:区域D 的面积2211ln 2e e D S dx x === 1,(,),(,)20,x y D f x y ⎧∈⎪=⎨⎪⎩其它.(1)122011,1,,1,()(,)220,.0,.x X x e dy x e f x f x y dy x +∞-∞⎧⎧≤≤≤≤⎪⎪===⎨⎨⎪⎪⎩⎩⎰⎰其它其它22221122111(1),1,1,22111,1,1,()(,)2220,0,e y Y e y e dx y e e y dx e yf y f x y dx y --+∞---∞⎧⎧-≤≤≤≤⎪⎪⎪⎪⎪⎪-<≤<≤===⎨⎨⎪⎪⎪⎪⎪⎪⎩⎩⎰⎰⎰其它其它(2)因(,)()()X Y f x y f x f y ≠⋅,所以,X Y 不独立. (3)2(2)1(2)1(,)x y P X Y P X Y f x y dxdy +<+≥=-+<=-⎰⎰22112xdx dy -=⎰⎰1113110.752244=-⨯=-==七、(10分)解: 矩估计:()11()E X xf x dx dx +∞-∞===⎰⎰由()X E X ==得,矩估计量为2X ()1Xθ=- 极大似然函数为 111211(,,,;)nnn i i L x x x xθ====∏两边同时取对数,得1ln 1)ln nii L n x ==∑令ln ln 02nix d L n d θθ==∑ 故极大似然估计量为21()ln nii nxθ=-=∑八、(10分)解:(1)μ的置信度为1α-下的置信区间为/2/2(((X t n X t n αα--+- 其中,X 表示样本均值,S 表示样本标准差,n 表示样本容量,又0.05125, 2.71,7,0.1,(6) 1.943X S n t α=====所以μ的置信度为90%的置信区间为(123,127) (2)本问题是在0.10α=下检验假设 01:124,:124,H H μμ=≠ 由于正态总体的方差2σ未知,所以选择统计量X T =,由题意知,在0H 成立的条件下,此问题的拒绝域为2||0.976(1)T t n α==>-这里显然0.050.976 1.943(71)t <=-,说明没有落在拒绝域中,从而接受零假设0H ,即在显著性水平0.10下,可认为这块土地的平均面积μ显著为124平方米。

概率论权威试题及其答案详细解析

概率论权威试题及其答案详细解析

概率论与数理统计试题 A 卷 2007-2008学年 第二学期 2008.06一、填空题(每空3分,共18分)1. 事件A 发生的概率为0.3,事件B 发生的概率为0.6,事件A ,B 至少有一个发生的概率为0.9,则事件A ,B 同时发生的概率为____________2. 设随机向量(X ,Y )取数组(0,0),(-1,1),(-1,2),(1,0)的概率分别为,45,41,1,21cc c c 取其余数组的概率均为0,则c =__________3. 设随机变量X 在(1,6)上服从均匀分布,则关于y 的方程012=+-Xy y 无实根的概率为_______________. 4. 若)1,0(~N X ,)1,0(~N Y ,且X 与Y 相互独立,则Y X Z +=服从______________5. 设总体X 的概率密度为⎩⎨⎧<<+=其他,0,10,)1();(x x x f θθθ,n X X X ,,21 为来自总体X 的一个样本,则待估参数)(-1>θθ的最大似然估计量为_____________. 6. 当2σ已知,正态总体均值μ的置信度为α-1的置信区间为(样本容量为n )___________二、选择题(每题3分,共18分)1. 对任意事件A 与B ,下列成立的是-------------------------------------------------------------( ) (A ))0)((),()|(≠=B P A P B A P (B ))()()(B P A P B A P += (C ))0)((),|()()(≠=A P A B P A P AB P (D ))()()(B P A P AB P =2. 设随机变量X ),(~p n B 且期望和方差分别为48.0)(,4.2)(==X D X E ,则----( )(A) 3.0,8==p n (B) 4.0,6==p n (C) 4.0,3==p n (D ) 8.0,3==p n 3. 设随机变量X 的分布函数为F X (x ),则24+=X Y 的分布函数F Y (y )为-------------( ) (A) 1()22X F y + (B) 1(2)2X F y +(C) (2)4X F y - (D )(24)X F y -4. 若随机变量X 和Y 的相关系数0=XY ρ,则下列错误的是---------------------------------( ))1(~-n t S X (A) Y X ,必相互独立 (B) 必有)()()(Y E X E XY E = (C) Y X ,必不相关 (D ) 必有)()()(Y D X D Y X D +=+5. 总体)1,0(~N X ,n X X X ,,21 为来自总体X 的一个样本,2,S X 分别为样本均值和样本方差,则下列不正确的是--------------------------------------------------------------------( )(A) ),0(~n N X n (B) (C) (D )6. 设随机变量)2,1( =k X k 相互独立,具有同一分布, ,0=k EX ,2σ=K DX ,2,1=k ,则当n 很大时,1nkk X=∑的近似分布是--------------------------------------------------------( ) (A) 2(0,)N n σ (B) 2(0,)N σ (C) 2(0,/)N n σ(D) 22(0,/)N n σ三、解答题(共64分)1. (本题10分)设一批混合麦种中一、二、三等品分别占20%、70%、10%,三个等级的发芽率依次为0.9,0.7,0.3,求这批麦种的发芽率。

08概率论试题A含答案

08概率论试题A含答案
姓 名:
线
学 号:
广东工业大学考试试卷 ( )
课程名称:
概率论与数理统计
试卷满分 100 分
考试时间: 2008 年 6 月 27 日 ( 第 18 周 星期 五 )
一、单项选择题(本大题共 4 小题,每小题 4 分,共 16 分)
1. 已知 P(A) 0.5 , P(B) 0.4 , P(A B) 0.6 , 则 P(A B) = ( )
fY ( y)


2
y
0
(2)
(0 y 4 ), (其 他).
X+Y
0


pi
0.2
0.4
0.4
(4) B
Y2
0

pi
0.3
0.7
(3) 1/9 (4)0.0062 (5) P( A , ˆ2 ; ˆ2 (6) ,
三、解 设 A={患有肺癌}, B={可疑病人吸烟}, 则由条件得:
(1) 试取α =0.05,检验假设 H0:μ =10 H1:μ 10;
(6 分)
(2) 求σ 的置信度为 0.95 的置信区间.
(4 分)
备用数据:x2 分布、t 分布的上侧α 分位数
x
2 0.05
(8)=15.507
x
2 0.025
(8)=17.535
x
2 0.975
(8)=2.180
t 0.025 (8)=2.3060
广东工业大学试卷用纸,共 8 页,第 7 页
广东工业大学试卷用纸,共 8 页,第 8 页
八、(8 分) 证明:(契比雪夫大数定理)设随机变量 X1, X 2 , , X n ,

08年秋季学期概率统计考试题及解答(xin2)

08年秋季学期概率统计考试题及解答(xin2)

概率论与数理统计试题(2008秋)(注:需用到的标准正态分布表,t -分布表见第四页末尾处。

)一、填空题(每题3分,共计15分)1.设事件,A B 满足()0.5,()0.6,(|)0.6P A P B P B A ===, 则()P A B = .2.设事件,,A B C 两两独立,且ABC φ=,1()()()2P A P B P C ==<,9()16P A B C =,则()P A = .3.设r. v X 的概率密度为⎩⎨⎧<<=其他,010,2)(x x x f ,对X 进行三次独立重复观察,用Y表示事件1()2X ≤出现的次数,则(1)P Y ==_______.4.已知一批零件长度未知μμ),4,(~N X ,从中随机地抽取16个零件,得样本均值,30=X 则μ的置信度为0.95的置信区间是 .5.在区间)1,0(中随机取两数,则事件“两数之差的绝对值小于21”的概率为 .二、单项选择题(每题3分,共计15分)1.设,A B 为两个事件,()()0P A P B ≠>,且B A ⊂,则一定成立 (A )(|)1P B A =; (B )(|)1P A B =;(C )(|)1P B A =; (D )(|)0P A B =. 【 】 2.设,,A B C 三个事件两两独立,则,,A B C 相互独立的充分必要条件是 (A )A 与B C 独立; (B )A B 与A C 独立;(C )A B 与A C 独立; (D )A B 与A C 独立. 【 】 3.设随机变量X 的密度函数为||1()2x f x e-=,则对随机变量||X 与X ,下列结论成立的是(A )相互独立; (B )分布相同; (C )不相关; (D )同期望. 【 】4.设随机变量X 服从参数为31的指数分布,Y ~)6,0(U ,且31=XY ρ,根据切比晓夫不等式有:)44(≤-≤-Y X P ≥(A )81. (B )85. (C )41. (D )92. 【 】5.设12,,,n X X X 是总体X ~),(2σμN 的样本,2,,EX DX X μσ==是样本均值,2S 是样本方差,2*S为样本的二阶中心矩,则(A )),(~2σμN X . (B ))1(~)1222*--n Sn χσ(.(C )∑=-n i i X X 122)(1σ是2σ的无偏估计. (D )相互独立与22S X . 【 】三、(10分)今从装有白球3个,黑球3个的甲箱子中任取2个,然后将2个球放入含有2个白球3个黑球的乙箱中,再从乙箱中任取1个球,求(1)从乙箱中取到1个白球的概率;(2)已知从乙箱中取到一个白球的条件下,从甲箱中取出两个白球的概率。

08-09I概率论与数理统计试卷(A)参考答案

08-09I概率论与数理统计试卷(A)参考答案

| | | | | | | |装| | | | |订| | | | | |线| | | | | | | | ||防灾科技学院2008~2009学年 第一学期期末考试概率论与数理统计试卷(A )使用班级07601/ 07602/07103 答题时间120分钟一填空题(每题2分,共20分)1、已知事件A ,B 有概率4.0)(=A P ,条件概率3.0)|(=A B P ,则=⋂)(B A P 0.28 ;2、设),(~1p n b X ,),(~2p n b Y 则~Y X +),(21p n n b +;3、若)2(~πX ,则=)(2X E 6 ;4、随机变量X 的分布函数是⎪⎪⎩⎪⎪⎨⎧≤<≤<≤--<=x x x x x F 3,131,8.011,6.01,0)(,则=≤<-)31(X P0.4 ;5、连续型随机变量的概率密度函数为)0(0,)(>⎩⎨⎧≤>=-λλλx x ex f x,则分布函数为⎩⎨⎧≤>-=-000,1)(x x e x F x λ;6、若)1,0(~),1,0(~N Y N X 且X 与Y 相互独立,则~2/)(22Y X X +)2(t ;7、若随机变量X ,1)(,2)(==X D X E ,则利用切比雪夫不等式估计概率()≥<-32X P 98;8、若总体),(~2σμN X ,则样本方差的期望=)(2S E 2σ;9、设随机变量)2,1(~-U X ,令⎩⎨⎧<≥=.0,0,0,1X X Y ,则Y10、已知灯泡寿命)100,(~2μN X ,今抽取25只灯泡进行寿命测试,得样本1200=x 小时,则μ的置信度为95%的置信区间是 (1160.8,1239.2) (96.1025.0=z )。

二、单项选择题(本大题共5小题,每题2分,共10分)1、若6.0)(,4.0)(,5.0)(===B A P B P A P ,则=)(A B P ( C )(A) 0.2 ; (B) 0.45; (C) 0.6; (D) 0.75;2、设离散型随机变量X 的分布律为k k X P αβ==}{, ,2,1=k 且0>α,则参数=β( C )(A )11-=αβ ;(B )1+=αβ;(C )11+=αβ;(D )不能确定; 3、设随机变量X 和Y 不相关,则下列结论中正确的是( B )(A )X 与Y 独立; (B ))(4)()2(Y D X D Y X D +=-;(C ))(2)()2(Y D X D Y X D +=-; (D ))(4)()2(X D Y D Y X D -=-;4、若)1,0(~N X ,则)2|(|>X P =( A )(A ))]2(1[2Φ-;(B )1)2(2-Φ;(C ))2(2Φ-;(D ))2(21Φ-; 5、下列不是评价估计量三个常用标准的是( D ))(A 无偏性; )(B 有效性; )(C 相合性; )(D 正态性。

2)《概率统计》试题A卷答案

2)《概率统计》试题A卷答案

广州大学2008-2009学年第二学期考试卷概率论与数理统计(A 卷)参考解答与评分标准一、选择题(在各小题四个备选答案中选出一个正确答案,填在题末的括号中,本大题共5个小题,每小题3分,总计15分)1.对于任意两个事件A 与B,若A ⊆B,则P(A −B)= ( B )。

A. P(A)−P(B) B. 0 C. 1 D. P(A)2.设B A ,是两个概率不为0且互不相容的事件,则下列成立的是( D )。

A. A 与B 互不相容 B. A 与B 独立C.)(B A P = )()(B P A PD. )(B A P = )(A P3.设)(x f 为某连续型随机变量的概率密度函数, 则必有( B )。

A .1)(0≤≤x f B. 1)(=⎰+∞∞-dx x fC. 在定义域内单调不减D.1)(lim =+∞→x f x4.设一个连续型随机变量的分布函数为⎪⎩⎪⎨⎧≥<≤+<=a x a x k x x x F 1000)(则( C )。

A. 21,0==a kB. 21,21==a kC. 1,0==a kD. 1,21==a k学院专业班 级 姓 名学号5.设二维随机变量()的联合分布概率为若X 与Y 独立,则}3{=+Y X P =( A )。

A. 1/3 B. 5/6 C. 1/6 D. 2/3二、填空题(本大题共5小题,每小题3分,总计15分)(1) 三阶方阵⎪⎪⎪⎭⎫ ⎝⎛=c b a A 000000中的c b a ,,取3,2,1,0的概率都相同,则该阵为可逆阵的概率为_27/64____。

(2) 某人射击某一个目标的命中率为0.6,现不停的射击,直到命中为止,则第3次才命中目标的概率为_0.096__。

(3)设)6,1(~U X ,则方程012=++Xx x 有实数根的概率为__5/6 。

(4)设X 和Y 是相互独立的两个随机变量,且)3,2(~-U X ,)4,1(~N Y ,则=+)(Y X E __1.5__。

概率论与数理统计(A)卷参考答案

概率论与数理统计(A)卷参考答案

商学院课程考核试卷参考答案与评分标准 (A )卷课程名称: 概率论与数理统计 学 分: 4 考核班级: 本部二年级各本科专业 考核学期:一. 填空题(每小题3分,共30分)1.0.7;2.0.38;3.0,1,2,3;4.0.6915;5.2;6.0;7.⎩⎨⎧>>--=--其他00,0)1)(1(),(y x e e y x F y x ;8.23π; 9. 11)(-=∏θθni i nx ; 10.0.4。

二. 选择题(每小题3分,共15分)1.B ;2.D ;3.C ;4.A ;5.C 。

三. 计算题(第1题10分,其余5小题每题9分,共55分)1. 设321,,A A A 分别表示取到第一、二、三个箱子,B 表示取到白球, 则321,,A A A 是一个完备事件组,且:31)()()(321===A P A P A P , 52)|(53)|(51)|(321===A B P A B P A B P ,, 2分(1)由全概率公式:)|()()|()()|()(P(B)332211A B P A P A B P A P A B P A P ++=52523153315131=⨯+⨯+⨯= 6分(2)由贝叶斯公式:31)()|()()|(333==B P A B P A P B A P 10分2.(1)122)(222====⎰⎰∞+∞-λλλxxdx dx x f X ,21=λ; 3分 (2)21400()()02;12xX x F x f t dt xx x -∞<⎧⎪==≤<⎨⎪≥⎩⎰6分 (3) {}1313(3)(1)144P X F F <<=-=-=。

9分3. (1)该设备的平均寿命是41=λ年(设备寿命服从41=λ的指数分布) 2分(2)设Y 是工厂出售一台设备的赢利,则⎩⎨⎧≤->=12001100X X Y 4分)1(200)1(100)(≤->=X P X P Y E ⎰⎰-∞+--=104144120041100dx e dx e xx 8分64.3330020041=-=-e万元 9分4. (1)14),(==⎰⎰+∞∞-+∞∞-cdxdy y x f ,所以,4=c 3分 (2)324)(1012==⎰⎰ydy dx x X E ;324)(10210==⎰⎰dy y xdx Y E944)(10212==⎰⎰dy y dx x XY E 6分 (3)0)()()(),(=-=Y E X E XY E Y X Cov 9分5. 解:令第i 次轰炸命中目标的炸弹数为X i ,100次轰炸中命中目标炸弹数X =∑=1001i iX,应用定理5.5,X 渐近服从正态分布,期望值为200,方差为169,标准差为13. 2分所以P {180≤X ≤220}=P {|X -200|≤20} 4分=⎭⎬⎫⎩⎨⎧≤-132013200X P ≈2Φ(1.54)-1=0.8764. 9分 6.222)1(σχS n -=~2χ(n-1),对05.0=α, 2分查表知:535.17)8(,18.2)8(2025.02975.0==χχ 4分使得2σ置信度为0.95的置信区间为:22220.0250.975(1)(1),(8)(8)n S n S χχ⎛⎫-- ⎪⎝⎭ 计算可得:)8(82025.02χS =12.77,)8(82975.02χS =102.75;(12.77, 102.75)即为总体方差2σ置信度为0.95的置信区间. 9分。

08级概率统计试卷(文天学院)

08级概率统计试卷(文天学院)

河海大学文天学院2009-2010学年第一学期《概率论与数理统计》试卷一、(每空2分,共18分)1、已知3/1)(,2/1)(,4/1)(===B A P A B P A P ,则=)(B A P ;2、设随机变量)1.0,20(~B X ,则{}==EX X P ;3、设随机变量X 、Y 相互独立,D(X)=1,D(Y)=4,则D(2X-Y+2)= ;4、设随机变量),10(~2σN X ,且{},3.02010=<<X P 则{}=<<200X P ;5、设二维随机变量(X ,Y )的联合分布律为:则P{XY=0}= ;6、设随机变量X 与Y 独立同分布,即U=X-Y , V=X+Y ,则随机变量U 和V 的相关系数是 ;7、),(~),,(~222211σμσμN Y N X ,21,,;,,11n n Y Y X X 分别为两总体相互独立的样本,则Y X -的分布是 ;8、设总体),(~2σμN X ,μ和2σ均未知,n X X X ,,,21 为来自该总体的一个简单随机样本,则2σ的置信度为α-1的置信区间为 ; 二、(12分)某仓储基地运送牛奶到一家超市,车上共混装有三个品牌的50箱牛奶,其中25箱为卫岗牛奶、10箱为光明牛奶、15箱为蒙牛牛奶。

到目的地时发现丢失了1箱,但不知丢失的是哪个品牌的牛奶,现从剩下的49箱中任意打开2箱检查。

(1)求任意打开的2箱都是卫岗牛奶的概率。

(2)在任意打开的2箱都是卫岗牛奶的情况下,求丢失的一箱也是卫岗牛奶的概率。

三、(8分)设X 服从分布)9,2(N ,求42-=X Y 的概率密度函数)(y f Y 。

四、(14分)已知随机变量X 的概率密度函数为⎪⎩⎪⎨⎧<≤-<≤=其他,021,210,)(x x x Ax x f求(1)常数A ;(2)X 的分布函数F(x);(3));23(2+-X X E (4){}4.24.0≤<X P .五、(18分)设二维连续型随机变量(X ,Y)的密度函数为⎩⎨⎧≤≤≤≤=其它,010,0,2),(y y x y x f 求:(1)关于X 和Y 的边缘密度函数)(),(y f x f Y X ;(2)Y 的期望和方差E(Y),D(Y);(3)X 与Y 的协方差Cov(X,Y); (4) Z=max(X,Y)的密度函数。

西安工业大学2008级概率论与数理统计考试试答案

西安工业大学2008级概率论与数理统计考试试答案

绝密★启用前2008级概率论与数理统计考试试题(A 卷)标准答案和评分标准_____________________________________________________________________二、填 空 题(20分)1、0.2;2、21, 99 ;3、1, 24; 4、 (12.706,13.294) ; 5、14三、解:设A 表示“选出第一班”,则A 表示“选出第二班”B 表示“选出女生”………………………………………….……………2分依题意有:30/18)/(,50/10)/(,2/1)()(====A B P A B P A P A P ………….4分 由全概率公式有 5/2)/()()/()()(=+=A B P A P A B P A P B P ……………….8分四、解:解:由X 和Y 独立,得⎩⎨⎧>≤≤==-其它,10)()(),(y x e y f x f y x f yY X --------------------------------2分 ⎰⎰≤+=≤+=≤=zy x Z dxdy y x f z Y X P z Z P z F ),()()()(⎪⎪⎩⎪⎪⎨⎧≥+-=<≤+-=<=-------⎰⎰⎰⎰1110100110000z e e dxdy e z e z dxdy e z zz x z yzz x z y --------------------------------6分⎪⎩⎪⎨⎧≥-<≤-<==---11010)()(1z e e z ez z F z f z z zZ Z -------------------------------8分解法二:由卷积公式得⎰+∞∞--=dx x z x f z f Z ),()( ,又因为X 与Y 相互独立,所以⎰+∞∞--=dx x z f x f z f Y X Z )()()(-----------------------------------------3分当0≤z 时,;0)()()(=-=⎰+∞∞-dx x z f x f z f Y X Z --------------------―――-――---5分当10<<z 时,;1)()()(0)(z zx z Y X Z e dx e dx x z f x f z f ---+∞∞--==-=⎰⎰-------------------7分 当1≥z 时,);1()()()(1)(-==-=---+∞∞-⎰⎰e e dx e dx x zf x f z f z x z Y X Z 所以;1)1(10100)()()(⎪⎩⎪⎨⎧≥-<<-≤=-=--∞+∞-⎰z e e z e z dx x z f x f z f z z Y X Z -------------------------8分五、解:(1)由,1),(=⎰⎰+∞∞-+∞∞-dxdy y x f …………………………………………1分得⎰⎰--=422)6(1dx y x k dy ……………………………………………………2分dy x x y k⎰--=42202])6[(⎰--=42)2212(dy y k 24)10(2y y k -= k 8=,所以8/1=k ………………………………………..……….4分(2)⎰⎰--=<<1032)6(81}3,1{dx y x dy Y X p ……………………………6分 dy x x y 01]2)6[(81322⎰--=83)211(8132=-=⎰dy y ………………..……8分(3) ⎰⎰=∈=≤Gdxdy y x f G Y X P X p ),(}),{(}4Y {+dx y x dy y)6(814240--=⎰⎰-……………………………………………………….10分 dy x x y 0y -4]2)6[(8122⎰--=4dy y y y ⎰----=422])4(21)4)(6[(81dy y y ⎰-+-=422])4(21)4(2[81 3224])4(61)4([8132=----=y y …………………………….……………….12分六、解:⑴222017()(,)(),86E X dy xf x y dx dy x yx dx +∞+∞-∞-∞==+=⎰⎰⎰⎰………2分 由对称性得7()(), 6E Y E X ==…………………………3分⑵2222014()(,)(),83E XY dx xyf x y dy dx x y y x dy +∞+∞-∞-∞==+=⎰⎰⎰⎰………4分 1(,)()()().36Cov X Y E XY E X E Y -=-=………………………………6分 ⑶ 2222320015()(,)(),83E X dy x f x y dx dy x yx dx +∞+∞-∞-∞==+=⎰⎰⎰⎰2225711()()[()]()3636,D XE X E X =-=-=……………………8分由对称性得11 D(Y)=()36D X =(,111XY Cov X ρ-==…………………………10分(4) 解法一:()(,)D X Y Cov X Y X Y +=++5()()2(,).9D X D Y Cov X Y =++=…………12分解法二:2222222200002()()[()]11()() [()()]881875().339D X YE X Y E X Y x y x y dxdy x y x y dxdy +=+-+=++-++=-=⎰⎰⎰⎰七、解:()()01;x E X xf x dx x e dx λλλ+∞+∞--∞==⋅=⎰⎰…………………………2分按矩估计法取()1,E X A X ==得1ˆXλ=…………………………………4分 设1,,n x x 为总体X 的一个样本值,则似然函数为1nii x nn nx L e e λλλλ=--∑==……………………………………………………6分 取对数 ln ln L n nx λλ=-由对数似然方程()ln 0d L nnx d λλ=-= 解得1xλ=, 故得极大似然估计为1ˆX λ= …………………………8分八、解:(1) 依题意,检验假设500:00==μμH ,(50:01=≠μμH )…2分(2) 由于标准差σ未知,在0H 成立时,T 检验法.选择统计量:nS X T 0μ-=~()1-n t …………………………………4分 (3) 对于给定的显著性水平05.0=α,当10=n 时,查t 分布表得临界点 :()2622.2)9(1025.02==-t n t α……………………………….5分(4) 由10=n ,,502x =, 6.5s =,计算统计值:9730.0105.65005020=-=-=n s x t μ………………………6分 (5) 由于<=9730.0t ()2622.2)9(1025.02==-t n t α,t 落在拒绝域)}1(/{2-≥-==n t ns x t W αμ之外,故接受500:00==μμH ,即认为这批罐头的平均重量合乎标准………8分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2009——2010学年度第二学期期末考试试卷(A 卷)
一、单项选择题 (每小题3分, 共30分)
1、(D )
2、(B )
3、(B )
4、(A )
5、(D )
6、(C )
7、(D )
8、(B )
9、(B ) 10、(D )
二、填空题(每小题2分,共10分)
1、0.8或4
2、112
3、0.5或12
4、0
5、0
三、证明题(共20分)
1.证法一:因为(|)(|),(|)(|)P A C P B C P A C P B C ≥≥--------------1分 所以 ()()()(),()()()()
P AC P BC P AC P BC P C P C P C P C ≥≥--------------------3分 ()(),()()P AC P BC P AC P BC ⇒≥≥------------------4分
故 ()()()(P A P A C P B P B C -≥----------------------6分
()()()()()0P A P B P AC P BC ⇒≥--≥----------8分
所以 ()()P A P B ≥-----------------------------------10分
证法二:因为(|)(|),(|)(|)P A C P B C P A C P B C ≥≥--------------1分 所以 ()()()(),()()()()
P AC P BC P AC P BC P C P C P C P C ≥≥--------------------3分 ()(),()()P AC P BC P AC P BC ⇒≥≥------------------4分
故 ()()()()P A C P A C P B C P B C
+≥+---------------------7分 即 ()()P A P B ≥-----------------------------------10分
2. 证明:因为随机变量序列{}k X 独立,且1(,(1,2,)2
k P X k === ---------1分
所以 11()0(1,2,)22
k E X k === --------------------------------3分
211()ln ln ln (1,2,)22
k E X k k k k =⋅+⋅== --------------------------------5分 22()()()ln (1,2,)k k k D X E X E X k k =-== ----------------------------7分
故 222111
111ln ()()ln 0()n n n k k k k k n D X D X k n n n n n =====<→→∞∑∑∑------------9分 依据马尔可夫大数定律知:随机变量序列{}k X 服从大数定律---------10分
四、计算题(计4小题,共40分)
1. 解:设A =“最小的5”
------------2分 则 1235310
()C C P A C =--------------7分 14
=-------------10分 2.解:设 (1,2,3)i A i i ==“第条生产线生产的产品”
B =“产品为不合格品”---------------------------------1分
依题意可得 123()0.35,()0.3,()0.35P A P A P A ===----------------3分
123(|)0.09,(|)0.03,(|)0.02P B A P B A P B A ===-------4分
所以 3
1()()(|)i i i P B P A P B A ==∑-------------------------------6分
0.350.090.30.030.350.02=⨯+⨯+⨯---------8

0.03150.0090.007=++ 0.0475=---------------------------------10分
3.解法一:令Z X Y V Y =-⎧⎨=⎩,则有z x y v y =-⎧⎨=⎩x z v y v
=+⎧⇒⎨=⎩------------2分 所以有 010110z v v z z z v <+<⎧⇒<<-<⎨<<+⎩
------------------3分 故11(,)101
(,)D x y J D z v ===--------------------------------------5分 所以 ()(,)(,),(,)p z v p x z v y z v =---------------------------6分
3()(011)z v v z =+<<-<----------------7分
故 ()(,)Z p z p z v dv +∞
-∞
=⎰ ------------------------------8分 10
3()z z v dv -=+⎰----------------------------9分 2103(3)|2z zv v -=+ 233(1)(1)2z z z =-+-22333(12)2
z z z z =-+-+ 223333322z z z z =-+-+233(01)22
z z =-<<---------10分 解法二:(1)当0z ≤时,
()()()Z F z P Z z P X Y z =≤=-≤(,)0x y z p x y dxdy -≤=
=⎰⎰-----1分 (2)当1z ≥时
()()()Z F z P Z z P X Y z =≤=-≤(,)1x y z p x y dxdy -≤=
=⎰⎰------2分
(3)当01z <<时
()()()Z F z P Z z P X Y z =≤=-≤ (,)x y z p x y dxdy -≤=⎰⎰-------4分
10
033z
x x z x z xdxdy xdxdy -=+⎰⎰⎰⎰-------6分 12033z z x dx xzdx =+⎰⎰132032z z
z x x =+3333()22z z z =+-33122z z =--------8分 综上所述:30,0;31(),01;2
21
, 1.Z z F z z z z z ≤⎧⎪⎪=-<<⎨⎪≥⎪⎩-----------------------9分 所以 233()()(01)22
Z Z p z F z z z '==-<<-----------10分 4.解:因为随机变量X 与Y 独立同分布,且()X Exp λ ------------1分
所以 21()()D X D Y λ
==------------------------------------------------------2分 故 12(,)(43,3)Cov Z Z Cov X Y X Y =-+-----------------------------------------------3分
12(,)4(,)9(,)3(,)Cov X X Cov X Y Cov X Y Cov Y Y =+-- 12()3()D X D Y =---------5分
2212
3λλ=-29λ=---------------------------------------------------------6分
1225()(43)16()9()D Z D X Y D X D Y λ=-=+=------------------------------------7分
2210
()(3)9()()D Z D X Y D X D Y λ=+=+=-----------------------------8分
ρ=
---------------------------------------9分
50==------------------------------10分。

相关文档
最新文档