毕业设计(论文)-往复活塞式压缩机设计

合集下载

往复式压缩机毕业设计

往复式压缩机毕业设计

往复式压缩机毕业设计往复式压缩机毕业设计在现代工业领域中,往复式压缩机是一种非常重要的设备。

它的作用是将气体或气体混合物压缩,并将其转化为高压气体。

往复式压缩机的设计和优化对于提高工业生产效率和能源利用率至关重要。

因此,作为一名毕业生,我决定将往复式压缩机作为我的毕业设计课题,探索其设计原理和优化方法。

首先,我将研究往复式压缩机的基本原理。

往复式压缩机通过活塞在气缸内的往复运动来实现气体的压缩。

当活塞下行时,气缸内的气体被压缩,然后通过出气阀排出。

当活塞上行时,气缸内的气体被吸入,然后通过进气阀进入气缸。

这个往复运动的过程不仅需要考虑活塞和气缸的几何形状,还需要考虑活塞的运动速度和气缸的密封性能。

接下来,我将研究往复式压缩机的设计优化方法。

首先,我将考虑如何选择最合适的活塞和气缸几何形状。

活塞和气缸的几何形状对于气体的压缩效率和能源消耗有着重要影响。

通过使用计算机辅助设计软件,我可以模拟不同几何形状下的气体压缩过程,并找到最佳设计方案。

其次,我将研究如何提高活塞的运动速度。

活塞的运动速度越快,气体的压缩效率越高。

通过改变传动系统和减小活塞的质量,我可以提高活塞的运动速度。

最后,我将研究如何改善气缸的密封性能。

气缸的密封性能对于气体压缩过程的效率和能源消耗有着重要影响。

通过改进密封材料和设计密封结构,我可以提高气缸的密封性能。

在进行设计优化之前,我将进行一系列的实验和测试。

首先,我将制造一台小型的往复式压缩机样机,并进行基本性能测试。

通过测量气缸内的气体压力、温度和流量,我可以评估样机的性能。

其次,我将进行不同参数下的压缩效率测试。

通过改变活塞和气缸的几何形状、活塞的运动速度和气缸的密封性能,我可以评估不同设计方案的压缩效率。

最后,我将进行能源消耗测试。

通过测量样机在不同工况下的能源消耗,我可以评估不同设计方案的能源利用率。

在设计优化过程中,我还将考虑往复式压缩机的可持续性和环保性。

往复式压缩机在工业生产中广泛应用,因此对其能源消耗和环境影响的关注非常重要。

往复式压缩机毕业论文

往复式压缩机毕业论文

往复式压缩机毕业论⽂往复式压缩机毕业论⽂往复式压缩机毕业论⽂空⽓压缩机设计摘要往复式压缩机是⼯业上使⽤量⼤、⾯⼴的⼀种通⽤机械。

⽴式压缩机是往复活塞式压缩机的⼀种,属于容积式压缩机,是利⽤活塞在⽓缸中运动对⽓体进⾏挤压,使⽓体压⼒提⾼。

热⼒计算、动⼒计算是压缩机设计计算中基本,⼜是最重要的⼀项⼯作,根据任务书提供的介质、⽓量、压⼒等参数要求,经过计算得到压缩机的相关参数,如级数、列数、⽓缸尺⼨、轴功率等,经过动⼒计算得到活塞式压缩机的受⼒情况。

活塞式压缩机热⼒计算、动⼒计算的结果将为各部件图形以及基础设计提供原始数据,其计算结果的精确程度体现了压缩机的设计⽔平。

关键词:活塞式压缩机; 热⼒计算; 动⼒计算;⽓缸;曲轴AbstractReciprocating compressor is a common type machine, used in the industry .V- type of piston compressors is a kind of reciprocating compressor, belong to the compressor , utilize the pistons in the cylinder moving to squeeze on the gas,squeezed the gas pressure.Thermal calculation and dynamical computation is basic of compressor design’ calculation, is also an important woke, according to medium, displacement, pressure of task-book, by calculating getting related parameters of compressors, such as levels, columns, size of cylinder, shaft power, by dynamical computation getting stressed status of a piston type compression, due to reduce the vibration is very important. heat calculation and dynamical computation of the piston type compressor, which is providing design data. The calculations reflect exactly the design level of the compressor. Keywords: piston compressor; thermal calculation; dynamical computation; cylinder; cranksh⽬录摘要 (I)Abstract......................................................................................................................................... II 第⼀章引⾔ . (1)1.1压缩机设计的意义 (1)1.2活塞压缩机的⼯作原理 (1)1.3活塞压缩机的分类 (2)1.4压缩机的发展前景 (2)1.5压缩机设计说明 (3)第⼆章总体设计 (5)2.1设计依据及参数 (5)2.2总体设计原则 (5)2.3结构⽅案的选择 (5)2.3.1⽓缸排列型式的选择 (6)2.3.2运动机构的结构及选择 (7)2.3.3级数选择和各级压⼒⽐的分配 (7)2.3.4转速和⾏程的确定 (9)第三章热⼒计算 (11)3.1确定各级的容积效率 (11)3.1.1确定各级的容积系数 (11)3.1.2选取压⼒系数 (12)3.1.4 泄漏系数 (13)3.2确定析⽔系数 (13)3.3 各级⾏程容积的确定 (14)3.4汽缸直径的确定 (14)3.5实际⾏程容积 (15)3.6各级名义压⼒⽐ (15)3.7 排⽓温度 (16)3.8活塞⼒的计算 (16)3.9计算轴功率 (16)3.10 驱动机的选择 (17)第四章动⼒计算 (18)4.1压缩机中的作⽤⼒ (18)4.1.1曲柄连杆机构的运动关系和惯性⼒ (18)4.1.2往复惯性⼒往复摩擦⼒旋转摩擦⼒的计算 (19) 4.1.3各级⽓体⼒的计算 (20)4.1.4总活塞⼒及切向⼒ (28)第五章⽓缸部分的设计 (33)5.1⽓缸 (33)5.1.1结构形式的确定 (33)5.1.2⽓缸主要尺⼨的计算 (33)5.2活塞 (34)5.2.1活塞环 (34)5.2.2 活塞基本尺⼨ (35)第六章基本部件的设计 (37)6.1曲轴 (37)6.1.1 曲轴结构的选择 (37)6.1.2曲轴结构设计 (37)6.1.3曲轴结构尺⼨的确定 (37)6.1.4曲轴材料 (39)6.1.5曲轴强度校核 (39)6.2连杆 (39)6.2.1连杆结构设计 (39)6.2.2 连杆尺⼨计算 (40)第七章轴承 (45)7.1 滚动轴承及其结构确定 (45)第⼋章联轴器 (46)第九章填料和刮油器 (47)9.1 填料的基本要求 (47)9.2 填料的结构 (47)9.3 材料选择 (47)第⼗章⽓路系统 (48)10.1 空⽓滤清器 (48)10.2 液⽓分离器、缓冲器和储⽓罐 (48)第⼗⼀章润滑系统 (49)第⼗⼆章冷却系统 (50)12.1概述 (50)12.2冷却介质的选择 (50)第⼗三章结语 (52)参考⽂献 (54)致谢 (57)第⼀章引⾔压缩机是⽤来提⾼⽓体压⼒和输送⽓体的机械,属于将原动机的动⼒能转变为⽓体压⼒能的⼯作机。

往复式压缩机种类及计算设计1

往复式压缩机种类及计算设计1

*判断进、排气阀 a.现场 颜色(排 气阀处漆灰白) b.看升程限制器 吸入阀位于 近汽缸侧,排 气阀位于远离 汽缸侧。 * 气阀气密性检 查(煤油试漏 法)
气阀型式 :环状阀、网状阀、碟阀、孔阀、直流阀。 3. 主要部件 气阀要求:
•阻力损失小; •关闭及时(弹簧力大小);
•寿命长、工作可靠,阀片及弹簧;
轴向开口被三瓣环挡住,径向 开口被三块小盖挡住。气体不 会漏出反而将六瓣环压紧抱在 活塞杆上。缸内压力越高抱得 越紧(六瓣环)起自紧作用。
材料:耐磨铸铁、青铜;填充聚四氟乙烯。 使用压力:P<100×105Pa
重点
(1)往复活塞式压缩机的工作原理 ,优、缺点。 (2)往复压缩机有哪些零部件组成?传动机构、工作 腔机构、辅助系统。 (3)什么是双作用活塞,活塞有哪些种类。 (4)气阀有哪些零件组成。自动阀,环状阀。 (5)水冷气缸和风冷气缸的适用场合。 (6)十字头的作用。曲柄轴和曲拐轴的区别。 (7)连杆大、小头都与哪个零件相连。填料的作用。 (8)什么是无油润滑压缩机。 (9)基本概念
往复活塞式压缩机的特点—用途广泛
往复活塞式压缩机的特点—用途广泛
优点:
(5)可维修性强; (6)技术上较为成熟; (7)装置系统比较简单。
往复活塞式压缩机的特点
缺点:
1. 重量、尺寸大、结构复杂、可损 件多、安装基础施工工作量大。 2. 气流有脉动。 3. 运转中有振动,转速较低,排气 量受到限制。
气阀在汽缸上的位置
•径向:余隙大; •轴向:余隙小; •斜向:余隙中。
具体内容后面分析:容积系数 、排气量。
3. 主要部件
⑸ 气阀 活塞式压缩机的重要部件,也
是最易损坏的部件。限制往复压缩

活塞式压缩机设计说明样本

活塞式压缩机设计说明样本

活塞式压缩机的设计说明姓名:班级:学号指导老师:1.题目:复算19WY-9/150型氢氮气压缩机在当前操作条件下的各级压力、排气温度、排气量、功率,作出计算示功图、切向力图.活塞力图、标明最大活塞力与切向力,核算配用电机功率是否适当? 2.19WY-9/150型氢氮气压缩机简介19WY-9/150型氢氮气压缩机杲我省投产3000吨小型化肥厂的氮氢气压缩机,二列之间为飞轮,由电机经过三角皮带拖动。

压缩机为卧式、两列、门型.四线压缩。

原料(半水煤气)经脱硫后进入I级,经I级压缩后送去变换、水洗.碳化,碳化后为碳化气。

碳化气返回II级、III、IV级压缩后去洗铜、合成。

o19WY—9/150爪缩机示总:图3.当前操作条件与有关数据(1)操作条件:吸气压力:0.15MP Q(绝)排气压力:16.0MPa(绝)I级出□与II级进□压力差为P=0.09MPa吸气温度:I级进□相对湿度=1(2)气体组成(3)有关数据:活塞行程:S=310mm,活塞杆直径d=60mm转速:n=209rpm,连杆长度l=700mm;I> IV列超前II. Ill列90度往复运动件重量:I-IV列210.9kg; II-III列193.7kg飞轮矩GD2为471.0kgm2,配用电机额定功率:155kw o设计计算一・计算各级的行程容积。

I 级:V S1 = - (D? - D4 + D7 - d 2)S = - x (0. 342 x 2 - 0. 0652 - 0. 062) x 0. 31 4 4 =0. 05439m 3II 级:=0.01704m 3 III 级:Vs 厂沦一 Qs 詣 x (0.歸一 0. 062)X0.3】 =0.00356m 3 IV 级:JT Q JT Q =4D "S= 4 X O-065^ xo.31 =O. 00103m 3二计算各级名义压力和名义压力比 已知P sl = 0. 15MPa P d 4 = 16MPap sl v sl _ P s2V s2 T slTS 2“ P S I V S 1T S 2 0. 15 X 0. 05439 X 308 八P 2 = si 吴冬= ------------------------------------- =0. 4867MPa - T S I V S 2 0.01704 x 303 P dl = P s2 + 0. 09 = 0. 5767MPa0^12 g XPd2 = Ps3=P S 1V ;1T S 3■ T S 1V S 30. 15 X 0. 05438 x 3130. 00356 x 303=2. 3673MPa2 3D1Xo - 2 X温度的影响,可把k 看做杲常数。

计算机辅助W型往复式活塞压缩机设计

计算机辅助W型往复式活塞压缩机设计
二是保住和引进各类人才。
国企多年来培养了一批在行业有较高知名度的各类人才。而今,许多人相继辞别了曾经培养过自己的企业,在民企中发挥着关键的作用。如四川成都某压缩机有限公司,该公司的高级技术人员,百分之九十以上来自国家大型二类压缩机企业。他们带来了国企的技术,带来了已开发的市场,仅200多人的民营企业一年的产值已近亿元。他们以低价及良好的售后服务赢得了市场。沈阳申元、四川南方、温州固耐等一批民营企业压缩机制造商的加盟,无疑给压缩机行业增加了活力,但同时又给国企带来了新的竞争。
由于上述特点,活塞式压缩机主要适用于中、小排量,压力较高场合。
发展趋势:
为发扬优点,克服缺点,在结构参数上趋向高转速、短行程,使结构紧凑。同时延长气阀、密封元件等易损件的寿命,以提高运转率。随着优化设计理论和计算机技术的发展,为合理选取设计参数,提高效益开创了新的前景。
2.2.2透平式压缩机的特点:
(二)按压缩机气缸段数(级数)可分为:
(1)单段压缩机(单级):气体在气缸内进行一次压缩。
(2)双段压缩机(两级):气体在气缸内进行两次压缩。
(3)多段压缩机(多级):气体在气缸内进行多次压缩。
(三)按气缸的排列方法可分为:
(1)串联式压缩机:几个气缸依次排列于同一根轴上的多段压缩机,又称单列压缩机。
2.3
压缩机装置的选型十分重要,因为压缩机是许多工艺流程的主要设备,它可以为工艺流程输送气体,为净化处理或合成加工提供动力和压力.压缩机的好坏将直接影响生产过程。
2.3.1
1.按照压缩机热力参数的选型
即根据工艺流程的参数对压缩机进行初步计算,然后把计算的结果和压缩机产品样本所提供的热力参数进行比较,以判断压缩机对工艺流程的适应性。
1.2.2
从20世纪70年代开始,我国离心压缩机有了很大发展。在上海吴泾化工总厂国产30万吨/年合成氨装置建设中,上海鼓风机厂、上海压缩机厂、上海冷冻机厂、杭州汽轮机厂分别研制成功工艺空气压缩机、合成气压缩机、氨冷冻压缩机及其配套驱动汽轮机。在此期间,我国最大的离心压缩机专业制造厂--沈阳鼓风机厂,工业汽轮机专业制造厂--杭州汽轮机厂,分别从新比隆和西门子公司引进了先进的技术软件和成套设备,使我国离心压缩机组设计制造整体水平上了一个台阶。同时,国内的研究机构也加快了研究进度,西安交大等院校和中科院系统很快在三元流理论和气体试验方面取得突破,三元流动叶轮设计计算方法和分析程序及真实气体的模拟计算方法等达到国际先进或领先水平。

往复式压缩机种类及计算设计2.

往复式压缩机种类及计算设计2.
• • •
影响因素:α、ε、m’ ;
气缸余隙容积的存在使得λv<1。
⑴ 相对余隙容积α
活塞止点间隙 活塞环间隙 气体通道: 阀窝容积、气阀内部容积
1. 容积系数λv
1. 容积系数λv
1. 容积系数λv
二、活塞压缩机的吸气量
⑴ 相对余隙容积α
① 由止点间隙,活塞环前一环与汽缸间间隙,阀窝及 气阀通道组成,阀窝及气阀通道占1/2; ② 气阀结构:环状、网状小,直流阀大,组合阀最小 ;
二、活塞压缩机的吸气量
理论吸气量 Vh :一转吸气量,行程容积,工作容积。
实际:余隙,阻力损失及热交换,吸气量小于Vh 。 缸内:压力P温度T变化的,标准位置固定。
吸气量:折算到标准吸气装置状态(P、T温度)的气体体积。
名义吸气状态
二、活塞压缩机的吸气量
分析实际工作循环!
外止点:余隙容积Vc
二、活塞压缩机的吸气量
⑶ 膨胀过程指数m’:
初期 中期 末期
m' k m' k m' k
p RT
m
在工程中用等端点过程指数代替实际膨胀指数。
气放热 气吸热

m’ 越小,吸热越多,膨胀线平坦,
λv小。

m’越大,膨胀线陡, V 大
m ' 按表2-1选取
v 1 (
1 m'
压缩过程是一定量气体的热力过程,压缩线决定于过程指数m
2
pdV 大小与气体压缩过程有关,有等温、绝热、多变三个过程。
m 1: pv const =RT 等温过程 m pv const m k : pv k const 绝热过程 m : 多变过程指数 多变过程

活塞式压缩机设计

活塞式压缩机设计

活塞式压缩机设计活塞式压缩机是一种常见且广泛应用的压缩机类型。

它采用活塞和气缸的相对运动来实现气体的压缩工作。

活塞式压缩机主要由活塞、气缸、曲轴、连杆、缸盖和阀门等组成,结构简单可靠,运行稳定。

本文将着重介绍活塞式压缩机的设计原理和一些关键设计要点。

首先,活塞式压缩机设计的关键在于确定适当的排量和压缩比。

排量是指活塞在单位时间内处理的气体体积,通常以立方米/分钟或立方英尺/分钟表示。

压缩比是指进气过程和排气过程中的气体压力比值。

合理的排量和压缩比既要满足工艺流程要求,又要考虑设备的经济性和运行稳定性。

设计时,需要综合考虑气体流量、工作压力、温度等因素,选择合适的排量和压缩比。

其次,活塞和气缸的结构设计非常重要。

活塞的直径和行程决定了排量和压缩比,同时还要考虑活塞的重量和惯性对系统运行的影响。

气缸的直径要足够大,以容纳活塞和气体,并保证良好的密封性能。

气缸内壁通常采用特殊的润滑和防腐处理,以确保活塞在气缸内的平稳运动和寿命的提高。

曲轴和连杆的设计也十分重要。

曲轴是将活塞的往复运动转化为旋转运动的装置。

在设计曲轴时,需要合理布置连杆轴心和曲轴轴承,以减小惯性力矩和机械损失,提高能量转换效率。

连杆则起到连接活塞和曲轴的作用,其长度和强度要满足系统的要求,同时还要考虑重量和空间的限制。

另外,缸盖和阀门的设计也不容忽视。

缸盖是活塞式压缩机的重要组成部分,承受着气体的高压和高温。

因此,在缸盖的设计中,需要考虑材料的耐热性和强度,并采取适当的散热措施。

阀门则负责控制气体的进出,必须具有良好的密封性能和快速响应能力。

在设计阀门时,需要考虑气体的压力、温度和流量等因素,并选择适当的材料和结构形式。

综上所述,活塞式压缩机设计需要考虑多个方面的问题,包括排量、压缩比、活塞和气缸的结构、曲轴和连杆的设计,以及缸盖和阀门的特性等。

只有在综合考虑这些因素的基础上,才能设计出高效、可靠的活塞式压缩机。

随着科技的进步和应用领域的不断拓展,活塞式压缩机设计也将不断迭代和改进,以满足不同领域的需求。

往复活塞式压缩机设计(精选1篇)

往复活塞式压缩机设计(精选1篇)

往复活塞式压缩机设计(精选1篇)以下是网友分享的关于往复活塞式压缩机设计的资料1篇,希望对您有所帮助,就爱阅读感谢您的支持。

篇一:往复活塞式压缩机设计2V-0.4/10往复活塞式压缩机摘要往复活塞式压缩机是容积式压缩机的一种,是利用活塞在气缸中对流体进行挤压,使流体压力提高并排出的压缩机械。

热动力计算是压缩机设计计算中基本的,又是最重要的一项工作,本文根据提供的成分、气量、压力等参数要求,经过计算得到压缩机的相关参数,如级数、列数、气缸尺寸、轴功率等。

经过热动力计算得到活塞式压缩机的受力情况,准确地分析机组受力情况,对气缸部分的气缸、活塞、气阀和活塞环,以及基本部分的机身、中体、曲轴、连杆的设计和校核。

飞轮结构设计对于消除机组的振动非常重要,在变工况条件下,需要快速实现核算原设计的飞轮是否满足运行要求。

活塞式压缩机热力计算、动力计算的结果将为各部件图形以及基础设计提供原始数据,其计算结果的精确程度体现了压缩机的设计水平,也是压缩机研究方面的一个课题。

关键词:活塞式压缩机,热力计算, 动力计算,气缸,曲轴2V-0.4/10 RECIPROCATING PISTON COMPRESSOR ABSTRACTReciprocating piston compressor is a volume compressor, which is to increase pressure to discharge fluid by piston. Thermal and dynamic compressor design is the basic and most important one, according to users with the content, gas, pressure and other parameters, calculated after the compressor related parameters, such as class, number, size cylinder, shaft power, and so on. After driving force calculated piston compressor of the force. It is veryimportant to eliminate the vibration by accurate analysis of the force units. During alterative working conditions, it is need to meet the movement requirement for original design of flywheel rapidly. Thermodynamic and dynamic calculations of Piston compressor provide original data for unit graphics and basic design, the calculated results reflect the grade of the compressor design, and the compressor is a study of the topic.Keywords: piston-type compressors,Thermodynamic calculations, Dynamic calculation, Cylinder, Crankshaft recalculation目录前言 (1)第1章绪论 (2)1.1用途和适用范围 (2)1.2工作原理 ..............................................................................1.3活塞压缩机特点 (2)第2章总体设计 (3)2.1结构方案的选择 (3)2.2电机的选择 (3)第3章热力学计算 (7)3.1给定条件: (7)3.2结构形式及主要结构参数 (7)3.3热力计算 (7)第4章动力学计算 (12)第5章气缸部分设计 (14)5.1 气缸..................................................................................5.2活塞...................................................................................145.3气阀...................................................................................145.4活塞环...............................................................................14第6章基本部分的设计 (17)6.1机身、中体 .........................................................................176.2曲轴 ....................................................................................176.3连杆 ....................................................................................196.4轴承的选取: .....................................................................26第7章其他部分的设计 (27)7.1联轴器...............................................................................277.2飞轮...................................................................................结论..............................................................................................29谢辞................................................................................................30参考文献 (31)附录..............................................................................................33外文资料翻译 (36)前言现代工业中,压缩气体的机器用得越来越多,压缩机是输送气体介质并提高其压力能的机械装置。

往复式活塞压缩机轻量化设计

往复式活塞压缩机轻量化设计

往复式活塞压缩机轻量化设计一、前言压缩机噪声按其性质可分为机械性质噪声源和空气动力性噪声源两大类。

机械性噪声的控制应从控制振动、撞击及传递入手,这就需要降低激振力、降低受激系统的响应和减少受激辐射面积。

降低激振力的主要措施就是:1)减少运动部件的冲击;2)提高平衡精度(其中减少不平衡的惯性力和惯性力矩是减少往复压缩机整体振动特别重要的措施);3)降低往复质量,可大大降低不平衡的往复惯性力,从而降低激振力和振动。

二、不平衡惯性力和惯性力矩往复式空压机由于受力情况复杂,较一般回转式空压机的振动更大。

如何平衡机组内部的各种力,消除振源对空压机减振降噪具有关键的意义。

1、初始数据2、惯性力的计算(假设两列往复运动质量相等)1)旋转惯性力: JR= MR1Rω2+MRLRLω22)往复惯性力A、Ⅰ阶往复惯性力:B、Ⅱ阶往复惯性力:3)惯性力计算结果(表2)3、惯性力的平衡Ⅰ阶往复惯性力为椭圆路径。

Ⅱ阶往复惯性力为圆路径,其角速度为曲轴的一倍(详见图2)。

所以,在曲轴反向加平衡铁的方法不能完全将Ⅰ阶、Ⅱ阶往复惯性力平衡。

旋转惯性力主要由连杆、曲柄销、曲柄产生,连杆、曲柄销的旋转质量产生的旋转惯性力:Jr=MR1Rω2+MRLRLω2依据“兰切斯特法”平衡原理,平衡铁MP除了平衡旋转惯性力外,还须转换Ⅰ阶往复惯性力。

平衡铁产生的旋转惯性力:Jpr=MPRPω2平衡铁的重径积为[2]:MpRp=MsR+Jr/ω2两个Ⅰ阶平衡量MPⅠ用以平衡转换后的Ⅰ阶惯性力,每个Ⅰ阶平衡铁的重径积为: MpⅠRⅠ=0.25MsR两个Ⅱ阶平衡量MpⅡ用以平衡转换后的Ⅰ阶惯性力,每个Ⅱ阶平衡铁的重径积为:MpⅡRⅡ=0.433MsRλ通过优化各运动件的质量,可基本平衡惯性力,使得空压机振动降低约10%,噪声约可降低3~4dB(A)。

三、轻量化的设计1、活塞-连杆的轻量化经对往复式空压机的振源和声源的分析,及对测试数据的分析,发现机组二列活塞部位的数值较大。

毕业设计(论文)-活塞式压缩机设计[管理资料]

毕业设计(论文)-活塞式压缩机设计[管理资料]

1 引言活塞式压缩机设计是专业课程设计的主要方向之一。

活塞式压缩机的主要特点有:压力范围广,效率高,适应性强。

然主要缺点有:外形尺寸和重量较大,需要较大的基础,气流有脉动性和易损零件较多。

综合考虑我们的设计题目主要以排气量小于1m3/min 的微型或小型角度式空气压缩机为主。

用于提供压缩空气的角度式空气压缩机包括V型、W型、S型等结构型式,主要分为单级和两级压缩两大类;润滑方式分:有油润滑、无油润滑;冷却方式主要为风冷;气阀型式主要为舌簧阀。

单级和多级压缩各有优点,有油和无油各有特点,风冷是小型空气压缩机常见的冷却方式,与水冷相比也各有优点。

目前,小型空气压缩机气阀常用舌簧阀,主要是余隙小,气缸利用率高。

空气压缩机的设计原则:(1)满足用户提出的关于排气量、排气压力以及有关使用条件的要求;(2)有足够的使用寿命及使用可靠性;(3)运转的经济性;(4)动力平衡性良好;(5)维护及检修方便;(6)尽可能使用新结构、新技术及新材料;(7)制造工艺性良好;(8)机器轻巧。

以上原则往往彼此之间相矛盾,应根据压缩机的用途,在保证主要要求下,尽量满足其他要求[1]。

活塞式压缩机的发展趋势是:(1)高压、高速、大容量。

在某些化工部门,提高压力可以提高合成效率,因而压缩机的压力在逐渐提高。

高转数、短行程的结构应用降低了机器占地面积和金属消耗量。

(2)提高效率以及延长使用期限。

(3)按产品系列化、通用化、标准化进行生产,以便于产量、质量的提高,且适用于产品变型。

、MPa、MPa、MPa、,MPa、MPa两档为主。

2 总体结构方案设计总体方案设计是整个设计的关键,方案的选择一定要有充分的选择依据。

在理解的基础上,准确表达设计方案的目的。

明了该种结构方案的热力学目的和特点,动力学目的和特点,结构优化设计的目的以及其它需要完善和实现的目标。

2.1 设计参数压缩介质:空气空气相对湿度:以石家庄地区为准吸气压力:大气压排气压力:排气量:≥活塞行程:S=65mm一级进气温度:(10~45)℃2.2 设计要求选取适宜的级数、冷却方式等,确保排气量≥。

毕业设计(论文)-往复活塞式压缩机设计教材

毕业设计(论文)-往复活塞式压缩机设计教材

全套设计1 引言空气压缩机是指压缩介质为空气的压缩机,主要作用是为生活、生产提供源源不断地、具有一定压力的压缩空气。

作为一种工业装备,压缩机广泛应用于石油、化工、天然气管线、冶炼、制冷和矿山通风等诸多重要部门;作为燃气涡轮发动机的基本组成元件,在航空、水、陆交通运输和发电等领域随处可见;作为增压器,已成为当代内燃机不可缺少的组成部件。

在诸如大型化肥、大型乙烯等工艺装置中,它所需投资可观,耗能比重大,其性能的高低直接影响装置经济效益,安全运行与整个装置的可靠性紧密相关,因而成为备受关注的心脏设备[1]。

压缩机按工作原理可分为容积式和动力式两大类;按压缩级数分类,可分为单级压缩机、两级压缩机和多级压缩机;按功率大小分类,可分为微小型压缩机、中型压缩机和大型压缩机。

按压缩机的结构形式可分为立式、卧式和角度式。

而且角度式又可分为L型、V型、W型、扇形和星型等。

不同形式的压缩机具有其鲜明的特点,根据其工作原理的不同决定了其不同的适用范围[2]。

空气压缩机的选择主要依据气动系统的工作压力和流量。

起源的工作压力应比气动系统中的最高工作压力高20%左右,因为要考虑供气管道的沿程损失和局部损失。

如果系统中某些地方的工作压力要求较低,可以采用减压阀来供气。

空气压缩机的额定排气压力分别为低压(0.7MPa~1.0MPa)、中压(1.0MPa~10MPa)、高压(10MPa~100MPa)和超高压(100MPa以上),可根据实际需求来选择。

常见使用压力一般为0.7~1.25MPa[3]。

空气压缩机应用范围极为广泛,且由资料显示国内需求量呈上升趋势,是中小型工业用压缩机一个庞大的族群。

中、小型微型工业用往复活塞式压缩机有着相同的传动部件基础上变换压缩级数和气缸直径,迅速派生出多品种变形产品的便利条件。

不仅其容积流量、排气压力变化多端,通过适当调整部分零部件材质还可以压缩多种气体,大为扩展服务领域[4]。

活塞式压缩机与其他类型的压缩机相比,特点是(1)压力范围最广。

往复活塞式压缩机结构设计

往复活塞式压缩机结构设计

往复活塞式压缩机结构设计往复活塞式压缩机是一种常见的压缩机,广泛应用于各个领域。

它通过活塞来实现气体的压缩,具有结构简单、可靠性高等优点。

本文将详细介绍往复活塞式压缩机的结构设计。

往复活塞式压缩机主要由气缸、活塞、连杆、曲柄轴等部分组成。

气缸通常采用铸铁或铸钢材料制造,具有较强的耐压能力。

活塞是压缩机中的关键部件,通过上下往复运动实现气体的压缩。

活塞通常采用铝合金或铸铁材料制造,具有良好的耐磨和导热性能。

连杆是将活塞与曲柄轴相连接的部件,它的设计要保证活塞能够顺利地进行往复运动,并且能够承受较大的压力。

连杆通常由高强度合金钢制造,经过精确的加工和热处理,以保证其强度和刚度。

曲柄轴是往复活塞式压缩机的动力输出部分,它将活塞上下往复运动的线性运动转化为曲轴的旋转运动。

曲柄轴通常由高强度合金钢制造,并且需要经过精确的热处理和精密的加工工艺,以保证其强度和精度。

除了以上核心部件外,往复活塞式压缩机还包括气缸盖、气阀、排气管道等部分。

气缸盖是气缸的上部覆盖件,通常由铸铁或铸钢材料制造,并且经过精密的加工工艺,以保证其与气缸的密封性。

气阀则用于控制气体的进出,通常采用弹簧或膜片结构,具有较好的密封性和耐高温性能。

排气管道用于将压缩后的气体排出系统,它通常由不锈钢制造,以保证其耐腐蚀性和密封性。

在往复活塞式压缩机的设计过程中,需要考虑多方面的因素。

首先是压缩机的工作条件,包括进气温度、压力、气体组成等。

在设计过程中,需要根据工作条件来确定压缩机的气缸直径、行程、曲柄轴长度等参数,以保证其正常的工作性能。

其次是考虑压缩机的能效,通过合理设计活塞与曲柄轴的比例、优化气阀的结构等来提高压缩机的能效。

此外,还需要考虑压缩机的噪声和振动问题,在设计过程中采取相应的措施来降低噪声和振动水平,以保证其正常运行和使用。

综上所述,往复活塞式压缩机的结构设计涉及到多个方面的因素,包括核心部件的选材和加工工艺,以及整机的工作条件、能效、噪声和振动等方面。

活塞压缩机设计的基本原则

活塞压缩机设计的基本原则

活塞压缩机设计的基本原则本文通过介绍活塞式压缩机的基本构造与工作原理,对其特点、基本结构和设计原则进行探讨,并介绍热力计算的全过程,以供参考。

标签:活塞式压缩机;基本原则;设计;热力计算引言:往复压缩机产品广泛用于石油、化工、矿山、电力、食品、医药等各个领域,在国家重点项目建设中发挥了重要作用。

经过几十年的发展,不仅享有较高的国内市场占有率,而且远销20多个国家和地区。

特别是在石油化工生产中,如石脑油加氢、石油裂解气的分离、渣油加氢、空气分离、制甲醇、制冷等领域得到了广泛的应用和长足的发展。

一、往复活塞压缩机工作特点及研究状况活塞压缩机的优点是:结构简单,制造技术很成熟,对加工材料和加工工艺要求比较低,它维修方便,容易实现高压缩比,因此它适应性强,能用于非常广泛的压力范围。

以上种种优点使得活塞压缩机的“性价比”很高。

容易实现高压缩比(关键的特点)的原因主要是:它可以在活塞壁与气缸壁之间的活塞上设置能够有效地减少高压与低压之间漏气量的弹性活塞环,即便不设置该活塞环,由于活塞壁与气缸壁之间的接触面积很大,也会起到大幅度减少高压与低压之间通过充满了润滑油的两者缝隙之间的漏气量。

漏气量小,排气效率,工作压缩比就会提高。

二、活塞压缩机概述(一)分类现代工业中,压缩气体的机械用的愈来愈多。

各种形式的压缩机,按工作原理区分为两大类:速度式和容积式。

速度型压缩机靠气体在高速旋转叶轮的作用下,得到巨大的功能,随后在扩压器中急剧降速,使气体的动能转变为势能。

容积式压缩机靠气缸内作往复回转运动的活塞,使容积缩小而提高气体压力。

(二)基本结构(1)基本部分:包括机身、中体、曲轴、连杆、十字头等部件。

其作用是传递动力、连接基础与气缸部分。

(2)气缸部分:包括气缸、气阀、活塞、填料以及安置在气缸上的排气量调节装置等部件。

其作用是形成压缩容积和防止气体泄漏。

(3)辅助部分:包括冷却器、缓冲器、液体分离器、安全阀、油泵、注油器及各种管路系统,这些部件是保证压缩机正常运转所必需的。

活塞压缩机论文第三稿

活塞压缩机论文第三稿

2011—2012 学年第二学期毕业论文课题名称:活塞压缩机的维护检修与常见故障分析设计时间: 2011.11~2012.1 系部:机械系姓名:指导教师:目录0序言.......................................................... - 3 - 1、活塞压缩机维修概述........................................... - 3 -(1)小修..................................................... - 3 -(2)中修..................................................... - 3 - 2.活塞压缩机的拆卸.............................................. - 4 -(1)拆卸时应注意的事项....................................... - 4 -(2)活塞式制冷压缩机拆卸方法和步骤........................... - 4 -3、活塞压缩机主要零部件的维修................................... - 6 -(1)机身油池渗油的修复...................................... - 7 -(2) 连杆的修复.............................................. - 9 -(3)连杆大端变形的修复....................................... - 9 - (4)连杆体弯曲或扭曲变形的修复............................. - 10 - (5)连杆螺栓头及螺母支撑面的检修........................... - 10 -(6)滑动轴承轴瓦的修理...................................... - 10 -(7)活塞和活塞杆的修复...................................... - 11 -(8)活塞环槽的修复......................................... - 12 - (9)活塞杆磨损的修复....................................... - 12 -4、活塞压缩机的安装............................................ - 13 -5、活塞压缩机的试车............................................ - 15 -6、活塞压缩机的日常维护与管理.................................. - 16 - 7.活塞式压缩机常见故障分析及诊断方法.......................... - 17 -(1)活塞式压缩机常见故障.................................... - 17 - 参考文献....................................................... - 22 -活塞压缩机的维护检修与常见故障分析0901机电维修[摘要]压缩机是用来提高气体压力和输送气体的机械,属于将原动机的动力能转变为气体压力能的工作机,它的种类多、用途广。

往复式压缩机气量调节方式论文

往复式压缩机气量调节方式论文

往复式压缩机气量调节方式论文摘要:通过对上面几种方式的介绍及对比,结合目前化工生产中的实际应用,对于大型往复式压缩机机组大部分采用旁路调节与无级气量调节方式相结合的一种复杂的控制方案,其中旁路调节主要作用在压缩机在0%-50%负荷时,无级气量调节主要作用在压缩机为50%本文负荷时。

由于目前无级气量调节系统自动化控制技术已经成熟,仅需要较低的人工干预,自动化程度高。

这种组合控制能够使压缩机达到最广的气量调节范围,同时也能够使节能效果最大化,因此在现实生产中被广泛应用。

往复式压缩机具有效率高、流量大、压力范围广等优点,广泛应用于石油、化工、冶金、机械等领域[1]。

在石油化工生产中往复式压缩机的地位是其他种类压缩机不能够替代的。

但是对于一台往复式压缩机来说,其额定的排气量在结构设计初期就已经确定,然而在实际生产中,往复式压缩机并非总处于满负荷的工作状态[2],现实生产中通过对压缩机的气量调节来满足生产需要的负荷。

目前在化工生产中往复式压缩机的气量调节主要包括以下几种:(1)转速调节;(2)旁路调节;(3)全程顶开吸气阀调节;(4)余隙调节;(5)无级气量调节(部分行程压开吸气阀)。

[2]下面对几种气量调节方式进行介绍及比较。

1、转速调节转速调节一般用于驱动机功率较小的电动机或者驱动机为内燃机或汽轮机的压缩机。

对于电动机的调节方式采用变频器改变驱动机的转速,可对排气量在60%-100%的范围内进行无级调节。

采用此种方式具有压缩机机械摩擦损失小、只改变单位时间内压缩机的工作循环次数并没有改变循环过程,在机组的背压没有发生改变的情况下压缩机的压缩比不会发生变化,并且压缩机机体并不需要额外安装其他装置等优点。

但是由于受到驱动电机自身的限制,在对电机进行变频调节时对电网的冲击较大、机体容易产生振动造成连锁停车、运动部件磨损增加、有时候还会造成压缩机的供油量不足、不能够长时间在低负荷下工作[3],调节范围有限。

此方法多用于离心式压缩机,化工生产中往复式压缩机采用此种调节方式并不多见。

活塞压缩机示功图论文

活塞压缩机示功图论文

活塞式压缩机示功图摘要:活塞式压缩机的示功图是反映压缩机在一个工作循环中活塞在不同位置时气缸内气体压力变化的曲线,亦称气体力图。

根据录取的示功图可对压缩机的工作过程作一系列的分析计算。

例如,根据示功图面积可计算出气缸内平均指示压力、指示功率及气阀功率损失;根据吸入线长度可计算出容积系数λv;根据最高压力和最低压力可计算出气缸内的实际压力比;根据气体压力和活塞面积,可计算出产生的作用力,并以此作为动力计算及强度校核的依据;根据示功图还可分析压缩机的故障。

例如,根据示功图的形状可以分析判断气阀、活塞环、填料函等的泄漏情况;进排气过程的压力损失情况;压缩机膨胀的热交换情况等,从而根据这些分析对压缩机进行故障诊断。

由此可见,压缩机示功图的测试是研究压缩机性能与运行工况的一种基本方法。

关键词:示功图、故障诊断、性能分析、活塞式压缩机正文:1.示功图及其形式在录取指示图时,纵坐标表示压力p,横坐标根据测量方式的不同可分为用气体容积、活塞行程s、曲柄转角α或时间t来表示,所以指示图曲线有以下几种形式: 1)p-v图(压力-容积图),它反映气缸内压力与气体容积间的关系2)p-s 图(压力-行程图),它反映气缸内压力与活塞行程间的关系3)p-α图(压力-转角图),它反映气缸内压力与曲柄转角间的关系4)p-t 图(压力-时间图),它反映气缸内压力与一个循环周期内不同时刻间的关系1)2)3)4)的本质是一样的,在一定条件下可以相互转换。

由于转角α=ωt,可以确定时间与转角的关系;根据活塞式压缩机动力学,知道活塞的位移x与转角α之间存在着一定的关系x=f(α);而气体容积v=x·F,式中F为活塞面积。

2. 活塞式压缩机示功图图为活塞式压缩机示功图。

曲线1-2为压缩过程,此时进、排气门关闭,活塞向左运动压缩气缸内的气体,压力升高。

到p2时,压缩过程结束,排气门打开。

曲线2-3为排气过程,气体受到活塞的推挤而排出气缸,当活塞到达最左端时排气门关闭,排气过程结束。

压缩机毕业设计(论文)开题报告资料

压缩机毕业设计(论文)开题报告资料

参考示例2:(完整开题报告)1.文献综述:1.1 前言压缩机是用来提高气体压力和输送气体的机械,随着技术进步和人民生活水平的提高,对不含由污的洁净压缩空气的需求量越来越大。

传统的有油压缩机已经很难满足生产的要求了。

为此,研发了无油压缩机,降低生产成本,解决了传统压缩机压缩空气后空气含有油污问题。

虽然无油压缩机具有无油的优点,但是由于自润滑的活塞环的材料受温度限制,不适合高温场合,我们需要寻找新的材料能耐高温,无油压缩机的技术水平仍需提高,可以使压缩机适合更多的场合。

1.2 空气压缩机构成和工作原理空气压缩机由工作腔部分(汽缸、活塞、气阀、进出管道等)、传动部分(曲轴、连杆、十字头)、机身部分(支撑件、曲轴箱、中间接管)。

压缩机工作原理是依靠工作容积的变化来压缩气体,改变气体的压力使气体压力达到生产要求[1]。

1.3 有油压缩机与无油压缩机的比较传统的有油压缩机需要增加润滑油,在使用时由于密封不严会造成泄漏,得到的空气含有少部分的油污,在食品、药学等领域这些油污是不允许含有的,如果含有油污对后面的设备造成很大的危害并影响后面的反应,为了得到纯净的无油空气,需要在压缩机后面安装后处理设备[2],清除气体中的润滑油过程很复杂,需要大型除油设备,传统的压缩机的价格虽然较低,但是需要的后处理设备的价格会是压缩机价格的几倍,这样会使所需生产成本增加[3]。

为了克服这个难题, 研发了自润滑全无油压缩机, 要实现无油润滑压缩, 一般是在活塞与气缸之间使用自润滑材料、连杆大小头采用滚动轴承和填料函采用自润滑密封元件等方法予以保证,因此就不需要加油润滑,在压缩空气时不会增加油污,只需要简单的后处理设备就可以得到洁净的空气[4]。

虽然无油压缩机的生产工艺复杂,成本增加,但与传统的压缩机及其后处理设备相比在成本上占有很大的优势。

1.4 无油压缩机活塞环的材料和结构1.4.1 活塞环材料无油润滑压缩具有压缩气体不被润滑油污染、节约大量润滑油、净化流程、简化设备、延长触媒的使用寿命、提高产品产量及质量等优点, 而广泛应用于化工、国防、冶金、石油炼制、通讯、仪表、食品、医疗、纺织等部门。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

全套设计1 引言空气压缩机是指压缩介质为空气的压缩机,主要作用是为生活、生产提供源源不断地、具有一定压力的压缩空气。

作为一种工业装备,压缩机广泛应用于石油、化工、天然气管线、冶炼、制冷和矿山通风等诸多重要部门;作为燃气涡轮发动机的基本组成元件,在航空、水、陆交通运输和发电等领域随处可见;作为增压器,已成为当代内燃机不可缺少的组成部件。

在诸如大型化肥、大型乙烯等工艺装置中,它所需投资可观,耗能比重大,其性能的高低直接影响装置经济效益,安全运行与整个装置的可靠性紧密相关,因而成为备受关注的心脏设备[1]。

压缩机按工作原理可分为容积式和动力式两大类;按压缩级数分类,可分为单级压缩机、两级压缩机和多级压缩机;按功率大小分类,可分为微小型压缩机、中型压缩机和大型压缩机。

按压缩机的结构形式可分为立式、卧式和角度式。

而且角度式又可分为L型、V型、W型、扇形和星型等。

不同形式的压缩机具有其鲜明的特点,根据其工作原理的不同决定了其不同的适用范围[2]。

空气压缩机的选择主要依据气动系统的工作压力和流量。

起源的工作压力应比气动系统中的最高工作压力高20%左右,因为要考虑供气管道的沿程损失和局部损失。

如果系统中某些地方的工作压力要求较低,可以采用减压阀来供气。

空气压缩机的额定排气压力分别为低压(0.7MPa~1.0MPa)、中压(1.0MPa~10MPa)、高压(10MPa~100MPa)和超高压(100MPa以上),可根据实际需求来选择。

常见使用压力一般为0.7~1.25MPa[3]。

空气压缩机应用范围极为广泛,且由资料显示国内需求量呈上升趋势,是中小型工业用压缩机一个庞大的族群。

中、小型微型工业用往复活塞式压缩机有着相同的传动部件基础上变换压缩级数和气缸直径,迅速派生出多品种变形产品的便利条件。

不仅其容积流量、排气压力变化多端,通过适当调整部分零部件材质还可以压缩多种气体,大为扩展服务领域[4]。

活塞式压缩机与其他类型的压缩机相比,特点是(1)压力范围最广。

活塞式压缩机从低压到超高压都适用,目前工业上使用的最高工作压力达350MPa,实验室中使用的压力则更高。

(2)效率高。

由于工作原理不同,活塞式压缩机比离心式压缩机的效率高很多。

而回转式压缩机由于高速气流阻力损失和气体内泄漏等原内,效率亦较低。

(3)适应性强。

活塞式压缩机的排气量可在较广泛的范围内进行选择;特则是在较小排气量的情况下,要做成速度型,往往很困难,甚至是不可能的。

此外,气体的重度对压缩机性能的影响也不如速度型那样显著,所以同一规格的压缩机,将其用于不同介质时,较易改造[5~7]。

根据机械部JB1407-85《微型往复活塞式空气压缩机基本参数》规定,额定排气压力分为0.25MPa、0.4MPa、0.7MPa、1.0MPa、1.25MPa和1.4MPa几个档次,并规定了相应的单级、双级压缩所对应的公称容积流量(公称排气量)。

但目前1.0MPa、1.25MPa 和1.4MPa的压缩机产品相对较少,无法满足用户对不同压力空气气源的需要。

因此,本课题设计一种排气压力为1.2MPa,排气量为0.6m3/min的微型压缩机,旨在我国现有的小型压缩机产品品种的基础上,开发相关的压缩系列产品,以填补两级空气压缩机产品的空白,符合压缩机制造行业拓展新产品的开发意向。

本课题的设计任务是在常温下对空气进行压缩,进气压力为大气压,压缩后排气压力为1.2M Pa,排气量不低于0.6m3/min。

为满足设计及技术要求,综合考虑,本设计采用W型二级压缩,油润滑,冷却方式为风冷式。

设计内容包括总体结构设计、热力学计算、主要零部件结构设计、动力学计算和飞轮设计五个方面。

其中总体机构设计方面主要包括结构方案选择、气缸排列形式、运动机构的结构选择、级数选择、压缩机转数、行程的确定和驱动选择;主要零部件结构设计主要包括活塞组件的设计、曲轴结构、连杆部件的设计和气缸设计;动力学计算主要是计算各级平均切向力,然后根据不同方案级数的布置,进行叠加计算总平均切向力,选择最优方案,确定飞轮距;飞轮设计主要是通过根据机器允许的旋转不均匀度、飞轮距的大小和冷却所需风量,参照工厂图纸进行尺寸结构设计[8~12]。

2 总体结构方案设计设计往复活塞式压缩机时应符合以下基本原则:(1)满足用户提出的排气量、排气压力,及有关使用条件的要求;(2)有足够长的使用寿命,足够高的使用可靠性;(3)有较高的运转经济性;(4)有良好的动力平衡性;(5)维护检修方便;(6)尽可能采用新结构、新技术、新材料;(7)制造工艺性良好;(8)机器的尺寸小、重量轻。

活塞式压缩机的结构方案由下列因素组成:(1)机器的型式;(2)级数和列数;(3)各级气缸在列中的排列和各列间曲柄错角的排列。

选择压缩机的结构方案,应根据压缩机的用途、运转条件、排气量和排气压力、制造厂生产的可能性、驱动方式以及占地面积等条件,从选择机器的型式和级数入手,制订出合适的方案。

总体设计的任务:选择结构方案、主要参数、相应的驱动方式以及大体确定附属装备的布置。

2.1 气缸排列的型式压缩机气缸有多种排列型式,按气缸轴线布置的相互关系分为:卧式、立式、L型、V型、W型、星型和对称平衡型。

卧式、对称平衡型压缩机动力平衡性能较好,运转较平稳,宜用于大、中型压缩机;立式压缩机现仅用于中、小型和微型,使机器高度均处于人体高度便于操作的范围内,且中型压缩机主要用于无油润滑结构;L型、V型、W型、星型等角度式压缩机则适用于中、小型和微型。

L型、V型、W型、星型等角度式压缩机共同的优点是(1)各列的一阶惯性力的合力可用装在曲轴上的平衡重达到大部分或完全平衡。

因此,机器可取较高的转数。

(2)气缸彼此错开一定角度,有利于气阀的安全与布置。

因而使气阀的流通面积有可能增加。

中间冷却器和级间管道可以直接装在机器上,结构紧凑。

(3)角度式压缩机可以将若干列的连杆连接在同一曲拐上,曲轴的拐数可减少,机器的轴向长度可缩短,因此主轴颈能采用滚动轴承。

本设计属于微型中压压缩机常规设计,综合考虑其设计参数(压缩介质、排气量及排气压力)及市场现状,采用W型结构。

2.2 运动机构的结构活塞式压缩机的运动机构有:无十字头与带十字头两种。

无十字头运动机构的特点是:结构简单、紧凑,机器高度较低,相应的机器重量较轻,一般不需要专门的润滑机构。

但是无十字头的压缩机只能作成单作用的,所以气缸容积的利用不充分(因为活塞与气缸之间,只在活塞的一侧形成工作腔),气体的泄漏量也较大,气缸工作表面所受的侧向力也较大,因而活塞易磨损,另外,气缸中的润滑油量也难于控制。

无十字头的压缩机一般只适于作成立式、V型、W型和扇形的结构。

当压缩机的功率大于(120~150)kW时,无十字头的压缩机的重量要超过有十字头的压缩机,而且结构也较复杂。

因此,无十字头压缩机只在小功率范围内采用。

在小型移动装置中用的压缩机,要求轻便紧凑以便于搬动,多选用无十字头的运动机构。

带十字头运动机构的特点是:由于带有十字头,气缸工作表面不承受连杆传来的侧压力,所以,气缸与活塞间的摩擦和磨损较小,充分利用了气缸容积,润滑油易于控制;可以设置填料密封,所以,气体地泄漏量较小,特别是对于易燃、易爆、有毒的气体,只能采用此种结构。

当然,带十字头的压缩机增多了十字头、活塞杆及填料等部件,使机器的结构复杂,高度和重量也相应增加。

一般固定式的压缩机功率都较大,特别是工艺流程中用的压缩机,要求机器长期连续运转,所以多用带十字头的压缩机。

我国固定式动力用空压机,排气量在(10~100)m3/min、功率在(60~630)kW之间的都是带十字头结构。

化工、石油等部门工艺流程中使用的压缩机都带有十字头。

本设计为功率较小的W型空气压缩机设计,考虑到以上因素,故采用无十字头的运动机构。

2.3级数选择及各级压力比的分配工业用的气体,有时需要较高的压力,此时需采取多级压缩。

多级压缩有下列优点:(1)降低排气温度;(2)节省功率消耗;(3)提高气缸容积系数;(4)降低作用在活塞上的最大活塞力。

在选择压缩机的级数时,一般一般应遵循下列原则:使压缩机消耗的功最小、排气温度应在使用条件许可的范围内、机器重量轻、造价低。

要使机器具有较高的热效率,则级数越多越好(各级压力比越小越好)。

然而级数增多,则阻力损失增加,机器总效率反而降低,结构也更加复杂,造价便大大上升。

因此,必须根据压缩机的容量和工作特点,恰当地选择所需的级数和各级压力比。

本设计为W-0.6/12型压缩机,根据市场常用压缩机型式,选择级数为二级。

2.4 列数选择在活塞式压缩机中,一个连杆所对应的气缸活塞组即为一列。

压缩机按列数的多少分成单列和多列两类。

压缩机列数的选择,主要决定于排气量、排气压力、机器的型式和级数。

立式结构可以制成单列和多列压缩机;卧式结构可以制成单列和双列压缩机;对称平衡型结构只能制成多列压缩机,而且列数必须是偶数;对置型结构只能制成多列压缩机。

W型结构只能制成多列压缩机,即单重W型和双重W型,其他型式类似。

各级气缸的排列应根据下述原则进行:(1)要求各列往返止点的活塞力相等。

这时,曲柄连杆机构利用充分,重量较轻,惯性力较小,机械效率较高。

由于往返行程的功也大致相等,因而飞轮较轻。

(2)通过布置气缸排列,达到使气体的内泄漏和外泄漏尽可能小的目的。

本设计采用W 型结构,如前所述,只能制成多列压缩机,采用单重W 型结构。

2.5 压缩机转速和行程的确定转速和行程的选取对机器的尺寸、重量、制造难易和成本有重大影响,并且还直接影响机器的效率、寿命和动力性能。

如果压缩机与驱动机直接连接,则也影响驱动机的经济性和成本。

近代设计活塞式压缩机的总趋势是提高转速。

转速、行程和活塞平均速度的关系式如下 30nS C m =(2-1) 式中:m C —活塞平均速度,m/s ;n —压缩机转数,r/min ;S —活塞行程,m 。

活塞式压缩机设计中,在一定的参数和使用条件下,首先应考虑选择适宜的活塞平均速度,因为(1)活塞平均速度的高低,对运动机件中的摩擦和磨损有直接的影响。

对气缸内的工作过程也有影响。

(2)活塞速度过高,气阀在气缸上难以得到足够的安装面积,所以气阀、管道中的阻力损失很大,功率的消耗及排气温度将会过高。

严重地影响压缩机运转的经济性和使用的可靠性。

移动式压缩机为尽量减少机器重量和外形尺寸,所以取活塞速度为(4~5)m/s ,而本设计就属于此类。

由于微型和小型压缩机,为使结构紧凑,而只能采用较小行程,所有较高转数,但活塞平均速度却较低,只有2m/s 左右。

本设计采用2m/s 。

在一定的活塞速度下,活塞行程的选取,与下列因素有关:排气量的大小;机器的结构型式;气缸的结构。

现代活塞式压缩机的行程与活塞力之间,按统计与分析,有下列关系: P A S = (2-2) 式中:P —活塞力,t ;A —系数,其值在0.065~0.095之间,较小值相应于短行程的机器,较大值相应于长行程的机器。

相关文档
最新文档