一次函数的图像和性质
一次函数的图象及性质
在某个点处,函数的导数为0,并且在该点左侧导数小 于0,右侧导数大于0,那么这个点就是极小值点。
一次函数的凹凸性
凹函数
如果在某个区间内,函数的二阶导数大于 0,那么这个函数在这个区间内是凹函数 。
VS
凸函数
如果在某个区间内,函数的二阶导数小于 0,那么这个函数在这个区间内是凸函数 。
04
一次函数与数列的关系
数列是一次函数图象上多个点的集合,表示在多个自变 量下函数的值的变化规律。通过对数列的研究,我们可 以找到一次函数图象上对应的多个点。
一次函数与数列的关系还表现在解决实际问题中,如等 差数列和等比数列的问题,通过建立一次函数模型可以 解决实际问题的最优解。
06
一次函数的扩展知识
一次函数与方程的关系还表现在求解未知数 的运算过程中,通过对方程的求解可以得到
一次函数的解析式。
一次函数与不等式的关系
不等式可以看作一次函数图象上某一段的横坐标,表 示在这一段上函数的值大于或小于零。通过对不等式 的求解,我们可以找到一次函数图象上对应的区间。
一次函数与不等式的关系还表现在解决实际问题中, 如时间、速度、价格等问题,通过建立一次函数不等 式模型可以解决实际问题的最优解。
为截距。
当自变量取值为`x`时,函数值 计算公式为`y = kx + b`。
绘制点
根据计算出的函数值和自变量的取值,绘制散点图。
对于每个自变量值,计算其对应的函数值,并在坐标系中绘制一个点。
连接点
使用线段或曲线连接散点图中的点。
对于一次函数,通常使用直线连接点,因为一次函数的图像是一条直线。
03
一次函数的应用
一次函数在代数中的应用
求解方程
一次函数的图像和性质
课题 一次函数的图像与性质1、一次函数的图像的画法(1)画函数图像的三步:列表-描点-连线. (2)一次函数的图象是一条直线。
一次函数y=kx+b (k 、b 是常数,且k ≠0)的图象是一条直线。
一次函数y=kx+b 也称为直线y=kx+b ,这时,我们把一次函数的解析式y=kx+b 称为这一直线的表达式。
(3)因为一次函数y=kx+b (k 、b 是常数,且k ≠0)的图象是一条直线,根据“两点确定一条直线”的基本性质,画一次函数的图象时只需描出图象上的两个点,再作过这两点的直线即可。
2、一次函数的图像的性质(1)一次函数与x 轴交点的纵坐标为0,与y 轴交点的横坐标为0.(2)一次函数111(y k x b k =+、110b k ≠为常数,)与222(y k x b k =+、220b k ≠为常数,)的图像平行时,则12k k =。
反之,当12k k =时,两直线平行,且当12k k =,12b b =时,两直线重合。
(3)当一次函数111(y k x b k =+、110b k ≠为常数,)与222(y k x b k =+、220b k ≠为常数,)的图像的截距相同且不平行时,则12b b =,12k k ≠。
(4)一次函数y=kx+b (k 、b 是常数,且k ≠0)当k>0时函数值随着x 的增大而增大、减小而减小,即该函数为增函数;当k<0时函数值随着x 的增大而减小、减小而增大。
即该函数为减函数。
3、一次函数图像的平移一次函数y=kx+b (k 、b 是常数,且k ≠0)的图象向上平移h 个单位后的函数解析式为y=kx+b+h;向下平移h 个单位后的函数解析式为y=kx+b-h 。
4、一次函数图像经过的象限示意图k 、b 的符号直线y=kx+b 经过的象限增减性一.基础练习:1.一次函数y=3x-6的图像是,它与x轴的交点坐标是,它与y轴的交点坐标是2.将直线y=x向下平移4个单位,得到直线3.将直线y=-3x-5向上平移4个单位,得到直线4.若直线y=3x-5与直线y=kx-4相互平行,则k=5.若直线y=-2x-5与直线y=6x+b相交于y轴上同一点,则b=6. 请你在不同的平面直角坐标系中画出下列函数的图像(1)y=2x+6 (2)1722 y x=+(3)4833y x=--(4)1344y x=--7,做一做:画出函数y=-2x+2 的图像,结合图象回答下列问题:( 1 )这个函数中,随着x 的增大,y 将增大还是减小?( 2 )当x 取何值时,y=0 ?当y 取何值时,x=0 ?( 3 )当x 取何值时,y>0 ?( 4 )函数的图像不经过哪个象限?8、完成下列各题:(1)下列函数中,y的值随着x的增大而减小的是()A.y=2x-7B.y=0.5x+2C.y=(2-1)x+3D.y=-0.3x+1(2)函数y=4x-3中,y的值随着x值的增大而____(3)函数y=(2m-1)x+2的函数值随x的增大而减小,则m的值为______ (4)一次函数y=2x+4的图像上有两点A(3,a),B(4,b),请判断a与b的大小(5)y=x+5与y=2x-5的增减性(y 随着x 的增加而增加,还是随着x 的增加而减小)是否一样?(6)y=-2x+5与y=-2x-5的增减性是否一样?(7)A(a,6)和B(b,-2)在函数y=2x-5的图像上,请你判断a ,b 的大小关系 9、已知一次函数2(2)28y k x k =--+,分别根据下列条件求k 的值或k 的取值范围: (1)它的图像经过原点(2)它的图像经过点(0,-2)(3)它的图像与y 轴的交点在x 轴上方 (4)y 随着x 的增大而减小(5)这条直线经过一、二、三象限10、要使一次函数y=-3x+4的函数值大于4,求自变量x 的取值范围。
一次函数的图像及性质
3 x 1 上, 4
2.若 a 是非零实数 , 则直线 y=ax-a 一 定经过( A.第一、二象限 C.第三、四象限 B. 第二、三象限 D. 第一、四象限
)
拓展与应用
1、一次函数y=kx+b中,kb>0,且y随x的增大而 减小,则它的图象大致为( )
一次函数y=kx+b(k≠0,k、b为常数)有下列性质:
(1)当k>0时,y随x的增大而增大, 这时函数的图象从左到右上升; (2)当k<0时,y随x的增大而减小, 这时函数的图象从左到右下降。
性 质
y=kx+b (k≠0,k、 图 象 b为常数) y b>0
o
直线经过的象限
增减性
(0, b)
x
第一、二、三象限
y随x增大 而增大 y随x增大 而增大 y随x增大 而增大
K>0
b=0
y
o
x
第一、三象限
b<0
(o, b)
y
o
x
第一、三、四象限
性 质
y=kx+b (k≠0,k、 图 象 b为常数) y b>0
o
直线经过的象限
增减性
(0, b)
x
第一、二、四象限
y随x增大 而减小 y随x增大 而减小 y随x增大 而减小
k>0, b<0
上,试比较a和b的大小。你能想出几种判断的方法?
试一试
1、下列一次函数中,y的值随x的增大而减小 的有________ )
2、函数 y 1 x, y 5 x 4, y 3 x
(1) y 10 x 9 (3) y 5 x 4
一次函数的图像和性质
一次函数的图像和性质一次函数是一个代数函数,也称为线性函数或直线函数。
它是最简单的一种函数形式,在数学和物理等领域中都有广泛的应用。
一次函数的一般形式为y = ax + b,其中a和b是常数,且a≠0。
一次函数的图像是一个直线,在平面直角坐标系中表示为一根斜率为a的直线,并且通过点(0,b)。
斜率a表示函数的变化率,即y随x的变化速度。
当a>0时,表明随着x增大,y也增大;当a<0时,表明随着x增大,y减小;当a=0时,函数是一个常数函数。
一次函数图像的性质包括斜率、截距、与坐标轴的交点等。
1.斜率:一次函数的斜率表示函数图像在x轴方向每单位变化时,y轴方向的变化量。
斜率的计算可以通过选择两个不同的x值,计算对应的y值的差异,然后除以对应x值的差异。
即斜率a=Δy/Δx。
斜率为正的函数图像向上倾斜,斜率为负的函数图像向下倾斜,斜率为零的函数图像是水平的。
2. 截距:一次函数的截距表示函数图像与y轴的交点,它的值可以从函数的形式y=ax+b中得到。
当x=0时,y=b,因此截距为b。
3. 与坐标轴的交点:一次函数的图像与x轴的交点为y=0时的x值,可以通过令y=0,解方程ax+b=0,得到x=-b/a。
图像与y轴的交点已经在上述截距部分提到,为(0, b)。
4.平行:两个斜率相等的一次函数图像是平行的,它们可能在坐标轴上的交点不同,但是平行于同一直线。
5. 垂直平分线:对于一次函数y = ax + b,它的垂直平分线为x =-a/2、如果两个函数的图像关于该直线对称,那么它们是互为反函数。
6. 对称轴:对于一次函数y = ax + b,它的对称轴为x = -b/(2a)。
如果交换a和b的位置,可以得到该函数关于y轴对称函数。
如果交换x和y的位置,可以得到原函数的倒数。
7.等差数列:一次函数的图像可以表示等差数列,其中公差为斜率a。
数列的第一个项为截距b。
8.增长率:一次函数的增长率等于斜率a的绝对值。
一次函数的图像和性质
图象关系 图象平移得到,b>0,向上平移 b 个单位;b<0,向
下平移b个单位
图象确定
因为一次函数的图象是一条直线,由两点确定一条直 线可知画一次函数图象时,只要取两个点即可
第14讲┃ 考点聚焦
(2)正比例函数与一次函数的性质 函数 字母取值 图象 经过的象限
k>0
_一__、__三__象__限_
一次函数图象的
解即两函数图象的交点坐标
交点坐标
一条直线与坐标 轴围成的三角形
的面积
直线y=kx+b与x轴交点坐标为-bk,0,与y轴交
点为(0,b),三角形面积为S△=12-kb
×
|b|
第14讲┃ 考点聚焦 考点5 由待定系数法求一次函数的表达式
因在一次函数y=kx+b(k≠0)中有两个未知系数k和b,所 以要确定其关系式,一般需要两个条件,常见的是已知两点
图 11-1
B.m<1
C.m<0
D.m>0
[解析] 根据函数的图象可知m-1<0,求出m的取 值范围为m<1.故选B.
第14讲┃ 归类示例
► 类型之二 一次函数的图象的平移 命题角度: 1.一次函数的图象的平移规律; 2.求一次函数的图象平移后对应的关系式. [2012·衡阳] 如图11-2,一次函数y=kx+b的图
y随x增 大而增大
_一__、__二__、__四__象__限__ _二__、__三__、__四__象__限__
y随x增 大而减小
第14相交
__k_1_≠__k_2_⇔l1 和 l2 相交
+b1 和 l2:y=k2x 平行 +b2 的位置关系
y=kx (k≠0)
k<0
初中数学一次函数的图象和性质
一次函数的图象和性质一、知识要点:1、一次函数:若两个变量x,y存在关系为y=kx+b (k≠0, k,b为常数)的形式,则称y是x的函数。
注意:(1)k≠0,否则自变量x的最高次项的系数不为1;(2)当b=0时,y=kx,y叫x的正比例函数。
2、图象:一次函数的图象是一条直线(1)两个常有的特殊点:与y轴交于(0,b);与x轴交于(- ,0)。
(2)正比例函数y=kx(k≠0)的图象是经过(0,0)和(1,k)的一条直线;一次函数y=kx+b(k≠0)的图象是经过(- ,0)和(0,b)的一条直线。
(3)由图象可以知道,直线y=kx+b与直线y=kx平行,例如直线:y=2x+3与直线y=2x-5都与直线y=2x平行。
3、一次函数图象的性质:(1)图象在平面直角坐标系中的位置:(2)增减性:k>0时,y随x增大而增大;k<0时,y随x增大而减小。
4、求一次函数解析式的方法求函数解析式的方法主要有三种:一是由已知函数推导,如例题1;二是由实际问题列出两个未知数的方程,再转化为函数解析式,如例题4的第一问。
三是用待定系数法求函数解析式,如例2的第二小题、例7。
其步骤是:①根据题给条件写出含有待定系数的解析式;②将x、y的几对值或图象上几个点的坐标代入上述的解析式中,得到以待定系数为未知数的方程或方程组;③解方程,得到待定系数的具体数值;④将求出的待定系数代入要求的函数解析式中。
二、例题举例:例1、已知变量y与y1的关系为y=2y1,变量y1与x的关系为y1=3x+2,求变量y与x的函数关系。
分析:已知两组函数关系,其中共同的变量是y1,所以通过y1可以找到y与x 的关系。
解:∵y=2y1y1=3x+2,∴y=2(3x+2)=6x+4,即变量y与x的关系为:y=6x+4。
例2、解答下列题目(1)(甘肃省中考题)已知直线与y轴交于点A,那么点A的坐标是()。
(A)(0,–3)(B)(C)(D)(0,3)(2)(杭州市中考题)已知正比例函数,当x=–3时,y=6.那么该正比例函数应为()。
一次函数的图像与性质
一次函数的图像与性质一次函数,也被称为线性函数,是指一个变量与另一个变量之间的关系可以表示为 y = ax + b 的函数形式,其中 a 和 b 是常数。
本文将探讨一次函数的图像及其相关性质。
I. 一次函数的图像一次函数的图像是一条直线,在直角坐标系中表示为一条斜率为a、截距为 b 的直线。
斜率 a 决定了直线的倾斜方向和角度。
若 a > 0,则直线向右上方倾斜;若 a < 0,则直线向右下方倾斜;若 a = 0,则直线为水平直线。
截距 b 则表示了直线与 y 轴的交点。
II. 一次函数的性质1. 斜率一次函数的斜率 a 表示了直线的倾斜程度。
斜率的绝对值越大,则直线越陡峭;斜率为正值时表示直线上升,为负值时表示直线下降;斜率为零时表示直线水平。
通过斜率,我们可以判断一次函数的增减性。
2. 截距截距 b 表示了一次函数与 y 轴的交点,即当 x = 0 时,函数的取值。
截距的正负决定了直线在 y 轴上的位置,正值表示与 y 轴正向交点在上方,负值则在下方。
截距的大小也影响了直线与坐标轴的交点。
3. 零点一次函数的零点是指函数取值为零的点,也就是使得y = 0 的x 值。
通过求解一次函数的零点,我们可以求得函数与 x 轴的交点。
4. 增减性一次函数的增减性由斜率来决定。
当斜率a > 0 时,函数单调递增;当斜率 a < 0 时,函数单调递减;当斜率 a = 0 时,函数为常数函数,不具有增减性。
5. 定义域与值域一次函数的定义域为所有实数,因为 x 可以取任意实数值;值域则由斜率和截距来决定。
当斜率 a > 0 时,值域为 (-∞, +∞);当斜率 a < 0 时,值域为(+∞, -∞);当斜率 a = 0 时,值域只有截距 b。
6. 图像平移一次函数的图像可以通过改变斜率或截距来进行平移变换。
增加或减小截距 b 可以使得图像上下平移,增加或减小斜率 a 则使得图像左右平移。
一次函数的图象性质
一次函数的图象性质一次函数,又称为一次方程,是一个特殊的函数形式,由形如y =ax + b的方程所表示,其中a和b为常数,而x和y则为变量。
一次函数的图象性质在数学中具有重要的地位,对于理解线性关系、解决实际问题以及推导其他函数的性质都具有指导作用。
在本文中,将探讨一次函数的图象性质,并从图像的倾斜度、截距和交点着手进行分析。
一、图像的倾斜度一次函数的图象通常表现为一条直线,其倾斜度能够反映函数的性质。
对于y = ax + b这样的一次函数来说,a被称为斜率,用来描述图象的倾斜程度。
当a大于0时,图象向右上方倾斜;当a小于0时,图象向右下方倾斜;当a等于0时,图象为一条水平直线。
斜率的绝对值越大,图象的倾斜程度越大。
倾斜度的大小决定了一次函数在平面上的变化速度。
斜率的正负决定了函数是否单调增减,当斜率大于0时,函数单调增加;当斜率小于0时,函数单调减少;当斜率等于0时,函数保持水平。
当斜率为正或者负无穷大时,函数表现为垂直于x轴或y轴的直线。
二、截距一次函数的截距是指函数图象与坐标轴的交点位置。
根据函数的形式y = ax + b,我们可以得到两个重要的截距:x轴截距和y轴截距。
x轴截距,即函数与x轴的交点的横坐标,可以通过令y等于0解方程得到:0 = ax + b,解得x = -b/a。
同理,y轴截距可以通过令x等于0解方程得到:y = a*0 + b,解得y = b。
截距与函数在图像上的位置有密切的关系。
x轴截距决定了函数图像与x轴的交点位置,在平面上表现为函数图像与x轴的交点横坐标。
y轴截距则决定了函数图像与y轴的交点位置,在平面上表现为函数图像与y轴的交点纵坐标。
三、交点对于两条一次函数来说,它们可能有一个、两个或者不存在交点。
交点是两条函数图像相交处的坐标点,也是两个方程的解。
通过求解两个方程,我们可以确定交点的位置。
当两条函数图像有一个交点时,表示两个方程存在唯一解;当两条函数图像有两个交点时,表示两个方程存在两个解;当两条函数图像没有交点时,表示两个方程无解。
一次函数的性质和图像(一)课件
经济问题中的应用
在经济学中,许多经济指标之间的关系可以用一次函数来描述,如价格与需求的 关系、成本与产量的关系等。通过这些实例,可以了解一次函数在经济分析中的 应用。
像会向右平移。
03
一次函数的应用
一次函数在实际生活中的应用
一次函数在经济学中的应用
一次函数可以用来描述经济现象之间的关系,例如成本与产量的 关系、价格与需求量的关系等。
一次函数在物理学中的应用
在物理学中,一次函数可以用来描述线性关系,例如速度与时间的 关系、力与位移的关系等。
一次函数在工程领域的应用
02
一次函数的图像
一次函数图像的绘制
步骤二
在坐标系上选择一个点,例如 原点$(0,0)$。
步骤四
在坐标系上标出该点,即 $(0,1)$。
步骤一
确定函数表达式。例如,$y = 2x + 1$。
步骤三
使用一次函数的表达式,计算 出该点沿x轴和y轴的坐标值。 例如,$y = 2(0) + 1 = 1$。
一次函数的图像是一条直线,其斜率 为$a$,截距为$b$。
一次函数的图像可以通过平移得到, 向上平移$k$个单位得到$y = ax + b + k$,向下平移$k$个单位得到$y = ax + b - k$。
一次函数的单调性由斜率$a$决定, 当$a > 0$时,函数为增函数;当$a < 0$时,函数为减函数。
一次函数在概率统计问题中的应用
03
在概率统计问题中,一次函数可以用来描述概率分布、平均数
(完整版)一次函数的图像与性质
一次函数的性质和图像目录一、函数的定义(一)、一次函数的定义函数。
(二)、正比例函数的定义二、函数的性质(一)、一次函数的性质(二)、正比例函数的性质三、函数的图像(一)、一次函数和正比例函数图像在坐标上的位置(二)、一次函数的图像1、一次函数图像的形状2、一次函数图像的画法(三)、正比例函数的图像1、正比例函数图像的形状2、正比例函数图像的画法3、举例说明正比例函数图像的画法四、k、b两个字母对图像位置的影响K、b两个字母的具体分工是:(一次项系数)k决定图象的倾斜度。
(常数项)b决定图象与y轴交点位置。
五、解析式的确定(一)一个点坐标决定正比,两个点坐标决定一次(二)用待定系数法确定解析式六、两条函数直线的四种位置关系两直线平行,k1= k2,b1≠b2两直线重合,k1= k2,b1=b2两直线相交,k1≠k2两直线垂直,k1×k2=-1(一)两条函数直线的平行(二)两条函数直线的相交(三)两条函数直线的垂直一次函数、反比例函数中自变量x前面的字母k称为比例系数这一节我们要学习正比例函数和一次函数。
一次函数的解析式是y=kx+b,如果当这个式子中的b=0时,式子就变成了正比例函数y=kx。
因此,正比例函数是一次函数当b=0时的特殊情况。
正是因为正比例函数实际上就是一次函数,所以把正比例函数和一次函数结合在一起来学习。
在正比例函数y=kx和反比例函数y=k/x中,由于函数y与自变量x之间有比例关系,就要在自变量x前面用字母系数k表示它们之间的比例关系,因而字母k就取名为比例系数。
确定了比例系数k就可以直接确定正比例函数或反比例函数的解析式。
但是,在一次函数y=kx+b和二次函数y=ax2+bx+c中,我们从观察解析式就可以看出,函数y与自变量x之间没有相直接对应的比例关系,因此这两种函数自变量x前面的k,就不能叫比例系数,只能叫常数。
若欲确定一次函数或二次函数的解析式时,题意仅已知常数k还不行,还需要其他常数如b、c等常数的协助。
一次函数图像及其性质
一次函数图像及其性质一、一次函数图像1、一次函数y=kx+b 的k 、b 的值对一次函数图象的影响:① ② ③ ④①k ﹥0,b ﹥0, y =kx +b 的图象在一、二、三象限;②k ﹥0, b ﹤0, y =kx +b 的图象在一、三、四象限; ③k ﹤0,b ﹥0, y =kx +b 的图象在一、二、四象限;④k ﹤0, b ﹤0, y =kx +b 的图象在二、三、四象限。
2、一次函数的性质⑴正比例函数y=kx(k≠0)是特殊的一次函数,当k>0时,图象过一、三象限,y 随x 的增大而_增大__; 当k<0时,图象过__二、四__象限;y 随x 的增大而_减小___.⑵一次函数y=kx +b(k ≠ 0)的图象平行于直线y = kx ,可由它平移而得,当k>0时,y 随x 的增大而_增大_; 当k<0时,y 随x 的增大而__减小_k>0时,k 越大,y 增长得越快;k<0时,k 越大,减小得越快;⑴在一次函数y=kx +b 中,令y=0,得一元一次方程kx +b=0,它的根就是一次函数y=kx +b 的图象与x 轴交点的横坐标.⑵一元一次不等式kx +b>0(或kx +b<0)的解集可以看作一次函数y=kx +b 当函数值大于或小于0时相应的自变量x 值的取值范围.⑶两直线交点的坐标,就是由这两条直线的解析式组成的二元一次方程组的解.题型考点一:一次函数的增减性例1、已知关于x 的一次函数2(3)2y m x m =-++-.(1) m 为何值时,函数的图象和直线y=-x 平行? (2)m 为何值时,y 随x 的增大而减小?【变式】已知一次函数y=(3-k )x-2k 2+18. (1)k 为何值时,它的图象经过原点? (2)k 为何值时,它的图象经过点(0,-2)?(3)k 为何值时,它的图象与y 轴的交点在x 轴的上方? (4)k 为何值时,它的图象平行于直线y=x ? (5)k 为何值时,y 随x 的增大而减小?题型考点二:一次函数图像与象限关系例2、直线y=x+b (b>0)与直线y=kx (k<0)的交点位于()A 、第一象限B 、第二象限C 、第三象限D 、第四象限【练习】若实数a ,b 满足ab <0,且a <b ,则函数y=ax+b 的图象可能是( )题型考点三:一次函数图像的交点例3、如图,在平面直角坐标系中,线段AB 的坐标为A (-2,4),B (4,2),直线y=kx-2与线段AB 有交点,则k 的值不可能是() A 、-5 B 、-2 C 、3 D 、5【练习】如图,直线l :233y x =--与直线y a =(a 为常数)的交点在第四象限, 则a 可能在()A 、1<a<2B 、-2<a<0C 、32a -≤≤-D 、-10<a<-4二、一次函数与一元一次方程的关系直线y b k 0kx =+≠()与x 轴交点的横坐标,就是一元一次方程b 0(0)kx k +=≠的解。
第11节 一次函数的图象和性质
,与 y 轴的截距为﹣ ,
由于该直线不通过第一象限,所以得到:
即
,
由①得到 a 与 b 同号;由②得到 b 与 c 同号.所以 a,b,c 同号. 故选 D
4.设 b>a,将一次函数 y=bx+a 与 y=ax+b 的图象画在同一平面直角坐标系内,则 有一组 a,b 的取值,使得下列 4 个图中的一个为正确的是( )
典例分析:
例 3:(1)直线 y=kx+b 通过第一、三、四象限,则有( )
A.k>0,b>0 B.k>0,b<0 C.k<0,b>0 D.k<0,b<0
解:若直线 y=kx+b 通过第一、三、四象限, 则必有 k>0,b<0, 故选:B.
(2)若 ac<0,bc<0,则直线 ax+by+c=0 的图形只能是( )
A.
B.
C.
D.
解:由题意知,函数的解析式即 y=﹣ x﹣ ,∵ac<0,bc<0,∴a•b>0,
∴﹣ <0,﹣ >0,故直线的斜率小于 0,在 y 轴上的截距大于 0,
故选 C.
练习:
1.若 a+b=0,则直线 y=ax+b 的图象可能是( )
A.
B.
C.
解:根据题意,得;
当 x=1 时,y=a+b=0,
(4)直线 y=kx+b(k≠0)与 x 轴的交点为(-kb,0),与 y 轴的交点为(0,b).
典例分析:
例 1:已知函数 y=(2m﹣1)x+1﹣3m,当 m 为何值时.
(1)这个函数为正比例函数; (2)这个函数为一次函数; 解:∵函数 y=(2m﹣1)x+1﹣3m, (3)函数值 y 随 x 的增大而减小(;1)当 1﹣3m=0,即 m= 时,这个函数为正比例函数; (4)这个函数图象与直线 y=x+(1 的2)交当点2m在﹣1x≠轴0,上即.m 时,这个函数为一次函数;
一次函数的图像和性质
学科:数学 教学内容:一次函数的图像和性质【基础知识精讲】 一、一次函数的图像1.正比例函数y=kx(k ≠0,k 是常数)的图像是经过O(0,0)和M(1,k)两点的一条直线(如图).(1)当k >0时,图像经过原点和第一、三象限;(2)k <0时,图像经过原点和第二、四象限.2.一次函数y=kx+b(k 是常数,k ≠0)的图像是经过A(0,b)和B(-k b,0)两点的一条直线,当kb ≠0时,图像(即直线)的位置分4种不同情况:(1)k >0,b >0时,直线经过第一、二、三象限,如图A (2)k >0,b <0时,直线经过第一、三、四象限,如图B (3)k <0,b >0时,直线经过第一、二、四象限,如图C (4)k <0,b <0时,直线经过第二、三、四象限,如图D3.一次函数的图像的两个特征(1)对于直线y=kx+b(k ≠0),当x=0时,y=b 即直线与y 轴的交点为A(0,b),因此b 叫直线在y 轴上的截距.(2)直线y=kx+b(k ≠0)与两直角标系中两坐标轴的交点分别为A(0,b)和B(-k b ,0).设直线与x 的夹角为α,则tg α=|k bb|=|k|,由于角α:0<α<90°,tg α>,因此|k|=tg α.4.一次函数的图像与直线方程(1)一次函数y=kx+b(k ≠0)的图像是一条直线,因此y=kx+b(k ≠0)也叫直线方程.但直线方程不一定都是一次函数.(2)与坐标轴平行的直线的方程.①与x 轴平行的直线方程形如:y=a(a 是常数).a >0时,直线在x 轴上方;a=0时,直线与x 轴重合;a <0时,直线在x 轴下方.(如图)②与y 轴平行的直线方程形如x=b(b 是常数),b >0时,直线在y 轴右方,b=0时,直线与y 轴重合;b <0时,直线在y 轴左方,(如图13-二、两条直线的关系1.与坐标轴不平行的两条直线l1:y1=k1x+b1,l2:y2=k2x+b,若l1若l2相交,则k 1≠k2;若k1≠k2,则l1与l2不平行,其交点是联立这两条直线的方程,求得的公共解.三、一次函数的增减性1.增减性如果函数当自变量在某一取范围内具有函数值随自变量的增加(或减少)而增加(或减少)的性质,称为该函数当自变量在这一取值范围内具有增减性,或称具有单调性.2.一次函数的增减性一次函数y=kx+b在x取全体实数时都具有如下性质:(1)k>0时,y随x的增加而增加;(2)k<0时,y随x的增加而减小.3.待定系数法求一次函数的解析式:若已知一次函数的图像(即直线)经过两个已在点A(x1,y1)和B(x2,y2)求这个一次函数的解析式,其方法和步骤是:(1)设一次函数的解析式:y=kx+b(k≠0)(2)将A、B两点的坐标代入所设函数的解析式,得两个方程:y1=k1x1+b①y 2=k2x2+b2②(3)联立①②解方程组,从而求出k、b值.这一先设系数k、b,从而通过解方程求系数的方法以称为待定系数法.【重点难点解析】例1已知一次函数y=(m+3)x+(4-n),(1)m为何值时,y随x的增大而减小;(2)n为何值时,函数的图像与y轴的交点x轴下方;(3)m、n为何值时,函数图像与y=x+2的图像平行.解:(1)当m+3<0,即m <-3时,y 随x 的增大而减小; (2)当4-n <0,即n >4时,函数的图像与y 轴的交点在x 下方; (3)当m+3=1且4-n ≠2时,即m=-2, n ≠2时,函数的图像是一条与y=x+2平行的直线.例2 当a 、b >0,ac <0,直线ax+by+c=0不通过哪个象限. 解:∵b ≠0 ∴由原函数式变形得:y=-b a x-b c∴ab >0 ∴-b a<0 又∵ac <0,∴-b c>0直线ax+by+c=0不通过第三象限.例3 直线l 1:y 1=k 1x+b 1 与y=2x 平行且通过A(3,4),直线l 2:y 2=k 2x+b 2通过B(1,3),C(-1,5),求l 1和l 2的解析式.解:∵y 1=k 1x+b 1与y=2x 平行且通过A(3,4)∴⎩⎨⎧=+=4b 3k 2k 111解这个方程组得:⎩⎨⎧==-2b 2k 11∴l 1的解析式为:y=2x-2∵y 2=k 2x+b 2通过B(1,3)和C(-1,5)两点,将两点的坐标代入解析式得:∴l 2的解析式为:y=-x+4例4 已知一个正比例函数和一个一次函数,它们的图像都经过P(-2,1),且一次函数在y 轴上的截距为3.(1)求这两个函数的解析式;(2)在同一坐标系中,分别画出两个函数的图像;(3)求这两个函数的图像与y 轴围成的三角形的面积.解:(1)设正比例函数和一次函数的解析式分别为y=k 1x 和 y=k 2x+b.由y=k 1x过点(-2,1)得1=-2k 1 ∴k 1=-21由y=k 2x+b 过点(-2,1),截距为3 得:b=3 -2k 2+b=1 解得:k 2=1 b=3(2)过点O(0,0)、P(-2,1)两点画一条直线,即得函数y=-21x 的图像.经过A(0,3)和P(-2,1)画一条直线即得y=x+3的直线,如图13-21(3)直线y=x+3与y 轴交于点A(0,3)过P 作PH ⊥y 轴,则OA=3,PH=|-2|=2,而函数与y 轴所围成的三角形面积即是△APO 的面积.S △APO=21·AO ·PH =21×3×2=3例5 已知y-(m-3)与x(m 是常数)成正比例,且 x=6时,y=1;x=-4时, y=-4.(1)求y 与x 之间的函数关系式;(2)在直角坐标系中,画出这个函数的图像;(3)求出这个函数的图像与坐标轴的两个交点之间的距离.解:∵y-(m-3)与x 成正比例 ∴可设y-(m-3)=kx,即y=kx+m-3①⎩⎨⎧-=+-=+1m k 44m k 6故所求函数关系式为:y=21x-2(2)经过A(6,1)和B(-4,-4)画直线即是函数y=21x-2的图像.如图13-22(3)当x=0时:y=21×0-2=-2 当y=0时,0=21x-2 x=4∴C(4,0),D(0,-2)|CD|=52242222=+=+OD OC综上所述5例可见,本节重点为:①根据直线所通过的点的条件求直线方程;②根据直线方程求作直线的图像;③根据增减性、截距求直线方程;④根据两直线的位置关系求直线方程;本节的难点是求直线围成的图形的面积.解决重难点的方法是运用待定系数法和数形结合的方法.【难题巧解点拨】例6 已知函数y=|x-a|+|x+19|+|x-a-96|,其中a 为常数,且满足19<a <96,当自变量x 的取值范围为a ≤x ≤96时,求y 的最大值.解:∵19<a <96,a ≤x ≤96∴x-a ≥0,x+19>10,x-a-96<0则y=x-a+x+19+a+96-x=115+x 函数y=15+x 是一次函数,其增减性表明y 随x 的增大而增大. ∴在a ≤x ≤96的x 取值范围内,当x=96时,y 取最大值,即: y max =96+115=211说明:含绝对值的函数首先要讨论绝对值的式子的正负性质,再根据绝对值定义化简,从而得到一次函数;讨论在某一自变量的取值范围内最大值或最小值要根据一次函数的性质和自变量x 范围的两端点取值来求.例7 如图13-23在平面直角坐标系中,点O ′的坐标为(0,3),⊙O ′与y 轴交于原点O 和点A ,又B 、C 、E 三点的坐标分别为(0,-2)、(4,0)、(x ,0),且0<x <4.(1)求点A 的坐标;(2)当点E 在线段OC 上移动时,直线BE 与⊙O ′有哪几种位置关系?(3)求出直线BE 与⊙O ′每种位置关系时,x 的取值范围.分析:直线与圆有三种位置关系,从直线与圆相切这种特殊情形,用运动变化的观点寻求结论成立的条件是解本题的关键.解:(1)∵O ′(0,3) ∴⊙′的半径为: OO ′=3,∴OA=2·OO ′=2×3=6,∴A(0,6)(2)∵点B 在⊙O ′外,BE 与⊙O ′有三种位置关系:相离、相切、相交; (3)当直线BE 与⊙O ′相切于D 点时,连结O ′D ,则△O ′BD 是Rt △. O ′D=3, O ′B=5,BD=4,OB=2,OE=x ∵△O ′BD ∽△EBO∴BD OB D O OE =' 即423=x ,解得:x=23故当23<x <4时,直线BE 与⊙O ′相离;当x=23时,直线BE 与⊙O ′相切.当0<x <23时,直线BE 与⊙O ′相交.例8 如图13-24,某航空公司托运行李的费用与托运行李重量的关系为一直线,由图中可知行李的重量不超过多少公斤,就可以免费托运?解:设直线方程为:y=kx+b (k 、b 是常数,k ≠0)由图可知:x=y=330;x=40时,y=630;把x,y 的对应取值代入直线方程,得:解这个方程组,得:k=30,b=-570 ∴直线方程为:y=30x-570 若y=0时,30x-570=0, ∴x=19答:只要行李重量不超过19公斤时,就可免费托运.【命题趋势分析】由于一次函数是最基本的函数内容,是初中重点之一,在实际中应用十分广泛,因此是中考热点考题.有关一次函数考试主要是概念、图像、性质三个基本内容和待定系数法、数形结合法两种数学方法.【典型热点考题】例9 填空题:已知直线l:y=-3x+2,现在4个命题:①点P(在直线l 上;②若直线l 与x 轴、y 轴分别交于A 、B 两点,则AB=1032;③若点M(31,1),N(a 、b)都在直线l 上,且a >31,则b >1;④若点Q 到两坐标轴的距离相等,且点Q 在l 上,则点Q 在第一或第四象限.其中正确的命题是 .(注意:在横线上填上你认为正确的命题序号)(厦门市中考题)分析:检验①:只需将x=1,y=-1代入函数式看是否适合,当x=1时,y=-3+2=-1,即P(在直线y=-3x+2上,①命题正确;检验②;当y=0时,求得x=32,即A(32,0),当x=0时,y=2,即B(0,2),∴AB=10322)32(22=+,命题②正确;检验③,若M(31,1),N(a,b)都在y=-3x+2上,根据直线的性质,k=-3<0,y 随x 的增加而减小,∴a >31时,应该有b <0,因此b >1错误,即命题③错误;检验④,∵Q 到两坐标轴的距离相等,设Q(m 、n),则|m|=|n|,且n=-3m+2,由此解得:⎩⎨⎧-==11n m 或⎪⎪⎩⎪⎪⎨⎧==2121n m 因此Q 点在第一或第四象限,命题④正确. 因此,选①、②、④填空.例10 某居民小区按照分期付款的形式福利售房,政府给予一定的贴息,小明家购得一套现价为10元的房子,购房时首期(第一年)付款30000元,从第二年起,以后每年应付房款5000元与上一年剩余欠款利息的和,设剩余欠款年利率为0.4%.(1)若第x(x ≥2)年小明家交付房款y 元,求年付款y(元)与x(年)的函数关系式;(2)将第三年,第十年应付房款填入下列表格中:(大连市中考题)分析:首期付款后共余10-30000=90000元房款,以后每年付款应为5000,与上一年所欠余款×0.4%,即余款的利息之和.解:(1)y=5000+[90000-5000(x-2)] ×0.4% =5400-x ≥2)(2)当x=3时,y=5340,当 x=10 时,y=5 因此第三年应付款5340元,第十年应付款5.例11 已知直线x-2y=-k+6和x+3y=4y+1,若它们的交点在第四象限内,(1)求k 的取值范围,(2)若k 为非负整数,点A 的坐标为(2,0),点P 在直线x-2y=-k+6上,求使△PAO 为等腰三角形的点P 的坐标.(西安市中考题)解:(1)依题意:解这个方程组,得:x=k+4,y=k-1 ∵两直线的交点在第四象限∴k+4>0,且k-1<0 解不等式组得:-4<k <1 (2)∵k 为非负整数,∴k=0∴直线x-2y=-k+6即为:y=x21-3设P(a ,b)为直线y=x21-3上一点,作PE ⊥x 轴,垂足为E ,若使PO=PA ,则应有OE=AE ,即E(1,0)∵a=1,∴b=-25∴P 1(1,- 25)若使PO=OA=2,则a 2+b 2=4,a 2+(21a-3)2=4,45a 2-3a+5=0, △=9-25<0此方程无解.若使PA=OA=2,则(2-a)2+b 2=4,(2-a)2+(21a-3)2=4, ∴45a 2-7a+9=0,a 1=2,a 2=518,当a 1=2时,b 1=-2,当a 2=518时 ,b 2=-56.∴P 2(2,-2)或P 3(518,56)综合上所述,点P 的坐标为(1,-25),(2,-2),(518,-56)如图13-25.【同步达纲练习】(时间:45分钟,满分:100分) 一、选择题(10分×6=60分)(1)一次函数y=kx+b 的图像经过点(m,-1)和点(1,m),其中,m <-1,则k 和b 满足的条件是( )A.k <0,b <0B.k >0,b >0C.k <0,b >0D.k >0,b <0 (2)若一次函数y=(1-2k)x-k(x 为自变量)的函数值y 随x 的增大而增大,且此函数的图像不经过第二象限,则k 的取值范围是( )A.k <21B.k >0C.0<k <21D.k <0或k >21(3)当mn <0 mp >0时,一次函数y=m n x pm的图像不经过的象限是( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 (4)一次函数y=kx+b 的图像如图13-26,那么k 、b 应满足的条件是( ) A.k >0,b >0 B.k >0,b <0 C.k <0,b >0 D.k <0,b <0(5)已知函数y=x k的图像经过点(-1,1),则函数y=kx+3的图像是( )(6)直线y=kx+b 与直线 y=-x 垂直,并且经过点(-1,1),那么直线y=kx+b 的解析式为( )A.y=-x-2B.y=x+2C.y=x-2D.y=-x+2二、解答题(10分×3=30分)(7)已知一次函数y=(3-k)x+2k+1.①如果它的图像经过(-1,2)点,求k 的值;②如果它的图像经过第一、二、四象限,求k 的取值范围.(8)已知y+b 与x-1(其中b 是常数)成正比例.①证明:y 是x 的一次函数;②若这个一次函数的图像经过点(25,0),且与坐标轴在第一象限内围成的三角形的面积为425,求这个一次函数,并画出它的图像.(9)已知一次函数y=(p+3)x+(2-q).①p 为什么实数时y 随x 的增大而增大?②q 为什么实数时,函数图像与y 轴的交点在x 轴的上方;③p 、q 为什么实数时,函数的图像过原点?(10)如图13-27,在直角坐标系中,点A(x 1,-3)在第三象限,点B(x 2,-1)在第四象限,线段AB 与y 轴交于点D ,∠AOB=90°,①当x 2=1时,求图像经过A 、B 的一次函数的解析式;②当△OAB 的面积等于9时,设∠AOD=α,求sin α·cos α的值.【素质优化训练】一个水池的容积是100m 3,现存水,今要灌满水池,已知进水管的流量是每小时8m 3,写出水池的水量υ与进水时间t 之间的函数关系式,并画出图像.【生活实际应用】某商场计划投入一笔资金采购一批紧俏商品,经过市场调查发现,如果月初出货,可获利15%,并可用本和利再投资其它商品,到月末又可获利10%;如果月末出售可获利30%,但要付出仓储费用,请问根据商场的资金状况,如何购销获利最多?【知识探究学习】求直线方程的几种方法:1.如图1,若l 与x 轴的夹角为α(0<α<90),直线与y 轴交于点(0,b),则直线l 方程即为:y=tg α·x+b2.若l 与x 的夹角为α(0<α<90),且经过点M(x 1,y 1),如图2,则直线l 的方程即可写为:αtg x x y y =--113.若l 经过A(x 1,y 1),B(x 2,y 2),则直线l 的方程即可写为:122122x x xx y y y y --=--参考答案:【同步达纲练习】一、A C D D C B二、(7)k=34,k>3,(8)①y=kx-(k+b)(k≠0);②y=-2x+5;(9)①P>-3,②q<2,③p≠3且q=2;(10)①y=21x-32;②sinα·cosα=61【素质优化训练】v=t(0≤t≤10)【生活实际应用】设商场投资x元,在月初出售,到月末可获得y1元,在月末出售可获利y2元.y1=0.265x,y2=0.3x-700(1) 当y1=y2时,x=0(2) y1<y2时,x>0(3) y1>y2时,x<。
一次函数的概念_图像和性质复习
一次函数的概念,图像和性质一次函数的概念 一般地,解析式形如y=kx+b(k,b 是常数,且0≠k )的函数叫做一次函数。
一次函数的定义域是一切实数。
当b=0时,y=kx (0≠k )是正比例函数。
一般地,我们把函数y=c (c 为常数)叫做常值函数。
Y=-1,π=y ,2)(=x f 都是常值函数。
二、一次函数的图像1.正比例函数y=kx (k ≠0,k 是常数)的图像是经过O (0,0)和M (1,k )两点的一条直线(如图13-17).(1)当k >0时,图像经过原点和第一、三像限;(2)k <0时,图像经过原点和第二、四像限.2.一次函数y=kx+b (k 是常数,k ≠0)的图像是经过A (0,b )和B (-kb,0)两点的一条直线,当kb ≠0时,图像(即直线)的位置分4种不同情况:(1)k >0,b >0时,直线经过第一、二、三像限,如图13-18A (2)k >0,b <0时,直线经过第一、三、四像限,如图13-18B (3)k <0,b >0时,直线经过第一、二、四像限,如图13-18C (4)k <0,b <0时,直线经过第二、三、四像限,如图13-18D3.一次函数的图像的两个特征(1)对于直线y=kx+b(k ≠0),当x=0时,y=b 即直线与y 轴的交点为A (0,b ),因此b 叫直线在y 轴上的截距.(截距有正负)(2)直线y=kx+b(k ≠0)与两直角标系中两坐标轴的交点分别为A (0,b )和B (-kb ,0).4.一次函数的图像与直线方程(1)一次函数y=kx+b(k≠0)的图像是一条直线,因此y=kx+b(k≠0)也叫直线方程.但直线方程不一定都是一次函数.(2)与坐标轴平行的直线的方程.①与x轴平行的直线方程形如:y=a(a是常数).a>0时,直线在x轴上方;a=0时,直线与x轴重合;a<0时,直线在x轴下方.(如图13-19)②与y轴平行的直线方程形如x=b(b是常数),b>0时,直线在y轴右方,b=0时,直线与y轴重合;b<0时,直线在y轴左方,(如图13-20).三、两条直线的关系1.与坐标轴不平行的两条直线 l1:y1=k1x+b1,l2:y2=k2x+b, 若l1与l2相交,则k 1≠k2,其交点是联立这两条直线的方程,求得的公共解; 若l1与l2平行,则k1= k2.四、一次函数的增减性1.增减性如果函数当自变量在某一取范围内具有函数值随自变量的增加(或减少)而增加(或减少)的性质,称为该函数当自变量在这一取值范围内具有增减性,或称具有单调性.2.一次函数的增减性一次函数y=kx+b在x取全体实数时都具有如下性质:(1)k>0时,y随x的增加而增加;(2)k<0时,y随x的增加而减小.3.用待定系数法求一次函数的解析式若已知一次函数的图像(即直线)经过两个已在点A(x1,y1)和B(x2,y2)求这个一次函数的解析式,其方法和步骤是:(1)设一次函数的解析式:y=kx+b(k≠0)(2)将A、B两点的坐标代入所设函数的解析式,得两个方程:y1=kx1+b①y2=kx2+b②(3)联立①②解方程组,从而求出k、b值.这一先设系数k、b,从而通过解方程求系数的方法以称为待定系数法.一次函数的图像和性质练习题题组一:1.正比例函数(0)y kx k =≠一定经过 点,经过(1), ,一次函数(0)y kx b k =+≠经过(0), 点,(0) ,点. 2.直线26y x =-+与x 轴的交点坐标是 ,与y 轴的交点坐标是 。
一次函数的图像和性质
3、一次函数y = kx + b的图象是什么图形?是通过 确定几个点来作一次函数y=kx+b的图象的呢?
y=kx+b的图象是一条直线;
两个点.
练习y=x+1 y=x-1
探索发现
对一次函数y=x+4,x依次取-3,-2,-1,0,1,2,3 逐渐增大的过程中,y的值是否也在增大? 对y=-x+4呢?
八年级(上 册 )
人教版 14.2.2
复习:
1、什么是一次函数?什么是正比例函数?它 们之间有何关系?
一般地,如果y=kx+b①(k、b是常数k≠0), 那么y叫做x的一次函数.当b=0时,①式为y=kx 是正比例函数.所以,正比例函数是一次函数的 特殊情况.
(3)y=2x-4 ( 0 , -4 ) ( 2,0 )
y=2x-3
将y =2x向下平移3个单位得到
-6
想一想: y=2x+ 在同一坐标系中画出y=2x,y=2x+2和y=2x-3的图象 y 2
y=2x+2可由y=2x向上平移2个单位得到
6
y=2x-3可由y =2x向下平移3个单位得到
那么:函数y=2x+b的图象是怎样得到的?
4
y=2x
b>0,向上平移;b<0,向下平移.
正比例函数的图象和性质
函数 解析式 自变量取值范围 图象的特征
图象的位置
正比例函数
y = k x (k≠0) 全体实数
经过(0,0) 和(1,k)两 点的一条 直线.
y
Ox
当k>0时,在一、三象限;
当k<0时,在二、四象限。
y
ox
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
y 0.5 x 2,当 3 x 3时,
0.5 y _____ 3.5 ____
5.在对于函数 y
则
-2
<
0.5 x 2 ,当 x < 0 .
2<y<3时,
1.一次函数y=kx+b的自变量x范围为
-3≤x≤6 ,相应的函数值-5≤y≤-2,
求这个函数的解析式
x 3 x 6 x 3 x 6 和 和 或 y 5 y 2 y 2 y 5
1. 当b>0时,直线交于y正半轴
2.当b<0时,直线交于y负半轴
y
0 y
x
3.当b = 0时,直线交于坐标原点 y 4.当 b 相等时,直 线交于y轴上同 一点 0
0 x
x
3.在对于函数
y 2 x ,当 5 1 x 2 时,
____ 3 y _____ 9
4.在对于函数
… -2 -1 0 1 2 … y=x+2 … -2+2 -1+2 0+2 1+2 2+2 …
y=x+2可由y=x向上平移2个单位得到 猜一猜:函数y=x-3的图象是怎样的?
将y =x向下平移3个单位得到
那么:函数y=x+b的图象是怎样得到的?
-4
-3
-2
· · · · · · ·o
2 1
-1
1
2
3
一次函数与正比例函数的图象与性质
图象 一 次 过点(0,b) 函 且平行于y=kx的一 条直线 数
y
y o
x
y
x
y
x
b
o
k>0 b>0 一、二、三 y随x的增 大而增大
b
b
k>0 b<0
o
o
b
k<0 b<0
x
( k≠0)
y=kx
y=kx+b
k,b的符号 经过象限 增减性
k<0 b>0 一、二、四 y随x的增 大而减少
1、什么叫正比例函数、一次函数?
它们之 间有什么关系 ?
2、 正比例函数的图象是什么形状? 3 、正比例函数的性质有哪些?
直线y=kx是过点(0,0)和(1,k)的一条直线
一次函数y=kx+b(k≠0)的图像是经过 b 点(,0) 和点(0,b)的一条直线 k
(0,6) 1.直线y 2 x 6与y轴的交点坐标为_______, 与x轴的交点 (3,0) 直线经过__________ 一,二,四 象限. 坐标为______,
一、三、四 y随x的增 大而增大
二、三、四 y随x的增 大而减少
正 比 1、图象是经过(0,0)与(1,k)的一条直线 例 函 2、当k>0时,图象过一、三象限;y随x的增大而增大。 数 当k<0时,图象过二、四象限;y随x的增大而减少。
1、下列函数中y的值随着x值的增大如何变化?
(1 ) y 10 x 9
3、将直线y=3x-1向右平移2个长度单位,求平 移后的函数解析式。
一次函数 y=kx+b k 决定直线的倾斜程度和方向
1. 当k>0时,y随x的增大而增大 2.当k<0时,y随x的增大而减少
y
0
x
y
3.当 k 相等时,直线平行
4.当 |k| 越大时,图象越靠近y轴 0 x
一次函数 y=kx+b b 决定直线与y轴交点位置
y = kx
请用平移的办法:在同一直角坐标系中画出y=-2x 和y = -2x + 1,y = - 2x - 3的图象
y=-2x
y
o
x y = -2x + 1
y = - 2x - 3
特性:当k相同时,两直线平行
y
o
y=kx+b
x
y=kx
归纳总结:
k>0 b>0
k>0 b<0 k<0 b>0 k<0 b<0
( 2 ) y 0 .3 x 2
(1)∵k=10>0 ∴y随着x的增大而增大
(2)∵k=-0.3<0 ∴y随着x的增大而减小
体验新知: 1 2、已知点(-1,a)和( 2 ,b)都在直线
方法二、 ∵K= ∴ Y随X的增大而增大 ∵-1< ∴ b
1 2
2 3
y
上,试 比较a和b的大小,你能想出几种判断的方法? >0
1、 一次函数y=kx+b的图象是一条直线
2、当k>0时 当k<0时
3 、 k > 0, b > 0
直线y=kx+b要经过一、三象限 y随x的增大而增大;
直线y=kx+b要经过二、四象限
y随x的增大而减小
k > 0, b < 0 k < 0, b > 0 k < 0, b < 0
一、二、三 一、三、四 一、二、四 二、三、四
y1 (1)对于函数 y 2 x+6 ,若 x2 x1 ,则 y2 ____
(2)对于函数 y
x1 ,则 若xx x y2 < y y x+6 ,若 2> 1,则 12 y1 2 ___
(3)对于函数y=ax+1,a
0 ,若x >x ,则y ___>y
2 1 2
1
(4)对于函数y=kx+b,若x2 >x1,则y2 >y1
一次函数y=kx+b的图象是一条直线,我们称它为直线y=kx+b 它可以看作由直线y=kx平移 ∣b∣个单位长度而得到 上 平移; (当b>0时,向___ 下 平移)。 当b<0时= kx+b b>0
x
y = kx+b b<0
o
(0,b)
b 0, 直线交y轴正半轴与点(0, b) b 0, 直线交y轴负半轴与点(0, b)
9 上题中此直线与坐标轴围成的三角形面积为____。
既然正比例函数是特殊的一次函 数,正比例函数的图象是直线,一次 函数的图象也是一条直线, 它们图 象之间有什么关系?一次函数又有什 么性质呢?
1、请大家在同一坐标系内用列表、描点、
连线作出下列函数y=x, y=x+2的图象。
x … -2 -1 0 1 2 … … -2 -1 0 1 2 … y=x y=x+2 … 0 1 2 3 4 …
4
5
x
-1
-2 -3 -4
b>0,向上平移;b<0,向下平移。
y=x-3
函数y=kx+b能由y=kx得到吗?
-5 -6
比较两个函数解析式,你能说出这两个函数图象有平 移关系的道理吗?
相同点: 1.这两个函数解析式都是自变量 y =k x +b x的 (常数)倍,与一个 常数的和。 不同点: y =k x 2.这两个函数解析式仅在 有区 别。 联系: 3.对于自变量x的任一值,这两个函数相应的y值总 相差 。
一、三、 二
一、三、四
二、一次函数 y = kx + b (k≠0) 经过象限:
二、四、 一 三 二、四、
1.看图象,确定一次函数y=kx+b(k≠0) 中k,b的符号。
y y y
o
x
o
x
o
x
k<0 b<0
k>0 b>0
k<0 b=0
2.已知一次函数y=kx+b(k≠0)中 ①k>0,b<0 ②k<0,b>0,试作草图。
y
.0
. . .
y=x+2 . . . . . y=x
2
2、观察与比较
.
x
1.说出函数y=x, y=x+2的图象的形状和位置关系。 2.能说出y=x+2的图象是直线的理由么?
在同一直角坐标系中画出y=x和y=x+2的图象 1、列表
x y=x … -2 -1 0 1 2 …
6 5 4 3
y=x+2 y y=x
y y
o
x
o
x
当k>0时 y
k
决 定 一 、 x 三 象 限
当k<0时
y
o y
o
决 定 二 、 x四 象 限
k
y
决 定 二 x、 四 象 限
b
o
o
决 定 一 x、 三 象 限
b
巩固练习:
1. 将直线y=-x+1向下平移2个单位,可得直线 2.直线y=2x-4的图象是由直线y=2x向 单位得到。 3.将直线 平移 。 个
例3 已知一次函数 y=(1-2m)x+m-1 , 求满足下 列条件的m的值:
1 (1)函数值y 随x的增大而增大; m 2 (2)函数图象与y 轴的负半轴相交;m 1且m 1 2 1 (3)函数的图象过第二、三、四象限; m 1 2 (4)函数的图象过原点。 m 1
(1)下列函数中,y的值随x值的 增大而增大的函数是________. C A.y=-2x B.y=-2x+1 C.y=x-2 D.y=-x-2 (2)直线y=3x-2可由直线y=3x向 下 平 移 2 单位得到。 (3)直线y=x+2可由直线y=x-1向 移 3 单位得到。
2 x3 3
a <
y
2 y x 3 上 在直线 3 1 ∴当x=-1时 当x= 2 时 2 1 2 ∴ a= 3 ×(-1)+3 ,b= × 2 3
方法一、 1 ∵点(-1,a)和( 2 , b)