路径问题
车辆路径问题的求解方法
车辆路径问题的求解方法
车辆路径问题是指在给定的地图或路网上,寻找一条最优路径或最短路径,使得车辆从起点到终点能够在最短时间或最小代价内到达目的地。
常见的车辆路径问题包括最短路问题、最小生成树问题、最优化路径问题等。
以下是常见的车辆路径问题的求解方法:
1. Dijkstra算法:Dijkstra算法是求解单源最短路径问题的经典算法,它通过不断更新起点到各个节点的最短距离来求解最短路径。
该算法适用于路网较小的情况。
2. Floyd算法:Floyd算法是一种求解任意两点间最短路径的算法,它通过动态规划的思想,逐步计算出任意两点之间的最短路径。
该算法适用于路网较大的情况。
3. A*算法:A*算法是一种启发式搜索算法,它通过估计每个节点到终点的距离,来选择最优的扩展节点。
该算法适用于需要考虑路况等因素的情况。
4. 蚁群算法:蚁群算法是一种模拟蚂蚁觅食行为的算法,它通过模拟蚂蚁在路径上的行走过程,来寻找最优路径。
该算法适用于需要考虑多个因素的情况。
5. 遗传算法:遗传算法是一种模拟生物进化过程的算法,它通过不断交叉、变异、选择等操作,来寻找最优解。
该算法适用于需要考虑多个因素的情况。
以上是常见的车辆路径问题的求解方法,不同的问题需要选择不同的算法来求解。
专题训练之最短路径问题(最全面的经典例题)
最短路径问题1、①如右图是一个棱长为4的正方体木块,一只蚂蚁要从木块的点面爬到点B处,则它爬行的最短路径是 _______________ 。
②如右图是一个长方体木块,已知AB=3,BC=4,CD=2假设一只蚂蚁在点A处, 它要沿着木块侧面爬到点D处,则蚂蚁爬行的最短路径是____________________ 。
2、①如图,要在河边修建一个水泵站,分别向张村、李庄送水,水泵站修在河边什么地方可使所用的水管最短。
*李庄张村.②如图,直线L同侧有两点A B,已知A、B到直线L的垂直距离分别为1和3, 两点的水平距离为3,要在直线L上找一个点P,使PA+PB勺和最小。
请在图中找出点P的位置,并计算PA+P啲最小值。
.BA■_____________________ L③要在河边修建一个水泵站,向张村、李庄铺设管道送水,若张村、李庄到河边的垂直距离分别为1Km和3Km张村与李庄的水平距离为3Km则所用水管最短长度为。
A沿木块侧A B是一个长方体木块,已知 AB=5,BC=3,CD=4假设一只蚂蚁在点A D 处,则蚂蚁爬行的最短路径是2、 现要在如图所示的圆柱体侧面 A 点与B 点之间缠一条金丝带(金丝带的宽度忽略不计),圆柱体高为6cm 底面圆周长为16cm ,则所缠金丝带长度的最小值 为 。
3、 如图是一个圆柱体木块,一只蚂蚁要沿圆柱体的表面从 A 点爬到点B 处吃到 食物,知圆柱体的高为5 cm ,底面圆的周长为24cm 则蚂蚁爬行的最短路径为 。
5、 在菱形ABCD 中 AB=2 / BAD=60,点E 是AB 的中点,P 是对角线 AC 上的一个动点,贝S PE+PB 勺最小值为 ___________ 。
6、 如图,在△ ABC 中, AC= BC= 2,Z ACB= 90°, D 是 BC 边的中点,E 是 AB 边 上一动点,则EO ED 的最小值为 ____________ 。
第21讲 最短路径问题
第21讲 最短路径问题一、方法剖析与提炼引例:如图,A 、B 是笔直公路l 同侧的两个村庄,且两个村庄到直路的距离分别是300m 和500m ,两村庄之间的距离为d(已知d 2=400000m 2),现要在公路上建一汽车停靠站,使两村到停靠站的距离之和最小,则最小距离为___________m 。
【解答】1000。
【解析】如图,作点B 关于公路l 的对称点B′,连接AB′交公路于点C ,CA+CB最短距离就是AB′的长度。
根据勾股定理可以求得AB′=1000m 。
【解法】同侧的两点,通过轴对称变换成异侧,利用两点之间线段最短确定最小距离。
【解释】通过生活中的实际例子,让学生感受最短路径来源于生活,并引出求最短路径常用的方法,利用轴对称变换找对称点及两点之间线段最短(即饮马问题)。
学习时可作如下归纳:(1)在初中范围内和边的不等量有关的知识有哪些,引出两点之间线段最短,三角形两边之和大于第三边;(2)在此图中哪种变换方式比较适合将马路同侧的两条线段变换到异侧,并且保持线段长度不变,旨在复习轴对称、平移、旋转等变换特点;(3)在移动变换中,有没有可能将两条线段置于共线的情形,即最短路径。
例1:已知正方形ABCD 的边长为8,M 在DC 上,且DM=2,N 是AC 上一动点,求DN+MN 的最小值。
【解答】连结BD 交AC 于点O ,根据正方形的对称性可知,B 点即为D 的对称点。
连结BM 交AC 于点N ,则BM 的值为DN+MN 的最小值。
所以BM=10。
【解析】如图,点B 即为点D 关于AC 的对称点,连接BM ,BM 的长度即为DN+MN的最小距离。
在Rt△BCM 中,根据勾股定理可求得BM=10。
【解法】此题 DN ,MN 这两条线段中,M ,D 两点固定,只有N 一个点是移动的,故只需确定点N ,使得距离之和最短即可。
【解释】此例从最基本的图形出发,让学生易于接受,敢于探索。
学生依据正方形自身拥有的轴对称性找到对称点,将同侧两条线段利用翻折变成异侧的两条线段,利用两点之间线段最短找到最短路径。
轴对称最短路径问题7种类型
轴对称最短路径问题7种类型
轴对称最短路径问题是一种经典的计算几何问题,其目标是在给定图形中找到从起点到终点的最短路径。
根据不同的条件和限制,轴对称最短路径问题可以分为以下七种类型:
1. 简单轴对称最短路径问题:给定一个轴对称图形,起点和终点分别位于对称轴的两侧,求最短路径。
2. 带有障碍物的轴对称最短路径问题:在轴对称图形中存在一些障碍物,起点和终点在障碍物两侧,求最短路径。
3. 多个起点和终点的轴对称最短路径问题:给定多个起点和终点,每个起点和终点都在对称轴的两侧,求所有起点到所有终点的最短路径。
4. 带有权值的轴对称最短路径问题:在轴对称图形中,不同的点或边具有不同的权值,求起点到终点的最短路径。
5. 动态规划解决轴对称最短路径问题:使用动态规划算法解决轴对称最短路径问题,将问题分解为子问题,逐步求解。
6. A*搜索算法解决轴对称最短路径问题:使用A*搜索算法,通过估价函数指导搜索方向,加速求解速度。
7. 双向搜索解决轴对称最短路径问题:从起点和终点同时进行搜索,通过比较两个方向的搜索结果得到最短路径。
以上七种类型是轴对称最短路径问题的常见分类,每种类型都有其特定的解决方法,需要根据具体问题的特点选择合适的方法进行求解。
最短路径问题例题与讲解
13.4 课题学习最短路径问题1.最短路径问题(1)求直线异侧的两点与直线上一点所连线段的和最小的问题,只要连接这两点,与直线的交点即为所求.如下图,点A,B分别是直线l异侧的两个点,在l上找一个点C,使CA+CB最短,这时点C是直线l与AB的交点.(2)求直线同侧的两点与直线上一点所连线段的和最小的问题,只要找到其中一个点关于这条直线的对称点,连接对称点与另一个点,则与该直线的交点即为所求.如下图,点A,B分别是直线l同侧的两个点,在l上找一个点C,使CA+CB最短,这时先作点B关于直线l的对称点B′,则点C是直线l与AB′的交点.为了证明点C的位置即为所求,我们不妨在直线上另外任取一点C′,连接AC′,BC′,B′C′,证明AC+CB<AC′+C′B.如下:证明:由作图可知,点B和B′关于直线l对称,所以直线l是线段BB′的垂直平分线.因为点C与C′在直线l上,所以BC=B′C,BC′=B′C′.在△AB′C′中,AB′<AC′+B′C′,所以AC+B′C<AC′+B′C′,所以AC+BC<AC′+C′B.【例1】在图中直线l上找到一点M,使它到A,B两点的距离和最小.分析:先确定其中一个点关于直线l的对称点,然后连接对称点和另一个点,与直线l的交点M即为所求的点.解:如下图:(1)作点B关于直线l的对称点B′;(2)连接AB′交直线l于点M.(3)则点M即为所求的点.点拨:运用轴对称变换及性质将不在一条直线上的两条线段转化到一条直线上,然后用“两点之间线段最短”解决问题.运用轴对称及两点之间线段最短的性质,将所求线段之和转化为一条线段的长,是解决距离之和最小问题的基本思路,不管题目如何变化,运用时要抓住直线同旁有两点,这两点到直线上某点的距离和最小这个核心,所有作法都相同.警误区利用轴对称解决最值问题应注意题目要求根据轴对称的性质、利用三角形的三边关系,通过比较来说明最值问题是常用的一种方法.解决这类最值问题时,要认真审题,不要只注意图形而忽略题意要求,审题不清导致答非所问.3.利用平移确定最短路径选址选址问题的关键是把各条线段转化到一条线段上.如果两点在一条直线的同侧时,过两点的直线与原直线的交点处构成线段的差最大,如果两点在一条直线的异侧时,过两点的直线与原直线的交点处构成的线段的和最小,都可以用三角形三边关系来推理说明,通常根据最大值或最小值的情况取其中一个点的对称点来解决.解决连接河两岸的两个点的最短路径问题时,可以通过平移河岸的方法使河的宽度变为零,转化为求直线异侧的两点到直线上一点所连线段的和最小的问题.在解决最短路径问题时,我们通常利用轴对称、平移等变换把不在一条直线上的两条线段转化到一条直线上,从而作出最短路径的方法来解决问题.【例2】如图,小河边有两个村庄A,B,要在河边建一自来水厂向A村与B村供水.(1)假设要使厂部到A,B村的距离相等,则应选择在哪建厂?(2)假设要使厂部到A,B两村的水管最短,应建在什么地方?分析:(1)到A,B两点距离相等,可联想到“线段垂直平分线上的点到线段两端点的距离相等”,又要在河边,所以作AB的垂直平分线,与EF的交点即为符合条件的点.(2)要使厂部到A村、B村的距离之和最短,可联想到“两点之间线段最短”,作A(或B)点关于EF的对称点,连接对称点与B点,与EF的交点即为所求.解:(1)如图1,取线段AB的中点G,过中点G画AB的垂线,交EF于P,则P到A,B的距离相等.也可分别以A、B为圆心,以大于12AB 为半径画弧,两弧交于两点,过这两点作直线,与EF 的交点P 即为所求.(2)如图2,画出点A 关于河岸EF 的对称点A ′,连接A ′B 交EF 于P ,则P 到A ,B 的距离和最短.【例3】 如图,从A 地到B 地经过一条小河(河岸平行),今欲在河上建一座与两岸垂直的桥,应如何选择桥的位置才能使从A 地到B 地的路程最短?思路导引:从A 到B 要走的路线是A →M →N →B ,如下图,而MN 是定值,于是要使路程最短,只要AM +BN 最短即可.此时两线段应在同一平行方向上,平移MN 到AC ,从C 到B 应是余下的路程,连接BC 的线段即为最短的,此时不难说明点N 即为建桥位置,MN 即为所建的桥.解:(1)如图2,过点A 作AC 垂直于河岸,且使AC 等于河宽.(2)连接BC与河岸的一边交于点N.(3)过点N作河岸的垂线交另一条河岸于点M.则MN为所建的桥的位置.4.生活中的距离最短问题由两点之间线段最短(或三角形两边之和大于第三边)可知,求距离之和最小问题,就是运用等量代换的方式,把几条线段的和想方法转化在一条线段上,从而解决这个问题,运用轴对称性质,能将两条线段通过类似于镜面反射的方式转化成一条线段,如图,AO+BO=AC的长.所以作已知点关于某直线的对称点是解决这类问题的基本方法.【例4】(实际应用题)茅坪民族中学八(2)班举行文艺晚会,桌子摆成如图a所示两直排(图中的AO,BO),AO桌面上摆满了橘子,OB桌面上摆满了糖果,站在C处的学生小明先拿橘子再拿糖果,然后到D处座位上,请你帮助他设计一条行走路线,使其所走的总路程最短?图a 图b解:如图b.(1)作C点关于OA的对称点C1,作D点关于OB的对称点D1,(2)连接C1D1,分别交OA,OB于P,Q,那么小明沿C→P→Q→D 的路线行走,所走的总路程最短.利用轴对称和三角形的三边关系是解决几何中的最大值问题的关键.先做出其中一点关于对称轴的对称点,然后连接对称点和另一个点,所得直线与对称轴的交点,即为所求.根据垂直平分线的性质和三角形中两边之差小于第三边易证明这就是最大值.破疑点解决距离的最值问题的关键运用轴对称变换及三角形三边关系是解决一些距离的最值问题的有效方法.【例5】如下图,A,B两点在直线l的两侧,在l上找一点C,使点C到点A、B的距离之差最大.分析:此题的突破点是作点A(或B)关于直线l的对称点A′(或B′),作直线A′B(AB′)与直线l交于点C,把问题转化为三角形任意两边之差小于第三边来解决.解:如下图,以直线l为对称轴,作点A关于直线l的对称点A′,A′B的连线交l于点C,则点C即为所求.理由:在直线l上任找一点C′(异于点C),连接CA,C′A,C′A′,C′B.因为点A,A′关于直线l对称,所以l为线段AA′的垂直平分线,则有CA=CA′,所以CA -CB=CA′-CB=A′B.又因为点C′在l上,所以C′A=C′A′.在△A′BC′中,C′A-C′B=C′A′-C′B<A′B,所以C′A′-C′B<CA-CB.点拨:根据轴对称的性质、利用三角形的三边关系,通过比较来说明最值问题是常用的一种方法.。
临床路径存在问题及整改措施
《临床路径存在问题及整改措施》临床路径作为一种医疗管理工具,旨在规范医疗服务流程,提高医疗质量,控制医疗成本,保障患者权益。
然而,在实际应用中,临床路径也面临着诸多问题,如实施效果不理想、缺乏有效监管、与实际情况脱节等。
本文将深入探讨临床路径存在的问题,并提出相应的整改措施,以期为临床路径的有效实施和完善提供参考。
一、临床路径存在的问题(一)认识不足,重视不够部分医疗机构和医务人员对临床路径的重要性认识不足,缺乏对其内涵和意义的深入理解。
认为临床路径只是一种形式主义的管理手段,未能将其与提高医疗质量、优化医疗服务紧密结合起来。
在实施过程中,存在敷衍了事、走过场的现象,未能真正发挥临床路径的作用。
(二)缺乏系统性规划和管理临床路径的实施需要医院各部门的协同配合,包括医疗、护理、医技、管理等多个方面。
但现实中,往往存在各部门之间交流不畅、协调不力的问题。
缺乏系统性的规划和管理,导致临床路径的制定、实施、监测和评估等环节衔接不紧密,无法形成有效的管理闭环。
(三)临床路径制定不合理临床路径的制定是实施临床路径的基础,但在实际工作中,存在临床路径制定不合理的情况。
路径过于僵化,未能充分考虑患者的个体差异和病情变化,导致在实际应用中难以执行或影响患者的治疗效果;另路径制定缺乏科学性和合理性,没有经过充分的论证和验证,缺乏临床实践的支持。
(四)信息化建设滞后信息化是临床路径顺利实施的重要保障,但目前许多医疗机构的信息化建设水平滞后,无法满足临床路径管理的需求。
缺乏统一的信息化评台,无法实现临床路径信息的实时采集、传输和共享;医疗信息系统与临床路径系统之间缺乏有效的对接,导致数据录入不及时、不准确,影响临床路径的监测和评估。
(五)缺乏有效监督和考核机制临床路径的实施需要建立有效的监督和考核机制,以确保其顺利推进和有效执行。
但现实中,往往存在监督和考核机制不完善的问题。
缺乏对临床路径实施过程的实时监控和评估,无法及时发现问题并进行整改;考核指标不科学、不合理,无法准确反映临床路径的实施效果,导致医务人员缺乏积极性和主动性。
初中最短路径问题7种类型
初中最短路径问题7种类型初中最短路径问题7种类型最短路径问题是离散数学中一个重要的研究领域,其应用广泛,包括交通路线规划、网络优化等。
对于初中学生来说,了解和掌握最短路径问题,有助于培养他们的逻辑思维和解决问题的能力。
下面将介绍初中最短路径问题的七种类型。
1. 单源最短路径问题单源最短路径问题是指在一个给定的加权有向图中,从一个确定的源点出发,求到其他所有顶点的最短路径。
这个问题可以通过使用迪杰斯特拉算法或贝尔曼-福特算法来求解。
通过学习和理解这些算法,学生可以逐步掌握寻找最短路径的基本方法。
2. 多源最短路径问题多源最短路径问题是指在一个给定的加权有向图中,求任意两个顶点之间的最短路径。
这个问题可以通过使用佛洛依德算法来解决。
学生可以通过了解和实践佛洛依德算法,掌握多源最短路径问题的求解方法。
3. 无权图最短路径问题无权图最短路径问题是指在一个无向无权图中,求从一个顶点到其他所有顶点的最短路径。
这个问题可以通过使用广度优先搜索算法来解决。
学生可以通过学习广度优先搜索算法,了解和掌握无权图最短路径问题的解决方法。
4. 具有负权边的最短路径问题具有负权边的最短路径问题是指在一个给定的加权有向图中,存在负权边,求从一个顶点到其他所有顶点的最短路径。
这个问题可以通过使用贝尔曼-福特算法来解决。
学生可以通过了解和实践贝尔曼-福特算法,理解和应用具有负权边的最短路径问题。
5. 具有负权环的最短路径问题具有负权环的最短路径问题是指在一个给定的加权有向图中,存在负权环,求从一个顶点到其他所有顶点的最短路径。
这个问题可以通过使用贝尔曼-福特算法的改进版来解决。
学生可以通过学习和理解贝尔曼-福特算法的改进版,解决具有负权环的最短路径问题。
6. 具有边权和顶点权的最短路径问题具有边权和顶点权的最短路径问题是指在一个给定的加权有向图中,除了边权之外,还考虑了顶点的权重,求从一个顶点到其他所有顶点的最短路径。
这个问题可以通过使用约翰逊算法来解决。
最短路径的十二个基本问题
两点之间线段最短. PA+PB 最小值为 A B'.
原理
分别作点 P 关于两直 线的对称点 P'和 P'', 在直线 l1 、l2 上分别求 连 P'P'',与两直线交 点 M、N,使△PMN 的 点即为 M,N. 周长最小.
两点之间线段最短. PM+MN+PN 的最小值为 线段 P'P''的长.
【十二个基本问题】
【问题 1】
作法
图形
原理
连 AB,与 l 交点即为
P.
在直线 l 上求一点 P,
使 PA+PB 值最小.
【问题 2】“将军饮马”
作法
作 B 关于 l 的对称点
B'连 A B',与 l 交点
在直线 l 上求一点 P,
即为 P.
使 PA+PB 值最小.
【问题 3】
作法
图形 图形
两点之间线段最短. PA+PB 最小值为 AB.
原理
将点 A 向下平移 MN 的
长度单位得 A',连 A'
B,交 n 于点 N,过 N 作
直线 m ∥ n ,在 m 、n , NM⊥ m 于 M.
上分别求点 M、N,使
MN⊥ m ,且 AM+MN+BN
的值最小.
【问题 6】
作法
图形
将点 A 向右平移 a 个
长度单位得 A',作 A'
关于 l 的对称点 A'',连 在直线 l 上求两点 M、N
对称点 B',连 A'B' l2 上一定点,在 l2 上求 交l2 于 M,交 l1 于 N.
点 M,在 l1 上求点 N,
使 AM+MN+NB 的 值 最
小.
最短路径问题专项练习题
最短路径问题专项练习题最短路径问题专项练,包括蚂蚁沿正方体、长方体、圆柱、圆锥外侧面吃食问题以及线段最短问题。
原理是两点之间,线段最短;垂线段最短,可以通过构建“对称模型”实现转化。
最短路径问题指的是在给定的图中,找到从一个起点到达一个终点的最短路径。
其中,线段最短问题可以分为同侧和异侧两种情况。
对于异侧的情况,只需要连接这两点,与直线的交点即为所求;对于同侧的情况,需要找到其中一个点关于这条直线的对称点,连接对称点与另一个点,则与该直线的交点即为所求。
证明时可以利用轴对称变换及性质将不在一条直线上的两条线段转化到一条直线上,然后用“两点之间线段最短”解决问题。
解决最值问题时,利用轴对称的性质和三角形的三边关系是常用的方法。
但在应用中,要注意审题,不要只关注图形,而忽略题意要求,以免答非所问。
选址问题的关键是将各条线段转化为一条线段。
根据三角形的三边关系,如果两点在一条直线的同侧,则过两点的直线与原直线的交点处构成线段的差最大;如果两点在一条直线的异侧,则过两点的直线与原直线的交点处构成的线段的和最小。
根据最大值或最小值的情况,可以选择其中一个点的对称点来解决问题。
解决连接河两岸的两个点的最短路径问题时,可以通过平移河岸的方法使河的宽度变为零,转化为求直线异侧的两点到直线上一点所连线段的和最小的问题。
因此,在解决最短路径问题时,可以利用轴对称、平移等变换将不在一条直线上的两条线段转化为一条直线上,从而解决问题。
例2中,要使厂部到A、B两点距离相等,可以作AB的垂直平分线与EF的交点。
要使厂部到A、B两村的水管最短,可以作A(或B)点关于EF的对称点,连接对称点与B点,与EF的交点即为所求。
例3中,要使从A到B的路程最短,只要AM+BN最短。
因此,可以将MN平移至AC,使两线段在同一平行方向上,连接BC的线段即为最短的,此时点N即为建桥位置,XXX即为所建的桥。
精品资料整理范文范例研究参考1.桥的建造如图2所示,建造一座桥,过点A作AC垂直于河岸,使AC等于河宽。
最短路线问题大全
1、有一个牧马人带着马群从营房A点出发,到草地MN放牧。
傍晚到营房B之前先带马群到小河PQ去给马饮水,如图1所示。
想一想:牧人应该走哪一条路线,才能使整个放牧的路程(即从A→MN→PQ→B)最短?2、如图所示,一只壁虎要从一面墙壁α上A点,爬到邻近的另一面墙壁β上的B点捕飞蛾,它可以沿许多路径到达,请你为它选择一条最近的路线。
3、如图所示,有一只圆柱形的无盖铁桶。
有一只蚂蚁要从桶外的A点爬到桶内的B点去寻找食物,已知A点沿母线到桶口C点的距离是12厘米,B点沿母线到桶口D点的距离是8厘米,而C、D两点之间的弧长是15厘米。
如果蚂蚁爬行的是最短的路线,它应该怎样爬?最短的路程是多少厘米?4.如图18所示,A、E为长方体同一条棱上的两个顶点,且AE=8厘米,底面是边长为2厘米的正方形,B、C、D到底面的距离分别为2厘米、4厘米、6厘米,连接AB、BC、CD、DE,则折线ABCDE是以A点为起点,以E为终点绕棱柱侧面一周最短和路线,请说明其中的理由。
3、在直角坐标系中有两个点D(1,-3),E(-1,-4),在y轴上确定一个点Q,使Q到D E 的距离和最短,求Q点的坐标。
4、已知一直线与X轴交于A(4,0)交y轴于B,且过点D(3,1),OA的中点为C。
①写出直线AB的函数关系式②在y轴上确定一点P,使PC+PD5.已知,正方形ABCD的边长为2,E为AB的中点,P为AC上的动点,求PB PE的最小值是多少。
6.(2009抚顺)如图所示,正方形ABCD 的面积为12,ABE △是等边三角形,点E 在正方形ABCD 内,在对角线AC 上有一点P ,使PD PE +的和最小,求这个最小值。
7、(2009荆门)一次函数y kx b =+的图象与x 、y 轴分别交于点A (2,0),B (0,4). (1)求该函数的解析式;(2)O 为坐标原点,设OA 、AB 的中点分别为C 、D ,P 为OB 上一动点, 求PC +PD 的最小值,并求取得最小值时P 点坐标.ADEPB CE DCB A8.如图,C 为线段BD 上一动点,分别过点B 、D 作AB ⊥BD,ED ⊥BD,连接AC 、EC.已知AB=5,DE=1,BD=8,设CD=x.(1)用含x 的代数式表示AC +CE 的长;(2)请问点C 满足什么条件时,AC +CE 的值最小?并求出最小值。
《最短路径问题》课件
A A1
符合条件的路径,并标明桥的位置.
ll12
l3 B1 l4 B
课堂小结
最
短
A∙
路 径
造桥选址问题
M
问
A′
a b
题
N
∙B
即AM+NB+MN的值最小.
M′ a M
b
N′
N
∙B
新知探究 跟踪训练
如图,从A地到B地要经过一条小河(河的两岸平行), 现要在河上建一座桥(桥垂直于河的两岸),应如何 选择桥的位置才能使从A地到B地的路程最短?
A
B
解:(1)如图,过点A作AC垂直于河岸,且使得AC的 长等于河宽; (2)连接BC,与河岸GH相交于点N,且过点N作 MN⊥EF于点M,则MN即为所建桥的位置. A
点N,点A移动到点A′,则AA′=MN,AM+NB=A′N+NB.此
时问题转化为,当点N在直线b的什么位置时,A′N+ NB的值最小.A∙ M
a
A′
b
N
∙B
如图,连接A′,B,线段A′B最短.因此,线段A′B与直线 b的交点即为所求的点N的位置,即在此处造桥MN,所 得路径AMNB是最短的.
A∙ M
《最短路径问题》
知识回顾
1.两点一线型.
如图,点A,B分别是直线l异侧的两个点,在直线l上找
一点C,使得AC+BC的值最小,此时点C就是线段AB与
直线l的交点.
A
C
l
B
1.两点一线型.
如图,点A,B是直线l同侧的两
B
点,在直线l上找一点C使得
A
AC+BC的值最小,这时先作点B
八年级上册最短路径难题讲解
八年级上册最短路径难题讲解
八年级上册最短路径问题是一个重要的数学问题,涉及到图论和几何知识。
以下是几个经典的最短路径问题及相应的解题思路:
1. 将军饮马问题:两个将军分别在河的两岸,他们想要到河的对面饮马。
河水流速很快,不能逆流而上。
他们应该选择怎样的路径才能使其中一位将军到河对岸的总时间最短?
解题思路:在这种情况下,两个将军都可以选择直接过河,但是这样会花费较长的时间。
为了使总时间最短,他们可以选择在河岸的某一位置相遇,然后一起走到河对岸。
这样,他们可以节省掉单独过河的时间。
2. 造桥选址问题:有两个人分别在河的两岸,他们想要通过建造一座桥来互相通行。
为了使造桥的成本最低,他们应该选择怎样的桥址?
解题思路:在这种情况下,最短的路径就是直接在两岸之间建造一座桥。
因此,他们应该选择在河的中心建造桥,这样可以使得桥的长度最短,同时也可以节省造桥的成本。
3. 费马点问题:在三角形中,任意选取三个点,要求找到一个点到其他三个点的距离之和最短的位置。
解题思路:首先,我们可以将这个问题转化为求三角形三个顶点的中点。
然后,我们可以利用三角形的性质来证明这个结论。
具体来说,我们可以证明任意一个点到其他三个点的距离之和都大于等于三角形三个顶点的中点到其他三个点的距离之和,当且仅当这个点是三角形三个顶点的中点时取等号。
因此,三角形的费马点就是其三个顶点的中点。
以上是最短路径问题的几个经典例子及相应的解题思路。
通过这些例子,我们可以了解到最短路径问题的基本概念和方法,以及如何利用几何和图论的知识来解决这些问题。
车辆路径问题
14.2 单中心非满载送货车辆路径问题启发式算法
14.2.1 禁忌搜寻法简介
5. 停止准则 停止准则是整个演算过程结束的条件,通常使用以下四种准则: (1)预设最大迭代次数; (2)目标函数值持续未改善的次数; (3)预设允许CPU最长的执行时间; (4)预设可接受的目标函数值。
禁忌搜寻法的主要步骤
14.2 单中心非满载送货车辆路径问题启发式算法
14.2.1 禁忌搜寻法简介
4. 免禁准则 当一个移步为禁忌,但是若此一移步被允许,可以使得目前所搜寻到的目标函数值得以改善时,则接受此一移步,免禁准则的目的就是用来释放原本禁忌的状态,在求解过程中能逃脱局部最优解的局限。
14.1 物流配送车辆优化调度的概述
目前有关VRP的研究已经可以表示为:给定一个或多个中心(中心车库)一个车辆集合和一个顾客集合,车辆和顾客各有自己的属性,每辆车都有容量,所载的货物不能超过它的容量。
地址特性包括:车场数目、需求类型、作业要求。 车辆特性包括:车辆数量、载重量约束、可运载品种约束、运行路线约束、工作时间约束。 问题的其他特性。 目标函数可能是总成本极小化,或者极小化最大作业成本,或者最大化准时作业。
14.2 单中心非满载送货车辆路径问题启发式算法
14.2.2 问题描述与符号表示
问题中的参数做以下定义: V:需求点集合 O:物流配送中心 K:货车的容量 qi:配送点i的需求量 cij:配送点i到配送点j的距离
添加标题
14.1 物流配送车辆优化调度的概述
旅行商问题
带容量约束的车辆路线问题
带时间窗的车辆路线问题
收集和分发问题
多车型车辆路线问题
优先约束车辆路线问题
八下数学最短路径问题典型题
八下数学最短路径问题典型题好嘞,今天我们聊聊八下数学里的最短路径问题。
听起来有点高大上,但其实就是想在迷宫里找到最快的路。
想象一下,你在一个热闹的游乐园里,周围都是五彩斑斓的游乐设施。
你想去坐过山车,但不知道该走哪条路。
这个时候,最短路径问题就像是你的游乐园导航,让你快速找到目的地,省时又省力,真是个好帮手。
最短路径问题啊,简单来说,就是在一堆点和线中,找到从一个点到另一个点的最短路线。
比如说你在学校,老师让你去图书馆借书。
你知道从教室到图书馆的路,但你得想想,走哪个小道能更快到达。
这里面就涉及到一个数学概念,叫做“权重”。
每条路的长度就像是给每个小道打了分,越短的路,分数越低,明白吧?这就像你在买东西,看到打折的信息,总想着哪个更便宜,哪个更划算。
再说说实际应用。
咱们的生活中到处都有最短路径的问题。
想象一下,你周末想和朋友约着去吃火锅,结果发现从家里到火锅店的路上堵车,那可是让人心急如焚。
你就得琢磨琢磨,换条路走,甚至还得看看哪个路口有新开的餐厅。
这个时候,最短路径的问题就变得尤为重要。
怎么解决这个问题呢?有几种方法,其中一种叫“Dijkstra算法”。
别听名字复杂,其实就是个聪明的家伙,能帮助你一步一步找到最短路径。
你可以把它想象成一个耐心的导游,带着你从起点出发,看到每一个可以选择的方向,挑最短的走。
一路上还会给你提示,“嘿,这条路不错,快来试试!”可爱得不行。
还有一种叫“FloydWarshall算法”,听起来是不是更厉害?这家伙更全能,可以同时计算出多个点之间的最短路径。
就像你跟朋友一起出去吃饭,大家都想找离餐厅最近的路。
这个算法就像是个超级GPS,能一口气帮你们规划好所有的路线。
可以说,FloydWarshall算法简直是个“多面手”,在复杂的网络中游刃有余。
不过,最短路径问题可不是只有数学家才能玩哦,咱们生活中其实也常常在用。
比如说,当你在手机上查地图的时候,系统就会运用这些算法来帮你找到最快的路线。
最短路径(将军饮马)问题(知识梳理与考点分类讲解)(人教版)(教师版) 24-25学年八年级数学上册
专题13.10最短路径(将军饮马)问题(知识梳理与考点分类讲解)第一部分【知识点归纳】【模型一:两定交点型】如图1,直线l和l的异侧两点A.B,在直线l上求作一点P,使PA+PB 最小;图1【模型二:两定一动型】如图2,直线l和l的同侧两点A.B,在直线l上求作一点P,使PA+PB 最小(同侧转化为异侧);图2【模型三:一定两动型】如图3,点P是∠MON内的一点,分别在OM,ON上作点A,B。
使△PAB的周长最小。
图3【模型四:两定两动型】如图4,点P,Q为∠MON内的两点,分别在OM,ON上作点A,B。
使四边形PAQB的周长最小。
图4【模型五:一定两动(垂线段最短)型】如图5,点A是∠MON外的一点,在射线ON上作点P,使PA与点P到射线OM的距离之和最小。
图5【模型六:一定两动,找(作)对称点转化型】如图6,点A是∠MON内的一点,在射线ON 上作点P,使PA与点P到射线OM的距离之和最小。
图6【考点1】两定一动型;【考点2】一定两动(两点之间线段最短)型;【考点3】一定两动(垂线段最短)型;【考点4】两定两动型;【考点5】一定两动(等线段)转化型;.第二部分【题型展示与方法点拨】【考点1】两定一动型;【例1】(23-24八年级上·全国·课后作业)如图,在ABC ∆中,3,4AB AC ==,EF 垂直平分BC ,交AC 于点D ,则ABP 周长的最小值是()A .12B .6C .7D .8【答案】C 【分析】本题主要考查了,轴对称﹣最短路线问题的应用,解此题的关键是找出P 的位置.凡是涉及最短距离的问题,一般要考虑线段的性质定理,结合轴对称变换来解决,根据题意知点B 关于直线EF 的对称点为点C ,故当点P 与点D 重合时,AP BP +的值最小,即可得到ABP 周长最小.解:∵EF 垂直平分BC ,∴点B ,C 关于EF 对称.∴当点P 和点D 重合时,AP BP +的值最小.此时AP BP AC +=,∵3,4AB AC ==,ABP ∴ 周长的最小值是347AP BP AB AB AC ++=+=+=,故选:C .【变式】(23-24八年级上·广东广州·期中)如图,在ABC V 中,1216AB AC ==,,20BC =.将ABC V 沿射线BM 折叠,使点A 与BC 边上的点D 重合,E 为射线BM 上的一个动点,则CDE 周长的最小值.【答案】24【详解】设BM 与AC 的交点为点F ,连接AE ,DF 先根据折叠的性质可得12BD AB ==,DF AF =,DE AE =,BDF BAF ∠=∠,再根据两点之间线段最短可得当点E 与点F 重合时,CDE 周长最小,进而求解即可.解:如图,设BM 与AC 的交点为点F ,连接AE ,DF ,由折叠的性质得:12BD AB ==,DF AF =,DE AE =,BDF BAF ∠=∠,20128CD BC BD ∴=-=-=,CDE ∴ 周长8CD DE CE AE CE =++=++,要使CDE 周长最小,只需AE CE +最小,由两点之间线段最短可知,当点E 与点F 重合时,最小值为AC ,∴CDE 周长为:681624AC +=+=.故答案为:24.【点拨】本题考查了折叠的性质等知识点,熟练掌握折叠的性质是解题关键.【考点2】一定两动(两点之间线段最短)型;【例2】(23-24八年级上·湖北省直辖县级单位·期末)如图,45MON ∠=︒,P 为MON ∠内一点,A 为OM 上一点,B 为ON 上一点,当PAB 的周长取最小值时,APB ∠的度数为()A .45︒B .90︒C .100︒D .135︒【答案】B 【分析】本题主要考查了最短路线问题、四边形的内角和定理、轴对称的性质等知识点,掌握两点之间线段最短的知识画出图形是解题的关键.如图:作P 点关于OM ON 、的对称点A B ''、,连接A B '',此时PAB 的周长最小为A B '',求出A B ''即可.解:如图:作P 点关于OM ON 、的对称点A B ''、,然后连接A B '',∵点A '与点P 关于直线OM 对称,点B '与点P 关于ON 对称,∴A P OM B P ON A A AP B B BP ''''⊥⊥==,,,,∴A APA B BPB ''''∠=∠∠=∠,,∵A P OM B P ON ''⊥⊥,,∴180MON A PB ''∠+∠=︒,∴18045135A PB ''∠=︒-︒=︒,在A B P ''△中,由三角形的内角和定理可知:18013545A B ''∠+∠=︒-︒=︒,∴45A PA BPB ''∠+∠=︒,∴1354590APB ∠=︒-︒=︒.故选:B .【变式】(23-24八年级上·江苏无锡·期中)如图,45AOB ∠=︒,点M N 、分别在射线OA OB 、上,5MN =,15OMN S = ,点P 是直线MN 上的一个动点,点P 关于OA 的对称点为1P ,点P 关于OB 的对称点为2P ,连接1OP 、2OP 、12PP ,当点P 在直线MN 上运动时,则12OPP 面积的最小值是.【考点3】一定两动型(垂线段最短);【例3】(22-23八年级上·湖北武汉·期末)如图,在ABC V 中,3AB =,4BC =,5AC =,AB BC ⊥,点P 、Q 分别是边BC 、AC 上的动点,则AP PQ +的最小值等于()A .4B .245C .5D .275【答案】B 【分析】作A 过于BC 的对称点A ',过点A '作A Q AC '⊥,交AC 于点Q ,交BC 于点P ,根据对称可得:AP PQ A P PQ A Q ''+=+≥,得到当,,A P Q '三点共线时,AP PQ +最小,再根据垂线段最短,得到A Q AC '⊥时,A Q '最小,进行求解即可.解:作A 过于BC 的对称点A ',过点A '作A Q AC '⊥,交AC 于点Q ,交BC 于点P ,【变式】(23-24七年级下·陕西西安·阶段练习)如图,在Rt ABC △中,90ACB ∠=︒,3AC =,4BC =,5AB =,AD 是ABC V 的角平分线,若P Q 、分别是AD 和AC 边上的动点,则PC PQ +的最小值是.AD 是BAC ∠的平分线,1QAD Q AD∴∠=∠在AQD 与1AQ D 中【考点4】两定两动型;【例4】如图,已知24AOB ∠=︒,OP 平分AOB ∠,1OP =,C 在OA 上,D 在OB 上,E 在OP 上.当CP CD DE ++取最小值时,此时PCD ∠的度数为()A .36︒B .48︒C .60︒D .72︒【答案】D 【分析】作点P 关于OA 的对称点P',作点E 关于OB 的对称点'E ,连接'OP 、'PP 、'OE 、'EE 、''P E ,则由轴对称知识可知=''CP CD DE CP CD DE ++++,所以依据垂线段最短知:当''P C D E 、、、在一条直线上,且'''P E OE ⊥时,CP CD DE ++取最小值,根据直角三角形的两锐角互余及三角形外角的性质可以'P C PC =,'E D ED =,'1OP OP ==,=''CP CD DE CP CD DE ++++,'P OE ∠''P C D E 、、、在一条直线上,且''P E ''=9048=42OP E ∠︒-︒︒,'='''=7842CP P OP P OP E ∠∠-∠︒-︒=【答案】44βα-=︒【分析】本题考查轴对称—最短问题、三角形的内角和定理.三角形的外角的性质等知识,解题的关键是灵活运用所学知识解决问题.OQM OQM NQP '∴∠=∠=∠,OPQ ∠∴1(180)2PQN AOB α∠=︒-=∠+∠44βα∴-=︒,故答案为:44βα-=︒.【考点5】一定两动(等线段)转化型;【例5】(20-21八年级上·湖北鄂州·期中)如图,AD 为等腰△ABC 的高,其中∠ACB =50°,AC =BC ,E ,F 分别为线段AD ,AC 上的动点,且AE =CF ,当BF +CE 取最小值时,∠AFB 的度数为()A .75°B .90°C .95°D .105°【答案】C 【分析】先构造△CFH 全等于△AEC ,得到△BCH 是等腰直角三角形且FH=CE ,当FH+BF 最小时,即是BF+CE 最小时,此时求出∠AFB 的度数即可.解:如图,作CH ⊥BC ,且CH=BC ,连接HB ,交AC 于F ,此时△BCH 是等腰直角三角形且FH+BF 最小,∵AC=BC ,∴CH=AC ,∵∠HCB=90°,AD ⊥BC ,∴AD//CH ,∵∠ACB=50°,∴∠ACH=∠CAE=40°,∴△CFH ≌△AEC ,∴FH=CE ,∴FH+BF=CE+BF 最小,此时∠AFB=∠ACB+∠HBC=50°+45°=95°.故选:C .【点拨】本题考查全等三角形的性质和判定、等腰三角形的性质、最短路径问题,关键是作出辅助线,有一定难度.【变式】(23-24七年级下·四川宜宾·期末)在ABC V 中,80CAB ∠=︒,2AB =,3AC =,点E 是边AB 的中点,CAB ∠的角平分线交BC 于点D .作直线AD ,在直线AD 上有一点P ,连结PC 、PE ,则PC PE -的最大值是.∵CAB ∠的角平分线交∴FAP ∠∠=∵AP AP =,∴APF APE ≌∴PF PE =,第三部分【中考链接与拓展延伸】1、直通中考【例1】(2020·湖北·中考真题)如图,D 是等边三角形ABC 外一点.若8,6BD CD ==,连接AD ,则AD 的最大值与最小值的差为.【答案】12【分析】以CD 为边向外作等边三角形CDE ,连接BE ,可证得△ECB ≌△DCA 从而得到BE=AD ,再根据三角形的三边关系即可得出结论.解:如图1,以CD 为边向外作等边三角形CDE ,连接BE ,∵CE=CD ,CB=CA ,∠ECD=∠BCA=60°,∴∠ECB=∠DCA ,∴△ECB ≌△DCA (SAS ),∴BE=AD ,∵DE=CD=6,BD=8,∴8-6<BE<8+6,∴2<BE<14,∴2<AD<14.∴则AD 的最大值与最小值的差为12.故答案为:12【点拨】本题考查三角形全等与三角形的三边关系,解题关键在于添加辅助线构建全等三角形把AD 转化为BE 从而求解,是一道较好的中考题.【例2】(2020·新疆·中考真题)如图,在ABC V 中,90,60,4A B AB ∠=∠=︒=︒,若D 是BC 边上的动点,则2AD DC +的最小值为.在Rt DFC △中,30DCF ∠=︒,12DF DC ∴=,122()2AD DC AD DC +=+2()AD DF =+,∴当A ,D ,F 在同一直线上,即此时,60B ADB ∠=∠=︒,2、拓展延伸【例1】(23-24八年级上·江苏镇江·阶段练习)如图,AC 、BD 在AB 的同侧,点M 为线段AB 中点,2AC =,8BD =,8AB =,若120CMD ∠=︒,则CD 的最大值为()A .18B .16C .14D .12【答案】C 【分析】本题考查等边三角形的判定和性质,两点之间线段最短,解题的关键是学会添加常用辅助线,学会利用两点之间线段最短解决最值问题.如图,作点A 关于CM 的对称点A ',点B 关于DM 的对称点B ',证明'' A MB 为等边三角形,即可解决问题.解:如图,作点A 关于CM 的对称点A ',点B 关于DM 的对称点B ',∵120CMD ∠=︒,∴60∠+∠=︒AMC DMB ,∴60''∠+∠=︒CMA DMB ,∴60''∠=︒A MB ,∵MA MB MA MB ''===,∴'' A MB 为等边三角形∵14CD CA A B B D CA AM BD ''''<++=++=,∴CD 的最大值为14,故选:C .【例2】(22-23八年级上·湖北武汉·期末)如图,锐角ABC V 中,302A BC ∠=︒=,,ABC V 的面积是6,D 、E 、F 分别是三边上的动点,则DEF 周长的最小值是()A .3B .4C .6D .7∴AM AE AN ==,MF =∵BAC BAD DAC ∠=∠+∠∴MAN MAB BAD ∠=∠+∠∴(2MAN BAE EAC ∠=∠+∠。
解决问题路径的思维方法
解决问题路径的思维方法一、题目。
1. 一个工程队要修一条长1200米的路,前3天修了180米。
按照这样的速度,修完这条路一共需要多少天?解析:首先求出每天修路的速度,前3天修了180米,那么每天修的长度为180÷3 = 60(米)。
路的总长度是1200米,所以修完需要的天数是1200÷60 = 20(天)。
2. 有一堆苹果,如果每5个装一袋,最后余3个;如果每7个装一袋,最后也余3个。
这堆苹果最少有多少个?解析:因为这堆苹果每5个装一袋余3个,每7个装一袋也余3个,所以苹果总数减去3个之后就是5和7的公倍数。
5和7是互质数,它们的最小公倍数是5×7 = 35。
那么苹果最少有35 + 3=38个。
3. 小明和小红同时从A、B两地相向而行,小明的速度是每分钟60米,小红的速度是每分钟50米,经过10分钟两人相遇。
A、B两地相距多远?解析:这是一个相遇问题,根据公式路程 = 速度和×相遇时间。
小明和小红的速度和为60 + 50 = 110(米/分钟)。
经过10分钟相遇,所以A、B两地相距110×10 = 1100米。
4. 学校图书馆有科技书、故事书和文艺书共1200本,其中科技书占总数的(1)/(3),故事书占总数的(1)/(4),那么文艺书有多少本?解析:先求出科技书的数量为1200×(1)/(3)=400本。
再求出故事书的数量为1200×(1)/(4) = 300本。
最后用总数减去科技书和故事书的数量,得到文艺书的数量为1200-(400 + 300)=500本。
5. 一块长方形菜地,长是12米,宽是8米。
如果在这块菜地周围围上篱笆,篱笆长多少米?解析:求篱笆的长度就是求长方形菜地的周长。
根据长方形周长公式C=(a + b)×2(其中a为长,b为宽)。
所以篱笆长(12 + 8)×2 = 40米。
6. 一个圆柱的底面半径是3厘米,高是5厘米,求它的侧面积。
对称轴线及最短路线难题
对称轴线及最短路线难题对称轴线及最短路径难题介绍本文将探讨对称轴线及最短路径难题。
我们将解释这些概念,并讨论它们在实际问题中的应用。
对称轴线对称轴线是一个与物体的对称性相关的概念。
当物体可以通过某条线进行镜像对称时,这条线被称为对称轴线。
对称轴线将物体分为两个对称的部分,每个部分在对称轴线上的点与其对应部分上的点具有相同的距离。
在几何学中,对称轴线是一个重要的概念。
它不仅仅存在于几何形状中,还可以应用于其他领域,如设计、图像处理和计算机图形学等。
对称轴线的理解对于解决许多问题都非常有帮助。
最短路径难题最短路径难题是一个在图论中常见的问题。
它涉及找到从一个顶点到另一个顶点的最短路径。
最短路径可以被定义为连接两个顶点的路径中具有最小权重和的路径。
在最短路径问题中,重要的是确定权重的定义,并找到一种有效的算法来解决该问题。
最短路径难题在很多现实生活中的应用中都非常有用。
例如,在导航系统中,最短路径算法用于确定最快的路线。
在通信网络中,最短路径算法可以用于确定数据传输的最佳路由。
应用举例对称轴线和最短路径难题在大量领域都有应用。
以下是一些实际应用的示例:1. 建筑设计:通过在建筑物的布局中应用对称轴线,可以实现视觉上的平衡和对称。
2. 交通规划:通过求解最短路径问题,可以确定最优的交通路线,减少交通拥堵和节省时间。
3. 电路设计:使用对称轴线可以帮助设计电路板,使得信号传输更加均衡和稳定。
同时,经过优化的最短路径算法可以在电路中提高效率。
结论对称轴线和最短路径难题是两个重要的概念,它们在实际问题中有广泛的应用。
了解和掌握这些概念将有助于解决各种问题,从而提升我们的创造力和解决复杂问题的能力。
请注意,本文仅作为对称轴线和最短路径难题的简要介绍,并不包含详细的数学推导和算法细节。
如需深入了解,请参考相关的专业文献和学术资源。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
急问AUTO cad高手!!!
浏览次数:936次悬赏分:30 |解决时间:2009-4-27 22:37 |提问者:yt_ting2008
1.cad在插入外部参照时在"外部参照"那个对话框里有"路径类型"这个选项....它给了<相对路径><完整路径>和<无路径>3个先择.这些有什么区别吗?
2.在布局中画完视口后,我会选中视口按CTRL+1进入该视口的特性面板.在给视口比例时.有"标准比例"和"注释比例",这两个选项什么区别啊?
最佳答案
才30分啊,你问的问题都比较有技术含量啊,呵呵。
一.外部参照实际的文件之间的嵌套引用,但实际保存的只是文件名,那么加载的时候按照怎样的路径呢,这就是你说的三种路径区别。
(1)完整路径,先说这个是因为这个比较简单,你既然会用CTRL+1,那么你可以比较一下三中路径引用的对象的却别就在于“保存路径”上。
完整路径的特点是保存,“盘符”、“各级文件夹”、“文件名”,这三个要素。
只要有一个不对,就找不到文件,没办法加载。
所以“完整路径”非常苛刻,一般很少用,绝大部分人用外部参照都用这种路径,是因为他们不懂,所以只用默认的。
(2)无路径,这个特点是只保存“文件名”,你可以去CTRL+1里看下。
那肯定也要有地方去找才对啊。
他是按照四个路径依次去找这个文件名的:
1.宿主文件夹,就是你包含参照文件的文件的文件夹,比较绕。
2.选项里有个“文件”选项卡,里面有个“支持文件搜索路径”,是用来预留加载CAD的一些启动项的,可以自己添加一个路径。
3.还是刚才的“文件”里面,有个“工程文件搜索路径”,这个事CAD专门用来保存CAD的地方。
你自己在里面加一个路径吧。
4.右键单击桌面的CAD图标,有个“启动位置”,是一个文件夹。
以上四个是“无路径”的时候CAD加载参照文件时依次找的四个地方,只要有这个文件名就加载,不管对错。
这个和“相对路径”是我用的最多的。
只要你把宿主文件和参照文件都放在一个文件夹里,不管你怎么拷贝,复制,放到移动硬盘,优盘,光盘里,或者放别人电脑里,只要打开宿主文件,都能顺利加载参照文件。
说白了,你一般用的话,这个就可以了。
(3)相对路径。
这个表示相对于宿主文件位置的路径关系,找文件的时候是从宿主文件开始的,可以上跳文件夹,可以在宿主文件夹内找。
当你加载的外部参照文件非常多,又不能放在一个文件夹里的时候,可以使用这个。
但是因为不能跳过盘符,所以相对路径的特点是:宿主文件和参照文件必须在同一个盘符里,要在D盘,全在D盘,网络文件当然更不可以了。
-------------打字打得手软了,休息一下---------------------------
二、标准比例和注视比例
标准比例就是视口的显示比例,里面写好了1:100,1:200,等等这些标准的比例,就这个意思。
你用的应该是07以后的CAD版本,加了一个注释性。
如果你在早期的版本,比如2000.2004.2006等版本中使用布局打印,是不是一直觉得在布局空间标注很不爽,模型一动,标注就都废了。
那么恭喜你,07以后的CAD家的这个注释性允许你在模型里写文字和标注,到了布局视口里之后,可以配合视口的注释比例来统一文字的大小,极其方便。
(可惜,现在会的人也太少)。