八上第1课时 变量与函数(一)
变量与函数说课稿
变量与函数说课稿各位领导,大家好!今天,我说课的内容是八年级第十八章第一节《变量与函数》,下面我从教材分析、教学目标、教法与学法以及教学程序四个方面对本课的设计进行说明:一、教材分析地位与作用:变量与函数是八年级下学期18章第一节内容,是数学中最重要的基本概念之一,它揭示了现实世界中数量关系之间相互依存和变化的实质,是刻画和研究现实世界变化规律的重要模型。
在这里,学生第一次接触变量的概念,它是函数学习的入门,也是进一步学习的基础。
本节学习中渗透了许多后续内容,这些都为以后研究函数做好了铺垫。
教学重点:函数概念的形成过程。
通过列举生活实例,逐步形成变量与常量、自变量与函数的概念。
教学难点:对函数概念的深刻理解和灵活应用。
突破难点的关键是通过生活实例帮助学生从一个变化过程、两个变量、一种对应关系三个方面来认识和理解函数的概念,应用函数知识解决简单的实际问题。
二、教学目标:知识与技能目标(1)能分清实例中的常量与变量,领悟函数概念的意义,能列举数的实例,并能写出简单的函数关系式。
(2)学生通过对实际问题中数量之间相互依存关系的探索,学会用函数思想去描述、研究其变化规律,初步理解对应的思想,逐步学会运用函数的观点观察、分析问题。
过程与方法目标:(1) 通过实践与探索,让学生参与变量的发现和函数概念的形成过程,强化数学的应用意识。
(2)引导学生体会函数思想,发展学生的思维,提高分析问题和解决问题的能力。
情感与态度目标:(1)学生经历对实际问题数量关系的探索,提高数学学习的兴趣,学会合作学习,在解决问题的过程中体会到数学的应用价值,在探索活动中获得成功的体验,建立良好的自信。
(2)进一步加深认识数学与人类生活的密切联系以及对人类历史发展的作用,体验数学活动充满着探索与创造,感受数学的严谨性以及数学结论的确定性。
三、教法与学法:在本节教学时,教师应根据学生的认知基础,创设丰富的现实情境,使学生在丰富的现实情境中感知变量和函数的存在和意义,体会变量之间的相互依存关系和变化规律,真正起好组织者、引导者和合作者的作用。
八年级上册数学培优函数(一)-变量与函数
第十讲 函数【知识梳理】 1、函数的有关定义(1)函数的定义、在一个变化过程中,数值发生变化的量叫 ,数值始终保持不变的量叫做 ,如果有两个变量x 与y ,并且对于每一个x 确定的值,y 都有 值与其对应,则x 是自变量,y 是x 的函数。
如果当x=a 时,y=b ,那么 叫做当自变量的值为 时的函数值(2)函数关系式、用来表示函数关系的等式叫函数关系式,也称函数解析式。
2、函数自变量的取值范围、自变量的取值范围必须使含自变量的代数式都有意义所以 (1)使分母不为零;(2)开平方时被开方数为非负数; (3)为整式时其自变量的范围是全体实数;另外,当函数关系表示实际问题时,自变量的取值必须使实际问题有意义。
【自我检测】【知识点1】变量与常量1、2x-3y=4中,变量是____________,常量是__________,把它写成用x 的式子表y 的形式是____________。
球的体积公式可以表示为V= 343r π,其中常量是_________,变量是__________。
2、每盒圆珠笔有12支,每盒售价18元,那么圆珠笔的销售总价y (元)与圆珠笔的支数x (支)之间的函数关系式为____________3、若等腰三角的顶角是x 度,底角是y 度,则y 与x 的关系式是___________,其中常量是_________,变量是____________。
4、有一个边长为15的正方形铁皮,在四个角上分别截取边长为x (x <7.5)的小正方形后,就可以做成一个无盖的盒子,则盒子的体积V 与x 之间的关系是V=________________5、已知变量x,y,m 满足下列关系:y=2m+1,x=122m -+,则y 与x 之间的关系式是y=________ 【知识点2】函数的概念1、下列问题中,具有函数关系的是( )A .x+2与x B. y 与x+3 C. 22y x =(x ≥0)中的y 与x D 224x y +=中的y 与x2、下列二个变量之间存在函数关系的是( )○1圆的面积和半径之间的关系。
19.1.1变量与函数(第一课时)(优质公开课)PPT课件
60 120 180 240 300
2.在以上这个过程中, 变化的量是 里程S千米与时间t时.
没变化的量是 速度60千米/小时 .
3.试用含t的式子表示S S=60t .
活动一
1. 每张电影票售价为10元,如果 第一场售出票150张,第二场售出 票205张,第三场售出310张. 三场
电影的票房收入各多少元?设一场 电影售票x张,票房收入y元。怎样 用含x的式子表示 y ?
2 3
4π
9π
关系式是——S——=—π——r2————;
4
π 16π 其中常量是——————————;
…
…
r
πr2
S, r 变量是——————————. 10
活动三
1.用10cm长的绳子围成矩形,试改变矩形的长、 宽,观察矩形的面积怎样变化,试举出三组长、 宽的值。计算相应矩形的面积的值,然后探索 它们的变化规律:设矩形的长度为xcm,面积
常量是 a
14
随堂练习
1.若球体体积为V,半径为R,则V= 4 R 333
3
其中变量是 V 、 R ,常量是
4
.
3
2.汽车开始行使时油箱内有油40升,如果每
小时耗油5升,则油箱内余油量Q升与行使
时间t小时的关系是
其中的常量是40、5
Q,=变40量-5是t
. 并指出
Q、t
随堂练习
3.夏季高山上温度从山脚起每升高 100米降低 0.7℃,已知山脚下温度是 23℃,写出温度y与上升高度 x之间的 关系式,并指出其中的常量与变量。
一般地, 如果当x=a时,y=b,则b叫做当自变量为a时的函数值。
20
函数的定义:一般地,在一个变化过程中,如果有两个变量x与y,并且
《变量与函数(第一课时)》探究课例
教学内容 人 教版《 义务教 育课程
标 准实验教科书 ・ 数学》 八年级 上册第 十
一
活动 5 小结 拓展 :通过对所学 内容 .
的 回顾 , 加深对 变量与常量概 念 的理解 ,
章第 一节 “ 量与 函数 ” 一小 节 “ 变 第 变 教学 目标 、
我们研 究的这些 问题反 映了不同事
天数
学 生按 如下 的实验 报告 进行 实验 ,
并填写报告 。 实验报告
活动 2 交 流互 动( 成概 念 )通过 . 形 : 三个 实例的分析 ,让学 生初步认 识变量
问题 3 南 宁 国际 民歌 节开 幕式 , : 不 同 区域的 门票 价格不 同 , 中一 种 歌迷 其
区 的门票售价 为 6 0元 / 。( ) 8 张 1 购买 5
教学过程
一
物 的变化 , 中有些量 ( 其 例如购买 门票 的 数量 , 买 门票 的 总价 Y . 购 ….的值是 按 )
照某种规律变化 的. 在一个变化过程 中我 们称数值 发生变化 的量 为变量 。有 些量
、
创设情境( 受变化 ) 、 感
播 放嫦娥一号 发射 的视频 ,引出从
的数值 始终不 变 ,例如 门票的单 价 6 0 8
( 位: / ) . 单 元 张 …. 我们称他们为常量 。 变
量 就 是 我 们 这 节 课 研 究 的 主要 内容 。( 板
数学角度关 注量的变化 ,配合教 师的引
导把 学 生 带 人 预 设 情 境 。
2 过程与方 法 目标 :引导学生探 索 .
性认 识逐渐过渡到理性认识 。 3情 感 、 . 态度 与价值 观 目标 : 在常量 与变量概念形成 的过程 中,培养 学生对 学习数学 的兴趣 和积极参与数 学活动 的 热情 。学生在解决 问题 的过程 中体会数 学 的应用 价值并感受成 功的喜悦 ,建立 自信心 。 教学重点 常量 与变量概念的形成
沪科版八年级数学上册第12章教学课件:12.1 第1课时 变量与函数(共23张PPT)
典例精析
例1 指出下列事件过程中的常量与变量注意:π是一个确 定的数,是常量
(1)某水果店橘子的单价为5元/千克,买a千橘子的总 价为m元,其中常量是 5 ,变量是 a,m ;
(2)周长C与圆的半径r之间的关系式是C=2πr,其中常 量是 2,π ,变量是 C, r ;
(3)三角形的一边长5cm,它的面积S(cm2)与这边上的高
第12章 一次函数
12.1 函数
第1课时 变量与函数
学习目标
1.联系自己的学习、生活实际,通过具体情境 领悟函数的概念,了解常量、变量,知道自变量 与函数,能写出简单的函数表达式;
2.探究变量的发现和函数概念的形成,提高学 生分析、解决问题的能力.
导入新课
情境引入
万物皆变
行星在宇宙中的位置随时间而变化
例2 阅读并完成下面一段叙述: ⒈某人持续以a米/分的速度用t分钟时间跑了s米,其中 常量是 a ,变量是 t,s .
⒉s米的路程不同的人以不同的速度a米/分各需跑的时间 为t分,其中常量是 s ,变量是 a,t .
3.根据上面的叙述,写出一句关于常量与变量的结论: 在不同的条件下,常量与变量是相对的 .
(2)y 是n的函数,其中n是自变量. (3)y 不是x的函数.
例如,到原点的 距离为1的点对 应实数1或-1,
课堂小结
常量与变量:在一个变化过程中, 数值发生变化的量为变量,数值 始终不变的量为常量.
变量与函数
函数:一般地,在一个变化过程 中,如果有两个变量x与y,并且 对于x的每个确定值,y都有唯一确 定的值与其对应,那么我们就说x 是自变量,y是x的函数.
自我发生变化的量__t_________; 因别人变化而变化的量___h_______.
14.1变量与函数 (第1课时)变量
第十四章一次函数
14.1变量与函数( 课时) 14.1变量与函数(第1课时) 变量与函数
问题一: 问题一
汽车以60千米 时的速度匀速行驶 千米, 汽车以 千米/时的速度匀速行驶,行驶里程为 s 千米, 千米 时的速度匀速行驶, 小时,先填下面的表,再试用含t的式子表示 的式子表示s. 行驶时间为 t 小时,先填下面的表,再试用含 的式子表示
1 s = x(10 − 2x) = x(5 − x) 2
(1)S = 60t (2) y = 10x ) ) (3)l =10+0.5x
(4)r =
1 (5)ms = x(10 − 2x) = x(5 − x) 2
s π
发生变化的量为变量 1、变量:在一个变化过程中,数值发生变化的量为变量。 变量:在一个变化过程中,数值发生变化的量为变量。 始终不变的量为常量 常量:在一个变化过程中,数值始终不变的量为常量。 2、常量:在一个变化过程中,数值始终不变的量为常量。
y = 10x
问题三: 问题三
在一根弹簧的下端挂重物,改变并记录重物的质量, 在一根弹簧的下端挂重物,改变并记录重物的质量,观 并记录弹簧长度的变化,探索它们的变化规律。 察并记录弹簧长度的变化,探索它们的变化规律。如果 弹簧长原长为10cm,每1千克重物使弹簧伸长 千克重物使弹簧伸长0.5cm,怎 弹簧长原长为 , 千克重物使弹簧伸长 怎 样用含重物质量m(单位: ) 样用含重物质量 (单位:kg)的式子表示受力后的弹 单位: 簧长度 l (单位:cm)? 单位
6a2 , 2、如图 正方体的棱长为 表面积 正方体的棱长为a,表面积 、如图2正方体的棱长为 表面积S=
体积V= 体积
《变量与函数》PPT课件 沪科版
当x=3时,y= 5;
2
当x=-3时,y=7;
把自变量x的值带 入关系式中,即 可求出函数的值.
(2)令
4x 2 x 1
=0,解得x=
1 2
即当x= 1 时,y=0.
2
当堂练习
1.设路程为s,时间为t,速度为v,当v=60时,路程和 时间的关系式为 s=60t ,这个关系式中, 60 是常量, t和s 是变量, s 是 t 的函数.
第12章
八年级数学上(HK) 教学课件
一次函数
12.1 函数
第1课时 变量与函数
导入新课
讲授新课
当堂练习
课堂小结
学习目标
1.联系自己的学习、生活实际,通过具体情境 领悟函数的概念,了解常量、变量,知道自变量 与函数,能写出简单的函数表达式;
2.探究变量的发现和函数概念的形成,提高学 生分析、解决问题的能力.
不断变化的量 热气球升空的时间tmin (变量) 气球升空的高度hm
(5)热气球上升的高度h与时间t,这两个变量之 间有关系吗?
自我发生变化的量__t_________; 因别人变化而变化的量___h_______.
时间t/min 0 1 2 3 4 5 6 7 … 海拔高度h/m 500 550 600 650 700 750 800 850 …
一时刻的用电负荷y MW(兆瓦)是多少吗?说明了什么? 能,分别为10000MW、15000MW,说明t的值一确定,y
的值就唯一确定了.
(3)这一天的用电高峰、用电低谷时负荷各是多少?它们是在
什么时刻达到的? 这一天的用电高峰在13.5h达到18000MW,用电低估在
4.5h达到10000MW.
北师版八年级上册第四章第一节变量与函数
问题2:通过上面的表格,请同学们想一想, 对于给定的时间t,相应的高度h确定吗?
t/分 h/米 0 1
12
2
3
4
5
3
35
47
37
…… 15 ……
结论: 对于给定的一个t值,有且仅有一个h值相对应
情景2、瓶子或罐头盒等圆柱形的物体,常常如下图那样堆放。
随着层数的增加,物体的总数是如何变化的?
填写下表:
等腰三角形周长为20㎝,若设一腰长为x㎝, 写出底边长y(㎝)与腰长x(㎝)的函数表达 式 ,并说出自变量和因变量。
本课小结:
1、函数的概念: 一般的,在某个变化过程中,有两个变量x和y,如果 给定一个x值,相应的就确定一个y值,那么我们称y是
x的函数,其中x是自变量, y是因变量。
2、函数的表示法: 可以用三种方法
③两个量都是同时发生变化 一个x值,只有一个y值 变量:在某一变化过程中,可以取不同数值的量 ④当给定其中一个变量的值时,另一个变 量的值也就确定 例如:①当x=1时,y=12 常量:在某一变化过程中,始终保持不变的量 ②圆的周长公式: C=2πr y=12和10 y=12或-12
知识点二: 函数关系的判断
C.这天最高温度与最低温度的
差是20℃ D.这天21点时温度是34℃
第1节
变量与函数(2)
知识回顾 知识点一
函数关系的三要点 函数的表示方法 解析式法 ②看是否只有两个变量 ③看当给定一个x值时,有 且仅有一个y值与之对应 图像法 列表法
…… ①看是否是一个变化过程
① 若已知x、y是 变量, y=2x y 表达式
第四章
函数
第1节
变量与函数(1)
想一想
变量与函数说课稿5篇
变量与函数说课稿5篇变量与函数说课稿5篇作为一名教职工,时常需要用到说课稿,借助说课稿可以更好地组织教学活动。
下面是小编为大家整理的变量与函数说课稿,如果大家喜欢可以分享给身边的朋友。
变量与函数说课稿(篇1)一、教材分析1、教材的地位和作用(1)本节课主要对函数单调性的`学习;(2)它是在学习函数概念的基础上进行学习的,同时又为基本初等函数的学习奠定了基础,所以他在教材中起着承前启后的重要作用;(可以看看这一课题的前后章节来写)(3)它是历年高考的热点、难点问题(根据具体的课题改变就行了,如果不是热点难点问题就删掉)2、教材重、难点重点:函数单调性的定义难点:函数单调性的证明重难点突破:在学生已有知识的基础上,通过认真观察思考,并通过小组合作探究的办法来实现重难点突破。
(这个必须要有)二、教学目标知识目标:(1)函数单调性的定义(2)函数单调性的证明能力目标:培养学生全面分析、抽象和概括的能力,以及了解由简单到复杂,由特殊到一般的化归思想情感目标:培养学生勇于探索的精神和善于合作的意识(这样的教学目标设计更注重教学过程和情感体验,立足教学目标多元化)三、教法学法分析1、教法分析“教必有法而教无定法”,只有方法得当才会有效。
新课程标准之处教师是教学的组织者、引导者、合作者,在教学过程要充分调动学生的积极性、主动性。
本着这一原则,在教学过程中我主要采用以下教学方法:开放式探究法、启发式引导法、小组合作讨论法、反馈式评价法2、学法分析“授人以鱼,不如授人以渔”,最有价值的知识是关于方法的只是。
学生作为教学活动的主题,在学习过程中的参与状态和参与度是影响教学效果最重要的因素。
在学法选择上,我主要采用:自主探究法、观察发现法、合作交流法、归纳总结法。
(前三部分用时控制在三分钟以内,可适当删减)四、教学过程1、以旧引新,导入新知通过课前小研究让学生自行绘制出一次函数f(x)=x和二次函数f(x)=x^2的图像,并观察函数图象的特点,总结归纳。
18.1变量与函数(第1课时)
18.1变量与函数(1)教学目标:1、掌握函数的概念,理解两个变量之间的对应关系.2、知道函数关系的三种表示方法。
3、能列出简单的函数关系式。
创设情景:看图回答:(1)这天的6时、10时和14时的气温分别为多少?任意给出这天中的某一时刻,说出这一时刻的气温.(2)这一天中,最高气温是多少?最低气温是多少?(3)这一天中,什么时段的气温在逐渐升高?什么时段的气温在逐渐降低?想一想:在这个变化过程中,任选时刻t的一个确定值,温度T有几个值和这个时刻对应?课堂研讨:问题1:银行对各种不同的存款方式都规定了相应的利率,下表是2002年7月中国工商银行为“整存整取”的存款方式规定的年利率:观察上表,说说随着存期x的增长,相应的年利率y是如何变化的?问题2:收音机刻度盘的波长和频率分别是用米(m)和千赫兹(kHz)为单位标刻的.下面是一些对应的数值:观察上表回答:(1)波长l和频率f数值之间有什么关系?(2)波长l越大,频率f就________.解 :(1) l 与f 的乘积是一个定值,即lf=300 000,或者说(2)波长l越,频率f 就越。
函数的定义:在上面的问题中,我们研究了一些数量关系,它们都刻画了某些变化规律.这里出现了各种各样的量,特别值得注意的是出现了一些数值会发生变化的量.例如问题1中,刻画气温变化规律的量是时间t和气温T,气温T随着时间t的变化而变化,它们都会取不同的数值.像这样在某一变化过程中,可以取不同数值的量,叫做。
上面各个问题中,都出现了两个变量,它们互相依赖,密切相关.一般地,如果在一个变化过程中,有两个变量,例如x和y,对于x的每一个值,y都有惟一的值与之对应,我们就说x是,y是,此时也称y是x的。
试一试:下列变化中,哪些y是x的函数?哪些不是?说明理由。
(1)xy=2 (2)x2+y2=10 (3)x+y=5 (4)|y|=3x+1 (5)y=x2-4x+5 (6)x2+y=10函数关系的表示:表示函数关系的方法通常有三种:问题的研究过程中,还有一种量,它的取值始终保持不变,我们称之为,如问题2中的课堂练习:1.写出下列各问题中的关系式,并指出其中的常量与变量:(1)圆的周长C与半径r 的关系式;(2)火车以60千米/时的速度行驶,它驶过的路程s(千米)和所用时间 t(时)的关系式;(3)n 边形的内角和 S与边数n 的关系式.2.写出下列问题中的函数关系式,并指出其中的常量与变量:①时速为110千米的火车行驶的路程s(千米)与时间t(小时)之间的关系式;②底边长为10的三角形的面积S与这边上的高h之间的关系式;③某种弹簧原长20厘米,每挂重物1千克,伸长0.2厘米,挂上重物后的长度y(厘米)与所挂重物x(千克)之间的关系式;3.举3个日常生活中遇到的函数关系的例子.4.分别指出下列各关系式中的变量与常量:(1)三角形的一边长5cm,它的面积S(cm2)与这边上的高h(cm)的关系式是: 。
人教版八年级数学一次函数学案文档[1]
19.1.1变量与函数(第一课时)学习目标1.认识变量、常量2.学会用含一个变量的代数式表示另一个变量重点:了解常量与变量的关系难点:较复杂问题中常量与变量的识别.一.课前学习一辆汽车以60千米/小时的速度匀速行驶,行驶里程为s千米.行驶时间为t小时.1.根据题意填写下表:2.在以上这个过程Array中,变化的量是________.不变的量是__________.3.试用含t的式子表示s。
二.自主学习1、每张电影票售价为10元,如果第一场售出票150张,第二场售出205张,第三场售出310张.三场电影的票房收入分别为元.设一场电影售票x张,票房收入y元.•用含x的式子表示y为。
y随x的变化(填“要”或“不”)变化。
2、当圆的半径为10cm时,圆的面积为 cm2;当圆的半径为20cm时,圆的面积为 cm2;当圆的半径为30cm时,圆的面积为 cm2;当圆的半径为r时,圆的面积S为;S随r的变化(填“要”或“不”)变化。
3、用10m长的绳子围成矩形,试改变矩形长度.观察矩形的面积怎样变化.•记录不同的矩形的长度值时计算相应的矩形面积的值,探索它们的变化规律:设矩形的长度为xm,面积为Sm2.怎样用含有x的式子表示S?因矩形对边相等,所以它一条长与一条宽的和应是周长10m的一半,即 m.若长为1m,则宽为 =4(m)据矩形面积公式:S==4(m2)若长为2m,则宽为(m)面积S=若长为xm,则宽为5 (m)面积S=从以上三个题中可以看出,在探索变量间变化规律时,可利用以前学过的一些有关知识公式进行分析寻找,以便尽快找出之间关系,确定关系式.结论:在一个变化过程中,数值发生变化的量为,数值始终不变的量为。
注意:常量与变量必须存在于一个变化过程中。
判断一个量是常量还是变量,需这两个方面:1、看它是否在一个变化的过程中;2、看它在这个变化过程中的取值情况。
练习:完成教材第71页至72页练习题。
三、 达标测试1.若球体体积为V,半径为R,则V=43R3.其中变量是_____、•_____,常量是________.2.夏季高山上温度从山脚起每升高100米降低0.7℃,已知山脚下温度是23℃,则温度y 与上升高度x 之间关系式为__________.3.购买一些铅笔,单价0.2元/支,总价y 元随铅笔支数x 变化,•指出其中的常量与变量,并写出关系式.(习题19.1第1题) 三.课后巩固1、要画一个面积为20cm 2长方形,其长为xcm ,宽为ycm ,在这一变化过程中,常量与变量分别为 、 。
变量与函数第一课时教案doc初中数学
变量与函数第一课时教案doc初中数学教师学科数学年级八年级课题§17.1.1 变量与函数〔1〕时间2005年3月17日三维目标知识与技能(1) 把握常量和变量、自变量和因变量〔函数〕差不多概念;(2)了解表示函数关系的三种方法:解析法、列表法、图象法, 并会用解析法表示数量关系.(2)了解表示函数关系的三种方法: 解析法、列表法、图象法,并会用解析法表示数量关系.(2)了解表示函数关系的三种方法:解析法、列表法、图象法,并会用解析法表示数量关系.过程与方法(1) 通过实际咨询题, 引导学生直观感知, 领会函数差不多概念的意义;(2.引导学生联系代数式和方程的相关知识,连续探究数量关系,增强数学建模意识,列出函数关系式.(2) 引导学生联系代数式和方程的相关知识, 连续探究数量关系, 增强数学建模意识, 列出函数关系式.(2) 引导学生联系代数式和方程的相关知识,连续探究数量关系,增强数学建模意识,列出函数关系式.情感、态度与价值观经历对有关的图形进行观看、分析、观赏、交流等活动, 进展初步的审美能力, 增强对图形观赏的意识。
教学重点函数的定义以及运用方程的方法列出具体实例中的两个变量间的关系.教学难点对函数概念的明白得, 讲出生活实际中有函数关系的量的实例.关键点函数差不多概念教具学具课件、刻度尺等教学环节知识内容教师活动学生活动设计意图一、回忆与探究在学习与生活中, 经常要研究一些数量关系, 先看下面的咨询题. 〔让B层的学生回答以下咨询题,并适当加以鼓舞〕学生回答以下咨询题,并让学生互相补充创设咨询题情形引导学生回忆,并巩固所咨询题1 如图是某地一天内的气温变化图.学知识教学环节知识内容教师活动学生活动设计意图看图回答:(1)这天的6时、10时和14时的气温分不为多少?任意给出这天中的某一时刻, 讲出这一时刻的气温.(2)这一天中, 最高气温是多少?最低气温是多少?(3)这一天中, 什么时段的气温在逐步升高?什么时段的气温在逐步降低?解(1)这天的6时、10时和14时的气温分不为-1℃、2℃、5℃;(2)这一天中, 最高气温是5℃. 最低气温是-4℃;(3)这一天中, 3时~14时的气温在逐步升高. 0时~3时和14时~24时的气温在逐步降低. 从图中我们能够看到, 随着时刻t〔时〕的变化, 相应地气温T(℃)也随之变化.那么在生活中是否还有其它类似的数量关系呢?二、探究归纳咨询题2 银行对各种不同的存款方式都规定了相应的利率, 下表是2002年7月中国工商银行为〝整存整取〞的存款方式规定的年利率: (让A层学生举出生活中实例并适当的加以鼓舞)观看上表, 讲讲随着存期x的增长, 相应的年利率y是如何变化的.观看上表,讲讲随着存期x的增长,相应的年利率y是如何变化的.观看上表,讲讲随着存期x的增长,相应的年利率y是如何变化的.让学生充分摸索,互相交流,并让学生代表回答以下咨询题解随着存期x的增长,相应的年利率y也随着增长.学生在教师引导下主动学习并积极思考相关咨询题咨询题3 收音机刻度盘的波长和频率分不是用教师巡视全班,对有困难的学生加以点拨指导,对学生摸索,探究交流,并尝试解题探究新知2米(m)和千赫兹(kHz)为单位标刻的. 下面是一些对应的数值: 学生交流及反馈情形加以总结并引导学生得出结论观看上表回答:(1)波长l和频率f数值之间有什么关系?(2)波长l越大, 频率f就________.(1) l 与 f 的乘积是一个定值, 即lf=300 000,或者讲.(2)波长l越大, 频率f就越小.学生在教师引导下主动学习并积极思考相关咨询题,并作出概括。
八年级数学上册第12章一次函数12.1函数变量与函数
第七页,共二十二页。
思考
在问题1中,热气球在上升的过程中是一个不断变化的过程, 在这个(zhè ge)过程中有哪些量是不断变化的?哪些量始终保持不变?
Image
12/13/2021
第二十二页,共二十二页。
上述判断正确的有( ) A.0个 B.1个 C.2个 D.3个
B
第十八页,共二十二页。
4.寄一封质量在20g以内的市内平信(píngxìn),需邮资0.80元,则寄x封这 样的信所需邮资y(元).试用含x的式子表示y,并指出其中的常量和 变量. 解:根据题意,得y=0.8x,所以(suǒyǐ)0.8是常量,x、y是变量.
第十六页,共二十二页。
2.半径是R的圆周长C=2πR,下列说法正确(zhèngquè)的是(D )
A. π、R是变量,2是常量 B. C是变量,2,π,R是常量 C. R是变量,2,π ,C是常量 D. C,R是变量,2,π是常量
第十七页,共二十二页。
3.笔记本每本a元,买3本笔记本共支出y元,在这个(zhège)问题中: ①a是常量时,y是变量; ②a是变量时,y是常量; ③a是变量时,y也是变量;
第12章 一次函数
12.1 函数(hánshù)
第1课时 变量与函数
第一页,共二十二页。
新课导入
行星在宇宙(yǔzhòu)中的位置随时间而变化
第二页,共二十二页。
气温(qìwēn)随海拔而变化
第三页,共二十二页。
汽车行驶(xíngshǐ)路程随行驶时间而变化
第四页,共二十二页。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§14.1.1 变量与函数
一、课时学习目标
1.认识变量、常量.
2.学会用含一个变量的代数式表示另一个变量.
重点1.认识变量、常量.
2.用式子表示变量间关系.
难点用含有一个变量的式子表示另一个变量.
二、课前预习导学:
Ⅰ.创设情境
一辆汽车以60千米/小时的速度匀速行驶,行驶里程为s千米.•行驶时间为t小时.
2.在以上这个过程中,变化的量是________.变变化的量是__________.
3.试用含t的式子表示s.
Ⅱ.自学教材94页,思考并回答
教材中提出的5个问题中.变化的量有,
不变的量有.
三、课堂学习研讨:
[活动一]
1.每张电影票售价为10元,如果早场售出票150张,日场售出205张,晚场售出310张.三场电影的票房收入各多少元.设一场电影售票x张,票房收入y元.•怎样用含x的式子表示y?
2.在一根弹簧的下端悬挂重物,改变并记录重物的质量,观察并记录弹簧长度的变化,探索它们的变化规律.如果弹簧原长10cm•,•每1kg•重物使弹簧伸长0.5cm,怎样用含有重物质量m的式子表示受力后的弹簧长度?
引导学生通过合理、正确的思维方法探索出变化规律.
结论:1.早场电影票房收入:
日场电影票房收入:)
晚场电影票房收入:)
关系式:
2.挂1kg重物时弹簧长度:
挂2kg重物时弹簧长度:
挂3kg重物时弹簧长度:
关系式:
归纳:为变量
称之为常量.
[活动二]
1.要画一个面积为10cm2的圆,圆的半径应取多少?圆的面积为20cm2呢?怎样用含有圆面积S的式子表示圆半径r?
2.用10m长的绳子围成矩形,试改变矩形长度.观察矩形的面积怎样变化.•记录不同的矩
形的长度值,计算相应的矩形面积的值,探索它们的变化规律:设矩形的长度为xcm,面积为Scm2.怎样用含有x的式子表示S?
结论:
四、课内巩固训练:
1.购买一些铅笔,单价0.2元/支,总价y元随铅笔支数x变化,•指出其中的常量与变量,并写出关系式.
2.一个三角形的底边长5cm,高h可以任意伸缩.写出面积S随h•变化关系式,并指出其中常量与变量.
3.若球体体积为V,半径为R,则V=4
3
R3.其中变量是_______、•_______,常量是
________.
4.夏季高山上温度从山脚起每升高100米降低0.7℃,已知山脚下温度是23℃,则温度y 与上升高度x之间关系式为__________.
5.汽车开始行驶时油箱内有油40升,如果每小时耗油5升,•则油箱内余油量Q升与行驶时间t小时的关系是_________.
五、课外拓展延伸:
瓶子或罐头盒等物体常如下图那样堆放.试确定瓶子总数y与层数x之间的关系式.
提示:要求变量间关系式,需首先知道两个变量间存在的规律是什么.不妨尝试堆放,找出规律,再寻求确定关系式的办法.
六、教学后反思:。