医学统计学考试重点(1月8号更新)
医学统计学考试重点
1. 统计工作的步骤:统计设计、搜集资料、整理资料、分析资料。
2. 统计资料类型:定量资料、定性资料、等级资料。
3. 定量资料:也称计量资料,是对每个观察单位用定量的方法测定某项指标所获得的资料。
4. 分类资料:也称定性资料,是将观察单位按属性或类别分组后,清点各组的观察单位个数所获得的资料。
分无序分类资料和有序分类资料。
5. 变异:指示同质的个体间各种指标存在的差异。
6. 总体:是根据研究目的所确定的同质观察单位某项变量值的集合。
7. 样本:是从总体中随机抽取的部分观察单位变量值的集合。
8. 抽样误差:由于随机抽样所引起的样本统计量与总体参数之间的差异以及各样本统计量之间的差异,抽样误差不可避免。
9. 概率:是指某时间发生可能性的大小。
一般用P 表示,P 的变化在0—1之间。
10. 小概率事件:是指发生概率很小的事件。
一般将概率值定为P ≤0.05或P ≤0.01。
11. 小概率原理:是指小概率事件在一次试验中几乎不可能发生。
据此原理,在假设检验中可根据计算出的概率P 值的大小作出拒绝活不拒绝某项假设的判断。
12. 频数表的编制步骤:计算全距、确定组距、划分组段、统计频数、频率与累积频率。
13. 集中趋势(用平均数描述)常用指标:算术均数、几何均数、中位数、百分位数。
14. 平均数:用于反映一组观察值的平均水平,是描述计量资料集中趋势的指标。
15. 常用离散指标(离散趋势):极差、四分位数间距、方差、标准差(最常用)、变异系数。
16. 方差:反映一组数据中每个变量值与其均数之间的变异。
标准差:是方差的开平方,意义与方差相同。
17. 标准误:样本均数的标准差称为均数的标准误,简称标准误,用来反映均数抽样误差大小的指标。
18. 标准差和标准误的区别标准差S标准误X S 表示个体变量值的变异度大小,即原始变量值的离散程度,公式为)(12--=∑n X X S表示样本均数抽样误差的大小,即样本均数的离散程度,公式为n S S x = 计算变量值的频数分布范围,如(s x 96.1±)计算总体均数的可信区间,如(x S x 96.1±) 可对某一个变量值是否在正常值范围内作出初步判断可对总体均数的大小作出初步的判断 用于计算标准误 用于进行假设检验19. t 分布曲线的特征①t 分布曲线是单峰分布,以0为中心,左右两侧对称②曲线的中间比标准正太曲线低,两侧翘得比标准正态曲线略高③当样本含量越小即自由度v 越小,t 分布于u 分布差别越大;当v 逐渐增大时,t 分布逐渐逼近于u 分布④t 分布曲线的形状随v 的变动而变动。
医学统计学复习重点和难点
一、医学统计的基本内容
• 1. 统计学:统计学是一门科学和艺术,专 门处理数据中的变异性。
如何处理:通过数据收集、整理、分析。 目的:得到可靠的结果。
• 2. 医学统计学:统计学应用于医药卫生领 域即称为医学统计学。
2020/12/9
• 3. 几个基本概念: • ⑴ 总体、样本、个体、随机抽样、
-1.96~1.96 -2.58~2.58
μ μ+σμ+1.96σ μ+2.58σ
0
1 1.96 2.58
正态分布 面积或概率
μ±σ
68.27%
μ±1.96σ 95.00%
μ±2.58σ 99.00%
5.参考值范围的制定及适用条件:(正态 、对数正态、百分位数法)
单侧下限---过低异常 单侧上限---过高异常 双侧---过高、过低均异常
2020/12/9
总变 组 异 内 组 变间 异 S总 S S组 S 间 S组 S内
总 组 间 组内
2020/12/9
方差分析的目的:是比较各组的总体 均数是否相同。 掌握完全随机设计及随机区组设计方 差分析变异及自由度的分解。 掌握完全随机设计方差分析的计算步 骤(方差分析表)。
2020/12/9
否
统计 描述 Md,Q
分类资料
统计 描述 率,比, 构成比
总体 均数 置信 区间
2020/12/9
t方 检差 验分
析
秩和 检验
总体 率的 置信 区间
2 检 验
五、直线相关与回归
1.直线相关与回归分析的意义和用途。 2.相关系数r、回归系数b、回归方程。 3.直线相关与回归的区别与联系及应用注 意事项。 4.等级相关的适用条件。
医学统计学考试重点资料
一、名解:1、定量资料:以定量值表达每个观察单位的某项观察指标2、定性资料:以定性方式表达每个观察单位的某项观察指标3、等级资料:以等级方式表达每个观察单位的某项观察指标4、总体:是指按研究目的所确定的研究对象中所有观察单位某项指标取值的集合。
5、样本:是指从研究总体中随机抽取具有代表性的部分观察单位某项指标取值的集合。
6、参数:描述某总体特征的指标称为总体参数。
7、统计量:描述某样本特征的指标称为样本统计量。
8、小概率事件:当某事件发生的概率小于或等于0.05时,统计学上称该事件为小概率事件9、小概率原理:其涵义为该事件发生的可能性很小,进而认为其在一次抽样中不可能发生,此即为小概率原理。
小概率原理是进行统计推断的依据。
(8&9常写在一起)10∙变异,是以具有同质性的观察单位为载体,某项观察指标在其单位之间显示的差别。
11标准化率:用统一的标准对内部构成不同的各组频率进行调整和对比,对比后的率为标准化率。
12参考值范围:又称正常值范围,大多数人正常人某观察指标所在的范围。
由于正常人的形态、功能、生化等各种指标的数据因人而异,而且同一个人的某些指标还会随着时间、机体内外环境的改变而变化,因此需要确定其波动范围,即正常值范围,简称正常值。
13、抽样误差:由抽样引起的样本统计量与总体参数间的差别。
14、中心极限定理:①从均数为U,标准差为。
的总体中独立随机抽样,当样本含量?增加时,样本均数的分布将趋于正态分布,均数为标准差为。
X②从非正态分布的总体中随机抽样,只要样本含量足够大,样本均数趋于正态分布。
15、统计推断:就是根据样本所提供的信息,以一定的概率推断总体的性质。
16、区间估计/参数估计/可信区间:包括点估计和区间估计,由样本信息估计总体参数。
按一定的概率或可信度(La)用一个区间估计总体参数所在范围。
这个范围称作可信度为l-α的可信区间(ConfidenCeinterval,Cl),又称置信区间。
《卫生统计学》考试重点复习资料
卫生统计学Statistics第一章绪论统计学:是一门通过收集、分析、解释、表达数据,目的是求得可靠的结果。
总体:根据研究目的确定的同质(大同小异)的观察单位的全体。
分为目标总体和研究总体。
样本:从总体中随机抽取部分观察单位,其测量结果的集合称为样本(sample)。
样本应具有代表性。
所谓有代表性的样本,是指用随机抽样方法获得的样本。
抽样:从研究总体中抽取少量有代表性的个体。
变量:表现出个体变异性的任何特征或属性。
分定型变量和定量变量。
定型变量:1)分类变量或名义变量:最简单的是二分类变量。
0-1变量也常称为假变量或哑变量。
2)有序变量或等级变量。
定量变量:分离散型变量和连续型变量。
变量只能由高级向低级转化:定量→有序→分类→二值。
常见的三种资料类型1)计量或测量或数值资料,如身高、体重等。
2)计数资料或分类资料,如性别、血型等。
3)等级资料,如尿蛋白含量-、+、++、+++、…第一章定量变量的统计描述此章节x即为样本均数(X拔)1.离散型定量变量的取值是不连续的。
累计频数为该组及前面各组的频数之和。
累计频率表示各组累计频数在总例数中所占的比例。
可用直条图表达。
2.编制频数表的步骤与要点步骤:1确定极差2确定组数3确定各组段的上下限4列表要点(注意事项)1)制表是为了揭示数据的分布特征,故分组不宜过粗或过细。
2)为计算方便,组段下限一般取较整齐的数值3)第一组段应包含最小值,最后一个组段应包含最大值。
3.频率分布表(图)的用途1)描述变量的分布类型2)揭示变量的分布特征3)便于发现某些离群值或极端值4)便于进一步计算统计指标和统计分析。
4.描述平均水平的统计指标算术均数(mean):描述一组数据在数量上的平均水平。
总体均数用μ表示,样本均数用X表示。
适用于服从对称分布变量的平均水平描述,这时均数位于分布的中心,能反应全部观察值的平均水平。
分:直接法和频率表法。
即所有变量值加和除以总数n或所有频数f k乘以组中值X0k后求和再除以总数n。
医科大学医学统计学重点知识总结
第一章绪论1、统计学的定义:统计学研究数据的收集、整理、分析的一门学科。
医学统计学:医学统计学是以医学理论为指导,应用概率论与数理统计的有关原理、方法,研究医学资料的搜集、整理、分析和推断的一门科学。
2、医学统计研究三个步骤:研究设计、资料分析、结论3、(必考的)几个概念:(1)同质:性质相同异质:性质不同观察单位间的同质性是进行研究的前提同质是相对的(不同研究中或同一研究中不同观察指标对观察对象的同质性的要求不同)(2)个体变异:同质个体间的差异。
变异的两个方面:不同观察单位(个体)间的差别;同一个体在不同阶段的差别(重复测量)个体变异是普遍存在的;个体变异是有规律的。
注意:由于个体变异的存在,同质个体指标的取值会存在差异!(例:体温波动)(3)总体:按研究目的所确定的同质研究对象的全体。
有限总体:有时间、空间的概念,观察单位有限无限总体:无时间、空间的概念(例:某种治疗措施的效果,就包括接受这种治疗措施的所有病人过去、现在、未来,因而观察单位无限)(4)个体:组成总体的基本单位。
样本:从研究总体中随机抽取具有代表性的部分观察单位随机性的三个体现:抽样随机、分组随机、试验顺序随机(5)随机变量:观察对象个体的特征或测量的结果观察结果在一定范围内以一定的概率分布随机取值的变量,表示随机现象。
在一定条件下,并不总是出现相同结果变量值:个体观察指标具体取值(6)总体参数:总体的统计指标或特征值固有的、不变的,但往往是未知的(7)样本统计量:由样本所算出的统计指标或特征值已知的,且随着试验的不同而不同,但分布是有规律的(8)样本含量:样本中包含个体的数量(9)频率f=m/n,f的值随n的增大接近常数p,概率P(A)=p即:频率为一变量,是样本统计量;概率为常数,是一总体参数小概率事件:概率小于等于0.05小概率原理:小概率事件在一次试验中是不会发生的(10)抽样误差:两个表现:样本统计量与总体参数间的差别;不同样本统计量间的差别两个原因:个体变异;抽样过程抽样误差不可避免,但是有规律。
医学统计学重点
医学统计学重点说明:本重点仅供参考:不能包括所有选择题考题,名词和简答可信度高,计算题熟练运算过程;同时自己要清楚各种检验方法的基本思想,重点程度与星号数量相关)一、名词解释1、★★★医学统计学:用概率论和数理统计方法研究医学事件的群体特征的一门方法。
2、★总体:根据研究目的确定的同质的研究对象的全体(集合)。
3、样本:从总体中随机抽取的部分研究对象。
4、随机:总体中每个个体有同等的机会进入样本。
5、系统误差:指数据搜集和测量过程中由于仪器不准确、标准不规范等原因,造成观察结果呈倾向性的偏大或偏小,这种误差称为系统误差。
6、随机误差:由于一些非人为的偶然因素使得结果或大或小,是不确定、不可预知的。
7、★★抽样误差:由于抽样原因造成的样本指标与总体指标之间的差,或者是样本指标与样本指标之间的差。
8、准确度(accuracy)或真实性(validity):观察值与真值的接近程度,受系统误差的影响(9、可靠度(reliabiliy)——也称精密度(precision)或重复性(repeatability):重复观察时观察值与其均值的接近程度,受随机误差的影响。
10、★★★小概率事件:一般常将p ≤ 0.05或p ≤ 0.01称为小概率事件,表示某事件发生的可能性很小。
通俗讲一次抽样是不可能发生的事件。
11、★★正态分布定:又称高斯分布,是一条中间高,两头低,左右完全对称地下降,但永远不与横轴相交的钟形曲线。
12、★★医学参考值范围:指绝大多数正常人的解剖、生理、生化、免疫及组织代谢产物的含量等各种数据的波动范围。
最常用的是95%参考值范围。
13、★★标准误:用于反映均数抽样误差大小的指标,也叫样本均数的标准差,它反映了样本均数之间的离散程度。
14、★95%的可信区间:如果从同一总体中重复抽取100个独立样本,将可能有95个可信区间包括总体均数,有5个可信区间未包括总体均数。
二、填空题1、★医学统计学工作基本步骤:统计设计;收集资料.;整理资料;分析资料2、★统计分析包括:统计描述、统计推断3、频数分布的两个重要特征:集中趋势和离散趋势4、正态分布的两个参数:均数;标准差。
医学统计学章节重点归纳
医学统计学章节重点归纳第一节概述1、主要内容:a、卫生统计学的基本原理和方法(研究设计和数据处理中的统计理论和方法)b、健康统计(医学人口统计、疾病统计和生长发育统计)c、卫生服务统计(卫生资源、医疗卫生服务的需求和利用、医疗保健制度和管理中的统计问题)。
2、卫生统计工作的步骤:设计、资料的搜集、资料的整理、资料的分析3、医学统计资料主要四个方面:统计报表、报告卡(单)、日常医疗卫生工作记录,专题研究或实验。
4、观察单位:是获得数据的最小单位,观察单位是根据研究目的确定的,观察单位可以是人、标本、家庭、国家等。
5、变异:是指客观事物的多样性和不确定性。
6、变量:观察单位的某种特征,称为变量。
a、数值变量(定量变量)b、分类变量(定型变量或字符变量)。
7、总体:根据研究目的所确定的同质研究对象的全体。
确切的说是性质相同的所有观察单位的某种变量的集合。
8、样本:从总体中随机抽取部分观察单位,其变量值就构成样本,通过样本信息来推断总体特征。
9、概率:事件发生的可能性大小的量度,通常以符号P表示。
10、误差:测量值与真值之差或样本指标和总体指标之差。
分为随机误差和系统误差。
第二节数值资料的统计描述1、频数分布就是观察值在所取得范围内分布的情况。
重要特征:集中趋势和离散趋势。
2、频数分布类型:正态分布型频数、正偏态分布型频数,负偏态分布型频数。
3、集中趋势指标:算术平均数(均数)、几何均数、中位数。
指标使用条件计算公式算术平均数适用于正态或近似正态分布的数值变量资料几何均数①对数正态分布,即数据经过对数变换后呈正态分布的资料;②等比级数资料,即观察值之间呈倍数或近似倍数变化的资料。
中位数①非正态分布资料(对数正态分布除外);②频数分布的一端或两端无确切数据的资料③总体分布不清楚的资料。
为奇数 , 为偶数,4、离散型趋势指标:极差、标准差和变异系数指标计算公式主要优缺点极差R=Xmax-Xmin 计算简单,便于理解;只考虑最大值与最小值之差异,不能反映组内其它观察值的变异度,不稳定,受样本量影响很大。
医学统计学复习重点
医学统计学复习重点统计设计:调查设计、实验设计第一章绪论1.基本概念:总体——根据研究目的确定,所有同质观察单位某种观察值的全体。
样本——总体中抽取的一部分具有代表性的个体组成的集合。
参数-—刻画总体特征的统计指标。
一般用希腊字母表示μ、σ、π统计量—-刻画样本特征的统计指标.抽取的样本不同,统计量会变化;一般用拉丁字母或英文字母表示、S、p抽样误差:个体变异所致,抽样研究中样本信息与总体特征间的差异。
抽样误差是不可避免的。
属于随机误差,无方向性,重复抽样可以呈现一定的规律性。
小概率事件P≤0。
052.*统计工作的四个步骤:设计、收集资料、整理资料、分析资料。
(用工作实例解释)第二章调查研究设计第三章实验研究设计1.调查研究(观察性研究):特点:无人为施加处理因素调查研究的分类:按调查涉及的对象划分:全面调查(普查)、抽样调查、典型调查注意:收集的资料要有可比性*随机抽样方法(做统计推断有意义):单纯随机抽样、系统抽样、分层抽样、整群抽样非随机抽样方法(不能做统计推断,可能有偏差):偶遇抽样、判断抽样、滚雪球抽样等2.实验研究特点:与调查研究最本质的区别:根据研究目的主动施加干预措施实验设计的三个基本要素:受试对象、处理因素、实验效应实验设计的基本原则:对照原则、随机化原则、重复原则第四章定量资料的统计描述第五章定性资料的统计描述1.定量资料(1)定量资料——*频数分布表、直方图、箱式图—-判断分布类型——(2)描述离散趋势的统计指标:✓极差R=最大值—最小值、✓四分位数间距Q:常用于描述*偏态分布资料的离散趋势、一端或两端无确切值的资料、分布不明确资料✓方差(总体、样本S2)&标准差(、S):*正态或近似正态分布✓变异系数(3)(4)正态分布及其应用:**制定医学参考值范围步骤:判断分布类型-—正态分布-—*双侧95%参考值范围:±1.96S、单侧95%参考值范围:下限为—1。
64S、上限为+1。
医学统计学重点
医学统计学重点医学统计学是医学领域中不可或缺的一门学科,它借助数理统计方法研究医学数据和临床试验的结果,为医学决策提供可靠的依据。
以下是医学统计学的几个重点内容。
一、描述统计学描述统计学是医学统计学的基础,主要研究如何分类、整理和描述医学数据。
其主要方法包括测量尺度、频率分布表、中心趋势测量和变异程度测量。
1. 测量尺度在医学统计学中,常见的测量尺度包括名目尺度、有序尺度和数值尺度。
名目尺度适用于无序分类的变量,有序尺度适用于有序分类的变量,而数值尺度适用于具有度量意义的变量。
2. 频率分布表频率分布表用来展示变量的分布情况,主要包括类别、频数和频率等内容。
通过频率分布表,可以直观地了解变量的分布状况。
3. 中心趋势测量中心趋势测量主要包括平均数、中位数和众数。
平均数是所有观测值的总和除以观测值的个数,中位数是将观测值按大小排列后的中间值,众数是出现次数最多的观测值。
4. 变异程度测量变异程度测量用来描述数据的分散程度,主要包括极差、方差和标准差。
极差是最大观测值与最小观测值之间的差异,方差是观测值与均值之间的差异的平方的平均数,标准差是方差的平方根。
二、推断统计学推断统计学是医学统计学的核心内容,主要研究如何通过样本数据推断总体参数,并对假设进行检验。
其中包括参数估计、假设检验和置信区间等方法。
1. 参数估计参数估计是利用样本数据估计总体参数,常用的方法有点估计和区间估计。
点估计是通过样本数据得到一个单一的数值作为总体参数的估计值,区间估计是通过样本数据得到一个范围作为总体参数的估计区间。
2. 假设检验假设检验是用来检验某个陈述是否与观察数据相符的方法。
在医学研究中,研究者常常根据实验数据对研究假设进行检验,以确定是否有统计显著性。
3. 置信区间置信区间是对总体参数的一个范围估计。
置信区间的计算方法与区间估计相似,通过对样本数据进行分析计算得到。
三、生存分析生存分析是医学统计学中的一个重要分支,主要研究疾病患者的生存时间和生存率等问题。
医学统计学重点
1. 变异:同质事物之间的差别。
2. 频数分布的两个特征:集中位置,离散趋势3. 数据分布的类型:对称分布和非对称分布。
非对称分布又称偏态分布,包括正偏态和负偏态。
单峰分布,双峰分布,多峰分布。
4. 统计描述:用统计表、统计图和统计指标等方法对资料的数量特征与分布规律进行描述。
5. 集中位置的描述,集中位置指标又称平均数指标。
有哪些及适用条件?(1) 算数平均数:最适用于单峰对称分布资料的平均水平的描述,特别是正态分布资料 (2) 几何平均数:适用于 ①等比资料 ② 对数正态分布资料(3) 中位数和百分位数:适用于 ①偏态分布的资料 ②开口资料 ③资料分布不明等 6. 离散趋势的描述四分位数间距,适用于单峰小样本资料方差和标准差,适用于对称分布尤其是正态分布资料变异系数,常用于 ①比较度量衡单位不同的两组或多种资料的变异度 差悬殊的两组或多组资料的变异度7. 常用相对数(1 )率,是二分类指标(2)构成比(3)比 8. 正确应用相对数应注意几个问题:分析时不能以构成比代替率对观察单位数不等的几个率,不能直接相加求其总率计算率时要注意资料的同质性,对比分析时应注意资料的可比性 也有抽样误差,需要假设检验。
9. 率的标准法(1) 基本思想:采用统一的标准,以消除病情构成不同对治愈率比较的影响,使算得的标准化治愈率有可比性。
(2) 目的:控制混杂因素对研究结果的影响。
10.正态分布 (1)概念P16X(2)标准正态分布,U 变换:u=,u 是标准正态离差,卩是均数,b 是标准差。
(1) 全距亦称极差,适用于单峰小样本资料②比较均数相 (1) 计算相对数的分母不宜过小U 〜N (0, 1)(3) 正态分布的特征:① 是单峰分布,高峰位置在均数 X=u 处。
② 以均数为中心,左右完全对称。
③ 取决于两个参数,均数卩和标准差b 。
卩为位置参数,卩越大,则曲线沿横轴向右移动; 卩越小,则曲线沿横轴向左移动。
医学统计学重点
医学统计学重点第一章绪论1.根本概念:总体:根据研究目确实定的性质相同或相近的研究对象的某个变量值的全体。
样本:从总体中随机抽取局部个体的某个变量值的集合。
总体参数:刻画总体特征的指标,简称参数。
是固定不变的常数,一般未知。
统计量:刻画样本特征的指标,由样本观察值计算得到,不包含任何未知参数。
抽样误差:由随机抽样造成的样本统计量与相应的总体参数之间的差异。
频率:假设事件A在n次独立重复试验中发生了m次,那么称m为频数。
称m/n为事件A在n 次试验中出现的频率或相对频率。
概率:频率所稳定的常数称为概率。
统计描述:选用适宜统计指标(样本统计量)、统计图、统计表对数据的数量特征及其分布规律进行刻画和描述。
统计推断:包括参数估计和假设检验。
用样本统计指标(统计量)来推断总体相应指标(参数),称为参数估计。
用样本差异或样本与总体差异推断总体之间是否可能存在差异,称为假设检验。
2.样本特点:足够的样本含量、可靠性、代表性。
3.资料类型:〔1〕定量资料:又称计量资料、数值变量或尺度资料。
是对观察对象测量指标的数值大小所得的资料,观察指标是定量的,表现为数值大小。
每个个体都能观察到一个观察指标的数值,有度量衡单位。
〔2〕分类资料:包括无序分类资料〔计数资料〕和有序分类资料〔等级资料〕①计数资料:是将观察单位按某种属性或类别分组,清点各组观察单位的个数(频数),由各分组标志及其频数构成。
包括二分类资料和多分类资料。
二分类:将观察对象按两种对立的属性分类,两类间相互对立,互不相容。
多分类:将观察对象按多种互斥的属性分类②等级资料:将观察单位按某种属性的不同程度、档次或等级顺序分组,清点各组观察单位的个数所得的资料。
4.统计工作根本步骤:统计设计、资料收集、资料整理、统计分析。
第二章实验研究的三要素1.实验设计三要素:被试因素、受试对象、实验效应2.误差分类:随机误差〔抽样误差、随机测量误差〕、系统误差、过失误差。
3.实验设计的三个根本原那么:对照原那么、随机化分组原那么、重复原那么。
(完整版)医学统计学复习要点
..第一章绪论1、数据/资料的分类:①、计量资料,又称定量资料或者数值变量;为观测每个观察单位某项治疗的大小而获得的资料。
②、计数资料,又称定性资料或者无序分类变量;为将观察单位按照某种属性或者类别分组计数,分组汇总各组观察单位数后而得到的资料。
③、等级资料,又称半定量资料或者有序分类变量。
为将观察单位按某种属性的不同程度分成等级后分组计数,分类汇总各组观察单位数后而得到的资料。
2、统计学常用基本概念:①、统计学(statistics )是关于数据的科学与艺术,包括设计、搜集、整理、分析和表达等步骤,从数据中提炼新的有科学价值的信息。
②、总体(population )指的是根据研究目的而确定的同质观察单位的全体。
③、医学统计学(medical statistics ):用统计学的原理和方法处理医学资料中的同质性和变异性的科学和艺术,通过一定数量的观察、对比、分析,揭示那些困惑费解的医学问题背后的规律性。
④、样本(sample ):指的是从总体中随机抽取的部分观察单位。
⑤、变量(variable ):对观察单位某项特征进行测量或者观察,这种特征称为变量。
⑥、频率(frequency ):指的是样本的实际发生率。
⑦、概率(probability):指的是随机事件发生的可能性大小。
用大写的P 表示。
3、统计工作的基本步骤:①、统计设计:包括对资料的收集、整理和分析全过程的设想与安排;②、收集资料:采取措施取得准确可靠的原始数据;③、整理资料:将原始数据净化、系统化和条理化;④、分析资料:包括统计描述和统计推断两个方面。
第二章计量资料的统计描述1. 频数表的编制方法,频数分布的类型及频数表的用途①、求极差(range ):也称全距,即最大值和最小值之差,记作R ;②、确定组段数和组距,组段数通常取10-15组;③、根据组距写出组段,每个组段的下限为L ,上限为U ,变量X 值得归组统一定为L ≤X <U ,最后一组包括下限。
卫生统计学重点
卫生统计学1.医学统计学:是运用概率论与数理统计的原理及方法,研究居民健康状况以及卫生服务领域中数字资料的搜集、整理分析与推断的一门学科。
2.定量变量:是用仪器、工具或其它定量方法对每个观察单位的某项标志进行测量,并把测量结果用数值大小表示出来的资料,一般带有度量衡或其它单位。
3.定性变量:将全体观测单位按照某种性质或特征分组,然后再分别清点各组观察单位的个数。
4.样本的特征:(1)代表性(2)随机性(3)可靠性(4)可比性(comparable)5.误差:统计上所说的误差泛指测量值与真值之差,样本指标与总体指标之差。
6.系统误差:指数据搜集和测量过程中由于仪器不准确、标准试剂未经校正,操作人员掌握的标准不准等原因,造成观察结果呈倾向性的偏大或偏小,这种误差称为系统误差。
7.随机误差:由于一些非人为的偶然因素使得结果或大或小,是不确定、不可预知的。
8.减少抽样误差的方法:9.(1)改进抽样方法,增加样本的代表性。
(2)增加样本量n 。
(3)选择变异程度较小的研究指标。
10.统计工作的步骤:设计、收集资料、整理资料、分析资料。
11.发病率:表示一定时期内,在可能发生某病的一定人群中,新发生的某病的频率(强度)。
12. 患病率:又称为现患率,指某时点检查时可能发生某病的一定人群中现患某种疾病的频率。
患病率分为时点患病率(point prevalence rate)和期间患病率(period prevalence rate)。
13.治愈率(cure rate):表示受治病人中治愈的频率。
14.生存率(survival rate):指病人能活到某一时点的概率。
15.标准化率:标准化法就是采用统一的标准对内部构成不同的各组频率进行调整和对比的方法。
16.二项分布的图形特征(1)0.5时,图形是对称的,如图5-1。
(2)0.5愈远,对称性愈差,但随着n的增大,分布趋于对称。
当n太靠近0或1,当nP和n(1-P)都大于5时,二项分布近似于正态分布。
医学统计学重点
<<医学统计学>>重点1. 总体:根据研究的目的确定的同质研究对象中所有的观察单位变量值的集合。
2. 样本:按随机化原则从同质总体中随机抽取的部分观察单位某变量值的集合。
3. 同质:影响究指研标的主要因素易控制的因素基本上相同。
4. 抽样误差:在抽样研究中,由于变异的存在,即使在同一总体中抽取的几个样本,各样本统计量往往不等。
样本统计量与总体参数也不等,这种由于抽样研究所至样本之间和样本与总体之间的差异称为。
5. 变量:观察指标在统计学上统称为指标变量,它反应的是生物个体间的变异情况,根据其性质可分为定性变量(分类)和定量变量(连续)。
6. 截尾数据:生存时间观察过程被人为的截止称为截尾,又称删失或终检。
原因:失访/退出/终止(研究时限已到而终止观察)。
7. 卡方基本思想:X2分布是一种连续型分布,可用于检验资料的实际频数和按检验假设计算的理论频数是否相等等问题。
X2反应实现了实际频数与理论频数的吻合程度。
如果检验假设成立,则A-T一般不大,X2应很小,即出现大X2值概率很小。
即X2越大,P越小,若P≤a时,就怀疑假设的成立,拒绝H0。
若P>a则没有理由拒绝H0。
8. X2用途:(1)实际频数与拟合频数拟合优度:A推断两个或两个以上总体率或构成比有无差别(四格表/行x列表)。
B两变量之间有无相互关系。
C频数分布的拟合优度检验(判断次样本是否来自某种分布)。
(2)某些分布可用X2近似。
(3)间接应用:如t分布和F分布就是在X2分布基础上推导出来的。
9. 方差分析的基本思想:根据研究目的和设计类型,把总体变异中离均差平方和分解成两部分或更多部分,也把总变异中的自由度相应分成两部分或更多部分,然后再进行比较,评价由某种因素引起的变异是否具有统计学意义。
10. 假设检验中P,a,b(倍他)的关系及统计学意义:a:检验水准,即显著性检验,在此概率之下的认为是小概率事件,统计学上以为此事件“不可能发生”,以此判断是否不拒绝H0无效假设,在假设检验中,按a检验水准,拒绝了原来正确的H0,即犯了第1类错误,犯此错误的概率为a。
医学统计学考试重点
医学统计学考试重点简答 4-5个讨论分析1-2题计算 1-2题考试题型:名词解释10个选择20个填空题 20个绪论2选1总体:总体(population)指特定研究对象中所有观察单位的测量值。
可分为有限总体和无限总体。
总体中的所有单位都能够标识者为有限总体,反之为无限总体。
样本:从总体中随机抽取部分观察单位,其测量结果的集合称为样本(sample)。
样本应具有代表性。
所谓有代表性的样本,是指用随机抽样方法获得的样本。
3选1小概率事件:我们把概率很接近于0(即在大量重复试验中出现的频率非常低)的事件称为小概率事件 P值:结果的统计学意义是结果真实程度(能够代表总体)的一种估计方法。
p值是将观察结果认为有效即具有总体结果?0.05被认为是有统计学意义代表性的犯错概率。
一般小概率原理:一个事件如果发生的概率很小的话,那么可认为它在一次实验中是不会发生的,数学上称之小概率原理。
统计学中,一般认为等于或小于0.05或0.01的概率为小概率。
资料的类型(3选1)(1)计量资料:对每个观察单位用定量的方法测定某项指标量的大小,所得的资料称为计量资料(measurement data)。
计量资料亦称定量资料、测量资料。
.其变量值是定量的,表 12现为数值大小,一般有度量衡单位。
如某一患者的身高(cm)、体重(kg)、红细胞计数(10/L)、脉搏(次/分)、血压(KPa)等。
(2)计数资料:将观察单位按某种属性或类别分组,所得的观察单位数称为计数资料 (count data)。
计数资料亦称定性资料或分类资料。
其观察值是定性的,表现为互不相容的类别或属性。
如调查某地某时的男、女性人口数;治疗一批患者,其治疗效果为有效、无效的人数;调查一批少数民族居民的A、B、AB、O 四种血型的人数等。
(3)等级资料:将观察单位按测量结果的某种属性的不同程度分组,所得各组的观察单位数,称为等级资料(ordinal data)。
等级资料又称有序变量。
医学统计学期末考试重点
1. 用样本均数推论总体均数95%可信区间的公式是(总体标准差未知且样本量较小) A x v s t x ,05.0±2. 两个样本均数比较t 检验(α=0.05),当|t|>t 0.05,(ν)时: E 接受备择假设3. 两个样本均数比较t 检验(α=0.05),当|t|>t 0.05,(ν)时,统计结论为 CC 两总体均数不同 4. 两个样本均数比较t 检验,分别取以下检验水准,其中第二类错误最小的是 BA α=0.05B α=0.2C α=0.1D α=0.035.两个样本均数比较t 检验,无效假设是 DD 两总体均数相等6. 两个样本均数比较t 检验(α=0.05),当“拒绝H0,接受H1”时,P 值越小 EE 越有理由认为两总体均数不同7. 两个样本均数比较t 检验时,每个变量同时加上一个不为“0”的常后,其t 值 AA 变大 8. 检验效能是指A αB 1- αC βD 1-βE 以上都不对9. 第一类错误是指 A 拒绝实际上成立的H010. 第二类错误是指 D 接受实际不成立的H111. 要使两类错误同时减少的方法是 AA 增加样本量 12. 以下何种情况进行单侧检验 AA 已知A 药肯定优于B 药 13. 以下何种情况进行单侧检验 AA 已知21χχ> 14. 在进行t 检验时,P 值和α值的关系 EE α值是研究者事先确定的15. 在配对t 检验中 EE 当不拒绝H0时,差值的总体均数可信区间一定包含016.统计中所说的总体是指: AA 根据研究目的确定的同质的研究对象的全体17.概率P=0,则表示 BB 某事件必然不发生 18.抽签的方法属于 DD 单纯随机抽样 19.测量身高、体重等指标的原始资料叫:BB 计量资料 20.某种新疗法治疗某病患者41人,治疗结果如下:治疗结果 治愈 显效 好转 恶化 死亡治疗人数 8 23 6 3 1该资料的类型是: D 有序分类资料21.样本是总体的 C 有代表性的部分 22.将计量资料制作成频数表的过程,属于统计工作哪个基本步骤: C 整理资料23.统计工作的步骤正确的是 C 设计、收集资料、整理资料、分析资料24.良好的实验设计,能减少人力、物力,提高实验效率;还有助于消除或减少:BB 系统误差25.以下何者不是实验设计应遵循的原则 D 交叉的原则26.表示血清学滴度资料平均水平最常计算 B 几何均数27.某计量资料的分布性质未明,要计算集中趋势指标,宜选择 C M28.各观察值均加(或减)同一数后: B 均数改变,标准差不变29.某厂发生食物中毒,9名患者潜伏期分别为:16、2、6、3、30、2、10、2、24+(小时), 问该食物中毒的平均潜伏期为多少小时? C 630.比较12岁男孩和18岁男子身高变异程度大小,宜采用的指标是: D 变异系数31.下列哪个公式可用于估计医学95%正常值范围 A X±1.96S32.标准差越大的意义,下列认识中错误的是 B 观察个体之间变异越小33.正态分布是以 E 均数为中心的频数分布34.确定正常人的某项指标的正常范围时,调查对象是B排除影响研究指标的疾病和因素的人35.均数与标准差之间的关系是E标准差越小,均数代表性越大36.从一个总体中抽取样本,产生抽样误差的原因是A总体中个体之间存在变异37.两样本均数比较的t检验中,结果为P<0.05,有统计意义。
(完整word版)医学统计学考试重点(人卫第七版)
1、同质:是指观察单位或观察指标受共同因素制约的部分2、观察单位:亦称个体,是统计研究中最基本的单位3、变异:在同质的基础上个体间的差距4、总体:根据研究目的所确定的同质观察单位的全体,既是同质的所有观察单位某项观察值的集合5、有限总体:总体若受一定的时间和空间控制,其观察单位数是有限的,称为有限总体无限总体:理论上其观察单位数是无法穷尽的6、样本:是指从总体中随机抽取部分观察单位其某项指标实测值的集合7、抽样:从总体中抽取部分个体的过程称为抽样8、抽样必须遵循随机化原则,即总体中每一个体都有同等的机会被抽取到9、抽样研究的方法,利用样本的信息推论总体的特征来达到研究目的10、参数:描述总体特征的量11、统计量:根据样本个体值计算得到的描述样本特征的量12、总体参数是常数,而样本统计量可随样本不同而不同13、随机误差:指一类不恒定、随机变化的误差,有多种尚无法控制的因素所引起14、抽样误差:指抽样引起的样本统计量与总体参数之间的差异15、系统误差:在实际观测过程中,由于仪器未校正、观测者感官的某种倾向、研究者掌握的标准偏高或偏低等原因,使观察值不是随机分散在真值两侧,而是具有方向性、系统性或周期性的偏离真值,这类误差称为系统误差16、过失误差:指各种失误所导致的误差17、随机事件:在一定条件下某一现象可能发生也可能不发生的事件18、概率:反映某一随机事件发生可能性大小的量,用符号P表示19、小概率事件:统计学上一般把P≤0。
05的事件称为小概率事件,表示某事件发生的可能性很小20、变量:观察单位的某个特征21、变量值:变量的观察结果或测定值22、按变量值是定性的还是定量的,可将变量分为数值变量和分类变量23、数值变量又称定量变量,其变量值是用定量方法测得的,所的资料是计量资料24、分类变量又称定性变量,其变量值是用定性方法测得的25、分类变量根据类别是否有程度上的差别,可分为无序分类变量(构成的资料为计数资料)和有序分类变量(所得资料为等级资料)25、医学统计工作的基本步骤:一、设计;二、收集资料;三、整理资料;四、分析资料26、统计表和统计图是描述统计资料的重要工具27、统计表的结构:①标题位于统计表的上中方②标目用来说明表内各纵横数字的含义,注意标明指标的单位。
医学统计学期末考试重点
一、总体:是根据研究目的确定的同质观测单位的集合。
样本:是从统计总体中随机抽取的、具有代表性的部分观测单位的集合。
同质:即构成总体的各个观测单位在某一方面或几方面的性质相同或基本相同。
变异:是指在同质基础上各观测单位之间的差异。
离散型变量:指只能取可数的或有限个数的变量。
特点只是取顺序整数值连续性变量:指可以取各整数区间的一切实数值的变量。
特点是在两个连续的整数值之间还可以用小数或分数连接起来的非整数值。
二、统计的含义1.统计工作:指搜集、整理、分析和研究统计数据的工作,是统计数据与统计理论的基础和源泉。
2.统计数据:指统计工作研究的主体及成果。
3.统计学:是对研究对象的数据进行搜集、整理、分析和研究,以揭示其总体特征和规律性的方法论科学。
三、统计学的主要内容1.研究设计:是按照研究目的和统计学要求制定具有针对性、具体性、专业性的工作方案。
2.统计描述:用统计指标、统计图、统计表等方法描述样本资料的数据特征及其分布规律,是整个统计学的基础。
3.统计推断:用样本信息推论总体特征的归纳过程,它有两个重要领域。
四、误差及其分类误差指实际观测值与真值之差或样本指标与总体指标之差。
误差分为非随机误差和随机误差,非随机误差:粗差-粗心大意,无规律性,可以避免;系统误差-仪器、方法、等条件的差异,感官、理论和实验方法的差异。
随机误差:测量误差-由一系列实验或观测条件的随机波动造成的实测值与真值之差;抽样误差-随机抽样引起的统计量与参数之间的差异。
五、统计工作的基本步骤研究设计、搜集资料、整理资料、分析资料中医统计资料的搜集与整理一、中医统计资料的类型1.计量资料:是由数值变量产生的资料,即对每个观察单位用计量方法测得某项标志数值大小所得资料,变量值大多有度量衡单位;2.计数资料:是由分类变量产生的资料,即对每个观察单位按某种属性分组计数得到的资料,变量值变现为互不相容的属性或类别,无度量衡单位。
统计描述一、频数分布:是指观测值按大小分组,各个组段内观测值个数的分布,它是了解数据分布形态特征与规律的基础。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
考试题型:名词解释10个选择20个填空题20个简答4-5个讨论分析1-2题计算1-2题。
有任何错误或者对题目有更好的答案请联系我************。
第一章2选1总体:总体(population)是根据研究目的确定的同质观察单位(研究对象)的全体,实际上是某一变量值的集合。
可分为有限总体和无限总体。
总体中的所有单位都能够标识者为有限总体,反之为无限总体。
样本:从总体中随机抽取部分观察单位,其测量结果的集合称为样本(sample)。
样本应具有代表性。
所谓有代表性的样本,是指用随机抽样方法获得的样本。
3选1小概率事件:我们把概率很接近于0(即在大量重复试验中出现的频率非常低)的事件称为小概率事件。
P值:P 值即概率,反映某一事件发生的可能性大小。
统计学根据显著性检验方法所得到的P 值反应结果真实程度,一般以P ≤ 0.05 认为有统计学意义, P ≤0.01 认为有高度统计学意义,其含义是样本间的差异由抽样误差所致的概率等于或小于0.05 或0.01。
P值是:1) 一种概率,一种在原假设为真的前提下出现观察样本以及更极端情况的概率。
2) 拒绝原假设的最小显著性水平。
3) 观察到的(实例的) 显著性水平。
4) 表示对原假设的支持程度,是用于确定是否应该拒绝原假设的另一种方法。
小概率原理:一个事件如果发生的概率很小的话,那么可认为它在一次实际实验中是不会发生的,数学上称之小概率原理,也称为小概率的实际不可能性原理。
统计学中,一般认为等于或小于0.05或0.01的概率为小概率。
资料的类型(3选1)(1)计量资料:对每个观察单位用定量的方法测定某项指标量的大小,所得的资料称为计量资料(measurement data)。
计量资料亦称定量资料、测量资料。
.其变量值是定量的,表现为数值大小,一般有度量衡单位。
如某一患者的身高(cm)、体重(kg)、红细胞计数(1012/L)、脉搏(次/分)、血压(KPa)等。
(2)计数资料:将观察单位按某种属性或类别分组,所得的观察单位数称为计数资料(count data)。
计数资料亦称定性资料或分类资料。
其观察值是定性的,表现为互不相容的类别或属性。
如调查某地某时的男、女性人口数;治疗一批患者,其治疗效果为有效、无效的人数;调查一批少数民族居民的A、B、AB、O 四种血型的人数等。
(3)等级资料:将观察单位按测量结果的某种属性的不同程度分组,所得各组的观察单位数,称为等级资料(ordinal data)。
等级资料又称有序变量。
如患者的治疗结果可分为治愈、好转、有效、无效或死亡,各种结果既是分类结果,又有顺序和等级差别,但这种差别却不能准确测量;一批肾病患者尿蛋白含量的测定结果分为+、++、+++等。
等级资料与计数资料不同:属性分组有程度差别,各组按大小顺序排列。
等级资料与计量资料不同:每个观察单位未确切定量,故亦称为半计量资料。
两种误差(2选1)抽样误差(sampling error )由于抽样而引起的总体指标(参数)与样本指标(统计数)之间的差异。
抽样误差是由个体变异或其它随机因素造成的,是不可避免的,但误差分布有规律可循,可进行估计和分析。
系统误差(systematic error):由于测量仪器结构本身的问题、刻度不准确或测量环境改变等原因,在多次测量时所产生的,总是偏大或总是偏小的误差,称为系统误差。
它带有规律性,经过校正和处理,通常可以减少或消除。
统计的步骤(考填空题,四个空)统计工作的步骤1.设计:设计内容包括资料收集、整理和分析全过程总的设想和安排。
设计是整个研究中最关键的一环,是今后工作应遵循的依据。
2.收集资料:应采取措施使能取得准确可靠的原始数据。
3.整理资料:简化数据,使其系统化、条理化,便于进一步分析计算。
4.分析资料:计算有关指标,反映事物的综合特征,阐明事物的内在联系和规律。
分析资料包括统计描述和统计推断。
实验设计的基本原则(考填空题,三个空)随机化原则、对照的原则、重复的原则。
2选1参数:参数(paramater)是指总体的统计指标,如总体均数、总体率等。
总体参数是固定的常数。
多数情况下,总体参数是不易知道的,但可通过随机抽样抽取有代表性的样本,用算得的样本统计量估计未知的总体参数。
统计量:统计量(statistic)是指样本的统计指标,如样本均数、样本率等。
样本统计量可用来估计总体参数。
总体参数是固定的常数,统计量是在总体参数附近波动的随机变量。
第二章频数表的制作步骤以及频数分布表的用途(问答题)频数分布表的编制步骤:例:某市1982年50名7岁男童的身高(cm)资料如下,试编制频数表。
114.4117.2122.7124.0114.0110.8118.2116.7118.9118.1123.5118.3120.3116.2114.7119.7114.8119.6113.2120.0119.8116.8119.8122.5119.7120.7114.3122.0117.0122.5119.7124.9126.1120.0124.6120.0121.5114.3124.1117.2120.2120.8126.6121.5126.1117.7124.1128.3121.8118.71、找出观察值中的最大值(largest value)、最小值(smallest value),求极差(range)。
极差等于最大值减最小值。
本例最大值=128.3,最小值=110.8,则极差=128.3-110.8=17.5(cm )2、确定分组数和组距(class interval)。
组数的多少是根据例数的多少来确定的,以能够反映出频数分布的特征为原则,一般分10—15组。
组距为相邻两组的间隔,组距=极差/组数。
本例拟分10组,则组距=17.5/10=1.75≈2,为划记方便,可取稍大或稍小的数(当然本例组距也可取1.5)。
3、确定组段。
第一组段包括要最小值,取较最小值稍小且划分方便的数,本例取“110~”。
最后组段包括最大值并写出其上限值。
4、划记。
将各观察值以划“正”字的方法,一笔代表一例,划在相应组段中。
例如第一个数l14.4应在组段“114~”处划,第二个数117.2应在“116~”处划,以此类推。
5、统计各组段的频数。
全部数据划记完后,清点各组段的人数。
根据编制出的频数表即可了解该数值变量资料的频数分布特征。
频数分布表的用途1、描述资料的分布特征和分布类型。
频数分布有两个重要特征:集中趋势和离散趋势。
大部分观察值向某一数值集中的趋势称为集中趋势,常用平均数指标来表示,各观察值之间大小参差不齐。
频数由中央位置向两侧逐渐减少,称离散趋势,是个体差异所致,可用一系列的变异指标来反映。
2、便于进一步计算有关指标或进行统计分析。
当数据较多且需手工计算时,常先编制频数表,再进行统计计算。
3、发现特大、特小的可疑值。
如果频数表的一端或两端出现连续几个组段的频数为零后,又出现少数几个特大值或特小值,使人怀疑其是否准确,需进一步检查和核对并做相应处理。
4、据此绘制频数分布图。
描述数据分布集中趋势的指标和描述数据分布离散程度的指标(考选择或者填空)2.描述数据分布集中趋势的指标算术均数、几何均数、中位数。
3.描述数据分布离散程度的指标极差、四分位数间距、方差、标准差、变异系数。
正态分布的特征(考选择题υ、σ对图形的影响)服从正态分布的变量的频数分布由υ、σ完全决定。
(1) υ是正态分布的位置参数,描述正态分布的集中趋势位置。
正态分布以x =υ为对称轴,左右完全对称。
正态分布的均数、中位数、众数相同,均等于υ。
(2) σ描述正态分布资料数据分布的离散程度,σ越大,数据分布越分散,σ越小,数据分布越集中。
σ也称为是正态分布的形状参数,σ越大,曲线越扁平,反之,σ越小,曲线越瘦高。
标准正态分布(填空)1.标准正态分布是一种特殊的正态分布,标准正态分布的υ= 0,σ2= 1 ,通常用u(或Z)表示服从标准正态分布的变量,记为υ~N(0,12)。
正态分布的应用(简答)某些医学现象,如同质群体的身高、红细胞数、血红蛋白量,以及实验中的随机误差,呈现为正态或近似正态分布;有些指标(变量)虽服从偏态分布,但经数据转换后的新变量可服从正态或近似正态分布,可按正态分布规律处理。
其中经对数转换后服从正态分布的指标,被称为服从对数正态分布。
1. 估计频数分布一个服从正态分布的变量只要知道其均数与标准差就可根据公式即可估计任意取值范围内频数比例。
2. 制定参考值范围(1)正态分布法适用于服从正态(或近似正态)分布指标以及可以通过转换后服从正态分布的指标。
(2)百分位数法常用于偏态分布的指标。
表3-1中两种方法的单双侧界值都应熟练掌握。
3. 质量控制:为了控制实验中的测量(或实验)误差,常以作为上、下警戒值,以作为上、下控制值。
这样做的依据是:正常情况下测量(或实验)误差服从正态分布。
4. 正态分布是许多统计方法的理论基础。
检验、方差分析、相关和回归分析等多种统计方法均要求分析的指标服从正态分布。
许多统计方法虽然不要求分析指标服从正态分布,但相应的统计量在大样本时近似正态分布,因而大样本时这些统计推断方法也是以正态分布为理论基础的。
医学参考值范围的制定(计算题)确定参考值范围的单双侧:一般生理物质指标多为双侧、毒物指标则多为单侧。
确定百分位点:一般取95%或99%。
例题某市 20 岁男学生 160 人的脉搏数(次/分钟),经正态性检验服从正态分布。
求得= 76.10,S =9.32。
试估计脉搏数的95%、99%参考值范围。
解:脉搏数的95%正常值范围为:±1.96 S=76.10 ± 1.96(9.32)=57.83~94.37脉搏数的99%正常值范围为:±2.58 S =76.10 ± 2.58(9.32)=52.05~100.37第三章标准误的概念,计算公式。
标准误:抽样研究中,样本统计量与总体参数间的差别称为抽样误差(sampling error)。
统计上用标准误(standard error,SE)来衡量抽样误差的大小,即样本均数的标准差,是描述均数抽样分布的离散程度及衡量均数抽样误差大小的尺度。
t分布的图形特征及其与正态分布的区别(简答)t分布的图形特征1.以0为中心,左右对称的单峰分布;2.t分布是一簇曲线,其形态变化与n(确切地说与自由度ν)大小有关。
自由度ν越小,t分布曲线越低平;自由度ν越大,t分布曲线越接近标准正态分布(u分布)曲线。
t分布对应于每一个自由度ν,就有一条t分布曲线,每条曲线都有其曲线下统计量t的分布规律,计算较复杂。
t 分布与正态分布比较的区别t 分布与标准正态分布相比有以下特点:①都是单峰、对称分布;②t 分布峰值较低,而尾部较高;③随自由度增大,t 分布趋近与标准正态分布;当ν趋向∞,t 分布的极限分布是标准正态分布。