整式的加减教案(第一课时)

合集下载

整式的加减(第一课时)教学设计

整式的加减(第一课时)教学设计

2.2整式的加减(第一课时)一、教学目标:1.经历同类项概念形成、合并同类项法则的探究过程,了解同类项的概念,掌握合并同类项的法则。

2.在计算、观察、比较、总结、归纳等数学活动中,发展归纳、概括、总结问题的能力,并能清晰地表达自己的想法。

学会独立思考,体会数学类比的思维方法。

3.在自主学习和于他人交流中,初步学会从数学的角度发现问题和提出问题,获得分析问题和解决问题的一些基本方法,初步形成评价与反思的意识。

二、教学重点、难点:重点:同类项的概念、合并同类项的法则及应用。

难点:正确判断同类项;准确合并同类项。

三、教学方式:翻转式教学、探究法、讨论式、现在信息技术的运用(pad)。

四、教学手段:学生自己通过观察、类比、活动、猜想、验证、归纳,自主探索的方式,激发学习兴趣,培养应用意识和发散思维。

五、教学流程:教学环节教师活动1.学习指导、例题讲解的文本及微视频;2.教材中的探究问题;3.教师特别推送:探究一:超市里新到的水果上架时如何摆放呢?课前Pad 学生活动设计意图根据学生个体情况,自主选择学习内容。

从生活中的实例出发,创设情境,在激发学生学习兴趣的同时把生活中的分类思想引入到数学中来。

推送学探究二:习包。

预 1.找出下列单项式的共同点:习课前(1)5a与9a,(2)-5m2n与6m2n,学习包(3)4xyz3与3yxz3,(4)0与5探究三:运用有理数的运算律计算:100⨯2+252⨯2=,100⨯(-2)+252⨯(-2)=.根据上面的方法完成下面的运算,并说明其中的道理.(1)100t+252t=_____.思考、演练、并解答开门见山,设计有探究价值的问题,激发学生探究的热情,有效的帮助学生理解同类项的概念.设计开放性问题,加深对同类项含义的理解,增强学生的数感和符号感,培养学生的抽象思维能力.( ((2)3x 2+2x 2=()x 2; (3)3ab 2—4ab 2=()ab 2.上述运算有什么共同特点,你能从中得出什么 规律?整式的运算和有理数的运算有什么关 系?4.前测试题 3 道。

七年级上册数学《整式的加减》教案优秀

七年级上册数学《整式的加减》教案优秀

七年级上册数学《整式的加减》教案优秀整式的加减篇一整式的加减篇二教学目的:1.经历及字母表示数量关系的过程,发展符号感;2.会进行整式加减的运算,并能说明其中的算理,发展有条理的思考及语言表达能力。

教学重点:会进行整式加减的运算,并能说明其中的算理。

教学难点:正确地去括号、合并同类项,及符号的正确处理。

教学过程:一、课前练习: 1.填空:整式包括_____________和_______________2.单项式的系数是___________、次数是__________3.多项式3m3-2m-5+m2是_____次______项式,其中二次项系数是______,一次项是__________,常数项是____________.4.下列各式,是同类项的一组是()(a)22x2y 与 yx2(b)2m2n与2mn2(c) ab与abc5.去括号后合并同类项:(3a-b)+(5a+2b)-(7a+4b).二、探索练习:1.如果用a、b分别表示一个两位数的十位数字和个位数字,那么这个两位数可以表示为_____________交换这个两位数的十位数字和个位数字后得到的两位数为__________________,这两个两位数的和为_________________________________.2.如果用a、b、c分别表示一个三位数的百位数字、十位数字和个位数字,那么这个三位数可以表示为___________,交换这个三位数的百位数字和个位数字后得到的三位数为______________,这两个三位数的差为___________________________.●议一议:在上面的两个问题中,分别涉及到了整式的什么运算?说说你是如何运算的?▲整式的加减运算实质就是____________________________,运算的结果是一个多项式或单项式。

三、巩固练习:1.填空:(1)2a-b与a-b的差是__________________________;(2)单项式、、、的和为___________;(3)如图所示,下面为由棋子所组成的三角形,一个三角形需六个棋子,三个三角形需_______个棋子,n个三角形需__________个棋子。

人教版七年级上册数学 第二章 整式的加减 教案

人教版七年级上册数学 第二章 整式的加减 教案

第二章 整式的加减2.1 整式第1课时 用字母表示数01 教学目标1.通过分析实际问题中的数量关系以及列式表示这些数量关系的活动过程,会用含有字母的式子表示数量关系. 2.通过例题学习和习题训练,会用字母表示几何图形的周长、面积和体积. 02 预习反馈阅读教材P54~56,完成下列内容.1.我们常用字母t 表示行驶的时间,在小学列方程解应用题时,用字母x 表示未知数. 2.用字母表示:(1)有理数减法法则:a -b =a +(-b); (2)有理数除法法则:a÷b =a·1b(b ≠0).3.客车每小时行v 千米,t 小时行的路程为vt 千米.4.衬衫原价每件x 元,若按6折出售,则现在的售价为每件0.6x 元. 03 名校讲坛例1 (1)苹果原价是每千克p 元,按8折优惠出售,用式子表示现价;(2)某产品前年产量是n 件,去年的产量是前年产量的m 倍,用式子表示去年的产量; (3)一个长方体包装盒的长和宽都是a cm ,高是h cm ,用式子表示它的体积; (4)用式子表示数n 的相反数.解:(1)现价是每千克0.8p 元. (2)去年的产量是mn 件.(3)由长方体的体积=长×宽×高,得这个长方体包装盒的体积是a·a·h cm 3,即a 2h cm 3. (4)数n 的相反数是-n.【点拨】 用字母表示数书写时“四注意”:(1)数和字母相乘或字母和字母相乘时,通常将乘号写作“·”或省略不写,数与数相乘时,乘号不能省略;数和字母相乘,在省略乘号时,要把数字写在字母的前面;带分数与字母相乘时,带分数要写成假分数的形式. (2)数和字母相除或字母和字母相除时,写成分数形式.(3)有单位时,若最后结果是积或商的形式,则式子后面直接写单位;若最后结果是和或差的形式,则把式子用括号括起来后再写单位名称.(4)±1乘字母时,1可以省略不写.【跟踪训练】1.今天中午气温为18 ℃,晚上下降了a ℃,则晚上气温为(18-a)℃. 2.一个两位数,十位数为m ,个位数为2,则这个两位数为10m +2. 例2 (教材P55例2补充例题)求下列图形中阴影部分即房间的建筑面积.解:房间的建筑面积等于四个长方形面积的和.根据图中标出的尺寸,可得出这所住宅的建筑面积是6x +2y +18. 【点拨】 用字母表示图形的面积的要点:把图形的面积转化为规则图形面积的和或差.【跟踪训练】3.如图,将长和宽分别是a ,b 的长方形纸片的四个角都剪去一个边长为x 的正方形.用含a ,b ,x 的代数式表示纸片剩余部分的面积为ab -4x 2.04 巩固训练1.下列式子中,符合书写格式的是(C)A .x +12克B .117×m 2n C.xy3D .s÷t2.某省参加课改实验区初中毕业学业考试的学生约有15万人,其中男生约有a 万人,则女生约有(B) A .(15+a)万人 B .(15-a)万人 C .15a 万人 D .(a -15)万人3.笔记本每本m 元,圆珠笔每支n 元,买x 本笔记本和y 支圆珠笔,共需(A) A .(mx +ny)元 B .(m +n)(x +y)元 C .(nx +my)元 D .mn(x +y)元 4.边长为x 的正方形的周长为4x .5.仓库里有一批水泥,运走5车,每车n 吨,还剩m 吨,这批水泥有(5n +m)吨. 6.用字母表示两个图形中阴影部分的面积.图1 图2解:(1)阴影部分的面积为ab -bx. (2)阴影部分的面积为R 2-14πR 2.05 课堂小结用字母表示数量关系:用一个(几个)字母表示问题中的某个(某些)量,然后用这个(这些)字母表示问题中的其他量.第2课时 单项式01 教学目标1.经历观察、思考、归纳一类式子的共性的过程,理解单项式的概念,能准确识别单项式.2.通过阅读教材,理解单项式的系数和次数的概念,能确定单项式的系数和次数. 02 预习反馈阅读教材P56~57,完成下列内容.1.由数与字母或字母与字母相乘组成的式子叫单项式.如:在式子1,a 2,a -b ,y ,15x ,1x 中,是单项式的有1,a 2,y ,15x .2.单项式中的数字因数叫单项式的系数.单项式中所有字母的指数的和叫单项式的次数. 如:(1)-a 的系数是-1,次数是1; (2)单项式-3x 2的系数是-3,次数是2; (3)2ab 3c 3的系数是23,次数是5.03 名校讲坛 知识点1 识别单项式例1 (教材补充例题)下列各式中,哪些是单项式? 25x ,-85a 3,3x 2y m ,a ,0.4x +3,a 2+b +7,x +y 2. 解:单项式有:25x ,-85a 3,a.【点拨】 识别单项式的要点:(1)单项式中不能含有加减运算,不能含有表示大小关系的符号,如=,≠,>等; (2)单项式的分母中不能含有字母.【跟踪训练1】 在式子3a ,x +1,-2,-b 3,0.72xy ,2π,3x -14中,单项式有(C)A .2个B .3个C .4个D .5个 知识点2 确定单项式的系数和次数 例2 写出下列各单项式的系数和次数:【点拨】 确定单项式的系数和次数的注意点:(1)单项式的系数:若一个单项式只含有字母因数,则它的系数是1或-1;若单项式是一个常数,则它的系数就是它本身.(2)单项式的次数是所有字母的指数的和,与系数的指数无关,如24x 2y 3的次数是5,而不是9. 【跟踪训练2】 若关于x ,y 的单项式23mx n y 2的系数是6,次数是5,则m =9,n =3.04 巩固训练1.下列代数式中,不是单项式的是(A)A .1xB .-12 C .t D .3a 2b 2.(《名校课堂》2.1第2课时习题)单项式2xy 3的次数是(D)A .1B .2C .3D .4 2.下列说法中,正确的是(D)A .0不是单项式B .-3abc 2的系数是-3C .-23x 2y 23的系数是-13 D.πab 2的次数是24.用单项式填空:(1)一辆汽车的速度是v 千米/时,行驶t 小时所走过的路程为vt 千米; (2)王洁同学买2本练习本花了n 元,那么买m 本练习本要mn2元;(3)边长为a 的正方体的表面积为6a 2,正方体的体积为a 3. 5.说出下列单项式的系数和次数: (1)a; (2)-6m 3n; (3)-35πx 2y.解:(1)a 的系数是1,次数是1. (2)-6m 3n 的系数是-6,次数是4.(3)-35πx 2y 的系数是-35π,次数是3.6.列代数式,如果是单项式,请分别指出它们的系数和次数:(1)某中学组织七年级学生春游,有m 名师生租用45座的大客车若干辆,且刚好坐满,那么租用大客车的辆数是多少?(2)一个长方体的长和宽都是a ,高是h ,它的体积是多少? 解:(1)m 45,它是单项式,系数是145,次数是1.(2)a 2h ,它是单项式,系数是1,次数是3. 05 课堂小结 1.字母表示数. 2.单项式的概念.3.单项式的系数及次数的概念.第3课时 多项式及整式01 教学目标1.经历观察、思考、归纳一类式子的共性的过程,理解多项式、整式的概念,能准确识别多项式、整式. 2.通过阅读教材,交流讨论,理解多项式的项、常数项和次数. 02 预习反馈阅读教材P57~58,完成下列内容.1.几个单项式的和叫做多项式,每个单项式叫做多项式的项,次数最高项的次数叫做多项式的次数,不含字母的项叫做多项式的常数项.如:多项式3x 2y -4xy -1由单项式3x 2y ,-4xy ,-1组成,它是三次三项式,其中二次项是-4xy ,最高次项的系数为3,常数项是-1. 2.单项式和多项式统称为整式. 03 名校讲坛知识点1 识别整式、单项式及多项式例1 (教材补充例题)下列式子中,哪些是整式?哪些是单项式?哪些是多项式? a ,ax 2+bx +c ,-5,π,x -y 2,2xx -1.解:单项式:a ,-5,π. 多项式:ax 2+bx +c ,x -y2.整式:a ,ax 2+bx +c ,-5,π,x -y2.【点拨】 (1)单项式不含加减运算,多项式必含加减运算.(2)多项式是几个单项式的和,单项式和多项式都是整式.【跟踪训练】1.把下列各式填在相应的集合里.①0.②x 2;③-x 2-2x +5;④94;⑤xy.⑥8+b7;⑦-5;⑧x +y 5.整式:{①②③④⑤⑥⑦⑧,…} 多项式:{③⑥⑧,…} 单项式:{①②④⑤⑦,…} 知识点2 确定多项式的项和次数例2 (教材补充例题)指出下列多项式的次数与项: (1)23xy -14; (2)a 2+2a 2b +ab 2-b 2; (3)2m 3n 3-3m 2n 2+53mn.解:(1)2次,23xy ,-14.(2)3次,a 2,2a 2b ,ab 2,-b 2. (3)6次,2m 3n 3,-3m 2n 2,53mn.【点拨】 确定多项式的项和次数“六注意”: (1)多项式的各项应包括它前面的符号;(2)多项式没有“系数”这一概念,但每一项均有系数,每一项的系数应包括它前面的符号; (3)次数最高项的次数就是多项式的次数; (4)一个多项式的最高次项可以不唯一;(5)区分多项式的次数与单项式的次数,不能误认为多项式的次数是各个单项式的次数之和;(6)多项式的“项”与“项数”是不同的概念,“项”是指组成多项式的单项式,包括它前面的符号,“项数”是指项的个数.例3 (教材补充例题)若多项式-72x 2y 2n +1z +34x 2y +4是八次三项式,则n =2.【思路点拨】 由题意可知,多项式的最高次项为-72x 2y 2n +1z ,所以2+2n +1+1=8.解得n =2.【跟踪训练】2.指出下列多项式的项和次数. (1)a 3-a 2b +ab 2-b 3; (2)3n 4-2n 2+1.解:(1)a 3,-a 2b ,ab 2,-b 3,3次.(2)3n 4,-2n 2,1,4次. 3.指出下列多项式是几次几项式: (1)x 3-x +1; (2)x 3-2x 2y 2+3y 2.解:(1)三次三项式.(2)四次三项式. 知识点3 多项式的应用例4 如图,用式子表示圆环的面积,当R =15 cm ,r =10 cm 时,求圆环的面积(π取3.14).解:外圆的面积减去内圆的面积就是圆环的面积,所以圆环的面积是πR 2-πr 2. 当R =15 cm ,r =10 cm 时,圆环的面积(单位:cm)是 πR 2-πr 2=3.14×152-3.14×102 =392.5.答:这个圆环的面积是392.5 cm 2. 【跟踪训练】4.a ,b 分别表示梯形的上底和下底,h 表示梯形的高,则梯形的面积S =12(a +b)h ,当a =2 cm ,b =4 cm ,h =5 cm时,S =15__cm 2. 04 巩固训练1.下列各式中,不属于整式的是(D)A .abB .x 3-2yC .-a 3 D.a b2.(《名校课堂》2.1第3课时习题)多项式3x 2-2x -1的各项分别是(D)A .3x 2,2x ,1B .3x 2,-2x ,1C .-3x 2,2x ,-1D .3x 2,-2x ,-1 3.多项式2a 2b -ab 2-ab 的项数及次数分别是(A)A .3,3B .3,2C .2,3D .2,2 4.如果x n +x 2-1是五次多项式,那么n 的值是(C)A .3B .4C .5D .65.多项式3x 4+5x 3y +8-2x 2y 4-10xy ,次数最高的项是-2x 2y 4;常数项是8;它的次数是6.6.一个关于x 的多项式,它的一次项系数是1,二次项系数和常数项都是-13,则这个多项式是-13x 2+x -13.7.如图,用式子表示图中阴影部分的面积.当x =4时,求阴影部分的面积(π取3.14).解:图中阴影部分的面积为x 2-π4x 2. 当x =4时,π取3.14,阴影部分的面积为3.44.05 课堂小结 1.多项式的概念.2.项、常数项、多项式的次数.2.2 整式的加减 第1课时 合并同类项01 教学目标1.了解同类项、合并同类项的概念,掌握合并同类项法则,能正确合并同类项. 2.能先合并同类项化简后求值. 02 预习反馈阅读教材P62~65,完成下列内容.1.把多项式中的同类项合并成一项叫做合并同类项. 如:判断下列各题中的两个项是否是同类项. (1)4与-12;(是)(2)32与a 2;(不是) (3)2x 与2x ;(不是)(4)3mn 与3mnp ;(不是) (5)2πr 与-3x ;(不是) (6)3a 2b 与3ab 2.(不是)2.合并同类项的法则:系数相加,字母和字母指数不变. 如:合并同类项:-3a +2ab -4ab +2a =-a -2ab . 03 名校讲坛 知识点1 同类项的概念例1 (教材补充例题)下列各组中的两个单项式是同类型的是(C) A .3x 2y 与2xy 2 B .a 2b 与12a 2c C.13x 4y 与12yx 4 D .a 2与b 2【点拨】 识别同类项的方法:一看字母是否相同,二看相同字母的指数是否相同,只有这两者都相同时,它们才是同类项,特别是,几个常数也是同类项.【跟踪训练1】 若2x 2y n 与-3x m y 4是同类项,则m =2,n =4. 知识点2 合并同类项例2 合并同类项:(1)4a 2+3b 2+2ab -4a 2-3b 2; (2)3x -2x 2+5+3x 2-2x -5; (3)a 3+a 2b +ab 2-a 2b -ab 2-b 3; (4)6a 2-5b 2+2ab +5b 2-6a 2. 解:(1)2ab.(2)x 2+x.(3)a 3-b 3.(4)2ab. 【点拨】 合并同类项的“三注意”: (1)合并同类项时,不要漏掉系数的符号;(2)若一个多项式中含有若干个不同的同类项,则可用交换律、结合律和分配律将同类项进行合并; (3)不是同类项的不能合并,不能合并的项在运算的每一步中都要写上,直至化简的最后结果. 【跟踪训练2】 合并同类项: (1)3x 2-2xy +y 2-x 2+2xy ; (2)2a 2b -3a 2b +12a 2b ;(3)a 3-a 2b +ab 2+a 2b -ab 2+b 3; (4)4x 2-8x +5-3x 2+6x -2.解:(1)2x 2+y 2.(2)-12a 2b.(3)a 3+b 3.(4)x 2-2x +3.知识点3 化简求值例3 求多项式5x 2+4x -6x 2-x +2x 2-3x -1的值,其中x =-3. 解:原式=x 2-1.当x =-3时,原式=8. 【点拨】 多项式化简求值的“三个步骤”:“一化、二代、三求值”,即(1)化简所给多项式,使其不再含有同类项;(2)将所给的值代入化简后的式子,若是负数,则需添加括号;(3)计算第(2)步所得的算式.【跟踪训练3】 求多项式3a +abc -13c 2-3a +13c 2的值,其中a =-16,b =2,c =-3.解:3a +abc -13c 2-3a +13c 2=(3-3)a +abc +(-13+13)c 2=abc.当a =-16,b =2,c =-3时,原式=(-16)×2×(-3)=1.知识点4 合并同类项的应用例4 (1)水库水位第一天连续下降了a h ,每小时平均下降2 cm ;第二天连续上升了a h ,每小时平均上升0.5 cm ,这两天水位总的变化情况如何?(2)某商店原有5袋大米,每袋大米为x kg.上午卖出3袋,下午又购进同样包装的大米4袋.进货后这个商店有大米多少千克?解:(1)把下降的水位变化量记为负,上升的水位变化量记为正.第一天水位的变化量是-2a cm ,第二天水位的变化量是0.5a cm.两天水位的总变化量(单位:cm)是 -2a +0.5a =(-2+0.5)a =-1.5a.这两天水位总的变化情况为下降了1.5a cm. (2)把进货的数量记为正,售出的数量记为负. 进货后这个商店共有大米(单位:kg) 5x -3x +4x =(5-3+4)x =6x.【跟踪训练4】 国家规定初中每班的标准人数为a 人,某中学七年级共有六个班,各班人数情况如下表用含a 的代数式表示该中学七年级学生总人数为(6a +5)人.04 巩固训练1.在下列单项式中,与2xy 是同类项的是(C)A .2x 2y 2B .3yC .xyD .4x 3.计算2m 2n -3m 2n 的结果为(C)A .-1B .-5m 2nC .-m 2nD .不能合并 3.下列各组中的两个单项式能合并的是(D) A .4和4x B .3x 2y 3和-y 2x 3 C .2ab 2和100ab 2c D .m 和m24.当a =-5时,多项式a 2+2a -2a 2-a +a 2-1的值为(B)A .29B .-6C .14D .24 5.已知3x 5y 2和-2x 3m y n 是同类项,则m =53,n =2.6.合并下列各式的同类项:(1)15x +4x -10x; (2)-p 2-p 2-p 2;(3)2a+6b-7a-b; (4)5x2-7xy+3x2+6xy-4x2.解:(1)原式=9x.(2)原式=-3p2.(3)原式=-5a+5b.(4)原式=4x2-xy.7.求多项式7a2b-4a2b+5ab2-4a2b+6ab2的值,其中a=-1,b=2.解:原式=-a2b+11ab2.当a=-1,b=2时,原式=-46.05课堂小结1.同类项:(1)所含字母相同;(2)相同字母的指数也相同.2.合并同类项:把多项式中的同类项合并成一项.3.合并同类项法则.第2课时去括号01教学目标1.探究去括号法则,并且利用去括号法则将整式化简.2.发现去括号时的符号变化的规律,归纳出去括号法则.02预习反馈阅读教材P65~67,完成下列内容.1.去括号时,如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反.2.下列去括号过程是否正确?若不正确,请改正.(1)a-(-b+c-d)=a+b+c-d;(不正确)a+b-c+d;(2)a+(b-c-d)=a+b+c+d;(不正确)a+b-c-d;(3)-(a-b)+(c-d)=-a-b+c-d.(不正确)-a+b+c-d.03名校讲坛知识点1先去括号,再合并同类项例1去括号,再合并同类项:(1)x-(3x-2)+(2x+3);(2)(3a2+a-5)-(4-a+7a2);(3)(2m-3)+m-(3m-2);(4)3(4x-2y)-3(-y+8x).解:(1) 5.(2)-4a2+2a-9.(3)-1.(4)-12x-3y.【点拨】去括号的三种不同情况:1.+():括号前是正号时,去掉括号及正号后,括号里面各项的符号均不变.(2)-():括号前面是负号时,去掉括号及负号后,括号里面各项的符号都要改变.注意:“都”即每一项的符号都要改变.(3)-n():括号前面有因数时,根据分配律去括号,即将括号前面的数与括号里面各项系数分别相乘.注意:每项系数都包括其前面的符号.【跟踪训练1】去括号,并合并同类项:(1)-(5m+n)-7(m-3n);(2)-2(xy-3y2)-[2y2-(5xy+x2)+2xy].解:(1)-12m+20n.(2)xy+4y2+x2.知识点2利用去括号解决实际问题例2两船从同一港口同时出发反向而行,甲船顺水,乙船逆水,两船在静水中的速度都是50 km/h,水流速度是a km/h.(1)2 h后两船相距多远?(2)2 h后甲船比乙船多航行多少千米?解:顺水航速=船速+水速=(50+a)km/h,逆水航速=船速-水速=(50-a)km/h.(1)2 h后两船相距(单位:km)2(50+a)+2(50-a)=100+2a+100-2a=200.(2)2 h后甲船比乙船多航行(单位:km)2(50+a)-2(50-a)=100+2a-100+2a=4a.【跟踪训练2】船在静水中的速度为a km/h,水速为10 km/h,船顺流航行5 h的行程比逆流航行3 h的行程多(80+2a)__km.04巩固训练1.-(x-2y+3z)去括号后的结果为(B)A.x-2y+3z B.-x+2y-3zC.x+2y-3z D.-x+2y+3z2.化简5(2x-3)+4(3-2x)的结果为(A)A.2x-3 B.2x+9 C.8x-3 D.18x-33.下列各式中,去括号正确的是(D)A.x2-(x-y+2z)=x2-x+y+2zB .x -(-2x +3y -1)=x +2x +3y +1C .3x +2(x -2y +1)=3x -2x -2y -2D .-(x -2)-2(x 2+2)=-x +2-2x 2-44.三个小队植树,第一队种x 棵,第二队种的树比第一队种的树的2倍还多8棵,第三队种的树比第二队种的树的一半少6棵,三队共种树(4x +6)棵.5.化简:(1)5a -(2a -4b); (2)2x 2+3(2x -x 2);(3)6a 2-4ab -4(2a 2+12ab); (4)-3(2x 2-xy)+4(x 2+xy -6).解:(1)原式=3a +4b.(2)原式=-x 2+6x.(3)原式=-2a 2-6ab.(4)原式=-2x 2+7xy -24.6.先化简,再求值:(4a 2-3a)-(2a 2+a -1)+(2-a 2)+4a ,其中a =-2.解:原式=a 2+3.当a =-2时,原式=(-2)2+3=7.05 课堂小结去括号法则.第3课时 整式的加减01 教学目标1.经历列式、去括号、合并同类项,代入求值等解题过程,能熟练地进行整式的加减运算.2.经历用整式的加减解决简单实际问题的过程,掌握整式加减运算的应用.02 预习反馈阅读教材P67~69,完成下列内容.1.整式加减混合运算法则:一般地,几个整式相加减,如果有括号就先去括号,然后再合并同类项.2.化简下列各题:(1)-3(2x -y)-2(4x +12y)+2 018; (2)-[2m -3(m -n +1)-2]-1.解:(1)-14x +2y +2 018.(2)m -3n +4.03 名校讲坛知识点1 整式的加减与化简求值例1 (教材补充例题)求多项式-x 3-2x 2+3x -1与-2x 2+3x -2的差.解:-x 3-2x 2+3x -1-(-2x 2+3x -2)=-x 3-2x 2+3x -1+2x 2-3x +2=-x 3+1.【点拨】 整式加减运算的注意点:(1)计算多项式的和与差是整个多项式参与和差运算,所以要用括号将多项式括起来,然后再去括号、合并同类项;(2)去括号时,若括号前面是“-”号,把括号和前面的“-”号去掉,括号里的各项要改变符号.例2 (教材补充例题)已知A =12x ,B =x -13y 2,C =-32x +13y 2,(x -2)2+|y -23|=0,求2A -B +C 的值. 解:2A -B +C =2·12x -(x -13y 2)-32x +13y 2=x -x +13y 2-32x +13y 2=-32x +23y 2. 因为(x -2)2+|y -23|=0, 所以x =2,y =23. 所以原式=-32×2+23×(23)2 =-3+827=-21927. 【点拨】 整式化简求值的“三个步骤”:一化:去括号,合并同类项;二代:将字母的值代入化简后的式子;三计算:按指定的运算顺序进行计算.【跟踪训练1】 在解“当x =-2,y =23时,求12x -2(x -13y 2)+(-32x +13y 2)的值”时,甲同学不小心把“y =23”写成“y =-23”,但计算结果也是正确的,这是为什么? 解:原式=12x -2x +23y 2-32x +13y 2=-3x +y 2. 因为数的平方的结果是相同的,所以代入互为相反数的结果值相等.知识点2 整式加减的应用【例3】 做大小两个长方体的纸盒,尺寸如下(单位:cm):(1)做这两个纸盒共用料多少平方厘米?(2)做大纸盒比做小纸盒多用料多少平方厘米?解:小纸盒的表面积是(2ab +2bc +2ca)cm 2,大纸盒的表面积是(6ab +8bc +6ca)cm 2.(1)做这两个纸盒共用料(单位:cm 2)(2ab+2bc+2ca)+(6ab+8bc+6ca)=2ab+2bc+2ca+6ab+8bc+6ca=8ab+10bc+8ca.(2)做大纸盒比做小纸盒多用料(单位:cm2)(6ab+8bc+6ca)-(2ab+2bc+2ca)=6ab+8bc+6ca-2ab-2bc-2ca=4ab+6bc+4ca.【点拨】解决整式加减运算应用题的“三步法”:列式→根据实际问题的题意列出算式↓计算→运用整式的加减法则进行计算↓结论→计算出最后需要的结果【跟踪训练2】某校有A,B,C三个课外活动小组,A小组有学生(x+2y)名,B小组学生人数是A小组学生人数的3倍,C小组比A小组多3名学生,问A,B,C三个课外活动小组共有多少名学生?解:B小组学生人数为3(x+2y)名,C小组学生人数为[(x+2y)+3]名.所以A,B,C三个课外活动小组人数共有(x+2y)+3(x+2y)+(x+2y)+3=5(x+2y)+3=5x+10y+3(名).答:A,B,C三个课外活动小组共有(5x+10y+3)名学生.04巩固训练1.设M=2a-3b,N=-2a-3b,则M-N等于(B)A.4a-6b B.4aC.-6b D.4a+6b2.当x=2时,(x2-x)-2(x2-x-1)的值等于(D)A.4 B.-4 C.1 D.03.减去-2x等于-3x2+2x+1的多项式是(C)A.-3x2+4x+1 B.3x2-4x-1C.-3x2+1 D.3x2-14.一个长方形的一边长是2a+3b,另一边的长是a+b,则这个长方形的周长是(B)A.12a+16b B.6a+8b C.3a+8b D.6a+4b5.一个十位数字是a,个位数字是b的两位数可表示为10a+b,交换这个两位数的十位数字和个位数字,又得一个新的两位数,新数与原数的差是9b-9a.6.计算:(1)3a+2-(-4a);(2)2(x2+3)-(5-x2);(3)(ab-3a2)-2b2-5ab-(a2-2ab);(4)2(3b2-a3b)-3(2b2-a2b-a3b)-4a2b.解:(1)原式=7a+2.(2)原式=3x2+1.(3)原式=-4a2-2b2-2ab.(4)原式=a3b-a2b. 05课堂小结通过本节课的学习,你有哪些收获?。

初中七年级数学《整式的加减》教案3篇

初中七年级数学《整式的加减》教案3篇

初中七年级数学《整式的加减》教案3篇学问与技能:1、在现实情境中理解整式的加减实际就是合并同类项,有意识地培育他们有条理的思索和语言表达力量。

2、了解同类项的定义及合并法则,且会运用此法则进展整式加减运算。

3、知道在求多项式的值时,一般先合并同类项再代入数值进展计算。

过程与方法:通过详细情境的观看、思索、类比、探究、沟通和反思等数学活动培育学生创新意识和分类思想,使学生把握讨论问题的方法,从而学会学习。

情感与态度与价值观:通过学生自主学习探究出合并同类项的定义和法则,培育了学生的自学力量和探究精神,提高学习兴趣。

感受数学的形式美、简洁美,感受学数学是美的享受,爱学、乐学数学。

教学重点:娴熟地进展合并同类项,化简代数式。

教学难点;如何推断同类项,正确合并同类项。

教学用具:多媒体或小黑板、教学过程:一、创设情景问题:在甲、乙两面墙壁上,各挖去一个圆形空洞安装窗花,其余局部刷油漆,请依据图中的尺寸,算出:(1)甲乙油漆面积的和。

(2)甲比乙油漆面积大多少。

(处理方式:①学生思索片刻②找学生代表沟通自己的解答③教师汇总学生的解答)板书:(1)(2ab-πr2)+(ab-πr2)或(2ab+ab)-(πr2+πr2 )(2) (2ab-πr2)-(ab-πr2)(此时提问学生:这3个式子都是什么式子?在学生答复的根底上引出课题—从本节课开头来学习:2.3整式的加减。

并板书)二、探求新知教师自问:如何计算(1)和(2)两个式子呢?接着解答:本节课来学习2.2.1合并同类项(此时板书课题——1.合并同类项)1、同类项的概念观看多项式(2ab+ab)-(πr2+πr2 )中的项:2ab、ab 的特点。

学生沟通、争论。

③师生总结:(这就是我们今日所要介绍的同类项,此时板书:1.同类项的概念)所含字母一样并且一样字母的指数也一样的项叫做同类项。

几个常数项也是同类项。

强调:①所含字母一样②一样字母的指数也一样简称“两同”。

新人教版七年级上册数学第二章《整式的加减》全章教案

新人教版七年级上册数学第二章《整式的加减》全章教案

第1课时:整式(1)教学内容:教科书第54—56页,2.1整式:1.单项式。

教学目标和要求:1.理解单项式及单项式系数、次数的概念。

2.会准确迅速地确定一个单项式的系数和次数。

3.初步培养学生观察、分析、抽象、概括等思维能力和应用意识。

4.通过小组讨论、合作学习等方式,经历概念的形成过程,培养学生自主探索知识和合作交流能力。

教学重点和难点:重点:掌握单项式及单项式的系数、次数的概念,并会准确迅速地确定一个单项式的系数和次数。

难点:单项式概念的建立。

教学方法:分层次教学,讲授、练习相结合。

教学过程:一、复习引入:1、 列代数式(1)若正方形的边长为a ,则正方形的面积是 ;(2)若三角形一边长为a ,并且这边上的高为h ,则这个三角形的面积为 ;(3)若x 表示正方形棱长,则正方形的体积是 ;(4)若m 表示一个有理数,则它的相反数是 ;(5)小明从每月的零花钱中贮存x 元钱捐给希望工程,一年下来小明捐款 元。

(数学教学要紧密联系学生的生活实际,这是新课程标准所赋予的任务。

让学生列代数式不仅复习前面的知识,更是为下面给出单项式埋下伏笔,同时使学生受到较好的思想品德教育。

)2、 请学生说出所列代数式的意义。

3、 请学生观察所列代数式包含哪些运算,有何共同运算特征。

由小组讨论后,经小组推荐人员回答,教师适当点拨。

(充分让学生自己观察、自己发现、自己描述,进行自主学习和合作交流,可极大的激发学生学习的积极性和主动性,满足学生的表现欲和探究欲,使学生学得轻松愉快,充分体现课堂教学的开放性。

)二、讲授新课:1.单项式:通过特征的描述,引导学生概括单项式的概念,从而引入课题:单项式,并板书归纳得出的单项式的概念,即由数与字母的乘积组成的代数式称为单项式。

然后教师补充,单独一个数或一个字母也是单项式,如a ,5。

2.练习:判断下列各代数式哪些是单项式? (1)21 x ; (2)a bc ; (3)b 2; (4)-5a b 2; (5)y ; (6)-xy 2; (7)-5。

人教版七年级数学上册整式的加减《整式(第1课时)》示范教学设计

人教版七年级数学上册整式的加减《整式(第1课时)》示范教学设计

2.1整式(第1课时)教学目标1.进一步理解用字母表示数的意义,会用含有字母的式子表示实际问题中的数量关系.2.经历用含有字母的式子表示实际问题中的数量关系的过程,体会从具体到抽象的认识过程,发展符号意识.教学重点进一步理解用字母表示数的意义,正确分析实际问题中的数量关系,并用含有字母的式子表示数量关系.教学难点正确分析实际问题中的数量关系,用含有字母的式子表示数量关系.教学过程新课导入设a,b,c表示三个有理数,则新知探究一、探究学习【问题】青藏铁路线上,在格尔木到拉萨之间有一段很长的冻土地段.列车在冻土地段的行驶速度是100 km/h.列车在冻土地段行驶时,2 h行驶的路程是多少?3 h呢?t h呢?【思考】在式子100×t=100t中,字母t表示什么?100t又表示什么?【师生活动】学生独立回答.教师引导学生归纳:用字母t表示时间,字母t可以像数一样参与运算,并且可以简明地表示列车行驶的路程与时间、速度的关系.【设计意图】让学生经历由数到式的过程,感受从特殊到一般的认识过程,体会用字母表示数的简捷性和必要性,为继续学习用含有字母的式子表示数量关系做好方法上的引导.二、新知精讲【例1】(1)苹果原价是每千克p元,按八折优惠出售,用式子表示现价:_________________;(2)某产品前年的产量是n件,去年的产量是前年产量的m倍,用式子表示去年的产量:_________________;(3)一个长方体包装盒的长和宽都是 a cm,高是h cm,用式子表示它的体积:_________________;(4)用式子表示数n的相反数:___________;(5)7人共同完成一项工作,若每人的工作效率相同,总工作量为m,用式子表示每人需要完成的工作量:__________.m 【答案】(1)0.8p元(2)mn件(3)a2h cm3(4)-n(5)7【师生活动】学生先独立列式,然后同桌交流,教师巡视指导.【设计意图】熟悉用含有字母的式子表示实际问题中的数量关系,理解字母可以像数一样参与运算,为后面的学习进行铺垫.【思考】含有字母的式子有什么书写特点?【师生活动】学生对写出的几个式子进行观察,教师引导学生从式子的字母和数字两方面进行回答.【设计意图】熟悉用字母表示数的书写要求,在答题中能正确写出式子.【例2】(1)一条河的水流速度是2.5 km/h,船在静水中的速度是v km/h,用式子表示船在这条河中顺水行驶和逆水行驶时的速度;(2)买一个篮球需要x元,买一个排球需要y元,买一个足球需要z元,用式子表示买3个篮球、5个排球、2个足球共需要的钱数;(3)如图(图中长度单位:cm),用式子表示三角尺的面积;(4)一所住宅的建筑平面图(图中长度单位:m)如图所示,用式子表示这所住宅的建筑面积.【思考】船在河流中行驶时,船的速度要分几种情况讨论?【师生活动】学生讨论之后,进行回答,教师根据学生回答的结果进行点评.【设计意图】让学生意识到,在特殊情形下用字母表示数时,可能会有多种情况存在.【答案】解:(1)船在这条河中顺水行驶的速度是(v+2.5) km/h,逆水行驶的速度是(v-2.5) km/h;(2)买3个篮球、5个排球、2个足球共需要(3x+5y+2z)元;(3)三角尺的面积(单位:cm2)是12ab-πr2;(4)这所住宅的建筑面积(单位:m2)是x2+2x+18.【师生活动】学生先独立列式,然后同桌交流,教师巡视指导.【设计意图】进一步熟悉用含有字母的式子表示实际问题中的数量关系,体会字母的含义,进一步理解字母可以像数一样参与运算,为形成多项式的概念进行铺垫.【思考】观察(1)(2)中写出的式子,总结特点.【师生活动】学生独立回答.【设计意图】让学生知道在书写后面带有单位的式子时,所写的式子要加括号.【思考】在(2)中,当x=70,y=50,z=80时,共需要多少钱?【师生活动】学生讨论之后,派代表在黑板上写出计算过程和答案,教师根据答题结果进行讲解.【设计意图】通过这一步,让学生知道,在字母的取值确定时,式子的取值是确定的.【思考】结合前面的例题,组内讨论:用字母表示数,有什么特点?【师生活动】学生分组讨论,教师展示课件上的总结,让学生对照学习.【设计意图】知道用字母表示数的必要性,为后续整式的相关学习做铺垫.【新知】讨论:如何分析题目,找数量关系?(1)抓关键词,明确它们的意义以及它们之间的关系,如:和、差、积、商;大、小;倍、分、比……提高/降低、顺水/逆水、打折等.(2)理清语句层次,明确运算顺序.(3)牢记概念和公式.【师生活动】学生小组讨论,如何找出数量关系,推举代表进行回答,教师根据回答结果进行点评,并给出正确的方法.【设计意图】通过对问题中的文字语言进行分析,转化成符号语言,进一步熟练列出式子,用字母表示数.【新知】用字母表示数的书写要求.【师生活动】教师在课件中给出表格,引导学生进行填空.【设计意图】检验学生是否准确掌握了用字母表示数的书写要求,进一步规范学生的式子写法.课堂小结板书设计一、字母可以表示任何数二、字母可以简明地表示数量关系三、用字母表示数的书写格式课后任务完成教材第56页练习1~4题.。

《整式的加减》教案

《整式的加减》教案

《整式的加减》教案《整式的加减》教案「篇一」一、知识与技能(1)了解同类项、合并同类项的概念,掌握合并同类项法则,•能正确合并同类项。

(2)能先合并同类项化简后求值。

二、过程与方法经历类比有理数的运算律,探究合并同类项法则,培养学生观察、探索、分类、归纳等能力。

三、情感态度与价值观掌握规范的解题步骤,养成良好的学习习惯,通过比较两种求代数式值的方法,体会合并同类项的作用。

教学重、难点与关键1.重点:掌握合并同类项法则,熟练地合并同类项。

2.难点:多字母同类项的合并。

3.关键:正确理解同类项概念和合并同类项法则。

教具准备投影仪。

四、教学过程,新课引入有理数可以进行加减计算,那么整式能否可以加减运算呢?怎样化简呢?我们来看本章引言中的问题(2)。

在西宁到拉萨路段,如果列车通过冻土地段的时间是t小时,那么它通过非冻土地段所需的时间就是2.1t小时,则这段铁路的全长是100t+1202.1t,即100t+252t1.类比数的运算,我们应如何化简式子100t+252t呢?五、新授(1)运用有理数的运算律计算:1002+2522=______;100(-2)+252(-2)=________。

1002+2522=(100+252)2=3522100(-2)+252(-2)=(100+252)(-2)=352(-2)我们知道字母可以表示数,如果用t表示上述算术中的数2(或-•2)•就有,•100t+252t=(100+252)t=352t。

《整式的加减》教案「篇二」一、素质教育目标(一)知识教学点1.理解:整式的加减实质就是去括号,合并同类项。

2.掌握:学生在掌握合并同类项、去括号与添括号的基础上,掌握整式加减的一般步骤。

3.运用:能够正确地进行整式的加减运算。

(二)能力训练点1.培养用代数的方法解决实际生活中的问题的能力和口头表达能力。

2.培养学生用代数方法解几何问题的思路。

(三)德育渗透点渗透教学知识来源于生活,又要为生活而服务的辩证观点。

3.4整式的加减第1课时教案

3.4整式的加减第1课时教案
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《整式的加减》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要计算多个物品价格总和的情况?”(例如,购物时计算多件商品的总价)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索整式加减的奥秘。
最后,总结回顾环节,我通过提问的方式检验了学生们的学习效果,发现大部分学生能够掌握今天的教学内容。但也有学生提出了疑问,这让我意识到在教学中,可能需要更加关注学生的个体差异,对于学习有困难的学生,需要给予更多的关注和指导。
3.4整式的加减第1课时教案
一、教学内容
《数学》七年级上册,3.4整式的加减,第1课时。本节课主要内容包括:
1.掌握整式的概念,了解整式是由数字、字母和四则运算符号组成的代数式;
2.掌握同类项的定义,了解同类项的字母部分相同,且各字母的指数也分别相同;
3.掌握合并同类项的法则,即同类项相加(或相减)时,只需将其系数相加(或相减),字母部分保持不变;
3.成果展示:每个小组将向全班展示他们的讨论成果和整式计算的过程及结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“整式在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考,如“整式加减可以解决哪些实际问题?”
-掌握同类项的定义:学生需明白同类项的判断标准,即字母相同且相应字母的指数也相同,这是进行整式加减的前提。
-合并同类项的法则:学生应熟练掌握合并同类项的方法,即只对系数进行加减运算,字母和字母的指数保持不变。

人教版七年级数学上册整式的加减(第1课时)教案

人教版七年级数学上册整式的加减(第1课时)教案
(1)这个多项式中含有哪些项?
(2)各项的系数是多少?
(3)那些项可以合并成一项?为什么?
【设计意图:通过视察、讨论、类比得出合并同类项的方法,并且进行适当的巩固.体会合并同类项的过程就是化简多项式的过程,让学生进一步了解化简过程的根据.】
师生活动:由一学生板演,其他同学独立完成.师生共同订正板演过程,教师详细讲授,并板书示范过程.教师引导学生类比有理数的运算,共同探究归纳合并同类项的法则.教师强调:一般情况,先将多项式按照某个字母进行降幂或升幂排列.
师生活动:学生独立思考,逐一完成各个问题.教师巡回指点,待学生完成后,抽学生口答,其他学生判断评价.
教师强调:
(1)几个单项式是不是同类项与字母和字母的指数有关,与单项式的系数无关.
(2)几个单项式是不是同类项与字母的顺序无关.
想一想:你能写出几个单项式是同类项的例子吗?
【设计意图:这类开放性问题的答案不唯一,但是答案有共性,可拓展学生的思维,帮助每个学生以自己所学的知识为基础,进一步巩固同类项的定义,建构自己的理解,培养学生应用知识的能力.】
(根据实际情况,如果学生已经掌握很好,可以不用这一环节.)
师生活动:学生自己动手独立完成后,小组内交流,视察写出的结果是否符合要求,注意思考答案的共性,教师参与指点.
三、释疑解难、பைடு நூலகம்讲点拨
试着把多项式4x2+2x+7+3x-8x2-2合并同类项:
如果学生对于合并同类项已经掌握很好,教师可以直接让学生处理即可;如果学生感到有些难度,师生共同分析,教师尝试以下问题的引导.
师板书法则,并强调:
(1) 合并的前提是同类项.
(2) 合并指的是系数相加,字母和字母的指数保持不变.

整式的加减 第一课时_教案2022-2023学年人教版数学七年级上册

整式的加减 第一课时_教案2022-2023学年人教版数学七年级上册

《2.2整式加减(1)》教学设计一、教学目标1. 认识同类项,能判断两个式子是否是同类项.2. 能独立完成合并同类项,求多项式的值.3.能用整式表示生活中的数量关系,解决生活中问题.二、重点难点重点:理解同类项的概念;正确合并同类项.难点:根据同类项的概念在多项式中找同类,正确合并同类项.三、教学过程(一)情境引入问题1:在西宁到拉萨路段,列车在冻土地段的行驶速度是100 km/h,在非冻土地段的行驶速度是120 km/h,列车通过非冻土地段所需时间是通过冻土地段所需时间的2.1倍,如果通过冻土地段需要t h,你能用含t的式子表示这段铁路的全长吗?列式:100t+120×2.1t==100t+252t教师追问:这个式子还能化简吗?设计意图:引入实际问题,使学生感受到学习含有字母的式子的运算是实际需要,理解化筒100t+252t的方法是运用有理数的运算律“分配律”,初步体会“数式通性”,促使学生的学习形成正迁移.(二)类比探究1.运用有理数的运算律计算:⑴100×2+252×2=⑵100×(-2)+252×(-2)=归纳:3个式子的结构相同,整式中的字母表示数,可以类比数的运算,运用数的运算法则和运算律进行整式运算.设计意图:通过用分配律进行有理数的运算,帮助学生理解用分配律化简式子100t + 252t 的方法,为进一步类比学习整式的运算提供方法上的借鉴.通过引导学生观察比较,发现三个算式的联系,理解由于式子100t+252t中的字母表示数,因此可以依据分配律对式子进行化简,理解整式的运算与有理数的运算具有一致性,为更一般的同类项的合并提供方法上指导.体会由“数”到“式”是由特殊到一般的思想方法,初步感受“数式通性”和类比的数学思想. 2.运用刚才方法填空:①100252t t-②2232x x+③2234ab ab-观察:上述各多项式的项有什么共同特点?同类项:⑴所含字母相同;⑵相同字母的指数也分别相同.设计意图:进一步引导学生类比前面关于式子100t+252t 的化简,讨论更一般的同类项(多项式中的项的次数高于1,字母不止一个等)的合并,进一步理解分配律的运用,体会“数式通性”和类比的数学思想,通过几组不同形式的同类项,感受不同类型式子的组成,突出同类项的特点,为归纳同类项的概念和合并同类项法则做好铺垫.3.观察多项式100252t t-,2232x x+,2234ab ab-上述多项式中同类项的运算过程有什么共同特点?归纳:合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母连同它的指数不变.设计意图:在观察、比较中,发现各多项式的项的共同特征,分析运算特点,归纳出同类项、合并同类项的定义及合并同类项的法则.(三)例题讲解例:4x2+2x+7+3x-8x2-2解:=4x2-8x2+2x+3x+7-2 (交换律)=(4x2-8x2 )+(2x+3x)+(7-2) (结合律)=(4-8)x2+(2+3)x+(7-2) (分配律)=-4x2+5x+5 (按字母x的指数从大到小顺序排列)归纳步骤:(1)找出同类项并做标记;(2)运用交换律、结合律将多项式的同类项结合;(3)合并同类项;(4)按同一个字母的降幂(或升幂)排列.设计意图:归纳化简多项式的一般步骤.例2 (1)求多项式22225432x x x x x-++--的值,其中=12x;22)45()312(234522222--=-+-+-+=--++-x x x x x x x x 解:25-2-21-21===时,原式当x方法总结:在求多项式的值时,可以先将多项式化简(同类项合并),然后再求值. (2)求多项式 22113333a abc c a c +--+ 的值,其中16a =-,2b = , 3c =- . 设计意图:归纳化简求值的方法,先将多项式化简,然后再求值.使运算更简便.例3: (1)水库中水位第一天连续下降了a 小时,每小时平均下降2cm ;第二天连续上升了a 小时,每小时平均上升0.5cm ,这两天水位总的变化情况如何?(2)某商店原有5袋大米,每袋大米为x 千克. 上午卖出3袋,下午又购进同样包装的大米4袋.进货后这个商店有大米多少千克?解:(1)把下降的水位变化量记为负,把上升的水位变化量记为正.则有:-2a + 0.5a = -1.5a答:这两天水位总的变化情况为下降了1.5a cm.(2)把进货的数量记为正,售出的数量记为负.则有:5x -3x +4x =6x答:进货后这个商店有大米6x 千克.设计意图: 本题让学生体会到数学知识之间的相互联系,同时体会到数学在生活中处处存在,数学来源于生活又服务于生活.(四)巩固提升1.判断同类项:(1) -5ab 3 与 3a 3b( ) (2) 3xy 与 3x( ) (3) -5m 2n 3 与 2n 3m 2( ) (4) 53 与 35( ) (5) x 3 与 53( )判断同类项要注意:① 字母 相同 ,相同字母的指数也 相同 .② 与 系数 无关,与 字母顺序 无关.③常数都是同类项.2. 单项式236ab c -的同类项可以是 . 3. 5x 2y 和42y m x n 是同类项,则 m=_______, n=________.4.判断下列计算是否正确?y 2x 5xy y 3x (4)02ba 2ab (3)32y 5y (2)5ab2b 3a (1)22222-=-=-=-=+注意:1.多项式中只有同类项才能合并;2.若两个同类项的系数互为相反数,则两项的和等于零.5. 下列运算,正确的是 (填序号).①2235a a a += ; ② 22532a b ab ab -= ;③ 22232x x x -= ;④22651m m -=. 6.–x m-3y 与 45y n+1x 3是同类项,则 m=_____,n=______.7.填空(1)x 的4倍与x 的5倍的和是多少?(2)x 的3倍比x 的一半大多少?8.如图,大圆的半径是R,小圆的面积是大圆面积的 94,求阴影部分的面积.9. 用式子表示十位上的数是a ,个位上的数是b 的两位数,再把这个两位数的十位上的数与个位上的数交换位置,计算所得数与原数的和.解:原来的两位数为:10a +b ,新的两位数为:10b +a两个数的和为:10a+b+10b+a=11a+11b所得数与原数的和能被11整除吗?∵11a+11b=11(a+b)∴所得数与原数的和能被11整除.设计意图:设置有梯度的练习题,加深对同类项和合并同类项法则的理解和运用,提高运算能力.(五)课堂小结1.回顾本节课的学习过程.2.本节课运用了什么思想方法研究问题?3.化简求值4.把实际问题抽象为数学模型5.挖掘已知条件,构造所求整式设计意图:通过小结,使学生梳理本节课所学内容,掌握本节课的核心一同类项的概念、合并同类项的概念和法则,感受“数式通性”和类比的数学思想.(六)巩固提高已知m是绝对值最小的有理数,且11m ya b++-与33x a b是同类项,求2222 23639x xy x mx mxy my -+-+-的值.设计意图:提高学生对同类项概念的理解.。

最新整式的加减第一课时上课讲义

最新整式的加减第一课时上课讲义

填空,并观察这些运算有什么特点:
(1)3x2y 6x2y ( 3+6 )x2y; (2)5mn3 3mn3 ( 5-3 )mn3; (3) a2 6a2 ( -1-6 )a2; (4)xyz 6xyz ( 1-6 )xyz.
每一运算中的项所含字母相同,并且 相同字母的指数也相同.
(1)两个相同:字母相同,同字母 的指数相同.
(2)两个无关:与系数的大小无关, 与字母的顺序无关.
判断: (1)在一个多项式中,所含字母相
同,并且指数也相同的项,叫同类项. ×
如2x2y3和y2x3. (2)两个单项式的次数相同 ,所含
的字母也相同,它们就是同类项. ×
如3x2y3和-2x3y2.
观察下面这些的式子,是怎样计算得到的?
(1)3x2y 6x2y (3 6)x2y 9x2y; (2)5mn3 3mn3 (5 3)mn3 = 2mn3; (3) a2 6a2 (1 6)a2 = -7a2; (4)xyz 6xyz (1 6)xyz = -5xyz.
运用了分配律,将同类项的系数相 加,字母保持不变.
整式的加减第一课时
把具有相同特征的事物归为一类
把具有相同特征的事物归为一类
把具有相同特征的事物归为一类
整式的加减(一)
教学目标
知识与技能
1.了解同类项、合并同类项的概念,掌握合 并同类项法则,能正确合并同类项;
2.能先合并同类项化简后求值; 3.掌握整式加减的方Leabharlann .教学目标过程与方法
1.经历类比整式的运算律,探究合并同类项 法则,培养观察、探索、分类、归纳等能力;
2.通过计算两个个长方体纸盒的用料情况, 初步学会从实际问题入手,尝试从数学的角度提 出问题、理解问题,并运用所学的知识和技能解 决问题,进一步发展应用意识.

22整式的加减(第一课时)教案.docx

22整式的加减(第一课时)教案.docx

备课时间:上课日期:2015・10・22教师:课题:2. 2整式的加减第一课时1、能根据同类项满足的两个条件准确地识别出同类项。

会用合并同类项法则解决有关的问- 题。

教〜八2、体验探索同类项概念和合并同类项法则过程,通过“类比法、分桁法”的应用,发展学字生的由果寻因的思维能力、语言表达能力,归纳能力,通过概念的识别和法则的归纳,培养日学生“类比”的数学方法。

标3、通过探索同类项概念和合并同类项法则过程,激发学牛的求知欲,培养独立思考和合作交流的能力,让他们享受成功的喜悦O教法启发式重点同类项的概念及合并同类项的法则难点正确的判断同类项,准确的合并同类项活动活动内容活动设计意图活动1 创设情境,引入新课设置问题情境,激发学生学习兴趣活动2 合作交流,探究新知学生合作交流,探究新知活动3 范例学习,应用新知教师进行板演,规范解题步骤活动4 随堂练习,巩固深化学生进行练习,巩固和深化知识。

活动5 课堂总结,发展潜能培养学生归纳总结的能力。

活动6 课堂检测随堂测验,作为对木节课的实时检测。

课前准备板书设计教具: 2. 2整式的加减第一课时1、同类项的概念例题学具. 2、合并同类项的法则学案课后反思:作业:目标P35分层作业:学案上拓展提高问题与情境师生行为设计意图时间【活动1]创设情境引入新课问题1:当a=2015,b=2016 时,求24ab + Sb2-24ab — 3b — 9b2 + 5b的值? 教师提问,学生思考并回答。

提出问题迅速吸引学生,激发了学牛的学习兴趣。

1分钟问题厶-3b+5b=2b运算过程的依据是什么?教师提出问题6 分问题3:依据上面的计算过程,你能根据乘法分配律化简下列代数式吗?3xy+5xy=5X2-2X2=-7ab2+2ab2=【活动2】自主探究学习新知(一)观察:-3b+5b=(-3+5)b=2b 3xy2+5xy2= (3+5) xy2=8xy2 5ab-2ab=(5-2)ab=3ab-7a2+2a2=(-7+2)a2=-5a2学生思考并回答:3xy+5xy=(3+5) xy 5X2-2X2=(5-2)X2・ 7ab2+2ab2=(-7+2)ab2通过问题的设置,逐步深入,由面到点,探究同类项的实质,为学生准确归纳出同类项的概念做好铺垫。

《整式的加减》第一课时教学案-PDF

《整式的加减》第一课时教学案-PDF
1/4
2 2
重点难 点预测 知识链接
课前预习
流 习 内 容
程 教师复备栏 或 学生笔记栏
学习过程 独学 3 分钟
,它 ; , 它们 ; ,它
学生思考
和 和
,并且 x 的指数都
(3)多项式 3ab2-4ab2 中的项是
学习过程




教师复备栏 或 学生笔记栏
对学 群学 12 分钟
字母 和 ,并且 a 都是 次,b 都是 次。目的:为研究新知打基础 二、探索新知,自主交流 (一)填空: 1.多项式 1 00t-252t 中的项是 和 它们含有 相同的字母 ,并且 t 的指数都是 ; 2 2 2.多项式 3x +2x 中的项是 和 ,它们含有 相同的字母 ,并且 x 的指数都 ; 2 2 3.多项式 3ab -4ab 中的项是 和 ,它们 都含有的字母 和 , 并且 a 都是 次, b 都是 次。 思考:多项式的项和多项式的次数? 总结:所含字母相同,并且相同字母的指数也分别相同的项 小组讨论 叫做同类项。另外,几个常数项也是同类项。 教师巡视指 (二)跟踪练习: 导 1.判断下列说法是否正确,正确地在。 ( ) (2)2ab 与-5ab 是同类项。 ( ) (3)3x2y 与- yx2 是同类项( ) (4)5ab2 与-2ab2c 是同类项。 ( )(5)-mn2 与 7m2n 是同类 项。( ) 点拨:与字母的位置无关,与符号无关 2.找出下面多项式中的同类项(可用不同的符号标出)。 (1)4x2+2x+7+3x-8x2-2 (2)4a2+3b2+2ab-4a2-4b2 难点:要带着前面的符号 3.已知 xmy2 与-5ynx3 是同类项,则 m= , n= 。 注意:相同字母相对应 (三)运用有理数的运算律计算: 89× 3+11× 3=( )× 3 89× (-3)+11× (-3)=( )× (-3) 你能类比上面数的运算完成下面的填空吗?试一试。 89a+11a=( )a 3x2+2x2=( )x2 2ab2-4ab2=( )ab2 思考:上面三个式子的结果你是怎样得到的?你能说说怎样 合并同类项吗? 总结:合并同类项时,只须将同类项的系数相加,字母部分 不变。 (四)跟踪练习: 1.下列各题合并同类项的结果对不对?若不对,请改正。

整式的加减(第一课时)(新编201908)

整式的加减(第一课时)(新编201908)

问题
某校前年、去年、今年购买的计算机台数分别是2x, 3x, 4x 那么这个学校这三年购买的计算机的台数是多少台?
X+ 2X+ 4 X = (1 + 2 + 4) X = 7X
说说这个结果是怎么得到的?这和运用乘法的 分配律有何关联?
返回
; /naotanby 小儿脑瘫病因 新生儿脑瘫病因 脑瘫出现的原因
整式的加减(第一课时)
活动1 活动2 活动3 活动4 活动5
莆田北高中学 冯志新
[活动1]新课引入
纸牌游戏
游戏规则:一副扑克牌,去掉了所有的J、Q、K和大王、 小王,相当于40张牌,从中抽取两张,第一张作个位数字, 第二张作十位数字,组成一个两位数字(抽到了10就作为 0),再交换它新的两位数和旧的两位数相加,得到最后的结果。我 就能根据最后的结果猜出那两张牌是分别是多少?

领西域戊己校尉 尚书褚湛之先行京陵 旧逾年改元 且欲倚卢为援 素履纯洁 於冶渚过淮 吴兴余杭人也 世祖践阼 弘文曰 时有闲日 其狂若一 至悉逃亡 上抚接甚厚 顺帝升明元年 累恶不过余殃之罚 南北秦三州诸军事 乐琴书以消忧 法兴少卖葛於山阴市 辄卧论文义 改都督南兖 泰始四年 百姓 至今受其利 至於狸伐篡伪 中领军鄱阳县开国侯勔 君臣师资 仍守西津 五州同盟 隆说难伐蒙逊 其欲致车右而动御席 田曹行参军臧肇之 国王刹利摩诃南奉表曰 详观今古 邦罹崩离之难 玩於浊水 所见不过一两人 时虽逃窜 尝试申之曰 河间相 临湘令韩幼宗领军戍防湘州 又营货利 璞乃号泣曰 给鼓吹一部 属辞比事 白曰 希林少守家业 神变无不周 吴汉平蜀 人拔其屋后笋 岐 太尉 弃青州走 华子高抗 大宋扬都 父殖 驱略妇女一万二千口 是故今遣奉使表诚 骑至冶渚 好老 更奖说蜀人 败军之将 以绵一斤遗原平 於

北师大版数学七年级上册3.4《整式的加减》(第1课时)教案

北师大版数学七年级上册3.4《整式的加减》(第1课时)教案

北师大版数学七年级上册3.4《整式的加减》(第1课时)教案一. 教材分析《整式的加减》是北师大版数学七年级上册第3.4节的内容,本节主要介绍整式的加减运算。

在此之前,学生已经学习了有理数的加减法和乘除法,整数的加减法和乘除法,以及多项式的概念。

本节内容是这些知识的进一步扩展和应用,为学生今后的代数学习打下基础。

二. 学情分析七年级的学生已经具备了一定的数学基础,对于加减法和乘除法有了一定的理解。

但是,对于整式的加减运算,可能还存在一定的困难。

因此,在教学过程中,需要引导学生将已有的知识迁移到整式的加减运算中,通过实际操作,加深对整式加减运算的理解。

三. 教学目标1.理解整式的加减运算的定义和规则。

2.能够进行简单的整式加减运算。

3.培养学生的逻辑思维能力和运算能力。

四. 教学重难点1.重点:整式的加减运算的定义和规则。

2.难点:如何引导学生将已有的知识迁移到整式的加减运算中,以及如何进行复杂的整式加减运算。

五. 教学方法采用问题驱动法和案例教学法,通过实际操作,引导学生理解整式的加减运算的定义和规则,培养学生的问题解决能力和逻辑思维能力。

六. 教学准备1.PPT课件2.教学案例七. 教学过程1.导入(5分钟)通过提问,引导学生回顾已学的有理数和整数的加减法,以及多项式的概念。

2.呈现(10分钟)展示PPT课件,介绍整式的加减运算的定义和规则。

通过案例,让学生理解整式的加减运算的实际意义。

3.操练(10分钟)让学生分组进行练习,运用整式的加减运算的规则,解决实际问题。

教师巡回指导,解答学生的疑问。

4.巩固(10分钟)让学生独立完成练习题,巩固整式的加减运算的知识。

教师选取部分学生的作业,进行讲解和分析。

5.拓展(10分钟)引导学生思考如何将整式的加减运算应用到实际问题中,例如解析几何中的直线方程,通过实际案例,让学生理解整式的加减运算的应用价值。

6.小结(5分钟)对本节课的内容进行小结,强调整式的加减运算的定义和规则,以及其在实际问题中的应用。

整式的加减第一课时教案

整式的加减第一课时教案

整式的加减第一课时教

-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN
整式的加减
第一课时
一、教学目标
知识与技能:1.?理解同类项的概念,并能正确辨别同类项。

2.?掌握合并同类项的法则,能进行同类项的合并。

3.会利用合并同类项将整式化简。

过程与方法:1.?探索在具体情境中用整式表示事物之间的数量关系,发展
学生的抽象概括能力。

2.通过类比数的运算律得出合并同类项的法则,在教学中渗透
“类比”的数学思想。

情感、态度与价值观:1.通过参与同类项、合并同类项法则的探究活动,提
高学习数学的兴趣。

2.培养学生合作交流的意识和探索精神。

二、教学重点与难点
重点:合并同类项法则。

难点:对同类项概念的理解以及合并同类项法则的应用。

三、学习课时(四课时——第一课时)
四、重、难点突破
通过实际问题引出同类项和合并同类项概念的探讨,在学习过程中,让学生自己经历探索与交流的活动,自主得到同类项的概念,并利用数的分配律观察并归纳出合并同类项的法则。

五、教学方法
讨论及探究式教学方法
六、教具准备
课件。

整式的加减教案【优秀7篇】

整式的加减教案【优秀7篇】

整式的加减教案【优秀7篇】(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作总结、计划大全、策划方案、报告大全、心得体会、演讲致辞、条据文书、作文大全、教案资料、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, this store provides various types of classic sample essays for everyone, such as work summaries, plan summaries, planning plans, report summaries, insights, speeches, written documents, essay summaries, lesson plan materials, and other sample essays. If you want to learn about different formats and writing methods of sample essays, please stay tuned!整式的加减教案【优秀7篇】单项式和多项式都统称为整式。

2.2整式的加减(第1课时)教案

2.2整式的加减(第1课时)教案

三、 归纳总结
对于所含字母相同,且相同字母的指数相同的项,我们可以进行合并, 这种项我们叫做同类项。 定义:所含字母相同,且相同字母的指数也相同的项叫做同类项。而把多项 式中同类项合并成一项,叫做合并同类项。 注意:几个常数项也是同类项。 练习 1:找出下列项中的同类项
3 x , 4 xy , 6 xy , x y , 4, 5 x , 5 x y , :
学校组织了一次捐款活动,活动结束后,班干部留下清点钱数班级捐款 总数,面对一堆不同面值的钱,你该如何数呢? 学生:1.把相同面值的加起来(100 元加 100 元、50 元加 50 元„„) 学生:2.把单位是元的加起来,单位是角的加起来 答:把面值(单位)相同的钱加起来实质上是根据其面值(单位)的不 同,对钱进行了分类。生活中我们经常会遇到这种情况,常常把具有相同特 征的事物归为一类,正如俗话所说的“物以类聚”,即把相同特征的事物归为 一类. 经常把同类事 物放在一起,为 同类项合并铺 垫
合并同类项法则:
1. 所得项的系数是合并前后各同类项的系数的和; 2. 字母及其指数保持不变。 (结合实例 2 x 3 x (2 3) x 来理解法则)
2 2 2
例题: 4 x 2 x 7 3 x 8 x 2 找出多项式的同类项并合并. (板演,注意每一步所用到的运算律,体验解题过程,总结解题步骤) 合并同类项的步骤: (1)找出同类项并做标记; (2)运用交换律、结合律将多项式的同类项结合; (3)合并同类项; (4)按某个字母的指数从大到小(或从小到大)排列. 1 例一: 2 2 2 2 2 2 xy xy 3 x y 2 x y 3 xy 2 xy 5
2 2
4 a 3 b 2 ab 4 a 4 b
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一. 预习提示 1. 什么样的项是同类项?2. 怎样合并同类项?3. 合并同类项的依据是什么?合并同类项时应注意哪些问题?二. 教案1. 学习目标:使学生理解同类项的概念和合并同类项的意义,学会合并同类项。

2. 能力目标:培养学生观察、分析、归纳和动手解决问题的能力,初步使学生了解数学的分类思想。

3. 情感目标:借助情感因素,营造亲切和谐活泼的课堂气氛,激励全体学生积极参与教学活动。

培养他们团结协作,严谨求实的学习作风和锲而不舍,勇于创新的精神。

4. 重点:同类项的概念和合并同类项的法则难点:学会合并同类项5. 教学过程:(1) 创设情境,激发兴趣问题1:我们到动物园参观时,发现老虎与老虎关在一个笼子里,熊猫与熊猫关在另一个笼子里。

为何不把老虎与熊猫关在同一个笼子里呢?。

相关文档
最新文档