2017年浙江省杭州市下城区青春中学九年级上学期数学期中试卷与解析
2017届九年级上期中考试数学试题含答案
2016-2017学年第一学期期中试卷初三数学(时间:120分钟满分:130分)一、选择题(本大题共10小题,每小题3分,共30分) 1. 81的平方根是()A .9B .C .D .2.下列一元二次方程中,两实数根的积为4的是()A .2x 2-5x +4=0B .3x 2-5x +4=0C .x 2+2x +4=0D .x 2-5x +4=0 3.若关于x 的方程022=+-n x x 无实数根,则一次函数n x n y --=)1(的图像不.经过() A .第一象限 B.第二象限 C.第三象限 D.第四象限4:则该日这6个时刻的PM2.5的众数和中位数分别是()A. 0.032, 0.0295B. 0.026,0.0295C. 0.026, 0.032D. 0.032, 0.0275.如图,大正方形中有2个小正方形,如果它们的面积分别是S 1、S 2,那么S 1、S 2的大小关系是() A . S 1> S 2 B .S 1 = S 2 C .S 1<S 2 D .S 1、S 2的大小关系不确定6.如图,在平面直角坐标系中,过格点A 、B 、C 作一圆弧,点B 与下列格点的连线中,能够与该圆弧相切的是()A .点(0,3)B .点(2,3)C .点(5,1)D .点(6,1)7.据调查,2011年11月无锡市的房价均价为7530元/m 2,2013年同期将达到8120元/m 2,假设这两年无锡市房价的平均增长率为x ,根据题意,所列方程为()A .27530(1%)8120x -=B .27530(1%)8120x +=C.27530(1)8120x -=D .27530(1)8120x +=8.如图,四边形ABCD 中,AD ∥BC ,∠D=90°,以AB 为直径的⊙O 与CD 相切于E ,与BC 相交于F ,若AB=8,AD=2,则图中两阴影部分面积之和为( ) A . B .3C .D .9.如图,直线343+=x y 与x 轴、y 轴分别交于A 、B 两点,已知点C (0,-1)、D (0,k ),且0< k < 3,以点D 为圆心、DC 为半径作⊙D ,当⊙D 与直线AB 相切时,k 的值为( ) A .95 B .32 C .97 D .98 10.如图,在平面直角坐标系xOy 中,点(1,0)A ,(2,0)B ,正六边形ABCDEF 沿x 轴正方向无滑动滚动,保持上述运动过程,经过的正六边形的顶点是().第5题图第6题图 第8题图A.C或E B.B或D C.A或E D.B或F二、填空题(本大题共8小题,每小题2分,共16分.)11.写出一个以2与-3为根的一元二次方程________________________.12. 若方程()22570m x x++-=是关于x的一元二次方程,则m的取值范围是.13.一组数据1,3,2,5,x的平均数为3,那么这组数据的方差是.14.将一个底面半径为5cm,母线长为12cm的圆锥形纸筒沿一条母线剪开并展平,所得的侧面展开图的圆心角是度.15.如图,AB是⊙O的直径,直线PA与⊙O相切于点A,PO交⊙O于点C,连接BC.若∠P=40°,则∠ABC的度数为.16. 如图是由两个长方形组成的工件平面图(单位:mm),直线l是它的对称轴,能完全覆盖这个平面图形的圆面的最小半径是mm.17.已知正方形ABCD边长是2,点P从点D出发沿DB向点B运动,至点B停止运动,连结AP,过点B作BH⊥AP于点H,在点P运动过程中,点H所走过的路径长是.18.如图,Rt△AOB中,O为坐标原点,∠AOB=90°,∠B=30°,如果点A在反比例函数y=1x(x>0)的图象上运动,那么点B在函数(填函数解析式并写出自变量取值范围)的图象上运动.三、解答题(本大题共10小题,共84分.解答时应写出文字说明、证明过程或演算步骤)19.(本题8分,每小题4分) 计算或化简:(1)()023200921)1(---+-(2)22121x xxx x x--⎛⎫÷-⎪+⎝⎭20.(本题8分,每小题4分)解方程:(1) 5x(x-3)=2(3-x).(2)0242=-+xx;21.(本题6分)在正方形方格纸中,我们把顶点都在“格点”上的三角第9题图第15题图第16题图第17题图第18题图形称为“格点三角形”,如图,△ABC 是一个格点三角形.(1)请你在所给的方格纸中,以O 为位似中心,将△ABC 放大为原来的2倍,得到一个△A 1B 1C 1. (2)若每一个方格的面积为1, 则△A 1B 1C 1的面积为_____.22.(本题7分)某校对各个班级教室卫生情况的考评包括以下几项:门窗,桌椅,地面,一天,两个班级的各项卫生成绩分别如表:(单位:分) (1)两个班的平均得分分别是多少?(2)按学校的考评要求,将黑板、门窗、桌椅、地面这三项得分依次按25%、35%、40%的比例计算各班的卫生成绩,那么哪个班的卫生成绩高?请说明理由.23.(本题7分)如图,BD 为⊙O 的直径,点A 是弧BC 的中点, AD 交BC 于E 点,2AE =,4ED =. (1)求证:△ABE ∽△ADB ; (2)求BE 长;24.(本题8分)如图,△ABC 中,AB=AC ,F 为BC 的中点,D 为CA 延长线上一点,∠DFE=∠B .(1)求证:△CDF ∽△BFE ;(2)若EF ∥CD ,求证:2CF 2=AC•CD .25.(本题8分)某新建火车站站前广场需要绿化的面积为46000米2,施工队在绿化了22000米2后,将每天的工作量增加为原来的1.5倍,结果提前4天完成了该项绿化工程.(1)该项绿化工程原计划每天完成多少米2? (2)该项绿化工程中有一块长为20米,宽为8米的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为56米2,两块绿地之间及周边留有宽度相等的人行通道(如图所示),问人行通道的宽度是多少米?26.(本题10分)如图,已知AB 为⊙O 的直径,点E 是OA 上任意一点,过E 作弦CD ⊥AB ,点F 是⊙O 上一点,连接AF 交CE 于H ,连接AC 、CF 、BD 、OD .(1)求证:△ACH ∽△AFC ;(2)猜想:AH•AF 与AE•AB 的数量关系,并说明你的猜想; (3)当AE=______AB 时,S △AEC :S △BOD =1:4.27.(本题10分)如图,在平面直角坐标系中,O 为坐标原点,⊙C 的圆心坐第24题图第26题图第25题图第23题图标为(-2,-2),半径为2.函数y =-x +2图象与x 轴交于点A ,与y 轴交于点B ,点P 为线段AB 上一动点(包括端点).(1)连接CO ,求证:CO ⊥AB ;(2)当直线PO 与⊙C 相切时,求∠POA 的度数; (3)当直线PO 与⊙C 相交时,设交点为E 、F ,点M 为线段EF 的中点,令PO =t ,MO =s ,求s 与t 之间的 函数关系,并写出t 的取值范围;(4)请在(3)的条件下,直接..写出点M 运动路径的长度.28.(本题12分)如图,在平面直角坐标系中,等腰直角△ABC 的直角顶点C 为(﹣4,0),腰长为2,将三角形绕着顶点C 旋转.(点A 在x 轴的上方)分别过点A 、点B 向x 轴作垂线,垂足分别为O 1,O 2.(1)如图①和图②证明在点B 不在坐标轴上的情况下,△ACO 1与△BCO 2全等吗?选择其中一幅图说明你的理由;(2)如图③所示,点B 运动到x 轴上时,点O 1与C 重合,以C 为圆心CA 为半径作圆,得到如图所示的⊙C ,在⊙C 上有一个动点P (点P 不在x 轴上),过点P 作⊙C 的切线与y 轴的交点为点Q ,直线BP 交y 轴于点M .①如图,当点Q 在y 轴的正半轴时,写出线段PQ 与线段QM 之间的数量关系,并说明理由;②随着点P 的运动(点P 在坐标轴上除外)①中的两条线段之间的关系变吗?若变说明理由,若不变,则它们有最小值吗?最小值为多少?第28题图第27题图初三数学期中试卷参考答案2016.11(时间:120分钟满分:130分)一、选择题(每题3分,共30分)BDBAA CDACD二、填空题(每空2分,共16分)11.答案不唯一;12.m-2___;13.2__;14.___150゜;15.__25゜;16.__50_;17._π__;18.___(x>0).三、解答题19.(1)(2)20.(1)x1=3,x2=-0.4(2)x1=-2+,x2=2-21.(1)图略(2)___16________.22.解:(1)一班的平均得分:(95+85+90)÷3=90,二班的平均得分:(90+95+85)÷3=90,(2)一班的加权平均成绩:85×25%+90×35%+95×40%=90.75,二班的加权平均成绩:95×25%+85×35%+90×40%=89.5,所以一班的卫生成绩高.23.(1)略(2)BE=424.(1)证明:∵∠DFB=∠DFE+∠EFB=∠C+∠FDC,∴∠EFB=∠FDC,∵AB=AC,∴∠C=∠B,∴△CDF∽△BFE;(2)解:∵EF∥CD,∴∠EFD=∠FDC,∵∠B=∠C,∠DEG=∠B,∴∠FDC=∠C=∠B,∴△CDF∽△BCA,∴,∵BC=2CF,DF=CF,∴,∴2CF2=AC•CD.25.(本题8分).(1)解:(1)设该项绿化工程原计划每天完成x米2,根据题意﹣=4解得:x=2000经检验,x=2000是原方程的解,答:该绿化项目原计划每天完成2000平方米;(2)设人行道的宽度为x米,根据题意得,(20﹣3x)(8﹣2x)=56解得:x=2或x=(不合题意,舍去). 答:人行道的宽为2米. 26.(1)∵直径AB ⊥CD ,∴∴∠F=∠ACH ,又∠CAH=∠FAC,∴△ACH ∽△AFC (2)AH ·AF=AE ·AB ,连接FB ,∵AB 是直径,∴∠AFB=∠AEH=90°,又∠EAH=∠FAB , ∴Rt △AEH ∽Rt △AFB ,∴AH ·AF=AE ·AB ;(3)27.解:(1)延长CO 交AB 于D ,过点C 作CG⊥x轴于点G .∵易得A(2,0),B(0,2),∴AO =BO =2.又∵∠AOB =90°, ∴∠DAO =45°.∵C(-2,-2),∴∠COG =45°,∠AOD =45°,∴∠ODA =90°. ∴OD ⊥AB ,即CO ⊥AB .(2)当直线PO 与⊙C 相切时,设切点为K ,连接CK ,则CK ⊥OK .由点C 的坐标为(-2,-2),易得CO =∴∠POD =30°,又∠AOD =45°, ∴∠POA=75°,同理可求得∠POA 的另一个值为15°. (3)∵M 为EF 的中点,∴CM ⊥EF ,又∵∠COM =∠POD ,CO ⊥AB ,∴△COM ∽△POD ,所以CO MOPO DO =,即MO ·PO =CO ·DO .∵PO =t ,MO =s ,CO = DO st =4.但PO 过圆心C 时,MO =CO =PO =DO即MO ·PO =4,也满足st =4.∴s =4t t(4)28.解:(1)△ACO1与△BCO2全等如图①,∵∠ACB=90°,∴∠ACO1+∠BCO2=90°,∵AO1⊥OC,BO2⊥OC,∴∠AO1C=∠BO2C=90°,∴∠BCO2+∠CBO2=90°,∴∠ACO1=∠CBO2,在△ACO1和△CBO2中,,∴△ACO1≌△CBO2,如图2,同①的方法可证;(2)①∵PQ是⊙C的切线,∴∠QPC=90°,∴∠QPM+∠CPB=90°,∵CP=CB,∴∠CPB=∠CBP,∴∠QPM+∠CBP=90°,∵∠CBP=∠OBM,∴∠QPM+∠OBM=90°,∵∠OBM+∠OMB=90°,∴∠QPM=∠OMB,∴QP=QM,②不变,理由:同(1)连接CQ,在Rt△CPQ中,PQ2=CQ2﹣CP2,∵CP是⊙C的半径,∴CP为定值是2,∴CQ最小时,PQ最小,∵点Q在y轴上,点C在x轴,∴点Q在点O处时,CQ最小,最小值为CO=4,=2,∴PQ最小=第28题图。
杭州市九年级上期中数学试卷含答案解析
浙江省杭州市九年级上学期期中数学试卷一、选择题(共10小题,每小题3分,满分30分)1.若,则=()A.B.C.D.2.抛物线y=﹣2x2﹣4x﹣5的顶点坐标是()A.(1,3)B.(﹣1,3) C.(1,﹣3) D.(﹣1,﹣3)3.在盒子里放有三张分别写有整式a+1,a+2,2的卡片,从中随机抽取两张卡片,把两张卡片上的整式分别作为分子和分母,则能组成分式的概率是()A.B.C.D.4.下列命题正确的个数有()①等弧所对的圆周角相等;②相等的圆周角所对的弧相等;③圆中两条平行弦所夹的弧相等;④三点确定一个圆;⑤在同圆或等圆中,同弦或等弦所对的圆周角相等或互补.A.2 B.3 C.4 D.55.一扇形的半径等于已知圆的半径的3倍,且它的面积等于该圆的面积,则这一扇形的圆心角为()A.20° B.120°C.100°D.40°6.函数y=与y=﹣kx2+k(k≠0)在同一直角坐标系中的图象可能是()A.B.C.D.7.如图所示,在△ABC中,DE∥AB∥FG,且FG到DE、AB的距离之比为1:2.若△ABC的面积为32,△CDE的面积为2,则△CFG的面积S等于()A.6 B.8 C.10 D.128.如图,由等边三角形、正方形、圆组成的轴对称图案中,等边三角形与三个正方形的面积和的比值为()A.B.1 C.D.9.已知二次函数y=ax2+bx+c的图象如图所示,令M=|4a﹣2b+c|+|a+b+c|﹣|2a+b|+|2a﹣b|,则()A.M>0 B.M<0C.M=0 D.M的符号不能确定10.已知有一块等腰三角形纸板,在它的两腰上各有一点E和F,把这两点分别与底边中点连结,并沿着这两条线段剪下两个三角形,所得的这两个三角形相似,剩余部分(四边形)的四条边的长度如图所示,那么原等腰三角形的底边长为()A.B.C.或D.或二、填空题(共6小题,每小题4分,满分24分)11.抛物线y=x2﹣4x+3关于x轴对称所得的抛物线的解析式是.12.圆内接四边形相邻三个内角之比是3:4:6,则该四边形内角中最大度数是.13.从长度为2,3,5,7的四条线段中任意选取三条,这三条线段能构成三角形的概率等于.14.已知AB是⊙O的直径,弦CD⊥AB于点E,弦PQ∥AB交弦CD于点M,BE=18,CD=PQ=24,则OM的长为.15.如图,△ABC中,∠ACB=90°,AB=5,D是AB延长线上一点,连接CD,若∠DCB=∠A,BD:DC=1:2,则△ABC的面积为.16.如图,抛物线与交于点A(1,3),过点A作x轴的平行线,分别交两条抛物线于点B、C.则以下结论:①无论x取何值,y2的值总是正数;②;③当x=0时,y2﹣y1=5;④当y2>y1时,0≤x<1;⑤2AB=3AC.其中正确结论的编号是.三、解答题(共7小题,满分66分)17.已知:如图,AE,DB是⊙O的直径,F是⊙O上一点,∠AOB=60°,且F是的中点.求证:AB=BF.18.小明、小亮、小芳和两个陌生人甲、乙同在如图所示的地下车库等电梯,已知两个陌生人到1至4层的任意一层出电梯,并设甲在a层出电梯,乙在b层出电梯.(1)请你用画树状图或列表法求出甲、乙二人在同一层楼出电梯的概率;(2)小亮和小芳打说:“若甲、乙在同一层或相邻楼层出电梯,则小亮胜,否则小芳胜”.该游戏是否公平?说明理由.19.如图:在△ABC中,AD⊥BC,垂足是D.(1)作△ABC的外接圆O(尺规作图);(2)若AB=8,AC=6,AD=5,求△ABC的外接圆O半径的长.20.已知二次函数,当x=1时有最小值,其中a,b,c分别是△ABC中∠A、∠B、∠C的对边,请判断△ABC是什么特殊三角形,说明理由并求出∠A的余弦值.21.如图,在△ABC中,AB=AC,点P、D分别是BC、AC边上的点,且∠APD=∠B.(1)求证:AC•CD=CP•BP;(2)若AB=10,BC=12,当PD∥AB时,求BP的长.22.某超市经销一种销售成本为每件40元的商品.据市场调查分析,如果按每件50元销售,一周能售出500件,若销售单价每涨1元,每周销售量就减少10件.设销售单价为每件x元(x≥50),一周的销售量为y件.(1)写出y与x的函数关系式.(标明x的取值范围)(2)设一周的销售利润为S,写出S与x的函数关系式,并确定当单价在什么范围内变化时,利润随着单价的增大而增大?(3)在超市对该种商品投入不超过10 000元的情况下,使得一周销售利润达到8 000元,销售单价应定为多少?23.如图1,已知抛物线y=ax2+bx(a≠0)经过A(3,0)、B(4,4)两点.(1)求抛物线的解析式;(2)将直线OB向下平移m个单位长度后,得到的直线与抛物线只有一个公共点D,求m的值及点D的坐标;(3)如图2,若点N在抛物线上,且∠NBO=∠ABO,则在(2)的条件下,求出所有满足△POD∽△NOB的点P坐标(点P、O、D分别与点N、O、B对应).浙江省杭州市九年级上学期期中数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.若,则=()A.B.C.D.【考点】比例的性质.【专题】计算题.【分析】设a=2k,进而用k表示出b的值,代入求解即可.【解答】解:设a=2k,则b=9k.==,故选A.【点评】考查比例性质的计算;得到用k表示的a,b的值是解决本题的突破点.2.抛物线y=﹣2x2﹣4x﹣5的顶点坐标是()A.(1,3)B.(﹣1,3) C.(1,﹣3) D.(﹣1,﹣3)【考点】二次函数的性质.【分析】利用顶点的公式首先求得横坐标,然后把横坐标的值代入解析式即可求得纵坐标.【解答】解:x=﹣=﹣1,把x=﹣1代入得:y=﹣2+4﹣5=﹣3.则顶点的坐标是(﹣1,﹣3).故选D.【点评】本题考查了二次函数的顶点坐标的求解方法,可以利用配方法求解,也可以利用公式法求解.3.在盒子里放有三张分别写有整式a+1,a+2,2的卡片,从中随机抽取两张卡片,把两张卡片上的整式分别作为分子和分母,则能组成分式的概率是()A.B.C.D.【考点】概率公式;分式的定义.【专题】应用题;压轴题.【分析】列举出所有情况,看能组成分式的情况占所有情况的多少即为所求的概率.【解答】解:分母含有字母的式子是分式,整式a+1,a+2,2中,抽到a+1,a+2做分母时组成的都是分式,共有3×2=6种情况,其中a+1,a+2为分母的情况有4种,所以能组成分式的概率==.故选B.【点评】用到的知识点为:概率等于所求情况数与总情况数之比.4.下列命题正确的个数有()①等弧所对的圆周角相等;②相等的圆周角所对的弧相等;③圆中两条平行弦所夹的弧相等;④三点确定一个圆;⑤在同圆或等圆中,同弦或等弦所对的圆周角相等或互补.A.2 B.3 C.4 D.5【考点】命题与定理.【分析】根据圆周角,圆周角定理,垂径定理以及确定圆的条件即可求解.【解答】解:①同圆或等圆中,等弧所对的圆周角相等,故错误;②在同圆或等圆中,相等的圆周角所对的弧相等,故错误;③圆中两条平行弦所夹的弧相等,正确;④不在同一直线上的三点确定一个圆,故错;⑤在同圆或等圆中,同弦或等弦所对的圆周角相等或互补,正确,故选A.【点评】本题主要考查了圆周角的性质定理,以及确定圆的条件等圆的基本知识.解题的关键是要注意命题的细节,逐一做出准确的判断.5.一扇形的半径等于已知圆的半径的3倍,且它的面积等于该圆的面积,则这一扇形的圆心角为()A.20° B.120°C.100°D.40°【考点】扇形面积的计算.【分析】先设出半径,再根据圆的面积公式和扇形的面积公式计算.【解答】解:设圆的半径为r,则扇形的半径为3r,根据两者面积相等得:πr2=,解得n=40°.故选D.【点评】本题主要考查了扇形的面积公式.熟记扇形的面积公式是解题的关键.6.函数y=与y=﹣kx2+k(k≠0)在同一直角坐标系中的图象可能是()A.B.C.D.【考点】二次函数的图象;反比例函数的图象.【专题】压轴题;数形结合.【分析】本题可先由反比例函数的图象得到字母系数的正负,再与二次函数的图象相比较看是否一致.【解答】解:由解析式y=﹣kx2+k可得:抛物线对称轴x=0;A、由双曲线的两支分别位于二、四象限,可得k<0,则﹣k>0,抛物线开口方向向上、抛物线与y轴的交点为y轴的负半轴上;本图象与k的取值相矛盾,故A错误;B、由双曲线的两支分别位于一、三象限,可得k>0,则﹣k<0,抛物线开口方向向下、抛物线与y轴的交点在y轴的正半轴上,本图象符合题意,故B正确;C、由双曲线的两支分别位于一、三象限,可得k>0,则﹣k<0,抛物线开口方向向下、抛物线与y轴的交点在y轴的正半轴上,本图象与k的取值相矛盾,故C错误;D、由双曲线的两支分别位于一、三象限,可得k>0,则﹣k<0,抛物线开口方向向下、抛物线与y轴的交点在y轴的正半轴上,本图象与k的取值相矛盾,故D错误.故选:B.【点评】本题主要考查了二次函数及反比例函数和图象,解决此类问题步骤一般为:(1)先根据图象的特点判断k取值是否矛盾;(2)根据二次函数图象判断抛物线与y轴的交点是否符合要求.7.如图所示,在△ABC中,DE∥AB∥FG,且FG到DE、AB的距离之比为1:2.若△ABC的面积为32,△CDE的面积为2,则△CFG的面积S等于()A.6 B.8 C.10 D.12【考点】相似三角形的判定与性质.【专题】计算题.【分析】先由AB∥FG,且FG到DE、AB的距离之比为1:2,根据平行线分线段成比例定理得到DF:FA=1:2,再根据平行于三角形一边的直线截三角形所得的三角形与原三角形相似得到△CDE∽△CAB,根据三角形相似的性质得S△CDE:S△CAB=CD2:CA2=2:32,则CD:CA=1:4,通过代换得到CD:CF=1:2,再次根据三角形相似的性质得到S△CDE:S△CFG=CD2:CF2=1:4,即可计算出△CFG的面积.【解答】解:∵AB∥FG,且FG到DE、AB的距离之比为1:2,∴DF:FA=1:2,∵DE∥AB,∴△CDE∽△CAB,∴S△CDE:S△CAB=CD2:CA2=2:32,∴CD:CA=1:4,设CD=a,则CA=4a,∴DA=3a,∴DF=a,∴CF=2a,∴CD:CF=1:2,而DE∥FG,∴S△CDE:S△CFG=CD2:CF2=1:4,而△CDE的面积为2,∴△CFG的面积S=4×2=8.故选B.【点评】本题考查了三角形相似的判定与性质:平行于三角形一边的直线截三角形所得的三角形与原三角形相似;相似三角形对应边的比等于相似比,相似三角形面积的比等于相似比的平方.8.如图,由等边三角形、正方形、圆组成的轴对称图案中,等边三角形与三个正方形的面积和的比值为()A.B.1 C.D.【考点】正多边形和圆;轴对称图形.【分析】由题意知:三个正方形的共用顶点即为圆的圆心,也是等边三角形的重心;可设等边三角形的边长为2x,作等边三角形的高,再根据三角形重心的性质即可得到正方形的对角线的长;进而可求得等边三角形和正方形的面积,即可得到它们的面积比.【解答】解:如图,设圆的圆心为O,由题意知:三角形的重心以及三个正方形的共用顶点即为点O.过A作AD⊥BC于D,则AD必过点O,且AO=2OD;设△ABC的边长为2x,则BD=x,AD=x,OD=x;∴正方形的边长为:x,面积为x2,三个正方形的面积和为2x2;易求得△ABC的面积为:×2x×x=x2,∴等边三角形与三个正方形的面积和的比值为,故选A.【点评】此题考查的知识点有:轴对称图形、等边三角形及正方形的性质、三角形重心的性质以及图形面积的求法,找到等边三角形和正方形边长的比例关系是解答此题的关键.9.已知二次函数y=ax2+bx+c的图象如图所示,令M=|4a﹣2b+c|+|a+b+c|﹣|2a+b|+|2a﹣b|,则()A.M>0 B.M<0C.M=0 D.M的符号不能确定【考点】二次函数图象与系数的关系.【专题】压轴题.【分析】根据图象特征,首先判断出M中的各代数式的符号,然后去绝对值.【解答】解:因为开口向下,故a<0;当x=﹣2时,y>0,则4a﹣2b+c>0;当x=1时,y<0,则a+b+c<0;因为对称轴为x=<0,又a<0,则b<0,故2a+b<0;又因为对称轴x=﹣>﹣1,则b>2a∴2a﹣b<0;∴M=4a﹣2b+c﹣a﹣b﹣c+2a+b+b﹣2a=3a﹣b,因为2a﹣b<0,a<0,∴3a﹣b<0,即M<0,故选B.【点评】考查二次函数y=ax2+bx+c系数符号的确定.10.已知有一块等腰三角形纸板,在它的两腰上各有一点E和F,把这两点分别与底边中点连结,并沿着这两条线段剪下两个三角形,所得的这两个三角形相似,剩余部分(四边形)的四条边的长度如图所示,那么原等腰三角形的底边长为()A.B.C.或D.或【考点】相似三角形的判定;等腰三角形的性质.【专题】计算题;探究型;数形结合.【分析】分两种情况:点A为等腰三角形的顶点,点D为底边的中点与点D为等腰三角形的顶点,点A为底边的中点,利用等腰三角形的性质与相似三角形对应边的比相等的性质进行分析求解即可.【解答】解:如图1,当A为等腰三角形的顶点,点D为底边的中点时,设BD=DC=a,AB=AC=b,则BE=b﹣2,CF=b﹣4,∵AB=AC,∴∠B=∠C,又∵BD=DC,BE≠CF,DE≠DF,∴点B与点C、点E与点D,点D与点F为对应点,即△BED∽△CDF,∴BE:CD=ED:DF=BD:CF,即(b﹣2):a=3:2=a:(b﹣4),解得a=,∴BC=2a=;如图2,当点D为等腰三角形的顶点,点A为底边的中点时,设BA=AC=a,BD=CD=b,则BE=b ﹣3,CF=b﹣2,∵BD=CD,∴∠B=∠C,∴点B与点C为对应点,若点E与点F、点A与点C为对应点,由△BEA∽△CFA,可得BE:CF=EA:FA=BA:CA,即(b﹣3):(b﹣2)=2:4=a:a,无解;若点E与点A,点A与点F为对应点,由△BEA∽△CAF,可得BE:CA=EA:AF=BA:CF,即(b﹣3):a=2:4=a:b﹣2,解得a=,b=,此时BA=,BE=b﹣3=,BE、BA、EA不能构成三角形,故此种情况不成立;综上所述,这个等腰三角形底边长为.故选B.【点评】本题考查了等腰三角形的性质,相似三角形的判定与性质,难度适中,解答本题的关键是正确画出图形,并熟知相似三角形对应边的比相等的性质,同时注意分类讨论思想与方程思想的运用.二、填空题(共6小题,每小题4分,满分24分)11.抛物线y=x2﹣4x+3关于x轴对称所得的抛物线的解析式是y=﹣x2+4x﹣3.【考点】二次函数图象与几何变换.【分析】利用原抛物线上的关于x轴对称的点的特点:横坐标相同,纵坐标互为相反数就可以解答.【解答】解:∵抛物线y=x2﹣4x+3关于x轴对称所得的抛物线的解析式为﹣y=x2﹣4x+3,∴所求解析式为:y=﹣x2+4x﹣3.故答案为:y=﹣x2+4x﹣3【点评】本题考查了二次函数图象与几何变换,解决本题的关键是抓住关于x轴对称的坐标特点.12.圆内接四边形相邻三个内角之比是3:4:6,则该四边形内角中最大度数是120°.【考点】圆内接四边形的性质.【分析】设三个内角为3x,4x,6x,根据圆内接四边形的对角互补列出方程,解方程求出x,计算出各角的度数,比较得到答案.【解答】解:设三个内角为3x,4x,6x,根据圆内接四边形的对角互补,得3x+6x=180°,∴x=20°则这三个内角为60°、80°、120°,所以第四个内角是180°﹣4x=100°,所以该四边形内角中最大度数是120°,故答案为:120°.【点评】本题考查的是圆内接四边形的性质,掌握圆内接四边形的对角互补是解题的关键.13.从长度为2,3,5,7的四条线段中任意选取三条,这三条线段能构成三角形的概率等于.【考点】概率公式;三角形三边关系.【专题】压轴题.【分析】三角形的任意两边的和大于第三边,任意两边之差小于第三边,本题只要把三边代入,看是否满足即可.把满足的个数除以4即可得出概率.【解答】解:长度为2,3,5,7的四条线段中任意选取三条共有:2,3,5;2,3,7;2,5,7;3,5,7,能构成三角形的为:3、5、7,只有1组,因此概率为.【点评】考查三角形的边时,要注意三角形形成的条件:任意两边之和大于第三边,任意两边之差小于第三边.用到的知识点为:概率=所求情况数与总情况数之比.14.已知AB是⊙O的直径,弦CD⊥AB于点E,弦PQ∥AB交弦CD于点M,BE=18,CD=PQ=24,则OM的长为5.【考点】垂径定理;勾股定理.【分析】作OF⊥PQ于F,连接OP,根据已知和图形证明四边形MEOF为正方形,设半径为x,用x表示出OF,在直角△OPF中,根据勾股定理列出方程求出x的值,得到答案.【解答】解:作OF⊥PQ于F,连接OP,∴PF=PQ=12,∵CD⊥AB,PQ∥AB,∴CD⊥PQ,∴四边形MEOF为矩形,∵CD=PQ,OF⊥PQ,CD⊥AB,∴OE=OF,∴四边形MEOF为正方形,设半径为x,则OF=OE=18﹣x,在直角△OPF中,x2=122+(18﹣x)2,解得x=13,则MF=OF=OE=5,∴OM=5.故答案为:5.【点评】本题考查的是垂径定理和勾股定理的应用,正确作出辅助线构造直角三角形运用勾股定理是解题的关键.15.如图,△ABC中,∠ACB=90°,AB=5,D是AB延长线上一点,连接CD,若∠DCB=∠A,BD:DC=1:2,则△ABC的面积为5.【考点】相似三角形的判定与性质;解一元二次方程-直接开平方法;勾股定理.【分析】由题可知△CBD∽△ACD,则可根据相似比和勾股定理求解.【解答】解:∵∠DCB=∠A,∠D=∠D∴△CBD∽△ACD∴BD:CD=CB:AC∵BD:DC=1:2∴CB:AC=1:2设CB为x,则AC=2x,AB=5根据勾股定理可知:x2+4x2=25,解得x=,即CB=,AC=2∴△ABC的面积为×÷2=5.【点评】本题的关键是先判定三角形相似,然后利用相似比和勾股定理求得BC、AC的值,从而求出三角形的面积.16.如图,抛物线与交于点A(1,3),过点A作x轴的平行线,分别交两条抛物线于点B、C.则以下结论:①无论x取何值,y2的值总是正数;②;③当x=0时,y2﹣y1=5;④当y2>y1时,0≤x<1;⑤2AB=3AC.其中正确结论的编号是①⑤.【考点】二次函数的性质.【专题】计算题.【分析】①根据图象可以判断出图象都在x轴的上方,据此即可得知,无论x取何值,y2的值总是正数;②将点A(1,3)代入得a=即可判断;③将x=0分别代入和,求出y1与y2的值,再相减即可得到y2﹣y1的值;④令y2=y1,求出两个函数的交点坐标,再根据图象判断x的取值范围;⑤令=3,=3,分别解方程,求出A、B、C点的横坐标,再计算出AB、AC的长,即可做出正确判断.【解答】解:①由图可知,y2的图象在x轴的上方,可见,无论x取何值,y2的值总是正数,故本选项正确;②将点A(1,3)代入抛物线,得a(1+2)2﹣3=3,解得a=,故本选项错误;③当x=0时,y1==﹣,=,y2﹣y1=+=,故本选项错误;④令y2=y1,则有=,解得x1=1,x2=﹣35.几何图象可知,y2>y1,﹣35<x<1,故本选项错误;⑤令=3,解得,x1=1或x2=﹣5;AB=5+1=6;=3,解得,x3=5,x4=1;AB=5﹣1=4;则2AB=3AC.故本选项正确.故答案答案为①⑤.【点评】本题考查了二次函数的性质,数形结合是本题的核心,要善于利用图形进行解答.三、解答题(共7小题,满分66分)17.已知:如图,AE,DB是⊙O的直径,F是⊙O上一点,∠AOB=60°,且F是的中点.求证:AB=BF.【考点】圆心角、弧、弦的关系.【专题】证明题.【分析】连接OF,可得出∠BOF=∠EOF,根据同圆中圆心角相等,可得出弦相等,从而得出AB=BF.【解答】解:连接OF,∵AE,DB是⊙O的直径,∠AOB=60°,∴∠BOE=120°,∵F是的中点,∴∠BOF=∠EOF=60°,∴AB=BF.【点评】本题考查了圆心角、弧、弦的关系,在等圆或同圆中圆心角相等,所对的弦相等是解题的关键.18.小明、小亮、小芳和两个陌生人甲、乙同在如图所示的地下车库等电梯,已知两个陌生人到1至4层的任意一层出电梯,并设甲在a层出电梯,乙在b层出电梯.(1)请你用画树状图或列表法求出甲、乙二人在同一层楼出电梯的概率;(2)小亮和小芳打说:“若甲、乙在同一层或相邻楼层出电梯,则小亮胜,否则小芳胜”.该游戏是否公平?说明理由.【考点】游戏公平性;列表法与树状图法.【分析】(1)列表得出所有等可能的情况数,找出甲乙在同一个楼层的情况数,即可求出所求的概率;(2)分别求出两人获胜的概率比较得到公平与否,修改规则即可.【解答】解:(1)列表如下:1 2 3 4甲乙1 (1,1)(2,1)(3,1)(4,1)2 (1,2)(2,2)(3,2)(4,2)3 (1,3)(2,3)(3,3)(4,3)4 (1,4)(2,4)(3,4)(4,4)一共出现16种等可能结果,其中出现在同一层楼梯的有4种结果,则P(甲、乙在同一层楼梯)=;(2)由(1)列知:甲、乙住在同层或相邻楼层的有10种结果故P(小亮胜)=P(同层或相邻楼层)=,P(小芳胜)=1﹣,∵>,∴游戏不公平.【点评】此题考查了游戏公平性,以及列表法与树状图法,判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.19.如图:在△ABC中,AD⊥BC,垂足是D.(1)作△ABC的外接圆O(尺规作图);(2)若AB=8,AC=6,AD=5,求△ABC的外接圆O半径的长.【考点】作图—复杂作图;三角形的外接圆与外心.【专题】作图题.【分析】(1)分别作AB和BC的垂直平分线,它们相交于点O,然后以O点为圆心,OA为半径作圆即可;(2)作直径AE,连结BE,如图,根据圆周角定理得到∠ABE=90°,∠C=∠E,则可证明Rt△ABE∽Rt△ADC,然后利用相似比计算出AE即可得到△ABC的外接圆O半径的长.【解答】解:(1)如图,⊙O为所作;(2)作直径AE,连结BE,如图,∵AE为直径,∴∠ABE=90°,∵AD⊥BC,∴∠ADC=90°,∵∠C=∠E,∴Rt△ABE∽Rt△ADC,∴=,即=,∴AE=,∴OA=AE=,即△ABC的外接圆O半径的长为.【点评】本题考查了作图﹣复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.解决(2)小题的关键是构建Rt△ABE与△ADC相似.20.已知二次函数,当x=1时有最小值,其中a,b,c分别是△ABC中∠A、∠B、∠C的对边,请判断△ABC是什么特殊三角形,说明理由并求出∠A的余弦值.【考点】二次函数的最值;勾股定理的逆定理.【分析】根据顶点横坐标公式,得b+c=2a①,由x=1,y=,得c=b②,①与②联立,得出用含b的代数式分别表示a、c的式子,从而根据三边关系判断△ABC的形状;再根据锐角三角函数的定义求出∠A的余弦值.【解答】解:(1)∵当x=1时有最小值,∴,解得,,∴a2+c2=b2,∴△ABC是直角三角形.(2)∵在△ABC中,∠B=90°,∴cosA==.【点评】本题主要考查了二次函数的顶点坐标公式,勾股定理的逆定理及余弦函数的定义.21.如图,在△ABC中,AB=AC,点P、D分别是BC、AC边上的点,且∠APD=∠B.(1)求证:AC•CD=CP•BP;(2)若AB=10,BC=12,当PD∥AB时,求BP的长.【考点】相似三角形的判定与性质.【分析】(1)易证∠APD=∠B=∠C,从而可证到△ABP∽△PCD,即可得到=,即AB•CD=CP•BP,由AB=AC即可得到AC•CD=CP•BP;(2)由PD∥AB可得∠APD=∠BAP,即可得到∠BAP=∠C,从而可证到△BAP∽△BCA,然后运用相似三角形的性质即可求出BP的长.【解答】解:(1)∵AB=AC,∴∠B=∠C.∵∠APD=∠B,∴∠APD=∠B=∠C.∵∠APC=∠BAP+∠B,∠APC=∠APD+∠DPC,∴∠BAP=∠DPC,∴△ABP∽△PCD,∴=,∴AB•CD=CP•BP.∵AB=AC,∴AC•CD=CP•BP;(2)∵PD∥AB,∴∠APD=∠BAP.∵∠APD=∠C,∴∠BAP=∠C.∵∠B=∠B,∴△BAP∽△BCA,∴=.∵AB=10,BC=12,∴=,∴BP=.【点评】本题主要考查了相似三角形的判定与性质、等腰三角形的性质、平行线的性质、三角形外角的性质等知识,把证明AC•CD=CP•BP转化为证明AB•CD=CP•BP是解决第(1)小题的关键,证到∠BAP=∠C进而得到△BAP∽△BCA是解决第(2)小题的关键.22.某超市经销一种销售成本为每件40元的商品.据市场调查分析,如果按每件50元销售,一周能售出500件,若销售单价每涨1元,每周销售量就减少10件.设销售单价为每件x元(x≥50),一周的销售量为y件.(1)写出y与x的函数关系式.(标明x的取值范围)(2)设一周的销售利润为S,写出S与x的函数关系式,并确定当单价在什么范围内变化时,利润随着单价的增大而增大?(3)在超市对该种商品投入不超过10 000元的情况下,使得一周销售利润达到8 000元,销售单价应定为多少?【考点】二次函数的应用.【专题】压轴题.【分析】(1)根据题意可得y=500﹣10(x﹣50).(2)用配方法化简1的解析式,可得y=﹣10(x﹣70)2+9000.当50≤x≤70时,利润随着单价的增大而增大.(3)令y=8000,求出x的实际取值.【解答】解:(1)由题意得:y=500﹣10(x﹣50)=1000﹣10x(50≤x≤100)(2)S=(x﹣40)(1000﹣10x)=﹣10x2+1400x﹣40000=﹣10(x﹣70)2+9000当50≤x<70时,利润随着单价的增大而增大.(3)由题意得:﹣10x2+1400x﹣40000=800010x2﹣1400x+48000=0x2﹣140x+4800=0即(x﹣60)(x﹣80)=0x1=60,x2=80当x=60时,成本=40×[500﹣10(60﹣50)]=16000>10000不符合要求,舍去.当x=80时,成本=40×[500﹣10(80﹣50)]=8000<10000符合要求.∴销售单价应定为80元,才能使得一周销售利润达到8000元的同时,投入不超过10000元.【点评】本题考查的是二次函数的应用,用配方法求出最大值.23.如图1,已知抛物线y=ax2+bx(a≠0)经过A(3,0)、B(4,4)两点.(1)求抛物线的解析式;(2)将直线OB向下平移m个单位长度后,得到的直线与抛物线只有一个公共点D,求m的值及点D的坐标;(3)如图2,若点N在抛物线上,且∠NBO=∠ABO,则在(2)的条件下,求出所有满足△POD∽△NOB的点P坐标(点P、O、D分别与点N、O、B对应).【考点】二次函数综合题.【专题】压轴题.【分析】(1)利用待定系数法求出二次函数解析式即可;(2)根据已知条件可求出OB的解析式为y=x,则向下平移m个单位长度后的解析式为:y=x﹣m.由于抛物线与直线只有一个公共点,意味着联立解析式后得到的一元二次方程,其根的判别式等于0,由此可求出m的值和D点坐标;(3)综合利用几何变换和相似关系求解.方法一:翻折变换,将△NOB沿x轴翻折;方法二:旋转变换,将△NOB绕原点顺时针旋转90°.特别注意求出P点坐标之后,该点关于直线y=﹣x的对称点也满足题意,即满足题意的P点有两个,避免漏解.【解答】解:(1)∵抛物线y=ax2+bx(a≠0)经过A(3,0)、B(4,4)∴将A与B两点坐标代入得:,解得:,∴抛物线的解析式是y=x2﹣3x.(2)设直线OB的解析式为y=k1x,由点B(4,4),得:4=4k1,解得:k1=1∴直线OB的解析式为y=x,∴直线OB向下平移m个单位长度后的解析式为:y=x﹣m,∵点D在抛物线y=x2﹣3x上,∴可设D(x,x2﹣3x),又∵点D在直线y=x﹣m上,∴x2﹣3x=x﹣m,即x2﹣4x+m=0,∵抛物线与直线只有一个公共点,∴△=16﹣4m=0,解得:m=4,此时x1=x2=2,y=x2﹣3x=﹣2,∴D点的坐标为(2,﹣2).(3)∵直线OB的解析式为y=x,且A(3,0),∴点A关于直线OB的对称点A′的坐标是(0,3),根据轴对称性质和三线合一性质得出∠A′BO=∠ABO,设直线A′B的解析式为y=k2x+3,过点(4,4),∴4k2+3=4,解得:k2=,∴直线A′B的解析式是y=,∵∠NBO=∠ABO,∠A′BO=∠ABO,∴BA′和BN重合,即点N在直线A′B上,∴设点N(n,),又点N在抛物线y=x2﹣3x上,∴=n2﹣3n,解得:n1=﹣,n2=4(不合题意,舍去)∴N点的坐标为(﹣,).方法一:如图1,将△NOB沿x轴翻折,得到△N1OB1,则N1(,),B1(4,﹣4),∴O、D、B1都在直线y=﹣x上.∵△P1OD∽△NOB,△NOB≌△N1OB1,∴△P1OD∽△N1OB1,∴,∴点P1的坐标为(,).将△OP1D沿直线y=﹣x翻折,可得另一个满足条件的点P2(,),综上所述,点P的坐标是(,)或(,).方法二:如图2,将△NOB绕原点顺时针旋转90°,得到△N2OB2,则N2(,),B2(4,﹣4),∴O、D、B1都在直线y=﹣x上.∵△P1OD∽△NOB,△NOB≌△N2OB2,∴△P1OD∽△N2OB2,∴,∴点P1的坐标为(,).将△OP1D沿直线y=﹣x翻折,可得另一个满足条件的点P2(,),综上所述,点P的坐标是(,)或(,).方法三:∵直线OB:y=x是一三象限平分线,∴A(3,0)关于直线OB的对称点为A′(0,3),∴得:x1=4(舍),x2=﹣,∴N(﹣,),∵D(2,﹣2),∴l OD:y=﹣x,∵l OD:y=x,∴OD⊥OB,∵△POD∽△NOB,∴N(﹣,)旋转90°后N1(,)或N关于x轴对称点N2(﹣,﹣),∵OB=4,OD=2,∴,∵P为ON1或ON2中点,∴P1(,),P2(,).【点评】本题是基于二次函数的代数几何综合题,综合考查了待定系数法求抛物线解析式、一次函数(直线)的平移、一元二次方程根的判别式、翻折变换、旋转变换以及相似三角形等重要知识点.本题将初中阶段重点代数、几何知识熔于一炉,难度很大,对学生能力要求极高,具有良好的区分度,是一道非常好的中考压轴题.。
2017学年第一学期九年级数学期中考试试卷含答案
2018学年第一学期九年级数学期中考试试卷<考试时间90分钟,满分100分)考生注意:1.本试卷含四个大题,共30题;2.除第一、二大题外,其余各题如无特别说明,都必须写出解答的主要步骤。
一、选择题:<本大题共6题,每题2分,满分12分)1.下列二次根式中,最简二次根式是< ) A.B.C.D.2.下列计算正确的是< ) A. B.C.D.3.下列方程是关于一元二次方程的是< ) A. B. C.D.4.一元二次方程的根的情况是 ( >A. 有两个相等的实数根B.有一个实数根为C.有两个不相等的实数根D.没有实数根5.下列图形中,中心对称图形的是 < )A.等腰三角形B.等腰梯形C.正五边形D.正方形6. 若P<)是x轴上的一点,则点P关于原点对称的点的坐标是< )A、<-3,0)B、<0,3)C、<0,-3)D、<3,0)二、填空题:<本大题共15题,每题2分,满分30分)7.化简:________________,8.计算:=_______________________,9. ,10.方程的一次项系数是,常数项是.11. ,12.13. 三个连续的整数中,前两个数的平方和等于第三个数的平方,则这三个数分别是________________h7iVxydh2D14.如果二次三项式是一个完全平方式,那么的值是____________.15.若一个三角形的三边长均满足方程,则此三角形的周长为 ______ .16.一个长方形的长和宽相差3cm,面积是4 ,则这个长方形的长和宽分别为___________________.17.如果一元二方程有一个根为0,则m= ;18.在平面直角坐标系中,若点A<x,-2)与点B<1,y)关于原点对称,则______________.19.时钟的时针在不停地旋转,从上午6时到上午9时,时针旋转的旋转角是_______度,从上午9时到10时,时针旋转的旋转角是_________度.20.一个正方形要绕它的中心至少旋转度,才能和原来的图形重合.21.如下图,已知等腰三角形ABC的顶角, 若是将绕C点顺时针旋转后得到的,且点落在AC 边上,则___________°.h7iVxydh2D三、<本大题共5题,第22,、23题每题5分,第24—26题每题6分,满分28分) 22.计算:23.计算:24.解方程: 25. <用求根公式法解方程) 26.四、<本大题共4题,第27题6分,第28—30题,每题8分,满分30分)27. 试用配方法说明,对于一切实数,代数式。
浙教版九年级上册数学期中考试试卷含答案
浙教版九年级上册数学期中考试试题一、单选题1.下列关系式中,属于二次函数的是()A .y =21x8B .yC .y =21x D .y =x 3﹣2x2.下列说法正确的是()A .掷一枚质地均匀的骰子,掷得的点数为3的概率是13B .一个袋子里有100个球从中随机摸出一个球再放回,小军摸了6次,每次摸到的球的颜色都是黄色,小军断定袋子里只有黄球C .连续掷两枚质地均匀的硬币,“两枚硬币都是正面朝上”的概率与“一枚硬币正面朝上,一枚硬币反面朝上”的概率相同D .在同一年出生的400个同学中至少会有2个同学的生日相同3.如图所示,将△AOB 绕点O 按逆时针方向旋转45°后得到△A'OB',若∠AOB =15°,那么∠AOB'的度数是()A .15°B .30°C .45°D .60°4.已知二次函数223y x x =-+-,用配方法化为()2y a x h k =-+的形式,结果是()A .()212y x =---B .()212y x =--+C .()214y x =--+D .()214y x =-+-5.如图,已知AB 是O 的直径,CD 是弦,若36,BCD ∠=o 则ABD ∠等于()A .54oB .56C .64D .666.如图,⊙O 是△ABC 的外接圆,∠B=60°,OP ⊥AC 于点P ,O 的半径为A .B .C .8D .127.如图,正方形三个顶点的坐标依次为()3,1,()1,1,()1,3.若抛物线2y ax =的图象与正方形的边有公共点,则实数a 的取值范围是()A .139a ≤≤B .119a ≤≤C .133a ≤≤D .113a ≤≤8.如图,D 、E 分别是△ABC 的边AB 、BC 上的点,DE ∥AC ,若S △BDE :S △CDE =1:4,则S △BDE :S △ADC 的值为()A .1:16B .1:18C .1:20D .1:249.如图,菱形ABCD 的对角线AC 与BD 相交于点O ,AC =6,BD =8,动点P 从点B 出发,沿着B→A→D 在菱形ABCD 的边AB ,AD 上运动,运动到点D 停止.点P′是点P 关于BD 的对称点,连接PP'交BD 于点M ,若BM =x (0<x <8),△DPP′的面积为y ,下列图象能正确反映y 与x 的函数关系的是()A .B .C .D .10.如图,已知在O 中,CD 为直径,A 为圆上一点,连结OA ,作OB 平分AOC ∠交圆于点B ,连结BD ,分别与AC ,AO 交于点N ,M .若AM AN =,则DMDN的值为()A 32B .23C .12D 22二、填空题11.把抛物线y =﹣3x 2向左平移2个单位,再将它向下平移3个单位,得到抛物线为_________.12.已知A (-3,y 1),B (-1,y 2)是抛物线上y =-(x -3)2+k 的两点,则y 1,y 2的大小关系为________.13.一个直角三角形的两条边长是方程27120x x -+=的两个根,则此直角三角形的外接圆的直径为________.14.如图,在3×3正方形网格中,A 、B 在格点上,在网格的其它格点上任取一点C ,能使△ABC 为等腰三角形的概率是_____.15.如图,在 ABC 中,点D 是边AC 上的任意一点,点M ,N 分别是 ABD 和 BCD 的重心,如果AC =6,那么线段MN 的长为___.16.如图,已知二次函数3(1)(4)4y x x =-+-的图象与x 轴交于,A B 两点(点A 在点B 的左侧),与y 轴交于点,C P 为该二次函数在第一象限内的一点,连接AP ,交BC 于点K ,则PKAK的最大值为__________.三、解答题17.计算题:(1)计算:(212213-⎛⎫--- ⎪⎝⎭(2)解方程:()21250x +-=18.如图,在平面直角坐标系中,△ABC 的顶点坐标分别为A (﹣1,0),B (﹣4,1),C (﹣2,2).(1)直接写出点B 关于原点对称的点B′的坐标:;(2)平移△ABC,使平移后点A的对应点A1的坐标为(2,1),请画出平移后的△A1B1C1;(3)画出△ABC绕原点O逆时针旋转90°后得到的△A2B2C2.19.有4张看上去无差别的卡片,上面分别写着1、2、3、4.(1)随机摸取1张后,放回并混在一起,再随机抽取1张,请直接写出“第二次取出的数字小于第一次取出的数字”的概率:;(2)一次性随机抽取2张卡片,用列表法或画树状图的方法求出“两张卡片上的数都是偶数”的概率.20.如图,二次函数y2=ax2+bx+3的图象与x轴相交于点A(−3,0)、B(1,0),交y轴于点C,C、D 是二次函数图象上的一对对称点,一次函数y1=mx+n的图象经过B.D两点.(1)求a、b的值及点D的坐标;(2)根据图象写出y2>y1时,x的取值范围.DE AC,过点C作CE⊥CD,21.如图,已知CD是Rt△ABC斜边AB上的中线,过点D作//两线相交于点E.(1)求证:ABC DEC△△;∽(2)若AC=8,BC=6,求DE的长.22.如图,AB=AC,AB为⊙O的直径,AC、BC分别交⊙O于点E、D,连接ED、BE.(1)试判断DE与DC是否相等,并说明理由;(2)如果BD =,AE =2,求⊙O 的直径.23.国庆期间,某商场销售一种商品,进货价为20元/件,当售价为24元/件时,每天的销售量为200件,在销售的过程中发现:销售单价每上涨1元,每天的销量就减少10件.设销售单价为x (元/件)(x≥24),每天销售利润为y (元).(1)直接写出y 与x 的函数关系式为:;(2)若要使每天销售利润为1400元,求此时的销售单价;(3)若每件小商品的售价不超过36元,求该商场每天销售此商品的最大利润.24.在矩形ABCD 的CD 边上取一点E ,将BCE ∆沿BE 翻折,使点C 恰好落在AD 边上点F 处.(1)如图1,若2BC BA =,求CBE ∠的度数;(2)如图2,当5AB =,且10AF FD ⋅=时,求BC 的长;(3)如图3,延长EF ,与ABF ∠的角平分线交于点M ,BM 交AD 于点N ,当NF AN FD =+时,求ABBC出的值.参考答案1.A 【解析】【分析】二次函数为形如2y ax bx c =++(0)a ≠的形式;对比四个选项,进而得到结果.【详解】解:A 符合二次函数的形式,故符合题意;B 中等式的右边不是整式,故不是二次函数,故不符合题意;C 中等式的右边分母中含有x ,但是分式,不是整式,故不是二次函数,故不符合题意;D 中最高次幂为三,是三次函数,故不是二次函数,故不符合题意;故选A .【点睛】本题考察了二次函数的概念.解题的关键与难点在于理清二次函数的概念.2.D 【解析】【分析】A 中掷一枚质地均匀的骰子,出现点数为123456、、、、、的结果相等,故可得出掷得的点数为3的概率,进而判断选项的正误;B中摸球为随机事件,无法通过小量的重复试验反映必然事件的发生与否,进而判断选项的正误;C中可用列举法求概率,进而判断选项的正误;D中假设400人中前365个人生日均不相同,而剩余的35个人的生日会有与365个人的生日有相同的情况,进而判断选项的正误.【详解】解:A掷一枚质地均匀的骰子,掷得的点数为3的概率是16,此选项错误,不符合题意;B一个袋子里有100个球从中随机摸出一个球再放回,小军摸了6次,每次摸到的球的颜色都是黄色,这种情况是偶然的,故小军断定袋子里只有黄球是错误的,此选项不符合题意;C连续掷两枚质地均匀的硬币,“两枚硬币都是正面朝上”的概率是14,“一枚硬币正面朝上,一枚硬币反面朝上”的概率是12,此选项错误,不符合题意;D在同一年出生的400个同学中至少会有2个同学的生日相同是正确的,此选项符合题意;故选D.【点睛】本题考察了概率.解题的关键与难点在于了解概率概念与求解.3.B【解析】【分析】根据旋转的性质旋转前后图形全等以及对应边的夹角等于旋转角,进而得出答案即可.【详解】解:∵将△AOB绕点O按逆时针方向旋转45°后得到△A′OB′,∴∠A′OA=45°,∠AOB=∠A′OB′=15°,∴∠AOB′=∠A′OA−∠A′OB′=45°−15°=30°,故选:B.【点睛】此题主要考查了旋转的性质,根据旋转的性质得出∠A′OA=45°,∠AOB=∠A′OB′=15°是解题关键.4.A【解析】【分析】利用配方法先提出二次项系数,再加上一次项系数的一半的平方来凑完全平方式,把一般式转化为顶点式.【详解】解:y=-x 2+2x-3=-(x 2-2x+1)+1-3=-(x-1)2-2,故选:A .【点睛】本题考查了二次函数解析式的三种形式:(1)一般式:y=ax 2+bx+c (a≠0,a 、b 、c 为常数);(2)顶点式:y=a (x-h )2+k ;(3)交点式(与x 轴):y=a (x-x 1)(x-x 2).5.A 【解析】【分析】先由圆周角定理得到∠DAB=∠BCD=36°,然后根据AB 是O 的直径确定∠ADB=90°,最后根据直角三角形两锐角互余即可解答.【详解】解:∵CD 是弦,若36,BCD ∠=o ∴∠DAB=∠BCD=36°∵AB 是O 的直径∴∠ADB=90°∴∠ABD=90°-∠DAB=54°.故选:A .【点睛】本题考查了圆周角定理和直角三角形的性质,灵活利用圆周角定理是解答本题的关键.6.A 【解析】【详解】∵圆心角∠AOC 与圆周角∠B 所对的弧都为 AC,且∠B=60°,∴∠AOC=2∠B=120°(在同圆或等圆中,同弧所对圆周角是圆心角的一半).又OA=OC ,∴∠OAC=∠OCA=30°(等边对等角和三角形内角和定理).∵OP ⊥AC ,∴∠AOP=90°(垂直定义).在Rt △AOP 中,,∠OAC=30°,∴30度角所对的边是斜边的一半).∴⊙O的半径故选A.7.A【解析】【分析】求出抛物线经过两个特殊点时的a的值,再根据∣a∣越大,抛物线的开口越小即可解决问题.【详解】解:当抛物线经过(1,3)时,由3=a×12得:a=3,当抛物线经过(3,1)时,由1=a×32得:a=1 9,观察图象可知:13 9a≤≤,故选:A.【点睛】本题考查二次函数图象与系数的关系、二次函数图象上的点的坐标特征等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.8.C【解析】【分析】由S△BDE:S△CDE=1:4,得到BE:CE=1:4,于是得到BE:BC=1:5,根据DE∥AC,推出△BDE∽△BAC,根据相似三角形的性质即可得到结论.【详解】解:∵S△BDE:S△CDE=1:4,∴BE:CE=1:4,∴BE:BC=1:5,∵DE∥AC,∴△BDE∽△BAC,∴S△BDE :S△BAC=(15)2=125.∴S△BDE:S△ADC=1:(25-1-4)=1:20.故选:C .9.D 【解析】由菱形的性质得出AB=BC=CD=DA ,OA=12AC=3,OB=12BD=4,AC ⊥BD ,分两种情况:①当BM≤4时,先证明△P′BP ∽△CBA ,得出比例式,求出PP′,得出△DPP′的面积y 是关于x 的二次函数,即可得出图象的情形;②当BM≥4时,y 与x 之间的函数图象的形状与①中的相同;即可得出结论.【详解】解:∵四边形ABCD 是菱形,∴AB=BC=CD=DA ,OA=12AC=3,OB=12BD=4,AC ⊥BD ,①当BM≤4时,∵点P′与点P 关于BD 对称,∴P′P ⊥BD ,∴P′P ∥AC ,∴△P′BP ∽△CBA ,∴PP BM AC OB'=,即64PP x '=,∴PP′=32x ,∵DM=8-x ,∴△DPP′的面积y=12PP′•DM=12×32x (8-x )=-34x 2+6x ;∴y 与x 之间的函数图象是抛物线,开口向下,过(0,0)和(4,12);②当BM≥4时,如图:同理△P′DP ∽△CDA ,∴PP DM AC OD '=,即864PP x'-=,∴PP′=3(8)2x -,∴△DPP′的面积y=12PP′•DM=12×32(8-x )2=34(8-x )2;∴y 与x 之间的函数图象是抛物线,开口向上,过(4,12)和(8,0);综上所述:y 与x 之间的函数图象大致为:故选:D .【点睛】本题考查了动点问题的函数图象、菱形的性质、相似三角形的判定与性质、三角形面积的计算以及二次函数的运用;熟练掌握菱形的性质,根据题意得出二次函数解析式是解决问题的关键.10.D 【解析】【分析】由垂径定理可得OB ⊥AC , AB BC =,则∠ADM=∠BDC ,易证△OMD ∽△AND ,则∠AOD=90°,且DM :DN=OD :AD=1【详解】解:∵OB 平分∠AOC ,∴∠AOB=∠COB ,∴ AB BC =,∴∠ADB=∠BDC ,∵AM=AN ,∴∠ANM=∠AMN ,又∵∠AMN=∠OMD ,∴∠ANM=∠OMD ,∴△OMD ∽△AND ,∴DM ODDN AD=,∠MOD=∠NAD ,∵CD 是直径,∴∠NAD=90°,∴∠MOD=90°,∵OA=OD ,∴∠OAD=45°,∴OD ,∴2DM OD DN AD =.故选:D .【点睛】本题主要考查圆周角定理,相似三角形的性质与判定,熟记圆内相关定理是解题基础.11.y =﹣3(x+2)2﹣3【解析】【分析】根据抛物线平移的规律“左加右减,上加下减”即可求得答案.【详解】解:把抛物线y =﹣3x 2向左平移2个单位,得到的抛物线为y =﹣3(x+2)2,再将抛物线为y =﹣3(x+2)2向下平移3个单位,得到抛物线为y =﹣3(x+2)2﹣3,故答案为:y =﹣3(x+2)2﹣3.【点睛】本题考查二次函数图象与几何变换、解题的关键是熟练掌握抛物线平移的规律“左加右减,上加下减”.12.12y y <【解析】【分析】根据抛物线y =-(x -3)2+k 开口向下,对称轴为直线3x =,由A (-3,y 1),B (-1,y 2)在对称轴左侧,y 随x 的增大而增大,可得最终结果.【详解】抛物线y =-(x -3)2+k 开口向下,对称轴为直线3x =,313-<-< ,12y y ∴<,故答案为:12y y <.【点睛】本题主要考查二次函数的性质,属于基础题,熟练掌握二次函数的增减性是解题关键.13.4或5##5或4【解析】【分析】解方程27120x x -+=得到x =3或4,本题应分两种情况进行讨论,当4是直角边时,根据勾股定理得到斜边是5,这个直角三角形外接圆的直径是5,当4是斜边时,直角三角形外接圆直径是4.【详解】解:27120x x -+=,解得x =3或4;①当4是直角边时,斜边长,所以直角三角形外接圆直径是5;②当4是斜边时,这个直角三角形外接圆的直径是4.故答案为:4或5.【点睛】此题主要考查直角三角形外切圆半径,涉及到一元二次方程的解法以及勾股定理的综合应用,难度不大.14.514【解析】【分析】分三种情况:①点A 为顶点;②点B 为顶点;③点C 为顶点;得到能使△ABC 为等腰三角形的点C 的个数,再根据概率公式计算即可求解.【详解】如图,∵AB =∴①若AB =AC ,符合要求的有3个点;②若AB =BC ,符合要求的有2个点;③若AC=BC,不存在这样格点.∴这样的C点有5个.∴能使△ABC为等腰三角形的概率是5 14.故答案为:5 14.【点睛】此题考查等腰三角形的判定和概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=m n.15.2【解析】【分析】连接BM并延长交AC于E,连接BN并延长交AC于F,根据三角形的重心是中线的交点可得ED=12AD,DF=12CD,然后求出EF的长,再根据三角形的重心到顶点的距离等于到对边中点的距离的2倍可得BM=2ME,BN=2NF,再根据相似三角形对应边成比例列出求解即可.【详解】解:连接BM并延长交AC于E,连接BN并延长交AC于F,∵点M、N分别是△ABD和△ACD的重心,∴ED=12AD,DF=12CD,BM=2ME,BN=2NF,∵BC=6,∴EF=DE+DF=12(AD+CD)=12BC=12×6=3,∵BMBE=BNBF=23,∠EBF=∠MBN,∴△BEF∽△BMN,∴MNEF=23,即3MN =23,∴MN =2.故答案为:2.【点睛】本题考查了三角形重心,解题关键是明确三角形的重心是三角形中线的交点,三角形的重心到顶点的距离等于到对边中点的距离的2倍.16.45【解析】【分析】由抛物线的解析式易求出点A 、B 、C 的坐标,然后利用待定系数法求出直线BC 的解析式,过点P 作PQ ∥x 轴交直线BC 于点Q ,则△PQK ∽△ABK ,可得PK PQAK AB=,而AB 易求,这样将求PKAK的最大值转化为求PQ 的最大值,可设点P 的横坐标为m ,注意到P 、Q 的纵坐标相等,则可用含m 的代数式表示出点Q 的横坐标,于是PQ 可用含m 的代数式表示,然后利用二次函数的性质即可求解.【详解】解:对二次函数2339(1)(4)3444y x x x x =-+-=-++,令x=0,则y=3,令y=0,则3(1)(4)04x x -+-=,解得:121,4x x =-=,∴C(0,3),A(-1,0),B(4,0),设直线BC 的解析式为:y kx b =+,把B 、C 两点代入得:340b k b =⎧⎨+=⎩,解得:343k b ⎧=-⎪⎨⎪=⎩,∴直线BC 的解析式为:334y x =-+,过点P 作PQ ∥x 轴交直线BC 于点Q ,如图,则△PQK ∽△ABK ,∴PK PQ AK AB=,设P (m ,239344m m -++),∵P 、Q 的纵坐标相等,∴当239344y m m =-++时,233933444x m m -+=-++,解得:23x m m =-,∴()2234PQ m m m m m =--=-+,又∵AB=5,∴()224142555PK m m m AK -+==--+.∴当m=2时,PK AK的最大值为45.故答案为:45.【点睛】本题考查了二次函数与坐标轴的交点、二次函数的性质和二次函数图象上点的坐标特征、待定系数法求函数的解析式、相似三角形的判定和性质等知识,难度较大,属于填空题中的压轴题,解题的关键是利用相似三角形的判定和性质将所求PKAK的最大值转化为求PQ 的最大值、熟练掌握二次函数的性质.17.(1)12-;(2)14x =或26x =-.【解析】【分析】(1)原式第一项利用绝对值的代数意义化简,第二项利用零指数幂的意义计算,第三项利用负整数指数幂法则计算,最后进行加减运算即可得到答案;(2)方程变形后,利用平方根定义开方即可求解.【详解】解:()(2112213-⎛⎫--- ⎪⎝⎭219=---12=-;()()221250x +-=()2125x +=15x +=或15x +=-14x =或26x =-.【点睛】此题考查了实数的运算,熟练掌握运算法则是解答此题的关键.18.(1)(4,﹣1);(2)见解析;(3)见解析.【解析】【分析】(1)根据关于原点对称的两点的横纵坐标均与原来点的横纵坐标互为相反数,据此可得答案;(2)将三个点分别向右平移3个单位、再向上平移1个单位,继而首尾顺次连接即可;(3)将三个点分别绕原点O 逆时针旋转90°后得到对应点,再首尾顺次连接即可.【详解】(1)点B 关于原点对称的点B′的坐标为(4,﹣1),故答案为:(4,﹣1);(2)如图所示,△A 1B 1C 1即为所求.(3)如图所示,△A2B2C2即为所求.【点睛】本题主要考查作图—平移变换、旋转变换,解题的关键是掌握平移变换和旋转变换的定义与性质,并据此得出变换后的对应点.19.(1)38(2)16【解析】【分析】(1)列表展示所有16种等可能的结果数,再找出第二次取出的数字小于第一次取出的数字的结果数,然后根据概率公式求解;(2)列表展示所有12种等可能的结果数,再找出两张卡片上的数都是偶数的结果数,然后根据概率公式求解.【详解】解:(1)列表如下:12341(1,1)(2,1)(3,1)(4,1)2(1,2)(2,2)(3,2)(4,2)3(1,3)(2,3)(3,3)(4,3)4(1,4)(2,4)(3,4)(4,4)由表知,共有16种等可能的结果数,其中第二次取出的数字小于第一次取出的数字的有6种结果,所以第二次取出的数字小于第一次取出的数字的概率为63=168;(2)列表如下:12341(2,1)(3,1)(4,1)2(1,2)(3,2)(4,2)3(1,3)(2,3)(4,3)4(1,4)(2,4)(3,4)由表知,共有12种等可能的结果数,其中两张卡片上的数都是偶数的有2种结果,所以两张卡片上的数都是偶数的概率为21=126.【点睛】此题考查的是用列表法求概率,列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;解题时要注意此题是放回实验还是不放回实验,用到的知识点为:概率=所求情况数与总情况数之比.20.(1)a=-1,b=-2,D (-2,3);(2)−2<x<0【解析】【分析】(1)由于已知抛物线与x 轴的交点坐标,则设交点式y=a (x+3)(x-1)=223ax ax a +-,则-3a=3,解得a=-1,所以b=-2,抛物线的对称轴为直线x=-1,再求出C 点坐标为(0,3),然后根据对称的性质确定D 点坐标为(-2,3);(2)观察函数图象得到当-2<x<0时,抛物线都在直线y=mx+n 的上方,即y2>y1.【详解】(1)设抛物线解析式为y=a(x+3)(x−1)=223ax ax a +-,则−3a=3,解得a=−1,所以抛物线解析式为y=223x x ---;所以b=−2,抛物线的对称轴为直线x=−1,当x=0时,223y ax bx =++,则C 点坐标为(0,3),由于C.D 是二次函数图象上的一对对称点,∴D 点坐标为(−2,3);(2)观察函数图象得到当-2<x<0时,抛物线都在直线y=mx+n 的上方,即y 2>y 1.当−2<x<0时,21y y >.【点睛】此题考查待定系数法求二次函数解析式、二次函数的图象,解题关键在于结合二次函数图象解决问题.21.(1)见解析;(2)254【解析】【分析】(1)先证出∠DCE =∠ACB ,∠CDE =∠ACD ,再利用CD 是Rt ABC 斜边AB 中线,可得CD=AD ,证得∠A=∠ACD ,从而∠CDE =∠CAD ,进而可以证明ABC DEC ∽△△;(2)先利用勾股定理求得AB =10,再利用直角三角形斜边上的中线等于斜边的一半,求得CD =5,再利用相似三角形的对应边成比例得AB ∶DE =AC ∶CD ,即可求得答案.【详解】解(1)由题意:∵CE ⊥CD ,∴90DCE ACB ∠∠︒==,又∵//DE AC ,∴∠CDE =∠ACD ,∵在Rt ABC 中,CD 是AB 边上的中线,∴CD =AD ,∴∠ACD =∠CAD ,∴∠CDE =∠CAD ,∴ABC DEC ∽△△.(2)∵AC =8,BC =6,∴利用勾股定理得:AB ∵在Rt ABC 中,CD 是AB 边上的中线,∴CD =5,∵ABC DEC∽△△∴AB ∶DE =AC ∶CD ,即10∶DE =8∶5,∴DE =254.【点睛】本题主要考查了相似三角形的判定和性质,以及直角三角形斜边上的中线特征,找准对应边和对应角是解题的关键.22.(1)DE DC =,证明见详解;(2)⊙O 的直径为8.【解析】【分析】(1)连接AD ,根据直径所对圆周角可得AD BC ⊥,根据等腰三角形三线合一的性质可得到 EDBD =,即可得解;(2)根据已知条件求出BC ,再根据勾股定理建构方程求解即可得解;【详解】解:(1)DE BD =,证明:连接AD ,∵AB 为⊙O 的直径,∴∠ADB=90°,即AD BC ⊥,在△ABC 中,AB=AC ,AD BC ⊥,CAD BAD ∴∠=∠,BD=DC ,(等腰三角形三线合一),∴ EDBD =,DE BD ∴=;∴DE=DC ;(2)∵12BD BC ==2AE =∴BC =设AB AC x ==,2EC AC AE x =-=-,∵AB 为⊙O 的直径,∴∠AEB=90°,在Rt △AEB 中,=,在Rt △CEB 中,BE =即(()22242x x -=--整理得22480x x --=因式分解得()()860x x -+=解得86x x ==-,(舍去),∴⊙O 的直径为8.【点睛】本题主要考查了圆周角定理及其推论,等腰三角形的性质,勾股定理,一元二次方程的解法,掌握圆周角定理及其推论,等腰三角形的性质,勾股定理,一元二次方程的解法,是解题的关键.23.(1)2106408800y x x =-+-;(2)此时的销售单价为30元或34元;(3)该商场每天销售此商品的最大利润为1440元.【解析】【分析】(1)根据题意可直接进行求解;(2)由(1)及题意可得21064088001400x x -+-=,进而求解方程即可;(3)由2106408800y x x =-+-可得该二次函数的图象开口向下,对称轴为直线32x =,进而根据二次函数的性质可求解.【详解】解:(1)由题意得:y 与x 的函数关系式为:()()2202001024106408800y x x x x =---=-+-⎡⎤⎣⎦;故答案为2106408800y x x =-+-;(2)由题意得:21064088001400x x -+-=,解得:1230,34x x ==;答:此时的销售单价为30元或34元.(3)由2106408800y x x =-+-可得100-<,∴该二次函数的图象开口向下,对称轴为直线32x =,∵每件小商品的售价不超过36元,∴当32x =时,该商场每天销售此商品的利润为最大,最大值为1440;答:该商场每天销售此商品的最大利润为1440元.24.(1)15°;(2);(3)35【解析】(1)根据矩形的性质和直角三角形的性质,先得到30AFB ∠=︒,再由折叠的性质可得到15CBE ∠=︒;(2)由三等角证得FAB EDF ∆∆∽,从而得2DE =,3EF CE ==,再由勾股定理求出DE ,则BC AD ==(3)过点N 作NG BF ⊥于点G ,可证得NFG BFA ∆∆∽.再根据相似三角形的性质得出对应边成比例及角平分线的性质即可得解.【详解】(1)∵矩形ABCD ,∴90A ∠=︒,//AD BC由折叠的性质可知BF=BC=2AB ,12CBE CBF ∠=∠,∴30AFB ∠=︒,∴30FBC AFB ∠=∠=°,∴15CBE ∠=︒(2)由题意可得90A D ∠=∠=︒,90AFB DFE ∠+∠=︒,90FED DFE ∠+∠=︒∴AFB DEF∠=∠∴FAB EDF∆∆∽∴AF AB DE DF=,∴1025AF DF DE AB === ∴3EF CE ==,由勾股定理得DF=∴AF==,∴BC AD AF FD==+=;(3)过点N作NG BF⊥于点G.∴90NGF A∠=∠=°又∵BFA NFG∠=∠∴NFG BFA∆∆∽.∴NG FG NFAB FA BF==.∵NF AN FD=+,即111222NF AD BC BF===∴12NG FG NFAB FA BF===,又∵BM平分ABF∠,90NG BF A⊥∠=︒,,∴NG=AN,∴12NG AN AB==,∴111222FG BF BG BC ABFA AN NF AB BC--===++整理得:35ABBC=.。
【精品】2017年浙江省杭州市下城区九年级上学期期中数学试卷带解析答案
2016-2017学年浙江省杭州市下城区九年级(上)期中数学试卷一、选择题(每小题3分,共30分)1.(3分)如果将抛物线y=x2+2向下平移1个单位,那么所得新抛物线的表达式是()A.y=(x﹣1)2+2 B.y=(x+1)2+2 C.y=x2+1 D.y=x2+32.(3分)一个盒子装有除颜色外其它均相同的2个红球和3个白球,现从中任取2个球,则取到的是一个红球、一个白球的概率为()A.B.C.D.3.(3分)有下列四个命题:①直径是弦;②经过三个点一定可以作圆;③平分弦的直径垂直弦;④相等的圆周角所对的弧相等.其中正确的有()A.4个 B.3个 C.2个 D.1个4.(3分)如图,是一个圆曲隧道的截面,若路面AB宽为10米,净高CD为7米,则此隧道圆的半径OA是()A.5 B.C.D.75.(3分)如图,矩形ABCD的外接圆O与水平地面有唯一交点A,圆O的半径为4,且=2.若在没有滑动的情况下,将圆O向右滚动,使得O点向右移动了98π,则此时该圆与地面交点在()上.A.B.C.D.6.(3分)坐标平面上,某二次函数图形的顶点为(2,﹣1),此函数图形与x 轴相交于P、Q两点,且PQ=6.若此函数图形通过(1,a)、(3,b)、(﹣1,c)、(﹣3,d)四点,则a、b、c、d之值何者为正?()A.a B.b C.c D.d7.(3分)如图,坐标平面上,二次函数y=﹣x2+4x﹣k的图形与x轴交于A、B 两点,与y轴交于C点,其顶点为D,且k>0.若△ABC与△ABD的面积比为1:4,则k值为何?()A.1 B.C.D.8.(3分)已知函数y=ax2﹣2ax﹣1(a是常数,a≠0),下列结论正确的是()A.当a=1时,函数图象过点(﹣1,1)B.当a=﹣2时,函数图象与x轴没有交点C.若a>0,则当x≥1时,y随x的增大而减小D.若a<0,则当x≤1时,y随x的增大而增大9.(3分)如图△ABC中,∠ACB=90°,AC+BC=8,分别以AB、AC、BC为半径作半圆,若记图中阴影部分的面积为y,AC为x,则下列y关于x的图象中正确的是()A.B.C.D.10.(3分)如图,已知二次函数y=ax2+bx+c(a≠0)的图象与x轴交于点A(﹣1,0),与y轴的交点B在(0,﹣2)和(0,﹣1)之间(不包括这两点),对称轴为直线x=1.下列结论:①abc>0②4a+2b+c>0③4ac﹣b2<8a④<a<⑤b>c.其中含所有正确结论的选项是()A.①③B.①③④C.②④⑤D.①③④⑤二、填空题(每小题4分,共24分)11.(4分)如图,在3×3的方格中,A、B、C、D、E、F分别位于格点上,从C、D、E、F四点中任取一点,与点A、B为顶点作三角形,则所作三角形为等腰三角形的概率是.12.(4分)如图,半圆O是一个量角器,△AOB为一纸片,AB交半圆于点D,OB交半圆于点C,若点C、D、A在量角器上对应读数分别为45°,70°,150°,则∠AOB的度数为;∠A的度数为.13.(4分)已知:如图,在△ABC中,∠CAB=70°,将△ABC绕点A按逆时针方向旋转到△AB′C′的位置,使得CC′∥AB,则∠BAB′的度数为.14.(4分)如图,在平面直角坐标系中,⊙P的圆心坐标是(4,a)(a>4),半径为4,函数y=x的图象被⊙P截得的弦AB的长为4,则a的值是.15.(4分)已知二次函数y=(x﹣h)2+1(h为常数),在自变量x的值满足1≤x≤3的情况下,与其对应的函数值y的最小值为5,则h的值为.16.(4分)在平面直角坐标系中,点O为原点,平行于x轴的直线与抛物线L:y=ax2相交于A,B两点(点B在第一象限),点C在AB的延长线上.(1)已知a=1,点B的纵坐标为2.如图1,向右平移抛物线L使该抛物线过点B,与AB的延长线交于点C,AC的长为.(2)如图2,若BC=AB,过O,B,C三点的抛物线L3,顶点为P,开口向下,对应函数的二次项系数为a3,=.三、解答题(本大题共7小题,共66分.解答应写出必要的文字说明、证明过程或演算步骤)17.(6分)已知二次函数y=x2﹣4x+c.(1)若该图象过点(4,5),求c的值并求图象的顶点坐标;(2)若二次函数y=x2﹣4x+c的图象与坐标轴有2个交点,求字母c的值.18.(8分)(1)尺规作图:作△ABC的外接圆⊙O.(保留作图痕迹,不写画法)(2)若∠A=45°,⊙O的半径为1,求BC的长.(3)求所作的⊙O中弧BC和弦BC围成的区域面积.19.(8分)为了解学生的艺术特长发展情况,某校音乐决定围绕在“舞蹈、乐器、声乐、戏曲、其他活动”项目中,你最喜欢哪一项活动(每人只限一项)的问题,在全校范围内随机抽取部分学生进行问卷调查,并将调查结果绘制如下两幅不完整的统计图.请你根据统计图解答下列问题:(1)在这次调查中,一共抽查了名学生,其中喜欢“舞蹈”活动项目的人数占抽查总人数的百分比为.扇形统计图中喜欢“戏曲”部分扇形的圆心角为度.(2)请你补全条形统计图.(3)若在“舞蹈、乐器、声乐、戏曲”项目中任选两项成立课外兴趣小组,请用列表或画树状图的方法求恰好选中“舞蹈、声乐”这两项的概率.20.(10分)如图,需在一面墙上绘制几个相同的抛物线型图案.按照图中的直角坐标系,最左边的抛物线可以用y=ax2+bx(a≠0)表示.已知抛物线上B,C 两点到地面的距离均为m,到墙边OA的距离分别为m,m.(1)求该拋物线的函数关系式,并求图案最高点到地面的距离;(2)若该墙的长度为10m,则最多可以连续绘制几个这样的拋物线型图案?21.(10分)已知一次函数y1=x+b 的图象与二次函数y2=a(x2+bx+3)(a≠0,a,b 为常数)的图象交于A、B 两点,且点A 的坐标为(0,3)(1)求出a,b 的值;(2)求出点B 的坐标,并直接写出当y1≥y2时x 的取值范围;(3)设s=y1+y2,t=y1﹣y2,若n≤x≤m 时,s 随着x 的增大而增大,且t 也随着x 的增大而增大,求n 的最小值和m 的最大值.22.(12分)如图,AB是⊙O的直径,C是的中点,CE⊥AB于点E,BD交CE 于点F.(1)求证:CF=BF;(2)若CD=6,AC=8,求⊙O的半径及CE的长.23.(12分)在平面直角坐标系中,抛物线y=﹣x2+x+4的图象与x轴交于B,C两点(B在C的左侧),与y轴交于点A.(1)求出点A,B,C的坐标.(2)在抛物线上有一动点P,抛物线的对称轴上有另一动点Q,若以B,C,P,Q为顶点的四边形是平行四边形,直接写出点P的坐标.(3)向右平移抛物线,使平移后的抛物线恰好经过△ABC的外心,求出平移后的抛物线的解析式.2016-2017学年浙江省杭州市下城区九年级(上)期中数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.(3分)如果将抛物线y=x2+2向下平移1个单位,那么所得新抛物线的表达式是()A.y=(x﹣1)2+2 B.y=(x+1)2+2 C.y=x2+1 D.y=x2+3【解答】解:∵抛物线y=x2+2向下平移1个单位,∴抛物线的解析式为y=x2+2﹣1,即y=x2+1.故选:C.2.(3分)一个盒子装有除颜色外其它均相同的2个红球和3个白球,现从中任取2个球,则取到的是一个红球、一个白球的概率为()A.B.C.D.【解答】解:画树状图得:∵共有20种等可能的结果,取到的是一个红球、一个白球的有12种情况,∴取到的是一个红球、一个白球的概率为:=.故选:C.3.(3分)有下列四个命题:①直径是弦;②经过三个点一定可以作圆;③平分弦的直径垂直弦;④相等的圆周角所对的弧相等.其中正确的有()A.4个 B.3个 C.2个 D.1个【解答】解:①直径是弦,说法正确;②经过不在同一直线上的三点可以作圆,原说法错误;③平分弦的直径垂直弦,这条弦应强调不是直径,故错误;④在同圆或等圆中,相等的圆周角所对的弧相等,原说法没有加条件限制,故错误;综上可得只有①正确.故选:D.4.(3分)如图,是一个圆曲隧道的截面,若路面AB宽为10米,净高CD为7米,则此隧道圆的半径OA是()A.5 B.C.D.7【解答】解:∵OD⊥AB,∴AD=DB=AB=×10=5m,在Rt△OAD中,设半径OA=R,OD=CD﹣R=7﹣R,∴OA2=OD2+AD2,即R2=(7﹣R)2+52,解得R=,∴此隧道圆的半径OA是m.故选:B.5.(3分)如图,矩形ABCD的外接圆O与水平地面有唯一交点A,圆O的半径为4,且=2.若在没有滑动的情况下,将圆O向右滚动,使得O点向右移动了98π,则此时该圆与地面交点在()上.A.B.C.D.【解答】解:∵圆O半径为4,∴圆的周长为:2π×r=8π,∵将圆O向右滚动,使得O点向右移动了98π,∴98π÷8π=12…2π,即圆滚动12周后,又向右滚动了2π,∵矩形ABCD的外接圆O与水平地面相切于A点,=2,∴=×8π=π<2π,+=×8π=4π>2π,∴此时与地面相切;∴此时该圆与地面交点在上,故选:B.6.(3分)坐标平面上,某二次函数图形的顶点为(2,﹣1),此函数图形与x 轴相交于P、Q两点,且PQ=6.若此函数图形通过(1,a)、(3,b)、(﹣1,c)、(﹣3,d)四点,则a、b、c、d之值何者为正?()A.a B.b C.c D.d【解答】解:∵二次函数图形的顶点为(2,﹣1),∴对称轴为x=2,∵×PQ=×6=3,∴图形与x轴的交点为(2﹣3,0)=(﹣1,0),和(2+3,0)=(5,0),已知图形通过(2,﹣1)、(﹣1,0)、(5,0)三点,如图,由图形可知:a=b<0,c=0,d>0.故选:D.7.(3分)如图,坐标平面上,二次函数y=﹣x2+4x﹣k的图形与x轴交于A、B 两点,与y轴交于C点,其顶点为D,且k>0.若△ABC与△ABD的面积比为1:4,则k值为何?()A.1 B.C.D.【解答】解:∵y=﹣x2+4x﹣k=﹣(x﹣2)2+4﹣k,∴顶点D(2,4﹣k),C(0,﹣k),∴OC=k,∵△ABC的面积=AB•OC=AB•k,△ABD的面积=AB(4﹣k),△ABC与△ABD 的面积比为1:4,∴k=(4﹣k),解得:k=.故选:D.8.(3分)已知函数y=ax2﹣2ax﹣1(a是常数,a≠0),下列结论正确的是()A.当a=1时,函数图象过点(﹣1,1)B.当a=﹣2时,函数图象与x轴没有交点C.若a>0,则当x≥1时,y随x的增大而减小D.若a<0,则当x≤1时,y随x的增大而增大【解答】解:A、∵当a=1,x=﹣1时,y=1+2﹣1=2,∴函数图象不经过点(﹣1,1),故错误;B、当a=﹣2时,∵△=42﹣4×(﹣2)×(﹣1)=8>0,∴函数图象与x轴有两个交点,故错误;C、∵抛物线的对称轴为直线x=﹣=1,∴若a>0,则当x≥1时,y随x的增大而增大,故错误;D、∵抛物线的对称轴为直线x=﹣=1,∴若a<0,则当x≤1时,y随x的增大而增大,故正确;故选:D.9.(3分)如图△ABC中,∠ACB=90°,AC+BC=8,分别以AB、AC、BC为半径作半圆,若记图中阴影部分的面积为y,AC为x,则下列y关于x的图象中正确的是()A.B.C.D.【解答】解:∵AC+BC=8,AC=x,∴BC=8﹣x.又∵在△ABC中,∠ACB=90°,∴AB=.=π×()2+π×()2﹣π×()2+x(8﹣x)=x2+4x,∴S阴影即y=﹣x2+4x(0<x<8).则该函数图象是开口向下的抛物线,且自变量的取值范围是0<x<8.故选:A.10.(3分)如图,已知二次函数y=ax2+bx+c(a≠0)的图象与x轴交于点A(﹣1,0),与y轴的交点B在(0,﹣2)和(0,﹣1)之间(不包括这两点),对称轴为直线x=1.下列结论:①abc>0②4a+2b+c>0③4ac﹣b2<8a④<a<⑤b>c.其中含所有正确结论的选项是()A.①③B.①③④C.②④⑤D.①③④⑤【解答】解:①∵函数开口方向向上,∴a>0;∵对称轴在y轴右侧∴ab异号,∵抛物线与y轴交点在y轴负半轴,∴c<0,∴abc>0,故①正确;②∵图象与x轴交于点A(﹣1,0),对称轴为直线x=1,∴图象与x轴的另一个交点为(3,0),∴当x=2时,y<0,∴4a+2b+c<0,故②错误;③∵图象与x轴交于点A(﹣1,0),∴当x=﹣1时,y=(﹣1)2a+b×(﹣1)+c=0,∴a﹣b+c=0,即a=b﹣c,c=b﹣a,∵对称轴为直线x=1∴=1,即b=﹣2a,∴c=b﹣a=(﹣2a)﹣a=﹣3a,∴4ac﹣b2=4•a•(﹣3a)﹣(﹣2a)2=﹣16a2<0∵8a>0∴4ac﹣b2<8a故③正确④∵图象与y轴的交点B在(0,﹣2)和(0,﹣1)之间,∴﹣2<c<﹣1∴﹣2<﹣3a<﹣1,∴>a>;故④正确⑤∵a>0,∴b﹣c>0,即b>c;故⑤正确;故选:D.二、填空题(每小题4分,共24分)11.(4分)如图,在3×3的方格中,A、B、C、D、E、F分别位于格点上,从C、D、E、F四点中任取一点,与点A、B为顶点作三角形,则所作三角形为等腰三角形的概率是.【解答】解:根据从C、D、E、F四个点中任意取一点,一共有4种可能,选取D、C、F时,所作三角形是等腰三角形,故P(所作三角形是等腰三角形)=;故答案为:.12.(4分)如图,半圆O是一个量角器,△AOB为一纸片,AB交半圆于点D,OB交半圆于点C,若点C、D、A在量角器上对应读数分别为45°,70°,150°,则∠AOB的度数为105°;∠A的度数为50°.【解答】解:∵点C、D、A在量角器上对应读数分别为45°,70°,150°,∴∠AOB=∠MOA﹣∠MOC=150°﹣45°=105°,连接OD,则OA=OD,∵∠AOD=150°﹣70°=80°,∴∠A=(180°﹣80°)=50°.故答案为:105°,50°.13.(4分)已知:如图,在△ABC中,∠CAB=70°,将△ABC绕点A按逆时针方向旋转到△AB′C′的位置,使得CC′∥AB,则∠BAB′的度数为40°.【解答】解:∵CC′∥AB,∴∠C′CA=∠CAB=70°.∵由旋转的性质可知;AC=AC′,∴∠ACC′=∠AC′C=70°.∴∠CAC′=180°﹣70°﹣70°=40°.∴∠BAB′=40°.故答案为;40°.14.(4分)如图,在平面直角坐标系中,⊙P的圆心坐标是(4,a)(a>4),半径为4,函数y=x的图象被⊙P截得的弦AB的长为4,则a的值是4+2.【解答】解:作PC⊥x轴于C,交AB于D,作PE⊥AB于E,连结PB,如图,∵⊙P的圆心坐标是(4,a),∴OC=4,PC=a,把x=4代入y=x得y=4,∴D点坐标为(4,4),∴CD=4,∴△OCD为等腰直角三角形,∴△PED也为等腰直角三角形,∵PE⊥AB,∴AE=BE=AB=×4=2,在Rt△PBE中,PB=4,∴PE==2,∴PD=PE=2,∴a=4+2.故答案为:4+2.15.(4分)已知二次函数y=(x﹣h)2+1(h为常数),在自变量x的值满足1≤x≤3的情况下,与其对应的函数值y的最小值为5,则h的值为﹣1或5.【解答】解:∵当x>h时,y随x的增大而增大,当x<h时,y随x的增大而减小,∴①若h<1≤x≤3,x=1时,y取得最小值5,可得:(1﹣h)2+1=5,解得:h=﹣1或h=3(舍);②若1≤x≤3<h,当x=3时,y取得最小值5,可得:(3﹣h)2+1=5,解得:h=5或h=1(舍).综上,h的值为﹣1或5,故答案为﹣1或5.16.(4分)在平面直角坐标系中,点O为原点,平行于x轴的直线与抛物线L:y=ax2相交于A,B两点(点B在第一象限),点C在AB的延长线上.(1)已知a=1,点B的纵坐标为2.如图1,向右平移抛物线L使该抛物线过点B,与AB的延长线交于点C,AC的长为4.(2)如图2,若BC=AB,过O,B,C三点的抛物线L3,顶点为P,开口向下,对应函数的二次项系数为a3,=﹣.【解答】解:(1)当a=1时,抛物线L的解析式为:y=x2,当y=2时,2=x2,∴x=±,∵B在第一象限,∴A(﹣,2),B(,2),∴AB=2,∵向右平移抛物线L使该抛物线过点B,∴AB=BC=2,∴AC=4;(2)如图2,设抛物线L3与x轴的交点为G,其对称轴与x轴交于Q,过B作BK⊥x轴于K,设OK=t,则AB=BC=2t,∴B(t,at2),根据抛物线的对称性得:OQ=2t,OG=2OQ=4t,∴O(0,0),G(4t,0),设抛物线L3的解析式为:y=a3(x﹣0)(x﹣4t),y=a3x(x﹣4t),∵该抛物线过点B(t,at2),∴at2=a3t(t﹣4t),∵t≠0,∴a=﹣3a3,∴=﹣,故答案为:(1)4;(2)﹣.三、解答题(本大题共7小题,共66分.解答应写出必要的文字说明、证明过程或演算步骤)17.(6分)已知二次函数y=x2﹣4x+c.(1)若该图象过点(4,5),求c的值并求图象的顶点坐标;(2)若二次函数y=x2﹣4x+c的图象与坐标轴有2个交点,求字母c的值.【解答】解:(1)把(4,5)代入y=x2﹣4x+c,∴5=16﹣16+c,∴c=5,∴y=x2﹣4x+5=(x﹣2)2+1∴顶点坐标(2,1)(2)当抛物线与x轴只有一个交点时,∴△=0,∴16﹣4c=0,∴c=4,当抛物线与x轴、y轴的交点重合时,此时抛物线必过(0,0),∴c=0,综上所述,c=4或018.(8分)(1)尺规作图:作△ABC的外接圆⊙O.(保留作图痕迹,不写画法)(2)若∠A=45°,⊙O的半径为1,求BC的长.(3)求所作的⊙O中弧BC和弦BC围成的区域面积.【解答】解:(1)如图,⊙O为所作;(2)连结OB,OC,∵∠A=45∴∠BOC=2∠A=90°又∵OB=OC=1,∴△OBC是等腰直角三角形,∴BC=OB=;=S扇形BOC﹣S△BOC=﹣×1×1=.(3)S弓形BC19.(8分)为了解学生的艺术特长发展情况,某校音乐决定围绕在“舞蹈、乐器、声乐、戏曲、其他活动”项目中,你最喜欢哪一项活动(每人只限一项)的问题,在全校范围内随机抽取部分学生进行问卷调查,并将调查结果绘制如下两幅不完整的统计图.请你根据统计图解答下列问题:(1)在这次调查中,一共抽查了50名学生,其中喜欢“舞蹈”活动项目的人数占抽查总人数的百分比为24%.扇形统计图中喜欢“戏曲”部分扇形的圆心角为28.8度.(2)请你补全条形统计图.(3)若在“舞蹈、乐器、声乐、戏曲”项目中任选两项成立课外兴趣小组,请用列表或画树状图的方法求恰好选中“舞蹈、声乐”这两项的概率.【解答】解:(1)一共抽查学生数为:8÷16%=50,“舞蹈”活动项目的人数占抽查总人数的百分比为:×100%=24%;∵喜欢戏曲的人数:50﹣12﹣16﹣8﹣10=50﹣46=4人,∴扇形统计图中喜欢“戏曲”部分扇形的圆心角为:×360°=28.8°,故答案为:50,24%,28.8.(2)补全统计图如图:(3)画树状图如下:∵共有12种等可能结果,其中恰好选中“舞蹈、声乐”这两项活动的有2种结果,故恰好选中“舞蹈、声乐”两项活动的概率是:=.20.(10分)如图,需在一面墙上绘制几个相同的抛物线型图案.按照图中的直角坐标系,最左边的抛物线可以用y=ax2+bx(a≠0)表示.已知抛物线上B,C 两点到地面的距离均为m,到墙边OA的距离分别为m,m.(1)求该拋物线的函数关系式,并求图案最高点到地面的距离;(2)若该墙的长度为10m,则最多可以连续绘制几个这样的拋物线型图案?【解答】解:(1)根据题意得:B(,),C(,),把B,C代入y=ax2+bx得,解得:,∴拋物线的函数关系式为y=﹣x2+2x;∴图案最高点到地面的距离==1;(2)令y=0,即﹣x2+2x=0,∴x1=0,x2=2,∴10÷2=5,∴最多可以连续绘制5个这样的拋物线型图案.21.(10分)已知一次函数y1=x+b 的图象与二次函数y2=a(x2+bx+3)(a≠0,a,b 为常数)的图象交于A、B 两点,且点A 的坐标为(0,3)(1)求出a,b 的值;(2)求出点B 的坐标,并直接写出当y1≥y2时x 的取值范围;(3)设s=y1+y2,t=y1﹣y2,若n≤x≤m 时,s 随着x 的增大而增大,且t 也随着x 的增大而增大,求n 的最小值和m 的最大值.【解答】解:(1)把A(0,3)代入y1=x+b中得:b=3,∴y1=x+3,y2=a(x2+3x+3),把A(0,3)代入y2=a(x2+3x+3)中得:3a=3,a=1,∴a=1,b=3;(2)由题意得:,解得:,∴B(﹣2,1),如图所示,当y1≥y2时x 的取值范围是:﹣2≤x≤0;(3)s=y1+y2=x+3+x2+3x+3=x2+4x+6=(x+2)2+2,∵抛物线开口向上,∴当x≥﹣2时,s 随着x 的增大而增大,t=y1﹣y2=x+3﹣(x2+3x+3)=﹣x2﹣2x=﹣(x+1)2+1,∵抛物线开口向下,∴当x≤﹣1时,t随着x 的增大而增大,∴当﹣2≤x≤﹣1时,s 随着x 的增大而增大,且t 也随着x 的增大而增大,∵n≤x≤m,s 随着x 的增大而增大,且t 也随着x 的增大而增大,∴n 的最小值﹣2,m 的最大值﹣1.22.(12分)如图,AB是⊙O的直径,C是的中点,CE⊥AB于点E,BD交CE 于点F.(1)求证:CF=BF;(2)若CD=6,AC=8,求⊙O的半径及CE的长.【解答】(1)证明:∵AB是⊙O的直径,∴∠ACB=90°,∴∠A=90°﹣∠ABC.∵CE⊥AB,∴∠CEB=90°,∴∠ECB=90°﹣∠ABC,∴∠ECB=∠A.(2分)又∵C是的中点,∴=,∴∠DBC=∠A,∴∠ECB=∠DBC,∴CF=BF;(2)解:∵=,∴BC=CD=6,∵∠ACB=90°,∴AB===10,∴⊙O的半径为5,=AB•C E=BC•AC,∵S△ABC∴CE===.23.(12分)在平面直角坐标系中,抛物线y=﹣x2+x+4的图象与x轴交于B,C两点(B在C的左侧),与y轴交于点A.(1)求出点A,B,C的坐标.(2)在抛物线上有一动点P,抛物线的对称轴上有另一动点Q,若以B,C,P,Q为顶点的四边形是平行四边形,直接写出点P的坐标.(3)向右平移抛物线,使平移后的抛物线恰好经过△ABC的外心,求出平移后的抛物线的解析式.【解答】解:(1)当x=0时,y=4,∴与y轴交点A(0,4),当y=0时,﹣x2+x+4=0,解得:x=﹣2或8,∴B(﹣2,0),C(8,0);(2)y=﹣x2+x+4=﹣(x﹣3)2+,当P在x轴的上方时,即为抛物线的顶点P(3,)时,可以构成平行四边形BPCQ,如图1,当P在x轴的下方时,∵BC=2+8=10,若四边形BPCQ为平行四边形,则BC∥PQ,BC=PQ=10,有两种情况:①当P在抛物线对称轴的左侧时,如图2,∴点P的横坐标为﹣7,当x=﹣7时,y=﹣×(﹣7)2+×(﹣7)+4=﹣,此时P(﹣7,﹣);②当P在抛物线对称轴的右侧时,如图3,∴点P的横坐标为13,当x=13时,y=﹣×132+×13+4=﹣,此时P(13,﹣);综上所述,点P的坐标为P(3,)或(﹣7,﹣)或(13,﹣);(3)如图3,∵A(0,4)、B(﹣2,0)、C(8,0)∴OA=4,OB=2,OC=8,∴=,,∴,∵∠AOB=∠AOC=90°,∴△AOB∽△COA,∴∠BAO=∠ACO,∵∠ACO+∠OAC=90°,∴∠BAO+∠OAC=90°,∴∠BAC=90°,∴△ABC是直角三角形,∴△ABC的外心就是斜边AB的中点E,∵BC=10,∴BC的中点E的坐标为(3,0),即平移后的解析式经过E(3,0),∴相当于把原抛物线向右平移5个单位,∴平移后的解析式为:y=﹣(x﹣3﹣5)2+=﹣+4x﹣.赠送:初中数学几何模型举例【模型四】几何最值模型:图形特征:l运用举例:1. △ABC中,AB=6,AC=8,BC=10,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,M为AP的中点,则MF的最小值为EM FB2.如图,在边长为6的菱形ABCD中,∠BAD=60°,E为AB的中点,F为AC上一动点,则EF+BF的最小值为_________。
浙江省杭州市九年级上学期数学期中考试试卷
浙江省杭州市九年级上学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共8题;共16分)1. (2分)下列四条线段为成比例线段的是()A . a=10,b=5,c=4,d=7B . a=1,b=, c=, d=C . a=8,b=5,c=4,d=3D . a=9,b=, c=3,d=2. (2分)下列生活中的现象,属于相似变换的是()A . 抽屉的拉开B . 汽车刮雨器的运动C . 坐在秋千上人的运动D . 投影片的文字经投影变换到屏幕3. (2分) (2018九上·福州期中) 若两个相似三角形的面积比为2:3,那么这两个三角形的周长的比为()A . 4:9B . 2:3C . 3:2D . :4. (2分) (2016九上·平南期中) 抛物线y=3x2 , y=﹣3x2 , y=﹣3x2+3共有的性质是()A . 开口向上B . 对称轴是y轴C . 都有最高点D . y随x值的增大而增大5. (2分)(2017·永修模拟) 如图抛物线y=ax2+bx+c与x轴交于A、B两点,其中B点坐标为(4,0),直线DE是抛物线的对称轴,且与x轴交于点E,CD⊥DE于D,现有下列结论:①a<0,②b<0,③b2﹣4ac>0,④AE+CD=4下列选项中选出的结论完全正确的是()A . ①②③B . ①②④C . ①③④D . ①②6. (2分)如图,若果∠1=∠2,那么添加下列任何一个条件:(1) = ,(2) = ,(3)∠B=∠D,(4)∠C=∠AED,其中能判定△ABC∽△ADE的个数为()A . 1B . 2C . 3D . 47. (2分)在平面直角坐标系中,正方形ABCD的位置如图所示,点A的坐标为(1,0),点D的坐标为(0,2).延长CB交x轴于点A1 ,作正方形A1B1C1C;延长C1B1交x轴于点A2 ,作正方形A2B2C2C1 ,…,按这样的规律进行下去,第2013个正方形的面积为()A .B .C .D .8. (2分) (2018九上·新乡期末) 如图是二次函数图象的一部分,对称轴为,且经过点(2,0)下列说法:①abc<0;②-2b+c=0;③4a+2b+c<0;④若(- ,y1),(,y2)是抛物线上的两点,则y1<y2;⑤ >m(am+b)其中(m≠ )其中说法正确的是()A . ①②④⑤B . ③④C . ①③D . ①②⑤二、填空题 (共9题;共10分)9. (1分)△ABC的三边长分别为2,,,△A1B1C1的两边长分别为1和,当△A1B1C1的第三边长为________时,△ABC∽△A1B1C1.10. (1分)如图是小明设计的用激光笔测量城墙高度的示意图,在点P处水平放置一面平面镜,光线从点A 出发经平面镜反射后刚好射到城墙CD的顶端C处,已知AB⊥BD,CD⊥BD,AB=1.2米,BP=1.8米,PD=12米,那么该城墙高度CD=________ 米.11. (2分)(2018·秀洲模拟) 如图,直线,,…,是一组等距离的平行线,过直线上的点A 作两条射线,分别与直线,相交于点B,E,C,F。
2016~2017学年浙江杭州下城区初三上学期期末数学试卷(解析)
目录选择题填空题解答题选择题j i ao s h i.i zh ik an g.co m2018/12/111.A. B. C. D.答 案解 析己知,则实数的值为( ).B因为,可得:.3:x =6:12x 4612243:x =6:12x =62.A.该事件是必然事件 B.该事件是不可能事件C.该事件是不确定事件D.该事件发生的可能性很大答 案解 析对于事件“从车间生产的个(其中有个是次品)产品中任意抽一个,所抽取的产品是次品”,下列对于该事件的描述正确的是( ).C对于事件“从车间生产的个(其中有个是次品)产品中任意抽一个,所抽取的产品是次品”,是不确定事件.100210023.A.B.C.D.答 案解 析在中,,,,则的值为( ).B∵,,,∴.Rt △ABC ∠C =90∘AC =3AB =5cos A 453534334−−√34∠C =90∘AC =3AB =5cos A ==AC AB 354.A.点在⊙内 B.点不一定在⊙外C.点在⊙上D.点在⊙外答 案解 析矩形的边,,以为圆心,为半径作⊙,则点与⊙的位置关系为( ).D由勾股定理,得,∵,点在⊙外边.ABCD AB =3cm AD =4cm A 4cm A C A C A C A C A C A AC ===5(cm)A +D D 2C 2−−−−−−−−−−√+3242−−−−−−√AC >r C A 5.A. B.C. D.答 案解 析将抛物线先向右平移个单位,再向下平移个单位,则平移后的抛物线解析式为( ).A抛物线可化,y =+4x +3x 232y =−3(x −1)2y =+x +1x 2y =+4(x −3)+1x 2y =+4(x +3)+1(x +3)2y =+4x +3x 2y =−1(x +2)2学生版 教师版 答案版编辑目录选择题填空题解答题jiaoshi.izhikang.com218/12/11jiaoshi.izhikang.com218/12/11将抛物线先向右平移个单位,再向下平移个单位,则平移后的抛物线解析式为,即.y=+4x+3x232y=−1−2(x+2−3)2y=−3(x−1)26.A. B. C. D.答 案解 析取张扑克牌,其中张“方块”,张“梅花”,张“红桃”,从中任抽一张,是“方块”或“红桃”的概率是( ).A∵共有张扑克牌,其中张“方块”,张“梅花”,张“红桃”,∴方块”和“红桃”共有张,∴从中任抽一张,是“方块”或“红桃”的概率是.156364535254151563612=1215457.A. B. C. D.答 案解 析如图,在矩形中,,分别为,与的中点,且矩形矩形,的值为( ).C∵矩形矩形,∴.设,,则.∴,故,即,则,则.ABCD E F AD BC ABCD∽AEFB ADAB2532√3√ABCD∽AEFB=ADABABAEAD=x AB=y AE=x12=xyyx12=y212x2=2x2y2x=y2√==ADABxy2√8.A. B. C. D.答 案解 析如图,在中,,以为直径的⊙分别交,于点,,连结,,则下列线段的比值中,一定与的比值相等的是( ).B连接,∵是⊙的直径,∴.∵,∴.∵,∴,△ABC AB=AC AB O BC AC D E EB DECE:BCDE:AE BD:AB AE:AB CD:BEADAB O∠ADB=∠AEB=90∘AB=AC∠BAD=∠CAD=DE⌢DE⌢∠CBE=∠CAD学生版教师版答案版编辑目录选择题填空题解答题填空题j i ao sh i.i zh ik an g.c om2018/12/11∴,∴,∴.∠CBE =∠BAD △CBE ∽△BAD =CE BC BDAB9.A. B. C. D.答 案解 析如果二次函数在的一定取值范围内有最大值(或最小值)为,满足条件的的取值范围可以是( ).D∵,当时,得出或,∴在自变量的取值范围内,当时,有最小值.y =−6x +8x 2x 3x −1⩽x ⩽51⩽x ⩽6−2⩽x ⩽4−1⩽x ⩽1y =−6x +8=−1x 2(x −3)2y =3x =15−1⩽x ⩽1x =1310.A.①②B.②③C.①③D.①②③答 案解 析在探究“抛物线与轴交于、两点(在的左边),过点且与轴成角的直线,与抛物线交于点”的图形性质时,小慧在得出“在第一象限存在一点,第四象限存在一点满足条件”这一正确结论后,还由此得出下列结论:①的横坐标为,的纵坐标为.②.③过点、作轴的垂线,垂足分别为、,则,则其中正确的为( ).A由题意,,由,解得:或,∵,∴.由,解得:或,∴,故①正确.∴,,∴,故②正确.∵,故③错误.y =−2x −3x 2x A B A B A x 45∘CC 1C 2C 14C 2−3sin ∠A =C 1C 2334−−√34C 1C 2x D 1D 2△B ∽△B C 1D 1C 2D 2A (−1,0)B (3,0){y =x +1y =−2x −3x 2{x =4y =5{x =−1y =0A (−1,0)(4,5)C 1{y =−x −1y =−2x −3x 2{x =2y =−3{x =−1y =0(2,−3)C 2A =3C 22√=2C 1C 217−−√sin ∠A ===C 1C 2AC 2C 1C 232√217−−√334−−√34≠C 1D 1B D 1C 2D 2B D 211.答 案解 析已知线段,,则线段,的比例中项为 .根据比例中项的概念结合比例的基本性质,得:比例中项的平方等于两条线段的乘积.设它们的比例中项是,则,,(线段是正数,负值舍去),故填.a =4cmb =9cm a b cm 6x =4×9x 2x =±6612.答 案解 析在中,,,,分别是,和的对边,如果,,则 .∵,∴.∵,∴.Rt △ABC ∠C =Rt∠a b c ∠A ∠B ∠C a =3sin A =13c =9∠C =Rt∠sin A ==a c 13a =3c =9学生版教师版答案版编辑目录选择题填空题解答题j i ao s h i .i zh ik an g.co m2018/12/11113.答 案解 析据有关统计表明,名流感病人中有人患的是甲流,则当时,从中任意抽取一名流感患者,结果患的是甲流的概率约是 .∵名流感病人中有人患的是甲流,∴从中任意抽取一名流感患者,结果患的是甲流的概率约是.500040004550004000=400050004514.答 案解 析如图,正五边形内接于⊙,则 .如图,连接、,∵五边形是正五边形,∴,∴.ABCDE O ∠ABD =72∘AO DO ABCDE ∠AOD =×360=14425∘∘∠ABD =∠AOD =×144=721212∘∘15.1.2.答 案解 析二次函数的图象如图所示,则的值为 .的取值范围为 .∵抛物线的对称轴为直线,∴,即.∵当时,,即①,当时,,即②,将代入①、②得:,,又∵,∴.y =a +bx +c (a ≠0)x 2b a ca−2−8<<−3cax =1x =−=1b 2a=−2ba x =−2y >04a −2b +c >0x =−1y <0a −b +c <0b =−2a c >−8a c <−3a a 0−8<<−3ca学生版 教师版 答案版编辑目录选择题填空题解答题解答题j i ao shi .izh i k an g.c om2018/12/11j i ao sh i.i zh i ka ng .c om2018/12/1116.答 案解 析如图,在中,,在边上取点使,连结,以为一边作交边于点,如果,则 .作于,如图所示:∵,∴,.∵,∴,∴,∴.∵,∴,∴.∵,,∴.在和中,,∴≌,∴,,∴.∵,,∴,∴,即.解得:,∴.作于,则,∴.△ABC AB =AC =10BC D BD =6AD AD ∠ADE =∠B AC Esin B =35cos ∠AED =10−−√10AM ⊥BC M AB =AC =10∠B =∠C BM =CM sin B ==AM AB 35AM =AB =×10=63535BM ===8A −A B 2M 2−−−−−−−−−−√−10262−−−−−−−√BC =2BM =16BD =6CD =BC −BD =10CD =AB =AC ∠ADC =∠B +∠BAD =∠ADE +∠CDE ∠ADE =∠B ∠BAD =∠CDE △CDE △BAD ⎧⎩⎨∠BAD =∠CDEAB =CD∠B =∠C △CDE △BAD (ASA)CE =BD =6DE =DA AE =AC −CE =4∠ADE =∠B =∠C ∠DAE =∠CAD △ADE ∽△ACD =AD AC AE AD =AD 104ADAD =210−−√DE =210−−√DM ⊥AE N AN =EN =AE =212cos ∠AED ===EN DE 2210−−√10−−√1017.答 案解 析如图,直线,直线依次交、、于、、三点,直线依次交、、于、、三点,若,,求的长..∵,直线依次交、、于、、三点,直线依次交、、于、、三点,∴.∵,,∴.////l 1l 2l 3AC l 1l 2l 3A B C DF l 1l 2l 3DD E F =AB AC 47DE =2EF EF =1.5////l 1l 2l 3AC l 1l 2l 3A B C DF l 1l 2l 3DD E F =AB AC DEDF =AB AC 47DE =2=472DF 学生版教师版答案版编辑目录选择题填空题解答题j i ao s h i.i zh ik an g .c om2018/12/11解得:,∴.DF =3.5EF =DF −DE =3.5−2=1.518.答 案解 析如图,弧的半径为,的弦心距为为,求弓形的面积..∵弧的半径为,的弦心距为为,∴,,∴,,∴.AB R 20m AB OC 10m =π−100S 弓形40033√AB R 20m AB OC 10m ∠AOC =60∘AC =103√==S 扇形AOB 120π×202360400π3=×AB ×OC =×20×10=100S △AOB 12123√3√=−=π−100S 弓形S 扇形AOB S △AOB 40033√19.(1)把一个红球随即投放,问:小明恰好放对的概率是多少.答 案解 析(2)若小明同学把一个黄球和一个白球任意投放(可以同时放入同一个布袋),求两个球都放对的概率(请列表或画出树状图).答 案解 析为了分类收集,要把地上散落的红球、黄球、白球,按相同颜色放入三个外观相同的不同布袋中,现已按要求收集了部分球在这三个布袋中..∵要把红球、黄球、白球,按相同颜色放入三个外观相同的不同布袋中,∴把一个红球随即投放小明恰好放对的概率.概率.列表得: 由列表可知所有可能结果有种,其中两个球都放对的情况数有种,所以其概率.13=13=13A B C A A A A BBBB62==261320.(1)求出此二次函数图象的对称轴及其与轴的交点坐标.答 案解 析(2)若直线经过、两点,求当二次函数图象落在直线下方时,的取值范围.答 案已知二次函数图象经过,,三点.对称轴为,与轴的另一个交点为. 由题意,关于对称轴对称,∴抛物线的对称轴为,根据对称性抛物线与轴的另一个交点为.当时,或,y =a +bx +c (a ≠0)x 2A (2,0)B (0,c )D (−2,c )x x =−1x (−4,0)B (0,c )D (−2,c )x =−1x (−4,0)l A D l x c >0x <−2x >2学生版教师版答案版编辑目录选择题填空题解答题j i ao sh i .i zh ik an g.co m2018/12/112/11解 析当时,.由图象可知,当时,如图中,当二次函数图象落在直线下方时,或,当时,如图中,当二次函数图象落在直线下方时,.c <0−2<x <2c >01l x <−2x >2c <02l −2<x <221.(1)请在所给图形基础上画出符合要求的其中一个草图,并在图中找出相似三角形后说明理由.答 案解 析(2)在()的条件下,求出长.答 案解 析如图,在中,,,,作等腰三角形,使,且点和位于异侧,连结交于点.画图见解析.如图所示,等腰三角形即为所求.图中,,理由:∵中,,,而,∴,∴,∴.长为或或.①如图所示,当时,过作于,∵,,∴,.△ABC ∠B =90∘∠A =60∘AB =1△ACD ∠CAD =30∘D B AC BD AC O △ACD △AOD ∽△COB △ABC ∠ABC =90∘∠BAC =60∘∠CAD =30∘∠ABC +∠BAD =180∘AD //BC △AOD ∽△COB 1AO AO 458−43√43AD =CD D DE ⊥AC E AD =CD ∠CAD =30∘AE =AC 12AD =2DE 学生版 教师版答案版编辑目录选择题填空题解答题jiaoshi.izhikang.com218/12jiaoshi.izhikang.com218/12/11∵中,,,,∴,,∴,∴中,,.∵,∴,即,解得.②如图所示,当时,根据可得,,即,解得.③如图所示,当时,过作,则四边形是矩形,即,∵,∴.根据可得,,即,解得.综上所述,长为或或.△ABC∠ABC=90∘∠BAC=60∘AB=1AC=2AB=2BC=3√AE=1Rt△AED DE=3√3AD=2DE=233√△AOD∽△COB=AOCOADCB=AO2−AO233√3√AO=45AD=AC=2△AOD∽△COB=AOCOADCB=AO2−AO23√AO=8−43√AC=CD C CE⊥ADABCE AE=BC=3√AC=CDAD=2AE=23√△AOD∽△COB=AOCOADCB=AO2−AO23√3√AO=43AO458−43√4322.(1)求出抛物线的函数解析式.答 案解 析某校足球队在一次训练中,一球员从高米的球门正前方米处将球射向球门,球射向球门的路线呈抛物线,当球飞行的水平距离为米时,球达到最高点,此时球离地面米,建立如图所示的平面直角坐标系.抛物线解析式为.设抛物线的解析式为,将点代入,得:,2.4m63y=−+3112(x−6)2y=a+3(x−6)2(0,0)36a+3=0学生版教师版答案版编辑目录选择题填空题解答题j i ao s h i.i zh ik an g .c om2018/12/11(2)当时,试判断足球能否射入球门,并说明理由.答 案解 析(3)球员射门时,若满足,球不越过球门,求的最小值及的最大值.答 案解 析解得:,∴抛物线解析式为. 足球能射入球门.当即时,,∵,∴足球能射入球门. 的最小值为,的最大值为.当时,,解得:或.当时,,解得:或,∴,即的最小值为,的最大值为.a =−112y =−+3112(x −6)2m =10m =10x =10y =−+3=112(10−6)2530<<2.453>m >t 2t 1t 1t 2t 16+65√5t 212y =0−+3=0112(x −6)2x =0x =12y =2.4−+3=2.4112(x −6)2x =6+65√5x =6−65√56+<x <1265√5t 16+65√5t 21223.(1) 若,求弦的长.答 案解 析(2)若是上任意一动点,请找出图中和相等的角(不在原图中添加线段或字母),并说明理由.答 案解 析如图,是⊙的直径,且,弦于点,是一动点,连结,,,..如图中,连接、.∵是直径,∴.∵,∴,.∵,∴,∴,∴..∵垂直平分,∴,∴.∵,AB O AB =10CD ⊥AB E G AD AG GD BC BE =2CD CD =81AC BC AB ∠ACB =90∘AB ⊥BC EC =ED ∠AEC =∠CEB =90∘AE ⋅EB =EC ⋅ED E =8×2=16C 2EC =4CD =2EC =8G AC ⌢∠G ∠ADC =∠AGD AB CD AC =AD ∠ACD =∠ADC ∠AGC =∠ACD 学生版 教师版答案版编辑j i ao sh i .i zh ik an g.co 如图中,满足条件的点有四个,如图所示.2G。
浙教版九年级上期中数学试卷含答案解析初三数学
九年级(上)期中数学试卷一.选择题1.已知点(a,8)在二次函数y=ax2的图象上,则a的值是()A.2 B.﹣2 C.±2 D.±2.已知⊙O的半径为5,若PO=4,则点P与⊙O的位置关系是()A.点P在⊙O内B.点P在⊙O上C.点P在⊙O外D.无法判断3.若将函数y=2x2的图象向右平行移动1个单位,再向上平移5个单位,可得到的抛物线是()A.y=2(x﹣1)2﹣5 B.y=2(x﹣1)2+5 C.y=2(x+1)2﹣5 D.y=2(x+1)2+54.一只不透明的袋子中装有4个黑球、2个白球,每个球除颜色外都相同,从中任意摸出3个球,下列事件为必然事件的是()A.至少有1个球是黑球B.至少有1个球是白球C.至少有2个球是黑球D.至少有2个球是白球5.从下列直角三角板与圆弧的位置关系中,可判断圆弧为半圆的是()A.B.C.D.①圆的对称轴是直径;②经过三点可以确定一个圆;③三角形的外心到三角形各顶点的距离都相等;④半径相等的两个半圆是等弧;⑤平分弦的直径垂直于弦.A.1个B.2个C.3个D.4个7.一天晚上,小丽在清洗两只颜色分别为粉色和白色的有盖茶杯时,突然停电了,小丽只好把杯盖和茶杯随机搭配在一起,则其颜色搭配一致的概率是()A.B.C.D.18.如图,四边形ABCD内接于⊙O,已知∠ADC=140°,则∠AOC的大小是()A.80° B.100°C.60° D.40°9.如图,抛物线y=﹣x2+bx+c的部分图象如图所示,则关于x的不等式﹣x2+bx+c>0的解的范围是()A.﹣4<x<1 B.﹣3<x<1 C.x<﹣4或x>1 D.x<﹣3或x>110.如图,半径为5的⊙A中,弦BC,ED所对的圆心角分别是∠BAC,∠EAD.已知DE=6,∠BAC+∠EAD=180°,则弦BC的弦心距等于()A.B.C.4 D.311.已知二次函数y=ax2+bx+c的自变量x与函数值y之间满足下列数量关系:x 2 4 5y=ax2+bx+c 0.37 0.37 4那么(a+b+c)(+)的值为()A.24 B.20 C.10 D.412.二次函数的复习课中,夏老师给出关于x的函数y=2kx2﹣(4k+1)x﹣k+1(k为实数).夏老师:请独立思考,并把探索发现的与该函数有关的结论(性质)写到黑板上.学生独立思考后,黑板上出现了一些结论.夏老师作为活动一员,又补充了一些结论,并从中选择了如下四条:①存在函数,其图象经过点(1,0);②存在函数,该函数的函数值y始终随x的增大而减小;③函数图象有可能经过两个象限;④若函数有最大值,则最大值必为正数,若函数有最小值,则最小值必为负数.上述结论中正确个数为()A.1个B.2个C.3个D.4个二.填空题13.抛物线y=x2﹣1的顶点坐标是.14.事件A发生的概率为,大量重复做这种试验,事件A平均每100次发生的次数是.15.如图,AB是⊙O的直径,弦CD⊥AB,垂足为E,连接AC.若∠CAB=22.5°,CD=8cm,则⊙O的半径为 cm.16.将抛物线y=2x2﹣12x+16绕它的顶点旋转180°,所得抛物线的解析式是.17.5月26日,中国羽毛球队蝉联苏迪曼杯团体赛冠军,成就了首个五连冠霸业.比赛中羽毛球的某次运动路线可以看作是一条抛物线(如图).若不考虑外力因素,羽毛球行进高度y(米)与水平距离x(米)之间满足关系,则羽毛球飞出的水平距离为米.18.如图为一个半径为4m的圆形广场,其中放有六个宽为1m的长方形临时摊位,这些摊位均有两个顶点在广场边上,另两个顶点紧靠相邻摊位的顶点,则每个长方形摊位的长为m.三.解答题(本大题有8小题,共78分)19.在平面直角坐标系中,点A的坐标是(0,3),点B的坐标是(﹣4,0),将△AOB绕点A逆时针旋转90°得到△AEF,点O,B对应点分别是E,F,请在图中画出△AEF,并写出点E,F的坐标.20.已知二次函数的图象经过点(0,3),顶点坐标为(1,4),(1)求这个二次函数的解析式;(2)求图象与x轴交点A、B两点的坐标;(3)图象与y轴交点为点C,求三角形ABC的面积.21.一个不透明的布袋里装有2个白球,1个黑球和若干个红球,它们除颜色外其余都相同,从中任意摸出1个球,是白球的概率为.(1)布袋里红球有多少个?(2)先从布袋中摸出1个球后不放回,再摸出1个球,请用列表法或画树状图等方法求出两次摸到的球都是白球的概率.22.如图,在△ABC中,AB=AC,以AC为直径的⊙O交AB于点D,交BC于点E.(1)求证:BE=CE;(2)若BD=2,BE=3,求AC的长.23.如果抛物线y=ax2+bx+c过定点M(1,1),则称此抛物线为定点抛物线.(1)张老师在投影屏幕上出示了一个题目:请你写出一条定点抛物线的一个解析式.小敏写出了一个答案:y=2x2+3x﹣4,请你写出一个不同于小敏的答案;(2)张老师又在投影屏幕上出示了一个思考题:已知定点抛物线y=﹣x2+2bx+c+1,求该抛物线顶点纵坐标的值最小时的解析式,请你解答.24.某商场要经营一种新上市的文具,进价为20元/件.试营销阶段发现:当销售单价是25元时,每天的销售量为250件;销售单价每上涨1元,每天的销售量就减少10件.(1)写出商场销售这种文具,每天所得的销售利润w(元)与销售单价x(元)之间的函数关系式;(2)求销售单价为多少元时,该文具每天的销售利润最大;(3)商场的营销部结合上述情况,提出了A、B两种营销方案:方案A:该文具的销售单价高于进价且不超过30元;方案B:每天销售量不少于10件,且每件文具的利润至少为25元请比较哪种方案的最大利润更高,并说明理由.25.已知AB是⊙O的直径,半径OC⊥AB,D为上任意一点,E为弦BD上一点,且 BE=AD.(1)试判断△CDE的形状,并加以证明.(2)若∠ABD=15°,AO=4,求DE的长.26.如图,抛物线y=ax2﹣x+c(a≠0)的图象与x轴交于A、B两点,与y轴交于点C(0,﹣2),已知B点坐标为(4,0).(1)求抛物线的解析式;(2)试探究△ABC的外接圆的圆心位置,并求出圆心坐标;(3)若点M是线段BC下方的抛物线上一点,记点M到线段BC的距离为d,当d取最大值时,求出此时M点的坐标;(4)若点P是抛物线上一点,点E是直线y=﹣x上的动点,是否存在点P、E,使以点A,点B,点P,点E为顶点的四边形是平行四边形?若存在,请直接写出点E坐标;若不存在,请说明理由.-学年浙江省宁波市九年级(上)期中数学试卷参考答案与试题解析一.选择题(1998•温州)已知点(a,8)在二次函数y=ax2的图象上,则a的值是()A.2 B.﹣2 C.±2 D.±【考点】二次函数图象上点的坐标特征.【分析】因为点(a,8)在二次函数y=ax2的图象上,所以(a,8)符合解析式,代入解析式得8=a3,即a=2.【解答】解:把点(a,8)代入解析式得8=a3,即a=2.故选A.【点评】要明确点在函数图象上即点的坐标符合解析式.2.已知⊙O的半径为5,若PO=4,则点P与⊙O的位置关系是()A.点P在⊙O内B.点P在⊙O上C.点P在⊙O外D.无法判断【考点】点与圆的位置关系.【分析】已知圆O的半径为r,点P到圆心O的距离是d,①当r>d时,点P在⊙O内,②当r=d 时,点P在⊙O上,③当r<d时,点P在⊙O外,根据以上内容判断即可.【解答】解:∵⊙O的半径为5,若PO=4,∴4<5,∴点P与⊙O的位置关系是点P在⊙0内,故选A.【点评】本题考查了点与圆的位置关系的应用,注意:已知圆O的半径为r,点P到圆心O的距离是d,①当r>d时,点P在⊙O内,②当r=d时,点P在⊙O上,③当r<d时,点P在⊙O外.3.若将函数y=2x2的图象向右平行移动1个单位,再向上平移5个单位,可得到的抛物线是()A.y=2(x﹣1)2﹣5 B.y=2(x﹣1)2+5 C.y=2(x+1)2﹣5 D.y=2(x+1)2+5【考点】二次函数图象与几何变换.【分析】抛物线平移不改变a的值.【解答】解:原抛物线的顶点为(0,0),向右平行移动1个单位,再向上平移5个单位,那么新抛物线的顶点为(1,5).可设新抛物线的解析式为y=2(x﹣h)2+k,代入人得:y=2(x﹣1)2﹣5.故选B.【点评】解决本题的关键是得到新抛物线的顶点坐标.4.一只不透明的袋子中装有4个黑球、2个白球,每个球除颜色外都相同,从中任意摸出3个球,下列事件为必然事件的是()A.至少有1个球是黑球B.至少有1个球是白球C.至少有2个球是黑球D.至少有2个球是白球【考点】随机事件.【分析】由于只有2个白球,则从中任意摸出3个球中至少有1个球是黑球,于是根据必然事件的定义可判断A选项正确.【解答】解:一只不透明的袋子中装有4个黑球、2个白球,每个球除颜色外都相同,从中任意摸出3个球,至少有1个球是黑球是必然事件;至少有1个球是白球、至少有2个球是黑球和至少有2个球是白球都是随机事件.故选A.【点评】本题考查了随机事件:在一定条件下,可能发生也可能不发生的事件,称为随机事件.事件分为确定事件和不确定事件(随机事件),确定事件又分为必然事件和不可能事件,5.从下列直角三角板与圆弧的位置关系中,可判断圆弧为半圆的是()A.B.C.D.【考点】圆周角定理.【分析】根据圆周角定理(直径所对的圆周角是直角)求解,即可求得答案.【解答】解:∵直径所对的圆周角等于直角,∴从下列直角三角板与圆弧的位置关系中,可判断圆弧为半圆的是B.故选:B.【点评】此题考查了圆周角定理.此题比较简单,注意掌握数形结合思想的应用.①圆的对称轴是直径;②经过三点可以确定一个圆;③三角形的外心到三角形各顶点的距离都相等;④半径相等的两个半圆是等弧;⑤平分弦的直径垂直于弦.A.1个B.2个C.3个D.4个【分析】根据对称轴的定义对①进行判断;根据确定圆的条件对②进行判断;根据三角形外心得性质对③进行判断;根据等弧的定义对④进行判断;根据垂径定理的推论对⑤进行判断.【解答】解:圆的对称轴是直径所在的性质,所以①错误;经过不共线的三点可以确定一个圆,所以②错误;三角形的外心到三角形各顶点的距离都相等,所以③正确;半径相等的两个半圆是等弧,所以④正确;平分弦(非直径)的直径垂直于弦,所以⑤错误.故选B.7.一天晚上,小丽在清洗两只颜色分别为粉色和白色的有盖茶杯时,突然停电了,小丽只好把杯盖和茶杯随机搭配在一起,则其颜色搭配一致的概率是()A.B.C.D.1【考点】列表法与树状图法.【分析】根据概率的计算公式.颜色搭配总共有4种可能,分别列出搭配正确和搭配错误的可能,进而求出概率即可.【解答】解:用A和a分别表示粉色有盖茶杯的杯盖和茶杯;用B和b分别表示白色有盖茶杯的杯盖和茶杯、经过搭配所能产生的结果如下:Aa、Ab、Ba、Bb所以颜色搭配正确的概率是;故选B.【点评】此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.8.如图,四边形ABCD内接于⊙O,已知∠ADC=140°,则∠AOC的大小是()A.80° B.100°C.60° D.40°【考点】圆内接四边形的性质;圆周角定理.【分析】根据圆内接四边形的性质求得∠ABC=40°,利用圆周角定理,得∠AOC=2∠B=80°.【解答】解:∵四边形ABCD是⊙O的内接四边形,∴∠ABC+∠ADC=180°,∴∠ABC=180°﹣140°=40°.∴∠AOC=2∠ABC=80°.故选A.【点评】此题主要考查了圆周角定理以及圆内接四边形的性质,得出∠B的度数是解题关键.9.如图,抛物线y=﹣x2+bx+c的部分图象如图所示,则关于x的不等式﹣x2+bx+c>0的解的范围是()A.﹣4<x<1 B.﹣3<x<1 C.x<﹣4或x>1 D.x<﹣3或x>1【考点】二次函数与不等式(组).【分析】观察函数图象可得知:该抛物线与x轴的一个交点坐标为(1,0),抛物线的对称轴为x=﹣1.根据抛物线的对称性即可找出另一交点坐标,结合函数图象开口向下,即可得出不等式的解集.【解答】解:∵抛物线与x轴的一个交点为(1,0),抛物线的对称轴为x=﹣1,∴抛物线与x轴的另一交点为(﹣3,0),∵抛物线开口向下,∴关于x的不等式﹣x2+bx+c>0的解集为﹣3<x<1.故选B.【点评】本题考查了二次函数的性质以及二次函数与不等式,解题的关键是求出抛物线与x轴的另一交点坐标.本题属于基础题,难度不大,解集该题型题目时,根据函数图象的上下位置关系得出不等式的解集是关键.10.如图,半径为5的⊙A中,弦BC,ED所对的圆心角分别是∠BAC,∠EAD.已知DE=6,∠BAC+∠EAD=180°,则弦BC的弦心距等于()A.B.C.4 D.3【考点】圆周角定理;勾股定理;旋转的性质.【专题】计算题.【分析】作AH⊥BC于H,作直径CF,连结BF,先利用等角的补角相等得到∠DAE=∠BAF,再证明△ADE≌△ABF,得到DE=BF=6,由AH⊥BC,根据垂径定理得CH=BH,易得AH为△CBF的中位线,然后根据三角形中位线性质得到AH=BF=3.【解答】解:作AH⊥BC于H,作直径CF,连结BF,如图,∵∠BAC+∠EAD=180°,而∠BAC+∠BAF=180°,∴∠DAE=∠BAF,∴=,∴DE=BF=6,∵AH⊥BC,∴CH=BH,而CA=AF,∴AH为△CBF的中位线,∴AH=BF=3.故选:D.【点评】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.也考查了垂径定理和三角形中位线性质.11.已知二次函数y=ax2+bx+c的自变量x与函数值y之间满足下列数量关系:x 2 4 5y=ax2+bx+c 0.37 0.37 4那么(a+b+c)(+)的值为()A.24 B.20 C.10 D.4【考点】二次函数图象上点的坐标特征.【专题】计算题.【分析】把x=2,y=0.37;x=4,y=0.37代入解析式得到b=﹣6a,则可确定抛物线的对称轴为直线x=3,利用抛物线的对称性得到x=1时,y=4,即a+b+c=4,然后利用整体代入的方法计算(a+b+c)(+)的值.【解答】解:∵x=2,y=0.37;x=4,y=0.37,∴,∴12a+2b=0,解得b=﹣6a,∴抛物线的对称轴为直线x=﹣=﹣=3,∴x=1与x=5时的函数值相等,∴x=1时,y=4,即a+b+c=4,∴(a+b+c)(+)=4×(﹣)=4×(﹣)=24.故选A.【点评】本题考查了二次函数图形上点的坐标特征:利用抛物线上的点满足抛物线解析式,可判断点是否在抛物线上或确定点的坐标.12.二次函数的复习课中,夏老师给出关于x的函数y=2kx2﹣(4k+1)x﹣k+1(k为实数).夏老师:请独立思考,并把探索发现的与该函数有关的结论(性质)写到黑板上.学生独立思考后,黑板上出现了一些结论.夏老师作为活动一员,又补充了一些结论,并从中选择了如下四条:①存在函数,其图象经过点(1,0);②存在函数,该函数的函数值y始终随x的增大而减小;③函数图象有可能经过两个象限;④若函数有最大值,则最大值必为正数,若函数有最小值,则最小值必为负数.上述结论中正确个数为()A.1个B.2个C.3个D.4个【考点】二次函数的性质;二次函数的图象;二次函数图象上点的坐标特征.【分析】①将(1,0)点代入函数,解出k的值即可作出判断;②首先考虑,函数为一次函数的情况,从而可判断为假;③根据②即可作出判断;④当k=0时,函数为一次函数,无最大之和最小值,当k≠0时,函数为抛物线,求出顶点的纵坐标表达式,即可作出判断【解答】解:①将(1,0)代入可得:2k﹣(4k+1)﹣k+1=0,解得:k=0,此选项正确.②当k=0时,y=﹣x+1,该函数的函数值y始终随x的增大而减小;此选项正确;③y=﹣x+1,经过3个象限,此选项错误;④当k=0时,函数无最大、最小值;k≠0时,y=﹣,当k>0时,有最小值,最小值为负;当k<0时,有最大值,最大值最为正;此选项正确.正确的是①②④.故选:C.【点评】此题考查二次函数的性质,一次函数的性质,利用举特例的方法是解决问题常用方法.二.填空题13.抛物线y=x2﹣1的顶点坐标是(0,﹣1).【考点】二次函数的性质.【分析】形如y=ax2+k的顶点坐标为(0,k),据此可以直接求顶点坐标.【解答】解:抛物线y=x2﹣1的顶点坐标为(0,﹣1).故答案是:(0,﹣1).【点评】本题考查了二次函数的性质.二次函数的顶点式方程y=a(x﹣k)2+h的顶点坐标是(k,h),对称轴方程是x=k.14.事件A发生的概率为,大量重复做这种试验,事件A平均每100次发生的次数是 5 .【考点】概率的意义.【分析】根据概率的意义解答即可.【解答】解:事件A发生的概率为,大量重复做这种试验,则事件A平均每100次发生的次数为:100×=5.故答案为:5.【点评】本题考查了概率的意义,熟记概念是解题的关键.15.如图,AB是⊙O的直径,弦CD⊥AB,垂足为E,连接AC.若∠CAB=22.5°,CD=8cm,则⊙O的半径为4 cm.【考点】垂径定理;等腰直角三角形;圆周角定理.【专题】计算题.【分析】连接OC,如图所示,由直径AB垂直于CD,利用垂径定理得到E为CD的中点,即CE=DE,由OA=OC,利用等边对等角得到一对角相等,确定出三角形COE为等腰直角三角形,求出OC的长,即为圆的半径.【解答】解:连接OC,如图所示:∵AB是⊙O的直径,弦CD⊥AB,∴CE=DE=CD=4cm,∵OA=OC,∴∠A=∠OCA=22.5°,∵∠COE为△AOC的外角,∴∠COE=45°,∴△COE为等腰直角三角形,∴OC=CE=4cm,故答案为:4【点评】此题考查了垂径定理,等腰直角三角形的性质,以及圆周角定理,熟练掌握垂径定理是解本题的关键.16.将抛物线y=2x2﹣12x+16绕它的顶点旋转180°,所得抛物线的解析式是y=﹣2(x﹣3)2﹣2,.【考点】二次函数图象与几何变换.【分析】根据抛物线解析式间的关系,可得顶点式解析式,根据绕它的顶点旋转180°,可得顶点相同,开口方向相反,可得答案.【解答】解:y=2x2﹣12x+16,顶点式y=2(x﹣3)2﹣2,抛物线y=2x2﹣12x+16绕它的顶点旋转180°,所得抛物线的解析式是 y=﹣2(x﹣3)2﹣2,故答案为:y=﹣2(x﹣3)2﹣2.【点评】本题考查了二次函数图象与几何变换,利用了绕定点旋转的规律.17.2013年5月26日,中国羽毛球队蝉联苏迪曼杯团体赛冠军,成就了首个五连冠霸业.比赛中羽毛球的某次运动路线可以看作是一条抛物线(如图).若不考虑外力因素,羽毛球行进高度y (米)与水平距离x(米)之间满足关系,则羽毛球飞出的水平距离为 5 米.【考点】二次函数的应用.【分析】根据羽毛球飞出的水平距离即为抛物线与x轴正半轴交点到原点的距离,进而求出即可.【解答】解:当y=0时,0=﹣x2+x+,解得:x1=﹣1(舍去),x2=5,故羽毛球飞出的水平距离为5m.故答案为:5.【点评】此题主要考查了二次函数的应用,根据已知得出图象与x轴交点坐标是解题关键.18.如图为一个半径为4m的圆形广场,其中放有六个宽为1m的长方形临时摊位,这些摊位均有两个顶点在广场边上,另两个顶点紧靠相邻摊位的顶点,则每个长方形摊位的长为m.【考点】正多边形和圆.【专题】应用题.【分析】设圆心是O,连接OA,OB,作OC于BC垂直.设长方形的摊位长是2xm,在直角△OAD和直角△OBC中,利用勾股定理和三角函数表示出OC和OD的长,根据OC﹣OD=1即可列方程求得.【解答】解:设圆心是O,连接OA,OB,作OC于BC垂直.设长方形的摊位长是2xm,在直角△OAD中,∠AOD=30°,AD=xm,则OD=xm,在直角△OBC中,OC==,∵OC﹣OD=CD=1,∴﹣x=1,解得:x=,则2x=.故答案是:.【点评】本题考查了正多边形的计算,解正多边形的问题最常用的方法是转化为直角三角形的计算问题,解方程是本题的关键.三.解答题(本大题有8小题,共78分)19.在平面直角坐标系中,点A的坐标是(0,3),点B的坐标是(﹣4,0),将△AOB绕点A逆时针旋转90°得到△AEF,点O,B对应点分别是E,F,请在图中画出△AEF,并写出点E,F的坐标.【考点】作图-旋转变换.【专题】作图题;平移、旋转与对称.【分析】以A为旋转中心,△AOB绕点A逆时针旋转90°得到△AEF,如图所示,确定出E与F坐标即可.【解答】解:如图所示,△AEF就是所求作的三角形;根据图形得:点E的坐标是(3,3),点F的坐标是(3,﹣1).【点评】此题考查了作图﹣旋转性质,熟练掌握旋转的性质是解本题的关键.20.已知二次函数的图象经过点(0,3),顶点坐标为(1,4),(1)求这个二次函数的解析式;(2)求图象与x轴交点A、B两点的坐标;(3)图象与y轴交点为点C,求三角形ABC的面积.【考点】抛物线与x轴的交点;待定系数法求二次函数解析式.【专题】计算题.【分析】(1)设出二次函数的顶点式y=a(x﹣1)2+4,将点(0,3)代入解析式,求出a的值即可得到函数解析式;(2)令y=0,据此即可求出函数与x轴交点的横坐标,从而得到图象与x轴交点A、B两点的坐标;(3)由于知道C点坐标,根据A、B的坐标,求出AB的长,利用三角形的面积公式求出三角形的面积.【解答】解:(1)设所求的二次函数的解析式为y=a(x﹣1)2+4,把x=0,y=3代入上式,得:3=a(0﹣1)2+4,解得:a=﹣1,∴所求的二次函数解析式为y=﹣(x﹣1)2+4,即y=﹣x2+2x+3.(2)当y=0时,0=﹣x2+2x+3,解得:x1=﹣1,x2=3,∴图象与x轴交点A、B两点的坐标分别为(﹣1,0),(3,0),(3)由题意得:C点坐标为(0,3),AB=4,∴S△ABC=×4×3=6.【点评】本题考查了抛物线与x轴的交点,利用函数与方程的关系,分别令x=0、y=0,据此即可求出与坐标轴的交点.21.一个不透明的布袋里装有2个白球,1个黑球和若干个红球,它们除颜色外其余都相同,从中任意摸出1个球,是白球的概率为.(1)布袋里红球有多少个?(2)先从布袋中摸出1个球后不放回,再摸出1个球,请用列表法或画树状图等方法求出两次摸到的球都是白球的概率.【考点】列表法与树状图法;概率公式.【分析】(1)设红球的个数为x,根据白球的概率可得关于x的方程,解方程即可;(2)画出树形图,即可求出两次摸到的球都是白球的概率.【解答】解:(1)设红球的个数为x,由题意可得:,解得:x=1,经检验x=1是方程的根,即红球的个数为1个;(2)画树状图如下:∴P(摸得两白)==.【点评】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.22.(2015•威海)如图,在△ABC中,AB=AC,以AC为直径的⊙O交AB于点D,交BC于点E.(1)求证:BE=CE;(2)若BD=2,BE=3,求AC的长.【考点】相似三角形的判定与性质;等腰三角形的性质;圆周角定理.【专题】证明题.【分析】(1)连结AE,如图,根据圆周角定理,由AC为⊙O的直径得到∠AEC=90°,然后利用等腰三角形的性质即可得到BE=CE;(2)连结DE,如图,证明△BED∽△BAC,然后利用相似比可计算出AB的长,从而得到AC的长.【解答】(1)证明:连结AE,如图,∵AC为⊙O的直径,∴∠AEC=90°,∴AE⊥BC,而AB=AC,∴BE=CE;(2)连结DE,如图,∵BE=CE=3,∴BC=6,∵∠BED=∠BAC,而∠DBE=∠CBA,∴△BED∽△BAC,∴=,即=,∴BA=9,∴AC=BA=9.【点评】本题考查了相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形.也考查了角平分线的性质和圆周角定理.23.(2015•义乌市)如果抛物线y=ax2+bx+c过定点M(1,1),则称此抛物线为定点抛物线.(1)张老师在投影屏幕上出示了一个题目:请你写出一条定点抛物线的一个解析式.小敏写出了一个答案:y=2x2+3x﹣4,请你写出一个不同于小敏的答案;(2)张老师又在投影屏幕上出示了一个思考题:已知定点抛物线y=﹣x2+2bx+c+1,求该抛物线顶点纵坐标的值最小时的解析式,请你解答.【考点】二次函数图象上点的坐标特征;二次函数的性质.【分析】(1)根据顶点式的表示方法,结合题意写一个符合条件的表达式则可;(2)根据顶点纵坐标得出b=1,再利用最小值得出c=﹣1,进而得出抛物线的解析式.【解答】解:(1)依题意,选择点(1,1)作为抛物线的顶点,二次项系数是1,根据顶点式得:y=x2﹣2x+2;(2)∵定点抛物线的顶点坐标为(b,c+b2+1),且﹣1+2b+c+1=1,∴c=1﹣2b,∵顶点纵坐标c+b2+1=2﹣2b+b2=(b﹣1)2+1,∴当b=1时,c+b2+1最小,抛物线顶点纵坐标的值最小,此时c=﹣1,∴抛物线的解析式为y=﹣x2+2x.【点评】本题考查抛物线的形状与抛物线表达式系数的关系,首先利用顶点坐标式写出来,再化为一般形式.24.(2013•青岛)某商场要经营一种新上市的文具,进价为20元/件.试营销阶段发现:当销售单价是25元时,每天的销售量为250件;销售单价每上涨1元,每天的销售量就减少10件.(1)写出商场销售这种文具,每天所得的销售利润w(元)与销售单价x(元)之间的函数关系式;(2)求销售单价为多少元时,该文具每天的销售利润最大;(3)商场的营销部结合上述情况,提出了A、B两种营销方案:方案A:该文具的销售单价高于进价且不超过30元;方案B:每天销售量不少于10件,且每件文具的利润至少为25元请比较哪种方案的最大利润更高,并说明理由.【考点】二次函数的应用.【分析】(1)根据利润=(销售单价﹣进价)×销售量,列出函数关系式即可;(2)根据(1)式列出的函数关系式,运用配方法求最大值;(3)分别求出方案A、B中x的取值范围,然后分别求出A、B方案的最大利润,然后进行比较.【解答】解:(1)由题意得,销售量=250﹣10(x﹣25)=﹣10x+500,则w=(x﹣20)(﹣10x+500)=﹣10x2+700x﹣10000;(2)w=﹣10x2+700x﹣10000=﹣10(x﹣35)2+2250.∵﹣10<0,∴函数图象开口向下,w有最大值,当x=35时,w最大=2250,故当单价为35元时,该文具每天的利润最大;(3)A方案利润高.理由如下:A方案中:20<x≤30,故当x=30时,w有最大值,此时wA=2000;B方案中:,故x的取值范围为:45≤x≤49,∵函数w=﹣10(x﹣35)2+2250,对称轴为直线x=35,∴当x=45时,w有最大值,此时wB=1250,∵wA >wB,∴A方案利润更高.【点评】本题考查了二次函数的应用,难度较大,最大销售利润的问题常利用函数的增减性来解答,我们首先要吃透题意,确定变量,建立函数模型,然后结合实际选择最优方案.其中要注意应该在自变量的取值范围内求最大值(或最小值),也就是说二次函数的最值不一定在x=时取得.25.(2015秋•宁波期中)已知AB是⊙O的直径,半径OC⊥AB,D为上任意一点,E为弦BD上一点,且 BE=AD.(1)试判断△CDE的形状,并加以证明.(2)若∠ABD=15°,AO=4,求DE的长.。
浙江省杭州市九年级(上)期中数学试卷-(含答案)
九年级(上)期中数学试卷一、选择题(本大题共10小题,共30.0分)1.在下列图形中,既是轴对称图形又是中心对称图形的是()A. B. C. D.2.若圆内接四边形ABCD的内角满足:∠A:∠B:∠C=2:4:7,则∠D=()A. B. C. D.3.已知⊙O的弦AB长为8厘米,弦AB的弦心距为3厘米,则⊙O的直径等于()A. 5厘米B. 8厘米C. 10厘米D. 12厘米4.设P是抛物线y=2x2+4x+5的顶点,则点P位于()A. 第一象限B. 第二象限C. 第三象限D. 第四象限5.下列各式的变形中,正确的是()A. B.C. D.6.如图是某石圆弧形(劣弧)拱桥,其中跨度AB=24米,拱高CD=8米,则该圆弧的半径r=()A. 8 米B. 12 米C. 13米D. 15 米7.如图,已知△ABC为⊙O的内接三角形,若∠ABC+∠AOC=90°,则∠AOC=()A.B.C.D.8.在长为3cm,4cm,6cm,7cm的四条线段中任意选取三条线段,这三条线段能构成三角形的概率是()A. B. C. D.9.抛物线y=-x2+2x-2经过平移得到抛物线y=-x2,平移方法是()A. 向左平移1个单位,再向下平移1个单位B. 向左平移1个单位,再向上平移1个单位C. 向右平移1个单位,再向上平移1个单位D. 向右平移1个单位,再向下平移1个单位10.设抛物线y=ax2+bx+c(a<0)的顶点在线段AB上运动,抛物线与x轴交于C,D两点(C在D的左侧).若点A,B的坐标分别为(-2,3)和(1,3),给出下列结论:①c<3;②当x<-3时,y随x的增大而增大;③若点D的横坐标最大值为5,则点C的横坐标最小值为-5;④当四边形ACDB为平行四边形时,a=-.其中正确的是()A. ①②④B. ①③④C. ②③D. ②④二、填空题(本大题共6小题,共24.0分)11.已知圆O的半径长为6,若弦AB=6,则弦AB所对的圆心角等于______ .12.已知一次函数的图象经过点A(0,2)和点B(2,-2),则y关于x的函数表达式为______ ;当-2<y≤4时,x的取值范围是______ .13.A,B两同学可坐甲,乙,丙三辆车中的任意一辆,则A,B两同学均坐丙车的概率是______ .14.在平面直角坐标系中,以点(1,1)为圆心为半径作圆O,则圆O与坐标轴的交点坐标是______.15.在直径为20的⊙O中,弦AB,CD相互平行.若AB=16,CD=10,则弦AB,CD之间的距离是______ .16.设直线y=-x+m+n与双曲线y=交于A(m,n)(m≥2)和B(p,q)两点.设该直线与y轴交于点C,O是坐标原点,则△OBC的面积S的取值范围是______ .三、解答题(本大题共7小题,共66.0分)17.计算:×[(-2)-3-23].18.在一个不透明的袋中装有32个黄球,30个黑球,18个红球,它们仅有颜色区别.(1)求从袋中任意摸出一个球是黄球的概率;(2)若从袋中取出若干个黑球(不放回),设再从袋中摸出一个球是黑球的概率是,问取出了多少个黑球?19.在平面直角坐标系中,若抛物线y=x2-5x-6与x轴分别交于A,B两点,且点A在点B的左边,与y轴交于C点.(1)求抛物线的顶点坐标和对称轴,以及抛物线与坐标轴的交点坐标,并画出这条抛物线;(2)设O为坐标原点,△BOC的BC边上的高为h,求h的值.20.设点A、B、C在⊙O上,过点O作OF⊥AB,交⊙O于点F.若四边形ABCO是平行四边形,求∠BAF的度数.21.某商店购进一批玩具,购进的单价是20元.调查发现,售价是30元时,月销售量是320件,而售价每上涨1元,月销售量就减少10件,但每件玩具售价不能高于40元.设每件玩具的销售单价上涨了x元时(x为正整数),月销售利润为y元.(1)求y与x的函数关系式,并直接写出自变量x的取值范围;(2)每件玩具的售价定为多少元时,可使月销售利润最大?最大的月销售利润是多少?22.如图,已知△ACB和△DCE为等边三角形,点A,D,E在同一直线上,连结BE.(1)求证:AD=BE;(2)求∠AEB的度数;(3)若△ACB和△DCE为等腰三角形,且∠ACB=∠DCE=90°,点A,D,E在同一直线上,CM⊥DE于点M,连结BE.①计算∠AEB的度数;②写出线段CM,AE,BE之间的数量关系,并说明理由.23.设二次函数y=-x2+bx+c的图象与坐标轴交于A(0,10),B(-4,0),C三点.(1)求二次函数的表达式及点C的坐标;(2)设点F为二次函数位于第一象限内图象上的动点,点D的坐标为(0,4),连结CD,CF,DF,记三角形CDF的面积为S.求出S的函数表达式,并求出S的最大值.答案和解析1.【答案】D【解析】解:A、该图形是轴对称图形,但不是中心对称图形,故本选项错误;B、该图形既不是轴对称图形也不是中心对称图形,故本选项错误;C、该图形既不是轴对称图形也不是中心对称图形,故本选项错误;D、该图形既是轴对称图形也是中心对称图形,故本选项正确.故选:D.根据轴对称图形与中心对称图形的概念求解.本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后两部分重合.2.【答案】B【解析】解:∵四边形ABCD是圆内接四边形,∴∠A+∠C=180°,∴∠A=2×=40°,∠B=7×=140°,则∠C=4×=80°,∠D=180°-80°=100°,故选:B.根据圆内接四边形的性质列出方程,解方程即可.本题考查的是圆内接四边形的性质,掌握圆内接四边形的对角互补是解题的关键.3.【答案】C【解析】解:连接OC,∵OC⊥AB,∴AC=AB=4cm,在直角△AOC中,OA===5cm.则直径是10cm.故选C.根据垂径定理即可求得AC的长,连接OC,在直角△AOC中根据勾股定理即可求得半径OA的长,则直径即可求解.本题考查了垂径定理,以及勾股定理,根据题意画出图形,利用数形结合求解是解答此题的关键.4.【答案】B【解析】解:∵y=2x2+4x+5=2(x+1)2+3,∴抛物线顶点坐标为(-1,3),∴P点坐标为(-1,3),∴点P在第二象限,故选B.把解析式化为顶点式可求得P点坐标,则可求得答案.本题主要考查二次函数的性质,掌握二次函数的顶点式是解题的关键,即在y=a(x-h)2+k中,对称轴为x=h,顶点坐标为(h,k).5.【答案】D【解析】解:∵x6÷x=x5,故选项A错误,∵=,故选项B错误,∵x2+x3不能合并成一项,故选项C错误,∵,故选项D正确,故选D.计算出各个选项中式子的正确结果即可判断哪个选项是正确的,本题得以解决.本题考查分式的混合运算、合并同类项、同底数幂的除法、配方法的应用,解答本题的关键是明确它们各自的计算方法.6.【答案】C【解析】解:拱桥的跨度AB=24m,拱高CD=8m,∴AD=12m,利用勾股定理可得:122=AO2-(AO-8)2,解得AO=13m.即圆弧半径为13米.故选C.将拱形图进行补充,构造直角三角形,利用勾股定理和垂径定理解答.本题考查了垂径定理的应用,根据题意作出辅助线,构造出直角三角形是解答此题的关键.7.【答案】C【解析】解:∵∠ABC+∠AOC=90°,∠ABC=,∴∠AOC=60°,故选:C.根据圆周角定理可得∠ABC=,再由∠ABC+∠AOC=90°可得∠AOC的度数.此题主要考查了圆周角定理,关键是掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.8.【答案】A【解析】解:由题意知,本题是一个古典概率.∵试验发生包含的基本事件为3,4,6;3,4,7;4,6,7;3,6,7共4种;而满足条件的事件是可以构成三角形的事件为:3,4,6;4,6,7;3,6,7共3种;∴以这三条线段为边可以构成三角形的概率,故选:A.根据古典概率试验发生包含的基本事件可以列举出共4种;而满足条件的事件是可以构成三角形的事件可以列举出共3种;根据古典概型概率公式得到结果.本题考查了概率公式以及三角形成立的条件,解题的关键是正确数出组成三角形的个数,要做到不重不漏,要遵循三角形三边之间的关系.9.【答案】B【解析】解:∵y=-x2+2x-2=-(x-1)2-1得到顶点坐标为(1,-1),平移后抛物线y=-x2的顶点坐标为(0,0),∴平移方法为:向左平移1个单位,再向上平移1个单位.故选B.由抛物线y=-x2+2x-2=-(x-1)2-1得到顶点坐标为(1,-1),而平移后抛物线y=-x2的顶点坐标为(0,0),根据顶点坐标的变化寻找平移方法.本题考查了抛物线的平移规律.关键是确定平移前后抛物线的顶点坐标,寻找平移规律.10.【答案】D【解析】解:∵点A,B的坐标分别为(-2,3)和(1,3),∴线段AB与y轴的交点坐标为(0,3),又∵抛物线的顶点在线段AB上运动,抛物线与y轴的交点坐标为(0,c),∴c≤3,(顶点在y轴上时取“=”),故①错误;∵抛物线的顶点在线段AB上运动,∴当x<-2时,y随x的增大而增大,因此,当x<-3时,y随x的增大而增大,故②正确;若点D的横坐标最大值为5,则此时对称轴为直线x=1,根据二次函数的对称性,点C的横坐标最小值为-2-4=-6,故③错误;根据顶点坐标公式,=3,令y=0,则ax2+bx+c=0,设方程的两根为x1,x2,则CD2=(x1+x2)2-4x1x2=(-)2-4×=,根据顶点坐标公式,=3,∴=-12,∴CD2=×(-12)=-,∵四边形ACDB为平行四边形,∴CD=AB=1-(-2)=3,∴-=32=9,解得a=-,故④正确;综上所述,正确的结论有②④.故选D.根据顶点在线段AB上抛物线与y轴的交点坐标为(0,c)可以判断出c的取值范围,得到①错误;根据二次函数的增减性判断出②正确;先确定x=1时,点D的横坐标取得最大值,然后根据二次函数的对称性求出此时点C的横坐标,即可判断③错误;令y=0,利用根与系数的关系与顶点的纵坐标求出CD的长度的表达式,然后根据平行四边形的对边平行且相等可得AB=CD,然后列出方程求出a的值,判断出④正确.本题考查了二次函数的综合题型,主要利用了二次函数的顶点坐标,二次函数的对称性,根与系数的关系,平行四边形的对边平行且相等的性质,解题的关键是灵活运用所学知识,题目比较难,属于选择题中的压轴题.11.【答案】120°【解析】解:如图,作OC⊥AB于C,连接OA、OB,则AC=BC=AB=3,在Rt△AOC中,OC==3,∴OC=OA,∴∠A=30°,∴∠AOB=180°-30°-30°=120°.∴弦AB所对的圆心角的度数为120°.故答案为120°.如图,作OC⊥AB于C,连接OA、OB,利用垂径定理得到AC=BC=AB=3,再利用勾股定理计算出OC==3,则OC=OA,所以∠A=30°,则可计算出∠AOB,从而得弦AB所对的圆心角的度数.本题考查了圆心角、弧、弦的关系:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.说明:同一条弦对应两条弧,其中一条是优弧,一条是劣弧,而在本定理和推论中的“弧”是指同为优弧或劣弧.12.【答案】y=-2x+2;-1≤x<2【解析】解:设一次函数解析式为y=kx+b,把A(0,2)、B(2,-2)代入得:,解得:.则一次函数解析式为y=-2x+2;∵y=-2x+2,∴函数y随x的增大而减小.∵当y=-2时,x=2;当y=4时,x=-1,∴当-2<y≤4时,-1≤x<2.故答案为:y=-2x+2,-1≤x<2.设一次函数解析式为y=kx+b,把A与B坐标代入求出k与b的值,即可确定出一次函数表达式;再分别令y=-2与y=4求出x的对应值即可.此题考查了待定系数法求一次函数解析式,一次函数的图象与性质,熟练掌握待定系数法是解本题的关键.13.【答案】【解析】解:画树状图得:∵共有9种等可能的结果,A,B两同学均坐丙车的有1种情况,∴A,B两同学均坐丙车的概率是:.故答案为:.首先根据题意画出树状图,然后由树状图求得所有等可能的结果与A,B两同学均坐丙车的情况,再利用概率公式即可求得答案.此题考查了列表法或树状图法求概率.注意用到的知识点为:概率=所求情况数与总情况数之比.14.【答案】(0,3)、(0,-1)、(3,0)、(-1,0)【解析】解:如图,设⊙P与坐标轴分别交于A、B、C、D.作PE⊥OA于E,PF⊥OD于F.易知四边形PEOF是正方形,边长为1,由勾股定理可得AE=DF=BF=CE=2,∴A(0,3),B(-1,0),C(0,-1),D(3,0),故答案为(0,3)、(0,-1)、(3,0)、(-1,0);如图,设⊙P与坐标轴分别交于A、B、C、D.作PE⊥OA于E,PF⊥OD于F.易知四边形PEOF是正方形,边长为1,由勾股定理可得AE=DF=BF=CE=2,由此即可解决问题.本题考查勾股定理、直线与圆的位置关系、正方形的判定、坐标与图象的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.15.【答案】±6【解析】解:过点O作OE⊥AB于E,交CD于F,连接OA、OC,如图,∵AB∥CD,∴OF⊥CD,∴AE=BE=AB=8,CF=DF=CD=5,在Rt△AOE中,OE==6,在Rt△OCF中,OF==5,当点O在AB和CD之间时,EF=OE+OF=5+6,当点O不在AB和CD之间时,EF=OE-OF=5-6,∴AB、CD之间的距离为±6.故答案为±6.过点O作OE⊥AB于E,交CD于F,连接OA、OC,如图,利用平行线的性质得OF⊥CD,则根据垂径定理得到AE=BE=AB=8,CF=DF=CD=5,再利用勾股定理计算出OE,OF,然后分类讨论:当点O在AB和CD之间时,EF=OE+OF,当点O不在AB和CD之间时,EF=OE-OF.本题考查了垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.注意分类讨论思想的应用.16.【答案】<S≤【解析】解:如图,直线y=-x+m+n与x轴交于点D,C点坐标为(0,m+n),D点坐标为(m+n,0),则△OCD为等腰直角三角形,∴点A与点B关于直线y=x对称,则B点坐标为(n,m),∴S=S△OBC=(m+n)•n=mn+n2,∵点A(m,n)在双曲线y=上,∴mn=1,即n=∴S=+()2∵m≥2,∴0<≤,∴0<()2≤,∴<S≤.故答案为:<S≤.先确定直线y=-x+m+n与坐标轴的交点坐标,即C点坐标为(0,m+n),D点坐标为(m+n,0),则△OCD为等腰直角三角形,根据反比例函数的对称性得到点A与点B关于直线y=x对称,则B点坐标为(n,m),根据三角形面积公式得到S△OBC=(m+n)•n,然后mn=1,m≥2确定S的范围.本题考查了反比例函数图象与一次函数的交点问题,关键是掌握反比例函数与一次函数的图象的交点坐标满足两函数的解析式.17.【答案】解:×[(-2)-3-23]=8×[-8]=-1-64=-65.【解析】根据算术平方根、立方以及负整数指数幂进行计算即可.本题考查了实数的运算,掌握运算法则是解题的关键.18.【答案】解:(1)∵在一个不透明的袋中装有32个黄球,30个黑球,18个红球,它们仅有颜色区别,∴从袋中任意摸出一个球是黄球的概率为:=;(2)设取出了x个黑球,则=,解得x=5,经检验x=5是原方程的解,且符合题意,答:取出了5个黑球.【解析】(1)由在一个不透明的袋中装有32个黄球,30个黑球,18个红球,它们仅有颜色区别,直接利用概率公式求解即可求得答案;(2)首先设取出了x个黑球,由概率公式则可得方程:=,解此方程即可求得答案.此题考查了概率公式的应用.注意根据概率公式得到方程=是关键.19.【答案】解:y=x2-5x-6,y=(x-2.5)2-12.25,抛物线y=x2-5x-6的顶点坐标是(2.5,-12.25),对称轴是直线x=2.5,由x=0得y=-6,抛物线与y轴的交点坐标是(0,-6),由y=0得x2-5x-6=0,解得x1=-1,x2=6,抛物线与x轴的交点坐标是(-1,0),(6,0),画出抛物线为:(2)BC==,则h=6×6÷6=.【解析】(1)把二次函数y=x2-5x-6化为y=(x-2.5)2-12.25即可求出顶点及对称轴,由x=0得y=-6,由y=0得x2-5x-6=0,可求抛物线与坐标轴的交点坐标,再通过列表、描点、连线画出该函数图象即可;(2)先根据勾股定理求出BC,再根据等积法求出h的值.本题主要考查了二次函数的图象,性质及抛物线与坐标轴的交点,解题的关键是熟记二次函数的图象,性质.20.【答案】解:连结OB,∵四边形ABCO是平行四边形,∴OC=AB,又OA=OB=OC,∴OA=OB=AB,∴△AOB为等边三角形,∴∠BOA=60°,∵OF⊥OC,OC∥AB,∴OF⊥AB,∴∠BOF=∠AOF=∠BOA=30°,由圆周角定理得∠BAF=∠BOF=15°.【解析】连结OB,利用平行四边形的性质可得OC=AB,然后证明△AOB为等边三角形,进而可得∠BOA=60°,然后利用等腰三角形的性质可得∠BOF=∠AOF=∠BOA=30°,再根据圆周角定理可得答案.此题主要考查了平行四边形的性质,圆周角定理,以及等腰三角形的性质,求出∠BOA=60°是解决问题的关键.21.【答案】解:(1)依题意得y=(30+x-20)(320-10x)=-10x2+220x+3200,自变量x的取值范围是0<x≤10且x为正整数;(2)y=-10x2+220x+3200=-10(x-11)2+4410,∵0<x≤10且x为正整数,当x=10时,y有最大值,最大值为:-10(10-11)2+4410=4400(元),答:每件玩具的售价定为40元时,可使月销售利润最大,最大的月销售利润是4400元.【解析】(1)根据:总利润=单件利润×销售量即可得函数解析式;(2)利用二次函数的性质结合自变量的取值范围即可得.本题主要考查二次函数的实际应用,理解题意找到题目蕴含的相等关系列出函数解析式是解题的关键.22.【答案】(1)证明:如图1中,∵△ACB和△DCE均为等边三角形,∴CA=CB,CD=CE,∠ACB=∠DCE=60°.∴∠ACD=∠BCE,在△ACD和△BCE中,∵AC=BC,∠ACD=∠BCE,CD=CE,∴△ACD≌△BCE(SAS),∴AD=BE.(2)∵△ACD≌△BCE∴∠ADC=∠BEC.∵△DCE为等边三角形,∴∠CDE=∠CED=60°.∵点A,D,E在同一直线上,∴∠ADC=120°,∴∠BEC=120°,∴∠AEB=∠BEC-∠CED=60°.(3)①如图2∵△ACB和△DCE均为等腰直角三角形,且∠ACB=∠DCE=90°∴CA=CB,CD=CE,∠ACD=∠ACB-∠DCB=∠DCE-∠DCB=∠BCE,在△ACD和△BCE中,∵CA=CB,∠ACD=∠BCE,CD=CE,∴△ACD≌△BCE(SAS),∴AD=BE,∠ADC=∠BEC.∵△DCE为等腰直角三角形,∴∠CDE=∠CED=45°.∵点A,D,E在同一直线上,∴∠ADC=135°,∴∠BEC=135°,∴∠AEB=∠BEC-∠CED=90°,②∵CD=CE,CM⊥DE于M,∴DM=ME,∵∠DCE=90°,∴DM=ME=CM,∴AE=AD+DE=BE+2CM.【解析】(1)根据SAS证明△ACD≌△BCE即可.(2))由△ACD≌△BCE,推出∠ADC=∠BEC,由△DCE为等边三角形,推出∠CDE=∠CED=60°.根据∠AEB=∠BEC-∠CED=60°时间即可.(3)①由△ACD≌△BCE(SAS),推出AD=BE,∠ADC=∠BEC.由△DCE为等腰直角三角形,推出∠CDE=∠CED=45°.由点A,D,E在同一直线上,推出∠ADC=135°,∠BEC=135°,由∠AEB=∠BEC-∠CED=90°即可证明.②由CD=CE,CM⊥DE于M,推出DM=ME,由∠DCE=90°,推出DM=ME=CM,可得AE=AD+DE=BE+2CM.本题考查三角形综合题、等边三角形的判定和性质、等腰直角三角形的性质、全等三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考压轴题.23.【答案】解:(1)把A(0,10),B(-4,0)代入y=-x2+bx+c得;.解得:,所以抛物线的解析式为y=-0.25x2+1.5x+10;当y=0时,-0.25x2+1.5x+10=0,解得x1=-4,x2=10,所以C点坐标为(10,0);(2)连结OF,如图,设F(t,-0.25t2+1.5t+10),∵S四边形OCFD=S△CDF+S△OCD=S△ODF+S△OCF,∴S=S△CDF=S△ODF+S△OCF-S△OCD=×4×t+×10(-0.25t2+1.5t+10)-×4×10,=-1.25t2+9.5t+30.=-1.25(t-3.8)2+48.05,当t=3.8时,S有最大值,最大值为48.05.【解析】(1)把A(0,10),B(-4,0)代入y=-x2+bx+c求出b和c的值即可求出抛物线解析式,进而可求出点C的坐标;(2)连结OF,如图,设F(t,-0.25t2+1.5t+10),由S四边形=S△CDF+S△OCD=S△ODF+S△OCF计算即可.OCFD本题考查了待定系数法求函数解析式,解题的关键是:(1)利用待定系数法求出函数解析式;(2)根据二次函数图象上点的坐标特征得出关于t的方程.本题属于中档题,难度不大,解决该题型题目时,根据点的坐标利用待定系数法求出函数解析式是关键.。
浙教版九年级上册数学期中考试试卷及答案
浙教版九年级上册数学期中考试试题一、单选题1.二次函数2(1)2y x =--的顶点坐标是()A .(1,2)-B .(1,2)-C .(1,2)--D .(1,2)2.将抛物线22y x =的图象先向右平移4个单位,再向下平移3个单位所得的解析式为()A .()2234y x =-+B .()2243y x =+-C .()2243y x =-+D .()2243y x =--3.下列事件中,是必然事件的为()A .3天内会下雨B .打开电视,正在播放广告C .367人中至少有2人公历生日相同D .某妇产医院里,下一个出生的婴儿是女孩4.在圆内接四边形ABCD 中,∠A :∠B :∠C :∠D 的度数之比可能是()A .1:2:3:4B .4:2:1:3C .4:2:3:1D .1:3:2:45.如图,△ABC 内接于⊙O ,∠A=40°,则∠BOC 的度数为()A .20°B .40°C .60°D .80°6.如图,AB 是⊙O 的直径,O 是圆心,弦CD ⊥AB 于E ,AB=10,CD=8,则OE 的长为()A .2B .3C .4D .57.如图,边长为2的正方形ABCD 的顶点A 、B 在一个半径为2的圆上,顶点C 、D 在该圆上.将正方形ABCD 绕点A 逆时针旋转,当点D 第一次落在圆上时,点C 运动的路线长为()A B .23πC .13πD .68.已知点C 、D 是以AB 为直径的半圆的三等分点,弧CD 的长为1π3,则图中阴影部分的面积为()A .1π6B .3π16C .1π24D .1π124+9.如图,二次函数2y ax bx c =++(a≠0)的图象与x 轴交于A 、B 两点,与y 轴交于C 点,且对称轴为x=1,点B 坐标为(﹣1,0).则下面的四个结论:①2a+b=0;②4a -2b +c <0;③ac >0;④当y <0时,x <-1或x >2.其中正确的个数是()A .1B .2C .3D .410.一小球被抛出后,距离地面的高度h(米)和飞行时间t(秒)满足下面函数关系式:h =-5(t -1)2+6,则小球距离地面的最大高度是()A .1米B .5米C .6米D .7米二、填空题11.某一个十字路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当你抬头看信号灯时,是黄灯的概率为_______.12.关于x 的函数22(2)my m x -=+是二次函数,则m 的值是______.13.某公司对一批某一品牌的衬衣的质量抽检结果如下表:抽查件数50100200300400500次品件数416192430则从这批衬衣中任抽1件是次品的概率约为________.14.如图,点A ,B ,C 在圆O 上,∠ACB =54°,则∠ABO 的度数是_____.15.如图,四边形ABCD 内接于⊙O ,F 是 CD上一点,且弧DF=弧BC ,连接CF 并延长交AD 的延长线于点E ,连接AC .若∠ABC =105°,∠BAC =25°,则∠E 的度数为______度.16.已知点A ,B 的坐标分别为(1,0),(2,0).若二次函数y=x 2+(a ﹣3)x+3的图象与线段AB 只有一个交点,则a 的取值范围是_______________________.三、解答题17.已知二次函数223y x x =++(1)求函数图象的对称轴;(2)求函数图象的顶点坐标.18.如图,用一段长为30米的篱笆围成一个一边靠墙的矩形苗圃园,已知墙长为18米,设这个苗圃园垂直于墙的一边长为x 米.(1)若苗圃园的面积为72平方米,求x 的值.(2)若平行于墙的一边长不小于8米,当x 取何值时,这个苗圃园的面积有最大值,最大值是多少?19.甲、乙玩转盘游戏时,把质地相同的两个转盘A 、B 平均分成2份和3份,并在每一份内标有数字如图.游戏规则:甲、乙两人分别同时转动两个转盘各一次,当转盘停止后,指针所在区域的数字之和为偶数时甲获胜;数字之和为奇数时乙获胜.若指针落在分界线上,则需要重新转动转盘.(1)用画树状图或列表的方法,求甲获胜的概率;(2)这个游戏对甲、乙双方公平吗?请判断并说明理由.20.如图,A 、B 、C 、D 是⊙O 上的四点,AB =DC .求证:AC =BD .21.如图,已知二次函数212y x bx c =-++的图象经过()2,0A ,()0,6B -两点.(1)求这个二次函数的解析式;(2)设该二次函数的对称轴与x 轴交于点C ,连接BA ,BC ,求ABC ∆的面积.22.某商品的进价为每件20元,售价为每件25元时,每天可卖出250件.市场调查反映:如果调整价格,一件商品每涨价1元,每天要少卖出10件.(1)求出每天所得的销售利润w(单位:元)与每件涨价x(单位:元)之间的函数关系式;(2)求销售单价为多少元时,该商品每天的销售利润最大;(3)商场的营销部在调控价格方面,提出了A ,B 两种营销方案.方案A :每件商品涨价不超过5元;方案B :每件商品的利润至少为16元.请比较哪种方案的最大利润更高,并说明理由.23.已知:如图,△ABC 内接于⊙O ,AE 是⊙O 的直径,AD ⊥BC 于点D ,∠BAE 与∠CAD 相等吗?若相等,请给出证明;若不相等,请说明理由24.如图,已知O 是Rt ABC 的外接圆,点D 是O 上的一个动点,且C ,D 位于AB 的两侧,联结AD ,BD ,过点C 作CE BD ⊥,垂足为E .延长CE 交O 于点F ,CA ,FD 的延长线交于点P .求证:(1) AF DC =.(2)PAD △是等腰三角形.参考答案1.A【解析】【分析】已知解析式为抛物线的顶点式,根据顶点式的坐标特点,直接写出顶点坐标.【详解】解:二次函数y=(x-1)2-2的顶点坐标是(1,-2).故选A.【点睛】本题主要考查二次函数的性质,掌握二次函数的顶点式是解题的关键,即在y=a(x-h)2+k 中,对称轴为直线x=h,顶点坐标为(h,k).2.D【解析】【分析】易得新抛物线的顶点,根据顶点式及平移前后二次项的系数不变可得新抛物线的解析式.【详解】依题意可知,原抛物线顶点坐标为(0,0),平移后抛物线顶点坐标为(4,-3),又因为平移不改变二次项系数,所以所得抛物线解析式为:y=2(x-4)2-3.故选:D.【点睛】抛物线平移不改变二次项的系数的值,解决本题的关键是得到新抛物线的顶点坐标.熟记平移规则也是解题的关键.3.C【解析】【详解】试题分析:必然事件是一定能够发生的事件,选项A、B、D的结果是不确定的,是随机事件;选项C,一年最多有366天,所以367人中至少有2人公历生日相同是确定能够发生的,是必然事件,故答案选C.考点:必然事件.4.B【解析】【分析】因为圆的内接四边形对角互补,则两对角的和应该相等,比值所占份数也相同,据此求解.【详解】解:∵圆的内接四边形对角互补,∴∠A+∠C=∠B+∠D=180°,∴∠A:∠B:∠C:∠D的可能的值是4:2:1:3.故选B.【点睛】本题考查的是圆内接四边形的性质,熟知圆内接四边形的对角互补是解答此题的关键.5.D【解析】【详解】解:∵∠BOC、∠A是同弧所对的圆心角和圆周角,∴∠BOC=2∠A=80°;故选D.6.B【解析】【分析】先根据垂径定理得出CE的长,再根据勾股定理求出OE即可.【详解】连接OC.∵直径AB=10,∴OC=5.∵CD⊥AB,AB为直径,∴CD=2CE=8,∠OEC=90°,∴CE=4,由勾股定理得:OE ==3.故选:B .【点睛】本题考查了垂径定理和勾股定理,利用垂径定理求出CE 的长是解题的关键.7.A 【解析】【分析】作辅助线求出D AB '∠的大小,进而求出旋转的角度,利用弧长公式即可求解.【详解】分别连接OA 、OB 、O D ¢、OC 、O C '、AC 、A C ',∵OA=OB=AB ,∴△OAB 是等边三角形,∴∠OAB=60 ,同理可得:∠OA D ¢=60 ,∴∠D ¢AB=120 ,∵∠DAB=90 ,∴∠D ¢AD=30 ,由旋转变换的性质可知旋转角为30 ,∵AB=BC=2,∠ABC=90 ,∴=∴点C 运动的路线长为301803π⨯=,故选:A.【点睛】此题考查正方形的性质,旋转的性质,勾股定理,弧长公式,等边三角形的判定及性质,综合掌握各知识点是解题的关键.8.A 【解析】【详解】连接CO DO 、和CD ,如下图所示,C D ,是以AB 为直径的半圆上的三等分点,弧CD 的长为1π3,60COD ∴∠=︒,圆的半周长13ππ3r π==⨯=,1r ∴=,ACD 的面积等于OCD 的面积,∴S阴影=S扇形OCD 260π1π3606⨯==.故选A .9.B 【解析】【详解】解:∵对称轴为x=1,∴bx 12a=-=,b 2a -=,2a b 0+=.故结论①正确,符合题意.∵点B 坐标为(-1,0),∴当x=-2时,4a -2b +c <0,故结论②正确,符合题意.∵图象开口向下,∴a <0.∵图象与y 轴交于正半轴上,∴c >0.∴ac <0,故结论③错误,不符合题意.∵对称轴为x=1,点B 坐标为(-1,0),∴A 点坐标为:(3,0).∴当y <0时,x <-1或x >3.故结论④错误,不符合题意.故选B .10.C 【解析】【详解】试题解析:∵高度h 和飞行时间t 满足函数关系式:h=-5(t-1)2+6,∴当t=1时,小球距离地面高度最大,∴h=-5×(1-1)2+6=6米,故选C .考点:二次函数的应用.11.112【解析】【详解】解:每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,所以黄灯的概率是故答案是:11212.2【解析】【分析】由题意根据二次函数的定义得出m+2≠0且m 2-2=2,进行分析即可求出.【详解】解:∵关于x 的函数22(2)m y m x -=+是二次函数,∴m+2≠0且m 2-2=2,解得:m=2,故答案为:2.【点睛】本题考查解不等式以及解一元二次方程和二次函数的定义,能根据二次函数的定义得出m+2≠0且m 2-2=2是解答此题的关键.13.0.06【解析】【分析】先计算抽查总体数河次品件数,再由概率公式计算即可.【详解】解:抽查总数m=50+100+200+300+400+500=1550,次品件数n=0+4+16+19+24+30=93,则P(抽到次品)=930.061550=.【点睛】本题考查了运用概率公式求解概率.14.36°【解析】【分析】先利用圆周角定理得到2108AOB ACB ∠=∠=︒然后根据等腰三角形的性质和三角形内角和计算ABO ∠的度数.【详解】根据已知条件得,2254108AOB ACB ==⨯︒=︒∠∠,∵OA OB =,∴ABO BAO ∠=∠,∴11(180)(180108)3622ABO AOB =︒-=︒-︒=︒∠∠,故答案为:36︒.【点睛】本题考查了圆周角定理、圆的性质、等腰三角形的性质、三角形内角和等知识,解答本题的关键是熟练掌握运用圆周角定理.15.50【解析】【分析】根据圆内接四边形的性质求出∠ADC 的度数,由圆周角定理得出∠DCE 的度数,根据三角形外角的性质即可得出结论.【详解】∵四边形ABCD 内接于⊙O ,∠ABC =105°,∴∠ADC =180°﹣∠ABC =180°﹣105°=75°,∵ DFBC =,∠BAC =25°,∴∠DCE =∠BAC =25°,∴∠E =∠ADC ﹣∠DCE =75°﹣25°=50°,故答案为:50.【点睛】本题考查了圆内接四边形的问题,掌握圆内接四边形的性质、圆周角定理、三角形外角的性质是解题的关键.16.﹣1≤a <﹣12或a=3﹣【解析】【分析】根据题意,当二次函数顶点在x 轴下方或当二次函数的顶点在x 轴上时,分情况讨论问题.借助于根的判别式即可解答.【详解】依题意,应分为两种情况讨论,①当二次函数顶点在x 轴下方,若当x=1时,y <0且当x=2时,y≥0,即133042330a a +-+⎧⎨+-+≥⎩()<(),解得此不等式组无解;若当x=2时,y <0且当x=1时,y≥0,即133042330a a +-+≥⎧⎨+-+⎩()()<,解得:﹣1≤a 12-<;②当二次函数的顶点在x 轴上时,△=0,即(a ﹣3)2﹣12=0,解得:为x 32a -=-,可知132a -≤-≤2,故a=3﹣故答案为﹣1≤a 12-<或a=3﹣【点睛】本题是二次函数综合题,主要考查了二次函数对称轴的确定方法,一元二次方程的根的判别式,用分类讨论的数学思想,是解答本题的关键.17.(1)直线1x =-;(2)()1,2-【解析】【分析】(1)把二次函数的一般式用配方法转化为顶点式,即可写出函数图象的对称轴;(2)根据二次函数的顶点式,即可写出函数图象的顶点坐标【详解】解:(1)∵y=x 2+2x+3=(x+1)2+2,∴抛物线的对称轴方程为x=-1;(2)∵y=x 2+2x+3=(x+1)2+2,∴抛物线的顶点坐标为(-1,2);【点睛】本题主要考查了二次函数的性质,熟练掌握把一般式化成顶点式的方法是解题的关键18.(1)12x =;(2)当152x =时,苗圃园的面积有最大值,最大值是2252平方米.【解析】【分析】(1)根据题意列出一元二次方程,然后解方程即可得出答案;(2)先根据题意求出x 的取值范围,然后表示出苗圃园的面积,再利用二次函数的性质求最大值即可.【详解】(1)依题意可列方程()30272-=x x ,即215360x x -+=.解得13x =,212x =.当3x =时,3022418x -=>,故舍去;当12x =时,302618x -=<,12x ∴=.(2)依题意,得830218x ≤-≤,解得611x ≤≤.面积()()215225302261122S x x x x ⎛⎫=-=--+≤≤ ⎪⎝⎭.当152x =时,S 有最大值,2252S =最大;答:当152x =时,苗圃园的面积有最大值,最大值是2252平方米.【点睛】本题主要考查一元二次方程的应用和二次函数的应用及性质,掌握一元二次方程的解法及二次函数的性质是解题的关键.19.(1)甲获胜的概率为13;(2)不公平,理由见解析.【解析】【分析】(1)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与数字之和为偶数情况,再利用概率公式即可求得答案;(2)分别求得甲、乙两人获胜的概率,比较大小,即可得这个游戏规则对甲、乙双方是否公平.【详解】解:(1)画树状图得:共有6种等可能的结果,两数之和为偶数的有2种情况;∴甲获胜的概率为:2163=;(2)不公平.理由: 数字之和为奇数的有4种情况,P ∴(乙获胜)4263==,P ∴(甲)P ≠(乙),∴这个游戏规则对甲、乙双方不公平.【点睛】本题考查的是游戏公平性的判断,解题的关键是掌握判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.20.见解析【解析】【分析】由等弦所对的弧相等得 AB CD =,由等量代换得 ABC BCD=,最后由等弧所对的弦相等即可得出结论.【详解】证明:∵AB =DC ,∴ AB CD =,∴ AB BCCD BC +=+,即 ABC BCD =,∴AC =BD .【点睛】本题考查了圆的弧、弦、圆周角之间的关系,熟练等弧对等弦是解题的关键.21.见解析【解析】【分析】(1)二次函数图象经过A (2,0)、B (0,-6)两点,两点代入y=-12x 2+bx+c ,算出b 和c ,即可得解析式;(2)先求出对称轴方程,写出C 点的坐标,计算出AC ,然后由面积公式计算值.【详解】(1)把()2,0A ,()0,6B -代入212y x bx c =-++得2206b c c -++=⎧⎨=-⎩,解得46b c =⎧⎨=-⎩.∴这个二次函数解析式为21462y x x =-+-.(2)∵抛物线对称轴为直线44122x =-=⎛⎫⨯- ⎪⎝⎭,∴C 的坐标为()4,0,∴422AC OC OA =-=-=,∴1126622ABC S AC OB ∆=⨯=⨯⨯=.【点睛】本题是二次函数的综合题,要会求二次函数的对称轴,会运用面积公式.22.(1)w=-10(x-10)2+2250(0≤x≤25)(2)销售单价为35元时,该商品每天的销售利润最大.(3)方案B 最大利润更高【解析】【分析】(1)利用销量×每件利润=总利润,进而求出即可;(2)利用二次函数的性质得出销售单价;(3)分别求出两种方案的最值进而比较得出答案.【详解】解:(1)根据题意得:252025010w x x =+--()(),即:2210200125010102250025w x x x x =-++=--+≤≤()(),故答案为:210102250025w x x =--+≤≤()();(2)∵-10<0,∴抛物线开口向下,二次函数有最大值,当x =2001022(10)b a -=-=⨯-时,销售利润最大此时销售单价为:10+25=35(元)答:销售单价为35元时,该商品每天的销售利润最大.(3)由(2)可知,抛物线对称轴是直线x=10,开口向下,对称轴左侧w 随x 的增大而增大,对称轴右侧w 随x 的增大而减小方案A :根据题意得,x≤5,则0≤x≤5当x=5时,利润最大,最大利润为w=-10×52+200×5+1250=2000(元),方案B :根据题意得,25+x-20≥16,解得:x≥11则11≤x≤25,故当x=11时,利润最大,最大利润为w=-10×112+200×11+1250=2240(元),∵2240>2000,∴综上所述,方案B 最大利润更高.23.∠BAE=∠CAD,证明见解析.【解析】【分析】根据AE是⊙O的直径,得出∠BAE+∠BEA=90°,再根据AD⊥BC,得出∠CAD+∠ACB=90°,最后根据同弧所对的圆周角相等得出∠E=∠ACB,即可得出答案.【详解】∠BAE=∠CAD理由:连接EB,∵AB AB,∴∠C=∠E∵AE是直径,∴∠ABE=90°∴∠BAE+∠E=90°,∵AD⊥BC于点D∴∠ADC=90°,∴∠DAC+∠C=90°∴∠BAE=∠CAD.∴∠BAE与∠CAD相等.【点睛】此题考查了圆周角定理,根据圆周角定理可得到相等的角,根据等角的余角相等以及作出直径所对圆周角的辅助线是解题的关键.24.(1)见解析;(2)见解析【解析】【分析】(1)连接BF ,根据已知条件得到∠DBF+∠BFC=90°,得到∠DBF=∠ABC ,求得∠DBC=∠ABF ,于是得到结论;(2)由(1)得 AF DC =,求得∠F=∠ACF ,得到∠PDA=∠PAD ,于是得到结论.【详解】解:证明:(1)连接BF ,∵CE ⊥BD ,∴∠DBF+∠BFC=90°,又∵在Rt △ABC 中∠ABC+∠BAC=90°,∠BFC=∠BAC ,∴∠DBF=∠ABC ,∴∠DBF+∠ABD=∠ABC+∠ABD ,即∠DBC=∠ABF ,∴ AF DC =;(2)由(1)得 AF DC =,∴∠PFC=∠ACF ,∵∠PDA=∠ACF ,∠PAD=∠PFC ,∴∠PDA=∠PAD ,∴△PAD 是等腰三角形.【点睛】本题考查了三角形的外接圆与外心,圆周角定理,等腰三角形的判定,正确的作出辅助线是解题的关键.。
浙教版九年级上册数学期中考试试卷含答案
浙教版九年级上册数学期中考试试题一、单选题1.把一枚均匀的骰子抛掷一次,朝上面的点数为3的概率是()A .0B .13C .16D .12.将抛物线y =3x 2的图象先向右平移2个单位,再向上平移5个单位后,得到的抛物线解析式是()A .y =3(x ﹣2)2﹣5B .y =3(x ﹣2)2+5C .y =3(x+2)2﹣5D .3(x+2)2+53.已知⊙O 半径为6,圆心O 在坐标原点上,点P 的坐标为(3,4),则点P 与⊙O 的位置关系是()A .点P 在⊙O 内B .点P 在⊙O 上C .点P 在⊙O 外D .不能确定4.若58a b=,则b a a-等于()A .35B .53C .85D .585.下列关于正多边形的叙述,正确的是()A .正九边形既是轴对称图形又是中心对称图形B .存在一个正多边形,它的外角和为720°C .任何正多边形都有一个外接圆D .不存在每个外角都是对应每个内角两倍的正多边形6.若点A (﹣4,y 1),B (﹣1,y 2),C (1,y 3)都是二次函数y =x 2+4x +k 的图象上的点,则()A .y 1<y 2<y 3B .y 2<y 1<y 3C .y 3<y 2<y 1D .y 3<y 1<y 27.CD 是圆O 的直径,弦AB ⊥CD 于点E ,若OE=3,AE=4,则下列说法正确的是()A .AC 的长为B .CE 的长为3C .CD 的长为12D .AD 的长为108.小凯在画一个开口向上的二次函数图象时,列出如下表格:x …-1012…y…1211…发现有一对对应值计算有误,则错误的那一对对应值所对的坐标是()A .(-1,1)B .(0,2)C .(1,1)D .(2,1)9.如图所示,以AD 为直径的半圆O 经过Rt ABC △的斜边AB 的两个端点,交直角边AC于点E ,点B 、E 是半圆弧的三等分点, BE的长为2π3,则图中阴影部分的面积为()A .π9B .9C .2π23-D .3π22-10.已知二次函数y =2mx 2+(4﹣m )x ,它的图象可能是()A .B .C .D .二、填空题11.从标有1到20号的卡片中任意抽取一张,记事件“抽到2的倍数”发生的可能性为P (A),事件“抽到5的倍数”发生的可能性为P(B),事件“抽到13的倍数"发生的可能性为P(C),请用“>”连接P(A),P(B),P(C)为_______.12.线段2cm AB =,点P 为线段AB 的黄金分割点(AP BP >),则AP 的长为______cm .13.如图,在⊙O 中,弦BC 垂直于半径OA ,点D 是优弧BC 上儿一点,连结BD ,AD ,OC ,∠ADB =30°,若弦BC =,则图中弦BC 所对的弧长是___cm .14.如图抛物线y =ax 2+bx+c 的对称轴是x =﹣1,与x 轴的一个交点为(﹣5,0),则不等式ax2+bx+c>0的解集为_____.15.如图,四边形ABCD是菱形,⊙O经过点A、C、D,与BC相交于点E,连接AC、AE.若∠D=70°,则∠EAC的度数为____________.16.已知二次函数y=x2﹣2(m﹣1)x+2m2﹣m﹣2(m为常数),若对一切实数m,k均有y≥k,则k的取值范围为___.三、解答题17.如图,直线l1∥l2∥l3,若AB=6,BC=10,EF=9,求DE的长.18.在平面直角坐标系中,函数y=a(x+1)(x﹣3)(a≠0)的图象经过点(2,3).(1)求a的值;(2)求该函数图象的顶点坐标和对称轴;(3)自变量x在什么范围内时,y随x的增大而增大?19.有一个圆形转盘,分黑色、白色两个区域.(1)某人转动转盘,对指针落在黑色区域或白色区域进行了大量试验,得到数据如下表:实验次数n(次)10100200050001000050000100000白色区域次数m(次)334680160034051650033000落在白色区域频率mn0.30.340.340.320.340.330.33请你利用上述实验,估计转动该转盘指针落在白色区域的概率为___________.(精确到0.01);(2)若该圆形转盘白色扇形的圆心角为120度,黑色扇形的圆心角为240︒,转动转盘两次,求指针一次落在白色区域,另一次落在黑色区域的概率.20.某游乐场的圆形喷水池中心O 有一雕塑OA ,从A 点向四周喷水,喷出的水柱为抛物线,且形状相同.如图,以水平方向为x 轴,点O 为原点建立直角坐标系,点A 在y 轴上,x 轴上的点C ,D 为水柱的落水点,水柱所在抛物线第一象限部分的函数表达式为()21566y x =--+.(1)求雕塑高OA .(2)求落水点C ,D 之间的距离.(3)若需要在OD 上的点E 处竖立雕塑EF ,10m OE =, 1.8m,EF EF OD =⊥.问:顶部F 是否会碰到水柱?请通过计算说明.21.如图所示,AB =AC ,AB 为⊙O 的直径,AC 、BC 分别交⊙O 于E ,D ,连结ED ,BE .(1)试判断DE 与BD 是否相等,并说明理由;(2)如果BC =12,AB =10,求BE 的长.22.在平面直角坐标系中,函数2y x bx c =-++图象过点(,0)A m ,(3,0)B m +(1)当1m =时,求该函数的表达式(2)证明该函数的图像必过点(m+1,2)(3)求该函数的最大值23.大学生小张利用暑假50天在一超市勤工俭学,被安排销售一款成本为40元/件的新型商品,此类新型商品在第x天的销售量p件与销售的天数x的关系如下表:x(天)123 (50)p(件)118116114 (20)销售单价q(元/件)与x满足:当1≤x<25时q=x+60;当25≤x≤50时q=40+1125 x.(1)请分析表格中销售量p与x的关系,求出销售量p与x的函数关系.(2)求该超市销售该新商品第x天获得的利润y元关于x的函数关系式.(3)这50天中,该超市第几天获得利润最大?最大利润为多少?24.已知,如图,⊙O中两条弦AB、CD相交于点E,且AB=CD.(1)求证: AC= BD;(2)若∠AEC=100°,求∠A的度数;(3)过点B作BH⊥AD于点H,交CD于点G,若AE=2BE,求证:EG=GD.参考答案1.C【解析】【分析】根据概率公式直接求解即可.【详解】解:∵任意抛掷一次骰子共有6种等可能的结果,其中朝上面的点数为3的只有1种,∴朝上面的点数恰为3的概率是1 6,故选:C.【点睛】本题考查了概率公式,用到的知识点为:概率=所求情况数与总情况数之比.2.B【解析】【分析】根据“左加右减、上加下减”的原则进行解答即可.【详解】将抛物线y=3x2的图象先向右平移2个单位,再向上平移5个单位后,得到的抛物线解析式为:()2325y x=-+,故选B【点睛】本题考查了二次函数图象的平移,解题的关键是掌握平移的规律:左加右减,上加下减.3.A【解析】【分析】本题应先由勾股定理求得点P到圆心O的距离,再根据点P与圆心的距离与半径的大小关系,来判断出点P与⊙O的位置关系.当d>r时,点在圆外;当d=r时,点在圆上;当d <r时,点在圆内.【详解】点P的坐标为(3,4),5OP∴=56<∴点P在⊙O内故选A【点睛】本题考查了点与圆的位置关系:①点P 在⊙O 上;②点P 在⊙O 内;③点P 在⊙O 外,求得点到圆心的距离是解题的关键.4.A 【解析】【分析】由题意易得58ba =,进而代入求解即可.【详解】解:58a b = ,∴58b a =,∴原式=538558bb b -=;故选A .【点睛】本题主要考查比例的性质,熟练掌握比例的性质是解题的关键.5.C 【解析】【分析】根据正多边形、轴对称、中心对称的性质分析,即可判断选项A ;根据多边形外角和的性质,即可判断选项B ;根据正多边形与圆的性质分析,即可判断选项C ;根据正多边形和外角的性质分析,即可判断选项D ,从而得到答案.【详解】正九边形是轴对称图形,不是中心对称图形,故选项A 不正确;任何多边形的外角和都为360°,故选项B 不正确;任何正多边形都有一个外接圆,故选项C 正确;等边三角形的每个外角都是对应每个内角两倍,故选项D 不正确;故选:C .【点睛】本题考查了正多边形、轴对称、中心对称、正多边形与圆、外角的知识;解题的关键是熟练掌握正多边形、轴对称、中心对称、正多边形与圆、外角的性质,从而完成求解.6.B 【解析】【分析】把横坐标代入解析式,求出纵坐标,比较大小即可.【详解】解:∵点A (﹣4,y 1),B (﹣1,y 2),C (1,y 3)都是二次函数y =x 2+4x +k 的图象上的点,把横坐标代入解析式得,21(4)4(4)y k k =-+⨯-+=,22(1)4(1)3y k k =-+⨯-+=-,231415y k k =+⨯+=+,所以y 2<y 1<y 3,故选:B .【点睛】本题考查了二次函数比较函数值大小,解题关键是把横坐标代入解析式求出函数值,直接比较大小.7.A 【解析】【分析】连接AO ,分别在Rt △AOE 中,Rt △ACE 中,Rt △ADE 中,根据勾股定理即可求得相应线段的长度,依此判断即可.【详解】解:连接AO ,∵AB ⊥CD 于点E ,OE=3,AE=4,∴在Rt △AOE 中,根据勾股定理5AO ===,∵CD 为圆O 的直径,∴OC=OD=OA=5,∴CD=10,CE=OC-OE=2,故B 选项和C 选项错误;在Rt △ACE 中,根据勾股定理AC==A选项正确;在Rt△ADE中,根据勾股定理AD===,故D选项错误;故选:A.【点睛】本题考查勾股定理,同圆半径相等.正确作出辅助线,构造直角三角形是解题关键.注意圆中半径相等这一隐含条件.8.A【解析】观察图表数据,根据二次函数的对称性即可判断出计算错误的一组数据,然后再利用二次函数的增减性得出结论.【详解】解:观察y值发现y=1时x有三个不同的值,因此这三个值中必有一对计算错误.由二次函数的对称性:如果(-1,1),(1,1)是图象的两个对称点,那么根据描点得到这个函数图象的开口应该是向下的.同理若(-1,1),(2,1)是两个对称点,那么该函数图象的开口也是向下的,所以(1,1),(2,1)是图象的两个对称点,因此该图像的对称轴为直线03 2x=,根据二次函数的增减性,当开口向上时,在对称轴的左边,y随x的增大而减小,所以1x=-时,y一定是大于1的,故选A.9.C【解析】连接BD、BE、BO、EO,由三等分点定义求出∠EOA=∠EOB=∠BOD=60°,根据 BE的长为2π3,求出R=2,分别求出AB、BC,勾股定理求出AC,得到△ABC的面积,由△BOE和△ABE 同底等高,得到图中阴影部分的面积为ABC BOE S S - 扇形,代入数值计算可得.【详解】解:连接BD 、BE 、BO 、EO ,∵点B 、E 是半圆弧的三等分点,∴∠EOA=∠EOB=∠BOD=60°,∴∠EAB=∠BAD=∠EBA=30°,∴BE AD ∥,∵ BE的长为2π3,∴6021803R ππ⨯=,解得R=2,∴cos30AB AD =⋅︒=,∴12BC AB ==∴AC ==3,∴113222ABC S BC AC =⨯⨯==,∵△BOE 和△ABE 同底等高,∴△BOE 和△ABE 面积相等,∴图中阴影部分的面积为233602332236023ABC BOE S S ππ⨯-=-=- 扇形,故选:C .【点睛】此题考查了圆的三等分点的定义,弧长公式,扇形面积公式,直角三角形30度角的性质,勾股定理,根据余弦定理求边长,熟记各知识点并熟练应用是解题的关键.10.B 【解析】【分析】利用排除法,抛物线过原点,判定A 不正确,再分m >0,m <0两种情形,判断对称轴与x=14的位置关系即可.【详解】解:∵()224y mx m x =+-,∴抛物线一定经过原点,∴选项A 排除;∵()224y mx m x =+-,∴对称轴为直线x=44224m m m m ---=⨯,∵44m m --14=44m m m--=1m -,当m >0时,抛物线开口向上,1m -<0,∴对称轴在直线x=14的左边,B 选项的图像符合;C 选项的图像不符合;当m <0时,抛物线开口向下,1m ->0,∴对称轴在直线x=14的右边,D 选项的图像不符合;故选B .【点睛】本题考查了二次函数的图像,熟练掌握抛物线经过原点的条件,抛物线对称轴的位置与定直线的关系的判定是解题的关键.11.P(A)>P(B)>P(C)【解析】【分析】事件共发生20次,分别找到“2的倍数,5的倍数,13的倍数”发生的次数,即可得到P(A),P(B),P(C)的值,再进行比较即可.【详解】事件共发生20次,其中“抽到2的倍数”的有10次,∴P(A)=101202=,∵“抽到5的倍数”的有5、10、15、20共4次,∴P(B)=41205=,∵“抽到13的倍数"的有13、26共2次,∴P(C)=212010=,∴P(A)>P(B)>P(C),故填:P(A)>P(B)>P(C).【点睛】此题考查求事件发生的概率,需确定事件发生的总次数及所求事件的次数,再求该事件发生的概率.12.1)【解析】【分析】根据黄金分割的定义得到AP AB =,把2AB cm =代入计算即可.【详解】解: 线段2AB cm =,点P 是线段AB 的黄金分割点()AP BP >,21)AP cm cm ∴===,故答案为:1).【点睛】本题考查了黄金分割的定义,熟练掌握黄金分割的定义及黄金比值是解题的关键.13.163π【解析】【分析】连接OB ,根据垂径定理得到»»AB AC =,得到∠AOC=∠AOB ,根据圆周角定理解答;根据垂径定理求出BE ,根据正弦的定义求出OB ,根据弧长公式计算,得到答案.【详解】解:连接OB ,∵OA ⊥BC ,∴»»AB AC =,∴∠AOC=∠AOB ,由圆周角定理得,∠AOB=2∠ADB=60°,∴∠AOC=∠AOB=60°;∵OA ⊥BC ,∴BE=12BC=43cm ,在Rt △BOE 中,∠AOB=60°,∴8()sin 60BE OB cm ︒==,∴劣弧BC 的长=1208()180163cm ππ⨯=,故答案为:163π【点睛】本题考查的是弧长的计算、垂径定理,掌握垂径定理和弧长公式是解题的关键.14.﹣5<x <3【解析】【分析】先根据抛物线的对称性得到A 点坐标(3,0),由y =ax 2+bx+c >0得函数值为正数,即抛物线在x 轴上方,然后找出对应的自变量的取值范围即可得到不等式ax 2+bx+c >0的解集.【详解】解:根据图示知,抛物线y =ax 2+bx+c 图象的对称轴是x =﹣1,与x 轴的一个交点坐标为(﹣5,0),根据抛物线的对称性知,抛物线y =ax 2+bx+c 图象与x 轴的两个交点关于直线x =﹣1对称,即抛物线y =ax 2+bx+c 图象与x 轴的另一个交点与(﹣5,0)关于直线x =﹣1对称,∴另一个交点的坐标为(3,0),∵不等式ax2+bx+c>0,即y=ax2+bx+c>0,∴抛物线y=ax2+bx+c的图形在x轴上方,∴不等式ax2+bx+c>0的解集是﹣5<x<3.故答案为﹣5<x<3.【点睛】此题主要考查了二次函数与不等式,解答此题的关键是求出图象与x轴的交点,然后由图象找出当y>0时,自变量x的范围,本题锻炼了学生数形结合的思想方法.15.15【解析】【分析】根据菱形的性质求∠ACD的度数,根据圆内接四边形的性质求∠AEC的度数,由三角形的内角和求解.【详解】解:∵四边形ABCD是菱形,∴AD∥BC,AD=DC,∴∠DAC=∠ACB,∠DAC=∠DCA∵∠D=70°,∴∠DAC=1801807055 22D-Ð-==,∴∠ACB=55°,∵四边形ABCD是⊙O的内接四边形,∴∠AEC+∠D=180°,∴∠AEC=180°-70°=110°,∴∠EAC=180°-∠AEC-∠ACB=180°-55°-110°=15°,∴∠EAC=15°.故答案为:15°【点睛】本题考查了菱形的性质,三角形的内角和,圆内接四边形的性质,熟练掌握菱形的性质和圆的性质是解答此题的关键.16.k≤-13 4【解析】【分析】求出函数的最小值的取值范围即m2+m-3=(m+12)2-134≥-134,由已知可知对于一切实数m和k均有y≥k,即k≤w.【详解】解:y=x2-2(m-1)x+2m2-m-2=(x-m+1)2+m2+m-3,当x=m-1时,y有最小值m2+m-3,令w=m2+m-3=(m+12)2-134≥-134,∵对于一切实数m和k均有y≥k,即k≤w,(只要不大于原函数的最小值即可)∵w≥-13 4,∴k≤-13 4,故答案为k≤-13 4.【点睛】本题考查了二次函数的性质;熟练掌握二次函数的性质,能够将已知不等关系转化为函数的最值是解题的关键.17.275 DE=【解析】【分析】由平行线分线段成比例定理得出比例式,即可得出DE的长.【详解】解:∵直线l1∥l2∥l3,∴AB DE BC EF=,而AB=6,BC=10,EF=9,∴6109DE=,解得:275 DE=.【点睛】本题考查了平行线分线段成比例定理;熟练掌握平行线分线段成比例定理,并能进行推理计算是解决问题的关键.18.(1)1a =-;(2)对称轴为直线1x =,顶点坐标为(1,4);(3)当1x <时,y 随x 的增大而增大【解析】【分析】(1)将点代入函数表达式,即可求得答案;(2)将二次函数的解析式化成顶点式,即可知道答案;(3)根据抛物线开口方向和对称轴即可分析得到答案.【详解】解:(1)∵函数(1)(3y a x x =+-)的图象经过点()2,3∴将点()2,3代入(1)(3y a x x =+-)中,得(21)(23)3a +-=解得:1a =-(2)∵22(1)(3)23(1)4y x x x x x =-+-=-++=--+∴对称轴为直线1x =,顶点坐标为(1,4)(3)∵10a =-<∴抛物线开口向下又∵对称轴为直线1x =∴当1x <时,y 随x 的增大而增大【点睛】本题考查抛物线的性质,根据表达式求抛物线的顶点坐标和对称轴等知识点,灵活转化抛物线的三种表达式是解题关键.19.(1)0.33;(2)49.【解析】【分析】(1)根据实验得到的数据,可以求这几次实验概率的平均值,即可估算出来;(2)根据红白所对应的圆心角度数,可以知道红白分别所占圆心角的比例,并按照比例划分,列举出所有情况,根据概率=所求情况数与总情况数之比,即可求解.【详解】(1)根据7次实验的结果,落在白色区域的概率分别是0.3、0.34、0.34、0.32、0.34、0.33、0.33,所以这几次实验的平均数是(0.3+0.34+0.34+0.32+0.34+0.33+0.33)÷7≈0.33,故转动该转盘指针落在白色区域的概率为0.33.(2) 白色扇形的圆心角为120°,占一个圆的三分之一,黑色扇形的圆心角为240︒,占一个圆的三分之二,因此,把一个圆平均分成三份;从列表可知:共有9种等可能的结果,其中指针一次落在白色区域,另一次落在黑色区域的有4种,分别为:(白,黑1),(白,黑2),(黑1,白),(黑2,白).P ∴(一白一黑)49=.答:指针一次落在白色区域,另一次落在黑色区域的概率为49.【点睛】本题主要考查列表法求解概率的方法,列表法可不重复不遗漏的列出所有可能的结果,列表法适合两步完成的事件,而树状图法适合两步或者两步以上完成的事件,掌握:概率=所求情况数与总情况数之比是解第二问的关键.20.(1)11m 6;(2)22米;(3)不会【解析】【分析】(1)求雕塑高OA ,直接令0x =,代入()21566y x =--+求解可得;(2)可先求出OD 的距离,再根据对称性求CD 的长;(3)利用()21566y x =--+,计算出10x =的函数值y ,再与EF 的长进行比较可得结论.【详解】解:(1)由题意得,A 点在图象上.当0x =时,21(05 )66y =--+2511666=-+=11(m)6OA ∴=.(2)由题意得,D 点在图象上.令0y =,得21(5)606x --+=.解得:1211,1x x ==-(不合题意,舍去).11OD ∴=222(m)CD OD ∴==(3)当10x =时,21(105)66y =--+,25116 1.866=-+=>,∴不会碰到水柱.【点睛】本题考查了二次函数的图像与性质及图像关于y 轴对称问题,解题的关键是:掌握二次函数的图像与性质.21.(1)DE BD =,理由见解析;(2)9.6【解析】【分析】(1)根据直径所对的圆周角是直角,可得AD BC ⊥,由AB AC =根据三线合一可得CAD BAD ∠=∠,圆周角和弧之间的关系可得 EDBD =,进而可得DE BD =;(2)根据直径所对的圆周角是直角,可得90AEB ADB ∠=∠=︒,勾股定理求得AD ,进而分别以,AC BC 为底,,AD BE 为高,根据三角形的面积公式计算即可求得BE 的长【详解】(1)DE BD =,理由如下,AB 为⊙O 的直径,AD BC∴⊥ AB =AC ,CAD BAD∴∠=∠ EDBD =DE BD∴=(2) AB 为⊙O 的直径,∴90AEB ADB ∠=∠=︒BC =12,AB =10,,AD BC AC AB⊥= 162BD BC ∴==在Rt ABD △中,8AD ===10AB AC == 1122AC BE BC AD ∴⋅⋅=⋅⋅1289.610BC AD BE AC ⋅⨯∴===【点睛】本题考查了直径所对的圆周角是直角,等腰三角形的性质,用三线合一的性质得出圆周角相等是解题的关键.22.(1)254y x x =-+-;(2)见解析;(3)94【解析】【分析】(1)由已知可得AB 两点坐标,根据待定系数法将点坐标代入解析式中求出bc 即可;(2)由AB 两点坐标可得函数的交点式,再将1x m =+代入可得2y =,即可证明;(3)根据二次函数的顶点坐标公式求出该函数的最大值.【详解】解:(1)把1m =代入得:A (1,0)、B (4,0)∴2210440b c b c ⎧-++=⎨-++=⎩,解得54b c =⎧⎨=-⎩,故函数表达式为254y x x =-+-,(2)由题意得()(3)y x m x m =----,把1x m =+代入得:(1)(13)2y m m m m =-+-+--=,∴该函数的图像必过点(m+1,2);(3)由(2)知2()(3)(23)(3)y x m x m x m x m m =----=-++-+,当2322b m x a +=-=时,函数最大值为:23239()(3)224m m y m m ++=----=.【点睛】本题考查待了定系数法求二次函数解析式;二次函数图象上点的特征.熟练掌握二次函数的性质是解决本题的关键.23.(1)销售量p件与销售的天数x的函数表达式为p=﹣2x+120;(2)当1≤x<25时,y=﹣2x2+80x+2400,当25≤x≤50时,y=135000x﹣2250;(3)这50天中第20天时该超市获得利润最大,最大利润为3200元.【解析】【详解】(1)由表格可以看出销售量p件与销售的天数x成一次函数,设出函数解析式,进一步代入求得答案即可;(2)利用利润=售价﹣成本,分别求出在1≤x<25和25≤x≤50时,求得y与x的函数关系式;(3)利用(2)中的函数解析式分别求得最大值,然后比较两者的大小得出答案即可.解:(1)p=120-2x(2)y=p·(q-40)=22802400(125) 1350002250(2550)x x xxx⎧-++<⎪⎨-⎪⎩(3)当1≤x<25时,y=-2(x-20)2+3200,∴x=20时,y的最大值为3200元;当25≤x≤50时,y=135000x-2250,∴x=25时,y的最大值为3150元,∵3150<3200,∴该超市第20天获得最大利润为3200元.【点睛】本题主要考查二次函数的应用的知识点,解答本题的关键是熟练掌握二次函数的性质和反比例函数的性质以及最值得求法,此题难度不大.24.(1)见解析;(2)50°;(3)见解析【解析】【分析】(1)圆心角、弧、弦的关系即可证明结论;(2)结合(1)根据三角形的外角定义即可求得结果;(3)根据题意画出图形,结合(1)根据直角三角形两个锐角互余,即可证明结论.【详解】解:(1)∵AB=CD ,∴ AB CD =,∴ AB BC CD BC -=-,即 AC BD =;(2)∵ AC BD =,∴∠D=∠A ,∵∠AEC =100°,∴1502A AEC ∠=∠=︒;(3)如图,∵∠D=∠A ,∴AE=DE ,∵AE =2BE ,∴DE=2BE ,∵BH ⊥AD ,∴∠AHB=90°,∴∠A+∠ABH=90°,∠D+∠DGH=90°,∵∠D=∠A ,∴∠ABH=∠DGH ,∵∠DGH=∠BGE ,∴∠ABH=∠BGE ,∴BE=EG ,∴DE=2EG ,∵DE=EG+GD ,∴EG=GD.【点睛】本题考查了圆周角定理,圆心角、弧、弦的关系,解决本题的关键是综合掌握圆心角、弧、弦的关系.。
2017年九年级上册数学期中试卷及答案
2017年数学九年级上册期中试卷满分:150分 考试时间:120分钟一、 选择题(每小题4分,共40分.) 1、 若反比例函数y =x k (k ≠0)的图象经过点(-1,2),则这个函数的图象一定经过点( ).A 、(2,-1) B 、(-21,2) C 、(-2,-1) D 、(21,2)2、一次函数y =kx -k ,y 随x 的增大而减小,那么反比例函数y =xk 满足( ).A 、当x >0时,y >0B 、在每个象限内,y 随x 的增大而减小C 、图象分布在第一、三象限D 、图象分布在第二、四象限 3、下列方程一定是一元二次方程的是( ) A ax 2+bx+c=0 B (x+1)(x-1)=x 2+2x C x 2=1 D x 2-xy+3=0 4、三角形的两边长分别为2和9,第三边长是一元二次方程x 2-14x+48=0的一个根, 则这个三角形的周长为( )A 17或19 B 19 C 17 D 11 5、关于y 的一元二次方程:ky 2-4y-3=3y+4有实数根,则k 的取值范围是( ) A 74k ≥- B k >704k ≠且 C k>704k -≠且 D k 70k ≥-≠且6、下列各组中的四条线段成比列的是()A、1cm 、2cm 、20cm 、30cm B 、5cm 、10cm 、10cm 、20cm C 、4cm 、2cm 、1cm 、3cm D 、1cm 、2cm 、3cm 、4cm 7、如图:点P 是△ABC 边AB 上一点(AB >AC ),下列条件不一定能使△ACP ∽△ABC的是( )A 、∠ACP =∠B B 、∠APC =∠ACB C 、AC AP AB AC = D 、ABAC BC PC =8、如图,在大小为4×4的正方形网格中,是相似三角形的是( ) A.①和② B.②和③ C.①和③ D.②和④ 9、在一个可以改变容积的密闭容器内,装有一定质量 m 的某种气体,当改变容积V 时,气体的密度ρ也随之改变. ρ与V 在一定范围内满足ρ=V m ,它的图象如图所示,则该 气体的质量m 为( ).A 、7kg B 、1.4kg C 、6.4kg D 、5kg 10、若k b a c a c b c b a =+=+=+,则k 的值为( ) A 、2 B 、-1 C 、2或-1 D 、不存在二、填空题(每小题4分,共32分。
2017届九年级数学上学期期中试题 及答案
212016—2017学年度上学期期中质量检测九年级数学试题(时间:120分钟 分值:120分)一、选择题(本大题共12小题,在每小题给出的四个选项中,只 有一项是正确的,请将正确选项代号填入下表.第1-8小题选对每小题得3分,第9-12小题选对每小题得4分,选错、不选或选出的答案超过一个均记零分.)1.下列命题错误的是( )A. 等弧对等弦; B .三角形一定有外接圆和内切圆;C. 平分弦的直径垂直于弦; D .经过切点且垂直于切线的直线必经过圆心. 2.关于概率,下列说法正确的是( )A .莒县“明天降雨的概率是75%”表明明天莒县会有75%的时间会下雨;B .随机抛掷一枚质地均匀的硬币,落地后一定反面向上;C .在一次抽奖活动中,中奖的概率是1%,则抽奖100次就一定会中奖;D .同时抛掷两枚质地均匀硬币,“一枚硬币正面向上,一枚硬币反面向上”的概率是 3.若A (3,y 1),B (-2,y 2),C (-1,y 3)三点都在函数y =-x1的图象上,则y 1,y 2,y 3的大小关系是( ). A . y 1<y 2<y 3 B . y 1>y2>y 3 C .y 1=y 2=y 3 D .y 1<y 3<y 24.如图,在⊙O 中,AC ∥OB ,∠BAO=25°,则∠BOC 的度数为( ) . A .25° B .50° C . 60° D .80°5.在△ABC 中,∠C=90°, AC=BC=4cm, D 是AB 边的中点,以C 为圆心,4cm 长为半径作圆,则A 、 B 、 C 、 D 四点中在圆内的有( ).A . 1个B .2个C . 3个D . 4个学校: 九年级 班 姓名: 考号:………………………………………………………………………………………6. Rt △ABC 中,∠C=90°,AC=3cm ,BC= 4cm ,以C 为圆心,2.5cm 为半径的圆与AB的位置关系是( )A. 相离B.相切C. 相交D.无法确定7.如图,已知一块圆心角为270°的扇形铁皮,用它做一个圆锥形的烟囱帽(接缝忽略不计),圆锥底面圆的直径是60cm ,则这块扇形铁皮的半径是( )A .40cmB ..50cmC .60cmD .80cm 8.正比例函数y 1=k 1x (k 1>0)与反比例函数y 2=部分图象如图所示,则不等式k 1x的解集在数轴上表示正确的是( )9.某科研小组,为了考查某河野生鱼的数量,从中捕捞200条,作上标记后,放回河里,经过一段时间,再从中捕捞300条,发现有标记的鱼有15条,则估计该河中野生鱼有( ) A .8000条 B . 4000条 C .2000条 D .1000条10.以半径为1的圆的内接正三角形、正方形、正六边形的边心距为三边作三角形,则该三角形的面积是( ) A .B.C.D.11.如图,在矩形ABCD 中,AB=4,AD=5,AD 、AB 、BC 分别与⊙O 相切于E 、F 、G 三点,过点D 作⊙O 的切线交BC 于点M ,则DM 的长为A .133B .92 CD.12.如图,△OAC 和△BAD 都是等腰直角三角形,∠ACO=∠ADB=90°,反比例函数y=在第一象限的图象经过点B ,则△OAC 与△BAD 的面积之差S △OAC ﹣S △BAD 为( )A .36B .12C .6D .3二、填空题(本大题共4小题;每小题4分,共16分.把答案写在题中横线上)13.如图△ABC 是正三角形,曲线CDEF …叫做“正三角形的渐开线”其中弧CD 、弧DE 、弧EF 圆心依次按A 、B 、C …循环,它们依次相连接。
浙江省杭州市九年级上学期期中数学试卷
浙江省杭州市九年级上学期期中数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分)(2017·浙江模拟) 下列四个图形分别是四届国际数学家大会的会标:其中属于中心对称图形的有()A . 1个B . 2个C . 3个D . 4个2. (2分) (2015八下·嵊州期中) 在下列方程中,一定是一元二次方程的是()A . x2 =0B . (x+3)(x﹣5)=4C . ax2+bx+c=0D . x2﹣2xy﹣3y2=03. (2分) (2020九上·莘县期末) 已知二次函数y=-2(x-a)2-b的图象如图所示,则反比例函数y= 与一次函数y=ax+b的图象可能是()A .B .C .D .4. (2分) (2019八下·大庆期中) 用配方法解一元二次方程x2-4x=4时,此方程可变形为()A . (x+2)2=1B . (x-2)2=0C . (x+2)2=9D . (x-2)2=85. (2分) (2017九上·台州期中) 已知x为实数,且满足(x2+3x)2+2(x2+3x)-3=0,那么x2+3x的值为()A . 1B . -3或1C . 3D . -1或36. (2分)(2017·武汉模拟) 如图,折叠矩形纸片ABCD的一边AD,使点D落在BC边上的点F处,若AB=8,BC=10,则△CEF的周长为()A . 12B . 16C . 18D . 247. (2分) (2017九上·澄海期末) 如图,在△ABC中,∠CAB=65°,在同一平面内,将△ABC绕点A按逆时针方向旋转到△AB'C'的位置,使得CC'∥AB,则∠BA B'=()A . 30°B . 35°C . 40°D . 50°8. (2分)对于一元二次方程ax2+bx+c=0,下列说法:①若b=a+c,则方程必有一根为x=-1;②若c是方程ax2+bx+c=0的一个根,则一定有ac+b+1=0成立;③若b2>4ac,则方程ax2+bx+c=0一定有两个不相等实数根;其中正确结论有()个.A . 1B . 2C . 3D . 49. (2分)点A,B的坐标分别为(﹣2,3)和(1,3),抛物线y=ax2+bx+c(a<0)的顶点在线段AB上运动时,形状保持不变,且与x轴交于C,D两点(C在D的左侧),给出下列结论:①c<3;②当x<﹣3时,y随x 的增大而增大;③若点D的横坐标最大值为5,则点C的横坐标最小值为﹣5;④当四边形ACDB为平行四边形时,.其中正确的是()A . ②④B . ②③C . ①③④D . ①②④10. (2分) (2016九上·乐至期末) 某商品经过两次降价,零售价降为原来的,已知两次降价的百分率均为x,则列出方程正确的是()A .B .C . (1+x)2=2D . (1﹣x)2=211. (2分)二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列说法不正确的是()A . b2-4ac>0B . a>0C . c>0D . -<012. (2分)若正比例函数y=mx(m≠0),y随x的增大而减小,则它和二次函数y=mx2+m的图象大致是()A .B .C .D .二、填空题 (共6题;共6分)13. (1分) (2019九上·台州期中) 下列函数:①y=3x2;②y=-3(x+3)2;③y=-3x2-1;④y=-2x2+5;⑤y=-(x-1)2 ,其中函数图象形状、开口方向相同的是________.14. (1分) (2018九上·扬州月考) 方程的两根为,,且,则的值等于________.15. (1分) (2016九上·抚宁期中) 点P(5,﹣3)关于原点的对称点的坐标为________.16. (1分)如图是二次函数y=a(x+1)2+2图象的一部分,该图在y轴右侧与x轴交点的坐标是________.17. (1分)(2018·资阳) 已知关于x的一元二次方程mx2+5x+m2﹣2m=0有一个根为0,则m=________.18. (1分)(2017·开封模拟) 如图,在Rt△AO B中,∠AOB=90°,OA=3,OB=2,将Rt△AOB绕点O顺时针旋转90°后得Rt△FOE,将线段EF绕点E逆时针旋转90°后得线段ED,分别以O,E为圆心,OA、ED长为半径画弧AF和弧DF,连接AD,则图中阴影部分面积是________.三、解答题 (共8题;共62分)19. (5分)解方程:3x(2x+1)=2(2x+1)20. (5分)如图,抛物线过x轴上两点A(9,0),C(-3,0),且与y轴交于点B(0,-12).(1)求抛物线的解析式;(2)若动点P从点A出发,以每秒2个单位沿射线AC方向运动;同时,点Q从点B出发,以每秒1个单位沿射线BA方向运动,当点P到达点C处时,两点同时停止运动.问当t为何值时,△APQ∽△AOB?(3)若M为线段AB上一个动点,过点M作MN平行于y轴交抛物线于点N.①是否存在这样的点M,使得四边形OMNB恰为平行四边形?若存在,求出点M的坐标;若不存在,请说明理由.②当点M运动到何处时,四边形CBNA的面积最大?求出此时点M的坐标及四边形CBNA面积的最大值.21. (7分) (2017九上·兰山期末) 如图,在边长为1的正方形组成的网格中,△AOB的顶点均在格点上,点A、B的坐标分别是A(3,2),B(1,3),△AOB绕点O逆时针旋转90°后得到△A1OB1 .(1)点A关于点O中心对称的点P的坐标为________;(2)在网格内画出△A1OB1;(3)点A1、B1的坐标分别为________.22. (10分) (2018九上·来宾期末) 已知一元二次方程x2-4x+k=0有两个不相等的实数根.(1)求k的取值范围;(2)如果一元二次方程x2-4x+k=0有一个根是3,求另一个根和k的值.23. (5分) (2017九上·宁城期末) 已知正方形ABCD和正方形AEFG有一个公共点A,点G、E分别在线段AD、AB上,若将正方形AEFG绕点A按顺时针方向旋转,连接DG,在旋转的过程中,你能否找到一条线段的长与线段DG的长度始终相等?并说明理由.24. (10分) (2018九上·安定期末) 如图,在某场足球比赛中,球员甲从球门底部中心点O的正前方10m 处起脚射门,足球沿抛物线飞向球门中心线;当足球飞离地面高度为3m时达到最高点,此时足球飞行的水平距离为6m.已知球门的横梁高为2.44m.(1)在如图所示的平面直角坐标系中,问此飞行足球能否进球门?(不计其它情况)(2)守门员乙站在距离球门2m处,他跳起时手的最大摸高为2.52m,他能阻止球员甲的此次射门吗?如果不能,他至少后退多远才能阻止球员甲的射门?25. (10分)如图,在直角梯形ABCD中,AD∥BC,∠C=90°,BC=16,DC=12,AD=21,动点P从点D出发,沿射线DA的方向以每秒2个单位长的速度运动,动点Q从点C出发,在线段CB上以每秒1个单位长的速度向点B 运动,P、Q分别从点D、C同时出发,当点Q运动到点B时,点P随之停止运动,设运动时间为t(s)。
【人教版】九年级上期中数学试卷17含答案
【人教版】九年级上期中数学试卷17含答案九 年 级 数 学 试 题(友情提醒:全卷满分100分,考试时间90分钟,请你掌握好时间.)题号 一 二 三 总 分得分一、选择题(每小题2分,共20分)(请将正确答案序号填入以下表格相应的题号下,否则不得分)题号 1 2 3 4 5 6 7 8 9 10 答案1·下列图形中,不是中心对称图形的为( ★ )A . 平行四边形B . 线段C . 等边三角形D . 菱形 2·在平面直角坐标系中,点( ,1)绕原点顺时针旋转60°后得到点( ★ ) A . (,-1) B . (-1,) C . (-,1) D . (1,-)3·二次函数)0(2≠++=a c bx ax y 的图象如图1所示, 则下列说法不正确...的是( ★ ) A .042>-ac b B .0>aC .0>cD .02<-ab4·如果-5是一元二次方程x 2=c 2的一个根,那么常数c 是( ★ ) A . 25 B . ±5 C . 5 D . -255·抛物线图象如图2所示,根据图象,抛物线的解析式可能是( ★ )(图1)(图3)A . y=x 2-2x+3B . y=-x 2-2x+3C . y=-x 2+2x+3D . y=-x 2+2x -36·关于x 的一元二次方程x 2+px+q=0的两个实数根分别是-2和3,则( ★ )A . p=-1,q=-6B . p=1,q=-6C . p=5,q=-6D . p=-1,q=67·二次函数y=2(x -1)2+3的图象的顶点坐标是( ★ ) A .(1,3) B . (-1,3) C . (1,-3)D .(-1,-3)8·把抛物线y=-x 2向右平移一个单位,再向上平移3个单位,得到抛物线的解析式为( ★ )A . y=-(x -1)2+3B . y=(x -1)2+3C . y =-(x+1)2+3D .y=(x+1)2+39·已知关于x 的一元二次方程()21210k x x --+=有两个不相等的实数根,则k 的取值范围是(★) A . k <﹣2 B . k <2 C . k >2 D .k <2且k ≠110·小丽同学想用公式法解方程231x x -+=,你认为a 、b 、c 的值应分别为( ★ )A .-1、3、-1B .-1、3、1C .-1、-3、-1D .1、-3、-1二、填空题(每小题3分,共30分)11·方程4)1(2=-x 的解是 ;12·抛物线y=-x 2+15的顶点坐标是 _________ .13·若x 2+mx+9是一个完全平方式,则m 的值是 _________ . 14·在如图3中,是由基本图案多边形ABCDE 旋转而成的,它的旋转角为 度·15·把一元二次方程3x 2+1=7x 化为一般形式是 _____ ____ . 16·如图4,与点A 关于原点对称的点的坐标是 ___ ______ . 17·抛物线y=-x 2-2x+m ,若其顶点在x 轴上,则m= _________ . 18·将抛物线23x y =先向右平移2个单位,再向上平移1个单位后, 得到新的抛物线的解析式是 _ 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2016-2017学年浙江省杭州市下城区青春中学九年级(上)期中数学试卷一、仔细选一选(本题有10个小题,每小题3分,共30分)1.(3分)若=,则的值是()A.B.C.D.2.(3分)已知点(﹣2,y 1),(﹣4,y2)在函数y=x2﹣4x+7的图象上,那么y1,y2的大小关系是()A.y1>y2B.y1=y2C.y1<y2D.不能确定3.(3分)下列函数图象中,当x>0时,y随x的增大而减小的是()A.y=﹣B.y=x C.y=x2 D.y=﹣(x+1)24.(3分)如图,直线l1∥l2∥l3,直线AC和直线DF在l1,l2,l3上的交点分别为:A,B,C,D,E,F.已知AB=6,BC=4,DF=9,则DE=()A.5.4 B.5 C.4 D.3.65.(3分)四边形ABCD内接于⊙O,::=2:3:5,∠BAD=120°,则∠ABC的度数为()A.100°B.105°C.120° D.125°6.(3分)在同一坐标系中,函数y=ax2+bx与y=的图象大致是图中的()A. B.C.D.7.(3分)把1到9的自然数依次写在9张形状相同的卡片上,打乱次序放入袋中.从中任意抽出一张卡片,则卡片上的数是2的倍数或3的倍数的概率是()A.B.C.D.8.(3分)下列有关圆的一些结论:①与半径长相等的弦所对的圆周角是30°;②圆内接正六边形的边长与该圆半径相等;③垂直于弦的直径平分这条弦;④平分弦的直径垂直于弦.其中正确的是()A.①②③B.①③④C.②③D.②④9.(3分)如图,已知AB是⊙O的直径,弦CD⊥AB于点E,G是的中点,连结AD,AG,CD,则下列结论不一定成立的是()A.CE=DE B.∠ADG=∠GAB C.∠AGD=∠ADC D.∠GDC=∠BAD10.(3分)二次函数y=﹣(x﹣1)2+5,当m≤x≤n且mn<0时,y的最小值为2m,最大值为2n,则m+n的值为()A.B.2 C.D.二、认真填一填(本题有6个小题,每小题4分,共24分)11.(4分)如图,D是AB上的一点.△ABC∽△ACD,且AD=2,BD=4,∠ADC=65°,∠B=43°,则∠A=,AC=.12.(4分)如图,⊙O是△ABC的外接圆,∠AOB=70°,则∠C为度.13.(4分)如图,将弧AC沿弦AC折叠交直径AB于圆心O,则弧AC=度.14.(4分)如图是二次函数y=ax2+bx+c的图象的一部分,对称轴是直线x=1,①b2>4ac;②4a﹣2b+c<0;③不等式ax2+bx+c>0的解集是x>3;④2a+b=0.其中判断正确的是.(只填写正确结论的序号)15.(4分)如图,在平面直角坐标系中,二次函数y=ax2+c(a≠0)的图象过正方形ABOC的三个顶点A、B、C,则ac的值是.16.(4分)如图,△ABC内接于⊙O,其外角平分线AD交⊙O于D,DM⊥AC 于M,下列结论中正确的是.①DB=DC;②AC+AB=2CM;③AC﹣AB=2AM;④S=S△ABC.△ABD三、全面答一答(本题有7个小题,共66分)17.(6分)二次函数y=ax2+bx+c(a≠0)的图象如图所示,根据图象解答下列问题:(1)求出函数解析式;(2)当x为何值时,y<0.18.(8分)已知Rt△AEC中,∠E=90°,请按如下要求进行操作和判断:(1)尺规作图:作△AEC的外接圆⊙O,并标出圆心O(不写画法);(2)延长CE,在CE的延长线上取点B,使EB=EC,连结AB,设AB与⊙O的交点为D(标出字母B、D),判断:图中与相等吗?请说明理由.19.(8分)已知某道判断题的五个选项中有两个正确答案,该题满分为4分,得分规则是:选出两个正确答案且没有选错误答案得4分;只选出一个正确答案且没有选错误答案得2分;不选或所选答案中有错误答案得0分.(1)任选一个答案,得到2分的概率是;(2)请利用树状图或表格求任选两个答案,得到4分的概率;(3)如果小明只能确认其中一个答案是正确的,此时的最佳答题策略是A.只选确认的那一个正确答案B.除了选择确认的那一个正确答案,再任选一个C.干脆空着都不选了.20.(10分)已知:如图,AB为⊙O的直径,点C、D在⊙O上,且BC=6cm,AC=8cm,∠ABD=45°.(1)求BD的长;(2)求图中阴影部分的面积.21.(10分)某地欲搭建一桥,桥的底部两端间的距离AB=L,称跨度,桥面最高点到AB的距离CD=h称拱高,当L和h确定时,有两种设计方案可供选择:①抛物线型,②圆弧型.已知这座桥的跨度L=32米,拱高h=8米.(1)如果设计成抛物线型,以AB所在直线为x轴,AB的垂直平分线为y轴建立坐标系,求桥拱的函数解析式;(2)如果设计成圆弧型,求该圆弧所在圆的半径;(3)在距离桥的一端4米处欲立一桥墩EF支撑,在两种方案中分别求桥墩的高度.22.(12分)若一个四边形的两条对角线互相垂直且相等,则称这个四边形为“奇妙四边形”.如图1,四边形ABCD中,若AC=BD,AC⊥BD,则称四边形ABCD为奇妙四边形.根据“奇妙四边形”对角线互相垂直的特征可得“奇妙四边形”的一个重要性质:“奇妙四边形”的面积等于两条对角线乘积的一半.根据以上信息回答:(1)矩形“奇妙四边形”(填“是”或“不是”);(2)如图2,已知⊙O的内接四边形ABCD是“奇妙四边形”,若⊙O的半径为6,∠BCD=60°.求“奇妙四边形”ABCD的面积;(3)如图3,已知⊙O的内接四边形ABCD是“奇妙四边形”作OM⊥BC于M.请猜测OM与AD的数量关系,并证明你的结论.23.(12分)在平面直角坐标系中,点O为原点,平行于x轴的直线与抛物线L:y=ax2相交于A,B两点(点B在第一象限),点D在AB的延长线上.(1)已知a=1,点B的纵坐标为2.①如图1,向右平移抛物线L使该抛物线过点B,与AB的延长线交于点C,求AC的长.②如图2,若BD=AB,过点B,D的抛物线L2,其顶点M在x轴上,求该抛物线的函数表达式.(2)如图3,若BD=AB,过O,B,D三点的抛物线L3,顶点为P,对应函数的二次项系数为a3,过点P作PE∥x轴,交抛物线L于E,F两点,求的值,并直接写出的值.2016-2017学年浙江省杭州市下城区青春中学九年级(上)期中数学试卷参考答案与试题解析一、仔细选一选(本题有10个小题,每小题3分,共30分)1.(3分)若=,则的值是()A.B.C.D.【解答】解:由合比性质,得==,故选:A.2.(3分)已知点(﹣2,y1),(﹣4,y2)在函数y=x2﹣4x+7的图象上,那么y1,y2的大小关系是()A.y1>y2B.y1=y2C.y1<y2D.不能确定【解答】解:∵x=﹣2时,y1=19,x=﹣4时,y2=39,∴y2>y1,故选:C.3.(3分)下列函数图象中,当x>0时,y随x的增大而减小的是()A.y=﹣B.y=x C.y=x2 D.y=﹣(x+1)2【解答】解:A、∵k<0,∴y在第四象限内y随x的增大而增大;B、∵k>0,∴y随着x的增大而增大;C、∵y=x2,∴对称轴x=0,当图象在对称轴右侧,y随着x的增大而增大;而在对称轴左侧,y随着x的增大而减小.D、∵y=﹣(x+1)2,对称轴为x=﹣1,a<0,∴当x>﹣1,y随着x的增大而减小,所以x>0时,y随x的增大而减小.故选:D.4.(3分)如图,直线l1∥l2∥l3,直线AC和直线DF在l1,l2,l3上的交点分别为:A,B,C,D,E,F.已知AB=6,BC=4,DF=9,则DE=()A.5.4 B.5 C.4 D.3.6【解答】解:∵l1∥l2∥l3,∴,∵AB=6,BC=4,DF=9,∴,∴DE=5.4,故选:A.5.(3分)四边形ABCD内接于⊙O,::=2:3:5,∠BAD=120°,则∠ABC的度数为()A.100°B.105°C.120° D.125°【解答】解:如图所示:连接OA、OB、OC、OD,∵四边形ABCD为⊙O的内接四边形,::=2:3:5,∠BAD=120°,∴∠COD=150°,∠BOC=90°,∠AOB=60°,∴∠AOD=60°,∴∠ABC=(150°+60°)=105°;故选:B.6.(3分)在同一坐标系中,函数y=ax2+bx与y=的图象大致是图中的()A. B.C.D.【解答】解:A、根据反比例函数得出b>0,根据二次函数得出a>0,b<0,所以b的范围不同,故本选项错误;B、根据反比例函数得出b>0,根据二次函数得出a<0,b<0,所以b的范围不同,故本选项错误;C、根据反比例函数得出b<0,根据二次函数得出a>0,b>0,所以b的范围不同,故本选项错误;D、根据反比例函数得出b>0,根据二次函数得出a<0,b>0,所以b的范围相同,故本选项正确;故选:D.7.(3分)把1到9的自然数依次写在9张形状相同的卡片上,打乱次序放入袋中.从中任意抽出一张卡片,则卡片上的数是2的倍数或3的倍数的概率是()A.B.C.D.【解答】解:∵1~9中是2的倍数有2,4,6,8四个数,是3的倍数有3,6,9三个数,∴卡片上的数是2的倍数或3的倍数共有6个数,∴从中任意抽出一张卡片,则卡片上的数是2的倍数或3的倍数的概率是=;故选:C.8.(3分)下列有关圆的一些结论:①与半径长相等的弦所对的圆周角是30°;②圆内接正六边形的边长与该圆半径相等;③垂直于弦的直径平分这条弦;④平分弦的直径垂直于弦.其中正确的是()A.①②③B.①③④C.②③D.②④【解答】解:与半径长相等的弦所对的圆周角是30°或150°,所以①错误;圆内接正六边形的边长与该圆半径相等,所以②正确;垂直于弦的直径平分这条弦,所以③正确;平分弦(非直径)的直径垂直于弦,所以④错误.故选:C.9.(3分)如图,已知AB是⊙O的直径,弦CD⊥AB于点E,G是的中点,连结AD,AG,CD,则下列结论不一定成立的是()A.CE=DE B.∠ADG=∠GAB C.∠AGD=∠ADC D.∠GDC=∠BAD【解答】解:∵AB是⊙O的直径,弦CD⊥AB,∴CE=DE,A成立;∵G是的中点,∴=,∴∠ADG=∠GAB,B成立;∵AB是⊙O的直径,弦CD⊥AB,∴=,∴∠AGD=∠ADC,C成立;∠GDC=∠BAD不成立,D不成立,故选:D.10.(3分)二次函数y=﹣(x﹣1)2+5,当m≤x≤n且mn<0时,y的最小值为2m,最大值为2n,则m+n的值为()A.B.2 C.D.【解答】解:二次函数y=﹣(x﹣1)2+5的大致图象如下:.①当m≤0≤x≤n<1时,当x=m时y取最小值,即2m=﹣(m﹣1)2+5,解得:m=﹣2.当x=n时y取最大值,即2n=﹣(n﹣1)2+5,解得:n=2或n=﹣2(均不合题意,舍去);②当m≤0≤x≤1≤n时,当x=m时y取最小值,即2m=﹣(m﹣1)2+5,解得:m=﹣2.当x=1时y取最大值,即2n=﹣(1﹣1)2+5,解得:n=,或x=n时y取最小值,x=1时y取最大值,2m=﹣(n﹣1)2+5,n=,∴m=,∵m<0,∴此种情形不合题意,所以m+n=﹣2+=.故选:D.二、认真填一填(本题有6个小题,每小题4分,共24分)11.(4分)如图,D是AB上的一点.△ABC∽△ACD,且AD=2,BD=4,∠ADC=65°,∠B=43°,则∠A=72°,AC=2.【解答】解:∵△ABC∽△ACD,∴∠ACD=∠B=43°,=,∴∠A=180°﹣∠ADC﹣∠ACD=72°,AC=2,故答案为:72°;2.12.(4分)如图,⊙O是△ABC的外接圆,∠AOB=70°,则∠C为35度.【解答】解:∠ACB=∠AOB=35°.故答案35.13.(4分)如图,将弧AC沿弦AC折叠交直径AB于圆心O,则弧AC=120度.【解答】解:过O点作OD⊥AC交AC于D,交弧AC于E,连结OC,BC.∴OD=OE,AD=CD,∵AB是直径,∴∠ACB=90°,OD=BC,又∵OC=OB,∴△OBC是等边三角形,∴∠BOC=60°,∴∠AOC=180°﹣60°=120°,即弧AC=120度.故答案为:120.14.(4分)如图是二次函数y=ax2+bx+c的图象的一部分,对称轴是直线x=1,①b2>4ac;②4a﹣2b+c<0;③不等式ax2+bx+c>0的解集是x>3;④2a+b=0.其中判断正确的是①④.(只填写正确结论的序号)【解答】解:∵抛物线与x轴有2个交点,∴b2﹣4ac>0,即b2>4ac,所以①正确;∵抛物线的对称轴是直线x=1,但不能确定抛物线与x轴的交点坐标,∴4a﹣2b+c<0不确定;不等式ax2+bx+c>0的解集x>3错误,所以②③错误;∵抛物线的对称轴是直线x=1,∴﹣=1,即b=﹣2a,∵2a+b=0,所以④正确.故答案为:①④.15.(4分)如图,在平面直角坐标系中,二次函数y=ax2+c(a≠0)的图象过正方形ABOC的三个顶点A、B、C,则ac的值是﹣2.【解答】解:设正方形的对角线OA长为2m,则B(﹣m,m),C(m,m),A(0,2m);把A,C的坐标代入解析式可得:c=2m①,am2+c=m②,①代入②得:m2a+2m=m,解得:a=﹣,则ac=﹣•2m=﹣2.16.(4分)如图,△ABC内接于⊙O,其外角平分线AD交⊙O于D,DM⊥AC 于M,下列结论中正确的是①②③.①DB=DC;②AC+AB=2CM;③AC﹣AB=2AM;④S=S△ABC.△ABD【解答】解:过点D作DF⊥BE于F,∵A、B、C、D四点共圆,∴∠FAD=∠BCD,∵外角平分线AD交⊙O于D,∴∠FAD=∠DAC,又∵∠DBC=∠DAC,∴∠BCD=∠CBD,∴①DB=DC,故此选项正确;∵AD外角平分线,DF⊥BE,DM⊥AC于M,∴DF=DM,在△BFD≌△CMD中,,∴Rt△BFD≌Rt△CMD,∴BF=CM,又∵AF=AM,∴②AC﹣AB=CM+AM﹣AB=CM+AM﹣CM+AF=CM+AM﹣CM+AM=2AM,故此选项正确;∴③AC+AB=AM+MC+BF﹣FA=AM+MC+MC﹣AM=2CM,故此选项正确;S△ABD和S△ABC的大小无法判断,④错误,故答案为:①②③.三、全面答一答(本题有7个小题,共66分)17.(6分)二次函数y=ax2+bx+c(a≠0)的图象如图所示,根据图象解答下列问题:(1)求出函数解析式;(2)当x为何值时,y<0.【解答】解:(1)设y=a(x﹣1)2+3,∵过B(4,0),∴0=a(4﹣1)2+3,解得:a=﹣,∴函数解析式为y=﹣(x﹣1)2+3;(2)∵对称轴为x=1,B点坐标为(4,0),∴另一个与x轴的交点坐标为(﹣2,0),当y<0时,图象在x轴下方,∴x<﹣2或x>4.18.(8分)已知Rt△AEC中,∠E=90°,请按如下要求进行操作和判断:(1)尺规作图:作△AEC的外接圆⊙O,并标出圆心O(不写画法);(2)延长CE,在CE的延长线上取点B,使EB=EC,连结AB,设AB与⊙O的交点为D(标出字母B、D),判断:图中与相等吗?请说明理由.【解答】解:(1)如图所示,⊙O即为所求;(2)延长CE,在CE的延长线上取点B,使EB=EC,连结AB,则△AEB即为所求,∵BE=EC,AE=AE,AE⊥BC,∴△AEC≌△AEB(SAS),∴∠CAE=∠DAE,∴与相等.19.(8分)已知某道判断题的五个选项中有两个正确答案,该题满分为4分,得分规则是:选出两个正确答案且没有选错误答案得4分;只选出一个正确答案且没有选错误答案得2分;不选或所选答案中有错误答案得0分.(1)任选一个答案,得到2分的概率是;(2)请利用树状图或表格求任选两个答案,得到4分的概率;(3)如果小明只能确认其中一个答案是正确的,此时的最佳答题策略是A A.只选确认的那一个正确答案B.除了选择确认的那一个正确答案,再任选一个C.干脆空着都不选了.【解答】解:(1)五个选项中有两个正确答案,任选一个答案,选对正确答案的概率=;(2)不妨设五个选项分别为A、B、C、D、E,其中A、B为正确选项列表如下:共有20种等可能的结果数,其中AB占2个结果数,所以得4分的概率==;(3)只选确认的那一个正确答案,则可得2分;若除了选择确认的正确答案A,再从B、C、D、E中任意选择剩下的四个选项中的一个,则再选正确答案的概率为,选错误答案的概率为,所以此时得分=4×+0×=1,所以此时的最佳答题策略是只选确认的那一个正确答案.故答案为A.20.(10分)已知:如图,AB为⊙O的直径,点C、D在⊙O上,且BC=6cm,AC=8cm,∠ABD=45°.(1)求BD的长;(2)求图中阴影部分的面积.【解答】解:(1)∵AB为⊙O的直径,∴∠ACB=90°,∵BC=6cm,AC=8cm,∴AB=10cm.∴OB=5cm.连OD,∵OD=OB,∴∠ODB=∠ABD=45°.∴∠BOD=90°.∴BD==5cm.(2)S阴影=S扇形﹣S△OBD=π•52﹣×5×5=cm2.21.(10分)某地欲搭建一桥,桥的底部两端间的距离AB=L,称跨度,桥面最高点到AB的距离CD=h称拱高,当L和h确定时,有两种设计方案可供选择:①抛物线型,②圆弧型.已知这座桥的跨度L=32米,拱高h=8米.(1)如果设计成抛物线型,以AB所在直线为x轴,AB的垂直平分线为y轴建立坐标系,求桥拱的函数解析式;(2)如果设计成圆弧型,求该圆弧所在圆的半径;(3)在距离桥的一端4米处欲立一桥墩EF支撑,在两种方案中分别求桥墩的高度.【解答】解:(1)抛物线的解析式为y=ax2+c,又∵抛物线经过点C(0,8)和点B(16,0),∴0=256a+8,a=﹣.∴抛物线的解析式为y=﹣x2+8(﹣16≤x≤16);(2)设弧AB所在的圆心为O,C为弧AB的中点,CD⊥AB于D,延长CD经过O点,设⊙O的半径为R,在Rt△OBD中,OB2=OD2+DB2∴R2=(R﹣8)2+162,解得R=20;(3)①在抛物线型中设点F(x,y)在抛物线上,x=OE=16﹣4=12,EF=y=3.5米;②在圆弧型中设点F′在弧AB上,作F′E′⊥AB于E′,OH⊥F′E′于H,则OH=D E′=16﹣4=12,O F′=R=20,在Rt△OH F′中,H F′=,∵HE′=OD=OC﹣CD=20﹣8=12,E′F′=HF′﹣HE′=16﹣12=4(米)∴在离桥的一端4米处,抛物线型桥墩高3.5米;圆弧型桥墩高4米.22.(12分)若一个四边形的两条对角线互相垂直且相等,则称这个四边形为“奇妙四边形”.如图1,四边形ABCD中,若AC=BD,AC⊥BD,则称四边形ABCD为奇妙四边形.根据“奇妙四边形”对角线互相垂直的特征可得“奇妙四边形”的一个重要性质:“奇妙四边形”的面积等于两条对角线乘积的一半.根据以上信息回答:(1)矩形不是“奇妙四边形”(填“是”或“不是”);(2)如图2,已知⊙O的内接四边形ABCD是“奇妙四边形”,若⊙O的半径为6,∠BCD=60°.求“奇妙四边形”ABCD的面积;(3)如图3,已知⊙O的内接四边形ABCD是“奇妙四边形”作OM⊥BC于M.请猜测OM与AD的数量关系,并证明你的结论.【解答】解:(1)矩形的对角线相等但不垂直,所以矩形不是“奇妙四边形”;故答案为不是;(2)连结OB、OD,作OH⊥BD于H,如图2,则BH=DH,∵∠BOD=2∠BCD=2×60°=120°,∴∠OBD=30°,在Rt△OBH中,∵∠OBH=30°,∴OH=OB=3,∴BH=OH=3,∵BD=2BH=6,∴AC=BD=6,∴“奇妙四边形”ABCD的面积=×6×6=54;(3)OM=AD.理由如下:连结OB、OC、OA、OD,作OE⊥AD于E,如图3,∵OE⊥AD,∴AE=DE,∵∠BOC=2∠BAC,而∠BOC=2∠BOM,∴∠BOM=∠BAC,同理可得∠AOE=∠ABD,∵BD⊥AC,∴∠BAC+∠ABD=90°,∴∠BOM+∠AOE=90°,∵∠BOM+∠OBM=90°,∴∠OBM=∠AOE,在△BOM和△OAE中,∴△BOM≌△OAE,∴OM=AE,∴OM=AD.23.(12分)在平面直角坐标系中,点O为原点,平行于x轴的直线与抛物线L:y=ax2相交于A,B两点(点B在第一象限),点D在AB的延长线上.(1)已知a=1,点B的纵坐标为2.①如图1,向右平移抛物线L使该抛物线过点B,与AB的延长线交于点C,求AC的长.②如图2,若BD=AB,过点B,D的抛物线L2,其顶点M在x轴上,求该抛物线的函数表达式.(2)如图3,若BD=AB,过O,B,D三点的抛物线L3,顶点为P,对应函数的二次项系数为a3,过点P作PE∥x轴,交抛物线L于E,F两点,求的值,并直接写出的值.【解答】解:(1)①二次函数y=x2,当y=2时,2=x2,解得x1=,x2=﹣,∴AB=2.∵平移得到的抛物线L1经过点B,∴BC=AB=2,∴AC=4.②作抛物线L2的对称轴与AD相交于点N,如图2,根据抛物线的轴对称性,得BN=DB=,∴OM=.设抛物线L2的函数表达式为y=a(x﹣)2,由①得,B点的坐标为(,2),∴2=a(﹣)2,解得a=4.抛物线L2的函数表达式为y=4(x﹣)2;(2)如图3,抛物线L3与x轴交于点G,其对称轴与x轴交于点Q,过点B作BK⊥x轴于点K,设OK=t,则AB=BD=2t,点B的坐标为(t,at2),根据抛物线的轴对称性,得OQ=2t,OG=2OQ=4t.设抛物线L3的函数表达式为y=a3x(x﹣4t),∵该抛物线过点B(t,at2),∴at2=a3t(t﹣4t),∵t≠0,∴=﹣,由题意得,点P的坐标为(2t,﹣4a 3t2),则﹣4a3t2=ax2,解得,x1=﹣t,x2=t,EF=t,∴=.赠送初中数学几何模型【模型三】双垂型:图形特征:60°运用举例:1.在Rt△ABC中,∠ACB=90°,以斜边AB为底边向外作等腰三角形PAB,连接PC. (1)如图,当∠APB=90°时,若AC=5,PC=62,求BC的长;(2)当∠APB=90°时,若AB=45APBC的面积是36,求△ACB的周长.P2.已知:如图,B、C、E三点在一条直线上,AB=AD,BC=CD.(1)若∠B=90°,AB=6,BC=23,求∠A的值;(2)若∠BAD+∠BCD=180°,cos∠DCE=35,求ABBC的值.3.如图,在四边形ABCD中,AB=AD,∠DAB=∠BCD=90°,(1)若AB=3,BC+CD=5,求四边形ABCD的面积(2)若p= BC+CD,四边形ABCD的面积为S,试探究S与p之间的关系。