三角形的高中线与角平分线练习题

合集下载

人教版八年级数学上册《三角形》三角形的高、中线、角平分线专项小练习(附答案)

人教版八年级数学上册《三角形》三角形的高、中线、角平分线专项小练习(附答案)

人教版八年级数学上册《三角形》三角形的高、中线、角平分线专项小练习(附答案)1.(生活情境题)周师傅用4根木条钉成一个四边形木架,如图.要使这个木架不变形,他至少还要再钉上几根木条?A.0根B.1根C.2根D.3根2.如图,用三角板作△ABC的边AB上的高线,下列三角板的摆放位置正确的是()A.B.C.D.3.如图所示,在△ABC中,∠ACB=90°,把△ABC沿直线AC翻折180°,使点B落在点B'的位置,则线段AC具有的性质是( )A.边BB'上的中线B.边BB'上的高C.∠BAB'的平分线D.以上三种性质都具备4.如图,AD是△ABC的中线,BE是△ABD的中线,已知S△ABE=7cm²,则△ABC的面积是()A.18cm²B.28cm²C.36cm²D.45cm²5.(易错警示题)如图,以AD为高的三角形共有个.6.如图,在△ABC中,∠BCA是钝角,完成下列画图,并用适当的符号表示:(1)∠ABC的平分线;(2)AC边上的中线;(3)AC边上的高7.(素养提升题)如图,请你在△ABC上画三条线段,把这个三角形分成面积相等的四部分,看谁的方法多?解题模型发散思维模型三角形的中线分成的两个三角形的周长及面积的关系(1)周长关系:如图1所示,AD是△ABC的中线,△ABD的周长=AB+BD+AD,△ACD 的周长=AC+CD+AD,所以△ABD的周长-△ACD的周长=(AB+BD+AD)-(AC+CD+AD)=AB-AC.即△ABD和△ACD的周长之差实质上就是AB与AC的差.图1(2)面积关系:如图2所示,AD是△ABC的中线,AE是△ABC的高.则S△ABD=1 2BD·AE,S△ACD=12CD AE,因为BD=CD,所以12BD·AE=12CD·AE,所以S△ABD=S△ACD.即三角形的中线可将三角形分成面积相等的两部分.图2参考答案1.答案:B2.答案:B3.答案:D4.答案:B5.答案:66.答案:见解析解析:如图所示:(1)BE为∠ABC的平分线,可表示为∠ABE=∠CBE=12∠ABC,或∠ABC=2∠ABE=2∠CBE.(2)BD为AC边上的中线,可表示为AD=CD=12 AC.(3)BF为AC边上的高.可表示为BF⊥AC于F,或∠AFB=90°.7.答案:见解析解析:因为“三角形的一条中线将原三角形分成面积相等的两部分”,所以可以从三角形的中线入手,利用“三角形等底等高必等积”进行分析.如图所示:。

三角形的高、中线、角平分 线练习题

三角形的高、中线、角平分    线练习题

三角形的高、中线、角平分线练习题
1、三角形的三条中线、三条角平分线、三条高都是( )
A.直线 B.射线 C.线段 D.射线或线段
2、如果一个三角形的三条高的交点恰是三角形的一个顶点,那么这个三角形是( )A.锐角三角形 B.直角三角形 C.钝角三角形 D.不能确定
3、能把三角形的面积分成两个相等的三角形的线段是( )
A.中线B.高C.角平分线 D.以上三种情况都正确
4、如图若∠BAF=∠CAF,则____是△ABD的角平分线,____是△ABC的角平分线
5、如图AB⊥AC,则AB是△ABC的边____上的高,也是△BDC的边______上的高,也是△ABD的边____上的高.
6、如图BD、AE分别是△ABC的中线、角平分线,AC=10cm ,∠BAC=700,则AD=_____,∠BAE=____.
7、在△ABC中,AE是中线,AD是角平分线,AF是高,填空:
⑴BE=___=_____;
⑵∠BAD=_____=_____;⑶∠AFB=_____=90
8、在△ABC中AB=AC,AC上的中线BD把三角形的周长分为24cm和30cm的两个部分,求三角形的三边长。

9、要使四边形木架(用四根木条钉成)不变形,至少要再钉上几根木条?五边形木架和六边形木架呢?n边形木架呢?。

三角形的高、中线、与角平分线专题练习(含答案解析)--八年级数学上册

三角形的高、中线、与角平分线专题练习(含答案解析)--八年级数学上册

三角形的高、中线、与角平分线专题练习(含答案解析)--八年级数学上册一、基础题训练1.下列四个图形中,线段BE是△ABC的高的是()2.如图,过△ABC的顶点A,作BC边上的高,以下作法正确的是()3.下列说法正确的是()①三角形的三条中线都在三角形内部;②三角形的三条角平分线都在三角形内部;③三角形三条高都在三角形的内部.A.①②③B.①②C.②③D.①③4.三角形的三条中线的交点的位置为()A.一定在三角形内B.一定在三角形外C.可能在三角形内,也可能在三角形外D.可能在三角形的一条边上5.下列说法错误的是()A.三角形的角平分线能把三角形分成面积相等的两部分B.三角形的三条中线,角平分线都相交于一点C.直角三角形三条高交于三角形的一个顶点D.钝角三角形的三条高所在直线的交点在三角形的外部6.如图,在△ABC中,AD是BC边上的中线,已知AB=7cm,AC=5cm,则△ABD和△ACD的周长差为cm.7.如图,AD⊥BC于D,那么图中以AD为高的三角形有个.二、中档题训练8.如图,在△ABC中,AD⊥BC,AE平分∠BAC,若∠1=30°,∠2=20°,则∠B=.9.大家都知道,三角形的三条高(所在的直线)、三条角平分线、三条中线都会交于一点,那么三角形的三条交点不一定在三角形的内部.10.三角形的:①中线、角平分线、高都是线段;②三条高必交于一点;③三条角平分线必交于一点;④三条高必在三角形内.其中正确的是()A.①②B.①③C.②④D.③④11.如图所示,已知AD,AE分别是△ADC和△ABC的高和中线,AB=6cm,AC=8cm,BC=10cm,∠CAB=90°.试求:(1)AD的长;(2)△ABE的面积;(3)△ACE和△ABE 的周长的差.12.如图,在△ABC中,AE是中线,AD是角平分线,AF是高,BE=2,AF=3,填空:(1)BE==.(2)∠BAD==.(3)∠AFB==.(4)S△AEC=.三、综合题训练13.如图,在△ABC中(AB>BC),AC=2BC,BC边上的中线AD把△ABC的周长分成60和40两部分,求AC和AB的长.14.在△ABC中,CD⊥AB于D,CE是∠ACB的平分线,∠A=20°,∠B=60°.求∠BCD 和∠ECD的度数.答案解析1.选D2.【考点】三角形的角平分线、中线和高.【分析】根据三角形高线的定义:过三角形的顶点向对边引垂线,顶点和垂足之间的线段叫做三角形的高线解答【解答】解:为△ABC中BC边上的高的是A选项.故选A.【点评】本题考查了三角形的角平分线、中线、高线,熟记高线的定义是解题的关键.3.选B4.选A5.【考点】三角形的角平分线、中线和高【分析】根据三角形的面积公式以及三角形的中线、角平分线、高的概念可知.【解答】解:A、三角形的中线把三角形的面积分成相等的两部分,错误;B、三角形的三条中线,角平分线都相交于一点,正确;C、直角三角形三条高交于直角顶点,正确;D、钝角三角形的三条高所在直线的交点在三角形的外部,正确.故选A.【点评】注意三角形的中线、角平分线、高的概念.以及三角形的中线、角平分线、高的交点的位置.6.已知AB=7cm,AC=5cm,则△ABD和△ACD的周长差为2cm.7.68.【考点】三角形的角平分线、中线和高.【专题】几何图形问题.【分析】由AE平分∠BAC,可得角相等,由∠1=30°,∠2=20°,可求得∠EAD的度数,在直角三角形ABD在利用两锐角互余可求得答案.【解答】解:∵AE平分∠BAC,∴∠1=∠EAD+∠2,∴∠EAD=∠1﹣∠2=30°﹣20°=10°,Rt△ABD中,∠B=90°﹣∠BAD=90°﹣30°﹣10°=50°.故答案为50°.【点评】本题考查了三角形的角平分线、中线和高的相关知识;求得∠EAD=10°是正确解答本题的关键.9.高10.B11.【考点】三角形的角平分线、中线和高;三角形的面积.【分析】(1)利用“面积法”来求线段AD的长度;(2)△AEC与△ABE是等底同高的两个三角形,它们的面积相等;(3)由于AE是中线,那么BE=CE,于是△ACE的周长﹣△ABE 的周长=AC+AE+CE﹣(AB+BE+AE),化简可得△ACE的周长﹣△ABE的周长=AC﹣AB,易求其值.12.(1)BE=CE=BC.(2)∠BAD=∠DAC=∠BAC.(3)∠AFB=∠AFC=90°.(4)S△AEC=3.【考点】三角形的角平分线、中线和高;三角形的面积.【分析】分别根据三角形的中线、角平分线和高及三角形的面积公式进行计算即可.13.【点评】本题考查了等腰三角形的性质,三角形的三边关系定理的应用,注意:要分情况进行讨论.14、【考点】三角形的角平分线、中线和高.【分析】由CD⊥AB与∠B=60°,根据两锐角互余,即可求得∠BCD的度数,又由∠A=20°,∠B=60°,求得∠ACB的度数,由CE是∠ACB的平分线,可求得∠ACE的度数,然后根据三角形外角的性质,求得∠CEB的度数。

三角形的高中线与角平分线练习题

三角形的高中线与角平分线练习题

4321EDCBA1CDBA三角形的高、中线与角平分线11 如图,已知△ABC 中,AQ=PQ 、PR=PS 、PR ⊥AB 于R ,PS ⊥AC 于S ,有以下三个结论:①AS=AR ;②QP ∥AR ; ③△BRP ≌△CSP ,其中( ).(A)全部正确 (B)仅①正确 (C)仅①、②正确 (D)仅①、③正确 2、 如图,点E 在BC 的延长线上,则下列条件中,不能判定AB ∥CD 的是( )A. ∠3=∠4B.∠B=∠DCEC.∠1=∠2.D.∠D+∠DAB=180° 3.如图,ΔACB 中,∠ACB=900,∠1=∠B.(1)试说明 CD 是ΔABC 的高;(2)如果AC=8,BC=6,AB=10,求CD 的长。

4如图,直线DE 交△ABC 的边AB 、AC 于D 、E , 交BC 延长线于F ,若∠B =67°,∠ACB =74°, ∠AED =48°,求∠BDF 的度数5、如图:∠1=∠2=∠3,完成说理过程并注明理由: 因为 ∠1=∠2所以 ____∥____ ( ) 因为 ∠1=∠3所以 ____∥____ ( )6.以下列各组线段为边,能组成三角形的是( ) A .2cm ,3cm ,5cm B .5cm ,6cm ,10cm C .1cm ,1cm ,3cm D .3cm ,4cm ,9cm7.等腰三角形的一边长等于4,一边长等于9,则它的周长是( ) A .17 B .22 C .17或22 D .138.适合条件∠A=12∠B=13∠C的△ABC是()A.锐角三角形B.直角三角形C.钝角三角形D.等边三角形9.已知等腰三角形的一个角为75°,则其顶角为()A.30°B.75°C.105°D.30°或75°10.一个多边形的角和比它的外角的和的2倍还大180°,这个多边形的边数是()A.5 B.6 C.7 D.811.三角形的一个外角是锐角,则此三角形的形状是()A.锐角三角形B.钝角三角形C.直角三角形D.无法确定12.三角形的三边长分别为5,1+2x,8,则x的取值围是________.13.如图,BD平分∠ABC,DA⊥AB,∠1=60°,∠BDC=80°,求∠C的度数.初一三角形的高、中线与角平分线21 如图,BC⊥CD,∠1=∠2=∠3,∠4=60°,∠5=∠6.(1)CO是△BCD的高吗?为什么?(2)∠5的度数是多少?(3)求四边形ABCD各角的度数.2.△ABC中,∠A=50°,∠B=60°,则∠A+∠C=________.3 .已知三角形的三个角的度数之比为1:2:3,则这个三角形是()A.锐角三角形B.直角三角形C.钝角三角形D.不能确定4.△ABC中,∠A=∠B+∠C,则∠A=______度.5.如图∠1+∠2+∠3+∠4=______度.6.如图,△ABC中,AD是BC上的高,AE平分∠BAC,∠B=75°,•∠C=45°,求∠DAE与∠AEC的度数.7.以下说法错误的是()6题A.三角形的三条高一定在三角形部交于一点B.三角形的三条中线一定在三角形部交于一点C.三角形的三条角平分线一定在三角形部交于一点D.三角形的三条高可能相交于外部一点8.如果一个三角形的三条高的交点恰好是这个三角形的一个顶点,•那么这个三角形是()A.锐角三角形B.直角三角形C.钝角三角形D.不能确定9.如图,BD=1BC,则BC边上的中线为______,△ABD的面积=_____的面积.2(9)10.如图,△ABC中,高CD、BE、AF相交于点O,则△BOC•的三条高分别为线段________.(10)初一三角形的高、中线与角平分线31.下列图形中具有稳定性的是()A.梯形B.菱形C.三角形D.正方形2.如图3,AD是△ABC的边BC上的中线,已知AB=5cm,AC=3cm,求△ABD•与△ACD的周长之差.3.如图,∠BAD=∠CAD,AD⊥BC,垂足为点D,且BD=CD.•可知哪些线段是哪个三角形的角平分线、中线或高?4.如图5,在等腰三角形ABC中,AB=AC,一腰上的中线BD将这个等腰三角形的周长分为15和6两部分,求该等腰三角形的腰长及底边长.5.有一块三角形优良品种试验基地,如图所示,•由于引进四个优良品种进行对比试验,需将这块土地分成面积相等的四块,请你制定出两种以上的划分方案供选择(画图说明).6.如图,在△ABC中,D、E分别是BC、AD的中点,S△ABC=4cm2,求S△ABE.7.如图,在锐角△ABC中,CD、BE分别是AB、AC上的高,•且CD、BE交于一点P,若∠A=50°,则∠BPC的度数是()8如图7-1-2-9,AD是△ABC的角平分线,DE∥AB,DF∥AC,EF交AD于点O.请问:DO是△DEF的角平分线吗?如果是,请给予证明;如果不是,请说明理由.初一三角形的高、中线与角平分线41.若三角形的外角中有一个是锐角,则这个三角形是________三角形.2.△ABC中,若∠C-∠B=∠A,则△ABC的外角中最小的角是______(填“锐角”、“直角”或“钝角”).3.如图1,x=______.(1) (2) (3) 4.如图2,△ABC中,点D在BC的延长线上,点F是AB边上一点,延长CA到E,连EF,则∠1,∠2,∠3的大小关系是_________.5.如图3,在△ABC中,AE是角平分线,且∠B=52°,∠C=78°,求∠AEB的度数.7.如图所示,在△ABC中,AB=AC,AD=AE,∠BAD=60°,则∠EDC=______.8.一个零件的形状如图7-2-2-6所示,按规定∠A应等于90°,∠B、∠D应分别是30°和20°,叔叔量得∠BCD=142°,就断定这个零件不合格,你能说出道理吗?9.(1)如图(1),求出∠A+∠B+∠C+∠D+∠E+∠F的度数;(2)如图(2),求出∠A+∠B+∠C+∠D+∠E+∠F的度数.11.如图,BD、CD分别是△ABC的两个外角∠CBE、∠BCF•的平分线,试探索∠D与∠A之间的数量关系.12 如图,BD为△ABC的角平分线,CD为△ABC的外角∠ACE的平分线,它们相交于点D,试探索∠BDC与∠A之间的数量关系.7.3 多边形及其角和基础过关作业1.四边形ABCD中,如果∠A+∠C+∠D=280°,则∠B的度数是()A.80°B.90°C.170°D.20°2.一个多边形的角和等于1080°,这个多边形的边数是()A.9 B.8 C.7 D.63.角和等于外角和2倍的多边形是()A.五边形B.六边形C.七边形D.八边形4.六边形的角和等于_______度.5.正十边形的每一个角的度数等于______,每一个外角的度数等于_______.6.如图,你能数出多少个不同的四边形?7.四边形的四个角可以都是锐角吗?可以都是钝角吗?可以都是直角吗?•为什么?8.求下列图形中x的值:综合创新作业9.(综合题)已知:如图,在四边形ABCD中,∠A=∠C=90°,BE平分∠ABC,•DF平分∠ADC.BE与DF有怎样的位置关系?为什么?10.(应用题)有10个城市进行篮球比赛,每个城市均派3个代表队参加比赛,规定同一城市间代表队不进行比赛,其他代表队都要比赛一场,问按此规定,•所有代表队要打多少场比赛?11.(创新题)如图,以五边形的每个顶点为圆心,以1为半径画圆,求圆与五边形重合的面积.12.(1)(2005年,)已知一个多边形的角和为540°,则这个多边形为()A.三角形B.四边形C.五边形D.六边形(2)(2005年,)五边形的角和等于_______度.13.(易错题)一个多边形的每一个顶点处取一个外角,这些外角中最多有钝角(• )A.1个B.2个C.3个D.4个培优作业14.(探究题)(1)四边形有几条对角线?五边形有几条对角线?六边形有几条对角线?……猜想并探索:n边形有几条对角线?(2)一个n边形的边数增加1,对角线增加多少条?15.(开放题)如果一个多边形的边数增加1,•那么这个多边形的角和增加多少度?若将n边形的边数增加1倍,则它的角和增加多少度?数学世界攻其不备壁虎在一座油罐的下底边沿A处.它发现在自己的正上方──油罐上边缘的B•处有一只害虫.壁虎决定捕捉这只害虫.为了不引起害虫的注意,它故意不走直线,而是绕着油罐,沿着一条螺旋路线,从背后对害虫进行突然袭击如图7-3-5.结果,•壁虎的偷袭得到成功,获得了一顿美餐.请问:壁虎沿着螺旋线爬行是最短的路程吗(线段AB除外)?答案:1.A 点拨:∠B=360°-(∠A+∠C+∠D)=360°-280°=80°.故选A.2.B 点拨:设这个多边形的边数为n,则(n-2)·180=1080.解得n=8.故选B.3.B 点拨:设这个多边形的边数为n,根据题意,得(n-2)·180=2×360.解得n=6.故选B.4.7205.144°;36°点拨:正十边形每一个角的度数为:(102)18010-⨯︒=144°,每一个外角的度数为:180°-144°=36°.6.有27个不同的四边形.7.解:四边形的四个角不可以都是锐角,不可以都是钝角,可以都是直角.因为四边形的角和为360°,如果四个角都是锐角或都是钝角,•则角和小于360°或大于360°,与四边形的角和为360°矛盾.•所以四个角不可以都是锐角或都是钝角.若四个角都是直角,则四个角的和等于360°,与角和定理相符,所以四个角可以都是直角.8.解:(1)90+70+150+x=360.解得x=50.(2)90+73+82+(180-x)=360.解得x=65.(3)x+(x+30)+60+x+(x-10)=(5-2)×180.解得x=115.9.解:BE∥DF.理由:∵∠A=∠C=90°,∴∠A+∠C=180°.∴∠ABC+∠ADC=360°-180°=180°.∵∠ABE=12∠ABC,∠ADF=12∠ADC,∴∠ABE+∠ADF=12(∠ABC+∠ADC)=12×180°=90°.又∵∠ABE+∠AEB=90°,∴∠AEB=∠ADF,∴BE∥DF(同位角相等,两直线平行).10.解:12n (n-3)=12×10×(10-3)=12×10×7=35(场).答:按此规定,所有代表队要打35场比赛.点拨:问题类似于求多边形对角线的个数.11.解:(5-2)×180°÷360°×12=1.5.点拨:不能直接求出扇形的度数,用整体法圆与五边形重合部分的角度和正好是五边形的角和.12.(1)C 点拨:设这个多边形的边数为n ,依题意,得(n-2)×180°=540°,解得n=5,故选C .(2)540 点拨:(n-2)×180°=(5-3)×180°=540°.13.C14.解:(1)四边形有2条对角线;五边形有5条对角线;六边形有9条对角线;……n 边形有(3)2n n -条对角线. (2)当n 边形的边数增加1时,对角线增加(n-1)条.点拨:从n 边形的一个顶点出发,向其他顶点共可引(n-3)条对角线,n 个顶点共可引n (n-3)条,但这些对角线每一条都重复了一次,故n 边形的对角线条数为(3)2n n -. 15.180°,n ·180°.数学世界答案:是最短的路程.可用纸板做一个模型,沿AB 剪开便可看出结论.。

三角形的角平分线、中线和高的专题训练50题

三角形的角平分线、中线和高的专题训练50题

三角形的角平分线、中线和高1.已知,△ABC中,AD是BC边上的高,∠CAD=33°,则∠ACB= °.2.△ABC中,AD,CE是BC,AB边上的高,AD,CE相交于P,∠B=50°,则∠APC 的度数是.3.△ABC中,∠B的外角平分线的与∠C外角平分线相交于点P,且∠BPC=80°,则∠BAP的度数为.4.在Rt△ABC中,∠ACB=90°,∠CAB=30°,∠ACB平分线与∠ABC的外角平分线交于点E,连接AE,则∠AEB= .5.如图,AD是△ABC的中线,AB=5,AC=3,△ABD的周长和△ACD的周长相差.&6.如果一个三角形的三条高的交点恰是三角形的一个顶点,那么这个三角形是(填“锐角三角形”,“直角三角形”,“钝角三角形”)7.如图,△ABC中,AD是BC边上的高,AE是∠BAC的平分线,∠B=46°,∠C=72°,则∠EAD= °.8.如图,AD、BE、CF是△ABC的三条中线,若△ABC的周长是a cm.则AE+CD+BF= cm.@9.如图,△ABC中,∠A=30°,∠B=70°,CE平分∠ACB,CD⊥AB于D.则∠ECD= .10.角平分线一定垂直于底边.11.在△ABC中,已知AD是角平分线,∠B=50°,∠C=70°,∠BAD= °.12.如图,在△ABC中,BD平分∠ABC,BE是AC边上的中线,如果AC=10cm,则AE=cm,如果∠ABD=30°,则∠ABC= .13.如图六,在△ABC中,∠BAC是钝角,完成下列画图,并用适当的符号在图中表示;(1)AC边上的高;(2)BC边上的高.(在上图中直接画)[14.在△ABC中,AC=3cm,AD是△ABC中线,若△ABD周长比△ADC的周长大2cm,则BA= cm.15.△ABC中,∠A等于80度,则内角∠B、∠C的平分线相交所成的锐角为°.16.如图,在△ABC中,∠ACB=90°,∠A=20°,CD与CE分别是斜边AB上的高和中线,那么∠DCE= 度.·17.直角三角形中,两锐角的角平分线所夹的锐角是度.18.如图,在△ABC中,BE、CF分别是∠ABC和∠ACB的角平分线,并相交于点D,EG,FG分别是∠AEB和∠AFC的角平分线,并相交于点G,如果∠A=40°,那么∠CDB= ;∠G= .19.如图,△ABC中,AD是BC边上的中线,已知AB=6cm,AC=4cm,则△ABD 和△ACD周长之差为.20.如图,Rt△ABC中,∠ACB=90°,∠A=40°,D为AB中点,CE⊥AB,则∠DCE= 度.》21.三角形中的角平分线、中线、高都是三条特殊的 (填直线、射线、线段)22.如图所示,BD 是△ABC 的中线,AD=2,AB+BC=5,则△ABC 的周长是 .23.三角形一边上的中线把原三角形分成两个 相等的三角形.24.如图,AD 是△ABC 的中线,AE 是△ABD 的中线,若CE=9cm ,则BC= cm .25.点D 是△ABC 中BC 边上的中点,若AB=3,AC=4,则△ABD 与△ACD 的周长之差为 .、26.如图,AC 、BD 相交于O ,BE 、CE 分别平分∠ABD 、∠ACD ,且交于E ,若∠A=60°,∠D=40°,则∠E= .27.如图,根据图形填空:(1)AD 是△ABC 中∠BAC 的角平分线,则∠ =∠ =21∠ . (2)(2)AE 是△ABC 中线,则 = =21 . (3)AF 是△ABC 的高,则∠ =∠ =90°.28.如图,AD ⊥BC 于D ,那么图中以AD 为高的三角形有 个.29.如图所示:30.(1)在△ABC中,BC边上的高是;31.(2)在△AEC中,AE边上的高是.)32.我们都晓得,三角形的高是比较活泼的,它会出现在三角形的内部,也会出现在三角形的外部,然而,当它与三角形一边相会时,你可能找不到它了,今天就请你猜一猜,如果三角形的高与一边重合了,那么这是什么三角形呢答:三角形.31.在直角三角形、钝角三角形和锐角三角形这三种三角形中,有两条高在三角形外部的是三角形.32.如图,在△ABC中,AD、CE是边BC、AB上的高,若∠B=70°,∠CAD=30°,则∠BCE= ,∠ECA= ..33.如图,在△ABC中,AE是中线,AD是角平分线,AF是高,则:(1)∠BAC=2 ;(2)BC=2 ;(3)=90°.34.如图,∠ABD、∠ACD的平分线交于E,∠E=β1;∠EBD、∠ECD的平分线交于F,∠F=β2;如此下去,∠FBD、∠FCD的平分线的交角为β3;…若∠A=40°,∠D=32°,则β4为度.35.如图所示,在△ABC中,BC边上的高是,AB边上的高是;在△BCE中,BE 边上的高是;EC边上的高是;在△ACD中,AC边上的高是;CD边上的高是.36.在△ABC中,BO平分∠ABC,CO平分∠ACB,当∠A=50°时,∠BOC= .)37.如图,在△ABC中,AC⊥BC,CD⊥AB于点D.则图中共有个直角三角形.38.已知:如图,在△ABC中,∠ACD是△ABC的外角,∠ABC与∠ACD的平分线相交于点A1,∠A1BC与∠A1CD的平分线相交于点A2,如果∠A2=m°,那么∠A= °(用含m的代数式表示).39.如图,△ABC的∠B的外角的平分线与∠C的外角的平分线交于点P,连接AP.若∠BPC=50°,则∠PAC= 度.40.已知△ABC 中,∠A=α.在图(1)中∠B 、∠C 的角平分线交于点O 1,则可计算得∠BO 1C=90°+ 21α;在图(2)中,设∠B 、∠C 的两条三等分角线分别对应交于O 1、O 2,则∠BO 2C= ;请你猜想,当∠B 、∠C 同时n 等分时,(n-1)条等分角线分别对应交于O 1、O 2,…,O n-1,如图(3),则∠BO n-1C= (用含n 和α的代数式表示).41..42.如图,△ABC 中,∠ABC 和∠ACB 的平分线交于点O ,若∠BOC=115°, 则∠A= °.42.如图,已知△ABC 中,∠BAC=80°,∠C=60°,AD 、AE 分别是三角形的高和角平分线,则∠CAD=°,∠DAE= °.43.如图,在△ABC 中,∠A=α.∠ABC 与∠ACD 的平分线交于点A 1,得∠A 1;∠A 1BC 与∠A 1CD 的平分线相交于点A 2,得∠A 2; …;∠A 2011BC 与∠A 2011CD 的平分线相交于点A 2012,得∠A 2012,则∠A 2012= .44.如图,已知△ABC中,∠B=65°,∠C=45°,AD是∠ABC的高线,AE是∠BAC 的平分线,则∠DAE= .45.如图,点O是△ABC的两条角平分线的交点,且∠A=40°,则∠BOC= .·46.在△ABC中,∠A=80°,I是∠B,∠C的角平分线的交点,则∠BIC= °.47.如果三角形的三条高的交点落在一个顶点上,那么它的形状是.48.如图所示,CD是△ABC的中线,AC=9cm,BC=3cm,那么△ACD和△BCD的周长差是cm.49.如图,∠ACB是直角,CD是中线,CD=,BC=3,则AC= .50.BM是△ABC中AC边上的中线,AB=5cm,BC=3cm,那么△ABM与△BCM 的周长之差为cm.。

三角形的高-中线-角平分线测试题

三角形的高-中线-角平分线测试题

三角形的高中线角平分线测试题一、选择题1、能把一个三角形分成面积相等的两部分的是该三角形的一条()A.中线 B.角平分线 C.高线 D.边的垂直平分线2、已知在正方形网格中,每个小方格都是边长为1的正方形,A,B两点在小方格的顶点上,位置如图所示,点C也在小方格的顶点上,且以A,B,C为顶点的三角形面积为1,则点C的个数为()A.3个 B.4个 C.5个 D.6个3、如图,三边均不等长的△ABC,若在此三角形内找一点O,使得△OAB.△OBC.△OCA的面积均相等.判断下列作法何者正确()A.作中线AD,再取AD的中点OB.分别作中线AD.BE,再取此两中线的交点OC.分别作AB.BC的中垂线,再取此两中垂线的交点OD.分别作∠A.∠B的角平分线,再取此两角平分线的交点O4、如图,在△ABC中E是BC上的一点,BC=2BE,点D是AC的中点,设△ABC,△ADF,△BEF的面积分别为S△ABC,S△ADF,S△BEF,且S△ABC=12,则S△ADF-S△BEF=()A、1B、2C、3D、45、如图,G为△ABC的重心,其中∠C=90°,D在AB上,GD⊥AB.若AB=29,AC=20,BC=21,则GD的长度为()A、7B、14C、D、则能摆出不同的三角形的个数是()A.1 B.2 C.3 D.47、已知小明家距离学校10千米,而小蓉家距离小明家3千米.如果小蓉家到学校的距离是d千米,则d满足()A.3<d<10B.3≤d≤10C.7<d<13D.7 ≤d≤138、△ABC中,若∠A∶∠B∶∠C=1∶2∶3,则△ABC的形状是( )A.锐角三角形 B.直角三角形 C.钝角三角形 D.不确定9.如图,高BD与CE交于O点,若∠BAC=72°,则∠DOE的度数( )A.72°B.18°C.108° D.162°10、已知△ABC是边长为1的等腰直角三角形,以Rt△ABC的斜边AC为直角边,画第二个等腰Rt△ACD,再以Rt△ACD的斜边AD为直角边,画第三个等腰Rt△ADE,…,依此类推,第n个等腰直角三角形的面积是()A.2n-2 B.2n-1 C.2n D.2n+1二、填空题1、一个三角形的两边分别是2厘米和9厘米,第三边长是一个奇数,则第三边长为 .2、已知等腰三角形的一边等于5,另一边等于6,则它的周长等于3、四条线段的长分别为5cm,6cm,8cm,13cm,以其中任意三条线段为边可构成三角形个。

八年级数学人教版上册三角形的高、中线与角平分线练习

八年级数学人教版上册三角形的高、中线与角平分线练习

11.1.2 三角形的高、中线与角平分线基础知识一、选择题1. 三角形的角平分线、中线、高线都是()A. 线段B.射线C.直线D. 以上都有可能【答案】A2. 至少有两条高在三角形内部的三角形是()A. 锐角三角形B. 钝角三角形C. 直角三角形D. 都有可能【答案】A3. (2012 山东省德州市)不一定在三角形内部的线段是()(A )三角形的角平分线(B)三角形的中线(C)三角形的高(D )三角形的中位线【答案】C4. 在△ ABC 中,D 是BC 上的点,且BD:CD=2:1,S △ ACD=12, 那么S△ ABC等于() A. 30 B. 36 C. 72 D.24【答案】B5. 小华在电话中问小明:“已知一个三角形三边长分别是4,9,12,如何求这个三角形的面积?” 小明提示说:“可通过作最长边上的高来求解.”小华根据小明的提示作出的图形正确的是()【答案】A6.可以把一个三角形分成面积相等的两部分的线段是()A .三角形的高B.三角形的角平分线C.三角形的中线 D .无法确定【答案】C7.在三角形中,交点一定在三角形内部的有()①三角形的三条高线②三角形的三条中线③三角形的三条角平分线④三角形的外角平分线.A .①②③④B.①②③C.①④D.②③【答案】D8. 如果一个三角形三条高的交点恰是三角形的一个顶点,那么这个三角形是()A. 锐角三角形B. 直角三角形C.钝角三角形D. 不能确定【答案】B9.下图中,正确画出△ ABC 的AC 边上的高的是()【答案】 C 二、填空题1. 如图,在△ ABC 中, BC 边上的高是 ,在△ AEC 中, AE 边上的高是 EC 边上的高是 .【答案】 AB;CD;AB2. ,AD 是△ABC 的边 BC 上的中线,已知 AB=5cm ,AC=3cm ,△ ABD?与△ ACD 的周长之差为 . 答案: 2cm 三、解答题1.如图 ,在⊿ ABC 中画出高线 AD 、中线 BE 、角平分线 CF.解:如图,AD 为高线,BE 为中线 ,CF 为角平分线2.在△ ABC 中,AB=AC,AD 是中线 ,△ ABC 的周长为 34cm,△ABD 的周长为 30cm, 求 AD 的长.解:∵ AB+AC+BC=34cm,BD=CD,AB=AC ∴AB+BD=17cm ∵AB+BD+AD=30cm ∴AD=30-17=13cm3. 如图,已知:在三角形ABC中,∠C=90 o,CD 是斜边AB 上的高,AB=5,BC=4,AC=3, 求高CD 的长度.11答案:∵ S⊿ ABC= ×3×4= ×5CD22∴CD=2.45.,在等腰三角形ABC 中,AB=AC ,一腰上的中线BD 将这个等腰三角形的周长分为和6 两部分,求该等腰三角形的腰长及底边长.解:设AB=AC=2x ,则AD=CD=x .(1)AB+AD=15 ,BC+CD=6 时,有2x+x=15 ,解得x=5 .∴ 2x=10,BC=6-5=1 .(2)当BC+CD=15 ,AB+AD=6 时,有2x+x=6 ,解得x=2 .∴ 2x=4,BC=15-2=13 .∵ 4+4>13 ,∴此时构不成三角形.∴这个等腰三角形的腰长及底边长分别为10,1.6. 如图,在△ ABC 中,D、E 分别是BC、AD 的中点,S△ ABC=4cm2 ,求S△ABE .解:∵ AD 是△ ABC 的边BC 上的中线,11∴ S△ABD= 2 S△ABC= 2×4=2(cm2).15 答案:如下图:∵BE 是△ ABD 的边 AD 上的中线,11∴ S △ABE= 2 S △ ABD= 2 ×2=1(cm2).7.如图,在直角三角形 ABC 中,∠ ACB=90 °,CD 是 AB 边上的高, AB=13cm AC=5cm ,求:(1)△ ABC 的面积; (2) CD 的长;(3)作出△ ABC 的边 AC 上的中线 BE ,并求出△ ABE 的面积;(4)作出△ BCD 的边 BC 边上的高 DF ,当 BD=11cm 时,试求出 DF 的长。

数学人教版八年级上册三角形的高、中线和角平分线的习题

数学人教版八年级上册三角形的高、中线和角平分线的习题

11.1.2三角形的高、中线与角平分线基础知识一、选择题1.三角形的角平分线、中线、高线都是 ( )A.线段B.射线C.直线D.以上都有可能2.至少有两条高在三角形内部的三角形是 ( )A. 锐角三角形B. 钝角三角形C. 直角三角形D.都有可能3. 不一定在三角形内部的线段是 ( )(A )三角形的角平分线 (B )三角形的中线(C )三角形的高 (D )三角形的中位线4.在△ABC 中,D 是BC 上的点,且BD:CD=2:1,S △ACD =12,那么S △ABC 等于( )A. 30B. 36C. 72D.246.可以把一个三角形分成面积相等的两部分的线段是 ( )A .三角形的高B .三角形的角平分线C .三角形的中线D .无法确定7.在三角形中,交点一定在三角形内部的有 ( )①三角形的三条高线 ②三角形的三条中线 ③三角形的三条角平分线 ④三角形的外角平分线.A .①②③④B .①②③C .①④D .②③8.如果一个三角形三条高的交点恰是三角形的一个顶点,那么这个三角形是 ( )A. 锐角三角形B. 直角三角形C.钝角三角形D.不能确定9.下图中,正确画出△ABC 的 AC 边上的高的是 ( )A B C D二、填空题1.如图,在△ABC 中,BC 边上的高是 ,在△AEC 中,AE 边上的高是 ,EC 边上的高是 .EFD CB A2.AD 是△ABC 的边BC 上的中线,已知AB=5cm ,AC=3cm ,△ABD•与△ACD 的周长之差为 .三、解答题1.如图,在⊿ABC 中画出高线AD 、中线BE 、角平分线CF .2.在△ABC 中,AB=AC,AD 是中线,△ABC 的周长为34cm,△ABD 的周长为30cm, 求AD 的长.3.如图,已知:在三角形ABC 中,∠C=90º,CD 是斜边AB 上的高,AB=5,BC=4,AC=3,求高CD 的长度.4.在等腰三角形ABC 中,AB=AC ,一腰上的中线BD 将这个等腰三角形的周长分为13和4两部分,求该等腰三角形的腰长及底边长.ABC6.如图,在△ABC 中,D 、E 分别是BC 、AD 的中点,S △ABC =4cm 2,求S △ABE ..7.如图,在直角三角形ABC 中,∠ACB=90°,CD 是AB 边上的高,AB=13cm ,BC=12cm ,AC=5cm ,A B CD求:(1)△ABC 的面积;(2)CD 的长;(3)作出△ABC 的边AC 上的中线BE ,并求出△ABE 的面积;(4)作出△BCD 的边BC 边上的高DF ,当BD=11cm 时,试求出DF 的长。

三角形的角平分线、中线和高的专题训练50题

三角形的角平分线、中线和高的专题训练50题

三角形的角平分线、中线和高的专题训练50题1. 在△ABC中,角A的角平分线交对边BC于点D,若BD=DC,求证:∠B=∠C。

【解答】设∠BAD=∠CAD=x,由于角A的角平分线BD、CD分别相交对边BC于点D,所以AD是△ABC的角平分线。

根据角平分线定理可知:$\frac{BD}{CD}=\frac{AB}{AC}$由于BD=CD,所以$\frac{AB}{AC}=1$,即AB=AC。

根据等边三角形的性质可知∠B=∠C。

2. 在△ABC中,角A的角平分线交对边BC于点D,若∠BAD=30°,求∠B和∠C的度数。

【解答】设∠BAD=∠CAD=x,根据题意可知角A的角平分线BD、CD分别相交对边BC于点D。

由于∠BAD=30°,所以x=30°。

根据角平分线定理可知:$\frac{BD}{CD}=\frac{AB}{AC}$由于BD=CD,所以$\frac{AB}{AC}=1$,即AB=AC。

又由等边三角形的性质可知∠B=∠C,即∠B=∠C=75°。

3. 在△ABC中,角B的角平分线交对边AC于点D,若∠BAD=80°,求∠ABC的度数。

【解答】设∠BAD=∠DAC=x,根据题意可知角B的角平分线AD相交对边AC于点D。

由于∠BAD=80°,所以x=80°。

根据角平分线定理可知:$\frac{BD}{CD}=\frac{AB}{AC}$又由于BD=CD,所以$\frac{AB}{AC}=1$,即AB=AC。

由等边三角形的性质可知∠ABC=∠ACB,设∠ABC=∠ACB=y,则∠ADB=∠ADC=180°-2x=20°。

再由三角形内角和为180°可知∠B+∠ADC=180°,即y+20°=180°,解得y=160°。

所以∠ABC=∠ACB=160°。

4. 在△ABC中,角A的角平分线交对边BC于点D,若∠B=70°,∠C=50°,求∠BAD的度数。

初中数学三角形的高、中线和角平分线同步练习题5套(含答案)

初中数学三角形的高、中线和角平分线同步练习题5套(含答案)

三角形的高、中线和角平分线同步练习题5套(含答案)(一)1.填空题:(1)从三角形一个顶点向它的对边画______,以______和______为端点的线段叫做三角形这边上的高.如图,若CD 是△ABC 中AB 边上的高,则∠ADC ______∠BDC =______,C 点到对边AB 的距离是______的长.(2)连结三角形的一个顶点和它______的______叫做三角形这边上的中线. 如右图,若BE 是△ABC 中AC 边上的中线,则AE ______.______21EC (3)三角形一个角的______与这个角的对边相交,以这个角的______和______为端点的线段叫做三角形的角平分线.一个角的平分线与三角形的角平分线的区别是________________________________ ______________________________________.如图,若AD 是△ABC 的角平分线,则∠BAD ______∠CAD =21______或∠BAC =2______=2______. 2.已知:△GEF ,分别画出此三角形的高GH ,中线EM ,角平分线FN .3.(1)分别画出△ABC 的三条高AD 、BE 、CF .(∠A 为锐角) (∠A 为直角) (∠A 为钝角)(2)这三条高AD 、BE 、CF 所在的直线有怎样的位置关系?4.(1)分别画出△ABC 的三条中线AD 、BE 、CF .(2)这三条中线AD 、BE 、CF 有怎样的位置关系?(3)设中线AD与BE相交于M点,分别量一量线段BM和ME、线段AM和MD的长,从中你能发现什么结论?5.(1)分别画出△ABC的三条角平分线AD、BE、CF.(2)这三条角平分线AD、BE、CF有怎样的位置关系?(3)设△ABC的角平分线BE、CF交于N点,请量一量点N到△ABC三边的距离,从中你能发现什么结论?(一)参考答案1.(1)垂线,顶点、垂足,=,90°,高CD的长.(2)所对的边的中点、线段,=,AC(3)平分线,顶点、交点,一个角的平分线是射线,而三角形的角平分线是线段.=,∠BAC,∠BAD,∠DAC2.略.3.(1)略,(2)三条高所在直线交于一点.4.(1)略,(2)三条中线交于一点,(3)BM=2ME.5.(1)略,(2)三条角平分线交于一点,(3)点N到△ABC三边的距离相等.三角形的高、中线与角平分线(二)一.选择题:1.△ABC中,AB=AC=4,BC=a,则a的取值范围是( )A.a>0 B.0<a<4 C.4<a<8 D.0<a<82.△ABC中,CA=CB,D为BA中点,P为直线CD上的任一点,那么PA与PB的大小关系是( ) A.PA >PB B.PA<PB C.PA=PB D.不能确定3.△ABC中,AB=7,AC=5,则中线AD之长的范围是( )A.5<AD<7B.1<AD<6C.2<AD<12D.2<AD<54.△ABC中,AB=13,BC=10,BC边上中线AP=12,则AB,AC关系为( )A.AB>ACB.AB=ACC.AB<ACD.无法确定5.三条线段a,b,c长度均为整数且a=3,b=5.则以a,b,c为边的三角形共有( )A.4个B.5个C.6个D.7个6.一个三角形中,下列说法正确的是( )A.至少有一个内角不小于90°B.至少一个内角不大于30°C. 至少一个内角不小于60°D. 至少一个内角不大于45°7.△ABC中,∠A=40°,高BD和CE交于O,则∠COD为( )A.40°或140°B. 50°或130°C. 40°D. 50°8.已知,如图1,△ABC中,∠B=∠DAC,则∠BAC和∠ADC的关系是( )A.∠BAC<∠ADCB.∠BAC=∠ADCC.∠BAC>∠ADCD.不能确定9.在△ABC中,已知∠A+∠C=2∠B,∠C-∠A=80°,则∠C的度数是( )A.60°B.80°C.100°D.120°10.如图2,∠B=∠C,则∠ADC与∠AEB的关系是( )A.∠ADC>∠AEBB.∠ADC=∠AEBC.∠ADC<∠AEBD.不能确定二、填空题:1.△ABC中,∠A-∠B=10°,2∠C-3∠B=25°,则∠A= .2.等腰三角形周长为21cm,一中线将周长分成的两部分差为3cm,则这个三角形三边长为________.3.点A、B关于直线l对称,点C、D也关于l对称,AC、BD交于O,则O点在上.4.△ABC周长为36,AB=AC,AD⊥BC于D,△ABD周长为30cm,则AD= .5.等腰三角形一腰上的高与另一腰夹角为45°,则顶角为 .6.三角形三边的长为15、20、25,则三条高的比为 .7.若三角形三边长为3、2a-1、8,则a的取值范围是 .8.如果等腰三角形两外角比为1∶4则顶角为 . 9.等腰三角形两边比为1∶2,周长为50,则腰长为 . 10.等腰三角形底边长为20,腰上的高为16.则腰长为 . 三、解答题:1.△ABC 中AB=AC ,D 在AC 上,且AD=BD=BC.求△ABC 的三内角度数.2.如图,AC=BD ,AD ⊥AC ,BD ⊥BC ,求证AD=BC.3.CD 为Rt △ABC 斜边的中线 V ,DE ⊥AC 于E ,BC=1,AC=3.求△CED 的周长.4. 如图,AD 为△ABC 的中线,∠ADB 的平分线交AB 于E ,∠ADC 的平分线交AC 于E,求证BE+CF >EF.5.△A BC 中,AD ⊥BC 交边BC 于D.(1)若∠A=90° 求证:AD+BC >AB+AC(2)若∠A >90°,(1)中的结论仍然成立吗?若不成立,请举反例,若成立,请给出证明 6.如图,将一张长方形纸片沿EF 折叠后,点D 、C 分别落在点D ′、C ′的位置,ED ′ 的延长线与BC 交于点G ,若∠EFG =50°,求∠1、∠2的度数.(二)参考答案一、选择:DCBBB CABCB 二、填空:(1).55° (2).(8,8,5)或(6,6,9) (3).l (4).12 (5).45°或135° (6).20∶15∶12 (7).3<a <6 (8).140° (9).20 (10).350三.解答:1.设∠A=x AD=DB=BCAB=AC ∴∠ABD=x ∠BDC=2x ∠ABC=∠C=2x ∠DBC=x ∴5x=180° x=36° ∴∠A=36°∠C=72° ∠ABC=72°2.连DC ,∠DAC=∠DBC=90° AC=BD DC=DC ∴Rt △DAC ≌△CBD (HL) ∴AD=BC.3.∵∠ACB=90° BC=1 AC=3 ∴AB=2 ∠A=∠ACD=30°C D=1 DE=21CE=23 周长为2334.延长ED 至G ,使ED=DG ,连GC ,GF DE 平分∠BDA ,DF 平分∠ADC ∴∠EDF=90°,ED=DG ∴EF=FG ,△BED ≌△CGD ∴BE=GC ;GC+CF >GF.∴BE+CF >EF.5.(1)∵∠A=90°∴AB2+AC2=BC2AB ·AC=AD ·BC.(AB+AC)2=AB2+AC2+2AB ·AC=BC2+2AD ·BC <BC2+2AD ·BC+AD2=(BC+AD)2∴AD+BC >AB+AC. (2)若∠A >90°,上述结论仍成立.证∵∠A >90°,作AE ⊥AB 交BC 于E ,则AD 为Rt △BAE 斜边上的高 由(1)∴AD+BE >AB+AE ① 在△AE C 中 AE+EC >AC ②;①+② AD+BE+EC+AE >AB+AC+AE ∴AD+BC >AB+AC 6、80°,100°三角形的高、中线与角平分线(三)一、选择题1.一定在三角形内部的线段是( )A.锐角三角形的三条高、三条角平分线、三条中线B.钝角三角形的三条高、三条中线、一条角平分线C.任意三角形的一条中线、两条角平分线、三条高D.直角三角形的三条高、三条角平分线、三条中线2.如图,△ABC 中,点E 是BC 上的一点,EC=2BE,BD 是边AC 上的中线,若S △ABC =12,则S △ADF -S △BEF =( ) A.1 B.2 C.3 D.4 二、填空题3.空调外机安装在墙壁上时,一般都会按如图所示的方法固定在墙壁上,这种方法应用的数学知识是三角形的 .4.如图所示,∠BAD=45°,AE=4 cm.(1)如果AD 是△ABC 的角平分线,那么∠DAC= ;(2)如果AE=CE,那么线段BE 是△ABC 的 ,AC 的长为 ; (3)如果AF 是△ABC 的高,那么图中以AF 为高的三角形有 个.5.如图,在△ABC中,AD是△ABC边BC上的中线,CE是△ACD边AD上的中线,F是EC的中点.若S△BFC=1,则S△ABC= .三、解答题6.如图,已知AD、AE分别是△ABC的高和中线,AB=9 cm,AC=12 cm,BC=15 cm,∠BAC=90°.试求:(1)△ABE的面积;(2)AD的长度;(3)△A CE与△ABE的周长的差.7.在△ABC中,AB=AC,AC边上的中线BD把△ABC的周长分为24和18两部分,求三角形的三边长.(三)参考答案1.答案 A A项,锐角三角形的三条高、三条角平分线、三条中线一定在三角形内部,故本选项正确;B项,钝角三角形的三条高有两条在三角形的外部,故本选项错误;C项,任意三角形的一条中线、两条角平分线都在三角形内部,但三条高不一定都在三角形内部,故本选项错误;D项,直角三角形的三条高有两条是直角边,不在三角形内部,故本选项错误.故选A.2.答案B∵S△ABC=12,EC=2BE,点D是AC的中点,∴S△ABE=S△ABC=4,S△ABD=S△ABC=6,∴S△ADF-S△BEF=S△ABD-S△ABE=6-4=2.故选B.3.答案稳定性解析题中方法应用的数学知识是三角形的稳定性.4.答案(1)45°(2)中线;8 cm (3)6解析(1)∵AD是△ABC的角平分线,∴∠DAC=∠BAD=45°.(2)∵AE=CE,∴线段BE是△ABC的中线,AC=2AE=2×4=8(cm).(3)以AF为高的三角形有△ABD、△ABF、△ABC、△ADF、△ADC、△AFC,共6个. 5.答案 4解析如图,连接BE.∵点D、E分别为BC、AD的中点,∴S△ABD=S△ACD=S△ABC,S△BDE=S△ABD=S△ABC,S△CDE=S△ACD=S△ABC,∴S△BCE=S△BDE+S△CDE=S△ABC+S△ABC=S△ABC,∵点F是CE的中点,∴S△BEF=S△BFC=S△BCE=×S△ABC=S△ABC,∵S△BFC=1,∴S△ABC=4.6.解析(1)∵△ABC是直角三角形,∠BAC=90°,AB=9 cm,AC=12 cm,∴S△ABC=AB·AC=×9×12=54(cm2).∵AE是边BC上的中线,∴BE=EC,∴BE·AD=EC·AD,即S△ABE=S△AEC,∴S△ABE=S△ABC=27 cm2.∴△ABE的面积是27 cm2. (2)∵∠BAC=90°,AD是边BC上的高,∴AB·AC=BC·AD,∴AD===(cm),即AD的长度为 cm.(3)∵AE为BC边上的中线,∴BE=CE,∴△ACE的周长-△ABE的周长=AC+AE+CE-(AB+BE+AE)=AC-AB=12-9=3(cm),即△ACE与△ABE的周长的差是3 cm.7.解析如图,设AB=AC=a,BC=b,则有或解得或这时三角形的三边长分别为16,16,10或12,12,18,它们都能构成三角形.所以三角形的三边长分别为16,16,10或12,12,18.三角形的高、中线与角平分线(四)一、选择题1、已知三角形的两边分别为4和9,则此三角形的第三边可能是()A. 4 B. 5 C.9 D. 132、下列长度的三根木棒首尾相接,不能做成三角形框架的是( )A.5 cm、7 cm、2 cm B.7 cm、13 cm、10 cmC.5 cm、7 cm、11 cm D.5 cm、10 cm、13 cm3、如图,已知BE,CF分别为△ABC的两条高,BE和CF相交于点H,若∠BAC=50°,则∠BHC为()A.115°B.120°C.125°D.130°4、下列长度的三条线段,不能组成三角形的是()A.2、3、4 B.1、2、3 C.3、4、5 D.4、5、65、若△ABC内一点O到三角形三条边的距离相等,则O为△ABC()的交点.A.角平分线B.高线C.中线D.边的中垂线6、如图,在△ABC中,BD、BE分别是高和角平分线,点F在CA的延长线上,FH⊥BE交BD于G,交BC于H,下列结论:①∠DBE=∠F;②2∠BEF=∠BAF+∠C;③∠F=(∠BAC﹣∠C);④∠BGH=∠ABE+∠C其中正确的是()A.①②③B.①③④C.①②④D.①②③④7、下列各组数可能是一个三角形的边长的是()A.1,2,4 B.4,5,9 C.4,6,8 D.5,5,118、如图,CD,CE,CF分别是△ABC的高、角平分线、中线,则下列各式中错误的是()A.AB=2BF B.∠ACE=∠ACB C.AE=BE D.CD⊥BE9、一个三角形中直角的个数最多有()A.3B.1C.2D.010、下列图形不具有稳定性的是()11、下列各组中的三条线段能组成三角形的是()A.3,4,8 B.5,6,11C.5,6,10 D.4,4,812、如图所示,其中三角形的个数是()A.2个B.3个C.4个D.5个13、下列图形不具有稳定性的是()A.正方形B.等腰三角形C.直角三角形D.钝角三角形14、如图,AC⊥BC,CD⊥AB,DE⊥BC,分别交BC,AB,BC于点C,D,E,则下列说法中不正确的是()A.AC是△ABC和△ABE的高B.DE,DC都是△BCD的高C.DE是△DBE和△ABE的高D.AD,CD都是△ACD的高二、填空题15、在△ABC是AB=5,AC=3,BC边的中线的取值范围是。

初中数学三角形的高、中线和角平分线提高训练5套(能力题含答案)

初中数学三角形的高、中线和角平分线提高训练5套(能力题含答案)

三角形的高、中线和角平分线提高训练5套(能力题)能力训练(1)1.下列说法中正确的是( )A .三角形的三条高都在三角形内B .直角三角形只有一条高C .锐角三角形的三条高都在三角形内D .三角形每一边上的高都小于其他两边2.(易错题)小华在电话中问小明:“已知一个三角形三边长分别是4,9,12,如何求这个三角形的面积?”小明提示说:“可通过作最长边上的高来求解.”小华根据小明的提示作出的图形正确的是( )3.如图,∠1=∠2,∠3=∠4,下列结论中错误的是( ) A .BD 是△ABC 的角平分线 B .CE 是△BCD 的角平分线C .132ACB ∠=∠ D .CE 是△ABC 的角平分线4.如图,若已知AE 平分∠BAC ,且∠1=∠2=∠4=15°,则∠3的度数为________,以AE 为角平分线的三角形还有________.5.如图所示:(1)在△ABC 中,BC 边上的高是________; (2)在△AEC 中,AE 边上的高是________.6.如图所示,△ABC 的高AD ,BE ,CF 相交于点H ,过点F 作FG ⊥AC 交AC 于点G ,请说出△ABH ,△BCH ,△ACH ,△ACF 中各边上的高.7.如图,D 是△ABC 中BC 边上一点,DE ∥AC 交AB 于点E ,若∠EDA =∠EAD ,试说明AD 是△ABC 的角平分线.8.不等边△ABC 的两条高长度分别为4和12,若第三条高的长也是整数,试求它的长.(1)参考答案1.C 解析 锐角三角形的三条高都在三角形内,直角三角形有两条高恰是其直角边,故选C . 2.C 解析 最长边上的高,应是过这条边所对的顶点来作它的垂线段,图形中只有C 选项是正确的,故选C .3.D 解析 因为34∠=∠,CE 交BD 于点E ,所以CE 是△BCD 的角平分线,虽然CE 将∠ACB 分为两个相等的角,但CE 未与边AB 相交,所以CE 不是△ABC 的角平分线,故选D .4.15° 解析 因为AE 平分∠BAC ,所以B A E C A E ∠=∠.又因为1215∠=∠=︒,所以12151530BAE ∠=∠+∠=︒+︒=︒,所以30CAE BAE ∠=∠=︒,即4330BAE ∠=∠+∠=︒,所以330151∠=︒-︒=︒.因为2315∠=∠=︒,所以AE 是△DAF 的角平分线.5.AB CD 解析 根据三角形的高的定义即可判断.6.解:在△ABH 中,FH 是AB 边上的高,AE 是BH 边上的高,BD 是AH 边上的高;在△BCH 中,HD 是BC 边上的高,CE 是BH 边上的高,BF 是CH 边上的高;在△ACH 中,HE 是AC 边上的高,CD 是AH 边上的高,AF 是CH 边上的高;在△ACF 中,FG 是AC 边上的高,CF 是AF 边上的高,AF 是CF 边上的高.7.解:∵DEAC ,∴EDA CAD ∠=∠.∵EDA EAD ∠=∠,∴CAD EAD ∠=∠, ∴AD 是△ABC 的角平分线. 8.它的长为5,或4.提示:设S △ABC =S ,第三条高为h ,则△ABC 的三边长可表示为:hSS S 212242、、,列不等式得:12242212242SS h S S S +<<- ∴3<h <6.能力训练(2)1.若AD 是△ABC 的中线,则下列结论中错误的是( ) A .AD 平分∠BAC B .BD =DC C .AD 平分BC D .BC =2DC2.已知D ,E 分别是△ABC 的边AC ,BC 的中点,那么下列说法不正确的是( ) A .DE 是△BCD 的中线 B .BD 是△ABC 的中线 C .AD =DC ,BE =EC D .AD =EC ,DC =BE3.如图,△D 是△ABC 的中线,AE 是△ABD 的中线,若CE =9 cm ,则BC =________cm . 4.如图,BD 是△ABC 的中线,AB =6 cm ,BC =4 cm ,则△ABD 与△BCD 周长的差是________.5.如图所示,AE 和AF 分别是△ABD 和△ACD 的中线,根据条件填空.因为AE 是△ABD 的中线(已知),所以1______________________2==.因为AF 是△ACD 的中线(已知),所以1______________________2==.所以111__________________222EF =+=6.如图,在△ABC 中,D ,E 分别是BC ,AD 的中点,S △ABC =24 cm 2,求S △ABE .7.在△ABC 中,AB =AC ,AC 边上的中线BD 把△ABC 的周长分为12 cm 和15 cm 两部分,求三角形的各边长.8.已知:△ABC 中,AB =AC ,BD 是AC 边上的中线,如果D 点把三角形ABC 的周长分为12cm 和15cm 两部分,求此三角形各边的长.9.将一个三角形剖分成若干个面积相等的小三角形,称为该三角形的等积三角形的剖分(以下两问要求各画三个示意图)(1)已知一个任意三角形,并其剖分成3个等积的三角形. (2)已知一个任意三角形,将其剖分成4个等积的三角形.(2)参考答案1.A 解析 AD 是△ABC 的中线,它不一定平分∠BAC .2.D 解析 由三角形的中线定义可知A ,B 选项正确;由题意可明显得出AD DC =,BE EC =,C 选项正确.故选项D 错误.3.12 解析 ∵AD 是△ABC 的中线,AE 是△ABD 的中线,∴12CD BD BC ==,12DE BD =, ∴34CE DE CD BC =+=.∵9cm CE =,∴12cm BC =.4.2cm 解析 因为BD 是△ABC 的中线,所以A D C D =,所以△ABD 与△BCD 的周长差是()()()642cm AB BD AD BC BD DC AB BC ++-++=-=-=.5.BE DE BD CF FD CD BD CD BC6.解:由D ,E 分别是BC ,AD 的中点,且等底同高的三角形面积相等,得()2112412cm 22ABD ADC ABC S S S ∆∆∆===⨯=,ABE DBE S S ∆∆=,所以()211126cm 22ABE ABD S S ∆∆==⨯=7.解:设cm AB AC x ==.则1cm 2AD DC x ==.(1)若12cm AB AD +=, 即1122x x +=,则8x =, 所以8cm AB AC ==,4cm DC =.故()15411cm BC =-=.此时,AB AC BC +>,三角形存在.所以三角形的三边长分别为8cm ,8cm ,11cm .(2)若15cm AB AD +=,即1152x x +=,则10x =,所以5cm DC =,故()1257cm BC =-=. 显然,此时三角形存在,所以三角形三边长分别为10cm ,10cm ,7cm . 综上所述,此三角形的三边长分别为8cm ,8cm ,11cm 或10cm ,10cm ,7cm . 8.提示:有两种情况,分别运用方程思想,设未知数求解. ⎩⎨⎧===,11,8BC AC AB 或⎩⎨⎧===.7,10BC AC AB 9.(1)(2)下列各图是答案的一部分:能力训练(3)1.如图,在△ABC中,BD为角平分线,且∠ABC=60°,则∠ABD的度数是()A.60°B.45°C.30°D.15°2.如图,在△ABC中,E是BC上的一点,EC=2BE,点D是AC的中点,设△ABC,△ADF,△BEF的面积分别为S△ABC,S△ADF,S△BEF,且S△ABC=12,则S△ADF-S△BEF=()A.1 B.2 C.3 D.43.如图,在△ABC中,∠1=∠2,G为AD的中点,BG的延长线交AC于点E,F为AB上的一点,CF与AD垂直,交AD于点H,则下面判断正确的有()①AD是△ABE的角平分线;②BE是△ABD的边AD上的中线;③CH是△ACD的边AD上的高;④AH是△ACF的角平分线和高.A.1个B.2个C.3个D.4个4.如图,AD是△ABC的高,AE是△ABC的角平分线,AF是△ABC的中线,则图中相等的角有________,相等的线段有________.5.如图,AD,BE分别是△ABC中BC,AC边上的高,AD=4cm,BC=6 cm,AC=5 cm,则BE=________.6.如图所示,在平面直角坐标系中,A点坐标为(3,3),B点坐标为(5,0),则△AOB的面积为________.7.有一块肥沃的三角形土地ABC,其中一边与灌渠相邻,如图,政府要将这块地按人口数分给甲、乙、丙三家,若甲家有3口人,乙家有3口人,丙家有6口人,且每家所分土地与灌渠相邻,请你帮忙设计一个合理的分配方案.8.如图所示,网格小正方形的边长都为1,在△ABC中,试分别画出三条边的中线,然后探究三条中线的位置关系,你发现了什么?9.如图,AD是∠CAB的平分线,DE∥AB,DF∥AC,EF交AD于点O.请问:(1)DO是∠EDF的平分线吗?如果是,请给予证明;如果不是,请说明理由.(2)若将DO是∠EDF的平分线与AD是∠CAB的平分线,DE∥AB,DF∥AC中的任何一个条件交换,所得命题正确吗?若正确,请选择一个证明.(3)参考答案1.C 解析 因为BD 为角平分线,所以ABD CBD ∠=∠,而60ABC ∠=︒,所以1302ABD ABC ∠=∠=︒.2.B 解析 ∵BD 是△ABC 的中线,∴162ABD CBD ABC S S S ∆∆∆===.∵2EC BE =,∴2AEC ABE S S ∆∆=,∴143AEE ABC S S ∆∆==,∴()642ADF BEF ADF ABF BEF ABF ABD ABE S S S S S S S S ∆∆∆∆∆∆∆∆-=+-+=-=-=.3.B 解析 由12∠=∠知AD 平分∠BAE ,但AD 不是△ABE 的线段,故①错误,而正确的说法为AD 为△ABC 的角平分线;BE 经过△ABD 的边AD 的中点G ,但BE 不是△ABD 内的线段,故②错误,而正确的说法为BG 为△ABD 的边AD 上的中线;由于CF AD ⊥于点H ,所以CH 是△ACD 的边AD 上的高,故③正确;AH 平分∠FAC ,且H 在△AFC 的边FC 上,因而AH 为△AFC 的角平分线,又因为AH FC ⊥,故AH 也为△AFC 的高,所以④正确.4.BAE CAE ∠=∠,ADB ADC ∠=∠ B F C F = 解析 ∵AE 是△ABC 的角平分线,∴BAE CAE ∠=∠.∵AD 是△ABC 的高,∴90ADB ADC ∠=∠=︒.∵AF 是△ABC 的中线,∴BF CF =.5.24cm 5解析 由1122BC AD AC ⋅=,得1164522BE ⨯⨯=⨯⨯,得24cm 5BE =.6.7.5 解析 如图,过A 点作AD x ⊥轴于点D ,则D 点坐标为(3,0),3AD =,所以11537.522ACB S OB AD ∆=⋅=⨯⨯=.7.解:因为人口数分别为3,3,6,且336+=,所以先找△ABC 的边BC 上的中线AD ,AD 将△ABC 分成两部分:△ABD 和△ADC .若将△ADC 分给丙家,则将△ABD 分给甲、乙两家,由于甲、乙两家人口数相等,因此找△ABD 的边BD 上的中线AE ,AE 将△ABD 分成相等的两部分:△ABE 和△AED .可将△ABE 分给甲家,△AED 分给乙家.如图所示.8.解:如图所示,由图中的信息可知:①三角形ABC的三条中线相交于一点;②三条中线交点到对边中点的距离等于它到对应顶点距离的一半.9.思路建立(1)要说明DO是∠EDF的平分线,则需说明EDA ADF∠=∠,根据角平分线的性质及平行线的性质进行等量代换即可.(2)与(1)的求证过程类似.解:(l)DO是∠EDF的平分线.证明:∵AD是∠CAB的平分线,∴EAD FAD∠=∠.∵DE AB,DF AC,∴EDA FAD∠=∠.∠=∠,FAD EAD∴EDA ADF∠=∠,∴DO是∠EDF的平分线.(2)①若与AD是∠CAB的平分线交换,正确.理由与(1)中证明过程类似.②若与DE AB交换,正确.理由:∵DF AC,∴FAD EAD∠=∠.∵AD是∠CAB的平分线,∴EAD FAD∠=∠.∠=∠.∴FAD FDA又∵DO是∠EDF的平分线,∴EDA FDA∠=∠,∴DE AB.∠=∠,∴EDA FAD③若与DF AC交换,正确,理由与②类似.能力训练(4)1.已知等腰△ABC的底边BC=8,且|AC-BC|=2,那么腰AC的长为( )A.10或6B.10C.6D.8或62.已知三角形两边的长分别是4和10,则此三角形的周长可能是( )A.19B.20C.25D.303.已知三角形三边的长分别为1、2、x,则x的取值范围在数轴上表示为( )4.如果a,b,c为三角形的三边长,且(a-b)2+(a-c)2+|b-c|=0,则这个三角形是.5.已知a、b、c为△ABC的三边长,b、c满足(b-2)2+|c-3|=0,且a为方程|a-4|=2的解,求△ABC的周长,并判断△ABC的形状.6.三角形两边之和为8,第三边上的高为2,面积大于5,则第三边a的范围是( )A.2<a<8B.5<a<8C.2<a<5D.不能确定7.一个三角形3条边长分别为x cm、(x+1)cm、(x+2)cm,它的周长不超过39 cm,则x的取值范围是.8.一个等腰三角形的周长为9,三条边长都为整数,则等腰三角形的腰长为.9.已知a,b,c是三角形的三边长.(1)化简:|b+c-a|+|b-c-a|-|c-a-b|-|a-b+c|;(2)在(1)的条件下,若a,b,c满足a+b=11,b+c=9,a+c=10,求这个式子的值.10.(2018浙江义乌月考,10,★★☆)边长为整数,周长为20的三角形个数是( )A.4B.6C.8D.1211.(2017山东泰安新泰中考模拟,16,★★★)已知一个三角形的三条边长均为正整数.若其中仅有一条边长为5,且它又不是最短边,则满足条件的三角形个数为( )A.4B.6C.8D.1012.(2018天津西青区期末,21,★★★)如图,△ABC中,A1,A2,A3,…,A n为AC边上不同的n个点,首先连接BA1,图中出现了3个不同的三角形,再连接BA2,图中便有6个不同的三角形,……(1)完成下表:6(2)若出现了45个三角形,则共连接了多少个点?(3)若一直连接到A n,则图中共有个三角形.13.(2016江苏盐城中考,8,★★☆)若a、b、c为△ABC的三边长,且满足|a-4|+=0,则c的值可以为( )A.5B.6C.7D.814.(2016贵州安顺中考,5,★★☆)已知实数x,y满足|x-4|+=0,则以x,y的值为两边长的等腰三角形的周长是( )A.20或16B.20C.16D.以上答案均不对15.若a、b、c为三角形的三边,且a、b满足+(b-2)2=0,则第三边c的取值范围是.16.如图,用四个螺丝钉将四条不可弯曲的木条钉成一个木框,不计螺丝钉大小,其中相邻两螺丝钉间的距离依次为2、3、4、6,且相邻两木条的夹角均可调整.若调整木条的夹角时不破坏此木框,则任意两个螺丝钉间的距离的最大值为( )A.6B.7C.8D.1017.不能构成三角形的三条整数长度的线段的长度和的最小值为1+1+2=4;若四条整数长度的线段中,任意三条不能构成三角形,则该四条线段的长度和的最小值为1+1+2+3=7;……,依此规律,若八条整数长度的线段中,任意三条不能构成三角形,则该八条线段的长度和的最小值为.(4)参考答案1.A ∵|AC-BC|=2,∴AC-BC=±2,∵等腰△ABC的底边BC=8,∴AC=10或6.故选A.2.C 设第三边的长为x,∵三角形两边的长分别是4和10,∴10-4<x<10+4,即6<x<14.则三角形的周长L满足20<L<28,只有C选项中25符合题意.3.A ∵三角形的三边长分别是x,1,2,∴x的取值范围是1<x<3,故选A.4.答案等边三角形解析∵(a-b)2+(a-c)2+|b-c|=0,∴a-b=0,a-c=0,b-c=0,∴a=b,a=c,b=c,∴a=b=c,∴这个三角形是等边三角形.5.解析∵(b-2)2+|c-3|=0,∴b-2=0,c-3=0,解得b=2,c=3,∵a为方程|a-4|=2的解,∴a-4=±2,解得a=6或2,∵a、b、c为△ABC的三边长,b+c<6,∴a=6不合题意,舍去,∴a=2,∴△ABC 的周长为2+2+3=7,△ABC是等腰三角形.6.B ∵三角形两边之和为8,第三边为a,∴a<8,∵第三边上的高为2,三角形的面积大于5,∴a>5,∴5<a<8,故选B.7.答案1<x≤12解析∵一个三角形的3条边长分别是x cm,(x+1)cm,(x+2)cm,它的周长不超过39 cm,∴解得1<x≤12.8.答案3或4解析设腰长为x,则底边长为9-2x.∵9-2x-x<x<9-2x+x,∴2.25<x<4.5,∵三边长均为整数,∴x可取的值为3或4.9.解析(1)∵a、b、c为三角形三边的长,∴a+b>c,a+c>b,b+c>a,∴原式=|(b+c)-a|+|b-(c+a)|-|c-(a+b)|-|(a+c)-b|=b+c-a+a+c-b-a-b+c+b-a-c=2c-2a.(2)∵a+b=11①,b+c=9②,a+c=10③,∴由①-②,得a-c=2④,由③+④,得2a=12,∴a=6,∴b=11-6=5,c=10-6=4.当a=6,b=5,c=4时,原式=2×4-2×6=-4.10.C 8个,分别是:(9,9,2),(8,8,4),(7,7,6),(6,6,8),(9,6,5),(9,7,4),(9,8,3),(8,7,5).故选C.11.D ①当5是最大的边长时,可能的情况有3、4、5;4、4、5;3、3、5;4、2、5,共四种情况.②当5是第二大的边长时,可能的情况有2、5、6;3、5、7;3、5、6;4、5、6;4、5、7;4、5、8,共六种情况.所以共有10个三角形.故选D.12.解析(1)62(2)共连接了8个点.(3)1+2+3+…+(n+1)=[1+2+3+…+(n+1)+1+2+3+…+(n+1)]=(n+1)(n+2).故填(n+1)(n+2).13.A ∵|a-4|+=0,∴a-4=0,b-2=0,∴a=4,b=2,则4-2<c<4+2,即2<c<6,故选A.14.B 根据题意得解得(1)若4是腰长,则三角形的三边长为4、4、8,不能组成三角形;(2)若4是底边长,则三角形的三边长为4、8、8,能组成三角形,周长为4+8+8=20.故选B.15.答案1<c<5解析由题意得,a2-9=0,b-2=0,解得a=3,b=2,∵3-2=1,3+2=5,∴1<c<5.16.B 已知相邻两螺丝钉间的距离依次为2、3、4、6,故可将4根木条的长看作2、3、4、6.①选5(2+3=5)、4、6作为三边长,5-4<6<5+4,能构成三角形,此时两个螺丝钉间的最大距离为6;②选7(3+4=7)、6、2作为三边长,6-2<7<6+2,能构成三角形,此时两个螺丝钉间的最大距离为7;③选10(4+6=10)、2、3作为三边长,2+3<10,不能构成三角形,此种情况不成立;④选8(6+2=8)、3、4作为三边长,3+4<8,不能构成三角形,此种情况不成立.综上所述,任意两个螺丝钉间的距离的最大值为7.故选B.17.答案54 解析1+1+2+3+5+8+13+21=54.能力训练(5)一、单选题(共14道,每道7分)1.下列说法正确的是( )A.三角形的三条角平分线有可能在三角形内,也可能在三角形外B.三角形的三条高都在三角形内C.三角形的三条高交于一点D.三角形的三条中线交于一点2.如图所示,D,E分别是△ABC的边AC,BC的中点,则下列说法不正确的是( )A.DE是△BCD的中线B.BD是△ABC的中线C.AD=DC,BE=ECD.DE是△ABC的中线3.如图,△ABC中,AD⊥BC交BC的延长线于D,BE⊥AC交AC的延长线于E,CF⊥BC交AB于F,下列说法错误的是( )A.FC是△ABC的高B.FC是△BCF的高C.BE是△ABC的高D.BE是△ABE的高4.如图,在△ABC中,作BC边上的高,下列选项中正确的是( )A. B. C. D.5.如图,在△ABC中,∠1=∠2,G为AD的中点,延长BG交AC于E,F为AB上的一点,CF⊥AD于H.则下列判断正确的个数是( )①AD是△ABE的角平分线;②BG是△ABD的中线;③CH为△ACD中AD边上的高.A.1个B.2个C.3个D.0个6.如图,AD是△ABC的角平分线,点O在AD上,且OE⊥BC于E,∠BAC=60°,∠C=80°,则∠EOD的度数为( )A.20°B.30°C.10°D.15°7.如图,已知BD是△ABC的中线,AB=5,BC=3,△ABD和△BCD的周长的差是( )A.2B.3C.6D.不能确定8.有3cm,6cm,8cm,9cm的四条线段,任选其中的三条线段组成一个三角形,则最多能组成三角形的个数为( )A.1B.2C.3D.49.已知三角形的三边长分别是3,8,x;若x的值为偶数,则x的值有( )A.6个B.5个C.4个D.3个10.三角形两边长为2和9,周长为偶数,则第三边长为( )A.7B.8C.9D.1011.已知三角形的两边分别为3和8,且周长为偶数,则周长为( )A.大于5,小于11B.18C.20D.18或2012.一个三角形的两边分别是5和11,若第三边是整数,则这个三角形的最小周长是( )A.21B.22C.23D.2413.已知等腰三角形的周长为16,其中一边长为3,则该等腰三角形的腰长为( )A.3B.10C.6.5D.3或6.514.已知等腰三角形的周长为13,其中一边长为3,则该等腰三角形的底边为( )A.7B.3C.7或3D.8(五)参考答案1.D2. D3.A4. C5.B6.A7.A8.C9.D10.C11.D12.C13.C14.B。

三角形的高、中线、角平分线练习题

三角形的高、中线、角平分线练习题

三角形的高、中线、角平分线练习题
1、三角形的三条中线、三条角平分线、三条高都是()
A.直线B.射线C.线段D.射线或线段
2、如果一个三角形的三条高的交点恰是三角形的一个顶点,那么
这个三角形是()A.锐角三角形B.直角
A
D 三角形C.钝角三角形D.不能确定
F
3、能把三角形的面积分成两个相等的三角形的线段B C
E
是()
A.中线B.高C.角平分线D.以上三种情况都正确
4、如图若∠BAF=∠CAF,则____是△ABD的角平分线,
A
____是△ABC的角平分线
D
5、如图AB⊥AC,则AB是△ABC的边____上的高,也
B C
是△BDC的边______上的高,也是△ABD的边____上的高.
6、如图BD、AE分别是△ABC的中线、角平分线,
A
AC=10cm,∠BAC=70,则AD=_____,∠BAE=____.
D
BC
E
7、在△ABC中,AE是中线,AD是角平分线,AF是高,填空:
⑴BE=___=1_____;2
⑵∠BAD=_____=
1_____;⑶∠AFB=_____=90 2
8、在△ABC中AB=AC,AC上的中线BD把三角形的周长分为24cm 和30cm的两个部分,求三角形的三边长。

9、要使四边形木架(用四根木条钉成)不变形,至少要再钉上几根木条?五边形木架和六边形木架呢?n边形木架呢?。

小学五年级《三角形的高、中线、角的平分线》练习题

小学五年级《三角形的高、中线、角的平分线》练习题

《 三角形的高、中线和角平分线》习题11.三角形的一条( ),能把三角形分成两个面积相等的三角形.A .角平分线B .中线C .高D .以上都不对2.在△ABC 中,△A =50°,△B ,△C 的角平分线相交于点O ,则△BOC 的度数是( ).A .65°B .115°C .130°D .100°3.如图,如果△1=△2=△3,则AM 为△ 的角平分线,AN 为△ 的角平分线.4.如图,如果D 是BC 的中点,则AD 是△ABC 的 ,BD =DC = .5.画一画.如图,在△ABC 中:(1)画出△C 的平分线CD ;(2)画出BC 边上的中线AE ;(3)画出△ABC 的边AC 上的高BF .《三角形的高、中线和角平分线》习题21.直角三角形两锐角的平分线所夹的钝角为_______度.2.等腰三角形的高线、角平分线、中线的总条数为_______.3.在△ABC 中,∠B=80°,∠C=40°,AD ,AE 分别是△ABC 的高线和角平分线,则∠DAE 的度数为_________.4.三角形的三条中线交于一点,这一点在_______,三角形的三条角平分线交于一点,这一点在__________,三角形的三条高线所在直线交于一点,这一点在_____.5.如图所示,在△ABC 中,∠C -∠B=90°,AE 是∠BAC 的平分线,求∠AEC 的度数.AB CD B A C 2 C 3 N M B 1A《 三角形的高、中线和角平分线》习题31、在△ABC 中,AB=AC ,AD 是中线,△ABC 的周长为34cm ,△ABD 的周长为30cm , 求AD 的长.2、在△ABC 中,∠A=50°,高BE ,CF 所在的直线交于点O ,求∠BOC 的度数.3、如图所示的是由若干盆花组成的形如三角形的图案,每条边(包括两个顶点)有n(n>1)盆花,每个图案花盆的总数为s .按此规律推断s 与n 有什么关系,并求出当n=13时,s 的值.4、AD ,AE 分别是等边三角形ABC 的高和中线,则AD 与AE 的大小关系为________.《三角形的高、中线和角平分线》习题41、如图1所示,在△ABC 中,∠ACB=90°,把△ABC 沿直线AC 翻折180°,使点B 落在点B′的位置,则线段AC 具有性质( ) .A .是边BB′上的中线B .是边BB′上的高C .是∠BAB′的角平分线D .以上三种性质合一图1 图2 图32、如图2所示,D ,E 分别是△ABC 的边AC ,BC 的中点,则下列说法不正确的是( ).A .DE 是△BCD 的中线B .BD 是△ABC 的中线C .AD=DC ,BD=ECD .∠C 的对边是DE3、如图3所示,在△ABC 中,已知点D ,E ,F 分别为边BC ,AD ,CE 的中点,且S △ABC = 4cm 2,则S 阴影等于( ).E BAn=2,s=3n=3,s=6n=4,s=9B 'C B A E DC BAA.2cm2B.1cm2C.12cm2D.14cm24、在△ABC,∠A=90°,角平分线AE、中线AD、高AH的大小关系为( ).A.AH<AE<ADB.AH<AD<AEC.AH≤AD≤AED.AH≤AE≤AD5、在△ABC中,D是BC上的点,且BD:DC=2:1,S△ACD=12,那么S△ABC等于( ).A.30B.36C.72D.24。

三角形的高中线角平分线练习题

三角形的高中线角平分线练习题

三角形的高中线角平分线练习题文件管理序列号:[K8UY-K9IO69-O6M243-OL889-三角形的高、中线、角平分线练习题1、分别在下列锐角三角形、直角三角形、钝角三角形中画出所有的高。

2、三角形的三条中线、三条角平分线、三条高都是()A.直线 B.射线 C.线段 D.射线或线段3、如果一个三角形的三条高的交点恰是三角形的一个顶点,那么这个三角形是()A.锐角三角形 B.直角三角形C.钝角三角形 D.不能确定4、能把三角形的面积分成两个相等的三角形的线段是()A.中线B.高C.角平分线 D.以上三种情况都正确5、如图若∠BAF=∠CAF,则____是△ABD的角平分线,____是△ABC的角平分线6、如图AB⊥AC,则AB是△ABC的边____上的高,也是△BDC的边______上的高,也是△ABD的边____上的高.FB CDAB CD7、如图BD 、AE 分别是△ABC 的中线、角平分线,AC=10cm ,∠BAC=700,则AD=_____,∠BAE=____.8、在△ABC 中,AE 是中线,AD 是角平分线,AF 是高,填空: ⑴BE =___=21_____;⑵∠BAD=_____=21_____;⑶∠AFB=_____=909、在△ABC 中,AB=AC,AD 是中线,△ABC 的周长为34cm,△ABD 的周长为30cm, 求AD 的长.10、在△ABC 中AB=AC ,AC 上的中线BD 把三角形的周长分为24cm 和30cm 的两个部分,求三角形的三边长。

11、要使四边形木架(用四根木条钉成)不变形,至少要再钉上几根木条?五边形木架和六边形木架呢?n 边形木架呢?BD。

八年级数学上册《三角形的高、中线与角平分线》练习题及答案

八年级数学上册《三角形的高、中线与角平分线》练习题及答案

八年级数学上册《三角形的高、中线与角平分线》练习题及答案学校:___________姓名:___________班级:___________一、单选题1.如图,△ABC中BC边上的高和△AEC中AE边上的高分别是()A.EF和CD B.BC和CD C.AB和CD D.AB和EF2.如图,ABC的面积是2,AD是ABC的中线,13AF AD=,12CE EF=,则CDE△的面积为()A.29B.16C.23D.493.数学活动课上,小敏、小颖分别画了△ABC和△DEF,数据如图,如果把小敏画的三角形面积记作S△ABC,小颖画的三角形面积记作S△DEF,那么你认为()A.S△ABC >S△DEF B.S△ABC <S△DEFC.S△ABC =S△DEF D.不能确定4.如图,在△ABC中,已知点D、E、F分别为边BC、AD、CE的中点,且△ABC的面积是8cm2,则阴影部分面积等于()A .2cm 2B .1.5cm 2C .1cm 2D .0.5cm 25.如图,BD 是ABC 的边AC 上的中线,AE 是ABD △的边BD 上的中线,BF 是ABE △的边AE 上的中线,若ABC 的面积是32,则阴影部分的面积是( )A .9B .12C .18D .206.请你量一量如图ABC 中BC 边上的高的长度,下列最接近的是( )A .0.5cmB .0.7cmC .1.5cmD .2cm7.如图,已知D 、E 分别为△ABC 的边BC 、AC 的中点,连接AD 、DE ,AF 为△ADE 的中线.若四边形ABDF 的面积为10,则△ABC 的面积为( )A .12B .16C .18D .208.已知A ,B 两点在数轴上的位置如图所示,原点为O ,现A 点以2m/s 的速度向左运动,B 点以1m/s 的速度向左运动,若A ,B 两点同时出发,当OA :OB =1:2时,用时为( )A .2sB .14sC .73s 或1sD .12s 或2s二、填空题 9.填空:(1)如图(1),,AD BE CF 是ABC 的三条中线,则2AB =______,BD =______,12AE =______. (2)如图(2),,AD BE CF 是ABC 的三条角平分线,则1∠=______,132∠=______,2ACB ∠=______.10.已知BD 、CE 是△ABC 的高,直线BD 、CE 相交所成的角有一个角为45︒,则BAC ∠等于______. 11.如图,AC//BD ,OA ,OB 分别平分BAC ∠和ABD ∠,OE AB ⊥,垂足为E ,如果OE 5=,那么AC 与BD 的距离是________12.如图,在ABC 中,90,BAC AD ∠=︒是高,BE 是中线,CF 是角平分线,CF 交AD 于点G ,交BE 于点H ,下面说法正确的是____________.△ABE △的面积等于BCE 的面积;△AFG AGF ∠=∠;△2FAG ACF ∠=∠;△CG 是ACD △的角平分线13.如图,AD 是△ABC 的中线,BE 是△ABD 的中线,EF ⊥BC 于点F.若24ABCS=,BD = 4 ,则EF 长为___________.14.若AD是△ABC的高,△BAD=70°,△CAD=20°,则△BAC的度数为_____.15.连结三角形的一个顶点和它________________的________叫做三角形这边上的中线.如图,若BE是ABC中AC边上的中线,则AE________12EC=________.16.如图,点C、D分别是半圆AOB上的三等分点,若阴影部分的面积为32π,则半圆的半径OA的长为__________.三、解答题17.如图,△ABE 中,△E =90°,AC 是△BAE 的角平分线.(1)若△B =40°,求△BAC 的度数;(2)若D 是BC 的中点,△ADC 的面积为16,AE =8,求BC 的长.18.如图,在ABC 中(AB BC >),2AC BC =,BC 边上的中线AD 把ABC 的周长分成60和40两部分,求AC 和AB 的长.19.在平面内,分别用3根、5根、6根……火柴棒首尾依次相接,能搭成什么形状的三角形呢?通过尝试,列表如下.问:(1)4根火柴棒能搭成三角形吗?(2)8根、12根火柴棒分别能搭成几种不同形状的三角形?并画出它们的示意图. 20.如图,在正方形网格中有一个ABC ,按要求进行作图(只用直尺)(1)画出将ABC向右平移6格,再向上平移3格后的DEF;(2)画出ABC中AC边上的高BH;(3)请在图中直接标记出3个使BCP的面积等于3的格点1P、2P、3P.参考答案:1.C【分析】根据三角形高的定义,△ABC中BC边上的高为从BC边相对的顶点A向BC边作的垂线段,△AEC 中AE边上的高为从AE边相对的顶点C向AE边作的垂线段,观察图形,找出符合要求的线段即可.【详解】解:根据三角形高的定义可知,AB是△ABC中BC边上的高,CD是△AEC中AE边上的高,故选C.【点睛】本题考查三角形高的定义:从三角形一个端点向它的对边作一条垂线,三角形顶点和它对边垂足之间的线段称三角形这条边上的高.2.A【分析】根据中线的性质即可求出S△ACD,然后根据等高时,面积之比等于底之比,即可依此求出S△CDF,S△CDE.【详解】解:△△ABC的面积是2,AD是△ABC的中线,△S△ACD=12S△ABC=1,△AF=13 AD,△DF=23AD,△S△CDF=23S△ACD=23×1=23,△CE=12EF,△CE=13 CF△S△CDE=13S△CDF=13×23=29,故选:A.【点睛】此题考查的是三角形的面积关系,掌握中线的性质和等高时,面积之比等于底之比是解决此题的关键.3.C【分析】在两个图形中分别作BC、EF边上的高,欲比较面积,由于底边相等,所以只需比较两条高即可.【详解】解:如图,过点A、D分别作AG△BC,DH△EF,垂足分别为G、H,在△ABG和△DHE中,AB=DE=5,△B=50°,△DEH=180°-130°=50°,△△B=△DEH,△AGB=△DHE=90°,△△AGB△△DHE(AAS),△AG=DH.△BC=4,EF=4,△S△ABC=S△DEF.故选:C.【点睛】要题考查全等三角形的判定和性质,等底等高两三角形面积相等.证明△AGB△△DHE是解题的关键.4.A【分析】先由D为BC中点,求出△ABD和△ACD面积,再由点E为AD中点求出△BCE面积,再根据F是CE中点,知阴影部分面积等于△BCE面积的一半,即可求解.【详解】解:△D是BC中点,△ABC的面积是8cm2,△1=42ABD ACD ABC S S S ==△△△cm 2, △E 是AD 中点,△1=22ABE BDE ABD S S S ==△△△cm 2,1=22ACECDEACDS SS ==cm 2,△4CBE S =△cm 2, △F 为CE 中点, △1=22CBE S S =△阴影cm 2, 故选:A .【点睛】本题考查了三角形面积的等积变换,掌握三角形的中线将三角形分成面积相等的两部分是解题关键. 5.B【分析】利用中线等分三角形的面积进行求解即可. 【详解】△BD 是ABC 的边AC 上的中线,△11321622ABD BCD ABC S S S ===⨯=△△,△AE 是ABD △的边BD 上的中线, △1116822ABEADEABDSSS ===⨯=, 又△BF 是ABE △的边AE 上的中线,则CF 是ACE 的边AE 上的中线, △118422BEFABFABESSS ===⨯=,182CEFACFADECEDACES SSSS =====,则4812BEFCEFS SS =+=+=阴影,故选:B .【点睛】本题考查了中线的性质,清晰明确三角形之间的等量关系,进行等量代换是解题的关键. 6.D【分析】作出三角形的高,然后利用刻度尺量取即可. 【详解】解:如图所示,过点A 作AO △BC ,用刻度尺直接量得AO 更接近2cm ,故选:D .【点睛】题目主要考查利用刻度尺量取三角形高的长度,作出三角形的高是解题关键. 7.B【分析】根据三角形的中线平分三角形的面积即可得到结论. 【详解】设AEF S x =△, △AF 为△ADE 的中线. △,2AEFADFADESSx Sx ===△E 分别为△ABC 的边AC 的中点, △2,4ADECDECDASSx Sx ===△D 分别为△ABC 的边BC 的中点, △4,8CDABDAABCSSx Sx ===△四边形ABDF 的面积=510FDABDAS Sx +==解得2x = △816ABCSx ==故选:B【点睛】本题考查了三角形的面积,熟练三角形的中线平分三角形的面积是解题的关键. 8.C【分析】设A ,B 两点同时出发运动的时间为t s ,分类讨论△当A 点在O 点右侧时和△当A 点在O 点左侧时,分别用t 表示出OA 和OB ,再列出等式,解出t 即可. 【详解】设A ,B 两点同时出发运动的时间为t s , 分类讨论△当A 点在O 点右侧时,即32t <时, 此时1OB t =+,32OA t =-, △OA :OB =1:2 △(32)t -:(1)t +=1:2 解得:312t =<,符合题意; △当A 点在O 点左侧时,即32t >, 此时1OB t =+,23OA t =-,△OA :OB =1:2 △(23)t -:(1)t +=1:2 解得:7332t =>,符合题意. 综上可知1t =或73t =时,OA :OB =1:2 故选C .【点睛】本题主要考查数轴上的动点问题,利用分类讨论的思想是解答本题的关键. 9. AF 或BF CD AC 2∠ ABC ∠ 4∠【分析】(1)根据三角形的中线定义:三角形一边的中点与此边所对顶点的连线叫做三角形的中线可得E 、F 、D 分别是AC 、AB 、BC 上的中点,进而得到答案.(2)根据角平分线定义,从一个角的顶点出发,把这个角分成两个相等的角的射线,叫做这个角的平分线即可解答.【详解】解:(1)△CF 是AB 边上的中线, △AB =2AF =2BF ; △AD 是BC 边上的中线, △BD =CD ,△BE 是AC 边上的中线, △AE =12AC ,(2)△AD 是BAC ∠的角平分线, △12∠=∠ ,△BE 是ABC ∠的角平分线, △132∠=ABC ∠, △CF 是ACB ∠的角平分线, △2ACB ∠=4∠.故答案为:AF 或BF ;CD ;AC ;2∠;ABC ∠;4∠【点睛】此题主要考查了三角形的中线、角平分线,解题的关键是掌握三角形的中线及角平分线的定义. 10.45°或135°【分析】分两种情况:(1)当△A 为锐角时,如图1,(2)当△A 为钝角时,如图2,根据三角形的内角和计算得出结果.【详解】解:分两种情况:(1)当△A为锐角时,如图1,△△DOC=45°,△△EOD=135°,△BD、CE是△ABC的高,△△AEC=△ADB=90°,△△EAO+△AEO+△AOE=180°=△DAO+△DOA+△ADO,△△AEO+△EAD+△ADO+△EOD=360°△△A=360°−90°−90°−135°=45°;(2)当△A为钝角时,如图2,△△F=45°,△ADF=△AEF=90°,同理△DAE=360°−90°−90°−45°=135°,△△BAC=△DAE=135°,则△BAC的度数为45°或135°,故答案为:45°或135°.【点睛】本题考查了三角形的高和三角形的内角和,明确三角形内角和,三角形的高所构成了两个直角;本题是易错题,容易漏解,要分锐角三角形和钝角三角形两种情况进行计算.11.10【分析】过点O 作OM AC ⊥于M ,作ON BD ⊥于N ,利用平行线的性质可证得OM△BD ,进而可证得MN 为AC 和BD 的距离,根据角平分线的性质可知OE=OM=OE ,即可求得MN 的长度.【详解】解:如图,过点O 作OM AC ⊥于M ,作ON BD ⊥于N .△OA 、OB 分别平分BAC ∠和ABD ∠,OE AB ⊥,△OM OE ON 5===,又 AC △BD ,OM AC ⊥,△OM BD ⊥,又ON BD ⊥,△M ,O ,N 三点共线,△ AC 与BD 之间的距离为MN=OM ON 10+=.故答案为:10.【点睛】本题考查求平行线间的距离、角平分线的性质、八个基本事实,熟练掌握角平分线的性质,作出AC 和BD 之间的距离是解答的关键.12.△△△△【分析】根据等底同高的三角形的面积相等即可判断△;根据直角三角形两锐角互余求出△ABC =△CAD ,根据三角形的外角性质即可推出△;根据直角三角形两锐角互余求出△BAD =△ACD ,根据角平分线定义即可判断△;根据三角形的角平分线的定义判断△即可.【详解】解:△BE 是中线,△AE =CE ,△△ABE 的面积=△BCE 的面积(等底同高的三角形的面积相等),△正确;△CF 是角平分线,△△ACF =△BCF ,△AD 为高,△△ADC =90°,△△BAC =90°,△△ABC +△ACB =90°,△ACB +△CAD =90°,△△ABC =△CAD ,△△AFG =△ABC +△BCF ,△AGF =△CAD +△ACF ,△△AFG =△AGF ,△正确;△AD 为高,△△ADB =90°,△△BAC =90°,△△ABC +△ACB =90°,△ABC +△BAD =90°,△△ACB =△BAD ,△CF 是△ACB 的平分线,△△ACB =2△ACF ,△△BAD =2△ACF ,即△F AG =2△ACF ,△正确;△CF 是△ACB 的平分线,CF 交AD 于点G ,△CG 是△ACD 的角平分线,△正确;故答案为:△△△△.【点睛】本题考查了直角三角形两锐角互余,三角形的外角性质,三角形的角平分线、中线、高线等知识点,能综合运用定理进行推理是解此题的关键.13.3【分析】因为S △ABD =12S △ABC ,S △BDE =12S △ABD ;所以S △BDE =14S △ABC ,再根据三角形的面积公式求得即可.【详解】解:△AD 是△ABC 的中线,S △ABC =24,△S △ABD =12S △ABC =12,同理,BE 是△ABD 的中线,612BDE ABD SS ==,△S △BDE =12BD •EF ,△12BD •EF =6,即1462EF ⨯⨯= △EF =3.故答案为:3.【点睛】此题考查了三角形的面积,三角形的中线特点,理解三角形高的定义,根据三角形的面积公式求解,是解题的关键.14.90°或50°【分析】分高AD 在△ABC 内部和外部两种情况讨论求解即可.【详解】解:△如图1,当高AD 在△ABC 的内部时,△BAC =△BAD +△CAD =70°+20°=90°;△如图2,当高AD 在△ABC 的外部时,△BAC =△BAD -△CAD =70°-20°=50°,综上所述,△BAC 的度数为90°或50°.故答案为:90°或50°.【点睛】本题考查了三角形的高线,难点在于要分情况讨论.15. 所对边的中点 线段 = AC【分析】根据三角形中线的定义,即可求解.【详解】解:连结三角形的一个顶点和它所对边的中点的线段叫做三角形这边上的中线.△BE 是ABC 中AC 边上的中线, △12AE EC AC == 故答案为:所对边的中点;线段;=;AC ;【点睛】本题主要考查了三角形的中线,熟练掌握连结三角形的一个顶点和它所对边的中点的线段叫做三角形这边上的中线是解题的关键.16.3.【分析】如图,连接,,,OC OD CD 证明//,CD AB 再证明32OCD S S π=阴影扇形=,从而可以列方程求解半径. 【详解】解:如图,连接,,,OC OD CD点C 、D 分别是半圆AOB 上的三等分点,60,AOC COD DOB ∴∠=∠=∠=︒,OC OD =COD ∴为等边三角形,60,OCD ∴∠=︒,AOC DCO ∴∠=∠//,CD AB ∴,COD BCD S S ∴=32OCD S S π∴=阴影扇形=, 2603,3602OA ππ•∴= 解得:3,OA = (负根舍去),故答案为:3.【点睛】本题考查的圆的基本性质,弧,弦,圆心角之间的关系,平行线的判定与性质,扇形面积的计算,掌握以上知识是解题的关键.17.(1)25BAC ∠=︒;(2)8BC =【分析】(1)先利用互余计算出△BAE =50°,再利用角平分线的定义得到△BAC =12△BAE =25°;(2)先根据三角形面积公式得出DC ,利用D 是BC 的中点得到BC 即可.(1)解:△△B =40°,△E =90°,△△BAE =90°﹣40°=50°,△AC 是△BAE 的角平分线,△△BAC =12△BAE =25°;(2)△S △ADC =12DC •AE , △12×DC ×8=16,△DC =4,△D 是BC 的中点,△BC =2CD =8.【点睛】本题考查了角平分线的定义,线段的中点,角平分线的定义的正确运用是解题的关键. 18.48AC =,28AB =【分析】由题意可得60AC CD +=,40AB BD +=,由中线的性质得244AC BC CD BD ===,故可求得48AC =,即可求得28AB =. 【详解】由题意知100AC CD BD AB +++=,60AC CD +=,40AB BD +=△2AC BC =,D 为BC 中点△244AC BC CD BD === △156044AC CD AC AC AC +=+== 即460485AC =⨯= 则BC =24,CD =BD =12则40401228AB BD =-=-=且28>24符合题意.【点睛】本题考查了中线的性质,中线是三角形中从某边的中点连向对角的顶点的线段.19.(1)4根火柴棒不能搭成三角形(2)8根火柴棒能搭成一种三角形,12根火柴棒能搭成三种不同的三角形,画图见解析【分析】(1)把4分成3个数只能分成1,1,2三个数,故4根火柴棒不能搭成三角形;(2)利用三角形三边关系定理求解即可.(1)解:△把4分成3个数只能分成1,1,2三个数,而1+1=2,△4根火柴棒不能搭成三角形;(2)△ 8根火柴棒能搭成一种三角形,示意图如下:△12根火柴棒能搭成三种不同的三角形,其边长分别为:(4,4,4),(5,5,2),(3,4,5),示意图如下:【点睛】本题主要考查了三角形三边关系定理:任意两边之和大于第三边,任意两边之差小于第三边.20.(1)见解析(2)见解析(3)见解析【分析】(1)按要求分别画出平移A、B、C三点后的点D、E、F,并依次连接,即得到△ABC平移后的△DEF;(2)按要求画即可;(3)作三格点1P、2P、3P,使CP1=CP3=BP2=3即可.(1)平移后的△DEF如下图所示:(2)所画的高BH如下图所示:(3)由于CP1=CP3=BP2=3,则此三点1P、2P、3P满足题意.【点睛】本题考查了作图:作图形的平移,画三角形边上的高、三角形的面积,学会利用数形结合是解题的关键.。

三角形的角平分线、中线、高同步训练题

三角形的角平分线、中线、高同步训练题

三角形的角平分线、中线、高同步训练题一.选择题(共10小题)1.下列四个图形中,线段BE是△ABC的高的是()A.B.C.D.2.如图,△ABC中,∠ACB=90°,D为BC上一点,DE⊥AB于点E,下列说法中,错误的是()A.△ABC中,AC是BC上的高B.△ABD中,DE是AB上的高C.△ABD中,AC是BD上的高D.△ADE中,AE是AD上的高3.如图,AD是△ABC的中线,AB=5,AC=4.若△ACD的周长为10,则△ABD的周长为()A.8B.9C.10D.114.如图,AE是△ABC的中线,点D是BE上一点,若BD=5,CD=9,则CE的长为()A.5B.6C.7D.85.下列说法不正确的是()A.三角形三条中线都在三角形内部B.三角形的外角和为360°C.三角形三条角平分线都在三角形内部D.三角形三条高都在三角形内部6.王老汉要将一块如图所示的三角形土地平均分配给两个儿子,则图中他所作的线段应该是△ABC的()A.角平分线B.中线C.高D.任意一条线7.如图,若∠1=∠2,∠3=∠4,则下列结论错误的是()A.AD是△ABC的角平分线B.CE是△ACD的角平分线C.∠3=12∠ACB D.CE是△ABC的角平分线8.如图,AD是△ABC的中线,则下列结论正确的是()A.∠BAD=∠CAD B.BD=CD C.AB=AC D.AC=AD9.如图,AD是△ABC的中线,AB=3,AC=5,△ACD的周长与△ABD的周长差为()A.2B.3C.6D.不确定10.如图,在△ABC中,∠1=∠2=∠3=∠4,则下列说法中,正确的是()A.AD是△ABE的中线B.AE是△ABC的角平分线C.AF是△ACE的高线D.AE是△DAF的中线二.填空题(共5小题)11.如图,已知AD为△ABC的中线,AB=10cm,AC=7cm,△ACD的周长为20cm,则△ABD的周长为cm.12.如图,在△ABC中,O是三条角平分线的交点,过O作DE∥BC交AB于点D,交AC 于点E,若AB=6,AC=4,则△ADE的周长为.13.如图,在△ABC中,AB=15,BC=9,BD是AC边上的中线.若△ABD的周长为35,则△BCD的周长是.14.如图,已知△ABC,用直尺测量△ABC中BC边上的高约为cm(结果保留一位小数).15.在△ABC中,∠ACB=90°,CD、CE分别为AB边上的高和中线,若∠DCE=20°,则∠BAC的度数为.三.解答题(共5小题)16.如图,在△ABC中,BE是角平分线,点D在边AB上(不与点A,B重合),CD与BE 交于点O.(1)若CD是中线,BC=3,AC=2,则△BCD与△ACD的周长差为;(2)若∠ABC=62°,CD是高,求∠BOC的度数;(3)若∠A=78°,CD是角平分线,求∠BOC的度数.17.已知△ABC(如图),按下列要求画图:(1)△ABC的中线AD;(2)△ABD的角平分线DM;(3)△ACD的高线CN;(4)若C△ADC﹣C△ADB=3,(C表示周长)且AB=4,则AC=.18.如图,AD是△ABC的高,CE是△ACB的角平分线,F是AC中点,∠ACB=50°,∠BAD=65°.(1)求∠AEC的度数;(2)若△BCF与△BAF的周长差为3,AB=7,则BC=.19.如图,在△ABC中(AC>AB),AC=2BC,BC边上的中线AD把△ABC的周长分成60和40两部分,求AC和AB的长.20.如图,在三角形ABC中.AB=10cm,AC=6cm,D是BC的中点,点E在边AB上,三角形BDE与四边形ACDE的周长相等.(1)求线段AE的长;(2)图中共有条线段;(3)若图中所有线段长度的和是53cm,求BC+12DE的值.。

三角形的高、中线、角平分线

三角形的高、中线、角平分线
证明:由题意知 S△ABD=S△ACD=12S△ABC. ∵S△ABD=12AD·BN,S△ACD=12AD·CM, ∴12AD·BN=12AD·CM. ∴BN=CM.
8.如图,已知AD,AE分别是△ABC的高和中线,AB=6 cm, AC=8 cm,BC=10 cm,∠CAB=90°.试求:
(1)AD的长;
∴∠D+∠DEG+∠B+∠BCH=∠F+∠ACH+∠F+∠AEG. ∴∠D+∠B=2∠F. ∵∠B∶∠D∶∠F=4∶6∶x,∴x=5.
10.如图,在△ABC中,AD⊥BC于D,AE平分 ∠BAC,∠B=70°,∠C=30°.
(1)求∠BAE的度数.
解:∵∠B+∠C+∠BAC=180°,
∴∠BAC=180°-∠B-∠C=180°-70°-30°=80°.
解:能.
∵∠B+∠C+∠BAC=180°,∴∠BAC=180°-∠B-∠C.
∵AE 平分∠BAC, ∴∠BAE=12∠BAC=12(180°-∠B-∠C)=90°-12(∠B+∠C). ∵AD⊥BC,∴∠ADE=90°.
∴∠B+∠BAD=90°. ∴∠BAD=90°-∠B.
∴∠DAE=∠BAE-∠BAD=90°-12(∠B+∠C)-(90°-∠B) =12(∠B-∠C). ∵∠B-∠C=40°,∴∠DAE=12×40°=20°.
9.如图,BE,CD相交于点A,CF为∠BCD的平分线,EF为 ∠BED的平分线.
(1)图中共有____6____个“8字形”;
(2)若∠B∶∠D∶∠F=4∶6∶x,求x的值. 解:∵EF平分∠BED,CF平分∠BCD, ∴∠DEG=∠AEG,∠ACH=∠BCH. ∵在△DGE和△FGC中,∠DGE=∠FGC, ∴∠D+∠DEG=∠F+∠ACH. ∵在△BHC和△FHE中,∠BHC=∠FHE, ∴∠B+∠BCH=∠F+∠AEG.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三角形的高、中线与角平分线11 如图,已知△ABC中,AQ=PQ、PR=PS、PR⊥AB于R,PS⊥AC于S,有以下三个结论:①AS=AR;②QP∥AR;③△BRP≌△CSP,其中( ).(A)全部正确 (B)仅①正确 (C)仅①、②正确 (D)仅①、③正确2、如图,点E在BC的延长线上,则下列条件中,不能判定AB∥CD 的是( )A. ∠3=∠4B.∠B=∠DCEC.∠1=∠2.D.∠D+∠DAB=180°3.如图,ΔACB中,∠ACB=900,∠1=∠B.(1)试说明 CD是ΔABC的高;(2)如果AC=8,BC=6,AB=10,求CD的长。

4如图,直线DE交△ABC的边AB、AC于D、E,交BC延长线于F,若∠B=67°,∠ACB=74°,∠AED=48°,求∠BDF的度数5、如图:∠1=∠2=∠3,完成说理过程并注明理由:因为∠1=∠2所以 ____∥____ ( )因为∠1=∠3所以 ____∥____ ( )6.以下列各组线段为边,能组成三角形的是()A.2cm,3cm,5cm B.5cm,6cm,10cmC.1cm,1cm,3cm D.3cm,4cm,9cmA.17 B.22 C.17或22 D.138.适合条件∠A=12∠B=13∠C的△ABC是()A.锐角三角形 B.直角三角形 C.钝角三角形 D.等边三角形9.已知等腰三角形的一个角为75°,则其顶角为()A.30° B.75° C.105° D.30°或75°10.一个多边形的角和比它的外角的和的2倍还大180°,这个多边形的边数是() A.5 B.6 C.7 D.811.三角形的一个外角是锐角,则此三角形的形状是()A.锐角三角形 B.钝角三角形 C.直角三角形 D.无法确定12.三角形的三边长分别为5,1+2x,8,则x的取值围是________.13.如图,BD平分∠ABC,DA⊥AB,∠1=60°,∠BDC=80°,求∠C的度数.初一三角形的高、中线与角平分线21 如图,BC⊥CD,∠1=∠2=∠3,∠4=60°,∠5=∠6.(1)CO是△BCD的高吗?为什么?(2)∠5的度数是多少?(3)求四边形ABCD各角的度数.2.△ABC中,∠A=50°,∠B=60°,则∠A+∠C=________.3 .已知三角形的三个角的度数之比为1:2:3,则这个三角形是()A.锐角三角形 B.直角三角形 C.钝角三角形 D.不能确定4.△ABC中,∠A=∠B+∠C,则∠A=______度.5.如图∠1+∠2+∠3+∠4=______度.6.如图,△ABC中,AD是BC上的高,AE平分∠BAC,∠B=75°,•∠C=45°,求∠DAE与∠AEC的度数.7.以下说法错误的是()6题A.三角形的三条高一定在三角形部交于一点B.三角形的三条中线一定在三角形部交于一点C.三角形的三条角平分线一定在三角形部交于一点D.三角形的三条高可能相交于外部一点8.如果一个三角形的三条高的交点恰好是这个三角形的一个顶点,•那么这个三角形是()A.锐角三角形 B.直角三角形 C.钝角三角形 D.不能确定9.如图,BD=1BC,则BC边上的中线为______,△ABD的面积=_____的面积.2(9)10.如图,△ABC中,高CD、BE、AF相交于点O,则△BOC•的三条高分别为线段________.(10)初一三角形的高、中线与角平分线31.下列图形中具有稳定性的是()A.梯形 B.菱形 C.三角形 D.正方形2.如图3,AD是△ABC的边BC上的中线,已知AB=5cm,AC=3cm,求△ABD•与△ACD的周长之差.3.如图,∠BAD=∠CAD,AD⊥BC,垂足为点D,且BD=CD.•可知哪些线段是哪个三角形的角平分线、中线或高?4.如图5,在等腰三角形ABC中,AB=AC,一腰上的中线BD将这个等腰三角形的周长分为15和6两部分,求该等腰三角形的腰长及底边长.5.有一块三角形优良品种试验基地,如图所示,•由于引进四个优良品种进行对比试验,需将这块土地分成面积相等的四块,请你制定出两种以上的划分方案供选择(画图说明).6.如图,在△ABC中,D、E分别是BC、AD的中点,S△ABC=4cm2,求S△ABE.7.如图,在锐角△ABC中,CD、BE分别是AB、AC上的高,•且CD、BE交于一点P,若∠A=50°,则∠BPC的度数是()8如图7-1-2-9,AD是△ABC的角平分线,DE∥AB,DF∥AC,EF交AD于点O.请问:DO是△DEF的角平分线吗?如果是,请给予证明;如果不是,请说明理由.初一三角形的高、中线与角平分线41.若三角形的外角中有一个是锐角,则这个三角形是________三角形.2.△ABC中,若∠C-∠B=∠A,则△ABC的外角中最小的角是______(填“锐角”、3.如图1,x=______.(1) (2) (3)4.如图2,△ABC中,点D在BC的延长线上,点F是AB边上一点,延长CA到E,连EF,则∠1,∠2,∠3的大小关系是_________.5.如图3,在△ABC中,AE是角平分线,且∠B=52°,∠C=78°,求∠AEB的度数.7.如图所示,在△ABC中,AB=AC,AD=AE,∠BAD=60°,则∠EDC=______.8.一个零件的形状如图7-2-2-6所示,按规定∠A应等于90°,∠B、∠D应分别是30°和20°,叔叔量得∠BCD=142°,就断定这个零件不合格,你能说出道理吗?9.(1)如图(1),求出∠A+∠B+∠C+∠D+∠E+∠F的度数;(2)如图(2),求出∠A+∠B+∠C+∠D+∠E+∠F的度数.11.如图,BD、CD分别是△ABC的两个外角∠CBE、∠BCF•的平分线,试探索∠D与∠A之间的数量关系.12 如图,BD为△ABC的角平分线,CD为△ABC的外角∠ACE的平分线,它们相交于点D ,试探索∠BDC与∠A之间的数量关系.7.3 多边形及其角和1.四边形ABCD中,如果∠A+∠C+∠D=280°,则∠B的度数是()A.80° B.90° C.170° D.20°2.一个多边形的角和等于1080°,这个多边形的边数是()A.9 B.8 C.7 D.63.角和等于外角和2倍的多边形是()A.五边形 B.六边形 C.七边形 D.八边形4.六边形的角和等于_______度.5.正十边形的每一个角的度数等于______,每一个外角的度数等于_______.6.如图,你能数出多少个不同的四边形?7.四边形的四个角可以都是锐角吗?可以都是钝角吗?可以都是直角吗?•为什么?8.求下列图形中x的值:综合创新作业9.(综合题)已知:如图,在四边形ABCD中,∠A=∠C=90°,BE平分∠ABC,•DF 平分∠ADC.BE与DF有怎样的位置关系?为什么?10.(应用题)有10个城市进行篮球比赛,每个城市均派3个代表队参加比赛,规定同一城市间代表队不进行比赛,其他代表队都要比赛一场,问按此规定,•所有代表队要打多少场比赛?11.(创新题)如图,以五边形的每个顶点为圆心,以1为半径画圆,求圆与五边形重合的面积.12.(1)(2005年,)已知一个多边形的角和为540°,则这个多边形为()A.三角形 B.四边形 C.五边形 D.六边形(2)(2005年,)五边形的角和等于_______度.13.(易错题)一个多边形的每一个顶点处取一个外角,这些外角中最多有钝角(• ) A.1个 B.2个 C.3个 D.4个培优作业14.(探究题)(1)四边形有几条对角线?五边形有几条对角线?六边形有几条对角线?……猜想并探索:n边形有几条对角线?(2)一个n边形的边数增加1,对角线增加多少条?15.(开放题)如果一个多边形的边数增加1,•那么这个多边形的角和增加多少度?若将n边形的边数增加1倍,则它的角和增加多少度?数学世界攻其不备壁虎在一座油罐的下底边沿A处.它发现在自己的正上方──油罐上边缘的B•处有一只害虫.壁虎决定捕捉这只害虫.为了不引起害虫的注意,它故意不走直线,而是绕着油罐,沿着一条螺旋路线,从背后对害虫进行突然袭击如图7-3-5.结果,•壁虎的偷袭得到成功,获得了一顿美餐.请问:壁虎沿着螺旋线爬行是最短的路程吗(线段AB除外)?答案:1.A 点拨:∠B=360°-(∠A+∠C+∠D)=360°-280°=80°.故选A.2.B 点拨:设这个多边形的边数为n,则(n-2)·180=1080.解得n=8.故选B.3.B 点拨:设这个多边形的边数为n,根据题意,得(n-2)·180=2×360.解得n=6.故选B.4.7205.144°;36°点拨:正十边形每一个角的度数为:(102)18010-⨯︒=144°,每一个外角的度数为:180°-144°=36°.6.有27个不同的四边形.7.解:四边形的四个角不可以都是锐角,不可以都是钝角,可以都是直角.因为四边形的角和为360°,如果四个角都是锐角或都是钝角,•则角和小于360°或大于360°,与四边形的角和为360°矛盾.•所以四个角不可以都是锐角或都是钝角.若四个角都是直角,则四个角的和等于360°,与角和定理相符,所以四个角可以都是直角.8.解:(1)90+70+150+x=360.解得x=50.(2)90+73+82+(180-x)=360.解得x=65.(3)x+(x+30)+60+x+(x-10)=(5-2)×180.解得x=115.9.解:BE∥DF.理由:∵∠A=∠C=90°,∴∠A+∠C=180°.∴∠ABC+∠ADC=360°-180°=180°.∵∠ABE=12∠ABC,∠ADF=12∠ADC,∴∠ABE+∠ADF=12(∠ABC+∠ADC)=12×180°=90°.又∵∠ABE+∠AEB=90°,∴∠AEB=∠ADF,∴BE∥DF(同位角相等,两直线平行).10.解:12n(n-3)=12×10×(10-3)=12×10×7=35(场).答:按此规定,所有代表队要打35场比赛.点拨:问题类似于求多边形对角线的个数.11.解:(5-2)×180°÷360°×12=1.5.点拨:不能直接求出扇形的度数,用整体法圆与五边形重合部分的角度和正好是五边形的角和.12.(1)C 点拨:设这个多边形的边数为n,依题意,得(n-2)×180°=540°,解得n=5,故选C.(2)540 点拨:(n-2)×180°=(5-3)×180°=540°.13.C14.解:(1)四边形有2条对角线;五边形有5条对角线;六边形有9条对角线;……n边形有(3)2n n-条对角线.(2)当n边形的边数增加1时,对角线增加(n-1)条.点拨:从n边形的一个顶点出发,向其他顶点共可引(n-3)条对角线,n个顶点共可引n(n-3)条,但这些对角线每一条都重复了一次,故n边形的对角线条数为(3)2n n-.15.180°,n·180°.数学世界答案:是最短的路程.可用纸板做一个模型,沿AB剪开便可看出结论.。

相关文档
最新文档