2018年沁阳市高三一模考前训练文科数学试题及答案 精品
河南省焦作市沁阳第一中学2018年高三数学文联考试卷含解析
河南省焦作市沁阳第一中学2018年高三数学文联考试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 已知等差数列中,有,且它们的前项和有最大值,则使得的的最大值为()A.11 B.19 C. 20 D.21参考答案:B略2. 我国第一艘航母“辽宁舰”在某次舰载机起降飞行训练中,有5架歼一15飞机准备着舰,如果甲、乙两机必须相邻着舰,而丙、丁两机不能相邻着舰,那么不同的着舰方法种数为()A. 12 B.18 C .24 D.48参考答案:C3. 计算可采用如图所示的算法,则图中①处应填的语句是()A.B.C.D.参考答案:B试题分析:本题关键是的理解,,因此应该选B.考点:程序框图.4. 已知集合,集合,则()A. B. C.D.参考答案:5. 等差数列的前n项和为,且,则()(A)8 (B)9 (C)1 0 (D) 11参考答案:B略6. 若集合P={x|1≤2x<8},Q={1,2,3},则P∩Q=()A.{1,2} B.{1} C.{2,3} D.{1,2,3}参考答案:A【考点】交集及其运算.【分析】化简集合P,再由Q,求出两集合的交集即可.【解答】解:由20=1≤2x<8=23,∴0≤x<3,∴集合P=[0,3),∵Q={1,2,3},∴P∩Q={1,2},故选:A.7. 函数的图象大致是()参考答案:D8. 设,满足,则z的取值范围是()A.B.C.D.参考答案:D9. 函数的定义域是( )A.{x|x>6} B.{x|﹣3<x<6} C.{x|x>﹣3} D.{x|﹣3≤x<6}参考答案:D【考点】对数函数的定义域;函数的定义域及其求法.【专题】计算题.【分析】要使函数有意义,必须使函数的每一部分都有意义,函数定义域是各部分定义域的交集.【解答】解:要使函数有意义,x+3≥0,且6﹣x>0∴|﹣3≤x<6∴函数的定义域为:{x|﹣3≤x<6}故答案选D.【点评】函数定义域是各部分定义域的交集.10. 若曲线与曲线存在公共点,则的取值范围是()A.B.C.D.参考答案:D二、填空题:本大题共7小题,每小题4分,共28分11. 已知点,为坐标原点,点满足,则的最大值是参考答案:12. 已知数列n∈N*,n≥2的前n项和S n=n2+2n﹣1(n∈N*),则a1= ;数列{a n}的通项公式为a n= .参考答案:2,.【考点】数列的函数特性.【分析】本题直接利用数列前n项和与数列通项的关系,可得到本题结论.【解答】解:∵S n=n2+2n﹣1,当n=1时,a1=1+2﹣1=2,当n≥2时,∴a n=S n﹣S n﹣1=n2+2n﹣1﹣=2n+1,∵当n=1时,a1=﹣2+1=3≠2,∴a n=,故答案为:2,,【点评】本题主要考查数列递推式的知识点,解答本题的关键是利用a n=S n﹣S n﹣1(n≥2)进行解答,此题难度不大,很容易进行解答.13. 若是展开式中项的系数,则.参考答案:14. 设函数f(x)的定义域为D,如果存在正实数k,使对任意x D,都有x+k D,且f(x+k)>f(x) 恒成立,则称函数f(x)为D上的“k型增函数”。
(完整word版)2018-2019高三第一次模拟试题文科数学
高三年级第一次模拟考试60分.在每小题给出的四个选项中,有且合 题目要畚考公式:样本败据x lt 鬲的标准差 尸¥门如一訝+他— 英叩丘为样車屮均数柱体的体积公式Y=*其中/为底!ftl 曲积・h 为海341(1)复数 I ~i = (A) 1+2i (B) 1-2i(C) 2-i (D) 2+i⑵函数的定义域为(A) (-1,2) (B) (0, 2] (C) (0, 2) (D) (-1,2] ⑶ 己知命题p :办I 砒+ llX ,则了为 锥体的体积公式v=*h 乩中$为底面面枳,h 为商 耶的親血祝*休枳公式$=4庆,評It 中月为球的半牲(A) (C)函数|;宀林匚阴的图象可以由函数'尸沁酬的图象 (A) 64 (B) 31 (C) 32 (D) 63(7) 已知某几何体的三视图如图所示,则其表面积为 (A)右+4观(B)「(C) 2 (D) 8一、选择题:本大题共12小题,毎小题5〕 分,共 只有一 项 符(B)(D)(A) (C)向左平移个单位得到JL个单位得到(B)向右平移3个单位得到 向左平移设变量x 、y 满足约束条件 ⑸ (A) 3 (B) 2 (C) 1 (D) 5(D)向右平移个单位得到g+2y —2 鼻(h[2x +工一7冬6则的最小值为(6)等比数列{an }的公比a>1,血,则-血+口 $+他"卜彌=(8) 算法如图,若输入 m=210,n= 119,则输出的n 为 (A) 2 (B) 3 (C) 7 (D) 11(9) 在 中,/恥C 权」,AB=2, AC=3,则 = (A) 10 (B)-10(C) -4 (D) 4(10) 点A 、B 、C D 均在同一球面上,其中 的体积为(11) 已知何m 2 '黑⑴-代2侧集合」「等于D |『工=对止卡(B)卜: (12) 抛物线 的焦点为F,点A 、B 、C 在此抛物线上,点A 坐标为(1,2).若点F 恰为 的重心,则直线 BC 的方程为 (A)龙卄一0 (B): tT '■(C)Ly=0 (D) | It \.■二、填空题:本大题共 4小题,每小题5分,共20分.(13) 班主任为了对本班学生的考试成绩进行分析,从全班 50名同学中按男生、女生用分层 抽样的方法随机地抽取一个容量为 10的样本进行分析•己知抽取的样本中男生人数为 6,则班内女生人数为 ________ .Lif ]町= :—(14) 函数.文+】(X 〉0)的值域是 _________ .(15) 在数列1禺1中,尙=1,如 厂% = 2门丨,则数列的通项 □」= _________ .—7 --- F ------(16) —P 尺的一个顶点P ( 7,12)在双曲线 产 3上,另外两顶点 F1、F2为该双曲线是正三角形,AD 丄平面 AD=2AB=6则该球(D)(C) 卜 j(—Ak 土(D)(A) (B) 15 (C)的左、右焦点,则屮八几的内心的横坐标为 __________ .三、解答题:本大题共 6小题,共70分.解答应写出文字说明、证明过程或演算步骤 (17) (本小题满分12分)在厶ABC 中,角A 、B C 的对边分别为a 、b 、c, A=2B,呦占」5 ' (I ) 求cosC 的值;[c\(II)求的值•(18) (本小题满分12分)某媒体对“男女同龄退休”这一公众关注的问题进行了民意调查, 右表是在某单位得到的数据(人数)•(I )能否有90%以上的把握认为对这一问题的看法与性别有关?(II)从反对“男女同龄退休”的甲、 乙等6名男士中选出2人进行陈述,求甲、乙至少有- 人被选出的概率.反对 合计|男 5 6 H 1 女II1 3 "14 合计 16925(19) (本小题满分12分)如图,在三棱柱.A 尅匚 "Q 中,CC1丄底面ABC 底面是边长为2的正三角形,M N 、G 分别是棱CC1 AB, BC 的中点. (I ) 求证:CN//平面AMB1 (II)若X 严2迄,求证:平面AMG.(20) (本小题满分12 分)X'设函数:「—L(I )当a=0时,求曲线在点(1, f(1))处的切线 方程;P(K 2^k) 0.25 Od U 0J0 kL323 2.072 2.706__ ,讯耐一比严 ____(a+附:(II )讨论f(x)的单调性•(21) (本小题满分12分)中心在原点0,焦点F1、F2在x 轴上的椭圆E 经过点C(2, 2),且 ―二◎土::(I) 求椭圆E 的方程;(II) 垂直于0C 的直线I 与椭圆E 交于A B 两点,当以AB 为直径的圆P 与y 轴相切时,求 直线I 的方程和圆P 的方程•请考生在第(22)、( 23)、(24)三题中任选一题作答,如果多做,则按所做的第一题记分 •作答时用2B 铅笔在答题卡上把所选题目对应的题号涂黑 •(22) (本小题满分10分)选修4-1:几何证明选讲如图,AB 是圆0的直径,以B 为圆心的圆B 与圆0的一个交点为P.过点A 作直线交圆Q 于 点交圆B 于点M N. (I )求证:QM=QNi110(II)设圆0的半径为2,圆B 的半径为1,当AM= 时,求MN 的长.(23) (本小题满分10分)选修4-4:坐标系与参数 方程 以直角坐标系的原点 O 为极点,x 轴正半轴为极轴,.已知直线I 的参数方程为 (t 为参数,(I )求曲线C 的直角坐标方程;(II)设直线I 与曲线C 相交于A B 两点,当a 变化时,求|AB|的最小值.(24) (本小题满分10分)选修4-5:不等式选讲 设曲线C 的极坐标方程为2cos 0 L朋& *并在两种坐标系中取相同的长度单位(I) 求不等式的解集S;(II) 若关于x不等式应总=1我=;『;:纂釧有解,求参数t的取值范围(18) 解: 由此可知,有90%的把握认为对这一问题的看法与性别有关.…5分(H)记反对“男女同龄退休”的6男士为ai , i = 1, 2,…,6,其中甲、乙分别为a2,从中选出2人的不同情形为: a1a2, a1a3, a1a4, a1a5, a1a6, a2a3, a2a4, a2a5 , a2a6, a3a4, a3a5, a3a6 , a4a5, a4a6, a5a6,…9分共15种可能,其中甲、乙至少有1人的情形有9种,93 所求概率为P = .…12分(19)解:(I)设 AB1的中点为 P ,连结NP 、MP1 1•/ CM^ — A1 , NP^— A1 , • CM^ NP,2 2文科数学参考答案 一、 选择题: A 卷: ADCDC B 卷: BCDAB 二、 填空题: (13) 20 三、 解答题: (17)解:DACB ADDCAB(14) BB CA(-1,1)(15) n2(16) 1(I): B =(0,亍),••• cosB = 1— s in 2B =•/ A = 2B ,「.4si nA = 2si nBcosB = , cosA = cos2B = 1 — 2si n2B = 5 , ••• cosC = cos[ —(A + B)] = — cos(A + B) = si nAsi nB — cosAcosB =— 2.525 'sinC =1 — cos2C=11 .525 ,根据由正弦定理,c si nC 11b sinB 5…12分(I) K2= 25 X (5 X 3— 6 X11)216 X 9X 11 X 142.932 > 2.706 a1 ,• CNPK是平行四边形,• CN// MP•/ CN平面AMB1 MP平面AMB1 • CN//平面AMB1 …4分(n)v cc 仏平面 ABC •••平面 CC1B1E L 平面 ABC , •/ AG 丄 BC, • AGL 平面 CC1B1B • B1M L AG •/ CC1 丄平面 ABC 平面 A1B1C1 //平面 ABC •- CC L AC, CC1 丄 B1C1 ,在 Rt △ MCA 中 , AM k CM 即 AC2= 6. 同理,B1M=6.•/ BB1/ CC1, • BB1 丄平面 ABC •- BB1 丄 AB, • AB1= B1B2+ AB2= C1C2+ AB2= 2.3 , • AM2+ B1M2= AB2, • B1ML AM 又 AG A AM= A , • B1ML 平面 AMG (20)解:, , x2 x(x — 2) (I)当 a = 0 时,f(x) = , f (x)=—亠exex1 1f(i) =T ,f (i) =-^,曲线y = f(x)在点(1 , f(1))处的切线方程为(2x — a)ex — (x2 — ax 土 a)ex e2x(1 )若 a = 2,贝U f (x) w 0 , f(x)在(一a , +s )单调递减. …7 分(2 )若 a v 2,贝 U…10分 …12分1y =肓(x — 1) +(x — 2)(x — a)exA Bf (x)当x€ ( —a , a)或x€ (2 , +a )时,f (x) v 0,当x € (a , 2)时,f (x) > 0 , 此时f(x)在(—a , a)和(2 , +a )单调递减,在(a , 2)单调递增.(3)若a> 2,贝U当x€ ( —a , 2)或x€ (a , +a )时,f (x) v 0,当x € (2 , a)时,f (x) >0 , 此时f(x)在(—a , 2)和(a , +a )单调递减,在(2 , a)单调递增. …12分x2 y2(21)解:(I)设椭圆E的方程为02+ b2 = 1 (a>b> 0),贝y a2+ b2记c= ,a2—b2 ,不妨设F1( — c , 0) , F2(c , 0),则C f1= ( —c—2, —2) , C f2= (c —2, —2),则C f1 • C f2= 8 —c2 = 2 , c2 = 6,即a2 —b2= 6.由①、②得a2= 12, b2= 6. 当m= 3时,直线I 方程为y =— x + 3, 此时,x1 + x2 = 4,圆心为(2 , 1),半径为2,圆P 的方程为(x — 2)2 + (y — 1)2 = 4; 同理,当 m=— 3时,直线I 方程为y = — x — 3,圆P 的方程为(x + 2)2 + (y + 1)2 = 4. …12分 (22)解:(I)连结 BM BN BQ BP. •/ B 为小圆的圆心,••• BM= BN 又••• AB 为大圆的直径,• BQL MN , •- QM= QN …4 分 (n)v AB 为大圆的直径,•/ APB= 90 , • AP 为圆B 的切线,• AP2= AM- AN …6分 由已知 AB= 4, PB= 1 , AP2= AB2- PB2= 15,所以曲线C 的直角坐标方程为 y2= 2x .(n)将直线l 的参数方程代入 y2 = 2x ,得t2sin2 a — 2tcos a — 1= 0.所以椭圆E 的方程为 x2 y2 i2+ 6 = 1. (也可通过2a = iCFlI + |C ?2|求出a ) (n)依题意,直线 0C 斜率为1,由此设直线I 的方程为y = — X + m 代入椭圆 E 方程,得 3x2 — 4m 灶2m2- 12= 0. 由△= 16m2- 12(2m2 — 12) = 8(18 — m2),得 m2< 18. 4m 2m2— 12 记 A(x1 , y1)、B(x2 , y2),贝U x1 + x2=^ , x1x2 = -—. 3 3 x1 + x2 圆P 的圆心为(一_, y1 + y2 2 ),半径r = 当圆P 与y 轴相切时, x1 + x2 r = 1 2 1, 2x1x2 = (x1 + x2)2 4 2(2m2 — 12)= 3 = 4m2 —,m2= 9v 18. …10分 (I)由 2cos 0 p = sinr v ,得(p sin 0 )2 = 2 p cos 0, …6分 7 6设A、B两点对应的参数分别为t1、t2,则4C0S2 a 4 2 + = ------------------------ sin4 a sin2 a sin2 a当a =—亍时,|AB|取最小值2 .…10分 (24)解:—x + 3, x v — 3,(I) f(x) = — 3x — 3,— 3<x < 0,x — 3, x >0.如图,函数y = f(x)的图象与直线 y = 7相交于横坐标为 x1 =— 4,x2 = 10的两点, 由此得 S = [ — 4, 10].\ :I…6分(n)由(I )知,f (x )的最小值为一3,则不等式 f(x) + |2t —3| < 0有解必须且只需—3 + |2t — 3| < 0,解得0W t < 3,所以t 的取值范围是[0 , 3]. t1 + t2 = 2C0S a sin2 at1t2 sin2 a :.|AB| = |t1 - t2| = (t1 + t2)2 - 4t1t2 …10分。
2018届全国数学高考全真模拟卷1(文科)答案
2018年数学(文科)试题参考答案说明:1.参考答案与评分标准指出了每道题要考查的主要知识和能力,并给出了一种或几种解法供参考,如果考生的解法与参考答案不同,可根据试题主要考查的知识点和能力比照评分标准给以相应的分数.2.对解答题中的计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的得分,但所给分数不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数.4.只给整数分数,选择题和填空题不给中间分. 一、选择题:本大题主要考查基本知识和基本运算.共12小题,每小题5分,满分60分.6.【解析】∵OA →+13AB →+13AC →=0,∴OA →+13(OB →-OA →)+13(OC →-OA →)=0,∴OA →+OB →+OC →=0,所以O 为△ABC 的重心,又O 为△ABC 的外心,所以△ABC 为正三角形.设△ABC 的边长为a ,则23×32a =4,∴a =4 3.所以CA →在CB →上的投影为43cos π3=23,故答案选A .7.【解析】由已知的三视图可得:该几何体是一个底面为直角边为2的等腰直角三角形,高为1的三棱锥,故该几何体的体积为V =23,故答案为C.8.【解析】方程x 2-px +3p -8=0有两个正根,则有⎪⎩⎪⎨⎧>>+≥∆0002121x x x x即解得p ≥8或83<p ≤4,又p ∈[0,4],则所求概率为p =13,故答案选A .11.【解析】由三角形PF 1F 2三边关系可知⎩⎨⎧>>+cc c 2101022,∴52<c<5,∴e 1e 2+1=2c 10+2c ·2c10-2c+1=c 225-c 2+1=2525-c 2>43,因此e 1e 2+1的取值范围是4(,)3+∞,故答案选B . 12.【解析】设F ()x =f ()x -12x ,F ′(x )=f ′(x )-12,∵f ′(x )>12.∴F ′(x )=f ′(x )-12>0,即函数F (x )在R 上单调递增.∵f (x 2)>x 22+12,∴f (x 2)-x 22>f (1)-12,∴F (x 2)>F (1).而函数F (x )在R 上单调递增,x 2>1,∴x>1或x <-1,故答案选C.二、填空题:本大题主要考查基本知识和基本运算.共4小题,每小题5分,满分20分. 13.521033+ 14.n3n -1 15.5% 16.(4,2017)16.【解析】作出函数f (x )的图象,令直线y =t 与f (x )的图象交于四个点,其横坐标由左到右依次为a ,b ,c ,d ,则由图象可得,b +c =2,log 2015(d -1)=a)21(-1=t ,由于0<t <1,则得到-1<a <0,2<d <2016,则2<a +d <2015,即有4<a +b +c +d <2017,故答案为:(4,2017).三、解答题:本大题共5小题,满分60分.解答须写出文字说明、证明过程和演算步骤. 17.(本小题满分12分)解:(Ⅰ)f (x )=32sin2x -12(cos 2x -sin 2x )-1=32sin2x -12cos2x -1=sin ⎝⎛⎭⎫2x -π6-1, ........1分 f (C )=sin ⎝⎛⎭⎫2C -π6-1=0,所以sin ⎝⎛⎭⎫2C -π6=1,因为2C -π6∈⎝⎛⎭⎫-π6,11π6,所以2C -π6=π2,所以C =π3, ....... 3分由余弦定理知:a 2+b 2-2ab cos π3=7,因为sin B =3sin A ,由正弦定理知:b =3a , ......... 5分 解得:a =1,b =3.6分(Ⅱ)由条件知g (x )=sin ⎝⎛⎭⎫2x +π6-1,所以g (B )=sin ⎝⎛⎭⎫2B +π6-1=0,所以sin ⎝⎛⎭⎫2B +π6=1,因为2B +π6∈⎝⎛⎭⎫π6,13π6,所以2B +π6=π2,即B =π6,m =⎝⎛⎭⎫cos A ,32,n =(1,sin A -33cos A ),于是m·n =cos A +32⎝⎛⎭⎫sin A -33cos A =12cos A +32sin A =sin ⎝⎛⎭⎫A +π6, ........ 8分∵B =π6,∴A ∈⎝⎛⎭⎫0,56π,得A +π6∈⎝⎛⎭⎫π6,π, ..........10分 ∴sin ⎝⎛⎭⎫A +π6∈(0,1],即m·n ∈(0,1]. ................. 12分18.(本小题满分12分)解:(Ⅰ)证明:取AD 的中点G ,连接OG ,FG . ∵对角线AC 与BD 的交点为O ,∴OG ∥DC ,OG =12DC ,..............2分∵EF ∥DC ,DC =2EF ,∴OG ∥EF ,OG =EF ,∴OGFE 为平行四边形, ∴OE ∥FG , ..............4分 ∵FG ⊂平面ADF ,OE ⊄平面ADF ,∴OE ∥平面ADF ; ..................5分 (Ⅱ)证明:∵四边形ABCD 为菱形,∴OC ⊥BD ,∵FD =FB ,O 是BD 的中点, ∴OF ⊥BD , ∵OF ∩OC =O ,∴BD ⊥平面AFC ,.................7分 ∵BD ⊂平面ABCD ,∴平面AFC ⊥平面ABCD ;..........................8分 (Ⅲ)解:作FH ⊥AC 于H .∵平面AFC ⊥平面ABCD ,∴FH ⊥平面ABCD ,∴∠F AH 为AF 与平面ABCD 所成角,.........................10分 由题意,△BCD 为正三角形,OA =3,BD =AB =2, ∵FD =FB =2,∴△FBD 为正三角形,∴OF = 3.△AOF 中,由余弦定理可得cos ∠AOF =3+3-92·3·3=-12,∴∠AOF =120°,∴∠F AH =∠F AO =30°,∴AF 与平面ABCD 所成角为30°...............................12分19.(本小题满分12分) 解:(1)由表格数据可知视觉记忆能力恰为中等,且听觉记忆能力为中等或中等以上的学生有()10a +人.记“视觉记忆能力恰为中等,且听觉记忆能力为中等或中等以上”为事件A ,则102()405a P A +==, ………………………………………………4分 解得6a =. …………………………………………………………5分因为3240a b ++=,所以2b =.答:a 的值为6,b 的值为2.……………………………………………7分(2)由表格数据可知,听觉记忆能力恰为中等,且视觉记忆能力为中等或中等以上的学生有()11b +人,由(1)知,2b =,即听觉记忆能力恰为中等,且视觉记忆能力为中等或中等以上的学生共有13人.…9分记“听觉记忆能力恰为中等,且视觉记忆能力为中等或中等以上”为事件B , 则()11134040b P B +==. 答:听觉记忆能力恰为中等,且视觉记忆能力为中等或中等以上的概率为1340.…12分20.(本小题满分12分)解:(Ⅰ)依题意,椭圆Γ:x 22+y 2=1中,a 2=2,b 2=1,故c 2=a 2-b 2=1,故F ()1,0,故p2=1,则2p =4,故抛物线C 的方程为y 2=4x ,将M ()x 0,2代入y 2=4x ,解得x 0=1,故||MF =1+p2=2 .........................4分(Ⅱ)(法一)依题意,F ()1,0,设l :x =ty +1,设A ()x 1,y 1,B ()x 2,y 2,联立方程⎩⎪⎨⎪⎧y 2=4x x =ty +1,消去x ,得y 2-4ty -4=0.∴⎩⎪⎨⎪⎧y 1+y 2=4t y 1y 2=-4 ①且⎩⎪⎨⎪⎧x 1=ty 1+1x 2=ty 2+1,又AF →=λFB → 则()1-x 1,-y 1=λ()x 2-1,y 2,即y 1=-λy 2,代入 ① 得⎩⎨⎧()1-λy 2=4t -λy 22=-4, ................6分 消去y 2得4t 2=λ+1λ-2,且H ()-1,0, ................8分则|HA |2+|HB |2=()x 1+12+y 21+()x 2+12+y 22=x 21+x 22+2()x 1+x 2+2+y 21+y 22=()ty 1+12+()ty 2+12+2()ty 1+ty 2+2+2+y 21+y 22=()t 2+1()y 21+y 22+4t ()y 1+y 2+8=()t 2+1()16t 2+8+4t ·4t +8=16t 4+40t 2+16.由16t 4+40t 2+16=854, ...............10分解得t 2=18或t 2=-218(舍),故λ=2或12...............................12分(法二)若设直线斜率为k ,讨论k 存在与不存在,酌情给分21.(本小题满分12分)解:(Ⅰ)当b =1时,f (x )=12ax 2-(1+a 2)x +a ln x ,f ′(x )=ax -(1+a 2)+a x =(ax -1)(x -a )x...................1分讨论:1°当a ≤0时,x -a >0,1x>0,ax -1<0⇒f ′(x )<0,此时函数f (x )的单调递减区间为(0,+∞),无单调递增区间........................2分2°当a >0时,令f ′(x )=0⇒x =1a或a ,①当1a =a (a >0),即a =1时, 此时f ′(x )=(x -1)2x≥0(x >0),此时函数f (x )单调递增区间为(0,+∞),无单调递减区间;...........................3分②当0<1a<a ,即a >1时,此时在⎝⎛⎭⎫0,1a 和(a ,+∞)上函数f ′(x )>0, 在⎝⎛⎭⎫1a ,a 上函数f ′(x )<0,此时函数f (x )单调递增区间为⎝⎛⎭⎫0,1a 和(a ,+∞); 单调递减区间为⎝⎛⎭⎫1a ,a ; .....................4分③当0<a <1a,即0<a <1时,此时函数f (x )单调递增区间为(0,a )和⎝⎛⎭⎫1a ,+∞; 单调递减区间为⎝⎛⎭⎫a ,1a ................................................6分 (Ⅱ)证明:(法一)当a =-1,b =0时,f (x )+e x >-12x 2-x +1,只需证明:e x -ln x -1>0,设g (x )=e x-ln x -1(x >0), 问题转化为证明∀x >0,g (x )>0.令g ′(x )=e x -1x , g ″(x )=e x +1x2>0,∴g ′(x )=e x -1x 为(0,+∞)上的增函数,且g ′)21(=e -2<0,g ′(1)=e -1>0,........8分∴存在惟一的x 0∈⎝⎛⎭⎫12,1,使得g ′(x 0)=0,e x 0=1x 0, ∴g (x )在(0,x 0)上递减,在(x 0,+∞)上递增.......................................10分∴g (x )min =g (x 0)=e x 0-ln x 0-1=1x 0+x 0-1≥2-1=1,∴g (x )min >0∴不等式得证......................................................12分 (法二)先证:x -1≥ln x (x >0)令h (x )=x -1-ln x (x >0),∴h ′(x )=1-1x =x -1x=0⇒x =1,∴h (x )在(0,1)上单调递减,在(1,+∞)上单调递增∴h (x )min =h (1)=0,∴h (x )≥h (1)⇒x -1≥ln x .............................8分 ∴1+ln x ≤1+x -1=x ⇒ln(1+x )≤x ,∴e ln(1+x )≤e x ,10分∴e x ≥x +1>x ≥1+ln x ,∴e x >1+ln x ,故e x -ln x -1>0,证毕.............................12分22.(本小题满分10分)解:(Ⅰ)曲线⎩⎨⎧x =3cos α+sin α,y =3sin α-cos α,可得:⎩⎨⎧x 2=3cos 2α+23sin αcos α+sin 2α,y 2=3sin 2α-23sin αcos α+cos 2α, 曲线C 的普通方程:x 2+y 2=4 ................................3分直线l :ρsin ⎝⎛⎭⎫θ+π6=1=32ρsin θ+12ρcos θ,直线l 的直角坐标方程:x +3y -2=0 ...................................5分(Ⅱ)∵圆C 的圆心(0,0)半径为2,,圆心C 到直线的距离为1,∴这三个点在平行直线l 1与 l 2上,如图:直线l 1与 l 2与l 的距离为1. l 1:x +3y =0,l 2:x +3y -4=0. ⎩⎨⎧x 2+y 2=1,x +3y =0,可得⎩⎨⎧x =3,y =-1,⎩⎨⎧x =-3,y =1 两个交点(-3,1)、(3,-1); ⎩⎨⎧x 2+y 2=1,x +3y -4=0,解得(1,3), ...................8分 这三个点的极坐标分别为:⎝⎛⎭⎫2,11π6、⎝⎛⎭⎫2,5π6、⎝⎛⎭⎫2,π3 ...........................10分23.(本小题满分10分)解:(Ⅰ)当a =0时,g (x )=-||x -1 ∴-||x -1≤||x -2+b ⇒-b ≤||x -1+||x -2∵x -1+x -2≥x -1+2-x =1∴-b ≤1,∴b ≥-1 ..................5分 (Ⅱ)当a =1时,g (x )=⎩⎪⎨⎪⎧2x -1,0<x <11x -x +1,x ≥1 ......................6分可知g (x )在(0,1)上单调递增,在(1,+∞)单调递减8分 ∴g (x )max =g (1)=1 ....................10分。
河南省焦作市沁阳高级中学2018-2019学年高三数学文联考试题含解析
河南省焦作市沁阳高级中学2018-2019学年高三数学文联考试题含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 规定:正整数n的“H运算"是①当n为奇数时,H=3n+13;②当n为偶数时.H=n×××…(其中H为奇数).如:数3经过1次“H运算”的结果是22,经过2次“H运算"的结果是11。
经过3次“H运算”的结果是46.则257经过257次“H运算"得到的结果是()A.1 B.16 C.256 D.257参考答案:B略2. 函数的定义域是 ( )A. B.C. D.参考答案:D3. 如图,是边长为1的正方体,是高为1的正四棱锥,若点在同一球面上,则该球的表面积为()A. B. C. D.参考答案:D按如图所示作辅助线,为球心,设,则,同时由正方体的性质知,则在中,,即,解得,所以球的半径,所以球的表面积为,故选D.4. 下列命题正确的个数是①命题“ ”的否定是“ ”:②函数的最小正周期为“ ”是“a=1”的必要不充分条件;③ 在上恒成立在上恒成立;④“平面向量与的夹角是钝角”的充分必要条件是“ ”A.1 B. 2 C.3 D.4参考答案:B5. 已知x,y的值如表所示:如果y与x呈线性相关且回归直线方程为,则b=()A.B.C.D.参考答案:A6. 下列说法错误的是A.如果命题“”与命题“”都是真命题,那么命题一定是真命题; B.命题“若,则”的否命题是:“若,则”;C.若命题,,则,;D.“”是“”的充分不必要条件参考答案:D略7. 等于()A.4i B.﹣4i C.2i D.﹣2i参考答案:D【考点】复数代数形式的乘除运算.【分析】由平方公式展开,然后利用复数代数形式的乘除运算化简得答案.【解答】解: =,故选:D.【点评】本题考查了复数代数形式的乘除运算,是基础题.8. 执行如图所示的程序框图,输出的x值为()A.0 B.3 C.6 D.8参考答案:【考点】EF:程序框图.【分析】模拟执行程序框图,依次写出每次循环得到的x,y的值,计算和的值,输出x的值即可.【解答】解:x=0,y=9,≠,x=1,y=8,≠,x=2,y=6,=4≠,x=3,y=3,3=,输出x=3,故选:B.9. 已知为等差数列的前项和,若,,则的值为()A、 B、 C、D、参考答案:A10. 设集合,,则“”是“”的()A.充分不必要条件B.必要不充分条件C.充要条件 D.既不是充分条件也不是必要条件参考答案:A二、填空题:本大题共7小题,每小题4分,共28分11. 已知,数列的前n项和为S n,数列{b n}的通项公式为b n=n﹣8,则b n S n的最小值为.参考答案:﹣4考点:定积分;数列的函数特性;数列的求和.专题:等差数列与等比数列.分析:由题意,先由微积分基本定理求出a n再根据通项的结构求出数列的前n项和为S n,然后代入求b n S n的最小值即可得到答案解答:解:a n=(2x+1)dx=(x2+x)=n2+n∴==﹣∴数列{ }的前n项和为S n=++…+=1﹣+﹣+…+﹣=1﹣=又b n=n﹣8,n∈N*,则b n S n=×(n﹣8)=n+1+﹣10≥2 ﹣10=﹣4,等号当且仅当n+1=,即n=2时成立,故b n S n的最小值为﹣4.故答案为:﹣4.点评:本题考查微积分基本定理及数列的求和,数列的最值等问题,综合性强,知识转换快,解题时要严谨认真,莫因变形出现失误导致解题失败.12. 设x,y满足约束条件,则目标函数z=3x?2y的最大值为______.参考答案:4略13. 已知函数f(x)=alog2x﹣blog3x+2,若f()=4,则f(2 014)的值为.参考答案:考点:函数的值.专题:函数的性质及应用.分析:利用函数性质和对数性质求解.解答:解:∵函数f(x)=alog2x﹣blog3x+2,∴f()=﹣b+2=﹣alog22014+blog32014+2=4,∴f(2014)=alog22014﹣blog32014+2=﹣2+2=0.故答案为:0.点评:本题考查函数值的求法,解题时要认真审题,注意对数性质的合理运用.14. 某程序的框图如图所示,若执行该程序,则输出的值为参考答案:7略15. 函数的反函数________________.参考答案:16. 已知函数f(x)=x2﹣2x,g(x)=ax+2(a>0),若?x1∈[﹣1,2],?x2∈[﹣1,2],使得f(x1)=g(x2),则实数a的取值范围是.参考答案:[3,+∞)【考点】二次函数在闭区间上的最值;函数的零点.【专题】计算题;函数的性质及应用.【分析】由任意的x1∈[﹣1,2],都存在x2∈[﹣1,2],使得f(x1)=g(x2),可得f (x)=x2﹣2x在x1∈[﹣1,2]的值域为g(x)=ax+2在x2∈[﹣1,2]的值域的子集,构造关于a的不等式组,可得结论.【解答】解:当?x1∈[﹣1,2]时,由f(x)=x2﹣2x得,对称轴是x=1,f(1)=﹣1是函数的最小值,且f(﹣1)=3是函数的最大值,∴f(x1)=[﹣1,3],又∵任意的x1∈[﹣1,2],都存在x2∈[﹣1,2],使得f(x1)=g(x2),∴当x2∈[﹣1,2]时,g(x2)?[﹣1,3].∵a>0,g(x)=ax+2是增函数,∴,解得a≥3.综上所述实数a的取值范围是[3,+∞).故答案为:[3,+∞).【点评】本题考查的知识点是二次函数在闭区间上的最值,其中根据已知分析出“f(x)=x2﹣2x在x1∈[﹣1,2]的值域为g(x)=ax+2在x2∈[﹣1,2]的值域的子集”是解答的关键.17. 两个等差数列{a n}和{b n}的前n项和分别为S n和T n,若,则= .参考答案:6【考点】等差数列的性质;等差数列的前n项和.【分析】结合已知及等差数列的求和公式可得===,代入可求【解答】解:∵∴=====6故答案为:6三、解答题:本大题共5小题,共72分。
最新-2018年高三第一次模拟考试答案 精品
2018—2018年高三第一次模拟考试 数学试题参考解答及评分标准一、选择题:本大题主要考查基本知识和基本运算.共10小题,每小题5分,满分50分.二、填空题:本大题主要考查基本知识和基本运算.共4小题,每小题5分,满分20分.第(14)小题的第一个空2分、第二个空3分. (11)0.82 (12)3(13)320 (14)030 三、解答题(15)本小题主要考查等比数列的概念、通项公式及前n 项和公式等基本知识,考查运算求解能力.满分12分.解:由已知,得51113162,(13)242,13n a a -⎧⋅=⎪⎨-=⎪-⎩①②由①得 181162a =,解得 12a =. …9分将12a =代入②得()21324213n=--,即 3243n=,解得 n =5.∴ 数列{}n a 的首项12a =,项数n =5. …12分 (16)本小题主要考查三角函数的图象和性质等基本知识以及利用三角公式进行恒等变换的技能,考查运算求解能力.满分14分.解:(Ⅰ)()f x =22sin 2cos sin x x x +-=sin 2cos 2x x +…3分sin 2cos 222x x ⎫+⎪⎪⎭sin 2cos cos 2sin44x x ππ⎫+⎪⎭)4x π+. …7分(Ⅱ)列表如下:…3分…6分…14分(17)本小题主要考查空间线面关系,考查空间想像能力和推理论证能力.满分14分.证明:(Ⅰ)∵底面ABCD是正方形,∴BD⊥AC.…2分∵C1C⊥底面ABCD,BD⊂底面ABCD,∴BD⊥C1C.∵AC ⊂平面A1ACC1,C1C⊂平面A1ACC1,且AC∩C1C=C,∴BD⊥平面A1ACC1.…5分∵BD⊂平面A1BD,∴平面1A BD⊥平面11A ACC.…7分(Ⅱ)连B1C.…9分在△1A BD中,∵O是BD的中点,M是BA1的中点,∴MO∥A1D.…10分∵A1 B1∥DC,且A1 B1=DC,∴四边形A1 DC B1为平行四边形.∴ A 1D ∥B 1C . …12分 ∴ MO ∥B 1C , 且B 1C ⊂平面11B BCC ,MO ⊄平面11B BCC ,∴ MO //平面11B BCC . …14分说明:直线在平面内,既可用符号“”表示,也可用符号“⊂”表示,而且应特别让学生知道后一种表示. (18)本小题主要考查运用数学知识解决实际问题的能力.满分12分.解:(1)⎪⎪⎪⎩⎪⎪⎪⎨⎧≤<-≤<-≤<=时当时当时当50002000,1252032000500,251015000,201)(x x x x x x x f ……………6 分(2)∵ 17516525<<,∴ 老李2018年12月份的应纳税金额在500~2000元之间由16525101=-x ,得1900=x , ……………………9分∴ 老李12月份的工资总收入为3500元,∴ 老李2018年1月份的工资总收入为4200%)201(3500=+⋅(元),应纳税金额为260016004200=-=x (元), …………11分 ∴ 2651252600203)2600(=-⋅=f (元),即老李2018年1月份应缴纳个人所得税265元(12分) (19)本小题主要考查直线的方程、圆的方程、直线与圆的位置关系等基本知识,考查综合运用数学知识分析和 解决问题的能力.满分14分.解:(Ⅰ)依题意,可设圆C 的方程为()()222x a y b r -+-=,且a 、b 满足方程组()3330,2231 1.3a b b a --⎧++=⎪⎪⎨+⎪⨯-=-⎪+⎩由此解得 0a b ==. …5分 又因为点P (1,1)在圆C 上,所以()()()()222221110102r a b =-+-=+++=.故圆C 的方程为222x y +=. …7分 (Ⅱ)由题意可知,直线PA 和直线PB 的斜率存在且互为相反数,故可设PA 所在的直线方程为1(1)y k x -=-,PB 所在的直线方程为1(1)y k x -=--.由221(1),2y k x x y -=-⎧⎨+=⎩ 消去y ,并整理得222(1)2(1)(1)20k x k k x k ++-+--=. ① …10分 设()11,A x y ,又已知P (1,1),则1x 、1为方程①的两相异实数根,由根与系数的关系得()2121211k x k --=+,即212211k k x k --=+.同理,若设点B 22(,)x y ,则可得222211k k x k +-=+. …12分于是 12121212(1)(1)AB y y k x k x k x x x x --+-==--=1212()2k x x k x x +--=1. 而直线OP 的斜率也是1,且两直线不重合,因此,直线OP 与AB 平行. …14分 (20)本小题主要考查函数、方程、不等式等基本知识,考查综合运用数学知识分析和解决问题的能力.满分14 分.解:(Ⅰ)当0a =时,1()2f x x c =-+.由(1)0f =得:102c -+=,即12c =,∴ 11()22f x x =-+.显然x >1时,()f x <0,这与条件②相矛盾,不合题意. ∴ 0a ≠,函数21()2f x ax x c =-+是二次函数. …2分 由于对一切x ∈R ,都有()0f x ≥,于是由二次函数的性质可得20140.2a ac >⎧⎪⎨⎛⎫≤ ⎪⎪⎝⎭⎩,-- 即010.(*)16a ac >⎧⎪⎨≥>⎪⎩,…4分 由(1)0f =得 12a c +=,即12c a =-,代入(*)得 11216a a ⎛⎫-≥ ⎪⎝⎭. 整理得 2110216a a -+≤,即2104a ⎛⎫-≤ ⎪⎝⎭. 而2104a ⎛⎫-≥ ⎪⎝⎭,∴ 14a =.将14a =代入(*)得,14c =, ∴ 14a c ==. …7分另解:(Ⅰ)当0a =时,1()2f x x c =-+. 由(1)0f =得 102c -+=,即12c =, ∴ 11()22f x x =-+.显然x >1时,()f x <0,这与条件②相矛盾,∴ 0a ≠,因而函数21()2f x ax x c =-+是二次函数. …2分 由于对一切x ∈R ,都有()0f x ≥,于是由二次函数的性质可得20140.2a ac >⎧⎪⎨⎛⎫≤ ⎪⎪⎝⎭⎩,-- 即010.16a ac >⎧⎪⎨≥>⎪⎩, …4分由此可知 a c >>0,0,∴ 22a c ac +⎛⎫≤ ⎪⎝⎭.由(1)0f =,得 12a c +=,代入上式得 116ac ≤. 但前面已推得 116ac ≥, ∴ 116ac =. 由 1,161,2ac a c ⎧=⎪⎪⎨⎪+=⎪⎩ 解得 14a c ==. …7分(Ⅱ)∵ 14a c ==, ∴ 2111()424f x x x =-+. ∴ 2111()()424g x f x m x x m x ⎛⎫=-=-++ ⎪⎝⎭. 该函数图象开口向上,且对称轴为21x m =+. …8分 假设存在实数m 使函数2111()()424g x f x mx x m x ⎛⎫=-=-++ ⎪⎝⎭在区间[],2m m +上有最小值-5. ① 当m <-1时,21m +<m ,函数()g x 在区间[],2m m +上是递增的, ∴ ()g m =-5,即21115424m m m ⎛⎫-++=- ⎪⎝⎭, 解得 m =-3或m =73. ∵ 73>-1, ∴ m =73舍去. …10分② 当-1≤m <1时,m ≤21m +<m +1,函数()g x 在区间[],21m m +上是递减的,而在区间[]21,2m m ++上是递增的,∴ ()21g m +=-5,即()()211121215424m m m ⎛⎫+-+++=- ⎪⎝⎭.解得 m =12--m =12-+均应舍去. …12分 ③当m ≥1时,21m +≥m +2,函数()g x 在区间[],2m m +上是递减的, ∴ ()2g m +=-5,即()()2111225424m m m ⎛⎫+-+++=- ⎪⎝⎭.解得 m =1--m =1-+m =1--应舍去.综上可得,当m =-3或m =1-+()()g x f x mx =-在区间[],2m m +上有最小值-5. …14分。
2018年高考模拟卷数学(文)试题Word版含答案
2018年高考模拟卷数学(文)试题Word版含答案2018年高中毕业班教学质量检测高考模拟数学(文科)第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设复数z满足(1-i)z=1+3i(i为虚数单位),则z在复平面内对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限2.已知全集U=Z,A={x∈Z|x^2-x-2≥0},B={-1,0,1,2},则(C∩A)∩B=()A.{-1,2}B.{-1,0}C.{0,1}D.{1,2}3.若-1<sinα+cosα<1,则()A.sinα<cosαB.cosα<sinαC.tanα<cosαD.cos2α<14.已知点(2,3)在双曲线x^2/a^2-y^2/b^2=1(a>0)的一条渐近线上,则a=()A.3B.4C.2D.235.“a^2=1”是“函数f(x)=lg((2+x)/(1-x))+(a^2-1)/2为奇函数”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件6.执行以下程序框架,则输出A的值是()int A=0;for(int i=1;i<=6;i++){A=A*10+i;XXX<<A<<endl;A.B.xxxxxxxxC.D.xxxxxxx7.边长为4的正三角形ABC中,点D在边AB上,AD=DB,M是BC的中点,则AM×CD=()A.16B.12√3C.-8/3D.-88.等比数列{a_n}共有2n+1项,其中a_1=1,偶数项和为170,奇数项和为341,则n=()A.3B.4C.7D.99.函数f(x)=x^2cos(x)在(-π/2,π/2)的图象大致是()A。
B。
C。
D。
10.抛物线x^2=4y的焦点为F,过F作斜率为-3的直线l 与抛物线在y轴右侧的部分相交于点A,过A作抛物线准线的垂线,垂足为H,则△AHF的面积是()A.4B.3/3C.4/3D.811.将函数f(x)=sin(ωx)(ω>0)的图象向左平移π/4个单位得到函数g(x)的图象,若函数g(x)的图象关于直线x=ω对称且在区间(-ω,ω)内单调递增,则ω的值为()A.3π/2B.2π/3C.3π/4D.π/212.若函数f(x)={-x-e^(x+1),x≤a。
河南省沁阳市高三数学一模考前训练(文)试题(一)
沁阳市2013年高三一模考前训练题文科数学(一)说明:本试卷分为第I 卷(选择题)和第II 卷(非选择题)两部分.全卷满分150分,考试时间120分钟.第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.集合{|lg 0}M x x =>,2{|4}N x x =≤,则MN =( )A . (1,2)B . [1,2)C .(1,2]D . [1,2] 2.若复数(1)(2)bi i ++是纯虚数(i 是虚数单位,b 是实数)则b =( )A .2B .12C .12-D .2-3.设0x 是方程ln 4x x +=的解,则0x 属于区间( ) A .(0,1) B .(1,2) C .(2,3) D .(3,4)4.若x , y 满足约束条件 02323x x y x y ≥⎧⎪+≥⎨⎪+≤⎩则z x y =-的最小值是( )A . -3B .0C . 32D .3 5.为了得到函数sin(2)6y x π=-的图像,可以将函数cos 2y x =的图像( )A .向右平移6π个单位 B . 向左平移3π个单位 C .向左平移6π个单位 D .向右平移3π个单位6.某几何体的三视图如右图所示,则该几何体的 表面积为( )A .π)55(+B .π)5220(+C .π)1010(+D .π)525(+7.已知的最大值等于恒成立,那么如果不等式,m ba mb b a +≥+>>21a 2,00( ) A.10 B.7 C.8 D.98.设函数()f x 在R 上可导,其导函数()f x ',且函数()f x 在2x =-处取得极小值,则函数()y xf x '=的图象可能是9.抛掷两次骰子得到的点数分别为m 和n ,记向量)1,1(),,(-==b n m a 的夹角为θ,则]2,0(πθ∈的概率为( )A .125B .21C .65D .12710.给出下列四个命题: ①若集合A .B 满足A B A =,则A B ⊆; ②给定命题,p q ,若“p q ∨”为真,则“p q ∧”为真;③设,,a b m ∈R ,若a b <,则22am bm <; ④若直线1:10l ax y ++=与直线2:10l x y -+=垂直,则1a =. 其中正确命题的个数是( )A .1B .2C .3D .411.已知双曲线1C :22221(0,0)x y a b a b-=>>的离心率为2.若抛物线22:2(0)C x py p =>的焦点到双曲线1C 的渐近线的距离为2,则抛物线2C 的方程为A.2x y =B.2x y =C.28x y =D.216x y = 12.已知11()3n n a -=,把数列{}n a 的各项排列成如下的三角形状,1a 2a 3a 4a 5a 6a 7a 8a 9a……………………………………记A (m,n )表示第m 行的第n 个数,则A (10,11)= ( )A .901()3B .911()3C .921()3D .1101()3第Ⅱ卷二、填空题:本大题共4小题,每小题5分.13.给出右面的程序框图,则输出的结果为_________.14.已知函数f(x)=⎩⎨⎧3x +2 x <1x 2+ax x≥1,若f(f(0))=4 a ,则实数a =__ __.15.已知正方形ABCD 的边长为1,点E 是AB 边上的动点 ,则DE DC ∙的最大 .16.若四面体ABCD 的三组对棱分别相等,即AB CD =, AC BD =,AD BC =,则________. (写出所有正确结论编号)①四面体ABCD 每组对棱相互垂直 ②四面体ABCD 每个面的面积相等③从四面体ABCD 每个顶点出发的三条棱两两夹角之和大于90。
2018届高三第一次模拟考试数学试卷(文)含答案
2017-2018高三学年第一次模拟数学试卷(文科)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合}034|{2≥++=x x x A ,}12|{<x x B =,则=B AA .)0,1[]3,(---∞B .]1,3[--C .]0,1(]3,(---∞D .)0,(-∞ 2.已知z 满足2zi z +=-,则z 在复平面内对应的点为( ) A .(1,1)- B .(1,1) C .(1,1)- D .(1,1)-- 3.已知数列{}n a 为等差数列,其前n 项和为n S ,7825a a -=,则11S 为 A. 110 B. 55 C. 50 D. 不能确定 4.下列说法中,不正确的是A .已知a ,b ,m ∈R ,命题:“若am 2<bm 2,则a <b ”为真命题B .命题:“∃x 0∈R ,x 20-x 0>0”的否定是:“∀x ∈R ,x 2-x ≤0”C .命题“p 或q ”为真命题,则命题p 和命题q 均为真命题D .“x >3”是“x >2”的充分不必要条件5.某几何体的三视图如图所示(单位:cm ),则该几何体的体积等于( ) 3cmA .243π+B .342π+ C .263π+ D .362π+6.如图给出的是计算1111352015++++的值的一个程序框图,则图中 执行框中的①处和判断框中的②处应填的语句是( ) A .1,1009n n i =+>? B .2,1009n n i =+>? C .1,1008n n i =+>? D .2,1008n n i =+>?7.设n m ,是平面α内的两条不同直线,21,l l 是平面β内两条相交直线,则βα⊥的一个充分不必要条件是( )A .11,l m l n ⊥⊥B .12,m l m l ⊥⊥C .12,m l n l ⊥⊥D .1//,m n l n ⊥8.变量x ,y 满足22221x y x y y x +⎧⎪--⎨⎪-⎩≤≥≥,则3z y x =-的取值范围为( )A .[]1,2B .[]2,5C .[]2,6D .[]1,69.已知平面向量,a b 的夹角为045,(1,1)a = ,1b = ,则a b += ( )A .2B .3C .4 D10.若函数y =f (x )的导函数y =f ′(x )的图象如图所示,则y =f (x )的图象可能为( )11.已知抛物线y 2=2px (p>0)与双曲线=1(a >0,b >0)有相同的焦点F ,点A 是两曲线的一个交点,且AF ⊥x 轴,则双曲线的离心率为( ) A .+2 B .+1 C .+1 D .+112.若对于任意的120x x a <<<,都有211212ln ln 1x x x x x x ->-,则a 的最大值为( )A .2eB .eC .1D .12第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4小题,每小题5分,共20分.把答案填在横线上 13.已知3cos ,2322πππαα⎛⎫⎛⎫+=∈⎪ ⎪⎝⎭⎝⎭,则tan α= . 14.某珠宝店丢了一件珍贵珠宝,以下四人中只有一人说真话,只有一人偷了珠宝.甲:我没有偷;乙:丙是小偷;丙:丁是小偷;丁:我没有偷.根据以上条件,可以判断偷珠宝的人是 .15. 在正项等比数列{a n }中,已知a 1a 2a 3=4,a 4a 5a 6=12,a n -1a n a n +1=324,则n =________. 16. 函数f (x )=x 3-3ax +b (a >0)的极大值为6,极小值为2,则f (x )的单调递减区间是________ 三、解答题:6大题,共70分.解答应写出文字说明,证明过程或演算步骤.C 1B 1A 1FE CBA17.(本小题满分12分)已知函数f (x )=2sin x sin ⎝⎛⎭⎫x +π6.(1)求函数f (x )的最小正周期和单调递增区间; (2)当x ∈⎣⎡⎦⎤0,π2时,求函数f (x )的值域.18.(本大题满分12分)如图,在三棱柱111ABC A B C -中,侧棱垂直于底面,AB BC ⊥,12AA AC ==,1=BC ,E 、F 分别为11AC 、BC 的中点. (1)求证:平面ABE ⊥平面11B BCC ;(2)求证:1//C F 平面ABE ; (3)求三棱锥ABE C -1的体积. 19.(本小题满分12分)已知某中学高三文科班学生共有800人参加了数学与地理的水平测试,现学校决定利用随机数表法从中抽取100人进行成绩抽样统计,先将800人按001002003800,,,,L 进行编号. (Ⅰ)如果从第8行第7列的数开始向右读,请你依次写出最先检测的3个人的编号; (下面摘取了第7行 至第9行)84 42 17 53 31 57 24 55 06 88 77 04 74 47 67 21 76 33 50 25 83 92 12 06 7663 01 63 78 59 16 95 56 67 19 98 10 50 71 75 12 86 73 58 07 44 39 52 38 7933 21 12 34 29 78 64 56 07 82 52 42 07 44 38 15 51 00 13 42 99 66 02 79 54(Ⅱ)抽的100人的数学与地理的水平测试成绩如下表:成绩分为优秀、良好、及格三个等级,横向、纵向分别表示地理成绩与数学成绩, 例如:表中数学成绩为良好的共有2018442++=人,若在该样本中,数学成绩优秀率为30%,求a b ,的值.(Ⅲ)将108a b ≥,≥的a b ,表示成有序数对()a b ,,求“在地理成绩为及格的学生中,数学成绩为优秀的人数比及格的人数少”的数对()a b ,的概率. 20.(本小题满分12分)已知椭圆C :)0(12222>>=+b a b y a x 的离心率为22,左焦点为)0,1(-F ,过点)2,0(D 且斜率为k 的直线l 交椭圆于A ,B 两点. (1)求椭圆C 的标准方程;(2)在y 轴上,求点E ,使⋅恒为定值。
最新-2018届高三数学摸底题(文科答案) 精品
2018届高三数学摸底题(文科)参考答案(文科)一、选择题:本大题共10小题,每小题5分,共50分.二、填空题:本大题共4小题,每小题5分,共20分. 11.2. 12.5,2. 13.283. 14.(2,3) 三、解答题:本大题共6小题,共80分。
15.(本小题满分12分) (I )解法一:()1cos 23(1cos 2)sin 222x f x x θ-+=++2sin 2cos 2x x =++2)4x π=+……4分∴当2242x k πππ+=+,即()8x k k Z ππ=+∈时,()f x 取得最大值2+因此,()f x 取得最大值的自变量x 的集合是,8x x k k Z ππ⎧⎫=+∈⎨⎬⎩⎭.……8分 解法二:222()(sin cos )sin 22cos f x x x x x =+++1sin 21cos 2x x =+++2)4x π=++……4分∴当2242x k πππ+=+,即()8x k k Z ππ=+∈时,()f x 取得最大值2+因此,()f x 取得最大值的自变量x 的集合是,8x x k k Z ππ⎧⎫=+∈⎨⎬⎩⎭……8分(Ⅱ)解:()2)4f x x π=+由题意得222()242k x k k Z πππππ-≤+≤+∈,即3()88k x k k Z ππππ-≤≤+∈. 因此,()f x 的单调增区间是()3,88k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦.…………12分16(本小题满分12分.)(Ⅰ)解:甲班参赛同学恰有1名同学成绩及格的概率为120.60.40.48C ⨯⨯= 乙班参赛同学中恰有一名同学成绩及格的概率为120.60.40.48C ⨯⨯=故甲、乙两班参赛同学中各有1名同学成绩及格的概率为 0.480.480.2304P =⨯=…………………………6分(Ⅱ)解法一:甲、乙两班4名参赛同学成绩都不及格的概率为40.40.0256,= 故甲、乙两班参赛同学中至少有一名同学成绩都不及格的概率为 10.02560.9744P =-=…………………………12分解法二:甲、乙两班参赛同学成绩及格的概率为140.60.40.1536C ⨯⨯=甲、乙两班参赛同学中恰有2名同学成绩及格的概率为22240.60.40.3456C ⨯⨯= 甲、乙两班参赛同学中恰有3名同学成绩及格的概率为22240.60.40.3456C ⨯⨯=甲、乙两班4同学参赛同学成绩都及格的概率为40.60.1296=故甲、乙两班参赛同学中至少有1名同学成绩及格的概率为0.15360.34560.34560.12960.9744P =+++=……………………12分 17.(本小题共 14 分)解: (Ⅰ)∵ PA ⊥平面 ABCD , ∴ PA ⊥AC. ∵ AB ⊥AC ,PA ∩AB=A , ∴ AC ⊥平面PAB , 又 ∵ AB ⊂平面PAB , ∴ AC ⊥PB.(Ⅱ)连接BD ,与 AC 相交于 O ,连接 EO. ∵ ABCD 是平行四边形, ∴ O 是BD 的中点又 E 是 PD 的中点 ∴ EO ∥PB. 又 PB ∉平面 AEC ,EO ⊂平面 AEC , ∴ PB ∥平面 AEC.18.(本小题满分14分)解:(Ⅰ)依题意得 a =2c ,ca 2=4,解得a =2,c =1,从而b =3.故椭圆的方程为 13422=+y x . (Ⅱ)解法1:由(Ⅰ)得A (-2,0),B (2,0).设M (x 0,y 0).∵M 点在椭圆上,∴ y 0=43(4-x 18). ○1 又点M 异于顶点A 、B ,∴-2<x 0<2,由P 、A 、M 三点共线可以得P (4,2600+x y ).从而=(x 0-2,y 0),=(2,2600+x y ). ∴·=2x 0-4+2602+x y =220+x (x 18-4+3y 18). ○2 将○1代入○2,化简得BM ·BP =25(2-x 0). ∵2-x 0>0,∴·>0,则∠MBP 为锐角,从而∠MBN 为钝角, 故点B 在以MN 为直径的圆内。
xx2018年高考模拟数学(文)试题含答案
2018年一般高等学校招生全国统一考试模拟试题文数(四)第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每题5分,共60分.在每题给出的四个选项中,只有一项为哪一项符合题目要求的.1.已知集合{}0,1,3A =,,那么A B =( )A .{}0 B .{}0,1,3 C .{}0,1 D .{}0,1,22(i 是虚数单位),那么 )A.2 D .43.假设,,a b c ∈R ,且a b >,那么以下不等式必然成立的是( )A.22a b > D4.以下结论中正确的个数是( )①是的充分没必要要条件; ②命题“,sin 1x x ∀∈≤R ”的否定是“,sin 1x x ∀∈>R ”; 在区间[)0,+∞内有且仅有两个零点.A .1B .2C .3D .05.已知关于x 的不等式2680kx kx k -++≥对任意的x ∈R 恒成立,假设k 的取值范围为区间D ,在区间[]1,3-上随机取一个数k ,那么k D ∈的概率是()A6.我国古代名著《庄子·天下篇》中有一句名言“一尺之棰,目取其半,万事不竭”,其意思是:一尺长木棍,天天截取一半,永久截不完.现将该木棍依此规律截取,如下图的程序框图的功能确实是计算截取7天后所剩木棍的长度(单位:尺),那么空白处可填入的是( )A.S S i=- B.1S Si=-C.2S S i=- D.12S Si=-7.如下图是一个几何体的三视图,那么该几何体的体积为()A.163πB.643 C.16643π+D.1664π+8.已知某函数在[],ππ-上的图象如下图,那么该函数的解析式可能是()A.sin2xy= B.cosy x x=+C.ln cosy x=D.siny x x=+9.《九章算术》卷第五《商功》中有记载:“刍甍者,下有袤有广,而上有袤无广.刍,草也.甍,屋盖也.”翻译为“底面有长有宽为矩形,顶部只有长没有宽为一条棱.刍甍字面意思为茅草屋顶.”现有一个刍甍,如图,四边形ABCD为正方形,四边形ABFE、CDEF为两个全AB ,,那么CF的长为()等的等腰梯形,4A .1B .2C .3D .410.在ABC ∆中,角,,A B C 的对边别离为,,a b c ,cos cos 2cos a B b A c C +=,7c =且ABC ∆的面积为332,那么ABC ∆的周长为( )A .17+B .27+C .47+D .57+11.设12,F F 别离是椭圆()2222:10x y E a b a b +=>>的左,右核心,过点1F 的直线交椭圆E于,A B 两点,假设12AF F ∆的面积是12BF F ∆的三倍,23cos 5AF B ∠=,那么椭圆E 的离心率为( )A .12B .23 C .32 D .2212.已知概念在区间0,2π⎛⎫ ⎪⎝⎭上的函数()f x ,()f x '为其导函数,且()()sin cos 0f x x f x x '->恒成立,那么( )A .226f f ππ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭ B .3243f f ππ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭ C .363f f ππ⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭ D .()12sin16f f π⎛⎫< ⎪⎝⎭第Ⅱ卷(共90分)二、填空题(每题5分,总分值20分,将答案填在答题纸上)13.某乡镇中学有低级职称教师160人,中级职称教师30人,高级职称教师10人,要从其中抽取20人进行体检,若是采纳分层抽样的方式,那么高级职称教师应该抽取的人数为 .14.已知平面向量,a b ,7,4a b ==,且6a b +=,那么a 在b 方向上的投影是 .15.假设双曲线()222210,0x y a b a b -=>>的渐近线与圆()2232x y -+=相交,那么此双曲线的离心率的取值范围是 .16.已知三棱锥P ABC -的各极点都在同一球面上,且PA ⊥平面ABC ,假设2AB =,1AC =,60BAC ∠=︒,4PA =,那么球的体积为 .三、解答题 (本大题共6小题,共70分.解许诺写出文字说明、证明进程或演算步骤.)17. 已知数列{}n a 知足11a =,()1n n n na na a n +=-∈*N .(1)求数列{}n a 的通项公式;(2)假设数列{}n b 的前n 项和为n S ,23n n S b =-,求数列{}n n b a ⋅的前n 项和n T .18. 在直三棱柱111ABC A B C -中,AD ⊥平面1A BC,其垂足D 落在直线1A B上.(1)求证:BC ⊥平面1A AB;(2)假设3AD =,2AB BC ==,P 为AC 的中点,求三棱锥1P A BC -的体积.19. 某市甲、乙两地为了争创“市级文明城市”,现市文明委对甲、乙两地各派10名专家进行打分评优,所得分数情形如下茎叶图所示.(1)别离计算甲、乙两地所得分数的平均值,并计算乙地得分的中位数; (2)从乙地所得分数在[)60,80间的成绩中随机抽取2份做进一步分析,求所抽取的成绩中,至少有一份分数在[)75,80间的概率;(3)在甲、乙两地所得分数超过90分的成绩中抽取其中2份分析其合理性,求这2份成绩都是来自甲地的概率. 20. 已知点()00,M x y 在圆22:4O x y +=上运动,且存在必然点()6,0N ,点(),P x y 为线段MN 的中点.(1)求点P 的轨迹C 的方程; (2)过()0,1A 且斜率为k 的直线l 与点P 的轨迹C 交于不同的两点,E F ,是不是存在实数k 使得12OE OF ⋅=,并说明理由.21. 已知函数()()ln f x x ax a =-∈R .(1)求函数()f x 的单调区间;(2)当1a =时,方程()()2f x m m =<-有两个相异实根12,x x ,且12x x <,证明:2122x x ⋅<.请考生在2二、23两题中任选一题作答,若是多做,那么按所做的第一题记分.22.选修4-4:坐标系与参数方程在平面直角坐标系xOy 中,曲线C 的参数方程为(α是参数),以原点O 为极点,x 轴的正半轴为极轴成立极坐标系,直线l 的极坐标方程为(1)将直线l 的极坐标方程化为一般方程,并求出直线l 的倾斜角; (2)求曲线C 上的点到直线l 的最大距离. 23.选修4-5:不等式选讲 ,假设()7f x ≥的解集是或}4x ≥.(1)求实数a 的值; (2)假设x ∀∈R ,不等式()()31f x f m ≥+恒成立,求实数m 的取值范围.文数(四)答案一、选择题1-5:CBDAC 6-10:BCACD 1一、12:DC二、填空题13.1 14三、解答题17.解:(1)∵1n n nna na a +=-,211a a a ⋅⋅⋅211n =⋅⋅⋅=∴数列{}n a 的通项公式为n a n =.(2)由23n n S b =-,得13b =,又()11232n n S b n --=-≥,∴1122n n n n n b S S b b --=-=-,即()122,n n b b n n -=≥∈*N ,∴数列{}n b 是以3为首项,2为公比的等比数列,∴()132n n b n -=⋅∈*N ,∴132n n n b a n -⋅=⋅,∴()012131222322n n T n -=⋅+⋅+⋅++⋅,()123231222322n n T n =⋅+⋅+⋅++⋅,两式相减,得()0121322222n n n T n --=++++-⋅()3121nn ⎡⎤=--⎣⎦,∴()3123n n T n =-+.18.解:(1)∵三棱柱111ABC A B C -为直三棱柱,∴1A A ⊥平面ABC .又BC ⊂平面ABC ,∴1A A BC⊥.∵AD ⊥平面1A BC,且BC ⊂平面1A BC,∴AD BC ⊥. 又1A A ⊂平面1A AB ,AD ⊂平面1A AB,1A AAD A=,∴BC ⊥平面1A AB.(2)在直三棱柱111ABC A B C -中,1A A AB⊥.∵AD ⊥平面1A BC,其垂足D 落在直线1A B上,∴1AD A B⊥.在Rt ABD∆中,,2AB BC ==,即60ABD ∠=︒, 在1Rt ABA ∆中,由(1)知,BC ⊥平面1A AB,AB ⊂平面1A AB,从而BC AB ⊥,∵F 为AC 的中点,19.解:(1)由题得,甲地得分的平均数为(2)由茎叶图可知,乙地得分中分数在[)60,80间的有65,72,75,79四份成绩,随机抽取2份的情形有:()65,72,()65,75,()65,79,()72,75,()72,79,()75,79,共6种,其中至少有一份分数在[) 70,80间的情形有:()65,75,()65,79,()72,75,()72,79,()75,79,共5种.(3)甲、乙两地所得分数中超过90分的一共有5份,记甲地中的三份别离为,,A B C,乙地中的两份别离为,a b.随机抽取其中2份,所有情形如下:(),A B,(),A C,(),B C,(),a b,(),A a,(),A b,(),B a,(),B b,(),C a,(),C b,一共10种.其中两份成绩都来自甲地的有3种情形:(),A B,(),A C,(),B C,.20.解:(1即()f x ,()f x . ∵点()00,M x y 在圆224x y +=上运动, ∴22004x y +=, 即()()222624x y -+=, 整理,得()2231x y -+=. ∴点P 的轨迹C 的方程为()2231x y -+=. (2)设()11,E x y ,()22,F x y ,直线l 的方程是1y kx =+,代入圆()2231x y -+=. 可得()()2212390k x k x +--+=, 由232240k k ∆=-->,得12AB AB x x ⋅= 1,不知足0∆>.使得OF .21.解:(1当0a <时,由于0x >,可得10ax ->, 即()0f x '>. ∴()f x 在区间()0,+∞内单调递增, 当0a >时,由()0f x '>,得 由()0f x '<,得 ∴()f x 在区间. (2)由(1)可设,方程()()2f x m m =<-的两个相异实根12,x x ,知足ln 0x x m --=, 且101x <<,21x >, 即1122ln ln 0x x m x x m --=--=. 由题意,可知11ln 2ln 22x x m -=<-<-, 又由(1)可知,()ln f x x x =-在区间()1,+∞内单调递减,故22x >. 令()ln g x x x m=--,当2t >时,()0h t '<,()h t 是减函数,∴当22x >时,即()1212g x gx⎛⎫< ⎪⎝⎭.∵()g x在区间()0,1内单调递增,∴1222xx<,故2122x x⋅<.22.解;(1)由sin24πρθ⎛⎫-=⎪⎝⎭,得sin cos2ρθρθ-=,将cossinxyρθρθ=⎧⎨=⎩代入上式,化简,得2y x=+.因此直线l的倾斜角为4π.(2)在曲线C上任取一点()3cos,sinAαα,那么点A到直线l的距离3cos sin22dαα-+=,当()sin601α-︒=-时,d取得最大值,且最大值是22. 23.解:(1)∵2a>-,∴()22,2,2,2,22,.x a xf x a x ax a x a-+-<-⎧⎪=+-≤≤⎨⎪+->⎩作出函数()f x的图象,如下图:由()7f x≥的解集为{3x x≤-或4x≥及函数图象,可得627,827,a a +-=⎧⎨+-=⎩解得3a =.(2)由题知,x ∀∈R ,不等式()()31f x f m ≥+恒成立, 即x ∀∈R ,不等式 由(1(当且仅当23x -≤≤时取等号),当3m ≤-时,3215m m ---+≤, ∴8m ≥-, ∴83m -≤≤-, 当32m -<<时,3215m m +-+≤,成立; 当2m ≥时,3215m m ++-≤, ∴7m ≤, ∴27m ≤≤, 综上所述,实数m 的取值范围为[]8,7-.。
【全国通用-2018高考推荐】高三数学(文科)高考综合模拟试题及答案解析
2017-2018学年高三(下)第一次综合模拟数学试卷(文科)一、选择题(共12小题,每小题5分,满分60分)1.在复平面内,复数z=﹣2i3(i为虚数单位)表示的点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限2.己知命题p:“a>b”是“2a>2b”的充要条件;q:∃x∈R,|x+l|≤x,则()A.¬p∨q为真命题B.p∧¬q为假命题C.p∧q为真命题D.p∨q为真命题3.执行如图所示的程序框图,输出S的值为()A.10 B.﹣6 C.3 D.124.函数的图象如图所示,为了得到g(x)=cos2x的图象,则只需将f(x)的图象()A.向右平移个单位长度B.向右平移个单位长度C.向左平移个单位长度D.向左平移个单位长度5.能够把圆O:x2+y2=9的周长和面积同时分为相等的两部分的函数f(x)称为“亲和函数”,则下列函数:,其中是圆O:x2+y2=9的“亲和函数”的个数为()A.1 B.2 C.3 D.46.已知某几何体的三视图如图所示,其中,正(主)视图,侧(左)视图均是由三角形与半圆构成,俯视图由圆与内接三角形构成,根据图中的数据可得此几何体的体积为()A.B.C.D.7.如图,F1,F2是双曲线C:(a>0,b>0)的左、右焦点,过F1的直线l与C的左、右两支分别交于A,B两点.若|AB|:|BF2|:|AF2|=3:4:5,则双曲线的离心率为()A. B. C.2 D.8.等比数列{a n}中,若a1+a2=3,a5+a6=48,则a3+a4=()A.12 B.±12 C.6 D.±69.200辆汽车通过某一段公路时的时速的频率分布直方图如图所示,则时速的众数,中位数的估计值为()A.62,62.5 B.65,62 C.65,62.5 D.62.5,62.510.在四面体S﹣ABC中,SA⊥平面ABC,△ABC是边长为3的正三角形,SA=2,则该四面体的外接球的表面积为()A.8πB.12πC.16πD.32π11.已知,f(x)在x=x0处取得最大值,以下各式中正确的序号为()①f(x0)<x0;②f(x0)=x0;③f(x0)>x0;④;⑤.A.①④ B.②④ C.②⑤ D.③⑤12.抛物线的弦与过弦的端点的两条切线所围成的三角形常被称为阿基米德三角形,阿基米德三角形有一些有趣的性质,如:若抛物线的弦过焦点,则过弦的端点的两条切线的交点在其准线上.设抛物线y2=2px(p>0),弦AB过焦点,△ABQ为其阿基米德三角形,则△ABQ的面积的最小值为()A.B.p2C.2p2D.4p2二、填空题:本题共4个小题,每小题5分,共20分.13.在平面直角坐标系xOy中过定点Q(1,1)的直线l与曲线C:y=交与M,N点,则•﹣•= .14.如果不等式组表示平面区域是一个直角三角形,则k= .15.已知a为常数,若曲线y=ax2+3x﹣lnx存在与直线x+y﹣1=0垂直的切线,则实数a的取值范围是.16.各项都为正数的数列{a n},其前n项的和为S n,且S n=(+)2(n≥2),若b n=+,且数列{b n}的前n项的和为T n,则T n= .三、解答题:本大题共6个小题,共70分,解答题应写出文字说明、证明过程或演算步骤.17.已知向量=(sin,1),=(cos,cos2),函数f(x)=.(1)若f(x)=1,求cos(﹣x)的值;(2)在△ABC中,角A,B,C的对边分别是a,b,c,且满足acosC+c=b,求f(B)的取值范围.18.调查某初中1000名学生的肥胖情况,得下表:偏瘦正常肥胖女生(人)100 173 y男生(人)x 177 z已知从这批学生中随机抽取1名学生,抽到偏瘦男生的概率为0.15.(Ⅰ)求x的值;(Ⅱ)若用分层抽样的方法,从这批学生中随机抽取50名,问应在肥胖学生中抽多少名?(Ⅲ)已知y≥193,z≥193,肥胖学生中男生不少于女生的概率.19.如图,PA⊥平面ABCD,ABCD是矩形,PA=AB=,AD=,点F是PB的中点,点E是边BC上的动点.(Ⅰ)求三棱锥E﹣PAD的体积;(Ⅱ)当点E为BC的中点时,试判断EF与平面PAC的位置关系,并说明理由;(Ⅲ)证明:无论点E在边BC的何处,都有PE⊥AF.20.如图,椭圆的左顶点、右焦点分别为A,F,直线l的方程为x=9,N为l上一点,且在x轴的上方,AN与椭圆交于M点(1)若M是AN的中点,求证:MA⊥MF.(2)过A,F,N三点的圆与y轴交于P,Q两点,求|PQ|的范围.21.已知函数f(x)=e x﹣x﹣2(e为自然对数的底数).(1)求曲线y=f(x)在点(0,f(0))处的切线方程;(2)若k为正整数,且当x>0时,,求k的最大值.请考生在第22、23、24题中任选一题作答,如果多做,则按所做的第一题记分.作答时,用2B铅笔在答题卡上把所选题目对应的题号涂黑.[选修4-1:几何证明选讲]22.如图,AB是圆O的直径,以B为圆心的圆B与圆O的一个交点为P.过点A作直线交圆O于点Q,交圆B于点M、N.(1)求证:QM=QN;(2)设圆O的半径为2,圆B的半径为1,当时,求MN的长.[选修4-4:坐标系与参数方程]23.以直角坐标系的原点O为极点,x轴正半轴为极轴,并在两种坐标系中取相同的长度单位,已知直线l的参数方程为(t 为参数),曲线C的极坐标方程为ρ=.(1)求曲线C的直角坐标方程;(2)若直线l与曲线C相交于A、B两点,求|AB|的值.[选修4-5:不等式选讲]24.设函数f(x)=|x+1|+|x﹣5|,x∈R.(1)求不等式f(x)<x+10的解集;(2)如果关于x的不等式f(x)≥a﹣(x﹣2)2在R上恒成立,求实数a的取值范围.参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.在复平面内,复数z=﹣2i3(i为虚数单位)表示的点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限【考点】复数代数形式的乘除运算.【分析】直接利用复数代数形式的乘除运算化简复数z,求出z在复平面内对应的点的坐标,则答案可求.【解答】解:∵z=﹣2i3=,∴z在复平面内对应的点的坐标为:(1,3),位于第一象限.故选:A.2.己知命题p:“a>b”是“2a>2b”的充要条件;q:∃x∈R,|x+l|≤x,则()A.¬p∨q为真命题B.p∧¬q为假命题C.p∧q为真命题D.p∨q为真命题【考点】复合命题的真假.【分析】由指数函数的性质可知P真命题,¬p为假命题;q:由|x+l|≤x,可得,可得x不存在,则q为假命题,¬q为真命题,则根据复合命题的真假关系可判断【解答】解:P:“a>b”是“2a>2b”的充要条件为真命题,¬p为假命题q:由|x+l|≤x,可得可得x不存在,则q为假命题,¬q为真命题则根据复合命题的真假关系可得,¬p∨q为假;p∨q为真;p∧q为假;p∧¬q为真故选D3.执行如图所示的程序框图,输出S的值为()A.10 B.﹣6 C.3 D.12【考点】程序框图.【分析】模拟程序框图的运行过程,得出该程序的功能是计算并输出S=﹣12+22﹣32+42的值,得出数值即可.【解答】解:模拟程序框图的运行过程,得;该程序的功能是计算并输出S=﹣12+22﹣32+42的值,所以S=﹣12+22﹣32+42=10.故选:A.4.函数的图象如图所示,为了得到g(x)=cos2x的图象,则只需将f(x)的图象()A.向右平移个单位长度B.向右平移个单位长度C.向左平移个单位长度D.向左平移个单位长度【考点】函数y=Asin(ωx+φ)的图象变换.【分析】由函数的图象的顶点坐标求出A,由周期求出ω,由五点法作图求出φ的值,可得f (x)的解析式,再利用函数y=Asin(ωx+φ)的图象变换规律,得出结论.【解答】解:根据函数的图象,可得A=1,•=﹣,∴ω=2.再根据五点法作图可得2•+φ=π,求得φ=,∴f(x)=sin(2x+).故把f(x)=sin(2x+)的图象向左平移个单位,可得g(x)=sin[2(x+)+]=cos2x的图象,故选:C.5.能够把圆O:x2+y2=9的周长和面积同时分为相等的两部分的函数f(x)称为“亲和函数”,则下列函数:,其中是圆O:x2+y2=9的“亲和函数”的个数为()A.1 B.2 C.3 D.4【考点】函数的图象.【分析】由“亲和函数”的定义知,若函数为“亲和函数”,则该函数必为过原点的奇函数,由此判断即可得出结论.【解答】解:由“亲和函数”的定义知,若函数为“亲和函数”,则该函数为过原点的奇函数;①中,f(0)=0,且f(x)为奇函数,故f(x)=x3+x为“亲和函数”;②中,f(0)=ln1=0,且f(﹣x)=f(x),所以f(x)为奇函数,所以f(x)=ln为“亲和函数”;③中,f(0)=tan0=0,且f(﹣x)=f(x),f(x)为奇函数,故f(x)=tan为“亲和函数”.④中,f(0)=e0+e﹣0=2,所以f(x)=e x+e﹣x的图象不过原点,故f(x))=e x+e﹣x不为“亲和函数”;综上,以上为“亲和函数”的个数是3个.故选:C.6.已知某几何体的三视图如图所示,其中,正(主)视图,侧(左)视图均是由三角形与半圆构成,俯视图由圆与内接三角形构成,根据图中的数据可得此几何体的体积为()A.B.C.D.【考点】由三视图求面积、体积.【分析】先由三视图还原成原来的几何体,再根据三视图中的长度关系,找到几何体中的长度关系,进而可以求几何体的体积.【解答】解:由三视图可得该几何体的上部分是一个三棱锥,下部分是半球,所以根据三视图中的数据可得:V=××=,故选C.7.如图,F1,F2是双曲线C:(a>0,b>0)的左、右焦点,过F1的直线l与C的左、右两支分别交于A,B两点.若|AB|:|BF2|:|AF2|=3:4:5,则双曲线的离心率为()A. B. C.2 D.【考点】双曲线的简单性质.【分析】根据双曲线的定义可求得a=1,∠ABF2=90°,再利用勾股定理可求得2c=|F1F2|,从而可求得双曲线的离心率.【解答】解:∵|AB|:|BF2|:|AF2|=3:4:5,不妨令|AB|=3,|BF2|=4,|AF2|=5,∵|AB|2+=,∴∠ABF2=90°,又由双曲线的定义得:|BF1|﹣|BF2|=2a,|AF2|﹣|AF1|=2a,∴|AF1|+3﹣4=5﹣|AF1|,∴|AF1|=3.∴|BF1|﹣|BF2|=3+3﹣4=2a,∴a=1.在Rt△BF1F2中,=+=62+42=52,又=4c2,∴4c2=52,∴c=.∴双曲线的离心率e==.故选A.8.等比数列{a n}中,若a1+a2=3,a5+a6=48,则a3+a4=()A.12 B.±12 C.6 D.±6【考点】等比数列的通项公式.【分析】利用等比数列{a n}的性质可得:a1+a2,a3+a4,a5+a6,成等比数列,且a3+a4>0.解出即可得出.【解答】解:由等比数列{a n}的性质可得:a1+a2,a3+a4,a5+a6,成等比数列,且a3+a4>0.∴=(a1+a2)(a5+a6)=3×48,解得a3+a4=12.故选:A.9.200辆汽车通过某一段公路时的时速的频率分布直方图如图所示,则时速的众数,中位数的估计值为()A.62,62.5 B.65,62 C.65,62.5 D.62.5,62.5【考点】众数、中位数、平均数;频率分布直方图.【分析】选出直方图中最高的矩形求出其底边的中点即为众数;求出从左边开始小矩形的面积和为0.5对应的横轴的左边即为中位数【解答】解:最高的矩形为第三个矩形,所以时速的众数为65前两个矩形的面积为(0.01+0.03)×10=0.4由于0.5﹣0.4=0.1,则,∴中位数为60+2.5=62.5故选C10.在四面体S﹣ABC中,SA⊥平面ABC,△ABC是边长为3的正三角形,SA=2,则该四面体的外接球的表面积为()A.8πB.12πC.16πD.32π【考点】球的体积和表面积.【分析】由已知结合三棱锥和正三棱柱的几何特征,可得此三棱锥外接球,即为以△ABC 为底面以SA为高的正三棱柱的外接球,分别求出棱锥底面半径r,和球心距d,得球的半径R,然后求解表面积.【解答】解:根据已知中底面△ABC是边长为3的正三角形,SA⊥平面ABC,SA=2,可得此三棱锥外接球,即为以△ABC为底面以SA为高的正三棱柱的外接球,∵△ABC是边长为3的正三角形,∴△ABC的外接圆半径r=,球心到△ABC的外接圆圆心的距离d=1,故球的半径R==2.三棱锥S﹣ABC外接球的表面积为:4π×4=16π.故选:C.11.已知,f(x)在x=x0处取得最大值,以下各式中正确的序号为()①f(x0)<x0;②f(x0)=x0;③f(x0)>x0;④;⑤.A.①④ B.②④ C.②⑤ D.③⑤【考点】导数在最大值、最小值问题中的应用.【分析】求导函数,可得令g(x)=x+1+lnx,则函数有唯一零点,即x0,代入验证,即可得到结论.【解答】解:求导函数,可得令g(x)=x+1+lnx,则函数有唯一零点,即x0,∴﹣x0﹣1=lnx0∴f(x0)==x0,即②正确=∵﹣x0﹣1=lnx0,∴=x=时,f′()=﹣<0=f′(x0)∴x0在x=左侧∴x0<∴1﹣2x0>0∴<0∴∴④正确综上知,②④正确故选B.12.抛物线的弦与过弦的端点的两条切线所围成的三角形常被称为阿基米德三角形,阿基米德三角形有一些有趣的性质,如:若抛物线的弦过焦点,则过弦的端点的两条切线的交点在其准线上.设抛物线y2=2px(p>0),弦AB过焦点,△ABQ为其阿基米德三角形,则△ABQ的面积的最小值为()A.B.p2C.2p2D.4p2【考点】抛物线的应用.【分析】法一:直接计算比较复杂,我们可以取几个特殊的位置,可得解.法二:由于若抛物线的弦过焦点,则过弦的端点的两条切线的交点在其准线上,且△PAB 为直角三角型,且角P为直角.又面积是直角边积的一半,斜边是两直角边的平方和,故可求.【解答】解:法一:取倾斜角为:450,600,900,经计算可知,当倾斜角为900时,△ABQ的面积的最小,此时AB=2p,又焦点到准线的距离=p,此时三角形的面积最小为p2故选B.法二:由于若抛物线的弦过焦点,则过弦的端点的两条切线的交点在其准线上,且△PAB为直角三角型,且角P为直角.,由于AB是通径时,AB最小,故选B.二、填空题:本题共4个小题,每小题5分,共20分.13.在平面直角坐标系xOy中过定点Q(1,1)的直线l与曲线C:y=交与M,N点,则•﹣•= 4 .【考点】平面向量数量积的运算.【分析】将曲线C变形为y=1+,明确与y=的关系,知道其对称中心为Q(1,1),则•﹣•=.【解答】解:将曲线C变形为y=1+,则可知对称中心为Q(1,1),∴•﹣•=.故答案为:4.14.如果不等式组表示平面区域是一个直角三角形,则k= ﹣或0 .【考点】二元一次不等式(组)与平面区域.【分析】分两种情况加以讨论:(1)直线y=2x与直线kx﹣y+1=0互相垂直,可得k=﹣,从而得到三角形;(2)直线x=0与直线kx﹣y+1=0互相垂直,可得k=0,从而得到三角形.【解答】解:有两种情形:(1)直角由y=2x与kx﹣y+1=0形成(如图),则∵2×k=﹣1,∴k=﹣,y=2x与﹣x﹣y+1=0的交点坐标为(,),三角形的三个顶点为(0,0),(0,1),(,);(2)直角由x=0与kx﹣y+1=0形成(如图),则k=0,∴由x=0与﹣y+1=0交于点(,1)三角形的三个顶点为(0,0),(0,1),(,1).综上所述,则k=﹣或 0.故答案为:﹣或 0.15.已知a 为常数,若曲线y=ax 2+3x ﹣lnx 存在与直线x+y ﹣1=0垂直的切线,则实数a 的取值范围是 [﹣,+∞) .【考点】利用导数研究曲线上某点切线方程.【分析】根据题意,曲线y=ax 2+3x ﹣lnx 存在与直线x+y ﹣1=0垂直的切线,转化为f ′(x )=1有正根,分离参数,求最值,即可得到结论. 【解答】解:令y=f (x )=ax 2+3x ﹣lnx 由题意知,x+y ﹣1=0斜率是﹣1,则与直线x+y ﹣1=0垂直的切线的斜率是1. ∴f ′(x )=1有解,∵函数的定义域为{x|x >0}. ∴f ′(x )=1有正根, ∵f (x )=ax 2+3x ﹣lnx ,∴f'(x )=2ax+3﹣=1有正根 ∴2ax 2+2x ﹣1=0有正根,∴2a=﹣=(﹣1)2﹣1,∴2a ≥﹣1,∴a ≥﹣.故答案为:[﹣,+∞).16.各项都为正数的数列{a n },其前n 项的和为S n ,且S n =(+)2(n ≥2),若b n =+,且数列{b n }的前n 项的和为T n ,则T n =.【考点】数列的求和;数列递推式.【分析】由题意可得,,结合等差数列的通项可求,进而可求S n,然后利用n≥2时,a n=s n﹣s n﹣1式可求a n,然后代入后,利用裂项求和即可求解【解答】解:由题意可得,s n>0∵∴即数列{}是以为公差以为首项的等差数列∴∴,∴当n≥2时,a n=s n﹣s n﹣1==(2n﹣1)a1当n=1时,适合上式∴==1++1﹣=2+2()∴T n=2n+2(1﹣)=2n+2(1﹣)=2n+=故答案为:三、解答题:本大题共6个小题,共70分,解答题应写出文字说明、证明过程或演算步骤.17.已知向量=(sin,1),=(cos,cos2),函数f(x)=.(1)若f(x)=1,求cos(﹣x)的值;(2)在△ABC中,角A,B,C的对边分别是a,b,c,且满足acosC+c=b,求f(B)的取值范围.【考点】余弦定理;平面向量数量积的运算.【分析】(1)利用两个向量的数量积公式求得函数f(x)=sin()+,由f(x)=1,可得sin()=,再利用二倍角公式求得cos(﹣x)的值.(2)由acosC+c=b利用余弦定理可得cosA==,求出A=,B+C=.再由的范围求出f(B)=sin()+的范围.【解答】解:(1)由题意得:函数f(x)==+=+=sin()+.若f(x)=1,可得sin()=,则cos(﹣x)=2﹣1=2﹣1=﹣.(2)由acosC+c=b可得a•+c=b,即b2+c2﹣a2=bc.∴cosA==,∴A=,B+C=.∴0<B<,0<<,∴<<,<sin()<1,∴f(B)=sin()+∈(1,).18.调查某初中1000名学生的肥胖情况,得下表:偏瘦正常肥胖女生(人)100 173 y男生(人)x 177 z已知从这批学生中随机抽取1名学生,抽到偏瘦男生的概率为0.15.(Ⅰ)求x的值;(Ⅱ)若用分层抽样的方法,从这批学生中随机抽取50名,问应在肥胖学生中抽多少名?(Ⅲ)已知y≥193,z≥193,肥胖学生中男生不少于女生的概率.【考点】分层抽样方法;等可能事件的概率.【分析】(I)根据从这批学生中随机抽取1名学生,抽到偏瘦男生的概率为0.15,列出关于x的式子,解方程即可.(II)做出肥胖学生的人数,设出在肥胖学生中抽取的人数,根据在抽样过程中每个个体被抽到的概率相等,列出等式,解出所设的未知数.(III)本题是一个等可能事件的概率,试验发生包含的事件是y+z=400,且y≥193,z≥193,列举出所有事件数,再同理做出满足条件的事件数,得到结果.【解答】解:(Ⅰ)由题意可知,,∴x=150(人);(Ⅱ)由题意可知,肥胖学生人数为y+z=400(人).设应在肥胖学生中抽取m人,则,∴m=20(人)即应在肥胖学生中抽20名.(Ⅲ)由题意可知本题是一个等可能事件的概率,试验发生包含的事件是y+z=400,且y≥193,z≥193,满足条件的(y,z)有,,…,,共有15组.设事件A:“肥胖学生中男生不少于女生”,即y≤z,满足条件的(y,z)有,,…,,共有8组,∴.即肥胖学生中女生少于男生的概率为.19.如图,PA⊥平面ABCD,ABCD是矩形,PA=AB=,AD=,点F是PB的中点,点E是边BC上的动点.(Ⅰ)求三棱锥E﹣PAD的体积;(Ⅱ)当点E为BC的中点时,试判断EF与平面PAC的位置关系,并说明理由;(Ⅲ)证明:无论点E在边BC的何处,都有PE⊥AF.【考点】棱柱、棱锥、棱台的体积;空间中直线与平面之间的位置关系;直线与平面垂直的性质.【分析】(Ⅰ)由于PA⊥平面ABCD,则V E﹣PAD=V P﹣ADE,运用棱锥的体积公式计算即得;(Ⅱ)运用线面平行的判定定理,即可得证;(Ⅲ)由线面垂直的性质和判定定理,即可得证.【解答】(Ⅰ)解:∵PA⊥平面ABCD,ABCD为矩形,∴V E﹣PAD=V P﹣ADE,=;(Ⅱ)EF与平面PAC平行.理由如下:当E为BC中点时,∵F为PB的中点,∴EF∥PC,∵EF⊄平面PAC,PC⊂平面PAC,∴EF∥平面PAC;(Ⅲ)证明:∵PA=AB,F为PB的中点,∴AF⊥PB,∵PA⊥平面ABCD,∴PA⊥BC,又BC⊥AB,BC⊥平面PAB,又AF⊂平面PAB∴BC⊥AF.又PB∩BC=B,∴AF⊥平面PBC,因无论点E在边BC的何处,都有PE⊂平面PBC,∴PE⊥AF.20.如图,椭圆的左顶点、右焦点分别为A,F,直线l的方程为x=9,N为l上一点,且在x轴的上方,AN与椭圆交于M点(1)若M是AN的中点,求证:MA⊥MF.(2)过A,F,N三点的圆与y轴交于P,Q两点,求|PQ|的范围.【考点】圆与圆锥曲线的综合.【分析】(1)欲证MA⊥MF,只需证明,分别求出,的坐标,再用向量的数量积的坐标运算计算即可.(2)欲求|PQ|的范围,需先将|PQ|用某个参数表示,再求最值,可先找到圆心坐标和半径,再利用圆中半径,半弦,弦心距组成的直角三角形,得到用参数表示的|PQ|,再用均值不等式求范围.【解答】解:(1)由题意得A(﹣6,0),F(4,0),x N=9∴又M点在椭圆上,且在x轴上方,得(2)设N(9,t),其中t>0,∵圆过A,F,N三点,∴设该圆的方程为x2+y2+Dx+Ey+F=0,有解得∴圆心为,半径r=∴,∵t>0∴,当且仅当,即时取“=”∴,∴|PQ|的取值范围是21.已知函数f(x)=e x﹣x﹣2(e为自然对数的底数).(1)求曲线y=f(x)在点(0,f(0))处的切线方程;(2)若k为正整数,且当x>0时,,求k的最大值.【考点】利用导数求闭区间上函数的最值;利用导数研究曲线上某点切线方程.【分析】(1)求导数,确定切线的斜率,切点坐标,即可求曲线y=f(x)在点(0,f(0))处的切线方程;(2)若k为正整数,且当x>0时,,k<+x+1,求出右边最小值的范围,即可求k的最大值.【解答】解:(1)∵f(x)=e x﹣x﹣2,∴f′(x)=e x﹣1,∴f′(0)=e0﹣1=0,∵f(0)=﹣1,∴曲线y=f(x)在点(0,f(0))处的切线方程为y=﹣1;(2)∵当x>0时,,∴k<+x+1,令g(x)=+x+1,则g′(x)=.∵f(x)=e x﹣x﹣2,∴f′(x)=e x﹣1∴当x>0时,f′(x)=e x﹣1>0∴函数f(x)单调递增,∴f(x)>f(0)=﹣1,∴存在x0∈(1,2),使得﹣x0﹣2=0,g(x)在(0,x0)上单调递减,(x0,+∞)上单调递增,∴g(x)min=g(x0)=+x0+1=x0+2∈(3,4),∴k为正整数,∴k的最大值是3.请考生在第22、23、24题中任选一题作答,如果多做,则按所做的第一题记分.作答时,用2B铅笔在答题卡上把所选题目对应的题号涂黑.[选修4-1:几何证明选讲]22.如图,AB是圆O的直径,以B为圆心的圆B与圆O的一个交点为P.过点A作直线交圆O于点Q,交圆B于点M、N.(1)求证:QM=QN;(2)设圆O的半径为2,圆B的半径为1,当时,求MN的长.【考点】与圆有关的比例线段;圆与圆的位置关系及其判定.【分析】(1)连接BM、BN、BQ、BP,利用垂径定理,即可得到结论;(2)确定AP为圆B的切线,可得AP2=AM•AN,求出AP的长,结合,可求MN 的长.【解答】(1)证明:连接BM、BN、BQ、BP∵B为小圆的圆心∴BM=BN∵AB为大圆的直径∴BQ⊥MN∴MQ=QN(2)解:∵AB为大圆的直径∴∠APB=90°∴AP为圆B的切线,∴AP2=AM•AN∵AB=4,PB=1∴AP2=AB2﹣PB2=15∵,∴∴[选修4-4:坐标系与参数方程]23.以直角坐标系的原点O为极点,x轴正半轴为极轴,并在两种坐标系中取相同的长度单位,已知直线l的参数方程为(t 为参数),曲线C的极坐标方程为ρ=.(1)求曲线C的直角坐标方程;(2)若直线l与曲线C相交于A、B两点,求|AB|的值.【考点】参数方程化成普通方程.【分析】(I)用极坐标公式,把曲线C的极坐标方程化为直角坐标方程;(II)将直线l的参数方程代入C的直角坐标方程,A、B两点对应的参数分别为t1、t2,计算|AB|=|t1﹣t2|的值.【解答】解:(I)由曲线C的极坐标方程ρ=,得ρ2sin2θ=2ρcosθ,即y2=2x,∴曲线C的直角坐标方程为y2=2x;(II)将直线l的参数方程代入y2=2x,得t2sin2α﹣2tcosα﹣1=0,设A、B两点对应的参数分别为t1、t2,则t1+t2=,t1•t2=﹣;∴|AB|=|t1﹣t2|===,∴|AB|的值为.[选修4-5:不等式选讲]24.设函数f(x)=|x+1|+|x﹣5|,x∈R.(1)求不等式f(x)<x+10的解集;(2)如果关于x的不等式f(x)≥a﹣(x﹣2)2在R上恒成立,求实数a的取值范围.【考点】带绝对值的函数.【分析】(1)去掉绝对值,化简f(x),求出不等式f(x)<x+10的解集;(2)设g(x)=a﹣(x﹣2)2,求出g(x)max与f(x)min;由f(x)≥g(x)在R上恒成立,得f(x)min≥g(x)max,求出a的取值范围.【解答】解:(1)去掉绝对值,;当x<﹣1时,由﹣2x+4<x+10,解得x>﹣2,∴﹣2<x<﹣1;当﹣1≤x<5时,由6<x+10,解得x>﹣4,∴﹣1≤x<5;当x≥5时,由2x﹣4<x+10,解得x<14,∴5≤x<14;综上,不等式的解集为(﹣2,14);﹣﹣﹣(2)设g(x)=a﹣(x﹣2)2,则g(x)max=g(2)=a,而f(x)=|x+1|+|x﹣5|≥|(x+1)﹣(x﹣5)|=6,即f(x)min=6;∴f(x)≥g(x)在R上恒成立时,应满足f(x)min≥g(x)max,∴a≤6;即a的取值范围是{a|a≤6}.﹣﹣﹣2016年10月19日。
2018高三全真模拟卷数学卷参考答案
1 ,得 sin n, OS 2
2 3
3
∴ tan n, OS
2 2 3 1 3
2 2 .即二面角 N CM B 的正切值为 2 2 .
„„10 分
⑶由⑴⑵得 MB (1, 3,0) ,又 n ( 2 , 6 ,1) 为平面 CMN 的一个法向量, | n | 3 , ∴点 B 到平面 CMN 的距离 d 17.(本题满分 14 分) 1 解:设 BC=x 米(x>1) ,AC=y 米,则 AB=y- . 2 1 2 2 2 在△ABC 中,由余弦定理,得(y- ) =y +x -2xycos60. 2 1 4 所以 y= (x>1) . x- 1
1 2 1 13.答案: 2
14.答案: , 1
1,
二、解答题:本大题共 6 小题,共计 90 分.请把答案写在答题卡相应的位置上.解答时应 写出文字说明,证明过程或演算步骤.
-2南京清江花苑严老师
15.解:⑴由三角函数的定义知 tan
2 ( 4 3) 2 4 1 (3)
(当且仅当 t 4 ,即 b 4a 4c 时取“=” 10.答案: m 5 或 1 。
-1南京清江花苑严老师
解析:本题考查三角函数的图象与性质。 由 f( 故当 x
t ) f ( t ) 可知 x 是该函数的一条对称轴, 8 8 8
时,sin( x ) 1 或 1 。 又由 f ( ) 3 可得 m 5 或 1 。
x +y =1,„„① 因为点 A,B 在圆上,所以 x +y =1,„„②
2 1 2 1 2 2 2 2
由①×4-②,得(2x1+x2)(2x1-x2)=3.所以 2x1-x2= 3,解得 x1= 3 1 ,得 y1= . (以下同方法一) 2 2 (法三)如图,设 AB 中点为 T. 由 x1 = 1 3 则 TM=TA-MA= AB,OM= . 6 3
2018届高三模拟考试.doc
2018届高三模拟考试文科数学第Ⅰ卷(选择题 共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合2{|20}A x x x =--≥,则R C A =( ) A .(1,2)- B .[1,2]- C .(2,1)- D .[2,1]-2.已知复数1iz i =+(i 是虚数单位),则z =( )A .1B .12 C. D3.已知123a -=,31log 2b =,2log 3c =,则a ,b ,c 的大小关系是( )A .a c b >>B .c a b >>C .a b c >>D .c b a >>4.下图给出的是计算11112462018+++⋅⋅⋅+值的程序框图,其中判断框内可填入的条件是( )A .2016?i >B .2018?i >C .2016?i ≤D .2018?i ≤ 5.已知2()log (41)x f x ax =-+是偶函数,则a =( )A .1B .1-C .2D .2-6.已知ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ,若()(sin sin )a b A B +-()sin c b C =-,则A =( )A .6πB .3πC .56πD .23π7.七巧板是我们祖先的一项创造,被誉为“东方魔板”,它是由五块等腰直角三角形(两块全等的小三角形、一块中三角形和两块全等的大三角形)、一块正方形和一块平行四边形组成的.如图是一个用七巧板拼成的正方形,在此正方形中任取一点,则此点取自阴影部分的概率是( )A .316B .38C .14D .188.已知1sin()43πα-=,则sin 2α=( ) A .79-B .79C .19-D .199.函数()ln(1)f x x x=-+的大致图象为( )A .B .C .D . 10.某几何体的三视图如图所示,其中俯视图是等腰三角形,则该几何体的体积为( )A .32B .643C .163D .32311.设1F 、2F 是椭圆C :2212x y m +=的两个焦点,若C 上存在点M 满足12120F MF ∠=,则m 的取值范围是( )A .1(0,][8,)2+∞ B .(0,1][8,)+∞ C .1(0,][4,)2+∞ D .(0,1][4,)+∞12.已知函数2()(12)()f x x x ax b =+++(,)a b R ∈的图象关于点(1,0)对称,则()f x 在[1,1]-上的最大值为( )A.2 C..2第Ⅱ卷(共90分)二、填空题:本大题共4小题,每小题5分,共20分.13 已知实数x ,y 满足0010x y x y ≥⎧⎪≥⎨⎪+-≤⎩的最大值为 .14.在平行四边形ABCD 中,1AB =,2AD =,则AC BD ⋅= .15.已知圆M 与直线0x y -=及40x y -+=都相切,圆心在直线2y x =-+上,则圆M 的标准方程为 .16.已知()sin cos f x x xωω=-2()3ω>,若函数()f x 图象的任何一条对称轴与x 轴交点的横坐标都不属于区间(,2)ππ,则ω的取值范围是 .(结果用区间表示)三、解答题:本大题共6小题,共70分.17.已知数列{}n a 的前n 项和2352n n nS +=.(Ⅰ)求{}n a 的通项公式;(Ⅱ)设13n n n b a a +=,求数列{}n b 的前n 项和.18.在四棱锥S ABCD -中,底面ABCD 为矩形,平面SAB ⊥平面ABCD ,平面SAD ⊥平面ABCD ,且23SA AD AB ==.(Ⅰ)证明:SA ⊥平面ABCD ;(Ⅱ)若E 为SC 的中点,三棱锥E BCD -的体积为89,求四棱锥S ABCD -外接球的表面积.19.随着高校自主招生活动的持续开展,我市高中生掀起了参与数学兴趣小组的热潮.为调查我市高中生对数学学习的喜好程度,从甲、乙两所高中各随机抽取了40名学生,记录他们在一周内平均每天学习数学的时间,并将其分成了6个区间:(0,10]、(10,20]、(20,30]、(30,40]、(40,50]、(50,60],整理得到如下频率分布直方图:根据一周内平均每天学习数学的时间t ,将学生对于数学的喜好程度分为三个等级:(Ⅰ)试估计甲高中学生一周内平均每天学习数学的时间的中位数甲(精确到0.01);(Ⅱ)判断从甲、乙两所高中各自随机抽取的40名学生一周内平均每天学习数学的时间的平均值X 甲与X 乙及方差2S 甲与2S 乙的大小关系(只需写出结论),并计算其中的X 甲、2S 甲(同一组中的数据用该组区间的中点值作代表);(Ⅲ)从甲高中与乙高中随机抽取的80名同学中数学喜好程度为“痴迷”的学生中随机抽取2人,求选出的2人中甲高中与乙高中各有1人的概率.20.已知抛物线C :22(01)y px p =<<上的点(,1)P m 到其焦点F 的距离为54.(Ⅰ)求C 的方程;(Ⅱ)已知直线l 不过点P 且与C 相交于A ,B 两点,且直线PA 与直线PB 的斜率之积为1,证明:l 过定点.21.已知曲线2()1ln ()y f x x a x a R ==--∈与x 轴有唯一公共点A . (Ⅰ)求实数a 的取值范围;(Ⅱ)曲线()y f x =在点A 处的切线斜率为27a a --.若两个不相等的正实数1x ,2x满足12()()f x f x =,求证:121x x <.请考生在22、23题中任选一题作答,如果多做,则按所做的第一题记分.作答时请写清题号.22.选修4-4:坐标系与参数方程在直角坐标系xOy 中,曲线C 的参数方程为3cos 2sin x y θθ=⎧⎨=⎩(θ为参数),直线l 的参数方程为121x t y t a =-⎧⎨=--⎩(t 为参数).(Ⅰ)若1a =,求直线l 被曲线C 截得的线段的长度;(Ⅱ)若11a =,在曲线C 上求一点M ,使得点M 到直线l 的距离最小,并求出最小距离. 23.选修4-5:不等式选讲 已知函数()3f x x a=-.(Ⅰ)当4a =时,求不等式()3f x <的解集; (Ⅱ)设函数()1g x x =+.当x R ∈时,()()1f x g x +>恒成立,求实数a 的取值范围.2018届高三模拟考试 数学(文科)参考答案一、选择题1-5: ACBDA 6-10: BCBAD 11、12:AD二、填空题13. 2 14. 3 15. 22(2)2x y +-= 16. 37[,]48三、解答题17.(Ⅰ)解:114a S ==.当2n ≥时,1n n n a S S -=-22353(1)5(1)22n n n n +-+-=-.又14a =符合2n ≥时na 的形式,所以{}n a 的通项公式为31n a n =+.(Ⅱ)由(Ⅰ)知3(31)(34)n b n n =++113134n n =-++.数列{}n b 的前n 项和为121111()()47710n b b b ++⋅⋅⋅+=-+-1111()()32313134n n n n +⋅⋅⋅+-+--+++ 11434n =-+.18.(Ⅰ)证明:由底面ABCD 为矩形,得BC AB ⊥. 又平面SAB ⊥平面ABCD ,平面SAB 平面ABCD AB =,BC ⊂平面ABCD ,所以BC ⊥平面SAB .所以BC SA ⊥. 同理可得CD SA ⊥. 又BCCD C =,BC ⊂平面ABCD ,CD ⊂平面ABCD ,所以SA ⊥平面ABCD .(Ⅱ)解:设6SA a =,则2AB a =,3AD a =.13E BCD BCD V S h-∆=⨯⨯ 111()()322BC CD SA =⨯⨯⨯⨯311(23)(3)332a a a a =⨯⨯⨯⨯=. 又89E BCD V -=,所以3839a =.解得23a =.四棱锥S ABCD -的外接球是以AB 、AD 、AS 为棱的长方体的外接球,设半径为R .则2R =1473a ==,即73R =.所以,四棱锥S ABCD -的外接球的表面积为219649R ππ=.19. 解:(Ⅰ)由样本估计总体的思想,甲高中学生一周内平均每天学习数学的时间的中位数0.5(0.10.2)200.3m -+=+甲1026.67⨯≈; (Ⅱ)X X <甲乙;22S S >甲乙;50.1150.2250.3X =⨯+⨯+⨯甲350.2450.15550.0527.5+⨯+⨯+⨯=;221[(527.5)(400.1)40S =⨯-⨯⨯甲2(1527.5)(400.2)+-⨯⨯2(2527.5)(400.3)+-⨯⨯ 2(3527.5)(400.2)+-⨯⨯2(4527.5)(400.15)+-⨯⨯2(5527.5)(400.05)]+-⨯⨯178.75=.(Ⅲ)甲高中随机选取的40名学生中“痴迷”的学生有40(0.00510)2⨯⨯=人,记为1A ,2A ;乙高中随机选取的40名学生中“痴迷”的学生有40(0.01510)6⨯⨯=人,记为1B ,2B ,3B ,4B ,5B ,6B .随机选出2人有以下28种可能:12(,)A A ,11(,)A B ,12(,)A B ,13(,)A B ,14(,)A B ,15(,)A B ,16(,)A B , 21(,)A B ,22(,)A B ,23(,)A B ,24(,)A B ,25(,)A B ,26(,)A B ,12(,)B B ,13(,)B B ,14(,)B B ,15(,)B B ,16(,)B B ,23(,)B B ,24(,)B B ,25(,)B B , 26(,)B B ,34(,)B B ,35(,)B B ,36(,)B B ,45(,)B B ,46(,)B B ,56(,)B B ,甲、乙两所高中各有1人,有以下12种可能:11(,)A B ,12(,)A B ,13(,)A B ,14(,)A B ,15(,)A B ,16(,)A B , 21(,)A B ,22(,)A B ,23(,)A B ,24(,)A B ,25(,)A B ,26(,)A B .所以,从甲、乙两所高中数学喜好程度为“痴迷”的同学中随机选出2人,选出的2人中甲、乙两所高中各有1人的概率为123287=. 20.解:(Ⅰ)由题意,得21pm =,即12m p =.由抛物线的定义,得1()222p pPF m p =--=+. 由题意,15224p p +=.解得12p =,或2p =(舍去). 所以C 的方程为2y x =. (Ⅱ)证法一:设直线PA 的斜率为k (显然0k ≠),则直线PA 的方程为1(1)y k x -=-,则1y kx k =+-.由21y kx ky x =+-⎧⎨=⎩消去y 并整理得22[2(1)1]k x k k x +--2(1)0k +-=. 设11(,)A x y ,由韦达定理,得212(1)1k x k -⨯=,即212(1)k x k -=. 2112(1)11k y kx k k k k -=+-=⋅+-11k =-+.所以22(1)1(,1)k A k k --+. 由题意,直线PB 的斜率为1k .同理可得221(1)1(,1)11()k B k k --+,即22((1),1)B k k --.若直线l 的斜率不存在,则222(1)(1)k k k -=-.解得1k =,或1k =-.当1k =时,直线PA 与直线PB 的斜率均为1,A ,B 两点重合,与题意不符; 当1k =-时,直线PA 与直线PB 的斜率均为1-,A ,B 两点重合,与题意不符. 所以,直线l 的斜率必存在.直线l 的方程为2(1)(1)k y k k --=-2[(1)]x k --,即21(1)ky x k =--.所以直线l 过定点(0,1)-. 证法二:由(1),得(1,1)P . 若l 的斜率不存在,则l 与x 轴垂直. 设11(,)A x y ,则11(,)B x y -,211y x =.则11111111PA PBy y k k x x ---=⋅--211221111(1)(1)y x x x --==--111x =-.(110x -≠,否则,11x =,则(1,1)A ,或(1,1)B ,直线l 过点P ,与题设条件矛盾)由题意,1111x =-,所以10x =.这时A ,B 两点重合,与题意不符.所以l 的斜率必存在.设l 的斜率为k ,显然0k ≠,设l :y kx t =+, 由直线l 不过点(1,1)P ,所以1k t +≠.由2y xy kx t ⎧=⎨=+⎩消去y 并整理得222(21)0k x kt x t +-+=. 由判别式140kt ∆=->,得14kt <.设11(,)A x y ,22(,)B x y ,则12212ktx x k -+=①,2122t x x k =②, 则12121111PA PBy y k k x x --=⋅--12121111kx t kx t x x +-+-=⋅--2212121212(1)()(1)()1k x x k t x x t x x x x +-++-=-++.由题意,2212121212(1)()(1)1()1k x x k t x x t x x x x +-++-=-++.故212(1)(1)k x x kt k -+-+212()20x x t t ++-=③将①②代入③式并化简整理得2210t kt kk ---=,即210t kt k ---=.即(1)(1)(1)0t t k t +--+=,即(1)(1)0t t k +--=. 又1k t +≠,即10t k --≠,所以10t +=,即1t =-. 所以l :1y kx =-.显然l 过定点(0,1)-. 证法三:由(1),得(1,1)P .设l :x ny t =+,由直线l 不过点(1,1)P ,所以1n t +≠.由2y xx ny t ⎧=⎨=+⎩消去x 并整理得20y ny t --=.由题意,判别式240n t ∆=+>. 设11(,)A x y ,22(,)B x y ,则12y y n+=①,12y y t=-②则12121111PA PB y y k k x x --=⋅--1222121111y y y y --=⋅--12121()1y y y y =+++.由题意,1212()11y y y y +++=,即1212()0y y y y ++=③将①②代入③式得0t n -+=,即t n =. 所以l :(1)x n y =+.显然l 过定点(0,1)-.21.(Ⅰ)解:函数()f x 的定义域为(0,)+∞.(1)0f =. 由题意,函数()f x 有唯一零点1.'()2a f x x x =-.(1)若0a ≤,则0a -≥.显然'()0f x >恒成立,所以()f x 在(0,)+∞上是增函数. 又(1)0f =,所以0a ≤符合题意.(2)若0a >,22'()x af x x -=.'()0f x x >⇔>'()00f x x <⇔<<.所以()f x在上是减函数,在)+∞上是增函数.所以min ()f x f =1ln 222a a a =--.由题意,必有0f ≤(若0f >,则()0f x >恒成立,()f x 无零点,不符合题意)①若0f <,则1ln 0222a a a --<. 令()1ln (0)222a a a g a a =-->,则11'()ln 222a g a =-111ln 22222a a a -⨯⨯=-.'()002g a a >⇔<<;'()02g a a <⇔>.所以函数()g a 在(0,2)上是增函数,在(2,)+∞上是减函数.所以max ()(2)0g a g ==.所以()0g a ≤,当且仅当2a =时取等号.所以,00f a <⇔>,且2a ≠.取正数1}a b e -<,则2()1ln 1ln f b b a b a b =-->--11()0a a >--⨯-=;取正数1c a >+,显然c >>而2()1ln f c c a x =--, 令()ln h x x x =-,则1'()1h x x =-.当1x >时,显然1'()10h x x =-<.所以()h x 在[1,)+∞上是减函数.所以,当1x >时,()ln h x x x =-(1)10h <=-<,所以ln x x <.因为1c >,所以2()1ln f c c a c =--21()1c ac c c a >--=--110c >⨯->. 又()f x在上是减函数,在)+∞上是增函数,则由零点存在性定理,()f x在、)+∞上各有一个零点. 可见,02a <<,或2a >不符合题意.注:0a >时,若利用00lim ()x f x →+=+∞,0f <,lim ()x f x →+∞=+∞,说明()f x在、)+∞上各有一个零点.②若0f =1=,即2a =.符合题意.综上,实数a 的取值范围为{|0,2}a a a ≤=或.(Ⅱ)由题意,2'(1)27f a a a =-=--.所以29a =,即3a =±. 由(Ⅰ)的结论,得3a =-.2()13ln f x x x =-+,()f x 在(0,)+∞上是增函数.()001f x x <⇔<<;()01f x x >⇔>. 由12()()f x f x =,不妨设12x x <,则1201x x <<<. 从而有12()()f x f x -=,即221122(13ln )13ln x x x x --+=-+. 所以2212123ln 20x x x x ++-=121223ln 2x x x x >+-. 令()23ln 2p t t t =+-,显然()p t 在(0,)+∞上是增函数,且(1)0p =.所以()001p t t <⇔<<.从而由121223ln 20x x x x +-<,得121x x <.22.选修4-4:坐标系与参数方程解:(1)曲线C 的普通方程为22194x y +=.当1a =时,直线l 的普通方程为2y x =. 由222194y x x y =⎧⎪⎨+=⎪⎩.解得x y ⎧=⎪⎪⎨⎪=⎪⎩x y ⎧=⎪⎪⎨⎪=⎪⎩,直线l 被曲线C=.(2)解法一:11a =时,直线l 的普通方程为2100x y --=.由点到直线的距离公式,椭圆3cos 2sin x y θθ=⎧⎨=⎩上的点(3cos ,2sin )M θθ到直线l :2100x y --=的距离为d ===,其中0θ满足0cos θ=,0sin θ=由三角函数性质知,当00θθ+=时,d取最小值此时,03cos 3cos()θθ=-=,02sin 2sin()θθ=-=. 因此,当点M位于时,点M 到l的距离取最小值解法二:当11a =时,直线l 的普通方程为2100x y --=.设与l 平行,且与椭圆22194x y +=相切的直线m 的方程为20x y t -+=. 由2220194x y t x y -+=⎧⎪⎨+=⎪⎩消去y 并整理得2240369360x tx t ++-=. 由判别式22(36)440(936)0t t ∆=-⨯⨯-=,解得t =±所以,直线m的方程为20x y -+=,或20x y --=.要使两平行直线l 与m 间的距离最小,则直线m的方程为20x y --=. 这时,l 与m间的距离d==. 此时点M的坐标为方程组2220194x y x y ⎧--=⎪⎨+=⎪⎩的解105x y ⎧=⎪⎪⎨⎪=-⎪⎩.因此,当点M位于时,点M 到直线l的距离取最小值23.选修4-5:不等式选讲解:(1)当4a =时,()34f x x =-. 由343x -<,解得1733x <<. 所以,不等式()3f x <的解集为17{|}33x x <<. (2)()()31f x g x x a x +=-++3()13a x x =-++2133a a x x x =-+-++ 13a x x ≥-++(当且仅当3a x =时取等号) ()(1)3a x x ≥--+(当且仅当()(1)03a x x -+≤时取等号)13a =+. 综上,当3a x =时,()()f x g x +有最小值13a +. 故由题意得113a +>,解得6a <-,或0a >.所以,实数a 的取值范围为(,6)(0,)-∞-+∞.。
河南省焦作市沁阳中学2018年高三数学文测试题含解析
河南省焦作市沁阳中学2018年高三数学文测试题含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 已知的三边长成公差为的等差数列,且最大角的正弦值为,则这个三角形的周长是()A. B. C.D.参考答案:D2. 为得到函数的图象,可将函数的图象向左平移个单位长度,或向右平移个单位长度均为正数),则的最小值是()A. B. C. D.参考答案:3. 要得到函数y=sin(2x+)的图象,只需将y=cos(2x﹣)图象上的所有点()A.向左平行移动个单位长度B.向右平行移动个单位长度C.向左平行移动个单位长度D.向右平行移动个单位长度参考答案:D【考点】函数y=Asin(ωx+φ)的图象变换.【分析】先根据诱导公式将函数y=cos(2x﹣)化为正弦的形式,再根据左加右减的原则进行平移即可得到答案.【解答】解:y=cos(2x﹣)=sin(2x﹣+)=sin(2x+),y=sin(2x+)=sin[2(x﹣)+],∴要得到函数y=sin(2x+)的图象,只需将y=cos(2x﹣)图象上的所有点向右平行移动个单位长度,故选D.4. 已知为不重合的两个平面,直线那么“”是“”的A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件参考答案:A5. 如图1为某省2018年1~4月快递业务量统计图,图2是该省2018年1~4月快递业务收入统计图,下列对统计图理解错误的是A.2018年1~4月的业务量,3月最高,2月最低,差值接近2000万件B.2018年1~4月的业务量同比增长率均超过50%,在3月最高C.从两图来看,2018年1~4月中的同一个月的快递业务量与收入的同比增长率并不完全一致D.从1~4月来看,该省在2018年快递业务收入同比增长率逐月增长参考答案:D6. 函数f(x)=sin(ωx+φ)(x∈R,ω>0,|φ|<)的部分图象如图所示,则ω,φ的值分别是()A.2,﹣B.2,﹣ C.4,﹣ D.4,参考答案:A略7. 设实数x,y满足约束条件,则的最大值为()A.2 B. C. 5 D.6参考答案:D8. 已知集合,,则M∩(C R N)=()A.[0,2] B.[-2,0)C.[-2,0] D.(-∞,2]∪[4,+∞)参考答案:C,集合,,.9. 某交高三年级有男生500人,女生400人,为了解该年级学生的健康情况,从男生中任意抽取25人,从女生中任意抽取20人进行调查.这种抽样方法是(A)简单随机抽样法 (B)抽签法 (C)随机数表法 (D)分层抽样法参考答案:D 【解析】本小题主要考查抽样方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
沁阳市2018年高三一模考前训练题文科数学(二)说明:本试卷分为第I 卷(选择题)和第II 卷(非选择题)两部分.全卷满分150分,考试时间120分钟.第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1、已知全集U=R ,集合1{|1},{|0},()2U x M x x N x C M N x +=≥=≥=- 则 A 、(,2)-∞B 、(,2]-∞C 、(1,2]-D 、[1,2)-2.a 为正实数,i 为虚数单位,2=+iia ,则=aA B .2C .D .13.命题“042,2≤+-∈∀x x R x ”的否定为 A .042,2≥+-∈∀x x R x B .042,2>+-∈∃x x R x C .042,2≤+-∉∀x x R x D . 042,2>+-∉∃x x R x4.如右图所示的程序框图的输出值y ∈(1,2],则输入值x的取值范围为A .(-2log 3,-1]∪[1,3)B .(-1,-3log 2]∪[1,2)C .[-1,-3log 2)∪(1,2]D .[-2log 3,-1)∪(1,3]5.已知等比数列{m a }中,各项都是正数,且1a ,321,22a a 成等差数列,则91078a a a a +=+ A.1 B.1 C.3+ D.3-6.若函数f (x )、g (x )分别是R 上的奇函数、偶函数,且满足f (x )-g (x )=x e ,则有A .f (2)<f (3)<g (0)B .g (0)<f (3)<f (2)C .f (2)<g (0)<f (3)D .g (0)<f (2)<f (3)7.若一个底面是正三角形的三棱柱的正视图如图所示,其顶点都在一个球面上,则该球的 表面积为A .163π B .193πC .1912πD .43π8.在区间[,]22ππ-上随机取一个数,cos x x 的值介于于0到12之间的概率为A .13B .2πC .12D .239.已知 ABCD 的三个顶点为A (-1,2),B (3,4),C (4,-2),点(x ,y )在 ABCD 的内部,则z=2x-5y 的取值范围是 A .(-14,16) B.(-14,20) C.(-12,18) D.(-12,20) 10.已知函数f (x )=2x -2x ,g (x )=ax +2(a >0),若1x ∀∈[-1,2],2x ∃∈[-1,2],使得f (x 1)=g (x 2),则实数a 的取值范围是A .(0,12] B .[12,3] C .(0,3] D .[3,+∞)11.抛物线)0(22>=p px y 的焦点为F ,倾斜角为60o 的直线l 过点F 且与抛物线的一个交点为A ,||3AF =,则抛物线的方程为 A . 23y x =B . 292y x = C . 232y x =或292y x =D . 23y x =或29y x =12.已知函数24()2,()log ,()log x f x x g x x x h x x x =+=+=+的零点依次为a ,b ,c ,则( ) A .a b c <<B .c b a <<C .a c b <<D .b a c <<第Ⅱ卷本卷包括必考题和选考题两部分。
第13题~第21题为必考题,每个试题考生都必须做答。
第22题~第24题为选考题,考生根据要求做答。
二、填空题:本大题共4小题,每小题5分。
13.设曲线y =1x在点(1,1)处的切线与直线ax +y +1=0垂直,则a =_________14.已知sin (α+4π,则sin2α=____________.15.若平面向量α,β满足|α|=1,|β|≤1,且以向量α,β为邻边的平行四边形的面积为12,则α与β的夹角θ的取值范围是________16.函数f (x )=3x +b 2x +cx +d 在区间[-1,2]上是减函数,则b +c 的最大值为________.三、解答题:解答应写出文字说明,证明过程或演算步骤 17. 已知等比数列{}n a 的公比3q =,前3项和3133S =. (Ⅰ) 求数列{}n a 的通项公式;(Ⅱ) 若函数()sin(2)(0,0)f x A x A ϕϕπ=+><<在6x π=处取得最大值,且最大值为3a ,求函数()f x 的解析式.18.(本小题满分12分)某企业员工500人参加“学雷锋”志愿活动,按年龄分组:第1组[25,30),第2组[30,35),第3组[35,40),第4组[40,45),第5组[45,50],得到的频率分布直方图如右图所示.(1)上表是年龄的频数分布表,求正整数,a b 的值;(2)现在要从年龄较小的第1,2,3组中用分层抽样的方法抽取6人,年龄在第1,2,3组的人数分别是多少?(3)在(2)的前提下,从这6人中随机抽取2人参加社区宣传交流活动,求至少有1人年龄在第3组的概率.19.(本小题满分12分)四棱锥P -ABCD 中,,底面ABCD 为正方形,PD ⊥平面ABCD ,PD =AB =2,E ,F ,G 分别 为PC 、PD 、BC 的中点. (Ⅰ)求证:PA ∥面EFG ;(Ⅱ)求三棱锥P -EFG 的体积.20.已知椭圆C :2221x a b2y +=(a >b >0)的离心率为12,且过点P (1,32),F 为其右焦点. (Ⅰ)求椭圆C 的方程;(Ⅱ)设过点A (4,0)的直线l 与椭圆相交于M 、N 两点(点M在A ,N 两点之间),若△AMF 与△MFN 的面积相等,试求直线l 的方程.21.设函数f (x )=alnx +22ax -2x ,a ∈R .(Ⅰ)当a =1时,试求函数f (x )在区间[1,e]上的最大值; (Ⅱ)当a ≥0时,试求函数f (x )的单调区间.选考题(请考生在22,23,24三题中任选一题做答,如果多做,则按所做的第一题记分.做答时用2B 铅笔在答题卡把所选题目的题号涂黑)22.(本小题满分10分)选修4-1:几何证明选讲如图,AB 是⊙O 的直径, AC 是弦,∠BAC 的平分线AD 交⊙O 于D ,DE ⊥AC 交AC 延长线于点E ,OE 交AD 于 点F(1)求证:DE 是⊙O 的切线; (2)若AC AB =35,求AFDE的值. 23.(本小题满分10分)选修4—4:坐标系与参数方程已知极点与坐标原点重合,极轴与x 轴非负半轴重合,M 是曲线C :ρ=4sin θ上任意一点,点P 满足OP =3OM,设点P的轨迹为曲线Q .(Ⅰ)求曲线Q 的方程; (Ⅱ)设曲线Q 与直线l :x tt a⎧⎨⎩=-y =+(t 为参数)相交于A ,B 两点且|AB |=4,求实数a 的值.24.(本小题满分10分)选修4-5:不等式选讲 已知函数f (x )=|2x +1|+|2x -3| (1)求不等式f (x )≤6的解集;(2)若关于x 的不等式f (x )<|a -1|的解集非空,求实数a 的取值范围.沁阳市2018年高三一模考前训练题文科数学(二)答案一、选择题:BABDC DBABD DC 二、填空题13.-1 14. 59- 15. ⎣⎢⎡⎦⎥⎤π6,5π6 16. 152- 三、 解答题17.解:(Ⅰ)由3133,3q S ==得113a =,所以23n n a -=;---------5分 (Ⅱ)由(Ⅰ)得33a =,因为函数()f x 最大值为3,所以3A =,-----6分又当6x π=时函数()f x 取得最大值,所以sin()13πϕ+=, --------8分因为0ϕπ<<,故6πϕ=, -------10分所以函数()f x 的解析式为()3sin(2)6f x x π=+。
----------12分18.解:(1)由题设可知,0.085500200a =⨯⨯=,0.02550050b =⨯⨯=.------4分(2) 因为第1,2,3组共有50+50+200=300人,利用分层抽样在300名学生中抽取6名学生,每组抽取的人数分别为:第1组的人数为5061300⨯=,第2组的人数为5061300⨯=, 第3组的人数为20064300⨯=, 所以第1,2,3组分别抽取1人,1人,4人. ------7分(3)设第1组的1位同学为A ,第2组的1位同学为B ,第3组的4位同学为1234,,,C C C C ,则从六位同学中抽两位同学有:1234(,),(,),(,),(,),(,),A B A C A C A C A C 1234(,),(,),(,),(,),B C B C B C B C 12(,),C C13(,),C C 142324(,),(,),(,),C C C C C C 34(,),C C 共15种可能.其中2人年龄都不在第3组的有:(,),A B 共1种可能,所以至少有1人年龄在第3组的概率为11411515-=. ------12分。