TS824ILT-1.2中文资料

合集下载

Abb8241硅分析仪说明书

Abb8241硅分析仪说明书

6
2 安装…
7
…2 安装
2.7 继电器接点保护及干扰抑制-图2.6 如使用继电器来开/关负载,则继电器接点会由于电 弧放电而受到腐蚀。电弧还会产生射频干扰(RFI), 引起仪器故障及读数不准。为了减小RFI的影响, 需要电弧抑制元件;电阻/电容器电路用于交流应 用,而二极管用于直流应用。这些元件可以连接在 负载两端,或直接连接在继电器接点两端。
电压选择器 (115 或 230 伏)
主板
主输入(电源) 连接器块
注释 如需接近连接器块,首先松 开 10 个固定螺丝并取下 RF 屏。
连接器块 (见图 2.4 及 2.5)
重要注释 在使用本设备之前更 换并固定 RF 屏。
电源单元(P.S.U)
RF 屏 图 2.3 主输入连接器块及电压选择器的位置
目录
1 引言 1.1 简述 1.2 训练 1.3 主要部件的位置与功能
2 安装 2.1 附件 2.2 位置 2.3 安装 2.4 取样要求 2.5 样品连接 2.6 外部电气连接 2.7 继电器触点保护及干扰抑制
3 装配
4 液体处理部分 4.1 工作原理 4.2 一般操作 4.3 多流路操作 4.4 手动抓取样品设施 4.5 光学系统
注意 在进行连接之前,完全松开端子螺丝。
外部电气连接位于电子部分中,在铰链盖的后面, 位于RF屏的下方-见图2.3。电缆穿过监测器外壳右 侧上的电缆密封管,并如下连接: z 主输入(电源)-115 V(110 至 120 V)或 230
V (220 至 240 V)。用电压选择器来选择 主电压-见图2.3。 z 单流路-电流输出1及2-两个独立的电流输 出,用于外部记录或控制。 多流路-电流输出1至6-每个流路一个电流输 出。

国威WS824说明书

国威WS824说明书

点击此处可查找并下载到国威所有系列机器说明书最新WS824-10D在线说明书、在线查阅WS824-Q416说明书专用话机进入系统编程方法特别提示,不适合所有机型,内容仅供参考!在挂机(时间显示)状态下,连续按三次检查键,显示屏显示:输入系统密码(系统密码为7位,出厂时为1967590),密码输入正确后,显示屏显示:系统编程状态。

输入项目代码后可进行各分项设置,在光标处可以直接输入分项和相关内容的数字,按转接键可移动光标和转入下一分项。

本项目编程完成后,按保留键,保留内容并退出本项目,可继续进行其他项目编程,所有程序编程完成后,按清除键退出系统编程状态,恢复使用的时间显示状态。

普通话机系统编程进入方法:使用一部音频按键电话,摘机后输入#787+系统密码,密码输入正确后,重新听到拨号音,则进入系统编程。

输入不正确则听忙音。

说明书中*号在不同位置都有不同的意义,有时表示所有的意思,有时表示清除,有时表示空格和转入下一分项,在系统编程中对不同编程项都有具体说明。

系统编程内容及显示屏显示如下:项目(00):日期和时间设置上行显示:日期时间设置下行显示:年:97----年份,输入数字码,两位00--99,输完后按转接键转下一步:月:07----月份,输入数字码,两位0l--12,输完后按转接键转下一步:日:01----日,输入数字码,两位01--31,输完后按转接键转下一步:星期:0一星期,输入数字0-6,0表示星期天,1-6表示星期一至六,输完后按转接键转下一步:小时:00-小时,采用12小时制,输入数字码,两位01--12,输完后按转接键转下一步:分钟:00--分钟,输入数字码,两位00-59,输完后按转接键转下一步:上小午:0--上下午,输入数字码,0表示上午,1表示下午,输完后按转接键又转回年份输入:输入正确后按保留键(即把输入的日期和时间存储),退回到输入项目代码状态。

普通话机编程:输入项目代码00后,听到一声提示音,表示进入项目编程。

TS821中文资料

TS821中文资料

1/71.225V MICROPOWER VOLTAGE REFERENCE.1.225V TYP OUTPUT VOLTAGE.ULTRA LOW OPERATING CURRENT :40µA typ..HIGH PRECISION @25oC +/-2%(Standard version)+/-1%(A grade)+/-0.5%(B grade).HIGH STABILITY WHEN USED WITH CAPACITIVE LOADS.WIDE TEMPERATURE RANGE :-40to +85oC .T092&SOT23-3PACKAGES®DESCRIPTIONTheTS821is a micropowerintegrated circuit which is a high stability,two terminals,band gap refer-ence providing a stable output voltage over the in-dustrial temperature range (-40to +85o C).The minimum operating current is guaranteed at 50µA over the full operating temperature range.APPLICATIONS.Computers.Instrumentation .Battery chargers.Switch Mode Power Supply .Battery operated equipementsTS821Z TO92(Plastic Package)L SOT-23L(Plastic Micropackage)ORDER CODESPrecisionTO92SOT23-3SOT23Marking 2%TS821IZ TS821ILT L2131%TS821AIZ TS821AILT L2120.5%TS821BIZTS821BILTL211Single temperature range :-40to +85oCPIN CONNECTIONS (top view)May 2000NC Anod e123Ca thod e TO92123*AnodeCathodeSOT23-3*This pin must be left floa ting or connecte d to pin 22/7TS821ABSOLUTE MAXIMUM RATINGSSymbolParameterValue Unit I k Reverse Breakdown Current 20mA I f Forward Current 10mA P d Power DissipationSOT23-3TO92360625mWT oper Operating Free Air Temperature Range -40to +85o C T stgStorage Temperature-65to +150oCOPERATING CONDITIONSSymbol ParameterValue Unit I rmin Minimum Operating Current 45µA I rmaxMaximum Operating Current12mAELECTRICAL CHARACTERISTICS TS821(2%Precision)T amb =25oC (unless otherwise specified)Symbol ParameterTest ConditionMin.Typ.Max.Unit V kReverse Breakdown Voltage I k =100µA @T amb =25o C 1.200 1.2251.250V Reverse Breakdown Voltage ToleranceI k =100µA @T amb =25o C -40o C <T amb <+85oC -25-36+25+36mV I kmin Minimum Operating Current T amb =25oC4045µA -40o C <T amb <+85o C 50µA ∆V ref /∆T Average Temperature Coeffi-cientI K =100µA150ppm/o C ∆V k /∆I kReverse Breakdown Voltage Change with Operating Current ChangeI kmin <I k <1mA @T amb =25o C -40o C <T amb <+85o C0.30.71mV 1mA <I k <12mA @T amb =25o C -40oC <T amb <+85oC 2.557mV R ka Static Impedance ∆I k =45µA to 1mA 0.250.5ΩK vh Long Term Stability I K =100µA,t =1000hrs T amb =25o C 120ppm enWideband NoiseI K =100µA10Hz <f <10kHz200nV HzNote :P d has been calculated with T amb =25oC and T j =125oC and R thja =200oC/W for TO92package R thja =340o C/W for SOT23packageTS8213/7ELECTRICAL CHARACTERISTICS TS821B (0.5%Precision)T amb =25oC (unless otherwise specified)Symbol ParameterTest ConditionMin.Typ.Max.Unit V kReverse Breakdown Voltage I k =100µA @T amb =25o C 1.219 1.2251.231V Reverse Breakdown Voltage ToleranceI k =100µA @T amb =25oC -40o C <T amb <+85o C -6-14+6+14mV I kminMinimum Operating CurrentT amb =25o C4045µA -40oC <T amb <+85oC50µA ∆Vref/∆T Average Temperature Coeffi-cient I K =100µA120ppm/o C ∆V k /∆I kReverse Breakdown Voltage Change with Operating Current ChangeI kmin <I k <1mA @T amb =25o C -40o C <T amb <+85o C0.30.71mV 1mA <I k <12mA @T amb =25oC -40o C <T amb <+85o C 2.557mV R ka Static Impedance ∆I k =45µA to 1mA 0.250.5ΩK vh Long Term Stability I K =100µA,t =1000hrs T amb =25o C 120ppm enWideband NoiseI K =100µA10Hz <f <10kHz200nV/HzELECTRICAL CHARACTERISTICS TS821A (1%Precision)T amb =25oC (unless otherwise specified)Symbol ParameterTest ConditionMin.Typ.Max.Unit V kReverse Breakdown Voltage I k =100µA @T amb =25o C 1.213 1.2251.237V Reverse Breakdown Voltage ToleranceI k =100µA @T amb =25o C -40o C <T amb <+85o C -12-24+12+24mV I kmin Minimum Operating Current T amb =25o C4045µA -40o C <T amb <+85o C 50µA ∆V ref /∆T Average Temperature Coeffi-cientI K =100µA150ppm/o C ∆V k /∆I kReverse Breakdown Voltage Change with Operating Current ChangeI kmin <I k <1mA @T amb =25oC -40o C <T amb <+85o C0.30.71mV 1mA <I k <12mA @T amb =25o C -40o C <T amb <+85o C 2.557mV R ka Static Impedance ∆I k =45µA to 1mA 0.250.5ΩK vh Long Term Stability I K =100µΑ,t =1000hrs T amb =25o C 120ppm/kHr enWideband NoiseI K =100µA10Hz <f <10kHz200nV/HzTS8214/7Reference Voltage versus Cathode CurrentReference Voltage versus Cathode CurrentReference Voltage versus TemperatureTest Circuit Dynamic Impedance versus Temperature Noise Voltage versus FrequencyTS8215/7Pulse Response for Ik =100m ATest Circuit for Pulse Response at Ik =100m ATest Circuit for Pulse Response at Ik =1mAPulse Response for Ik =1mATS8216/7PACKAGE MECHANICAL DATA 3PINS -PLASTIC PACKAGE TO92limetersInches Min.Typ.Max.Min.Typ.Max.L 1.270.05B 3.2 3.7 4.20.1260.14570.1654O1 4.45 5.00 5.20.17520.19690.2047C 4.58 5.035.330.18030.1980.2098K 12.70.5O20.4070.50.5080.0160.01970.02a0.350.0138TS8217/7Information furnished is believed to be accurate and reliable.However,STMicroelectronics assumes no responsibility for the conse-quences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use.No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics.Specifications mentioned in this publication are subject to change without notice.This publication supersedes and replaces all information previously sup-plied.STMicroelectronics products are not authorized for use as critical components in life support devices or systems without ex-press written approval of STMicroelectronics.©The ST logo is a trademark of STMicroelectronics©2000STMicroelectronics –Printed in Italy –All Rights ReservedSTMicroelectronics GROUP OF COMPANIESAustralia -Brazil -China -Finland -France -Germany -Hong Kong -India -Italy -Japan -Malaysia -Malta -MoroccoSingapore -Spain -Sweden -Switzerland -United Kingdom -U.S.A.©PACKAGE MECHANICAL DATA 3PINS -TINY PACKAGE (SOT23)limetersInches Min.Typ.Max.Min.Typ.Max.A 0.890 1.1200.0350.044A10.0100.1000.00040.004A20.8800.950 1.0200.0370.040b 0.3000.5000.0120.020c 0.0800.2000.0030.008D 2.800 2.900 3.0400.1100.1140.120E 2.100 2.6400.0830.104E1 1.2001.300 1.4000.0470.0510.055e 0.9500.037e1 1.9000.075L 0.4000.5000.6000.0160.0200.024L10.5400.021k0°8°。

KB824中文资料

KB824中文资料
e
Operating temperature Storage temperature
*2
Soldering temperature
*1 *2
40 to 60%RH, AC for 1 minute For 10 seconds
SPEC NO: DSAD1534 APPROVED: J. Lu
3.5 [0.138] 2.7 [0.106]
1
2
3
4
3.[0.118] 0.4[0.015]MIN.
7.62 [0.3] 0.3
9.66 [0.38]
7[0.276]
θ
θ 0.25 [0.01] 0.1
0.5 [0.02] 0.1
= 0 to 13
°
1, 3 . Anode,Cathode 5, 7. Emitter
2.Cautions regarding noise
Be aware that power is suddenly into the component any surge current may cause damage happen, even if the voltage is within the absolute maximum ratings.
元器件交易网
PHOTOCOUPLER
KB824
Fig. 11 Collector-emitter Saturation Voltage vs. Forward Current
* NOTES ON HANDLING 1.Recommended soldering conditions (Dip soldering) (1) Dip soldering
Rosin flux containing small amount of chlorine (The flux with a maximum chlorine content of 0.2 Wt % is recommended.)

S-8241ACLMC-GCL-T2中文资料

S-8241ACLMC-GCL-T2中文资料
The overdischarge hysterisis is released when a charger is detected. Charger detection circuit Overcurrent 1 detection comparator
RVMD + − RVMS VM
+ − Overcurrent 2 detection comparator
Features
(1) Internal high-accuracy voltage detection circuit • Overcharge detection voltage: 3.9 V to 4.4 V (5 mV-step) Accuracy of ± 25 mV(+25°C) and ± 30 mV(−5°C to +55°C) *1 • Overcharge release voltage 3.8 V to 4.4 V Accuracy of ±50 mV
*2. Overdischarge release voltage = Overdischarge detection voltage + Overdischarge hysteresis The overdischarge hysteresis can be selected in the range 0.0 to 0.7 V in 100mV steps. (However, selection "Overdischarge release voltage>3.4 V" is enabled.)
Overcharge release voltage [VCL] 4.075 V 3.980 V 4.100 V 4.175 V 4.095 V 4.075 V 4.100 V 4.125 V 4.080 V 4.075 V 4.070 V 4.050V 4.15V 4.15V 4.080V 4.150V 4.100V 4.100V 4.095V 4.080V 4.000V 4.220 V 4.075 V 4.080 V 4.100 V 4.075 V 4.095 V 4.095 V 4.095 V 4.080 V 4.150 V 4.100V 4.150V 4.200V 4.150V

LMV824中文资料

LMV824中文资料

LMV821Single/LMV822Dual/LMV824QuadLow Voltage,Low Power,R-to-R Output,5MHz Op AmpsGeneral DescriptionThe LMV821/LMV822/LMV824bring performance and economy to low voltage /low power systems.With a 5MHz unity-gain frequency and a guaranteed 1.4V/µs slew rate,the quiescent current is only 220µA/amplifier (2.7V).They provide rail-to-rail (R-to-R)output swing into heavy loads (600ΩGuarantees).The input common-mode voltage range includes ground,and the maximum input offset voltage is 3.5mV (Guaranteed).They are also capable of comfortably driving large capacitive loads (refer to the application notes section).The LMV821(single)is available in the ultra tiny SC70-5package,which is about half the size of the previous title holder,the SOT23-5.Overall,the LMV821/LMV822/LMV824(Single/Dual/Quad)are low voltage,low power,performance op amps,that can be designed into a wide range of applications,at an eco-nomical price.Features(For Typical,5V Supply Values;Unless Otherwise Noted)n Ultra Tiny,SC70-5Package 2.0x 2.0x 1.0mmn Guaranteed 2.5V,2.7V and 5V Performance n Maximum VOS 3.5mV (Guaranteed)n VOS Temp.Drift 1uV/˚C n GBW product @2.7V 5MHz n I Supply @2.7V 220µA/Amplifier n Minimum SR 1.4V/us (Guaranteed)n CMRR 90dB n PSRR 85dB nRail-to-Rail (R-to-R)Output Swing —@600ΩLoad 160mV from rail —@10k ΩLoad 55mV from rail n V CM @5V -0.3V to 4.3V n Stable with High Capacitive Loads (Refer to Application Section)Applicationsn Cordless Phones n Cellular Phones n Laptops n PDAs nPCMCIAConnection Diagrams5-Pin SC70-5/SOT23-5DS100128-84Top View 8-Pin SO/MSOPDS100128-63Top View14-Pin SO/TSSOPAugust 1999LMV821Single/LMV822Dual/LMV824Quad Low Voltage,Low Power,RRO,5MHz Op Amps©1999National Semiconductor Corporation Ordering InformationPackage Temperature RangePackaging Marking Transport Media NSC Drawing Industrial−40˚C to+85˚C5-Pin SC-70-5LMV821M7A151k Units Tape and Reel MAA05LMV821M7X A153k Units Tape and Reel5-Pin SOT23-5LMV821M5A141k UnitsTape and Reel MA05BLMV821M5X A143k Units Tape and Reel8-Pin SO LMV822M LMV822M Rails M08ALMV822MX LMV822M 2.5k Units Tape andReel8-Pin MSOP LMV822MM LMV8221k Units Tape and Reel MUA08ALMV822MMX LMV822 3.5k Units Tape andReel14-Pin SO LMV824M LMV824M Rails M14ALMV824MX LMV824M 2.5k Units Tape andReel14-Pin TSSOP LMV824MT LMV824MT Rails MTC14LMV824MTX LMV824MT 2.5k Units Tape andReel2Absolute Maximum Ratings(Note1)If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.ESD Tolerance(Note2)Machine Model100V Human Body ModelLMV822/8242000V LMV8211500V Differential Input Voltage±Supply Voltage Supply Voltage(V+–V−) 5.5V Output Short Circuit to V+(Note3)Output Short Circuit to V−(Note3)Soldering InformationInfrared or Convection(20sec)235˚C Storage Temperature Range−65˚C to150˚C Junction Temperature(Note4)150˚C Operating Ratings(Note1)Supply Voltage 2.5V to5.5V Temperature RangeLMV821,LMV822,LMV824−40˚C≤T J≤85˚C Thermal Resistance(θJA)Ultra Tiny SC70-5Package5-Pin Surface Mount440˚C/WTiny SOT23-5Package5-PinSurface Mount265˚C/WSO Package,8-Pin SurfaceMount190˚C/W MSOP Package,8-Pin MiniSurface Mount235˚C/W SO Package,14-Pin SurfaceMount145˚C/W TSSOP Package,14-Pin155˚C/W2.7V DC Electrical CharacteristicsUnless otherwise specified,all limits guaranteed for T J=25˚C.V+=2.7V,V−=0V,V CM=1.0V,V O=1.35V and R L>1MΩ. Boldface limits apply at the temperature extremes.Symbol Parameter ConditionTyp(Note5)LMV821/822/824Limit(Note6)UnitsV OS Input Offset Voltage1 3.5mV4max TCV OS Input Offset Voltage AverageDrift1µV/˚C I B Input Bias Current3090nA140max I OS Input Offset Current0.530nA50max CMRR Common Mode Rejection Ratio0V≤V CM≤1.7V8570dB68min+PSRR Positive Power SupplyRejection Ratio 1.7V≤V+≤4V,V-=1V,V O=0V,V CM=0V8575dB70min−PSRR Negative Power SupplyRejection Ratio -1.0V≤V-≤-3.3V,V+=1.7V,V O=0V,V CM=0V8573dB70minV CM Input Common-Mode VoltageRange For CMRR≥50dB-0.3-0.2Vmax2.0 1.9VminA V Large Signal Voltage Gain Sourcing,R L=600Ωto1.35V,V O=1.35V to2.2V 10090dB85minSinking,R L=600Ωto1.35V, V O=1.35V to0.5V 9085dB80minSourcing,R L=2kΩto1.35V, V O=1.35V to2.2V 10095dB90minSinking,R L=2kΩto1.35, V O=1.35to0.5V 9590dB85min32.7V DC Electrical Characteristics(Continued)Unless otherwise specified,all limits guaranteed for T J=25˚C.V+=2.7V,V−=0V,V CM=1.0V,V O=1.35V and R L>1MΩ. Boldface limits apply at the temperature extremes.Symbol Parameter ConditionTyp(Note5)LMV821/822/824Limit(Note6)UnitsV O Output Swing V+=2.7V,R L=600Ωto1.35V 2.58 2.50V2.40min0.130.20V0.30maxV+=2.7V,R L=2kΩto1.35V 2.66 2.60V2.50min0.080.120V0.200maxI O Output Current Sourcing,V O=0V1612mAminSinking,V O=2.7V2612mAminI S Supply Current LMV821(Single)0.220.3mA0.5maxLMV822(Dual)0.450.6mA0.8maxLMV824(Quad)0.72 1.0mA1.2max2.5V DC Electrical CharacteristicsUnless otherwise specified,all limits guaranteed for T J=25˚C.V+=2.5V,V−=0V,V CM=1.0V,V O=1.25V and R L>1MΩ. Boldface limits apply at the temperature extremes.Symbol Parameter ConditionTyp(Note5)LMV821/822/824Limit(Note6)UnitsV OS Input Offset Voltage1 3.5mV4max V O Output Swing V+=2.5V,R L=600Ωto1.25V 2.37 2.30V2.20min0.130.20V0.30maxV+=2.5V,R L=2kΩto1.25V 2.46 2.40V2.30min0.080.12V0.20max 2.7V AC Electrical CharacteristicsUnless otherwise specified,all limits guaranteed for T J=25˚C.V+=2.7V,V−=0V,V CM=1.0V,V O=1.35V and R L>1MΩ. Boldface limits apply at the temperature extremes.Symbol Parameter ConditionsTyp(Note5)LMV821/822/824Limit(Note6)UnitsSR Slew Rate(Note7) 1.5V/µs GBW Gain-Bandwdth Product5MHz Φm Phase Margin61Deg.G m Gain Margin10dBAmp-to-Amp Isolation(Note8)135dB enInput-Related Voltage Noise f=1kHz,V CM=1V2842.7V AC Electrical Characteristics(Continued)Unless otherwise specified,all limits guaranteed for T J =25˚C.V +=2.7V,V −=0V,V CM =1.0V,V O =1.35V and R L>1M Ω.Boldface limits apply at the temperature extremes.Symbol ParameterConditionsTyp (Note 5)LMV821/822/824Limit(Note 6)Unitsin Input-Referred Current Noise f =1kHz0.1THDTotal Harmonic Distortionf =1kHz,A V =−2,R L =10k Ω,V O =4.1V PP0.01%5V DC Electrical CharacteristicsUnless otherwise specified,all limits guaranteed for T J =25˚C.V +=5V,V −=0V,V CM =2.0V,V O =2.5V and RL>1M Ω.Boldface limits apply at the temperature extremes.Symbol ParameterConditionTyp (Note 5)LMV821/822/824Limit (Note 6)Units V OS Input Offset Voltage1 3.5mV 4.0max TCV OS Input Offset Voltage Average Drift1µV/˚C I B Input Bias Current 40100nA 150max I OS Input Offset Current0.530nA 50max CMRR Common Mode Rejection Ratio 0V ≤V CM ≤4.0V9072dB 70min +PSRR Positive Power Supply Rejection Ratio 1.7V ≤V +≤4V,V -=1V,V O =0V,V CM =0V8575dB 70min −PSRR Negative Power Supply Rejection Ratio-1.0V ≤V -≤-3.3V,V +=1.7V,V O =0V,V CM =0V 8573dB 70min V CMInput Common-Mode Voltage RangeFor CMRR ≥50dB-0.3-0.2V max 4.34.2V min A V Large Signal Voltage GainSourcing,R L =600Ωto 2.5V,V O =2.5to 4.5V10595dB 90min Sinking,R L =600Ωto 2.5V,V O =2.5to 0.5V10595dB 90min Sourcing,R L =2k Ωto 2.5V,V O =2.5to 4.5V 10595dB 90min Sinking,R L =2k Ωto 2.5,V O =2.5to 0.5V10595dB 90min V O Output Swing V +=5V,R L =600Ωto 2.5V4.84 4.75V 4.70min 0.170.250V .30max V +=5V,R L =2k Ωto 2.5V4.904.85V 4.80min 0.100.15V 0.20max55V DC Electrical Characteristics(Continued)Unless otherwise specified,all limits guaranteed for T J=25˚C.V+=5V,V−=0V,V CM=2.0V,V O=2.5V and R L>1MΩ. Boldface limits apply at the temperature extremes.Symbol Parameter ConditionTyp(Note5)LMV821/822/824Limit(Note6)UnitsI O Output Current Sourcing,V O=0V4520mA15minSinking,V O=5V4020mA15minI S Supply Current LMV821(Single)0.300.4mA0.6maxLMV822(Dual)0.50.7mA0.9maxLMV824(Quad) 1.0 1.3mA1.5max 5V AC Electrical CharacteristicsUnless otherwise specified,all limits guaranteed for T J=25˚C.V+=5V,V−=0V,V CM=2V,V O=2.5V and R L>1MΩ. Boldface limits apply at the temperature extremes.Symbol Parameter ConditionsTyp(Note5)LMV821/822/824Limit(Note6)UnitsSR Slew Rate(Note7) 2.0 1.4V/µsmin GBW Gain-Bandwdth Product 5.6MHz Φm Phase Margin67Deg.G m Gain Margin15dBAmp-to-Amp Isolation(Note8)135dB enInput-Related Voltage Noise f=1kHz,V CM=1V24inInput-Referred Current Noise f=1kHz0.25THD Total Harmonic Distortion f=1kHz,A V=−2,R L=10kΩ,V O=4.1V PP0.01%Note1:Absolute Maximum Ratings indicate limits beyond which damage to the device may occur.Operating Ratings indicate conditions for which the device is in-tended to be functional,but specific performance is not guaranteed.For guaranteed specifications and the test conditions,see the Electrical Characteristics.Note2:Human body model,1.5kΩin series wth100pF.Machine model,200Ωin series with100pF.Note3:Applies to both single-supply and split-supply operation.Continuous short circuit operation at elevated ambient temperature can result in exceeding the maximum allowed junction temperature of150˚C.Output currents in excess of45mA over long term may adversely affect reliability.Note4:The maximum power dissipation is a function of T J(max),θJA,and T A.The maximum allowable power dissipation at any ambient temperature is P D=(TJ-(max)–T A)/θJA.All numbers apply for packages soldered directly into a PC board.Note5:Typical Values represent the most likely parametric norm.Note6:All limits are guaranteed by testing or statistical analysis.Note7:V+=5V.Connected as voltage follower with3V step input.Number specified is the slower of the positive and negative slew rates.Note8:Input referred,V+=5V and R L=100kΩconnected to2.5V.Each amp excited in turn with1kHz to produce V O=3V PP.65V AC Electrical Characteristics(Continued)Typical Performance Characteristics Unless otherwise specified,VS=+5V,single supply,T A=25˚C.Supply Current vs Supply Voltage (LMV821)DS100128-1Input Current vs TemperatureDS100128-2Sourcing Current vs OutputVoltage(V S=2.7V)DS100128-3Sourcing Current vs Output Voltage(V S=5V)DS100128-4Sinking Current vs Output Voltage(V S=2.7V)DS100128-5Sinking Current vs Output Voltage(V S=5V)DS100128-6Output Voltage Swing vs Supply Voltage(R L=10kΩ)DS100128-7Output Voltage Swing vs SupplyVoltage(R L=2kΩ)DS100128-86Output Voltage Swing vs SupplyVoltage(R L=600Ω)DS100128-8 7Typical Performance CharacteristicsUnless otherwise specified,V S =+5V,single supply,T A =25˚C.(Continued)Output Voltage Swing vs Load ResistanceDS100128-87Input Voltage Noise vs Frequency DS100128-18Input Current Noise vs FrequencyDS100128-17Crosstalk Rejection vs Frequency DS100128-93+PSRR vs Frequency DS100128-9-PSRR vs FrequencyDS100128-10CMRR vs Frequency DS100128-47Input Voltage vs Output VoltageDS100128-88Gain and Phase Margin vsFrequency (R L =100k Ω,2k Ω,600Ω)2.7VDS100128-11 8Typical Performance CharacteristicsUnless otherwise specified,V S =+5V,single supply,T A =25˚C.(Continued)Gain and Phase Margin vsFrequency (R L =100k Ω,2k Ω,600Ω)5VDS100128-12Gain and Phase Margin vsFrequency (Temp.=25,-40,85˚C,R L =10k Ω)2.7VDS100128-13Gain and Phase Margin vsFrequency (Temp.=25,-40,85˚C,R L =10k Ω)5VDS100128-14Gain and Phase Margin vsFrequency (C L =100pF,200pF,0pF,R L =10k Ω)2.7VDS100128-15Gain and Phase Margin vsFrequency (C L =100pF,200pF,0pF R L =10k Ω)5VDS100128-16Gain and Phase Margin vsFrequency (C L =100pF,200pF,0pF R L =600Ω)2.7VDS100128-19Gain and Phase Margin vsFrequency (C L =100pF,200pF,0pF R L =600Ω)5VDS100128-20Slew Rate vs Supply VoltageDS100128-62Non-Inverting Large Signal Pulse ResponseDS100128-219Typical Performance CharacteristicsUnless otherwise specified,V S =+5V,single supply,T A =25˚C.(Continued)Non-Inverting Small Signal Pulse ResponseDS100128-24Inverting Large Signal Pulse ResponseDS100128-27Inverting Small Signal Pulse ResponseDS100128-30THD vs FrequencyDS100128-82 10APPLICATION NOTEThis application note is divided into two sections:design considerations and Application Circuits.1.0Design ConsiderationsThis section covers the following design considerations:1.Frequency and Phase Response Considerations2.Unity-Gain Pulse Response Considerations3.Input Bias Current Considerations1.1Frequency and Phase Response Considerations The relationship between open-loop frequency response and open-loop phase response determines the closed-loop stability performance(negative feedback).The open-loop phase response causes the feedback signal to shift towards becoming positive feedback,thus becoming unstable.The further the output phase angle is from the input phase angle,the more stable the negative feedback will operate.Phase Margin(φm)specifies this output-to-input phase relationship at the unity-gain crossover point.Zero degrees of phase-margin means that the input and output are completely in phase with each other and will sustain oscillation at the unity-gain frequency.The AC tables showφm for a no load condition.Butφm changes with load.The Gain and Phase margin vs Fre-quency plots in the curve section can be used to graphically determine theφm for various loaded conditions.To do this, examine the phase angle portion of the plot,find the phase margin point at the unity-gain frequency,and determine how far this point is from zero degree of phase-margin.The larger the phase-margin,the more stable the circuit operation. The bandwidth is also affected by load.The graphs of Figure 1and Figure2provide a quick look at how various loads af-fect theφm and the bandwidth of the LMV821/822/824family. These graphs show capacitive loads reducing bothφm and bandwidth,while resistive loads reduce the bandwidth but in-crease theφm.Notice how a600Ωresistor can be added in parallel with220picofarads capacitance,to increase theφm 20˚(approx.),but at the price of about a100kHz of band-width.Overall,the LMV821/822/824family provides good stability for loaded condition.1.2Unity Gain Pulse Response ConsiderationsA pull-up resistor is well suited for increasing unity-gain, pulse response stability.For example,a600Ωpull-up resis-tor reduces the overshoot voltage by about50%,when driv-ing a220pF load.Figure3shows how to implement the pull-up resistor for more pulse response stability.Higher capacitances can be driven by decreasing the value of the pull-up resistor,but its value shouldn’t be reduced be-yond the sinking capability of the part.An alternate approach is to use an isolation resistor as illustrated in Figure4. Figure5shows the resulting pulse response from a LMV824, while driving a10,000pF load through a20Ωisolation resistor.DS100128-60FIGURE1.Phase Margin vs Common Mode Voltage forVarious LoadsDS100128-61FIGURE2.Unity-Gain Frequency vs Common ModeVoltage for Various LoadsDS100128-41ing a Pull-up Resistor at the Output forStabilizing Capacitive LoadsDS100128-43 ing an Isolation Resistor to Drive HeavyCapacitive Loads 111.3Input Bias Current ConsiderationInput bias current (I B )can develop a somewhat significant offset voltage.This offset is primarily due to I B flowing through the negative feedback resistor,R F .For example,if I B is 90nA (max room)and R F is 100k Ω,then an offset of 9mV will be developed (V OS =I B x R F ).Using a compensation resis-tor (R C ),as shown in Figure 6,cancels out this affect.But the input offset current (I OS )will still contribute to an offset volt-age in the same manner -typically 0.05mV at room temp.2.0APPLICATION CIRCUITSThis section covers the following application circuits:1.Telephone-Line Transceiver2.“Simple”Mixer (Amplitude Modulator)3.Dual Amplifier Active Filters (DAAFs)•a.Low-Pass Filter (LPF)•b.High-Pass Filter (HPF)5.Tri-level Voltage Detector2.1Telephone-Line TransceiverThe telephone-line transceiver of Figure 7provides a full-duplexed connection through a PCMCIA,miniature trans-former.The differential configuration of receiver portion (UR),cancels reception from the transmitter portion (UT).Note that the input signals for the differential configuration of UR,are the transmit voltage (Vt)and Vt/2.This is because R match is chosen to match the coupled telephone-line imped-ance;therefore dividing Vt by two (assuming R1>>R match ).The differential configuration of UR has its resistors chosen to cancel the Vt and Vt/2inputs according to the following equation:Note that Cr is included for canceling out the inadequacies of the lossy,miniature transformer.Refer to application note AN-397for detailed explanation.2.2“Simple”Mixer (Amplitude Modulator)The mixer of Figure 8is simple and provides a unique form of amplitude modulation.Vi is the modulation frequency (F M ),while a +3V square-wave at the gate of Q1,induces a carrier frequency (F C ).Q1switches (toggles)U1between in-verting and non-inverting unity gain configurations.Offset-ting a sine wave above ground at Vi results in the oscillo-scope photo of Figure 9.The simple mixer can be applied to applications that utilize the Doppler Effect to measure the velocity of an object.The difference frequency is one of its output frequency compo-nents.This difference frequency magnitude (/F M -F C /)is the key factor for determining an object’s velocity per the Dop-pler Effect.If a signal is transmitted to a moving object,the reflected frequency will be a different frequency.This differ-ence in transmit and receive frequency is directly propor-tional to an object’s velocity.DS100128-54FIGURE 5.Pulse Response per Figure 4DS100128-59FIGURE 6.Canceling the Voltage Offset Effect of InputBias Current DS100128-33FIGURE 7.Telephone-line Transceiver for a PCMCIAModem Card 122.4Dual Amplifier Active Filters(DAAFs)The LMV822/24bring economy and performance to DAAFs.The low-pass and the high-pass filters of Figure10and Fig-ure11(respectively),offer one key feature:excellent sensi-tivity performance.Good sensitivity is when deviations incomponent values cause relatively small deviations in a fil-ter’s parameter such as cutoff frequency(Fc).Single ampli-fier active filters like the Sallen-Key provide relatively poorsensitivity performance that sometimes cause problems forhigh production runs;their parameters are much more likelyto deviate out of specification than a DAAF would.TheDAAFs of Figure10and Figure11are well suited for highvolume production.Table1provides sensitivity measurements for a10MΩloadcondition.The left column shows the passive componentsfor the3kHz low-pass DAAF.The third column shows thecomponents for the300Hz high-pass DAAF.Their respec-tive sensitivity measurements are shown to the right of eachcomponent column.Their values consists of the percentchange in cutoff frequency(Fc)divided by the percentchange in component value.The lower the sensitivity value,the better the performance.Each resistor value was changed by about10percent,andthis measured change was divided into the measuredchange in Fc.A positive or negative sign in front of the mea-sured value,represents the direction Fc changes relative tocomponents’direction of change.For example,a sensitivityvalue of negative1.2,means that for a1percent increase incomponent value,Fc decreases by1.2percent.Note that this information provides insight on how to finetune the cutoff frequency,if necessary.It should be alsonoted that R4and R5of each circuit also caused variations inDS100128-39FIGURE8.Amplitude Modulator CircuitffmodcarrierDS100128-40FIGURE9.Output signal per the Circuit of Figure8DS100128-36FIGURE10.Dual Amplifier,3kHz Low-Pass ActiveFilter with a Butterworth Response and a Pass BandGain of Times TwoDS100128-37FIGURE11.Dual Amplifier,300Hz High-Pass ActiveFilter with a Butterworth Response and a Pass BandGain of Times Two13the pass band gain.Increasing R 4by ten percent,increased the gain by 0.4dB,while increasing R 5by ten percent,de-creased the gain by 0.4dB.TABLE 1.Component (LPF)Sensitivity (LPF)Component (HPF)Sensitivity (HPF)R a -1.2C a -0.7C 1-0.1R b -1.0R 2-1.1R 1+0.1R 3+0.7C 2-0.1C 3-1.5R 3+0.1R 4-0.6R 4-0.1R 5+0.6R 5+0.1Active filters are also sensitive to an op amp’s parameters -Gain and Bandwidth,in particular.The LMV822/24provide a large gain and wide bandwidth.And DAAFs make excel-lent use of these feature specifications.Single Amplifier versions require a large open-loop to closed-loop gain ratio -approximately 50to 1,at the Fc of the filter response.Figure 12shows an impressive photo-graph of a network analyzer measurement (hp3577A).The measurement was taken from a 300kHz version of Figure 10.At 300kHz,the open-loop to closed-loop gain ratio @Fc is about 5to 1.This is 10times lower than the 50to 1“rule of thumb”for Single Amplifier Active Filters.In addition to performance,DAAFs are relatively easy to de-sign and implement.The design equations for the low-pass and high-pass DAAFs are shown below.The first two equa-tion calculate the Fc and the circuit Quality Factor (Q)for the LPF (Figure 10).The second two equations calculate the Fc and Q for the HPF (Figure 11).To simplify the design process,certain components are set equal to each other.Refer to Figure 10and Figure 11.These equal component values help to simplify the design equa-tions as follows:To illustrate the design process/implementation,a 3kHz,Butterworth response,low-pass filter DAAF (Figure 10)is designed as follows:1.Choose C 1=C 3=C =1nF2.Choose R 4=R 5=1k Ω3.Calculate R a and R 2for the desired Fc as follows:4.Calculate R 3for the desired Q.The desired Q for a Butter-worth (Maximally Flat)response is 0.707(45degrees into the s-plane).R 3calculates as follows:Notice that R 3could also be calculated as 0.707of R a or R 2.The circuit was implemented and its cutoff frequency mea-sured.The cutoff frequency measured at 2.92kHz.The circuit also showed good repeatability.Ten different LMV822samples were placed in the circuit.The correspond-ing change in the cutoff frequency was less than a percent.DS100128-92FIGURE 12.300kHz,Low-Pass Filter,Butterworth Response as Measured by the HP3577A NetworkAnalyzer 14DS100128-89DS100128-34 FIGURE13.Tri-level Voltage DetectorOV-V IN+V IN| ∆v | ∆v |DS100128-3514.X,Y Oscilloscope Trace showing V OUTV IN per the Circuit of Figure13 15SC70-5Tape and Reel SpecificationDS100128-96 SOT-23-5Tape and Reel SpecificationTape FormatTape Section#Cavities Cavity Status Cover Tape StatusLeader0(min)Empty Sealed(Start End)75(min)Empty SealedCarrier3000Filled Sealed250Filled SealedTrailer125(min)Empty Sealed(Hub End)0(min)Empty Sealed16Tape DimensionsDS100128-97 8mm0.1300.1240.1300.1260.138±0.0020.055±0.0040.1570.315±0.012(3.3)(3.15)(3.3)(3.2)(3.5±0.05)(1.4±0.11)(4)(8±0.3)Tape Size DIM A DIM Ao DIM B DIM Bo DIM F DIM Ko DIM P1DIM W17Reel DimensionsDS100128-98 8mm7.000.0590.5120.795 2.1650.331+0.059/−0.0000.567W1+0.078/−0.039330.00 1.5013.0020.2055.008.40+1.50/−0.0014.40W1+2.00/−1.00 Tape Size A B C D N W1W2W318Physical Dimensions inches(millimeters)unless otherwise notedSC70-5Order Number LMV821M7or LMV821M7XNS Package Number MAA0519Physical Dimensions inches(millimeters)unless otherwise noted(Continued)SOT23-5Order Number LMV821M5or LMV821M5XNS Package Number MA05B20Physical Dimensions inches(millimeters)unless otherwise noted(Continued)8-Pin Small OutlineOrder Number LMV822M or LMV822MXNS Package Number M08A21Physical Dimensions inches(millimeters)unless otherwise noted(Continued)8-Pin MSOPOrder Number LMV822MM or LMV822MMXNS Package Number MUA08A22Physical Dimensions inches(millimeters)unless otherwise noted(Continued)14-Pin Small OutlineOrder Number LMV824M or LMV824MXNS Package Number M14A23Physical Dimensionsinches (millimeters)unless otherwise noted (Continued)LIFE SUPPORT POLICYNATIONAL’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION.As used herein:1.Life support devices or systems are devices or systems which,(a)are intended for surgical implant into the body,or (b)support or sustain life,and whose failure to perform when properly used in accordance with instructions for use provided in the labeling,can be reasonably expected to result in a significant injury to the user.2.A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system,or to affect its safety or effectiveness.National Semiconductor Corporation AmericasTel:1-800-272-9959Fax:1-800-737-7018Email:support@National Semiconductor EuropeFax:+49(0)180-5308586Email:europe.support@Deutsch Tel:+49(0)180-5308585English Tel:+49(0)180-5327832Français Tel:+49(0)180-5329358Italiano Tel:+49(0)180-5341680National Semiconductor Asia Pacific Customer Response Group Tel:65-2544466Fax:65-2504466Email:sea.support@National Semiconductor Japan Ltd.Tel:81-3-5639-7560Fax:81-3-5639-750714-Pin TSSOPOrder Number LMV824MTC or LMV824MTCXNS Package Number MTC14L M V 821S i n g l e /L M V 822D u a l /L M V 824Q u a d L o w V o l t a g e ,L o w P o w e r ,R R O ,5M H z O p A m p sNational does not assume any responsibility for use of any circuitry described,no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.。

HD8242 IC

HD8242   IC
H016/03/15
上海华虹挚芯电子科技有限公司
Shanghai HuaHong Zealcore Co., Ltd.
HD8242 用户手册 V1.0
目录
1 产品简介............................................................................................................................................................. 3 1.1 产品特性.................................................................................................................................................3 1.2 产品应用.................................................................................................................................................3 1.3 系统框图..................................................................................................................................................4 1.4 引脚排列..................................................................................................................................................4 1.5 引脚说明..................................................................................................................................................4 2 功能详述............................................................................................................................................................. 5 2.1 正常状态..................................................................................................................................................5 2.2 过充电状态............................................................................................................................................ 5 2.3 过放电状态、休眠状态........................................................................................................................ 5 2.4 放电过流状态........................................................................................................................................ 5 2.5 充电过流状态........................................................................................................................................ 6 2.6 向 0 V 电池充电功能............................................................................................................................ 6 3.时序图................................................................................................................................................................. 7 3.1 过充电检测、过放电检测.................................................................................................................... 7 3.2 放电过流/充电过流检测...................................................................................................................... 8 3.3 充电器检测............................................................................................................................................ 9 4 绝对最大额定值...............................................................................................................................................10 5 电气参数........................................................................................................................................................... 10 6 典型应用........................................................................................................................................................... 12 7 封装尺寸........................................................................................................................................................... 13 8 修订记录........................................................................................................................................................... 14

松下308、824说明书

松下308、824说明书
KX-TEB308CN KX-TES824CN
Panasonic 20
目录表
1 引言 .......................................................................................................... 3
2
安装手册环境安全版本
章节 1 引言
安装手册环境安全版本
3
1.1 引言
1.1 引言
本说明书对集团电话中的各种部件所发现的有害物质级别进行了说明。 这些有害物质是根据电子信息产品 污染控制管理办法定义的。 在第 2 部分的表格中,有关每种部件所附带的有毒和有害物质的级别用下列标志来表示:
c: 表示该有毒有害物质在该部件所有均质材料中的含量均在 SJ/T11363—2006 标准规定的限量要求 以下。
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
多溴二苯醚 (PBDE)
c c c c c c c c c c c c c c c c c c
6
安装手册环境安全版本
2.2 任选服务卡
2.2.1 KX-TE82460/KX-TE82461
部件名称
组合电路板 包装材料 (纸板) 包装材料 (塑料) 纸质部件 螺丝 内部配线 电线 连接器
铅 (Pb)
c ° c c c c c
汞 (Hg)
c c c c c c c
有毒有害物质或元素

六价铬
(Cd) (Cr (VI))

atc中文手册

atc中文手册

A T24C256中文资料2009-11-15 09:43特性与1MHz I2C 总线兼容1.8 到6.0 伏工作电压范围低功耗CMOS 技术写保护功能当WP 为高电平时进入写保护状态64 字节页写缓冲器自定时擦写周期100,000 编程/擦写周期可保存数据100 年8 脚DIP SOIC 封装温度范围商业级工业级和汽车级概述CAT24WC256 是一个256K 位串行CMOS E2PROM 内部含有32768 个字节每字节为8 位CATALYST 公司的先进CMOS 技术实质上减少了器件的功耗CAT24WC256 有一个64 字节页写缓冲器该器件通过I2C 总线接口进行操作管脚描述管脚名称功能A0 A1 地址输入SDA 串行数据/地址SCL 串行时钟WP 写保护Vcc +1.8V 6.0V 电源Vss 地NC 未连接极限参数工作温度工业级-55 +125商业级0 +75贮存温度-65 +150各管脚承受电压-2.0V Vcc+2.0VVcc 管脚承受电压-2.0V +7.0V封装功率损耗Ta=25 1.0W焊接温度(10 秒) 300口输出短路电流100mA功能描述CAT24WC256 支持I2C 总线数据传送协议I2C 总线协议规定任何将数据传送到总线的器件作为发送器任何从总线接收数据的器件为接收器数据传送是由产生串行时钟和所有起始停止信号的主器件控制的CAT24WC256 是作为从器件被操作的主器件和从器件都可以作为发送器或接收器但由主器件控制传送数据发送或接收的模式管脚描述SCL 串行时钟CAT24WC256 串行时钟输入管脚用于产生器件所有数据发送或接收的时钟这是一个输入管脚SDA 串行数据/地址双向串行数据/地址管脚用于器件所有数据的发送或接收SDA 是一个开漏输出管脚可与其它开漏输出或集电极开路输出进行线或wire-ORWP 写保护当WP 脚连接到Vcc 所有内存变成写保护只能读当WP 引脚连接到Vss 或悬空允许器件进行读/写操作A0 A1 器件地址输入这些管脚为硬连线或者不连接对于单总线系统最多可寻址4 个CAT24WC256 器件参阅器件寻址当这些引脚没有连接时其默认值为0I2C 总线协议I2C 总线协议定义如下1 只有在总线空闲时才允许启动数据传送2 在数据传送过程中当时钟线为高电平时数据线必须保持稳定状态不允许有跳变时钟线为高电平时数据线的任何电平变化将被看作总线的起始或停止信号起始信号时钟线保持高电平期间数据线电平从高到低的跳变作为I2C 总线的起始信号停止信号时钟线保持高电平期间数据线电平从低到高的跳变作为I2C 总线的停止信号器件寻址主器件通过发送一个起始信号启动发送过程然后发送它所要寻址的从器件的地址8 位从器件地址的高5 位固定为10100 见图5 接下来的2 位A1 A0 为器件的地址位最多可以连接4 个器件到同一总线上这些位必须与硬连线输入脚A1 A0 相对应从器件地址的最低位作为读写控制位1表示对从器件进行读操作0 表示对从器件进行写操作在主器件发送起始信号和从器件地址字节后CAT24WC256 监视总线并当其地址与发送的从地址相符时响应一个应答信号通过SDA 线CAT24WC256 再根据读写控制位R/W 的状态进行读或写操作应答信号I2C 总线数据传送时每成功地传送一个字节数据后接收器都必须产生一个应答信号应答的器件在第9 个时钟周期时将SDA 线拉低表示其已收到一个8 位数据CAT24WC256 在接收到起始信号和从器件地址之后响应一个应答信号如果器件已选择了写操作则在每接收一个8 位字节之后响应一个应答信号当CAT24WC256 工作于读模式时在发送一个8 位数据后释放SDA 线并监视一个应答信号一旦接收到应答信号CAT24WC256 继续发送数据如主器件没有发送应答信号器件停止传送数据并等待一个停止信号写操作字节写在字节写模式下主器件发送起始信号和从器件地址信息R/W 位置0 给从器件在从器件送回应答信号后主器件发送两个8 位地址字写入CAT24WC256 的地址指针主器件在收到从器件的应答信号后再发送数据到被寻址的存储单元CAT24WC256 再次应答并在主器件产生停止信号后开始内部数据的擦写在内部擦写过程中CAT24WC256 不再应答主器件的任何请求页写在页写模式下单个写周期内CAT24WC256 最多可以写入64 个字节数据页写操作的启动和字节写一样不同在于传送了一字节数据后主器件允许继续发送63 个字节每发送一个字节后CAT24WC256 将响应一个应答位且内部低6 位地址加1 高位地址保持不变如果主器件在发送停止信号之前发送大于64 个字节地址计数器将自动翻转先前写入的数据被覆盖当所有64 字节接收完毕主器件发送停止信号内部编程周期开始此时所有接收到的数据在单个写周期内写入CAT24WC256应答查询可以利用内部写周期时禁止数据输入这一特性一旦主器件发送停止位指示主器件操作结束时CAT24WC256 启动内部写周期应答查询立即启动包括发送一个起始信号和进行写操作的从器件地址如果CAT24WC256 正在进行内部写操作将不会发送应答信号如果CAT24WC256 已经完成了内部写操作将发送一个应答信号主器件可以继续对CAT24WC256 进行下一次读写操作写保护写保护操作特性可使用户避免由于不当操作而造成对存储区域内部数据的改写当WP 管脚接高时整个寄存器区全部被保护起来而变为只可读取CAT24WC256 可以接收从器件地址和字节地址但是装置在接收到第一个数据字节后不发送应答信号从而避免寄存器区域被编程改写读操作CAT24WC256 读操作的初始化方式和写操作时一样仅把R/W 位置为1 有三种不同的读操作方式立即/当前地址读选择/随机读和连续读立即/当前地址读的地址计数器内容为最后操作字节的地址加1 也就是说如果上次读/写的操作地址为N 则立即读的地址从地址N+1 开始如果N=E 此处E=32767 则计数器将翻转到0 且继续输出数据CAT24WC256接收到从器件地址信号后R/W 位置1 它首先发送一个应答信号然后发送一个8 位字节数据主器件不需发送一个应答信号但要产生一个停止信号选择/随机读选择/随机读操作允许主器件对寄存器的任意字节进行读操作主器件首先通过发送起始信号从器件地址和它想读取的字节数据的地址执行一个伪写操作在CAT24WC256 应答之后主器件重新发送起始信号和从器件地址此时R/W 位置1 CAT24WC256 响应并发送应答信号然后输出所要求的一个8 位字节数据主器件不发送应答信号但产生一个停止信号连续读连续读操作可通过立即读或选择性读操作启动在CAT24WC256 发送完一个8 位字节数据后主器件产生一个应答信号来响应告知CAT24WC256 主器件要求更多的数据对应每个主机产生的应答信号CAT24WC256 将发送一个8 位数据字节当主器件不发送应答信号而发送停止位时结束此操作从CAT24WC256 输出的数据按顺序由N 到N+1 输出读操作时地址计数器在CAT24WC256 整个地址内增加这样整个寄存器区域在可在一个读操作内全部读出当读取的字节超过E 此处E=32767计数器将翻转到零并继续输出数据字节。

824Getting_Started简单安装手册

824Getting_Started简单安装手册

PanasonicKX-TES824KX-TEM824系统元件系统元件表型号说明主机KX-TES824集团电话:3至8条外(CO)线、8至24部分机KX-TEM824集团电话:6至8条外(CO)线、16至24部分机任选服务卡KX-TE824602端口门电话卡KX-TE824614端口门电话卡KX-TE824748端口SLT分机卡KX-TE824802端口模拟CO线和8端口SLT分机卡KX-TE824833端口模拟CO线和8端口混合分机卡KX-TE82491DISA/UCD OGM的留言扩充卡KX-TE824922信道语音留言卡KX-TE824933端口来电显示卡专用设备KX-T30865门电话KX-A227备用电池电缆注意某些型号可能无法在贵国/地区使用。

2快速安装指南外(CO)线和分机的扩充性KX-TE82483KX-TE82480KX-TE82474扩充系统外(CO)线:3外(CO)线:2外(CO)线:0分机:8分机:8分机:8KX-TES824外(CO)线:3分机:8----8316--28--516 38----616 38--8624 3828--824KX-TEM824外(CO)线:6分机:16----8624--28--824快速安装指南3重点安全说明当使用电话设备时,应始终遵循基本的安全预防措施,以减少火灾、电击和人身伤害,具体内容如下:1.请阅读并理解全部说明。

2.请遵循本产品上标记的全部警告和说明。

3.进行清洁以前,请从墙上输出插座拔下本产品插头。

请勿使用液体清洁剂或喷雾清洁剂。

使用湿抹布进行清洁。

4.请勿在近水的地方使用本产品,例如,浴缸、洗脸盆、厨房水槽、洗衣盆、潮湿的地下室或游泳池附近。

5.请勿将本产品放在不平稳的表面,因为如果掉落会导致内部严重损坏。

6.机壳前面、后面和底部的槽和开口用于通风;为防止过热,不能阻塞或覆盖这些开口。

使用本产品时,切勿将其放置于床上、沙发、地毯或其它类似表面上,以防阻塞这些开口。

TS824-2.5中文资料

TS824-2.5中文资料

1/5s LOW T c: 50 ppm/°C MAXIMUM s 2.5V OUTPUT VOLTAGEs LOW OPERATING CURRENT : 60µA max @25°Cs HIGH PRECISION AT 25°C: ±0.5% AND±1%s STABLE WHEN USED WITH CAPACITIVELOADSs INDUSTRIAL TEMPERATURE RANGE:-40 to +85°C DESCRIPTIONThe TS824-2.5 is a low power shunt voltage reference featuring a very low temperature coefficient of 50ppm/°C as a maximum value.Providing a 2.5V output voltage, the TS824-2.5operates over the industrial temperature range (-40 to +85°C). Ideal for battery-powered equipments where power conservation is critical,the TS824 is housed in a tiny SOT23-3 package allowing space saving.The TS824 is typically stable with any capacitive loads within the entire temperature range. The product is thus easy to use and the design simpli-fied.APPLICATIONs Instrumentation,s Data acquisition systems,s Portable, Battery powered equipments s Power managementORDER CODELT = Tiny Package (SOT23-3) - only available in Tape & Reel (LT)PIN CONNECTIONS (top view)Voltage PrecisionSOT23-3SOT23 Marking 2.5V±1%TS824ILT-2.5L252±0.5%TS824AILT-2.5L253Single temperature range: -40 to +85°CTS824-2.5HIGH THERMAL STABILITYMICROPOWER SHUNT VOLTAGE REFERENCEMarch 2002TS824-2.52/5ABSOLUTE MAXIMUM RATINGSOPERATING CONDITIONSELECTRICAL CHARACTERISTICS (note 3) T amb = 25°C (unless otherwise specified)Symbol ParameterValue Unit I K Reverse Breakdown Current20mA I F Forward Current10mA P D Power Dissipation (note1)SOT23-3360mW T Std Storage Temperature-65 to +150°C ESD Human Body Model (HBM) (note2)2kV Machine Model (MM) (note 2)200V T LeadLead Temperature (soldering, 10 seconds)260°CNote 1: The maximum power dissipation must be derated at high temperature. It can be calculated using T JMAX (maximum junction tem-perature), R THJA (Thermal resistance junction to ambient) and T A (Ambient temperature). The maximum power dissipation formula at any temperature is P DMAX = (T JMAX - T A ) / R THJA. R THJA is 340°C/W for the SOT23-3 package.Note 2: The Human Body Model (HBM) is defined as a 100pF capacitor discharge through a 1.5k Ω resistor into each pin. The Machine Mode (MM) is defined as a 200pF capacitor discharge directly into each pins.Symbol ParameterValue Unit I min Minimum Operating Current 60µA I max Maximum Operating Current15mA T operOperating Free Air Temperature Range-40 to +85°CSymbolParameterTest ConditionMin.Typ.Max.Unit V KReverse Breakdown VoltageI K = 100µA, ±0.5% 2.4875 2.500 2.5125VI K = 100µA, ±1% 2.475 2.5002.525Reverse Breakdown Voltage ToleranceI K = 100µA, ±0.5%-40°C < T amb < +85°C -12.5-20+12.5+20mVI K = 100µA, ±1%-40°C < T amb < +85°C -25-33+25+33I KMIN Minimum Operating Current T amb = 25°C5060µA -40°C < T amb < +85°C65∆V K /∆TAverage Temperature Coefficient (note5)I K = 100µA50ppm/°C∆V K /∆I KReverse Breakdown Voltage Changewith Operating Current Range I KMIN < I K < 1mA-40°C < T amb < +85°C 0.411.2mV1mA < I K < 15mA-40°C < T amb < +85°C 4.5810R KA Static Impedance∆I K = I KMIN to 1mA -40°C < T amb < +85°C 0.411.2Ω∆I K = 1mA to 15mA -40°C < T amb < +85°C 0.30.60.7K VH Long Term Stability I K = 100µA, t = 1000hrs 120ppm E NWide Band NoiseI K = 100µA100Hz < f < 10kHz350nV/√HzNote 3: Limits are 100% production tested at 25°C. Limits over temperature are guaranteed through correlation and by design.Note 4: The total tolerance within the industrial range, where the maximum ∆T versus 25°C is 65°C, is explained hereafter: ± 1 % + (± 50 ppm/°C x 65°C) = ± 1.325 %TS824-2.53/5Reference voltage versus cathode currentTest circuit ∆V K /∆I K for I K < 1mA versus temperatureReference voltage versus cathode currentReference voltage versus Temperature∆V K /∆I K for I K > 1mA versus temperatureTS824-2.54/5Start-up response with low cathode currentOvershoot versus cathode currentStart-up schematic with low cathode currentNoise versus frequencyTS824-2.55/5Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.© The ST logo is a registered trademark of STMicroelectronics© 2002 STMicroelectronics - Printed in Italy - All Rights ReservedSTMicroelectronics GROUP OF COMPANIESAustralia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - MalaysiaMalta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States© - United KingdomPACKAGE MECHANICAL DATA3 PINS - TINY PACKAGE (SOT23-3)DimensionsMillimetersInches Min.Typ.Max.Min.Typ.Max.A 0.890 1.1200.0350.044A10.0100.1000.00040.004A20.8800.950 1.0200.0370.040b 0.3000.5000.0120.020c 0.0800.2000.0030.008D 2.800 2.900 3.0400.1100.1140.120E 2.100 2.6400.0830.104E1 1.2001.300 1.4000.0470.0510.055e 0.9500.037e1 1.9000.075L 0.4000.5000.6000.0160.0200.024L10.5400.021k0°8°。

原版精工锂电池保护芯片S8242B

原版精工锂电池保护芯片S8242B

S-8242Bシリーズ2セル直列用バッテリー保護IC © Seiko Instruments Inc., 2006-2010 Rev.2.1_00 S-8242Bシリーズは、高精度電圧検出回路と遅延回路を内蔵した2セル直列用リチウムイオン/リチウムポリマー二次電池保護用ICです。

2セル直列用リチウムイオン/リチウムポリマー二次電池パックの過充電、過放電、過電流の保護に最適なICです。

■特長(1)各セルに対する高精度電圧検出機能V~4.5 V(50 mVステップ)精度±25 mV ・過充電検出電圧n(n = 1, 2) 3.9V~4.5 V*1精度±50 mV ・過充電解除電圧n(n = 1, 2) 3.8V~3.0 V(100 mVステップ)精度±50 mV ・過放電検出電圧n(n = 1, 2) 2.0V~3.4 V*2精度±100 mV ・過放電解除電圧n(n = 1, 2) 2.0(2)2段階の過電流検出機能(過電流1, 過電流2)・過電流検出電圧1 0.05 V, 0.08 V~0.30 V(10 mVステップ)精度±15 mVV(固定)精度±300 mV ・過電流検出電圧2 1.2(3)各種遅延時間(過充電、過放電、過電流)は内蔵回路のみで実現(外付け容量は不要)(4)0 V電池への充電機能 「可能」/「禁止」の選択可能(5)充電器検出機能・VM端子のマイナス電圧(typ. -0.7 V)検出により過放電ヒステリシスを解除(充電器検出機能)(6)高耐圧デバイス絶対最大定格 28 V(7)広動作温度範囲-40°C~+85°C(8)低消費電流μA max.(+25°C)・動作時 10μA max.(+25°C)・パワーダウン時 0.1(9)鉛フリー、Sn 100%、ハロゲンフリー*3*1.過充電解除電圧 = 過充電検出電圧−過充電ヒステリシス電圧(過充電ヒステリシス電圧n(n = 1, 2)は、0 Vまたは0.1 V~0.4 Vの範囲内にて50 mVステップで選択可能)*2.過放電解除電圧 = 過放電検出電圧+過放電ヒステリシス電圧(過放電ヒステリシス電圧n(n = 1, 2)は、0 Vまたは0.1 V~0.7 Vの範囲内にて100 mVステップで選択可能)*3. 詳細は「 品目コードの構成」を参照してください。

MHW8242中文资料

MHW8242中文资料

MHW8242 2

*MHW8242/D*
MHW8242/D MOTOROLA RF DEVICE DATA
MHW8242
24 dB GAIN 860 MHz 128–CHANNEL CATV AMPLIFIER
MAXIMUM RATINGS
Rating RF Voltage Input (Single Tone) DC Supply Voltage Operating Case Temperature Range Storage Temperature Range Symbol Vin VCC TC Tstg Value +55 +28 – 20 to +100 – 40 to +100 Unit dBmV Vdc °C °C CASE 714–06, STYLE 1
R B
6–32UNC–2B 2 PL
0.25 (0.010) U
1 23 5 789
M
Z T A
M
C –E– –T– N G D L
7 PL
K
W P
0.25 (0.010)
M
T A
M
STYLE 1: PIN GROUND GROUND DELETED VDC DELETED GROUND GROUND RF OUTPUT
JAPAN: Nippon Motorola Ltd.; Tatsumi–SPD–JLDC, Toshikatsu Otsuki, 6F Seibu–Butsuryu–Center, 3–14–2 Tatsumi Koto–Ku, Tokyo 135, Japan. 03–3521–8315 HONG KONG: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park, 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852–26629298

nxp~明烽威

nxp~明烽威

PMBT2222A BZX84-C16,215BZT52H-C7V5,115HEF4069UBT,653 PHP21N06T BZX84-C18,215BZV49-C6V2,115HEF4093BT,653 MC145406D BZX84-C20,215BZV55-B10,115HEF4094BT,653 BCP54-16BZX84-C22,215BZV55-B11,115HEF4541BT,518 BC846BW BZX84-C24,215BZV55-B16,115IP4284CZ10-74LVT14PW BZX84-C27,215BZV55-B18,115BCP55-10BAS70-04BZX84-C2V4,215BZV55-B24,115BC857BBCP56BZX84-C2V7,215BZV55-B27,11574HCT00DBC817BZX84-C30,215BZV55-B2V4,115TDA18275AHN/C1Y BFG10/X BZX84-C33,215BZV55-B2V7,115TDA18275HN/C1Y BAV70BZX84-C39,215BZV55-B30,115TDA3629T/YM,112 PESD36VS2UT BZX84-C3V0,215BZV55-B33,115TDA4862GGEG PCA9635PW BZX84-C3V3,215BZV55-B36,115PHK04P02T,518 PMBT2907A BZX84-C3V6,215BZV55-B3V3,115PHKD13N03LT,518 BZV55-B30BZX84-C3V9,215BZV55-B4V3,115PIMN31,115BC857BW BZX84-C43,215BZV55-B4V7,115PLVA650A,215 BC817-25BZX84-C4V3,215BZV55-B6V8,115PMBD914,215 PDTC114YE BZX84-C4V7,215BZV55-B7V5,115PMBFJ108,215 BCP56-10BZX84-C51,215BZV55-B8V2,115PMBFJ175,215 PMBS3904BZX84-C56,215BZV55-C10,115PMBS3904,215 BC807-25BZX84-C5V1,215BZV55-C12,115PMBS3906,215 BC846A BZX84-C5V6,215BZV55-C13,115PMBT2222A,215 BC807-25BZX84-C62,215BZV55-C15,115PMBT2369,215 BAS316BZX84-C68,215BZV55-C16,115PMBT2907,215 BC856BW BZX84-C6V2,215BZV55-C18,115PMBT2907A,215 74HC04N BZX84-C6V8,215BZV55-C20,115PMBT3904,215 BZA968A BZX84-C7V5,215BZV55-C22,115PMBT3906,215 BT152X-400R BZX84-C8V2,215BZV55-C24,115PMBT4401,215 BAT54BZX84-C9V1,215BZV55-C27,115PMBT4403,215 BAW56BZX84J-B5V1,115BZV55-C2V4,115PMBT6429,215 BC807-40BZX84J-C15,115BZV55-C30,115PMBTA06,215BC807BZX84J-C16,115BZV55-C36,115PMBTA42,215 BSS123BZX84J-C5V1,115BZV55-C39,115PMBTA56,215 BSN20BZX84J-C5V6,115BZV55-C3V0,115PMBTA92,215 PESD3V3L1BA J112,126BZV55-C3V3,115PMEG1020EH,115 PCA9512AD J5A080GHNT0BG1054,1BZV55-C3V6,115PMEG1020EJ,115 1PS79SB10JN5168/001,515BZV55-C3V9,115PMEG1030EH,115 BCP56-16KTY81/110,112BZV55-C4V3,115PMEG1030EJ,115 BT168GW LPC1111FHN33/102,5BZV55-C4V7,115PMEG2005EB,115 BT134-600LPC1112FDH20/102:5BZV55-C5V1,115PMEG2005EH,115 74HC4538D LPC11C24FBD48/301,BZV55-C5V6,115PMEG2010AEB,115 BC857B LPC11U24FHI33/301,BZV55-C6V2,115PMEG3010EJ,115 PSMN5R0-80PS LPC1765FBD100,551BZV55-C6V8,115PMEG3020BEP,115 MC145406D LPC1765FBD100/3268BZV55-C75,115PMEG3020CPA,115PMBTA44LPC1765FBD100/CP3292,551BZV55-C7V5,115PMEG4005EH,115BCV46LPC1766FBD100,551BZV55-C8V2,115PMEG6002EB,115深圳市明烽威电子有限公司BAS85LPC1768FBD100,551BZV55-C9V1,115PMEG6020ELRXBAS21LPC1778FBD208,551BZV85-C12,133PMEG6020ER,115 PESD1LIN LPC1778FET208,551BZV85-C24,133PMF280UN,115BAV99LPC1788FBD208,551HEF4001BT,653PMGD280UN,115 BAV23S LPC1788FET208,551HEF40106BT,653PMK50XP,51874HC1G86GV LPC2132FBD64/01,15HEF4027BT,653PMLL4148L,115BC807-40LPC824M201JHI33E HEF4052BT,653PMLL4448,115 PSMN035-150P LPC824M201JHI33Y HEF4053BT,653PMPB27EP,115BAV99NPC1002A2EV/C208BY HEF4069UBT,653PMPB33XP,11574HC373D NT2H0301F0DTL,125HEF4093BT,653PMST3906,115BAT721C NUR460P,133HEF4094BT,653PMST5551,115BC807-40NX1117C12Z,115HEF4541BT,518PMV250EPEARBAS40-04NX1117CE18Z,115IP4284CZ10-PMV30UN2RPBSS5250X NX1117CE50Z,11574AHC1G126GW PMV40UN2RBC817-16NX1117CEADJZ,115BAV70W PMV60EN,215BC817NX3008PBK,215BC807-25PMV65XP,215BFR93A NX7002AK,215BCP53-10PN5441A2ETC30701, BCP52-16NXPS20H100C,127BAV99W PRF957,115BAT54S NXPS20S100CX,127PMBT2222A PRTR5V0U2X,215 BZX84-C11NXPSC04650Q74LVC2G66GD PRTR5V0U4D,125 BAV99S NZX8V2B,133PMN45EN PSMN012-100YS,115 BCP55OT407,412BAS70-06PSMN016-100PS,127 BAT120C PBHV8540T,215PESD5V0L1BA PSMN026-80YS,115 BUK7606-75B PBHV9050Z,115PESD1CAN PSMN030-150P,127 74HC14D PBR941,215BAS16H PSMN0R9-25YLC,115 BAT54A PBSS3540E,115GTL2010PW PSMN1R2-25YLC,115 BC856BW PBSS4140S,126PMBTA06PSMN2R0-30YL,115 BCP56-16PBSS4140T,215PHK18NQ03LT PSMN2R2-30YLC,115 BC807-40PBSS4160DS,115PMGD780SN PSMN2R6-40YS,115 BAV70PBSS4160T,215BC817-16PSMN2R6-60PSQ BAV99S PBSS4250X,115BCX55-16PSMN2R7-30PL,127 BCP69-16PBSS4330X,115HEF4016BT PSMN3R0-30YL,115 74HC00N PBSS4350T,215BFG97PSMN3R9-60PSQ BFG31PBSS4350X,115BCP54-16PSMN4R2-30MLDXP80C32UFAA PBSS4350Z,13574HC138N PSMN4R5-40PS,127 74HC4538D PBSS5130QAZ74HC04D PSMN4R6-60PS,127 BC847A PBSS5130T,215BC807-25PSMN6R5-80PS,127 PMV40UN PBSS5140S,126BAV70PSMN7R0-100PS,127 BT151X-500R PBSS5140T,2152N7002PSMN8R2-80YS,115 BAT54S PBSS5160T,215PESD5V0L1BA PSMN9R5-30YLC,115 BCP51-16PBSS5160U,115BC857C PTVS12VS1UR,115 BAT54S PBSS5220T,215HEF40106BT PTVS14VS1UTR,115 BAT54C PBSS5320T,215BC817-25PTVS15VS1UTR,115 74AHCT164D PBSS5350X,115PHK18NQ03LT PTVS40VP1UP,115 74LVC2G66GD PCA9512AD,112BC847C PUMD2,115BCP69-16PCA9557PW,118BF1102PUMH10,115PMEG3050BEP PCA9617ATPZ74HC132N PUMT1,115PMBS3904PCF8563BS/4,11874HC373D PUMZ1,11574HCT373D PCF8563T/5,518BAS40-05PZT2907A,11574LVC2G66GD PCF8563T/F4,118BCP52-16PZTA42,115BC856B PDTA114ET,215BC847B PZTA44,11574AHC123APW PDTA123ET,215BSH111PZU11B2,115 PMBS3906PDTA124EU,115BAT54W QN9022/DYBT148-400R PDTA143ZK,115BAS516RB751V40,115PRF949PDTA144ET,2152N7002SGP20N60BFS17W PDTA144EU,115BAS16TDA1308AT/N2,115 BT134-600PDTB123YT,215BZA968A TDA1308T/N2,115 74HC4066N PDTC114ET,215BAS40-04TDA18250BHN/C1Y BAT54C PDTC114TT,215BSS123TDA18250HN/C1,518 BSS123PDTC114YE,115BFG425W TDA18257HN/C1K BZV55-C4V3PDTC114YT,215BC847C TDA18274HD/C1,518 74HC1G86GV PDTC123YT,215BAV23S TDA18274HN/C1,518 BZX585-B2V7PDTC124ET,21574AHCT164D PMBT2222ABAV70PDTC143ET,215BAV199BAV23A74LVT126PW PDTC143ZT,215PESD3V3L4UW PESD5V0L1BABC847C PDTC144EM,31574HC366D BC857BBC848B PDTC144ES,126PESD5V0L1BA BYV79E-200BSP62PDTC144ET,215BC847BW PUMD3BCP69PDTC144WE,115BCP56BUK7275-100A PMBT4403PDTC144WT,215BC807-40BCP55BAS70-04PDTD113ZT,215BCP53-16BC817-25BTA316-600C PDTD123TT,215PDTC144ET74HC08DPRF949PDZ12B,115BZX284-B5V6BFR505BCP51-16PDZ15B,115PMBT4403BAT54SRB751V40PDZ18B,115BCP55PBSS5250XPMEG3005AEA PDZ2.4B,115BCX55-102PC4617R74AHCT164D PDZ2.7B,115BAT54C PMBTA42BC817-25PDZ3.0B,115BC847A74HC1G86GW74ABT244D PDZ30B,115BAS516BAS40-05BTA204-800E PDZ5.1B,115BAS16BSS84BC807-16PDZ6.2B,115BC817-25HEF40106BTPSMN070-200B PDZ7.5B,115PESD5V0S1BA BAV99WBAS40-05PDZ9.1B,115PESD5V0S1BA PRF957BAV70W PEMH11,115BCX53-16PBSS5350DHEF4094BT PESD12VL2BT,215BAV170BTA212X-600B74HC00N PESD1CAN,215BSH11174HC597DTDA6111Q PESD24VL1BA,115BAS21BAT54WPMV40UN PESD24VS1UB,115BT134-800E1N4148PMEG3005EJ PESD2CAN,215BC81774HC4051NBT134W-800PESD36VS2UT,215PDTC114YE BUK7275-100ACBT3306PW PESD5V0L1BA,115BCP52-16PDTC143ZEHEF40106BP PESD5V0S1BA,115BAS70-05PRF949BC857B PESD5V0S1BB,115BUK7606-55B BC858BBAS29PESD5V0S1BL,31574LV273DB BCP51-16BAS21PESD5V0S1UL,315BSN20PBSS5250XBC857A PESD5V0S4UD,115PESD3V3L1BA BCX55-10BAW56PESD5V0U1UB,11574LVT14PW BUK7606-55B BZX384-B10PESD5V0U1UL,315BC846B BAW56PBSS5240T PESD5V0U1UT,215BAS86UDA1334BTS/N2 BAV23S PESD5V0U2BT,215BUK7275-100A BCP55-10 PDTC114YE PESD5V0X1BL,315BAT54A BUK7608-40B 74LVT14PW PH3530DL,11574LVC74APW BAS316PESD24VL1BA PH7030DL,115CBT3257AD BAT54SMC145406D PH9030AL,115PESD2CAN74HC125D PESD5V0L1BA BZX84-C11BCP56-16BC857ABC817-16BCP53-1074HC138D2N7002EBC847BPN BSH103BCP55-16BCP53-1074HC138N BAW56W PHK18NQ03LT74HC573DB HEF4093BT BAS70-05BSH111BC857CBAS40-05BAS85PESD12VL1BA PESD12VL1BA BAT54PESD24VL1BA BC847C PMBTA06BC817-4074LVT14PW PESD1LIN PMBT3906BC848B BCP54-1674HCT4051N BTA208-600E BAV99W TL431AMSDT BCP53BCP55PMBT4403PMBD914BC807-40W BCP55-16PRF949BAS16BAS70-06BSH105BYW29E-150CBT3257AD BC847BSBC807-16PESD3V3L1BA BSS84SN74LVTH162244DGTI BAW56LT1G ONGRTMS320F28335PGFA TI BAT54SLT1G ONTMS320LF2406APZA TI MMBT2907ALT1G ONSTP11NK40ZFP ST MMBT4401LT1G ONLM2904N ST BAW56LT1G ONSTPS5H100B ST BAS21LT1G ONLM2903PT ST BAS16LT1G ONL6506ST NIF5002NT1G ONST485BDR ST BAV70LT1G ONBAR43CFILM ST BAW56LT1G ONSTB11NM80T4ST BAS16LT1G ONSTB11NM80T4ST BAW56LT1G ONM24128-BWDW6TP ST BAT54CLT1G ONSTP3NK90ZFP ST BAT54CLT1G ONVND5025AK-E ST MMBD7000LT1G ONSM6T68A ST MMBD7000LT1G ONSTD15NF10T4ST MMBD7000LT1G ONTS4990EIJT ST BAW56LT1G ONVND5025AK-E ST NSR1020MW2T1G ONSTPS20L60CG-TR ST MCR100-8RLG ONTL431ACZ ST MMBT3904LT1G ONSTP5NK60Z ST1SMB5929BT3G ONM74HC32RM13TR ST MMBT2222ALT1G ONSTTH110ST MMBD914LT1G ONSTTH1L06U ST MMBD914LT1G ONSTMAV340TTR ST BAV70LT1G ON SMAJ58CA-TR ST MMBD914LT1G ON TS556IN ST NTMD6P02R2G ON STGF7NC60HD ST MMBT3904TT1G ON LD1117DT18TR ST MMBT3906LT1G ON M95320-WMN6TP ST MURS320T3G ON ESDA6V1W5ST LM2904NG ON L6920DBTR ST MMBT3904TT1G ON STTH3L06U ST BAW56LT1G ON TS555IDT ST MURS320T3G ON ESDA6V1L ST MMBD914LT1G ON VNN3NV0413TR ST BAS21LT1G ON TS555IDT ST BCP56T1G ON STTH2002CT ST ESD9X5.0ST5G ON STB25NM50N ST BCP56-16T1G ON M24C02-WMN6TP ST BCP53T1G ON STM809TWX6F ST MURS360T3G ON TS4041CILT-1.2ST NDF10N60ZG ON M74HC4052RM13TR ST MMBD2838LT1G ON M4T28-BR12SH1ST MMBT5401LT1G ON STTH15L06FP ST BCP56-16T1G ON TSH72CDT ST P6SMB68AT3G ON M95320-WMN6TP ST BCP56T1G ON STTH102A ST MMBD914LT1G ON STP3NK90ZFP ST MBRS1100T3G ON TS951ILT ST MMBT2222ALT1G ON ST62T00CM6ST BAS21LT1G ON ESDA6V1-4BC6ST TL431BVDR2G ON STGP14NC60KD ST NCP1200D100R2G ON ESDALC5-1BT2ST MURS320T3G ON STP5NK60Z ST MMBT3906LT1G ON STP6NK60ZFP ST TL431BVDR2G ON M74HC4051RM13TR ST BCP56-16T1G ON LD2980ABM30TR ST ESD9X5.0ST5G ON TSH72CDT ST NUP1105LT1G ON STM8S105S4T6C ST NIF5002NT1G ON LM2903PT ST MMBD914LT1G ON TIP31A ST LM2904NG ON LM217LZ-TR ST BAW56LT1G ON L6207PD ST NTD2955T4G ON SM6T220A ST MM5Z18VT1G ON M24C02-WBN6P ST MBR130T1G ON STM6824SWY6F ST MJD44H11T4G ON BAR43CFILM ST MMBF0201NLT1G ON LIS35DETR ST NCP500SN30T1G ON STW18NM60N ST MMBT3906LT1G ON LD1117ADT18TR ST NTMD6P02R2G ON STB6NK90ZT4ST MMBT2222ALT1G ONLD1117ASTR ST NIF5002NT1G ONUC2844BD1ST MMBT3906LT1G ONSTP80NF55-08ST BAV70LT1G ONM95512-RDW6TP ST BAS21LT1G ONL4973D5.1ST NTD2955T4G ONSTTH3R02ST MC14053BDR2G ONLF247D ST NIF5002NT1G ONSTPS20120D ST MBRD360T4G ONSTD35NF3LLT4ST ADP3211AMNR2G ONSTW18NM60N ST NCV3063DR2G ONM93C86-WMN6TP ST MBRS1100T3G ONM24512-RMN6TP ST BAT54SLT1G ONL6920DBTR ST MC33202VDR2G ONLD1117ASTR ST IRF9333TRPBF IR STGF7NC60HD ST IRF7458TRPBF IRTS556IN ST IRF8113TRPBF IRTIP137ST IRF8113TRPBF IR74V1G125STR ST WJLXT971ALE.A4INTEL STPS160A ST BSC042N03MSG INFINON BD437ST SGP15N120INFINEON STT818B ST SPP08N50C3INFINEON STPS15L30CB ST ICE3A3565P INFINEON STTH5R06D ST IPP057N08N3G INFINEON STB160N75F3ST IPD060N03LG INFINEON M24C02-WDW6TP ST BFP640INFINEON TS555IDT ST IPP200N25N3 G INFINEON M95020-WMN6TP ST TLE4905L INFINEON HCF4066BEY ST IPP50R299CP INFINEON L6571BD ST SPD02N60C3INFINEON STMAV340TTR ST SPP24N60C3INFINEON D44H11ST IKA10N60T INFINEON STPS40150CG ST IHW30N90R INFINEON TS2431BILT ST BTS4130QGA INFINEON STP80NF55-08ST IPP200N25N3INFINEON LM2903PT ST IPP200N25N3G INFINEON TS274CD ST SPA06N60C3INFINEON LD2980ABM30TR ST IPP50R140CP INFINEON L5991AD ST ICL8001G INFINEON TSH72CDT ST TLE4242G INFINEON STD1NK60T4ST SPP04N60C3INFINEON ST232EBDR ST TLE4905L INFINEON SMBJ85CA-TR ST TLE4205G INFINEON T435-800W ST IDW75E60INFINEON BTA06-600CWRG ST BCR562INFINEON TL084ID ST ICL8001G INFINEON STPS10150CT ST IPP08CN10N INFINEON STGW20NC60VD ST TLE4251D INFINEON M4T32-BR12SH6ST TLE6361G INFINEONSTD15NF10T4ST IKW30N60T INFINEON STP4NK50Z ST BB804SF2E6327INFINEON TL084ID ST TLE4905L INFINEON STB20NM50T4ST SGP15N120INFINEON TS4990EIJT ST IHW30N90R INFINEON TS4990IQT ST IHW30N90R INFINEON ST890BDR ST TLE4251D INFINEON TS4990IST ST BAT62-02W INFINEON M41T81SM6F ST ICE3BR1765J INFINEON STP5NK60Z ST SPA15N60CFD INFINEON STP5NK60Z ST IPP200N25N3INFINEON VIPER25HN ST SPP20N60C3INFINEON UC3844BD1013TR ST BA592,E6327infineon M24C64-RDW6TP ST BA595,E6327infineon LD29080DT50R ST BAR64-02V,H6327infineon STM706RM6F ST BAR64-04,E6327infineon STP4NK50Z ST BAR64-05,E6327infineon TS556IN ST BAR64-05W,H6327infineon STTH2003CR ST BAR81W,H6327infineon STD7NS20T4ST BAT15-099,E6327infineon ESDA14V2L ST BAT17-04,E6327infineon M93C56-WMN6TP ST BAT17-04W,H6327infineon STP5NK60Z ST BAT17-05W,H6327infineon L78L15ACUTR ST BAT60A,E6327infineon STP40NF20ST BB545,E7904infineon STPS41H100CG ST BBY66-05W,H6327infineon M48T02-150PC1ST BC847BW,H6327infineon STPS160A ST BC817K-25,E6327infineon STM809TWX6F ST BCR116,E6327infineon STTH102A ST BCR141,E6327infineon STS5NF60L ST BCR321U,E6327infineon STPS10H100CFP ST BCR401W,H6327infineon STB6NK90ZT4ST BCR420U,E6327infineon STB6NK90ZT4ST BCR553,E6327infineon M24512-WMW6TG ST BCX42,E6327infineon TS555IDT ST BDP949,H6327infineon LF253D ST BDP950,H6327infineon TS555IDT ST BF752,E6327infineon M24C64-RDW6TP ST BF776,H6327infineon M93C66-WDW6TP ST BF999,E6327infineon STB25NM60ND ST BFP420,H6327infineon ST1480ACDR ST BFP520,H6327infineon STP60NF10ST BFP640,H6327infineon LM2904N ST BFP650,H6327infineon BUL742C ST BFP740,H6327infineon UC3844BD1ST BFP740F,H6327infineon L6390DTR ST BFR181W,H6327infineon STP11NK40ZFP ST BFR182W,H6327infineonHCF4066BEY ST BFR360F,H6327infineon L7912CV ST BFR380F,H6327infineon M24C64-WMN6TP ST BG3130,H6327infineon STM811SW16F ST BGA622,H6820infineon STPS20L15G-TR ST BGA725L6,E6327infineon SM15T100CA ST BGA915N7,E6327infineon STD30NF06LT4ST BSC019N04NSG infineon MC33174DT ST BSC027N04LSG infineon M74HC132RM13TR ST BSC052N03LS infineon BAT46ST BSC110N06NS3G infineon Z0405MF ST BZX84J-C9V1,115infineon M24C64-WDW6TP ST CBT3251PW,118infineon STSR30D-TR ST CBT3253APW,118infineonM24C64-WMN6TP ST ESD8V0R1B-02LRH,E6327infineonSTD7NS20T4ST ICB1FL02G infineon L78M05CV ST ICB1FL03G infineon HCF4098M013TR ST ICB2FL02G infineon TS555IDT ST ICB2FL03G infineon STSR30D-TR ST ICE1PCS02G infineon P6KE400A ST ICE2PCS01G infineon LM2901D ST ICE2PCS02G infineon STPS20L60CT ST ICE2QS03G infineon TSH62CDT ST ICE3B0565J infineon LM2901D ST ICE3B1565J infineon STTH102A ST ICE3BR4765J infineon STD7NS20T4ST ICL5101infineon 74V1G04STR ST ICL8002G infineon STP11NM60FP ST ICL8105infineon M24C64-WDW6TP ST ILD6150infineon STA559BW13TR ST IPA50R500CE infineon UC2844BD1ST IPA60R190C6infineon LD2985BM50R ST IPA60R280C6infineon ESDA6V1BC6ST IPA60R400CE infineon TIP137ST IPA60R650CE infineon TS924IDT ST IPA60R950C6infineon SM15T100CA ST IPA65R190C6infineon M24C64-WDW6TP ST IPA65R380C6infineon SPB20N60C3infineon IPA65R380E6infineon SPD02N80C3infineon IPA65R420CFD infineon SPD03N50C3infineon IPA65R600E6infineon SPD03N60C3infineon IPA65R650CE infineon SPD04N60C3infineon IPA80R1K0CE infineon SPD04N80C3infineon IPA80R1K4CE infineon SPD06N80C3infineon IPA80R650CE infineon SPD07N60C3infineon IPA90R340C3infineon SPI08N50C3infineon IPB70N10S3-12infineon SPP04N60C3infineon IPB80N06S2L-05infineonSPP04N80C3infineon IPD031N06L3G infineon SPP07N60C3infineon IPD079N06L3G infineon SPP08N50C3infineon IPD50N06S4L-12infineon SPP08N80C3infineon IPD50R380CE infineon SPP11N60C3infineon IPD50R520CP infineon SPP11N80C3infineon IPD60R1K0CE infineon SPP17N80C3infineon IPD60R2K1CE infineon SPP20N60C3infineon IPD60R385CP infineon SPP20N60S5infineon IPD60R400CE infineon SPW20N60C3infineon IPD60R650CE infineon SPW20N60S5infineon IPD60R950C6infineon SPW21N50C3infineon IPD65R650CE infineon SPW32N50C3infineon IPD80R1K0CE infineon SPW35N60C3infineon IPP015N04NG infineon SPW47N60C3infineon IPP023N04NG infineon SS05N70infineon IPP023N10N5infineon BSL207SP,H6327infineon IPP075N15N3G infineon BSO615NG infineon IPP086N10N3G infineon BSR802N,L6327infineon IPP200N15N3G infineon BSS126,H6327infineon IPP60R190C6infineon BSS127,H6327infineon IPP60R950C6infineon TDA4862GGEG infineon IPP65R150CFD infineon TDA4863-2G infineon IPU60R2K1CE infineon TLE4269G infineon IPU60R950C6infineon TLE4913infineon IPW60R280C6infineon Z0103MA,412infineon IPW65R190CFD infineon Z0103MN,135infineon SMBT3906S,E6327infineon Z0103NA,412infineon SMBTA06UPN,E6327infineon BFR182W,H6327infineon SPA04N60C3infineon BFR360F,H6327infineon SPA07N65C3infineon BFR380F,H6327infineon SPA08N80C3infineon BG3130,H6327infineon SPA11N60C3infineon BGA622,H6820infineon SPA11N60CFD infineon BGA725L6,E6327infineon SPA11N65C3infineon BGA915N7,E6327infineon SPA11N80C3infineon BSC019N04NSG infineon SPA20N60C3infineon BSC027N04LSG infineon SPA21N50C3infineon BSC052N03LS infineon SPB20N60C3infineon BSC110N06NS3G infineon SPD02N80C3infineon SMBT3906S,E6327infineon SPD03N50C3infineon SMBTA06UPN,E6327infineon SPD03N60C3infineon SPA04N60C3infineon SPD04N60C3infineon SPA07N65C3infineon SPD04N80C3infineon SPA08N80C3infineon SPD06N80C3infineon SPA11N60C3infineon SPD07N60C3infineon SPA11N60CFD infineon SPI08N50C3infineon SPA11N65C3infineon SPP04N60C3infineon SPA11N80C3infineon SPP04N80C3infineonSPA20N60C3infineon SPP07N60C3infineon SPA21N50C3infineon SPP08N50C3infineon SPW20N60C3infineon SPP08N80C3infineon SPW20N60S5infineon SPP11N60C3infineon SPW21N50C3infineon SPP11N80C3infineon SPW32N50C3infineon SPP17N80C3infineon SPW35N60C3infineon SPP20N60C3infineon SPW47N60C3infineon SPP20N60S5infineon SS05N70infineon。

BTS824R中文资料

BTS824R中文资料

Logic Channel 1 Channel 2
IN3 ST3/4
IN4
Logic Channel 3 C Load 3 Load 4
Infineon Technologies AG
1
2003-Oct-01
元器件交易网
Functional diagram
Parameter and Conditions
Symbol
Thermal resistance junction - soldering point6)7)
junction – ambient6) @ 6 cm2 cooling area
Storage temperature range
Power dissipation (DC)4) (all channels active)
Ta = 25°C: Ta = 85°C:
Maximal switchable inductance, single pulse
Vbb = 12V, Tj,start = 150°C4), see diagrams on page 10
connection. PCB is vertical without blown air. See page 14 5) only for testing
Infineon Technologies AG
4
2003-Oct-01
元器件交易网
Thermal Characteristics
Protection Functions
• Short circuit protection • Overload protection • Current limitation • Thermal shutdown • Overvoltage protection (including load dump) with external

TS824CX5DRF资料

TS824CX5DRF资料

TS823/824/825 SeriesMicroprocessor Supervisory Circuitwith Watchdog Timer & Manual ResetSOT-25General DescriptionThe TS823/824/825 family allows the user to customize the CPU monitoring function without any external components. The user has a large choice of reset voltage thresholds and output driver configurations, all of which are present ant the factory. Each wafer is trimmed to the customer’s specifications.These circuits will ignore fast negative going transients on Vdd. The state of the reset output is guaranteed to be correct down to 1V. After Vdd crosses above a factory present threshold, the TS823/824/825 assert a reset signal. After a predetermined time (the “reset” interval) the reset is deasserted. If Vdd ever drops below the threshold voltage a reset is asserted immediately. In addition to a supply monitoring function the TS823/824/825 also monitor transitions at the watchdog (WDI) input. If a logic transition does not occur at the WDI pin within a certain time interval (the “watchdog” interval) then a reset is asserted. The reset deasserts after the reset interval, as explained earlier.The TS823/824/825 can both assert a reset manually by pulling the MR input to ground, and the micro-power quiescent current make this family a natural for portable battery powered equipment.Ordering InformationNote: x is the threshold voltage type, option as A : 4.63V B : 4.38V D : 3.08V E : 2.93VF : 2.63VG : 2.32VH : 2.19VContact factory for additional voltage option Part No. Package Packing TS823CX5x RFSOT-25 3Kpcs / 7” Reel TS824CX5x RF SOT-25 3Kpcs / 7” Reel TS825CX5x RF SOT-25 3Kpcs / 7” Reel Features ● Precision monitoring of +3V, +3.3V and +5V powersupply voltage● Tight voltage threshold tolerance +/-1.5% ● Fully specified over temperature● 210mS min. power-on reset pulse width● 3uA(typ) supply current● Guaranteed reset valid to Vdd = +1V● Power supply transient immunity ● No external componentsApplications● Computers and Controllers ● Embedded Controllers ● Intelligent instruments ● Critical uP monitoring● Portable / Battery powered equipment ●Automotive SystemsPin DescriptionsFunctionTS823TS824TS825RESET (Active-Low)11 1 Ground2 2 2 Manual Reset3 -4 (RESET) (Active-High)- 3 3 Watchdog Input 4 4 - Supply Voltage (Vdd)555Absolute Maximum RatingParameterSymbolMaximumUnitSupply VoltageVdd 6.0 V Supply Voltage - RecommendedVdd 0.9 ~ 5 V Operating Junction Temperature Range T OP -40 ~ +125 o CStorage Temperature Range T STG -65 ~ +150oC Thermal ResistanceΘjc256oC/W Maximum Lead Temperature (260oC) T LEAD 10 STS823/824/825 SeriesMicroprocessor Supervisory Circuit with Watchdog Timer & Manual ResetElectrical Specifications (Ta = 25o C, unless otherwise noted)ParameterConditionsSymbolMinTypMaxUnitInput Supply VoltageVdd 1.0 -- 5.5 V Supply CurrentWDI and MRB unconnected Idd-- 3 10 uATS823/824/825CX5A 4.56 4.63 4.7 TS823/824/825CX5B 4.31 4.38 4.45 TS823/824/825CX5D 3.033.08 3.13 TS823/824/825CX5E 2.89 2.93 2.97 TS823/824/825CX5F 2.59 2.63 2.67 TS823/824/825CX5G 2.28 2.32 2.36Reset ThresholdTS823/824/825CX5HV TH2.152.19 2.23 VRESET Output Voltage Low Vdd<V TH(MIN), I SINK =1.2mA, V OL -- -- 0.5 V (RESET) Output Voltage High Vdd>VTH(MAX), I SOURCE =0.5mA V OH 0.8 Vdd -- -- V Vdd to Reset DelayVdd =V TH - 100mVT D1 -- 40 -- uS Reset Active Timeout Period Ta=-40o C ~+85oC T D2 140 210 280 mS Watchdog Timeout Period T WD 1120 1760 2400 mS WDI Pulse WidthT WDI 50 -- -- nS W DIIL -- -- 0.7 V WDI Input Threshold Vdd = V TH x 1.2 W DIIH 0.8 Vdd -- -- V W DI =0V I IL -15 -8 0.7 uA WDI Input Current W DI =Vdd = 5V I IH -- 8 15 uA M RIL -- -- 0.7 V MR Input Threshold Vdd=V TH x 1.2M RIH 0.8 Vdd -- -- V MR Pulse WidthT WMR 1 -- -- uS MR Noise Immunity Pulse width with no reset -- 100 -- nS MR to Reset Delay Vdd = V TH - 100mV T DMR -- 500 -- nS MR Pull Up Resistance80 -- 120 K Ω Input Supply VoltageTa=-40oC~+85oCV CC1.0--5.5VDetail DescriptionPin FunctionPin Name Pin Description Reset Active Low GND Ground (Reset)Active HighMRThis pin is active low. Pulling this pin low to forces a reset. After a low to high transition reset remains asserted for exactly one reset timeout period. This pin is internally pulled high. If this function is unused then float this pin or tie it to Vdd.WDIWatch Dog Input. Any transition on this pin will reset the Watch Dog timer. If this pin remains high or low for longer than the Watch Dog interval then a reset is asserted. Float or tri-state this pin to disable the Watch Dog feature.VddPositive power supply. A reset is asserted after this voltage drops below a predetermined level. AfterTS823/824/825 SeriesMicroprocessor Supervisory Circuitwith Watchdog Timer & Manual Reset Application InformationThe TS823/824/825 are designed to interface with the reset input of a microprocessor and to prevent CPU execution errors due to power up, power down, and other power supply errors. The TS823/824 also monitor the CPU health by checking for signal transitions form the CPU at the WDI input.Reset OutputActive low reset outputs are denoted as RESET, Active high reset output are denoted as (RESET),A reset will be asserted if any of three things happen:1. Vdd drops below the threshold (Vth)2. The MR pin is pulled low.3. The WDI pin does not detect a transition within the Watch Dog interval (TWD)The reset will remain asserted for the prescribed reset interval after:1. Vdd rises above the threshold (Vth)2. MR goes high3. The Watch Dog timer have timed out causing the reset to assert.Manual Reset InputThe TS823 and TS825 feature a manual reset feature (MR). A logic low on the MR pin asserts a reset. The reset remains asserted a long as the MR pin remains low. After the MR pin transitions to a high state the reset remains asserted for the prescribed reset interval (TD2). The MR pin is internally pulled up to Vdd by a 100KΩ resistor. It is internally de-bounced to reject switching transients.The MR pin is ESD protected by diodes connected to Vdd and Gnd. So the MR pin should never be driven higher than Vdd or lower than Gnd.Watchdog InputThe TS823 and TS824 are equipped with a watchdog input (WDI). If the microprocessor does not produce a valid logic edge at the watchdog input (WDI) within the prescribed watchdog interval (TWD) then a reset asserts. The reset remains asserted for the required reset interval (TD2). Ata the end of the reset interval the reset is deasserted and the watchdog interval timer starts again from zero.If the watchdog input is left unconnected or is connected to a tri-stated buffer the watchdog function is disabled. As soon as the WDI input is driven either low or high the watchdog function resumes with the watchdog timer set to zero. Watchdog Input CurrentThe watchdog input pin (WDI) typically sources/sinks 8uA when driven high or low. So from a power dissipation point of view the duty cycle of the waveform at WDI is unimportant. When the WDI pin is floating or tri-stated the power supply current fall to less than 3uA.Glitch RejectionThe TS823/824/825 family will reject negative going transients on the Vdd line to some extent. The smaller the duration of the transient the larger its amplitude may be without triggering a reset. The “Glitch Rejection” chart in the graphs section of this datasheet shows the relation between glitch amplitude and allowable glitch duration to avoid unintended resets.Accurate Output State at Low VddWith Vdd voltage on the order of the MOS transistor threshold (<1V) the outputs of the TS823/824/825 may become undefined. For parts with active low output RESET a resistor placed between RESET and Gnd on the order of 100KΩwill ensure that the RESET output stays low when Vdd is lower than the threshold voltage of the part. In a like manner a resistor on the order of 100KΩ when placed between (RESET) and Vdd will ensure parts with active high output (RESET) will remain high when Vdd is lower than the threshold voltage of the parts.TS823/824/825 Series Microprocessor Supervisory Circuitwith Watchdog Timer & Manual Reset Reset Timing DiagramReset Timing DiagramTS823/824/825 SeriesMicroprocessor Supervisory Circuit with Watchdog Timer & Manual ResetElectrical Characteristics CurveFigure 1. Glitch RejectionFigure 2. Reset Time vs. TemperatureFigure 3. Iin vs. TemperatureFigure 4. Reset Vth vs. TemperatureFigure 5. Reset VOL vs. TemperatureTS823/824/825 SeriesMicroprocessor Supervisory Circuitwith Watchdog Timer & Manual Reset Marking InformationPart No. IdentificationCodePart No.IdentificationCodePart No.IdentificationCodeTS823CX5A BAC TS824CX5A BAD TS825CX5A BAE TS823CX5B - TS824CX5B ATW TS825CX5B -- TS823CX5D ASM TS824CX5D ATL TS825CX5D ATN TS823CX5E ATX TS824CX5E ATV TS825CX5E AUS TS823CX5F ATG TS824CX5F ATC TS825CX5F AWW TS823CX5G BCW TS824CX5G -- TS825CX5G -- TS823CX5B AWY TS824CX5B AWS TS825CX5B --Year Code definitionIdentificationCodeWeek Code YearX X X W W xxx0X X X W W xxx1X X X W W xxx2X X X W W xxx3X X X W W xxx4X X X W W xxx5X X X W W xxx6X X X W W xxx7X X X W W xxx8X X X W W xxx9TS823/824/825 SeriesMicroprocessor Supervisory Circuit with Watchdog Timer & Manual ResetSOT-25 Mechanical DrawingSOT-25 DIMENSIONMILLIMETERS INCHES DIM MIN MAX MIN MAX. A+A1 0.09 1.25 0.0354 0.0492 B 0.30 0.50 0.0118 0.0197 C 0.09 0.25 0.0035 0.0098 D 2.70 3.10 0.1063 0.1220 E 1.40 1.80 0.0551 0.0709 E 1.90 BSC 0.0748 BSC H 2.40 3.00 0.09449 0.1181 L 0.35 BSC 0.0138 BSC Ө1 0º 10º 0º 10º S10.95 BSC 0.0374 BSCTS823/824/825 SeriesMicroprocessor Supervisory Circuitwith Watchdog Timer & Manual ResetNoticeSpecifications of the products displayed herein are subject to change without notice. TSC or anyone on its behalf, assumes no responsibility or liability for any errors or inaccuracies.Information contained herein is intended to provide a product description only. No license, express or implied, to any intellectual property rights is granted by this document. Except as provided in TSC’s terms and conditions of sale for such products, TSC assumes no liability whatsoever, and disclaims any express or implied warranty, relating to sale and/or use of TSC products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright, or other intellectual property right.The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications. Customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify TSC for any damages resulting from such improper use or sale.。

CS8-12IO2中文资料

CS8-12IO2中文资料
TVJ = 125°C
20 A 15 IT(AV)M
10
5
0
10-3
10-2
10-1
100 s 101
t
Fig. 4 Surge overload current
ITSM: crest value, t: duration
40
W
30 PT
20
DC
180° sin
120°
60°
10
30°
100
1
2 3 4 5 6 7 m8 s910
currents and voltages
Applications q Motor control q Power converter q AC power controller
Advantages q Space and weight savings q Simple mounting q Improved temperature and power
£
I
T
=
33
A;
T VJ
=
25°C
£
For power-loss calculations only (TVJ = 125°C)
3 mA
1.6 V
1.0 V 18 mW
VD = 6 V; V = 6 V;
D
T =T ;
VJ
VJM
TVJ = 25°C
TVJ = -40°C
T VJ
=
25°C
TVJ = -40°C
cycling
Dimensions in mm (1 mm = 0.0394")
Data according to IEC 60747 IXYS reserves the right to change limits, test conditions and dimensions

SC824ULTRT;中文规格书,Datasheet资料

SC824ULTRT;中文规格书,Datasheet资料

POWER MANAGEMENT SC824Single-cell Li-Ion Charger Tri-Mode with Timer and NTCFeaturesSingle input 30V protected chargerAdapter, USB High, USB Low modesCharging by current regulation, voltage regulation, and thermal limitingProgrammable currents from 70mA to 1AFast-charge current regulation — 15% at 70mA, 9% at 700mAConstant voltage — 4.2V, 1% regulation Input voltage protection — 30VCurrent-limited adapter support capability — reduces power dissipation in charger ICUSB modes automatically reduce charge current if needed to prevent USB Vbus overloadInstantaneous CC-to-CV transition for faster charging Battery temperature NTC thermistor interfaceMulti-stage charge timer for safety and alternative termination, IEEE Std. 1725-2006 compliant Termination on current or timer — fi rst to occur Soft-start reduces adapter or USB load transients High operating voltage range permits use of unregulated adaptersComplies with CCSA YD/T 1591-2006High-current USB Dedicated Charger compatible Ultra-thin 2×2×0.6 (mm) MLPD package Lead-free and halogen-free WEEE and RoHS compliantApplicationsMobile phonesPersonal Media PlayersPersonal Navigation DevicesDescriptionThe SC824 is a single input triple mode (adapter/USB High, USB Low) linear single-cell Li-Ion battery charger in a 10 lead 2×2 (mm) MLPD ultra-thin package.Charging begins automatically when an input source is applied to the charging input. The input is designed to survive sustained input voltage up to 30V to protect against hot plug overshoot and faulty charging adapters. Thermal limiting protects the SC824 from excessive power dissipation.The SC824 provides three modes of charging: adapter mode, USB low power mode, and USB high power mode. Adapter mode charges up to 1A with the charging adapter operating either in voltage regulation or in current limit to obtain the lowest possible power dissipation. A single current programming pin is used to program precharge current, termination current, and fast-charge current in fi xed proportions. The USB modes provide low and high power fast-charge currents. The two USB modes dynami-cally limit the charging load if necessary to automatically prevent overloading the USB Vbus supply.The SC824 provides a battery NTC thermistor interface to disable charging when the battery temperature exceeds programmed thresholds. An optional programmable multi-stage charge timer protects against a faulty battery, or terminates charging on timeout if the system load is too great to terminate charging on current. A 45 minute top-off period following termination ensures a fully charged battery. The monitor state restarts a charge cycle if the battery discharges after the charger has turned off .LoadV ADAPTERMODE SELECT CPU GPIOTypical Application CircuitPin Confi gurationMarking InformationOrdering InformationDevicePackageSC824ULTRT (1)(2)MLPD-UT-10 2×2SC824EVBEvaluation BoardNotes:(1) Available in tape and reel only. A reel contains 3,000 devices.(2) Lead-free packaging only. Device is WEEE and RoHS compliant,and halogen-free.Exceeding the above specifi cations may result in permanent damage to the device or device malfunction. Operation outside of the parameters specifi ed in the Electrical Characteristics section is not recommended.NOTES:(1) Tested according to JEDEC standard JESD22-A114.(2) Operating Voltage is the input voltage at which the charger is guaranteed to begin operation. These ranges apply to charging sourcesoperating in voltage regulation. Charging sources operating in current limit may be pulled below these ranges by the charging load.Maximum operating voltage is the maximum Vsupply as defined in EIA/JEDEC Standard No. 78, paragraph 2.11.(3) Calculated from package in still air, mounted to 3 x 4.5 (in), 4 layer FR4 PCB with thermal vias under the exposed pad per JESD51 standards.Absolute Maximum RatingsVIN, STAT0, STAT1 (V) . . . . . . . . . . . . . . . . . . . . . . . -0.3 to +30.0VSYS, BAT (V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .-0.3 to +6.5MODE (V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3 to (BAT + 0.3)EN_NTC, RTIME, IPRGM (V) . . . . . . . . . . . . . -0.3 to (VSYS + 0.3)VIN input current (A) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.5BAT, IPRGM Short to GND Duration . . . . . . . . . . Continuous ESD Protection Level (1) (kV) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2Recommended Operating ConditionsOperating Ambient Temperature (°C) . . . . . . . . . -40 to +85VIN Adapter Mode Operating Voltage (2) (V) . . . 4.36 to 8.20VIN USB Modes Operating Voltage (2) (V) . . . . . . 4.70 to 8.20Thermal InformationThermal Resistance, Junction to Ambient (3) (°C/W) . . . . . 68Maximum Junction Temperature (°C) . . . . . . . . . . . . . . +150Storage Temperature Range (°C) . . . . . . . . . . . . -65 to +150Peak IR Reflow Temperature (°C) . . . . . . . . . . . . . . . . . . . +260Test Conditions: V VIN = 5.00V (1), V BAT = 3.70V unless specifi ed; Typ values at 25°C; Min and Max at -40°C < T A < 85°C, unless specifi ed.ParameterSymbolConditions MinTypMaxUnitsVIN Under-Voltage Lockout Rising ThresholdVT UVLO-R 4.164.26 4.36V VIN Under-Voltage Lockout Falling Threshold (2)VT UVLO-F V VIN >V BAT2.702.853.00V VIN OVP Rising Threshold VT OVP-R 9.39.6V VIN OVP Falling Threshold VT OVP-F 8.28.5V VIN OVP HysteresisVT OVP-H VT OVP-R - VT OVP-F 500800mVVIN Charging Disabled Operating CurrentICC VIN_DIS V EN_NTC = 0V, V RTIME = 0V 0.8 1.5mA VIN Charging Enabled Operating CurrentICC VIN_ENV EN_NTC = 2.3V, V RTIME = 0V, I BAT = 1mA;excluding I BAT and I IPRGM1.82.5mA Regulation Voltage V CV I BAT = 50mA, -40°C ≤ T J ≤ 125°C 4.16 4.20 4.24V Voltage Load Regulation V CV_LOAD 1mA ≤ I BAT ≤ 1A, -40°C ≤ T J ≤ 125°C-20mV/A BAT Re-charge Threshold VT ReQ V CV - V BAT60100140mV BAT Pre-charge Threshold (rising)VT PreQ2.85 2.902.95VElectrical CharacteristicsParameterSymbolConditionsMin TypMaxUnitsBattery Leakage CurrentlBAT V0V BAT = V CV , V VIN = 0V, V EN_NTC = 0V 0.11μA lBAT DIS V BAT = V CV , V VIN = 5V, V EN_NTC = 0V 0.11μA lBAT MONV BAT = V CV , V EN_NTC = 2.3V,V RTIME = 0V and charging terminated0.11μA IPRGM Programming ResistorR IPRGM 2.0529.4kΩI BAT Fast-Charge Current, adapter mode or USB High Power mode I FQ R IPRGM = 2.94kΩ, VT PreQ < V BAT < V CV R IPRGM = 4.42kΩ, VT PreQ < V BAT < V CV 643427694462745497mA USB Low Power mode Fast-Charge currentI FQ_Low R IPRGM = 2.94kΩ, VT PreQ < V BAT < V CV R IPRGM = 4.42kΩ, VT PreQ < V BAT < V CV 1056913992173116mA I BAT Pre-Charge Current I PreQ R IPRGM = 2.94kΩ, 1.8V < V BAT < VT PreQ R IPRGM = 4.42kΩ, 1.8V < V BAT < VT PreQ1056913992173116mA I BAT Termination Current I TERM R IPRGM = 2.94kΩ, V BAT = V CV R IPRGM = 4.42kΩ, V BAT = V CV 593869468055mA VIN - BAT Dropout VoltageV DO I BAT = 700mA, 0°C ≤ T J ≤ 125°C 0.40.6V IPRGM Fast-charge Regulated Voltage V IPRGM_FQ V VIN = 5.0V, VT PreQ < V BAT < V CV2.04V IPRGM Pre-charge Regulated Voltage V IPRGM_PQ V BAT < VT PreQ 0.408V IPRGM Termination Threshold Voltage VT IPRGM_TERMV BAT = V CV0.204VVIN USB Modes Under-Voltage Load Regulation Limiting Voltage V UVLR 5mA ≤ VIN supply current limit ≤500mA, V MODE = 2V, R IPRGM = 2.94kΩ (694mA)4.404.514.70VThermal Limiting Threshold Temperature T TL 130°C Thermal Limit Rate i T T J > T TL-50mA/ °C VSYS Output Voltage V VSYS V VIN ≥ 5V, I VSYS ≤ 1mA 4.6V VSYS Output CurrentI VSYS 1mA EN_NTC ThresholdsRT NTC_DIS Charger Disable/Reset (Falling)91011.5%V VSYS RT NTC_HF NTC Hot (Falling)293031%V VSYS RT NTC_CR NTC Cold (Rising)747576%V VSYS RT NTC_NBRNo-Battery Mode select (Rising)949596%V VSYS EN_NTC HysteresisVT NTC_HYS V VIN = 5V45mV EN_NTC Disable/Reset Hold Time (3)t NTC_DIS_HMomentary disable resets charger500nsElectrical Characteristics (continued)Electrical Characteristics (continued)ParameterSymbolConditions MinTyp MaxUnitsRTIME Programming Resistor R RTIME 19.6200kΩRTIME Regulated Voltage V RTIME R RTIME = 130kΩ to GND 1.1VPrecharge Fault Time-Outt PreQFInternal Timer Only 384552mins Constant Current (CC) Fault Time-Outt CCFR RTIME = 130kΩ to GND 8.51011.5hrs R RTIME connected to VSYS (Int. Timer)2.5533.45hrs Constant Voltage (CV) Time-Out t CV Internal Timer Only 2.553 3.45hrs Top-off Time-Out t TO Internal Timer Only 384552mins Charge-done Status Delayt SD Internal Timer Only172023s MODE Input High Voltage Threshold V IH 1.6VMODE Input Mid Voltage Range V IM 0.651.3V MODE Input Low Voltage Threshold V IL 0.3V MODE Input High-range Input Current I IH V MODE = Min V IH2375μA MODE Input Mid-range Load Limit I IM Input will float to mid range when thisload limit is observed.-55μA MODE Input Low-range Input Current I IL 0V ≤ V MODE ≤ Max V IL-25-12μAMODE Input Monitor State Input Cur-rentI MODE_MON V MODE = V BAT = V CV , V EN_NTC = 2.3V,V RTIME = 0V and charging terminated 1μA MODE Input LeakageI ILEAK V VIN = 5V and V EN_NTC = 0V, or V VIN = 0V,V MODE = V CV1μA STAT0, STAT1 Output Low Voltage V STAT_LO I STATx_SINK = 1mA 0.5V STAT0, STAT1 Output High CurrentI STAT_HIV STATx = 5V1μANotes:(1) Electrical Characteristics apply for V VIN = 4.75V to 5.25V, but are tested only at V VIN = 5.00V, unless noted.(2) Sustained operation to VT UVLO-F ≤ V VIN is guaranteed only if a current limited charging source applied to VIN is pulled below VT UVLO-R bythe charging load in adapter mode; forced VIN voltage below VT UVLO-R may in some cases result in regulation errors or other unexpected behavior.(3) Not tested. Guaranteed by design.Typical CharacteristicsCV Line RegulationCV Load RegulationCV Temperature RegulationCC AD or USB High FQ Line RegulationCC AD or USB High FQ V BAT RegulationCC AD or USB High FQ Temperature RegulationTypical Characteristics (continued)CC USB Low Power FQ Line RegulationCC USB Low Power FQ VRegulationCC USB Low Power FQ Temperature RegulationCC PQ Line RegulationCC PQ Temperature RegulationI FQ vs. R IPRGM , Adapter or USB High Power ModesTypical Characteristics (continued)Ivs. R ; I vs. R , USB Low Power ModeCharging Cycle Battery Voltage and CurrentPre-Charging Battery Voltage and CurrentCC-to-CV Battery Voltage and CurrentUSB Low-Power Re-Charge CycleRe-Charge Cycle BAT Pin Voltage and CurrentTypical Characteristics (continued)Mode Reselection — USB Low to USB HighMode Reselection — USB High to USB LowMode Reselection — AD to USB HighMode Reselection — USB High to ADMode Reselection — AD to USB LowMode Reselection — USB Low to AD100μs/div I BAT (100mA/div)V MODE =0V—V MODE (2V/div)I BAT =0mA—V VIN =5V, V BAT =3.7V, R IPRGM= 2.94kΩ100μs/divI BAT (100mA/div))V MODE =0V—V MODE (2V/div)I BAT =0mA—V VIN =5V, V BAT =3.7V, R IPRGM= 2.94kΩ100μs/divI BAT (100mA/div)V MODE (2V/div)V VIN =5V, V BAT =3.7V, R IPRGM = 2.94kΩV MODE =0V—I BAT=0mA—100μs/divI BAT (100mA/div)V MODE =0V—V MODE (2V/div)I BAT =0mA—V VIN =5V, V BAT =3.7V, R IPRGM = 2.94kΩ100μs/divI BAT (100mA/div)V MODE (2V/div)V VIN =5V, V BAT =3.7V, R IPRGM = 2.94kΩV MODE =0V—I BAT =0mA—100μs/divI BAT (100mA/div)V MODE (2V/div)V VIN =5V, V BAT =3.7V, R IPRGM = 2.94kΩV MODE =0V—I BAT =0mA—Pin DescriptionsPin #Pin NamePin Function1VIN Supply pin — Connect to charging adapter (wall adapter or USB). This pin is protected against damage due to high voltage up to 30V.2VSYS System reference voltage supply — 4.6V reference used internally and externally by the NTC circuit. Must have a 1μF capacitor connected between VSYS and GND.3MODECharging mode selection (tri-level logical) input — Logical high selects USB high power mode, floating selects USB low power mode, ground selects adapter mode.4RTIMETimer setting pin — Connect a resistor between this pin and ground to set the time-out value of the CC mode timer. Connect to ground to disable the timer. Tie to VSYS to select the 3 hour CC timer using the internal oscilla-tor.5GND Ground6STAT1Status open drain output pin that is active low when charging is in progress, with or without a charging fault. When charging is complete, pin is released. See STATx Pin Truth Table.7STAT0Status open drain output pin that is pulled low when a valid charging adapter is connected and the voltage is greater than the UVLO level and less than the OVP level, and no charging fault is detected. Pin is released when the input is disconnected from a power supply, or to indicate a charging fault. See STATx Pin Truth Table.8 IPRGMCharging current programming pin — Connect a resistor from this pin to ground to program charge current. Pre-charge current (also USB low power mode fast-charge current) is 20% of IPRGM-programmed fast-charge current in all modes. The charging termination current threshold for all modes is 10% of the IPRGM programmed fast-charge current. If this pin is grounded, pin-short detection holds the SC824 in logical reset, with charging disabled.9BATCharger output — Connect to battery positive terminal.10EN_NTCBattery NTC thermistor connection pin — EN_NTC pin input voltage ranges are ratiometric with respect to the VSYS pin output voltage. The safe-to-charge battery temperature range is programmed with a resistor from the EN_NTC pin to the VSYS pin, and a battery pack NTC thermistor to ground; charging is suspended when theEN_NTC pin voltage is less than 30%, or greater than 75%, of V VSYS . When pulled down below 10% of V VSYS , charging is unconditionally disabled. When the level exceeds 95% of V VSYS , the battery is assumed to be disconnected and the device operates in No-Battery mode.T Thermal PadPad is for heatsinking purposes — The thermal pad is not connected internally. Connect exposed pad to ground plane using multiple vias.分销商库存信息: SEMTECHSC824ULTRT。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1/5s LOW T c: 50 ppm/°C MAXIMUM s 1.225V OUTPUT VOLTAGEs LOW OPERATING CURRENT : 45µA max @25°Cs HIGH PRECISION AT 25°C: ±1%s STABLE WHEN USED WITH CAPACITIVELOADSs INDUSTRIAL TEMPERATURE RANGE:-40 to +85°C DESCRIPTIONThe TS824 is a low power shunt voltage reference featuring a very low temperature coefficient of 50ppm/°C as a maximum value. Providing 1.225V output voltage, the TS824 operates over the industrial temperature range (-40 to +85°C). Ideal for battery-powered equipments where power conservation is critical, the TS824 is housed in a tiny SOT23-3 package allowing space saving. The TS824 is typically stable with any capacitive loads within the entire temperature range. The product is thus easy to use and the design simpli-fied.APPLICATIONs Instrumentation,s Data acquisition systems,s Portable, Battery powered equipments sPower managementORDER CODELT = Tiny Package (SOT23-3) - only available in Tape & Reel (LT)PIN CONNECTIONS (top view)VoltagePrecisionSOT23-3SOT23 Marking 1.225V 1%TS824ILT-1.2L251Single temperature range: -40 to +85°CTS824-1.2HIGH THERMAL STABILITYMICROPOWER SHUNT VOLTAGE REFERENCEMarch 2002TS824-1.22/5ABSOLUTE MAXIMUM RATINGSOPERATING CONDITIONSELECTRICAL CHARACTERISTICS (note 3)T amb = 25°C (unless otherwise specified)Symbol ParameterValue Unit I K Reverse Breakdown Current20mA I F Forward Current10mA P D Power Dissipation (note 1)SOT23-3360mW T Std Storage Temperature -65 to +150°C TJ Junction Temperature+150°C T Lead Lead Temperature (soldering, 10 seconds)+260°C ESDHuman Body Model (HBM) (note 2)2kV Machine Model (MM) (note 2)200VNote 1: The maximum power dissipation must be derated at high temperature. It can be calculated using T JMAX (maximum junction tem-perature), R THJA (Thermal resistance junction to ambient) and T A (Ambient temperature). The maximum power dissipation formula at any temperature is P DMAX = (T JMAX - T A ) / R THJA. R THJA is 340°C/W for the SOT23-3 package.Note 2: The Human Body Model (HBM) is defined as a 100pF capacitor discharge through a 1.5k Ω resistor into each pin. The Machine Mode (MM) is defined as a 200pF capacitor discharge directly into each pins.Symbol ParameterValue Unit I min Minimum Operating Current 40µA I max Maximum Operating Current12mA T operOperating Free Air Temperature Range-40 to +85°CSymbol ParameterTest ConditionMin.Typ.Max.Unit V KReverse Breakdown VoltageI K = 100µA1.213 1.2251.237V Reverse Breakdown Voltage Tolerance I K = 100µA-40°C < T amb < +85°C -12-16+12+16mV I KMIN Minimum Operating Current T amb = 25°C4045µA -40°C < T amb < +85°C 50∆V K /∆TAverage Temperature Coefficient (note 4)I K = 100µA50ppm/°C∆V K /∆I K Reverse Breakdown Voltage Change with Operating Current RangeI KMIN < I K < 1mA-40°C < T amb < +85°C 0.311.5mV1mA < I K < 12mA -40°C < T amb < +85°C 2.5810R KA Static Impedance ∆I K = I KMIN to 1mA -40°C < T amb < +85°C 0.311.5Ω∆I K = 1mA to 12mA -40°C < T amb < +85°C 0.250.70.9K VH Long Term Stability I K = 100µA, t = 1000hrs 120ppm E NWide Band NoiseI K = 100µA100Hz < f < 10kHz200nV/√HzNote 3: Limits are 100% production tested at 25°C. Limits over temperature are guaranteed through correlation and by design.Note 4: The total tolerance within the industrial range, where the maximum ∆T versus 25°C is 65°C, is explained hereafter: ± 1 % + (± 50 ppm/°C x 65°C) = ± 1.325 %TS824-1.23/5Reference voltage versus cathode current Test circuit Static impedance for Ik < 1mAReference voltage versus cathode currentReference voltage versus TemperatureStatic impedance for Ik > 1mATS824-1.24/5Start-Up characteristics with low Ik (100µA)Noise versus frequencyStart-Up schematic with low Ik (100µA)TS824-1.25/5PACKAGE MECHANICAL DATA3 PINS - TINY PACKAGE (SOT23-3)DimensionsMillimetersInches Min.Typ.Max.Min.Typ.Max.A 0.890 1.1200.0350.044A10.0100.1000.00040.004A20.8800.950 1.0200.0370.040b 0.3000.5000.0120.020c 0.0800.2000.0030.008D 2.800 2.900 3.0400.1100.1140.120E 2.100 2.6400.0830.104E1 1.2001.300 1.4000.0470.0510.055e 0.9500.037e1 1.9000.075L 0.4000.5000.6000.0160.0200.024L10.5400.021k0°8°Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.© The ST logo is a registered trademark of STMicroelectronics© 2002 STMicroelectronics - Printed in Italy - All Rights ReservedSTMicroelectronics GROUP OF COMPANIESAustralia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - MalaysiaMalta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States© - United Kingdom。

相关文档
最新文档