高二数学选修2-1测试题及答案汇编

合集下载

高二数学选修2-1测试题及答案

高二数学选修2-1测试题及答案

高二数学选修2-1测试题及答案一、选择题1.方程x 2sin θ-1+y 22sin θ+3=1所表示的曲线是( D ) A .焦点在x 轴上的椭圆B .焦点在y 轴上的椭圆C .焦点在x 轴上的双曲线D .焦点在y 轴上的双曲线2.若p q Λ是假命题,则( )A.p 是真命题,q 是假命题B.p 、q 均为假命题C.p 、q 至少有一个是假命题D.p 、q 至少有一个是真命题 3.1F ,2F 是距离为6的两定点,动点M 满足∣1MF ∣+∣2MF ∣=6,则M 点的轨迹是 ( )A.椭圆B.直线C.线段D.圆4.直线y =kx +2与抛物线y 2=8x 只有一个公共点,则k 的值为( C )A .1B .0C .1或0D .1或35.中心在原点的双曲线,一个焦点为,则双曲线的方程是( )A .B .C .D . 6.已知正方形ABCD 的顶点,A B 为椭圆的焦点,顶点,C D 在椭圆上,则此椭圆的离心率为( )A1 B .2C 1D .27.椭圆14222=+a y x 与双曲线1222=-y a x 有相同的焦点,则a 的值为( ) A .1 B .2 C .2 D .38.与双曲线1422=-x y 有共同的渐近线,且过点(2,2)的双曲线标准方程为( ) (A )112322=-x y (B )112322=-y x (C )18222=-x y (D )18222=-y x 9.已知A (-1,-2,6),B (1,2,-6)O 为坐标原点,则向量,OA OB 与的夹角是( )A .0B .2π C .π D .32π 10.与向量(1,3,2)a =-平行的一个向量的坐标是( ) (0F 12212x y -=2212y x -=221x -=221y =A .(31,1,1) B .(-1,-3,2) C .(-21,23,-1) D .(2,-3,-22) 11.设F 1和F 2是双曲线x 24-y 2=1的两个焦点,点P 在双曲线上,且满足∠F 1PF 2=90°,则△F 1PF 2的面积为( )A .1 B.52C .2 D. 5 12.若直线m y x =+与圆m y x =+22相切,则m 的值为( )A .0B .1C .2D .0或2二、填空题13.已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的离心率为52,则C 的渐近线方程为________________. 14.已知椭圆x y k k ky x 12)0(3222=>=+的一个焦点与抛物线的焦点重合,则该椭圆的离心率是. 15.已知方程12322=-++ky k x 表示椭圆,则k 的取值范围为___________ 16.在正方体1111ABCD A B C D -中,E 为11A B 的中点,则异面直线1D E 和1BC 间的距离为 .三、解答题17.已知直线x +y -1=0与椭圆x 2+by 2=34相交于两个不同点,求实数b 的取值范围.18.求渐近线方程为x y 43±=,且过点)3,32(-A 的双曲线的标准方程及离心率。

高二数学选修2-1练习题(1)

高二数学选修2-1练习题(1)

1高二数学选修2-1一. 选择题1.下列语句是命题的为 ( ) A. x-1=0 B. 他还年青C. 20-5×3=10D. 在20020年前,将有人登上为火星2.命题 “若△ABC 不是等腰三角形,则它的任何两个内角不相等”的逆否命题是( ) A. “若△ABC 是等腰三角形,则它的任何两个内角相等” B. “若△ABC 任何两个内角不相等,则它不是等腰三角形” C. “若△ABC 有两个内角相等,则它是等腰三角形” D. “若△ABC 任何两个角相等,则它是等腰三角形”3.“m =-2”是“直线(m +2)x +3my +1=0与直线(m -2)x +(m +2)y -3=0相互垂直”的 ( )A. 充分必要条件B. 充分而不必要条件C. 必要而不充分条件D. 既不充分也不必要条件 4. 给出下列三个命题 ①若1->≥b a ,则bb a a +≥+11②若正整数m 和n 满足n m ≤,则2)(n m n m ≤-③设),(11y x P 为圆9:221=+y x O 上任一点,圆O 2以),(b a Q 为圆心且半径为 1.当1)()(2121=-+-y b x a 时,圆O 1与圆O 2相切其中假命题的个数为( )A .0B .1C .2D .35.双曲线19422-=-y x 的渐近线方程是( )A .x y 23±=B .x y 32±=C .x y 49±=D .x y 94±=6. 已知M(-2,0),N(2,0),|PM|-|PN|=4,则动点P 的轨迹是( ) A.双曲线 B.双曲线左支 C.一条射线 D.双曲线右支7.如果方程x 2+ky 2=2表示焦点在y 轴上的椭圆,那么实数k 的取值范围是( ) A. (0,+∞) B. (0,2) C. (1,+∞) D. (0,1)8.已知向量)5,3,2(-=与向量),,4(y x -=平行,则x,y 的值分别是( ) A. 6和-10 B. –6和10 C. –6和-10 D. 6和109.已知ABCD 是平行四边形,且A(4,1,3),B(2,-5,1),C(3,7,-5),则顶点D 的坐标为( )2A. (1,1,-7)B. (5,3,1)C. (-3,1,5)D. (5,13,-3) 10.3465x y --=表示的曲线为 A. 抛物线 B. 椭圆 C. 双曲线 D.圆 二. 填空题11. 已知双曲线12222=-by a x 的一条渐近线方程为034=-y x ,则双曲线的离心率为___12.直线l 过抛物线2ay x = (a>0)的焦点,并且与x 轴垂直,若l 被抛物线截得的线段长为4,则a= . 13.已知下列命题(c b a ,,是非零向量) (1)若⋅=⋅,则=; (2)若k =⋅,则b=(3) )()(⋅=⋅则假命题的个数为___________14. 已知向量(,12,1),(4,5,1),(,10,1)OA k OB OC k ===-,且A 、B 、C 三点共线, 则k= . 三. 解答题15.如果正△ABC 中,D ∈AB,E ∈AC,向量12DE BC =,求以B,C 为焦点且过点D,E 的双曲线的离心率.16.如图,在正方体ABCD-A 1B 1C 1D 1中,E 、F 分别是BB 1、CD 的中点. (Ⅰ)证明AD ⊥D 1F; (Ⅱ)求AE 与D 1F 所成的角; (Ⅲ)证明面AED ⊥面A 1FD 1;317.如图,在四棱锥P —ABCD 中,底面ABCD 为矩形,侧棱PA ⊥底面ABCD ,AB=3,BC=1,PA=2,E 为PD 的中点.(Ⅰ)求直线AC 与PB 所成角的余弦值;(Ⅱ)在侧面PAB 内找一点N ,使NE ⊥面PAC ,并求出N 点到AB 和AP 的距离.18. 设0<a,b,c<1,用反证法证明: (1-a)b,(1-b)c,(1-c)a 不同时大于.4119.已知一条曲线上的每个点M 到A (1,0)的距离减去它到y 轴的距离差都是1. (1)求曲线的方程;(2)讨论直线y=kx+1 (k ∈R)与曲线的公共点个数.20.已知中心在原点的双曲线C 的右焦点为(2,0),右顶点为)0,3(。

高中数学选修2-1综合测试题及答案

高中数学选修2-1综合测试题及答案

选修2-1综合测试题一、选择题1、a 、b 为实数,那么b a 22>是22log log a b >的 ( )A.必要非充分条件B.充分非必要条件C.充要条件D.既不充分也不必要条件 2、给出命题:假设函数()y f x =是幂函数,那么函数()y f x =的图象不过第四象限.在它的逆命题、否命题、逆否命题三个命题中,真命题的个数是 ( ) A.0B.1C.2D.33、函数()sin 2()3f x x xf π'=+,那么()3f π'= ( )A.12-B. 0C.12- D.324、如果命题“p 且q 〞是假命题,“非p 〞 是真命题,那么 ( )A.命题p 一定是真命题B.命题q 一定是真命题C.命题q 可以是真命题也可以是假命题D.命题q 一定是假命题5、命题[]2:"1,2,0"p x x a ∀∈-≥,命题2:",220"q x R x ax a ∃∈++-=,假设命题“p q ∧〞 是真命题,那么实数a 的取值范围是 ( )A.(,2]{1}-∞-B.(,2][1,2]-∞-C.[1,)+∞D.[2,1]-6.如图ABCD -A 1B 1C 1D 1是正方体,B 1E 1=D 1F 1=A 1B 14,那么BE 1与DF 1所成角的余弦值是( )A .1517B .12C .817D .327.如下图,在四面体P -ABC 中,PC ⊥平面ABC ,AB =BC =CA =PC ,那么二面角B -AP -C 的余弦值为( )A .22B .33 C .77 D .578、我们把由半椭圆22221(0)x y x a b +=≥与半椭圆22221(0)y x x b c+=<合成的曲线称作“果圆〞(其中222,a b c =+0a b c >>>).如图,设点210,,F F F 是相应椭圆的焦点,A 1、A 2和B 1、B 2是“果圆〞与x,y 轴的交点,假设△F 0F 1F 2是边长为1的等边三角,那么a,b 的值分别为( )A.1,27B.1,3C.5,3D.5,4 9、设1F 和2F 为双曲线22221x y a b-=(0,0a b >>)的两个焦点, 假设12F F ,,(0,2)P b 是正三角形的三个顶点,那么双曲线的离心率为( ) A.32 B.2 C.52D.3 10、设斜率为2的直线l 过抛物线2(0)y ax a =≠的焦点F,且和y 轴交于点A,假设△OAF(O 为坐标原点)的面积为4,那么抛物线方程为( )A.24y x =±B.28y x =±C.24y x =D.28y x =11.长方体ABCD -A 1B 1C 1D 1中,AB =BC =1,AA 1=2,E 是侧棱BB 1的中点,那么直线AE 与平面A 1ED 1所成角的大小为( ) A .60°B .90°C .45°D .以上都不正确12、平面α的一个法向量n =(1,-1,0),那么y 轴与平面α所成的角的大小为( ) A .π6 B .π4 C .π3 D .3π4 二、填空题13. 空间三点A(-2,0,2),B(-1,1,2),C(-3,0,4),设a =,b =,假设向量ka +b 与ka -2b 互相垂直,那么k 的值为________.14. 向量a =(cos θ,sin θ,1),b =(3,-1,2),那么|2a -b|的最大值为________.15、椭圆22221(0)x y a b a b +=>>与双曲线22221x y m n-=(0,0)m n >>有相同的焦点(,0)c -和(,0)c ,假设c 是a 、m 的等比中项,2n 是22m 与2c 的等差中项,那么椭圆的离心率是 . 16、现有以下命题:①命题“2,10x x x ∃∈++=R 〞的否认是“2,10x x x ∃∈++≠R 〞; ②假设{}|0A x x =>,{}|1B x x =≤-,那么()R A B =A ; ③函数()sin()(0)f x x ωϕω=+>是偶函数的充要条件是()2k k ϕπ=π+∈Z ; ④假设非零向量,a b 满足a =λ,b b =λa (R λ∈),那么λ=1. 其中正确命题的序号有________.(把所有真命题的序号都填上)三、解答题(本大题共6小题,共74分,解容许写出必要的文字说明、证明过程及演算步骤.)·O 1O 2xyO F 1 ·· F 2M17、(12分)设命题p:不等式21x x a -<+的解集是1{3}3x x -<<;命题q:不等式2441x ax ≥+的解集是∅,假设“p 或q 〞为真命题,试求实数a 的值取值范围.18、(12分)向量b 与向量a=(2,-1,2)共线,且满足a ·b=18,(ka+b)⊥(ka-b),求向量b 及k 的值. 19、(12分)如下图,圆O 1与圆O 2外切,它们的半径分别为3、1,圆C 与圆O 1、圆O 2外切。

高中数学选修2-1、2-2综合试题

高中数学选修2-1、2-2综合试题

④“ x > 2 ”是“ 1 4.由直线 x = 12 D . 15B . 2 ln 2高中数学选修2-1、2-2 综合试题班级-------------姓名-----------得分-----------一、 选择题(本大题共 10 小题,每小题 5 分,共 50 分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将所选答案写在答题卡上)1.复数 z 的虚部记作 Im (z ),若 z= 5 1 + 2i,则 Im ( z )=( )A .2B . 2iC .-2D .-2i2.考察以下列命题:①命题“ lg x = 0, 则x=1 ”的否命题为“若 lg x ≠ 0, 则x ≠ 1 ”②若“ p ∧ q ”为假命题,则 p 、q 均为假命题③命题 p : ∃x ∈ R ,使得 s in x > 1 ;则 ⌝p : ∀x ∈ R ,均有 sin x ≤ 11< ”的充分不必要条件x 2则真命题的个数为( ) A .1 B .2C .3D .43.在平行六面体 ABCD - A B C D 中, M 为 A C 与 B D 的交点。

1 1 111 111若 AB = a , AD = b , AA = c 则与 BM 相等的向量是()11 1 1 1A . - a + b + cB . a + b + c2 2 2 2A1DD1 C1 MB1 C1 1 1 1C . - a - b + cD . a - b + c2 2 2 2A B1 , x = 2, 曲线 y = - 及轴所围图形的面积为 ( )2 xA .- 2ln 2 C . 1 ln 2 45.已知抛物线 y 2 = 2 px( p > 0) 上有一点 M (4,y ),它到焦点 F 的距离为 5,则 ∆OFM 的面积(O 为原点)为()A .1B .2C . 2D . 2 26.用火柴棒摆“金鱼”,如图所示:…①②③7.在正三棱柱ABC-A B C中,若AB=2B B,则AB与C B所成角的大小为()②实数a,b,有(a+b)2=a2+2ab+b2;类比向量a,b,有(a+b)2=a+2a⋅b+b按照上面的规律,第n个“金鱼”图需要火柴棒的根数为()A.6n+2B.6n-2C.8n+2D.8n-2111111A.60°B.75°C.105°D.90°8.给出下面四个类比结论()①实数a,b,若ab=0则a=0或b=0;类比向量a,b,若a⋅b=0,则a=0或b=022③向量a,有a2=a2;类比复数z,有z2=z2④实数a,b有a2+b2=0,则a=b=0;类比复数z,z有z2+z2=0,则212z=z=012其中类比结论正确的命题个数为()A.0B.1C.2D.39.已知抛物线=2px(p>1)的焦点F恰为双曲线(a>0,b>0)的右焦点,且两曲线的交点连线过点F,则双曲线的离心率为()A.2B.2C.2+1D.2+210.设球的半径为时间t的函数R(t).若球的体积以均匀速度c增长,则球的表面积的增长速度与球半径()A.成正比,比例系数为C B.成正比,比例系数为2CC.成反比,比例系数为C D.成反比,比例系数为2C二、填空题(每小题5分,共20分。

最新人教A版高中数学选修2-1测试题全套及答案

最新人教A版高中数学选修2-1测试题全套及答案

高中数学选修2-1测试题全套及答案一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.给出命题:“若x 2+y 2=0,则x =y =0”,在它的逆命题、否命题、逆否命题中,真命题的个数是( )A .0个B .1个C .2个D .3个2.若命题p ∨q 与命题p ⌝都是真命题,则( )A .命题p 不一定是假命题B .命题q 一定是真命题C .命题q 不一定是真命题D .命题p 与命题q 的真假相同3.设x ∈Z ,集合A 是奇数集,集合B 是偶数集.若命题p :∀x ∈A ,2x ∈B ,则( )A .⌝p :∀x ∈A ,2x ∉B B .⌝p :∀x ∉A ,2x ∉BC .⌝p :∃x 0∉A ,2x 0∈BD .⌝p :∃x 0∈A ,2x 0∉B4.命题“若f (x )是奇函数,则f (-x )是奇函数”的否命题是( )A .若f (x )是偶函数,则f (-x )是偶函数B .若f (x )不是奇函数,则f (-x )不是奇函数C .若f (-x )是奇函数,则f (x )是奇函数D .若f (-x )不是奇函数,则f (x )不是奇函数5.设U 为全集,A,B 是集合,则“存在集合C 使得C C B C A U ⊆⊆,是“∅=B A ”的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件6.命题“若△ABC 有一内角为π3,则△ABC 的三内角成等差数列”的逆命题( ) A .与原命题同为假命题B .与原命题的否命题同为假命题C .与原命题的逆否命题同为假命题D .与原命题同为真命题7.若“0<x <1”是“(x -a )[x -(a +2)]≤0”的充分不必要条件,则实数a 的取值X 围是( )A .(-∞,0]∪[1,+∞)B .(-1,0)C .[-1,0]D .(-∞,-1)∪(0,+∞)8.命题p :若a ·b >0,则a 与b 的夹角为锐角;命题q :若函数f (x )在(-∞,0]及(0,+∞)上都是减函数,则f (x )在(-∞,+∞)上是减函数.下列说法中正确的是( )A .“p ∨q ”是真命题B .“p ∧q ”是假命题C .⌝p 为假命题D .⌝q 为假命题9.下列命题中是假命题的是( )A .存在α,β∈R ,使tan(α+β)=tan α+tan βB .对任意x >0,有lg 2x +lg x +1>0C .△ABC 中,A >B 的充要条件是sin A >sin BD .对任意φ∈R ,函数y =sin(2x +φ)都不是偶函数10.下面四个条件中,使a >b 成立的充分不必要的条件是( )A .a >b +1B .a >b -1C .a 2>b 2D .a 3>b 311.已知A :13x -<,B :(2)()0x x a ++<,若A 是B 的充分不必要条件,则实数a 的取值X 围是( )A .(4,+∞)B .[4,+∞)C .(-∞,4]D .(-∞,-4)12.已知命题p:不等式(x -1)(x -2)>0的解集为A ,命题q:不等式x 2+(a -1)x -a >0的解集为B ,若p 是q 的充分不必要条件,则实数a 的取值X 围是( )A .(-2,-1]B .[-2,-1]C .[-3,1]D .[-2,+∞)二、填空题(本大题共6小题,每小题5分,共30分.把答案填在题中横线上) 13若关于x 的不等式|x -m |<2成立的充分不必要条件是2≤x ≤3,则实数m 的取值X 围是________.14.若命题“∪x ∪R ,ax 2-ax -2≤0”是真命题,则实数a 的取值X 围是________.15.关于x 的方程x 2-(2a -1)x +a 2-2=0至少有一个非负实根的充要条件的a 的取值X 围是________.16.给出下列四个说法:①一个命题的逆命题为真,则它的逆否命题一定为真;②命题“设a ,b ∈R ,若a +b ≠6,则a ≠3或b ≠3”是一个假命题;③“x >2”是“1x <12”的充分不必要条件; ④一个命题的否命题为真,则它的逆命题一定为真.其中说法不正确的序号是________.17.已知命题p :∀x ∈[1,2]都有x 2≥a .命题q :∃x ∈R ,使得x 2+2ax +2-a =0成立,若命题p ∧q 是真命题,则实数a 的取值X 围是________.18.如果甲是乙的必要不充分条件,乙是丙的充要条件,丙是丁的必要不充分条件,则丁是甲的__________条件.三、解答题(本大题共6小题,共60分.解答应写出文字说明、证明过程或演算步骤)19.(10分)已知命题p:若,0≥ac 则二次方程02=++c bx ax 没有实根.(1)写出命题p 的否命题;(2)判断命题p 的否命题的真假, 并证明你的结论.20.(10分)已知集合A ={x |x 2-4mx +2m +6=0},B ={x |x <0},若命题“A ∩B =φ”是假命题,XX 数m 的取值X 围.21.(10分)已知P ={x |x 2-8x -20≤0},S ={x |1-m ≤x ≤1+m }.(1)是否存在实数m ,使x ∪P 是x ∪S 的充要条件,若存在,求出m 的X 围;若不存在,请说明理由;(2)是否存在实数m ,使x ∪P 是x ∪S 的必要条件,若存在,求出m 的X 围;若不存在,请说明理由.22.(10分)已知c >0,且c ≠1,设命题p :函数y =c x 在R 上单调递减;命题q :函数f (x )=x 2-2cx +1在⎝⎛⎭⎫12,+∞上为增函数,若命题p ∧q 为假,命题p ∨q 为真,XX 数c 的取值X 围.23.(10分)已知命题p :方程2x 2+ax -a 2=0在[-1,1]上有解;命题q :只有一个实数x 0满足不等式x 20+2ax 0+2a ≤0,若命题p ∨q 是假命题,求a 的取值X 围.24.(10分)已知数列{a n }的前n 项和为S n ,数列{S n +1}是公比为2的等比数列. 证明:数列{a n }成等比数列的充要条件是a 1=3.参考答案一、选择题1.D2.B3.D4.B5.C6.D7.C8.B9.D 10.A 11.D 12.A提示:1.逆命题为:若x =y =0,则x 2+y 2=0,是真命题.否命题为:若x 2+y 2≠0,则x ≠0或y ≠0,是真命题.逆否命题为:若x ≠0或y ≠0,则x 2+y 2≠0,是真命题.2.“p ⌝”为真命题,则命题p 为假,又p 或q 为真,则q 为真,故选B.3.由命题的否定的定义及全称命题的否定为特称命题可得.命题p 是全称命题:∀x ∈A ,2x ∈B ,则⌝p 是特称命题:∃x 0∈A ,2x 0∉B .故选D.4.原命题的否命题是既否定题设又否定结论,故“若f (x )是奇函数,则f (-x )是奇函数”的否命题是B 选项.5.6.原命题显然为真,原命题的逆命题为“若△ABC 的三内角成等差数列,则△ABC 有一内角为π3”,它是真命题. 7.(x -a )[x -(a +2)]≤0⇒a ≤x ≤a +2,由集合的包含关系知:⎩⎪⎨⎪⎧a ≤0,a +2≥1,⇒a ∈[-1,0]. 8.因为当a ·b >0时,a 与b 的夹角为锐角或零度角,所以命题p 是假命题;命题q 是假命题,例如f (x )=⎩⎪⎨⎪⎧-x +1,x ≤0,-x +2,x >0,综上可知,“p 或q ”是假命题. 9.对于A ,当α=β=0时,tan(α+β)=0=tan α+tan β,因此选项A 是真命题;对于B ,注意到lg 2x +lg x +1=⎝⎛⎭⎫lg x +122+34≥34>0,因此选项B 是真命题;对于C ,在△ABC 中,A >B ⇔a >b ⇔2R sin A >2R sin B ⇔sin A >sin B (其中R 是△ABC 的外接圆半径),因此选项C 是真命题;对于D ,注意到当φ=π2时,y =sin(2x +φ)=cos 2x 是偶函数,因此选项D 是假命题. 10.a >b +1⇒a -b >1>0⇒a >b ,但a =2,b =1满足a >b ,但a =b +1,故A 项正确.对于B ,a >b -1不能推出a >b ,排除B ;而a 2>b 2不能推出a >b ,如a =-2,b =1,(-2)2>12,但-2<1,故C 项错误;a >b ⇔a 3>b 3,它们互为充要条件,排除D.11.由题知1324x x -<⇔-<<,当2a <时,(2)()02x x a x a ++<⇔-<<-,若A 是B 的充分不必要条件,则有A B ⊆且B A ≠,故有4a ->,即4a <-;当2a =时,B=φ,显然不成立;当2a >时,(2)()02x x a a x ++<⇔-<<-,不可能有A B ⊆,故(),4a ∈-∞-.12.不等式(x -1)(x -2)>0,解得x >2或x <1,所以A 为(-∞,1)∪(2,+∞).不等式x 2+(a -1)x -a >0可以化为(x -1)(x +a )>0,当-a ≤1时,解得x >1或x <-a ,即B 为(-∞,-a )∪(1,+∞),此时a =-1;当-a >1时,不等式(x -1)(x +a )>0的解集是(-∞,1)∪(-a ,+∞),此时-a <2,即-2<a <-1.综合知-2<a ≤-1.二、填空题13.(1,4) 14.[-8,0] 15.⎣⎡⎦⎤-2,9416.①② 17.(-∞,-2]∪{1} 18.充分不必要提示:13.由|x -m |<2得-2<x -m <2,即m -2<x <m +2.依题意有集合{x |2≤x ≤3}是{x |m -2<x <m +2}的真子集,于是有⎩⎪⎨⎪⎧m -2<2m +2>3,由此解得1<m <4,即实数m 的取值X 围是(1,4).14.由题意知,x 为任意实数时,都有ax 2-ax -2≤0恒成立.当a =0时,-2≤0成立.当a ≠0时,由⎩⎪⎨⎪⎧a <0,Δ=a 2+8a ≤0得-8≤a <0, 所以-8≤a ≤0.15.设方程的两根分别为x 1,x 2,当有一个非负实根时,x 1x 2=a 2-2≤0,即-2≤a ≤2;当有两个非负实根时,⎩⎪⎨⎪⎧Δ=(2a -1)2-4(a 2-2)≥0,x 1+x 2=2a -1>0,x 1x 2=a 2-2≥0⇔⎩⎪⎨⎪⎧4a ≤9,a >12,a ≤-2或a ≥ 2.即2≤a ≤94.综上,得-2≤a ≤94. 16.①逆命题与逆否命题之间不存在必然的真假关系,故①错误;②此命题的逆否命题为“设a ,b ∈R ,若a =3且b =3,则a +b =6”,此命题为真命题,所以原命题也是真命题,②错误;③1x <12,则1x -12=2-x 2x <0,解得x <0或x >2,所以“x >2”是“1x <12”的充分不必要条件,故③正确;④否命题和逆命题是互为逆否命题,真假性相同,故④正确.17.若p 是真命题,即a ≤(x 2)min ,x ∈[1,2],所以a ≤1;若q 是真命题,即x 2+2ax +2-a =0有解,则Δ=4a 2-4(2-a )≥0,即a ≥1或a ≤-2.命题“p 且q ”是真命题,则p 是真命题,q 也是真命题,故有a ≤-2或a =1.三、解答题19.解:(1)命题p 的否命题为:若,0<ac 则二次方程02=++c bx ax 有实根.(2)命题p 的否命题是真命题. 证明如下: ,04,0,02>-=∆>-<ac b ac ac 所以所以因为所以二次方程02=++c bx ax 有实根.故该命题是真命题.20.解:因为“A ∩B =∅”是假命题,所以A ∩B ≠∅.设全集U ={m |Δ=(-4m )2-4(2m +6)≥0},则U ={m |m ≤-1或m ≥32}. 假设方程x 2-4mx +2m +6=0的两根x 1,x 2均非负,则有⎩⎪⎨⎪⎧ m ∈U ,x 1+x 2≥0,x 1x 2≥0⇒⎩⎪⎨⎪⎧ m ∈U ,4m ≥0,2m +6≥0⇒m ≥32. 又集合{m |m ≥32}关于全集U 的补集是{m |m ≤-1}, 所以实数m 的取值X 围是{m |m ≤-1}.21.解:(1)不存在.由x 2-8x -20≤0得-2≤x ≤10,所以P ={x |-2≤x ≤10},因为x ∈P 是x ∈S 的充要条件,所以P =S ,所以⎩⎪⎨⎪⎧ 1-m =-2,1+m =10,所以⎩⎪⎨⎪⎧m =3,m =9, 这样的m 不存在.(2)存在.由题意x ∈P 是x ∈S 的必要条件,则S ⊆P .所以⎩⎪⎨⎪⎧1-m ≥-2,1+m ≤10,所以m ≤3. 又1+m ≥1-m,所以m ≥0.综上,可知0≤m ≤3时,x ∈P 是x ∈S 的必要条件.22.解:因为函数y =c x 在R 上单调递减,所以0<c <1.即p :0<c <1,因为c >0且c ≠1,所以⌝p :c >1.又因为f (x )=x 2-2cx +1在⎝⎛⎭⎫12,+∞上为增函数,所以c ≤12.即q :0<c ≤12,因为c >0且c ≠1, 所以⌝q :c >12且c ≠1. 又因为“p 或q ”为真,“p 且q ”为假,所以p 真q 假或p 假q 真.①当p 真,q 假时,{c |0<c <1}∩⎩⎨⎧⎭⎬⎫c |c >12且c ≠1=⎩⎨⎧⎭⎬⎫c |12<c <1. ②当p 假,q 真时,{c |c >1}∩⎩⎨⎧⎭⎬⎫c |0<c ≤12=∪. 综上所述,实数c 的取值X 围是⎩⎨⎧⎭⎬⎫c |12<c <1. 23.解:由2x 2+ax -a 2=0得(2x -a )(x +a )=0,所以x =a 2或x =-a , 所以当命题p 为真命题时⎪⎪⎪⎪a 2≤1或|-a |≤1,所以|a |≤2.又“只有一个实数x 0满足不等式x 20+2ax 0+2a ≤0”,即抛物线y =x 2+2ax +2a 与x 轴只有一个交点,所以Δ=4a 2-8a =0,所以a =0或a =2.所以当命题q 为真命题时,a =0或a =2.所以命题“p 或q ”为真命题时,|a |≤2.因为命题“p 或q ”为假命题,所以a >2或a <-2.即a 的取值X 围为{a |a >2或a <-2}.24.证明: 因为数列{S n +1}是公比为2的等比数列,所以S n +1=S 1+1·2n -1,即S n +1=(a 1+1)·4n -1.因为a n =⎩⎪⎨⎪⎧a 1,n =1,S n -S n -1,n ≥2, 所以a n =⎩⎪⎨⎪⎧a 1,n =1,3(a 1+1)·4n -2,n ≥2,显然,当n ≥2时,a n +1a n =4. ①充分性:当a 1=3时,a 2a 1=4,所以对n ∈N *,都有a n +1a n=4,即数列{a n }是等比数列. ②必要性:因为{a n }是等比数列,所以a 2a 1=4, 即3(a 1+1)a 1=4,解得a 1=3. 综上,数列{a n }成等比数列的充要条件是a 1=3.第二章 圆锥曲线与方程 测试题一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.如果抛物线的顶点在原点,对称轴为x 轴,焦点在直线3x -4y -12=0上,那么抛物线的方程是( )A .y 2=-16xB .y 2=12xC .y 2=16xD .y 2=-12x2.设F 1,F 2分别是双曲线x 2-y 29=1的左、右焦点.若点P 在双曲线上,且|PF 1|=5,则|PF 2|=( )A .5B .3C .7D .3或73.已知椭圆x 225+y 29=1,F 1,F 2分别为其左、右焦点,椭圆上一点M 到F 1的距离是2,N 是MF 1的中点,则|ON |的长为( )A .1B .2C .3D .44.“2<m <6”是“方程x 2m -2+y 26-m=1表示椭圆”的( ) A .充分不必要条件 B .必要不充分条件C .充要条件D .既不充分也不必要条件5.双曲线x 2a 2-y 2b 2=1(a >0,b >0)的焦距为4,一个顶点是抛物线y 2=4x 的焦点,则双曲线的离心率e 等于( )A .2B .3C .32D .26.已知点A (3,4),F 是抛物线y 2=8x 的焦点,M 是抛物线上的动点,当|AM |+|MF |最小时,M 点坐标是( )A .(0,0)B .(3,26)C .(3,-26)D .(2,4)7.已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的离心率为52,则椭圆x 2a 2+y 2b 2=1的离心率为( )A .12B .33C .32D .228.设F 1,F 2是双曲线x 2-y 224=1的两个焦点,P 是双曲线上的一点,且3|PF 1|=4|PF 2|,则△PF 1F 2的面积等于( )A .42B .83C .24D .489.已知点A (1,2)是抛物线C :y 2=2px 与直线l :y =k (x +1)的一个交点,则抛物线C 的焦点到直线l 的距离是( )A .22B .2C .322D .2210.若点O 和点F 分别为椭圆x 24+y 23=1的中心和左焦点,点P 为椭圆上的任意一点,则OP →·FP →的最大值为( )A .6B .3C .2D .811.已知以F 1(-2,0),F 2(2,0)为焦点的椭圆与直线x +3y +4=0有且仅有一个交点,则椭圆的长轴长为( )A .32B .26C .27D .712.双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1、F 2,过F 1作圆x 2+y 2=a 2的切线交双曲线的左、右支分别于点B 、C ,且|BC|=|CF 2|,则双曲线的渐近线方程为( )A .y=±3xB .y=±22xC .y=±(1+3)xD .y=±(3-1)x 二、填空题(本大题共6小题,每小题5分,共30分.把答案填在题中横线上)13.抛物线y =4x 2的焦点到准线的距离是_____.14.中心在原点,焦点在x 轴上,若长轴长为18,且两个焦点恰好将长轴三等分,则此椭圆的方程是_____.15.若点P 在曲线C 1:x 216-y 29=1上,点Q 在曲线C 2:(x -5)2+y 2=1上,点R 在曲线C 3:(x +5)2+y 2=1上,则|PQ |-|PR |的最大值是_____.16.已知点P 是抛物线y 2=2x 上的动点,点P 到准线的距离为d ,且点P 在y 轴上的射影是M ,点A (72,4),则|PA |+|PM |的最小值是_____.17.已知F 1为椭圆C :x 22+y 2=1的左焦点,直线l :y =x -1与椭圆C 交于A 、B 两点,则|F 1A |+|F 1B |的值为_____.18.过抛物线y 2=2px (p>0)的焦点作斜率为3的直线与该抛物线交于A ,B 两点,A ,B 在y 轴上的正射影分别为D ,C ,若梯形ABCD 的面积为103,则p=_____. 三、解答题(本大题共6小题,共60分.解答应写出文字说明、证明过程或演算步骤)19.(10分)已知双曲线的渐近线方程为y =±43x ,并且焦点都在圆x 2+y 2=100上,求双曲线方程.20.(10分)已知点P (3,4)是椭圆x 2a 2+y 2b 2=1(a >b >0)上的一点,F 1,F 2是椭圆的左、右焦点,若PF 1⊥PF 2.试求:(1)椭圆的方程;(2)△PF 1F 2的面积.21.(10分)抛物线y 2=2px (p >0)有一个内接直角三角形,直角顶点是原点,一条直角边所在直线方程为y =2x ,斜边长为513,求此抛物线方程.22.(10分)已知抛物线C 的顶点在原点,焦点F 在x 轴的正半轴上,设A 、B 是抛物线C 上的两个动点(AB 不垂直于x 轴),且|AF |+|BF |=8,线段AB 的垂直平分线恒经过定点Q (6,0),求此抛物线的方程.23.(10分)设双曲线C :x 2a 2-y 2=1(a >0)与直线l :x +y =1相交于两点A 、B . (1)求双曲线C 的离心率e 的取值X 围;(2)设直线l 与y 轴的交点为P ,且PA →=512PB →,求a 的值.24.(10分)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为63,且经过点(32,12). (1)求椭圆C 的方程;(2)过点P (0,2)的直线交椭圆C 于A ,B 两点,求△AOB (O 为原点)面积的最大值.参考答案一、选择题1.C 2.D 3.D 4.B 5.A 6.D 7.C 8.C 9.B 10.A 11.C 12.C 提示:1.由题设知直线3x -4y -12=0与x 轴的交点(4,0)即为抛物线的焦点,故其方程为y 2=16x .2.因为双曲线的定义可得||PF 1|-|PF 2||=2,所以|PF 2|=7或3.3.由题意知|MF 2|=10-|MF 1|=8,ON 是△MF 1F 2的中位线,所以|ON |=12|MF 2|=4. 4.若x 2m -2+y 26-m=1表示椭圆,则有⎩⎪⎨⎪⎧m -2>0,6-m >0,m -2≠6-m ,所以2<m <6且m ≠4,故2<m <6是x 2m -2+y 26-m=1表示椭圆的必要不充分条件. 5.依题意,得c =2,a =1,所以e =ca =2.6.由题知点A 在抛物线内.设M 到准线的距离为|MK |,则|MA |+|MF |=|MA |+|MK |,当|MA |+|MK |最小时,M 点坐标是(2,4).7.因为在双曲线中,e 2=c 2a 2=a 2+b 2a 2=1+b 2a 2=54,所以b 2a 2=14,在椭圆中,e 2=c 2a 2=a 2-b 2a 2=1-b 2a 2=1-14=34,所以椭圆的离心率e =32.8.由P 是双曲线上的一点和3|PF 1|=4|PF 2|可知,|PF 1|-|PF 2|=2,解得|PF 1|=8,|PF 2|=6,又|F 1F 2|=2c =10,所以△PF 1F 2为直角三角形,所以△PF 1F 2的面积S =12×6×8=24.9.将点(1,2)代入y 2=2px 中,可得p =2,即得抛物线y 2=4x ,其焦点坐标为(1,0),将点(1,2)代入y =k (x +1)中,可得k =1,即得直线x -y +1=0,所以抛物线C 的焦点到直线l 的距离d =|1-0+1|2=2.10.由椭圆方程得F (-1,0),设P (x 0,y 0),则OP →·FP →=(x 0,y 0)·(x 0+1,y 0)=x 20+x 0+y 20,因为P 为椭圆上一点,所以x 204+y 203=1,所以OP →·FP →=x 20+x 0+3(1-x 204)=x 204+x 0+3=14(x 0+2)2+2,因为-2≤x 0≤2,所以OP →·FP →的最大值在x 0=2时取得,且最大值等于6.11.根据题意设椭圆方程为x 2b 2+4+y 2b 2=1(b >0),则将x =-3y -4代入椭圆方程,得4(b 2+1)y 2+83b 2y -b 4+12b 2=0,因为椭圆与直线x +3y +4=0有且仅有一个交点,所以Δ=(83b 2)2-4×4(b 2+1)(-b 4+12b 2)=0,即(b 2+4)·(b 2-3)=0,所以b 2=3,长轴长为2b 2+4=27.12.根据双曲线的定义有|CF 1|-|CF 2|=2a ,而|BC|=|CF 2|,那么2a=|CF 1|-|CF 2|=|CF 1|-|BC|=|BF 1|,而又由双曲线的定义有|BF 2|-|BF 1|=2a ,可得|BF 2|=4a ,由于过F 1作圆x 2+y 2=a 2的切线交双曲线的左、右支分别于点B 、C ,那么sin ∠BF 1F 2=c a ,那么cos ∠BF 1F 2=cb,根据余弦定理有cos ∠BF 1F 2=c b =ca a c a 222)4()2()2(222⨯⨯-+,整理有b 2-2ab -2a 2=0,即(a b)2-2a b -2=0,解得a b =1+3(a b =1-3<0舍去),故双曲线的渐近线方程为y=±abx=±(1+3)x .二、填空题13.1814.x 281+y 272=115.10 16.9217.82318.3 提示:13.由x 2=14y 知,p =18,所以焦点到准线的距离为p =18.14.依题意知:2a =18,所以a =9,2c =13×2a ,所以c =3,所以b 2=a 2-c 2=81-9=72,所以椭圆方程为x 281+y 272=1.15.依题意得,点F 1(-5,0)、F 2(5,0)分别为双曲线C 1的左、右焦点,因此有|PQ |-|PR |≤|(|PF 2|+1)-(|PF 1|-1)|≤||PF 2|-|PF 1||+2=2×4+2=10,故|PQ |-|PR |的最大值是10.16.设抛物线y 2=2x 的焦点为F ,则F (12,0),又点A (72,4)在抛物线的外侧,抛物线的准线方程为x =-12,则|PM |=d -12,又|PA |+d =|PA |+|PF |≥|AF |=5,所以|PA |+|PM |≥92.17.设点A (x 1,y 1),B (x 2,y 2),则由⎩⎪⎨⎪⎧x 22+y 2=1,y =x -1,消去y 整理得3x 2-4x =0,解得x 1=0,x 2=43,易得点A (0,-1)、B (43,13).又点F 1(-1,0),因此|F 1A |+|F 1B |=12+(-1)2+(73)2+(13)2=823.18.由抛物线y 2=2px (p>0)得其焦点F (2p ,0),直线AB 的方程为y=3(x -2p ),设A (x 1,y 1),B (x 2,y 2)(假定x 2>x 1),由题意可知y 1<0,y 2>0,联立⎪⎩⎪⎨⎧=-=px y p x y 2)2(32,整理有3y 2-2py -3p 2=0,可得y 1+y 2=32p,y 1y 2=-p 2,则有x 1+x 2=35p ,而梯形ABCD的面积为S=21(x 1+x 2)(y 2-y 1)=65p212214)(y y y y -+=103,整理有p 2=9,而p>0,故p=3.三、解答题19.解:设双曲线的方程为42·x 2-32·y 2=λ(λ≠0), 从而有(|λ|4)2+(|λ|3)2=100,解得λ=±576, 所以双曲线的方程为x 236-y 264=1和y 264-x 236=1. 20.解:(1)因为P 点在椭圆上,所以9a 2+16b 2=1,① 又PF 1⊥PF 2,所以43+c ·43-c =-1,得:c 2=25,②又a 2=b 2+c 2,③ 由①②③得a 2=45,b 2=20,则椭圆方程为x 245+y 220=1; (2)S 21F PF ∆=12|F 1F 2|×4=5×4=20.21.解:设抛物线y 2=2px (p >0)的内接直角三角形为AOB ,直角边OA 所在直线方程为y =2x ,另一直角边所在直线方程为y =-12x ,解方程组⎩⎪⎨⎪⎧y =2x ,y 2=2px ,可得点A 的坐标为⎝⎛⎭⎫p 2,p ; 解方程组⎩⎪⎨⎪⎧y =-12x ,y 2=2px ,可得点B 的坐标为(8p ,-4p ).因为|OA |2+|OB |2=|AB |2,且|AB |=513, 所以⎝⎛⎭⎫p24+p 2+(64p 2+16p 2)=325, 所以p =2,所以所求的抛物线方程为y 2=4x .22.解:设抛物线的方程为y 2=2px (p >0),其准线方程为x =-p2, 设A (x 1,y 1),B (x 2,y 2),因为|AF |+|BF |=8, 所以x 1+p 2+x 2+p2=8,即x 1+x 2=8-p ,因为Q (6,0)在线段AB 的中垂线上,所以QA =QB ,即(x 1-6)2+y 21=(x 2-6)2+y 22,又y 21=2px 1,y 22=2px 2,所以(x 1-x 2)(x 1+x 2-12+2p )=0, 因为x 1≠x 2,所以x 1+x 2=12-2p ,故8-p =12-2p ,所以p =4, 所以所求抛物线方程是y 2=8x .23.解:(1)联立⎩⎪⎨⎪⎧x 2-a 2y 2-a 2=0,x +y =1,消y 得x 2-a 2(1-x )2-a 2=0,即(1-a 2)x 2+2a 2x -2a 2=0,得⎩⎪⎨⎪⎧x 1+x 2=-2a 21-a 2,x 1x 2=-2a21-a 2.因为与双曲线交于两点A 、B ,所以⎩⎪⎨⎪⎧1-a 2≠0,4a 4+8a 2(1-a 2)>0,可得0<a 2<2且a 2≠1,所以e 的取值X 围为(62,2)∪(2,+∞); (2)由(1)得⎩⎪⎨⎪⎧x 1+x 2=-2a 21-a 2,x 1x 2=-2a21-a2.因为P A →=512PB →,所以x 1=512x 2,则1712x 2=-2a 21-a 2,①512x 22=-2a 21-a 2,② 由①2②得,a 2=289169,结合a >0,则a =1713. 24.解:(1)由e 2=a 2-b 2a 2=1-b 2a 2=23,得b a =13,①由椭圆C 经过点(32,12),得94a 2+14b 2=1,②联立①②,解得b =1,a =3, 所以椭圆C 的方程是x 23+y 2=1;(2)易知直线AB 的斜率存在,设其方程为y =kx +2,将直线AB 的方程与椭圆C 的方程联立,消去y 得(1+3k 2)x 2+12kx +9=0, 令Δ=144k 2-36(1+3k 2)>0,得k 2>1,设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-12k 1+3k 2,x 1x 2=91+3k 2,所以S △AOB =|S △POB -S △POA |=12×2×|x 1-x 2|=|x 1-x 2|,因为(x 1-x 2)2=(x 1+x 2)2-4x 1x 2=(-12k 1+3k 2)2-361+3k 2=36(k 2-1)(1+3k 2)2,设k 2-1=t (t >0), 则(x 1-x 2)2=36t(3t +4)2=369t +16t+24≤3629t ×16t+24=34, 当且仅当9t =16t ,即t =43时等号成立,此时k 2=73,△AOB 面积取得最大值32.第三章 空间向量与立体几何一、选择题1.若A (0,-1,1),B (1,1,3),则|AB |的值是(). A .5B .5C .9 D .32.化简AB +CD -CB -AD ,结果为().A .0B .ABC .ACD .3.若a ,b ,c 为任意向量,m ∈R ,则下列等式不成立的是(). A .(a +b )+c =a +(b +c )B .(a +b )·c =a ·c +b ·c C .m (a +b )=m a +m b D .(a ·b )·c =a ·(b ·c )4.已知+=(2,-1,0),a -b =(0,3,-2),则cos<,>的值为(). A .31B .-32C .33D .375.若P 是平面α 外一点,A 为平面α 内一点,n 为平面α 的一个法向量,且<,n >=40º,则直线PA 与平面α 所成的角为().A .40ºB .50ºC .40º或50ºD .不确定6.若A ,B ,C ,D 四点共面,且 = + 3+ 2+ x ,则x 的值是().A .4B .2C .6D .-67.在平行六面体ABCD —A 1B 1C 1D 1中,已知AB =4,AD =3,AA 1=5,∠BAD =90º,∠BAA 1=∠DAA 1=60º,则AC 1的长等于().A .85B .50C .85D .528.已知向量a =(2,-1,3),b =(-4,2,x ),c =(1,-x ,2),若(a +b )⊥c ,则x 等于().A .4B .-4C .21D .-6 9.在正方体ABCD —A 1B 1C 1D 1中,考虑下列命题①(A A 1+11D A +11B A )2=3(11B A )2;②A 1·(11B A -A A 1)=0;③向量1AD 与向量A 1的夹角为60º;④正方体ABCD —A 1B 1C 1D 1的体积为|··|. 错误命题的个数是().A .1个B .2个C .3个D .4个10.已知四边形ABCD 满足·>0,·>0,·>0,·>0,则该四边形为().A .平行四边形B .梯形C .任意的平面四边形D .空间四边形 二、填空题11.设a =(-1,1,2),b =(2,1,-2),则a -2b =.1AA12.已知向量a ,b ,c 两两互相垂直,且|a |=1,|b |=2,|c |=3,s =a +b +c ,则|s |=. 13.若非零向量a ,b 满足|a +b |=|a -b |,则a 与b 所成角的大小.14.若n 1,n 2分别为平面α,β 的一个法向量,且<n 1,n 2>=60º,则二面角α-l -β 的大小为.15.设A (3,2,1),B (1,0,4),则到A ,B 两点距离相等的点P (x ,y ,z )的坐标x ,y ,z 应满足的条件是 .16.已知向量n A A 1=2a ,a 与b 夹角为30º,且|a |=3,则21A A +32A A +…+n n A A 1-在向量b 的方向上的射影的模为.三、解答题17.如图,在四棱柱ABCD —A 1B 1C 1D 1中,底面是平行四边形, O 是B 1D 1的中点.求证:B 1C //平面ODC 1.18.如图,在三棱柱ABC —A 1B 1C 1中,侧棱垂直于底面,底边CA =CB =1,∠BCA =90º,棱AA 1=2,M ,N 分别是11B A 、的中点.A A 1ABA 1B 1D CD 1C 1O(第17题)(1)求BN ·M C 1;(2)求cos<1BA ,1CB >.19.如图,在长方体ABCD —A 1B 1C 1D 1中,AD =AA 1=1,AB =2,点E 在棱AB 上移动.ACBA 1C 1B 1N M(第18题)(1)证明:D 1E ⊥A 1D ;(2)当E 为AB 的中点时,求点E 到面ACD 1的距离; (3)AE 等于何值时,二面角D 1—EC —D 的大小为4.20.如图,在四棱锥P —ABCD 中,PA ⊥底面ABCD ,∠DAB 为直角,AB //CD ,AD =CD =2AB ,E ,F 分别为PC 、CD 中点.ABA 1D B 1C D 1C 1E(第19题)(1)试证:CD ⊥平面BEF ;(2)设PA =k ·AB ,且二面角E —BD —C 的平面角大于30º,求k 的取值X 围.参考答案一、选择题 1.D2.A3.D 4.B解析:两已知条件相加,得 a =(1,1,-1),再得 b =(1,-2,1),则cos<a ,b >=||||b a •=-32. 5.B6.D7.C8.B9.B 10.D解析:由AB ·BC >0得∠ABC >90º,同理,∠BCD >90º,∠CDA >90º,∠DAB >90º,若ABCD 为平面四边形,则四个内角之和为360º,这与上述得到结论矛盾,故选D .二、填空题11.(-5,-1,6) .12.14. 13.90°.BACPE FD(第20题)14.60º或120º. 15.4x +4y -6z +3=0. 16.3. 三、解答题17.提示:∵C B 1=D A 1=11C A +D C 1=21OC +D C 1. ∴ 直线B 1C 平行于直线OC 1与C 1D 所确定的平面ODC 1. 18.(1)0.提示:可用向量计算,也可用综合法得C 1M ⊥BN ,进而得两向量数量积为0. (2)1030. 提示:坐标法,以C 为原点,CA ,CB ,CC 1所在直线为x ,y ,z 轴.19.(1)提示:以D 为原点,直线DA ,DC ,DD 1分别为x ,y ,z 轴,可得1·E D 1=0.(2)31. 提示:平面ACD 1的一个法向量为n 1=(2,1,2),d =11n n | |1·E D =31. (3)2-3.提示:平面D 1EC 的一个法向量为n 2=(2-x ,1,2)(其中AE =x ),利用 cos 4x =2-3.20.(1)提示:坐标法,A 为原点,直线AD ,AB ,AP 分别为x ,y ,z 轴.(2)k >15152.提示:不妨设AB =1,则PA =k ,利用cos<n 1,n 2><23,其中n 1,n 2分别为面EBD ,面BDC 的一个法向量.。

高中数学选修2-1同步习题(答案详解)

高中数学选修2-1同步习题(答案详解)

(数学选修(数学选修2-12-1)第一章)第一章)第一章 常用逻辑用语常用逻辑用语常用逻辑用语[基础训练A 组]一、选择题1.下列语句中是命题的是( )A .周期函数的和是周期函数吗?B .0sin451=C .2210x x +->D .梯形是不是平面图形呢?2.在命题“若抛物线2y ax bx c =++的开口向下,则{}2|0x ax bx c f ++<¹”的逆命题、否命题、逆否命题中结论成立的是( )A .都真B .都假C .否命题真D .逆否命题真3.有下述说法:①0a b >>是22a b >的充要条件. ②0a b >>是ba 11<的充要条件. ③0ab >>是33a b >的充要条件.则其中正确的说法有( )A .0个B .1个 C .2个D .3个 4.下列说法中正确的是( )A .一个命题的逆命题为真,则它的逆否命题一定为真B .“a b >”与“ a c b c +>+”不等价C .“220a b +=,则,a b 全为0”的逆否命题是“若,a b 全不为0, 则220a b +¹” D .一个命题的否命题为真,则它的逆命题一定为真5.若:,1A a R a Î<, :B x 的二次方程2(1)20x a x a +++-=的一个根大于零,另一根小于零,则A 是B 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件6.已知条件:12p x +>,条件2:56q x x ->,则p Ø是q Ø的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件二、填空题1.命题:“若a b ×不为零,则,a b 都不为零”的逆否命题是 。

2.12:,A x x 是方程20(0)ax bx c a ++=¹的两实数根;12:b B x x a +=-,则A 是B 的 条件。

高二数学选修2-1综合测试题(带答案)

高二数学选修2-1综合测试题(带答案)

高二数学选修2-1测试题(120分钟150分)班级姓名成绩一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知命题“如果-1≤a≤1,那么关于x的不等式(a2-4)x2+(a+2)x-1≥0的解集为 ”,它的逆命题、否命题、逆否命题及原命题中是假命题的共有( )A.0个B.1个C.2个D.4个【变式训练】命题“若C=90°,则△ABC是直角三角形”与它的逆命题、否命题、逆否命题这4个命题中,真命题的个数是( )A.0B.1C.2D.32.设m,n是平面α内的两条不同直线,l1,l2是平面β内的两条相交直线,则α∥β的一个充分而不必要条件是( )A.m∥β且l1∥αB.m∥l1且n∥l2C.m ∥β且n ∥βD.m∥β且n∥l2【变式训练】有下述说法:①a>b>0是a2>b2的充要条件;②a>b>0是<的充要条件;③a>b>0是a3>b3的充要条件.其中正确的说法有( )A.0个B.1个C.2个D.3个3. “1<m<3”是“方程+=1表示椭圆”的( ) A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件4.已知抛物线y2=2px(p>0)与双曲线-=1(a>0,b>0)有相同的焦点F,点A是两曲线的交点,且AF⊥x轴,则双曲线的离心率为( )A. B.+1 C.+1 D.【变式训练】若双曲线C:x 2-=1(b>0)的顶点到渐近线的距离为,则双曲线的离心率e=( )A.2B.C.3D.5.已知命题p:∀x∈R,x ≥2,那么下列结论正确的是( )A.命题p:∀x∈R,x≤2B.命题p:∃x0∈R,x0<2C.命题p:∀x∈R,x≤-2D.命题p:∃x0∈R,x0<-26.已知矩形ABCD中,AB=1,BC=,将矩形ABCD沿对角线AC折起,使平面ABC与平面ACD垂直,则B与D之间的距离为( )A.1B.C.D.7.过抛物线y2=4x焦点的直线交抛物线于A,B两点,若=10,则AB的中点到y轴的距离等于( )A.1B.2C.3D.48.在四边形ABCD中,“∃λ∈R ,使得=λ,=λ”是“四边形ABCD为平行四边形”的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件9.已知在长方体ABCD-A1B1C1D1中,AB=BC=1,AA1=2,E是侧棱BB1的中点,则直线AE与平面A1ED1所成角的大小为( )A.60°B.90°C.45°D.以上都不正确10.设F1,F2是双曲线x2-4y2=4a(a>0)的两个焦点,点P在双曲线上,且满足:·=0,||·||=2,则a的值为( )A.2B.C.1D.11.点P是棱长为1的正方体ABCD-A1B1C1D1的底面A1B1C1D1上一点,则·的取值范围是( )A. B.C.[-1,0]D.12.已知正六边形ABCDEF的边长是2,一条抛物线恰好经过该六边形的四个顶点,则抛物线的焦点到准线的距离是( )A. B. C. D.2二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中横线上)13.抛物线焦点在y轴上,且被y=x+1截得的弦长为5,则抛物线的标准方程为.14.在△ABC中,若∠ACB=90°,∠BAC=60°,AB=8,PC⊥平面ABC,PC=4,M是AB上一点,则PM的最小值为.15.在四棱锥P-ABCD中,ABCD为平行四边形,AC与BD交于O,G为BD上一点,BG=2GD,=a,=b,=c,试用基底{a,b,c}表示向量= .16.曲线C是平面内到直线l1:x=-1和直线l2:y=1的距离之积等于常数k2的点的轨迹.给出下列四个结论:①曲线C过点(-1,1);②曲线C关于点(-1,1)对称;③若点P在曲线C上,点A,B分别在直线l1,l2上,则+不小于2k.④设P0为曲线C上任意一点,则点P0关于直线x=-1、点(-1,1)及直线y=1对称的点分别为P1,P2,P3,则四边形P0P1P2P3的面积为定值4k2.其中,所有正确结论的序号是.三、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤) 17.(10分)设p:关于x的不等式a x>1(a>0且a ≠1)的解集为{x|x<0},q:函数y=l g(ax2-x+a)的定义域为R.如果p和q有且仅有一个正确,求a的取值范围. 18.(12分)如图,正方体ABCD-A1B1C1D1中,M,N分别为AB,B1C的中点.(1)用向量法证明平面A1BD∥平面B1CD1.(2)用向量法证明MN⊥平面A1BD.19.(12分)已知抛物线C:y2=2px(p>0)过点A(1,-2).(1)求抛物线C的方程,并求其准线方程.(2)是否存在平行于OA(O为坐标原点)的直线l,使得直线l与抛物线C有公共点,且直线OA与l的距离等于?若存在,求直线l的方程;若不存在,说明理由.20.(12分)设F1,F2为椭圆+=1的两个焦点,P是椭圆上一点,已知P,F1,F2是一个直角三角形的三个顶点,且|PF1|>|PF2|.(1)求|PF1|的长度.(2)求的值. 21.(12分)如图所示,在正方体ABCD-A1B1C1D1中,E是棱DD1的中点.(1)求直线BE和平面ABB1A1所成角的正弦值.(2)在棱C1D1上是否存在一点F,使B1F∥平面A1BE?证明你的结论.22.(12分)如图,四棱柱ABCD -A1B1C1D1中,侧棱A1A⊥底面ABCD,AB∥DC,AB⊥AD,AD=CD=1,AA1=AB=2,E为棱AA1的中点.(1)证明B1C1⊥CE.(2)求二面角B1-CE-C1的正弦值.(3)设点M在线段C1E上,且直线AM与平面ADD1A1所成角的正弦值为,求线段AM的长.高二数学选修2-1测试题答案一、选择题1、【解析】选C.当-1≤a≤1时,Δ=(a+2)2+4(a2-4)=5--12≤5--12<0,所以原命题为真,逆否命题亦为真.反之,如a=-2时,所给不等式的解集即为空集,但a∉[-1,1],所以逆命题为假,故否命题亦为假.【变式训练】【解析】选C.原命题是真命题.其逆命题为“若△ABC是直角三角形,则C=90°”,这是一个假命题,因为当△ABC为直角三角形时,也可能A或B为直角.这样,否命题是假命题,逆否命题是真命题.因此真命题的个数是2.2.【解析】选B.对于选项A,α,β也可能相交,此时,l1,m都平行于交线,是必要不充分条件;对于选项B,由于l1与l2是相交直线,而且由l1∥m可得l1∥α,同理可得l2∥α,故可得α∥β,充分性成立,而由α∥β不一定能得到l1∥m,它们也可以异面,故必要性不成立,故选项B符合题意;对于选项C,由于m,n不一定相交,故是必要不充分条件;对于选项D,由n∥l2可转化为n∥β,同选项C,故不符合题意,【变式训练】【解析】选 A.a>b>0⇒a2>b2,a2>b2⇒|a|>|b|⇒a>b>0,故①错.a>b>0⇒<,但<⇒a>b>0,故②错.a>b>0⇒a3>b3,但a3>b 3⇒a>b>0故③错故选A.3. 【解析】选 B.当方程+=1表示椭圆时,必有所以1<m<3;但当1<m<3时,该方程不一定表示椭圆,如当m=2时,方程变为x 2+y2=1,它表示一个圆.4【解析】选B.如图,由双曲线-=1,且AF⊥x轴得-=1得|y|=,由抛物线y2=2px的定义得AF=p,即=2c.得b2=2ac,所以=,e2-1=2e,所以e=+1.【拓展延伸】求离心率的方法(1)定义法:由椭圆(双曲线)的标准方程可知,不论椭圆(双曲线)的焦点在x轴上还是在y轴上都有关系式a2-b2=c2(a2+b2=c2)以及e=.已知其中的任意两个参数,可以求其他的参数.这是基本且常用的方法.(2)方程法:建立参数a与c之间的齐次关系式,从而求出其离心率.这是求离心率的十分重要的思路及方法.(3)几何法:求与过焦点的三角形有关的离心率问题,根据平面几何性质以及椭圆(双曲线)的定义、几何性质,建立参数之间的关系,通过画出图形,观察线段之间的关系,使问题更形象、直观.【变式训练】【解析】选B.由双曲线方程知a=1,所以c=,所以一条渐近线的方程为y=bx,即bx-y=0.所以=,解得b=1,所以c=,所以e==.5.【解析】选B.全称命题的否定是特称命题,所以命题p:∃x0∈R,x0<2.6. 【解析】选B.过B,D分别向AC作垂线,垂足分别为M,N.则可求得AM=,BM=,CN=,DN=,MN=1.由于=++,所以||2=(++)2=||2+||2+||2+ 2(·+ ·+·)=+12++2(0+0+0)=,所以||=.7.【解析】选D.抛物线y2=4x的焦点(1,0),准线为l:x=-1,设AB的中点为E,过A,E,B分别作准线的垂线,垂足分别为C,F,D,EF交纵轴于点H,如图所示,则由EF为直角梯形的中位线知,|EF|===5,所以EH=EF-1=5-1=4,即AB的中点到y 轴的距离等于4.8. 【解析】选C.若=λ,=λ,则∥,∥,即AB∥DC,AD∥BC,所以四边形ABCD为平行四边形.反之,若四边形ABCD为平行四边形,则有AB∥DC,AD∥BC且AB=DC,AD=BC ,即=,=,此时λ=1,所以∃λ∈R ,使得=λ,=λ成立.所以“∃λ∈R ,使得=λ,=λ”是“四边形ABCD为平行四边形”的充分必要条件.9. 【解析】选B.以点D为原点,直线DA,DC,DD 1分别为x轴,y轴,z轴,建立空间直角坐标系,如图.由题意知,A1(1,0,2),E(1,1,1),D1(0,0,2),A(1,0,0),所以=(0,1,-1),=(1,1,-1),=(0,-1,-1).设平面A1ED1的一个法向量为n=(x,y,z).则⇒令z=1,得y=1,x=0.所以n=(0,1,1),cos<n ,>===-1.所以<n ,>=180°.所以直线AE与平面A1ED1所成的角的大小为90°.10. 【解析】选C.双曲线方程化为-=1(a>0),因为·=0,所以PF1⊥PF2.所以||2+||2=4c2=20a. ①由双曲线定义||-||=±4,②又已知||·||=2,③由①②③得20a-2×2=16a,所以a=1.11. 【解析】选D.如图所示建立空间直角坐标系,则A(1,0,1),C1(0,1,0).设P(x,y,0)其中0≤x≤1,0≤y≤1.则=(1-x,-y,1) =(-x,1-y,0)所以·=(1-x,-y,1)·(-x,1-y,0)=+-,因为+的几何意义是平面区域到点的距离的平方,所以当x=y=时,+有最小值0,当x=y=0或x=y=1或x=1,y=0或x=0,y=1时,+有最大值,所以-≤+-≤0,即·的取值范围是.12. 【解析】选B.设抛物线方程为y2=2px(p>0),根据对称性可知,正六边形ABCDEF的顶点A,B,C,F在抛物线y2=2px上,设A(x1,1),F(x2,2),则即x2=4x1,又AF==2,即(x1-x2)2=(x1-4x1)2=3,所以=,x1=,即p===.二、填空题13.【解析】设抛物线方程为x2=my,联立抛物线方程与直线方程y=x+1并消元,得:2x2-mx-2m=0,所以x1+x2=,x1x2=-m,所以5=,把x1+x2=,x1x2=-m代入解得m=4或m=-20.所以抛物线的标准方程为x2=4y或x2=-20y. 答案:x2=4y或x2=-20y 14.【解析】由条件知PC,AC,BC 两两垂直,设=a ,=b ,=c,则a·b=b·c=c·a=0,因为∠BAC=60°,AB=8,所以|a |=||=8cos60°=4,|b |=||=8sin60°=4,|c |=||=4.设=x=x(b -a),其中x∈[0,1],则=++=-c+a+x(b-a)=(1-x)a+x b-c,||2=(1-x)2|a|2+x2|b|2+|c|2+2(1-x)x a·b-2x b·c-2(1-x)a·c=16(1-x) 2+48x2+16=32(2x2-x+1)=64+28,所以当x=时,||2取最小值28,所以||min =2. 答案:215. 【解析】因为BG=2GD ,所以=.又=+=-+-=a+c-2b,所以=+=b +(a+c-2b)=a -b +c.答案:a -b +c16.【解析】设动点为(x,y),则由条件可知·=k2,①,将(-1,1)代入得0=k2,因为k>0,所以不成立,故方程不过点(-1,1),①错误.②,把方程中的x用-2-x代换,y用2-y代换,方程不变,故此曲线关于点(-1,1)对称,②正确.③,由题意知点P在曲线C上,点A,B分别在直线l1,l2上,则≥,≥,所以+≥2=2k,故③正确.④,由题意知点P0在曲线C上,根据对称性,则四边形P0P1P2P3的面积为2·2=4·=4k2,所以④正确.综上所述,正确结论的序号是②③④.答案:②③④三、解答题17.【解析】当p真时,0<a<1,当q 真时,即a>,所以p假时,a>1,q假时,a ≤.又p和q有且仅有一个正确,当p真q假时,0<a ≤;当p假q真时,a>1. 综上a 的取值范围为∪(1,+∞). 18.【证明】(1)在正方体ABCD-A1B1C1D1中,=-,=-,又因为=,=,所以=,所以BD∥B1D1.又B1D1⊂平面B1CD1,BD⊄平面B1CD1,所以BD∥平面B1CD1,同理可证A1B∥平面B1CD1.又BD∩A1B=B,所以平面A1BD∥平面B1CD1.(2)=++=++(+)=++(-+)=++.设=a ,=b ,=c,则=(a+b+c).又=-=b-a,所以·=(a+b+c)·(b-a)=(b2-a2+c·b-c·a).又因为⊥,⊥,所以c·b=0,c·a=0.又|b|=|a|,所以b2=a2.所以b2-a2=0.所以·=0.所以MN⊥BD.同理可证,MN⊥A1B.又A1B∩BD=B,所以MN⊥平面A1BD.19.【解析】(1)将A(1,-2)代入y2=2px,得(-2)2=2p·1,所以p=2.故所求抛物线C的方程为y2=4x,其准线方程为x=-1.(2)假设存在符合题意的直线l,其方程为y=-2x+t.由得y2+2y-2t=0.因为直线l与抛物线C有公共点,所以Δ=4+8t≥0,解得t≥-.由直线OA与l的距离d=,可得=,解得t=±1.因为-1∉,1∈,所以符合题意的直线l存在,其方程为2x+y-1=0.20.【解析】(1)若∠PF2F1是直角,则|PF1|2=|PF2|2+|F1F2|2,即|PF1|2=(12-|PF1|)2+80,得|PF1|=,若∠F1PF2是直角,则|PF1|2+(12-|PF1|)2=80,即2|PF1|2-24|PF1|+64=0,得|PF1|=8.(2)若∠PF2F1是直角,则|PF1|2=|PF2|2+|F1F2|2,即|PF1|2=(12-|PF1|)2+80,得|PF1|=,|PF2|=,所以=.若∠F1PF2是直角,则|PF1|2+(12-|PF1|)2=80,即2|PF1|2-24|PF1|+64=0,得|PF1|=8,|PF2|=4,所以=2,综上,=2或.21.【解析】设正方体的棱长为1.如图所示,以,,为单位正交基底建立空间直角坐标系Axyz.(1)依题意,得B(1,0,0),E,A(0,0,0),D(0,1,0),所以=,=(0,1,0).在正方体ABCD-A1B1C1D1中,因为AD⊥平面ABB1A1,所以是平面ABB1A1的一个法向量.设直线BE和平面ABB1A1所成的角为θ,则sinθ===.故直线BE和平面ABB1A1所成的角的正弦值为.(2)在棱C1D1上存在点F,使B1F∥平面A1BE.证明如下:依题意,得A1(0,0,1),=(-1,0,1),=.设n=(x,y,z)是平面A1BE的一个法向量,则由n ·=0,n ·=0,得所以x=z,y=z.取z=2,得n=(2,1,2).因为F是棱C1D1上的点,则F(t,1,1)(0≤t≤1). 又B1(1,0,1),所以=(t-1,1,0).而B1F⊄平面A1BE,于是B1F∥平面A1BE ⇒·n=0⇔(t-1,1,0)·(2,1,2)=0⇔2(t-1)+1=0⇔t=⇔F为棱C1D1的中点.这说明在棱C1D1上存在点F(C1D1的中点),使B1F∥平面A1BE.22.【解题指南】方法一:(1)建立空间直角坐标系,写出,的坐标,利用数量积证明.(2)求出平面B1CE与平面CEC1的法向量,由法向量的夹角余弦值求二面角的正弦值.(3)用直线AM的方向向量与平面ADD1A1的法向量表示直线AM与平面ADD1A1所成角的正弦,确定向量的坐标,由向量的模求线段AM的长.方法二:(1)要证明线线垂直,先证明线面垂直,关键是找出与线B1C1垂直的平面CC1E,然后进行证明.(2)要求二面角B1-CE-C1的正弦值,关键是构造出二面角B1-CE-C1的平面角,然后在三角形中求解.(3)首先构造三角形,设AM=x,在直角三角形AHM,C1D1E中用x表示出AH,EH的长度,最后在三角形AEH中利用余弦定理求解.【解析】如图,以点A为坐标原点建立空间直角坐标系,依题意得A(0,0,0),B(0,0,2),C(1,0,1),B1(0,2,2),C1(1,2,1),E(0,1,0).(1)易得=(1,0,-1),=(-1,1,-1),于是·=0,所以B1C1⊥CE.(2)=(1,-2,-1),设平面B1CE的法向量m=(x,y,z),则即消去x,得y+2z=0,不妨设z=1,可得一个法向量为m=(-3,-2,1).由(1)知B1C1⊥CE,又CC1⊥B1C1,可得B1C1⊥平面CEC1,故=(1,0,-1)为平面CEC1的一个法向量.于是cos<m ,>===-,从而sin<m ,>=.所以二面角B1-CE-C1的正弦值为.(3)=(0,1,0),=(1,1,1),设=λ=(λ,λ,λ),0≤λ≤1,有=+=(λ,λ+1,λ).可取=(0,0,2)为平面ADD1A1的一个法向量.设θ为直线AM与平面ADD1A1所成的角,则sinθ====.于是=,解得λ=,所以AM=.【一题多解】(1)因为侧棱CC1⊥底面A1B1C1D1,B1C1⊂平面A1B1C1D1,所以CC1⊥B1C1,经计算可得B1E=,B1C1=,EC1=,从而B1E2=B 1+E,所以在△B1EC1中,B1C1⊥C1E,又CC1,C1E⊂平面CC1E,CC1∩C1E=C1,所以B1C1⊥平面CC1E,又CE⊂平面CC1E,故B1C1⊥CE.(2)过B1作B1G⊥CE于点G,连接C1G,由(1)知,B1C1⊥CE,B1C1,B1G⊂平面B1C1G,B1C1∩B1G=B1,故CE⊥平面B1C1G,又C1G⊂平面B1C1G ,得CE⊥C1G,所以∠B1GC1为二面角B1-CE-C1的平面角.在△CC1E中,由CE=C1E=,CC1=2,可得C1G=.在Rt△B1C1G中,B1G=,所以sin∠B1GC1=,即二面角B1-CE-C1的正弦值为.(3)连接D1E,过点M作MH⊥ED1于点H,可得MH⊥平面ADD1A1,连接AH,AM,则∠MAH为直线AM与平面ADD1A1所成的角.设AM=x,从而在Rt△AHM中,有MH=x,AH=x,在Rt△C1D1E中,C1D1=1,ED1=,得EH=MH=x,在△AEH中,∠AEH=135°,AE=1,由AH2=AE2+EH2-2AE·EHcos135°,得x2=1+x2+x,整理得5x2-2x-6=0,解得x=.所以线段AM的长为.。

高二数学选修2-1测试试题及答案

高二数学选修2-1测试试题及答案

高二数学选修2-1测试试题及答案本试题满分150分,用时100分钟)一、选择题:1.命题“若a>b,则a-8>b-8”的逆否命题是()A.若a<b,则a-8<b-8B.若a-8≤b-8,则a≤bC.若a≤b,则a-8≤b-8D.若a-8b2.如果方程x^2+ky^2=2表示焦点在y轴上的椭圆,那么实数k的取值范围是()A.(0.+∞)B.(0.2)C.(0.1)D.(1.+∞)3.已知x-3x+2≥0,2x-2≥1,则“非P”是“非Q”的()A、充分不必要条件B、必要不充分条件C、充要条件D、既不充分也不必要条件4.双曲线16/(x^2)-9/(y^2)=1的左、右焦点分别为F1,F2,在左支上过点F1的弦AB的长为5,那么△ABF2的周长是()A、24B、25C、26D、285.若焦点在轴上的椭圆x^2/3+y^2/2=1的离心率为e,则m=A.3B.38/2C.23/2D.33/26.在同一坐标系中,方程x^2/2+y^2/2=1与ax+by^2=(a>b>)的曲线大致是()ab7.椭圆25x^2+16y^2=400的面积为()A.9B.12C.10D.88.正方体ABCD-A1B1C1D1的棱长为1,E是A1B1的中点,则E到平面ABC1D1的距离是()A.√2/2B.√6/2C.√3/2D.√29.若向量a与b的夹角为60°,b=4,(a+2b)(a-3b)=-72,则a=A.2B.4C.6D.1210.方程x^2/k-y^2/k=1表示双曲线,则k的取值范围是()A.-1<k<1B.k>0XXX≥1D.k>1或k<-111.方程x^2/a^2+y^2/b^2=1(a>b>0,k>且k≠1),与方程y^2/a^2+x^2/b^2=1的图形是()两个坐标轴上的椭圆12.若x^2+y^2+z^2=1,则x^2y^2+y^2z^2+z^2x^2的最大值为()1/3二、填空题:13.当k>1时,曲线x^2/k-y^2/k=1是()。

(压轴题)高中数学高中数学选修2-1第二章《空间向量与立体几何》检测题(有答案解析)

(压轴题)高中数学高中数学选修2-1第二章《空间向量与立体几何》检测题(有答案解析)

一、选择题1.已知直三棱柱111ABC A B C -中,190,1,2ABC AB BC CC ︒∠====,则异面直线1AB 与1BC 所成角的余弦值为( ) A .35B .35C .45D .45-2.在空间四边形OABC 中,OA OB OC ==,3AOB AOC π∠=∠=,则cos ,OA BC的值为( ) A .0B .22C .12-D .123.在棱长为2的正方体1111ABCD A BC D -中,,E F 分别为棱1AA 、1BB 的中点,G 为棱11A B 上的一点,且1(02)AG λλ=<<,则点G 到平面1D EF 的距离为( )A .23B .2C .22λD .254.如图,在长方形ABCD 中,3AB =,1BC =,点E 为线段DC 上一动点,现将ADE ∆沿AE 折起,使点D 在面ABC 内的射影K 在直线AE 上,当点E 从D 运动到C ,则点K 所形成轨迹的长度为( )A 3B 23C .3πD .2π 5.将直角三角形ABC 沿斜边上的高AD 折成120︒的二面角,已知直角边43,46AB AC == )A .平面ABC ⊥平面ACDB .四面体D ABC -的体积是86C .二面角A BCD --的正切值是423D .BC 与平面ACD 所成角的正弦值是2176.下列命题中是真命题的是( )A .分别表示空间向量的两条有向线段所在的直线是异面直线,则这两个向量不是共面向量B .若a b =,则,a b 的长度相等而方向相同或相反C .若向量,AB CD ,满足AB CD >,且AB 与CD 同向,则AB CD > D .若两个非零向量AB 与CD 满足0AB CD +=,则//AB CD7.如图,在四棱锥P ABCD -中,底面ABCD 是矩形,PA ⊥底面ABCD ,E 是PC 的中点,2,22,2AB AD PA ===,则异面直线BC 与AE 所成的角的大小为( )A .π6B .π4C .π3D .π28.四棱锥P ABCD -中,(2,1,3),(2,1,0),(3,1,4)AB AD AP =-=-=-,则这个四棱锥的高为( )A .55B .15 C .25D .2559.已知菱形ABCD 中,∠60ABC =︒,沿对角线AC 折叠之后,使得平面BAC ⊥平面DAC ,则二面角B CD A --的余弦值为( ).A .2B .12C 3D 510.如图,在直三棱柱111ABC A B C -中,1AB AC ==,12BC AA =,E O 分别是线段1,C C BC 的中点,1113A F A A =,分别记二面角1F OB E --,1F OE B --,1F EB O --的平面角为,,αβγ,则下列结论正确的是( )A .γβα>>B .αβγ>>C .αγβ>>D .γαβ>>11.在正三棱柱(底面是正三角形的直三棱柱)111ABC A B C -中,2AB =,E ,F 分别为11AC 和11A B 的中点,当AE 和BF 所成角的余弦值为710时,AE 与平面11BCC B 所成角的正弦值为( ) A .15 B .15 C .5 D .5 12.以下命题①||||a b -||a b =+是,a b 共线的充要条件;②若{,,}a b c 是空间的一组基底,则{,,}a b b c c a +++是空间的另一组基底; ③|()|||||||a b c a b c ⋅=⋅⋅. 其中正确的命题有( ) A .0个B .1个C .2个D .3个二、填空题13.如图所示,在正四棱柱1111ABCD A BC D -中,12AA =,1AB BC ==,动点P 、Q 分别在线段1C D 、AC 上,则线段PQ 长度的最小值是______.14.在正方体1111ABCD A BC D -中,,E F 分别为棱1AA 、1BB 的中点,M 为棱11A B (含端点)上的任一点,则直线ME 与平面1D EF 所成角的正弦值的最小值为_________. 15.如图,正方体1111ABCD A BC D -的棱长为1,P 为BC 的中点,Q 为线段1CC 上的动点,过点A ,P ,Q 的平面截该正方体所得的截面为S ,则下列命题正确的是__________(写出所有正确命题的编号).①当102CQ <<时,S 为四边形;②当12CQ =时,S 为等腰梯形; ③当34CQ =时,S 与11C D 的交点R 满足114C R =;④当314CQ <<时,S 为五边形; ⑤当1CQ =时,S 的面积为6.16.已知(1,2,1),(2,2,2)A B -,点P 在z 轴上,且PA PB =,则点P 的坐标为____________.17.如图,已知边长为1的正'A BC ∆的顶点'A 在平面α内,顶点,B C 在平面α外的同一侧,点','B C 分别为,B C 在平面α内的投影,设''BB CC ≤,直线'CB 与平面''A CC 所成的角为ϕ.若'''A B C ∆是以角'A 为直角的直角三角形,则tan ϕ的最小值__________. 18.如图,四边形ABCD 和ADPQ 均为正方形,它们所在的平面互相垂直,,,M E F 分别为,,PQ AB BC 的中点,则直线ME 与平面ABCD 所成角的正切值为________;异面直线EM 与AF 所成角的余弦值是________.19.已知在长方体ABCD-A 1B 1C 1D 1中,AB=BC=1,AA 1=2,E 是侧棱BB 1的中点,则直线AE 与平面A 1ED 1所成角的大小为_____.20.正三棱锥底面边长为1,侧面与底面所成二面角为45°,则它的全面积为________三、解答题21.在几何体111ABC A B C -中,点1A 、1B 、1C 在平面ABC 内的正投影分别为A 、B 、C ,且AB BC ⊥,114AA BB ==,12AB BC CC ===,E 为1AB 的中点.(1)求证://CE 平面111A B C ; (2)求二面角11B AC C --的大小.22.已知在四棱锥P ABCD -中,底面ABCD 是边长为4的正方形,PAD △是正三角形,CD ⊥平面PAD ,,,,E F G O 分别是,,,PC BC PD AD 的中点.(Ⅰ)求证:PO ⊥平面ABCD ;(Ⅱ)求平面EFG 与平面ABCD 所成锐二面角的大小. 23.如图,在四棱锥P ABCD -中,6π∠=CAD ,且321,2AD CD PA ABC ===和PBC 均是等边三角形,O 为BC 的中点.(I )求证:PO ⊥平面ABCD ; (Ⅱ)求CB 与平面PBD 所成角的正弦值.24.如图,在四棱锥P ABCD -中,90BAD ∠=,//AD BC , PA AD ⊥,PA AB ⊥,122PA AB BC AD ====.(Ⅰ)求证://BC 平面PAD ;(Ⅱ)求平面PAB 与平面PCD 所成锐二面角的余弦值.25.如图,已知四棱锥P ABCD -的底面是菱形,对角线AC ,BD 交于点O ,4OA =,3OB =,4OP =,OP ⊥底面ABCD ,设点M 是PC 的中点.(1)直线PB 与平面BDM 所成角的正弦值. (2)点A 到平面BDM 的距离.26.如图,四边形PABC 中,90,23,4PAC ABC PA AB AC ︒∠=∠====,现把PAC ∆沿AC 折起,使PA 与平面ABC 成60︒角,点P 在平面ABC 上的投影为点O (O 与B 在CA 同侧)(1)证明://OB 平面PAC ;(2)求直线PB 与平面PAC 所成角的正弦值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】 【分析】以B 为原点,BA 为x 轴,BC 为y 轴,1BB 为z 轴,建立空间直角坐标系,利用向量法能求出异面直线1AB 与1BC 所成角的余弦值. 【详解】解:以B 为原点,BA 为x 轴,BC 为y 轴,1BB 为z 轴,建立空间直角坐标系, 则11(1,0,0),(0,0,2),(0,0,0),(0,1,2)A B B C ,11(1,0,2),(0,1,2)AB BC =-=,设异面直线1AB 与1BC 所成角为θ, 则1111||4cos 5||||55AB BC AB BC θ⋅===⋅⋅.∴异面直线1AB 与1BC 所成角的余弦值为45.故选:C.【点睛】本题考查异面直线所成角的余弦值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是基础题.2.A解析:A 【分析】利用OB OC =,以及两个向量的数量积的定义可得cos ,OA BC <>的值,即可求解. 【详解】由题意,可知OB OC =,则()OA BC OA OC OB OA OC OA OB ⋅=⋅-=⋅-⋅coscos33OA OC OA OB ππ=⋅-⋅1()02OA OC OB =⋅-=, 所以OA BC ⊥,所以∴cos ,0OA BC <>=. 故选A . 【点睛】本题主要考查了两个向量的数量积的定义,两个向量的夹角公式的应用,其中解答中熟记向量的数量积的运算公式,准确计算是解答的关键,着重考查了推理与运算能力,属于基础题.3.D解析:D 【分析】以D 为原点,DA 为x 轴、DC 为y 轴、1DD 为z 轴,建立空间直角坐标系,利用向量法能求出点G 到平面1D EF 的距离 . 【详解】以D 为原点,DA 为x 轴、DC 为y 轴、1DD 为z 轴,建立空间直角坐标系, 则()()()()12,,2,0,0,2,2,0,1,2,2,1G D E F λ,()()()12,0,1,0,2,0,0,,1ED EF EG λ=-==,设平面1D EF 的法向量(),,n x y z =, 则12020n ED x z n EF y ⎧⋅=-+=⎨⋅==⎩,取1x =,得()1,0,2n =,∴点G 到平面1D EF 的距离为 2255EG n d n⋅===,故选D. 【点睛】本题主要考查利用空间向量求点到平面的距离,是中档题. 空间向量解答立体几何问题的一般步骤是:(1)观察图形,建立恰当的空间直角坐标系;(2)写出相应点的坐标,求出相应直线的方向向量;(3)设出相应平面的法向量,利用两直线垂直数量积为零列出方程组求出法向量;(4)将空间位置关系转化为向量关系;(5)根据定理结论求出相应的角和距离.4.C解析:C 【分析】根据图形的翻折过程中变与不变的量和位置关系知,若连接D'K ,则D'KA=90°,得到K 点的轨迹是以AD'为直径的圆上一弧,根据长方形的边长得到圆的半径,求得此弧所对的圆心角的弧度数,利用弧长公式求出轨迹长度. 【详解】由题意,将△AED 沿AE 折起,使平面AED ⊥平面ABC ,在平面AED 内过点D 作DK ⊥AE ,K 为垂足,由翻折的特征知,连接D'K ,则D'KA=90°,故K 点的轨迹是以AD'为直径的圆上一弧,根据长方形知圆半径是12, 如图当E 与C 重合时,4=12, 取O 为AD′的中点,得到△OAK 是正三角形.故∠K0A=3π,∴∠K0D'=23π, 其所对的弧长为1223π⨯=3π, 故选:C 【点睛】本题考查与二面角有关的立体几何综合题目,解题的关键是由题意得出点K 的轨迹是圆上的一段弧,翻折问题中要注意位置关系与长度等数量的变与不变,属于中档题目.5.C解析:C 【分析】先由图形的位置关系得到CDB ∠是二面角C AD B --的平面角,120CDB ∠=,故A不正确;B 由于11132684sin120423323D ABC A BCD BCD V V S AD --⎛⎫==⋅=⨯⨯= ⎪⎝⎭故得到B 错误;易知AFD ∠为二面角A BC D --的平面角,4242tan 4217AD AFD DF ∠===∠BDC 为B ﹣AD ﹣C 的平面角,即∠BDC=120°,作DF ⊥BC 于F ,连结AF ,sin ∠BCO=BOBC. 【详解】 沿AD 折后如图,AD BC ⊥,易知CDB ∠是二面角C AD B --的平面角,120CDB ∠=,12,4,42,CD BD AD ===由余弦定理得2222BC CD BD CD =+-cos120BD ⋅,可得47BC =过D 作DF BC ⊥于F ,连接AF ,则AF BC ⊥,由面积相等得11sin12022CD BD DF BC ⋅=⋅,可得421DF =. 根据AD BC ⊥,易知CDB ∠是二面角C AD B --的平面角, 120CDB ∠=故A 平面ABC 与平面ACD 不垂直,A 错;B 由于11132684sin12042332D ABC A BCD BCD V V S AD --⎛⎫==⋅=⨯⨯⨯= ⎪⎝⎭,B 错; C 易知AFD ∠为二面角A BC D --的平面角,4242tan 421AD AFD DF ∠===C 对;D 故如图,由题意可知∠BDC 为B ﹣AD ﹣C 的平面角,即∠BDC=120°,作DF ⊥BC 于F ,连结AF ,AF=4217,BD=4,DC=8,AD=4,过O 作BO 垂直BO ⊥CO 于O ,则∠BCO 就是BC 与平面ACD 所成角,3OD=2,2247BO CO +sin ∠BCO=232147BO BC ==. 选.C 【点睛】本题考查了平面的翻折问题,考查了面面垂直的证明,线面角的求法,面面角的求法以及四面体体积的求法,求线面角,一是可以利用等体积计算出直线的端点到面的距离,除以线段长度就是线面角的正弦值;还可以建系,用空间向量的方法求直线的方向向量和面的法向量,再求线面角即可.面面角一般是要么定义法,做出二面角,或者三垂线法做出二面角,利用几何关系求出二面角,要么建系来做.6.D解析:D由题意逐一考查所给的说法是否正确即可. 【详解】因为空间任两向量平移之后可共面,所以空间任意两向量均共面,选项A 错误; 因为a b =仅表示a 与b 的模相等,与方向无关,选项B 错误;因为空间向量不研究大小关系,只能对向量的长度进行比较,因此也就没有AB CD >这种写法,选项C 错误;∵0AB CD +=,∴AB CD =-,∴AB 与CD 共线,故AB //CD ,选项D 正确. 本题选择D 选项. 【点睛】本题主要考查向量平移的性质,向量模的定义的理解,向量共线的定义及其应用等知识,意在考查学生的转化能力和计算求解能力.7.B解析:B 【解析】分析:以A 点为原点,AB 为x 轴,AD 为y 轴,AP 为z 轴,建立空间直角坐标系,求得(0,22,0),(1,2,1)BC AE ==,利用向量的夹角公式,即可求解.详解:以A 点为原点,AB 为x 轴,AD 为y 轴,AP 为z 轴,建立空间直角坐标系,则(2,0,0),(2,22,0),(0,0,2),(0,0,0),(1,2,1)B C P A E , 则(0,22,0),(1,2,1)BC AE ==, 设异面直线BC 和AE 所成的角为θ, 则2cos ,224BC AE BC AE BC AE⋅===⋅⋅, 所以异面直线BC 和AE 所成的角为4π,故选B.点睛:本题考查了异面直线所成的角的求解,其中把异面直线所成的角转化为向量所成的角,利用向量的夹角公式求解是解答的关键,对于对于立体几何中角的计算问题,往往可以利用空间向量法,通过求解直线的方向向量和平面的法向量,利用向量的夹角公式求解.8.A【分析】求出平面ABCD 的法向量n ,计算法向量n 与AP 的夹角得出AP 与平面ABCD 的夹角,从而可求出P 到平面ABCD 的距离. 【详解】解:设平面ABCD 的法向量为(n x =,y ,)z ,则n AB n AD⎧⊥⎨⊥⎩,∴23020x y z x y -+=⎧⎨-+=⎩,令1x =可得2y =,0z =,即(1n =,2,0), cos ,||||5n AP n AP n AP ∴<>==设AP 与平面ABCD 所成角为α,则sin α=,于是P到平面ABCD 的距离为||sin AP α=,即四棱锥P ABCD - 故选:A . 【点睛】本题考查了空间向量在立体几何中的应用,属于基础题.9.D解析:D 【分析】取AC 的中点E ,分别以EA ,ED ,EB 为x 轴,y 轴,z 轴建立空间直角坐标系,利用空间向量求二面角B CD A --的余弦值. 【详解】解:如图取AC 的中点E ,分别以EA ,ED ,EB为x 轴,y 轴,z 轴建立空间直角坐标系,令棱形ABCD 的边长为2,则()1,0,0A ,()1,0,0C -,()D,(B 设平面BCD 的法向量为(),,n x y z=,(1,0,BC =-,(BD =330x y z ⎧--=⎪-=令z =y =3x =-即(3,3,n =-平面ACD 的法向量为()0,0,1m = 令二面角B CD A --的夹角为θ3cos 1n m n mθ===⨯ 因二面角B CD A --为锐二面角5cos θ=故选D【点睛】本题考查求二面角二余弦值,关键是准确的建立空间直角坐标系,属于中档题.10.D解析:D 【分析】过点C 作//Cy AB ,以C 为原点,CA 为x 轴,Cy 为y 轴,1CC 为z 轴,建立空间直角坐标系,利用向量法求解二面角的余弦值得答案. 【详解】解:因为1AB AC ==,12BC AA ==222AB AC BC +=,即AB AC ⊥ 过点C 作//Cy AB ,以C 为原点,CA 为x 轴,Cy 为y 轴,1CC 为z 轴,建立空间直角坐标系, 则(1F ,022),1(2O ,12,0),(0E ,02,1(1B ,12), 111(,2)22OB =,112(,22OE =--,1122(,22OF =-,12EB =,2)EF =,设平面1OB E 的法向量(),,m x y z =,则111·2022112·022m OB x y z m OE x y ⎧=++=⎪⎪⎨⎪=--+=⎪⎩,取1x =,得()1,1,0m →=-,同理可求平面1OB F 的法向量(52,2,3)n =--,平面OEF 的法向量272(,,3)p =-,平面1EFB 的法向量2(,2,3)2q =--. ∴461cos 61||||m n m n α==,434cos 34||||m p m p β==,46cos 46||||m q m q γ==. γαβ∴>>.故选:D .【点睛】本题考查二面角的大小的判断,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,属于中档题.11.B解析:B 【分析】设1AA t =,以B 为原点,过B 作BC 的垂线为x 轴,BC 为y 轴,1BB 为z 轴,建立空间直角坐标系,由AE 和BF 所成角的余弦值为710,求出12t AA ==.由此能求出AE 与平面11BCC B 所成角α的正弦值. 【详解】设1AA t =,以B 为原点,过B 作BC 的垂线为x 轴,BC 为y 轴,1BB 为z 轴,建立空间直角坐标系,则3331(3,1,0),,,(0,0,0),,22A E t B F t ⎫⎫⎪⎪⎪⎪⎝⎭⎝⎭,3(AE =-,12,)t ,3(BF =12,)t , AE ∵和BF 所成角的余弦值为710,2221||||72|cos ,|10||||11t AE BF AE BF AE BF t t -∴<>===++, 解得2t =.∴3(AE =-,12,2), 平面11BCC B 的法向量(1,0,0)n =,AE ∴与平面11BCC B 所成角α的正弦值为:3||152sin 10||||5AE n AE n α===. 故选:B .【点睛】本题考查线面角的正弦值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题.12.B解析:B 【分析】①||||||a b a b -=+共线,反之不成立,即可判断出结论; ②利用基底的定义即可判断出真假;③|()||||||||cos ,|a b c a b c a b =<>,即可判断出真假. 【详解】①||||||a b a b a -=+⇒,b 共线,反之不成立,||||||a b a b -=+是a ,b 共线的充分不必要条件,因此不正确;②若{a ,b ,}c 是空间的一组基底,假设,,a b b c c a +++共面, 则存在唯一一组实数,x y ,使=()()a b x b c y c a ++++成立, 即()a b xb x y c ya +=+++, 所以1,1,0x y x y ==+=,显然无解, 假设不成立,即,,a b b c c a +++不共面,则{a b +,b c +,}c a +是空间的另一组基底,正确;③|()|||||||cos ,a b c a b c a b =<>,而cos ,a b <>不一定等于1, 因此不正确.其中正确的命题有一个. 故选:B .【点睛】本题考查了向量共线、共面定理、数量积运算性质、简易逻辑的判定方法,考查了推理能力与计算能力,属于基础题.二、填空题13.【分析】以点为坐标原点所在直线分别为轴建立空间直角坐标系利用空间向量法计算出异面直线的公垂线的长度即为所求【详解】由题意可知线段长度的最小值为异面直线的公垂线的长度如下图所示以点为坐标原点所在直线分解析:13【分析】以点D 为坐标原点,DA 、DC 、1DD 所在直线分别为x 、y 、z 轴建立空间直角坐标系,利用空间向量法计算出异面直线1C D 、AC 的公垂线的长度,即为所求. 【详解】由题意可知,线段PQ 长度的最小值为异面直线1C D 、AC 的公垂线的长度.如下图所示,以点D 为坐标原点,DA 、DC 、1DD 所在直线分别为x 、y 、z 轴建立空间直角坐标系,则点()1,0,0A 、()0,1,0C 、()10,1,2C 、()0,0,0D , 所以,()1,1,0AC =-,()10,1,2=DC ,()1,0,0DA =, 设向量(),,n x y z =满足n AC ⊥,1⊥n DC ,由题意可得1020n AC x y n DC y z ⎧⋅=-+=⎪⎨⋅=+=⎪⎩,解得2x y y z =⎧⎪⎨=-⎪⎩,取2y =,则2x =,1z =-,可得()2,2,1n =-,因此,min23DA n PQn⋅==. 故答案为:23. 【点睛】关键点点睛:解本题的关键在于将PQ 长度的最小值转化为异面直线AC 、1C D 的距离,实际上就是求出两条异面直线的公垂线的长度,利用空间向量法求出两条异面直线间的距离,首先要求出两条异面直线公垂线的一个方向向量的坐标,再利用距离公式求解即可.14.【分析】建立直角坐标系设正方体边长为2求出平面的法向量为直线与平面所成角为因为所以当时取到最小值代入即可【详解】解:如图建立直角坐标系设正方体边长为2则002设平面的法向量为由得令故0由设直线与平面解析:25【分析】建立直角坐标系,设正方体边长为2,求出平面DEF 的法向量为m ,直线ME 与平面1D EF 所成角为α,sin cos ,m EM α==,因为[0a ∈,2],所以当2a =时,取到最小值,代入即可. 【详解】解:如图,建立直角坐标系,设正方体边长为2,AM a =, 则(2E ,0,1),(2M ,a ,2),(0D ,0,2),(2F ,2,1), 设平面DEF 的法向量为(m x =,y ,)z ,1(0,2,0),(2,0,1)EF ED ==-,由0m EF ⋅=,10m D E ⋅=,得020y x z =⎧⎨-+=⎩,令2z =,1x =,故(1m =,0,2),由(0,,1)EM a =,设直线ME 与平面1D EF 所成角为α,sin cos ,m EM α==,因为[0a ∈,2],所以当2a =时,sin α25=, 故答案为:25.【点睛】考查立体几何中的最值问题,本题利用向量法求线面所成的角,基础题.15.①②④【解析】①项时为而时线段上同理存在一点与平行此时为四边形且是梯形故命题①为真;②项是等腰梯形故命题②为真;③项当时如图所示∵点是的中点∴∴∴与的交点满足故命题③为假④项如图所示为五边形故命题④解析:①②④ 【解析】 ①项,12CQ =时,S 为APQD , 而102CQ <<时,线段1DD 上同理,存在一点,与PQ 平行, 此时,S 为四边形,且是梯形,故命题①为真;②项,1AP D Q =,1AD PQ ,1APQD 是等腰梯形,故命题②为真;③项当34CQ =时,如图所示,0AP DC ⋂=, ∵点P 是BC 的中点,∴CO CD AB ==, ∴1113C R C Q CO QC ==, ∴S 与11CD 的交点R 满足113C R =, 故命题③为假.④项,如图所示,S 为五边形,故命题④为真;⑤项,如图所示,S 为菱形,面积为22152622222⎛⎫⎛⎫⨯-⨯= ⎪ ⎪ ⎪⎝⎭⎝⎭,故命题⑤为假.综上所述,命题正确的是:①②④.16.【解析】设P(00z)由|PA|=|PB|得1+4+(z−1)2=4+4+(z−2)2解得z=3故点P 的坐标为(003)解析:()003,, 【解析】设P(0,0,z),由|PA|=|PB|,得1+4+(z−1)2=4+4+(z−2)2,解得z=3,故点P 的坐标为(0,0,3).17.【解析】如图建系设则可得且故又因为故又故又因为且故故答案为 解析:22【解析】如图建系,设()()0,,,,0,B b m C c n ,则()()222210,,,0,11cos 600b m c n b m c n m n⎧+=+=⎪=⋅⎨⎪<≤⎩,可得12mn =且0m n <≤,故22m ≤,又因为221c n +=,故1n <,又12mn =, 故12m >,又因为212tan 1,22b m m ϕ==-<≤且,故 2tan 2ϕ≥,故答案为22. 18.【详解】试题分析:由两两垂直分别以所在的直线为轴建立如图所示的空间直角坐标系设则所以其中平面的一个法向量为所以与平面所成角的正弦值为所以;又向量与所成角的余弦值为又所以异面直线与所成角的余弦值是考点230【详解】试题分析:由,,AB AD AQ 两两垂直,分别以,,AB AD AQ 所在的直线为,,x y z 轴建立如图所示的空间直角坐标系,设2AB =,则(0,0,0),(1,0,0),(2,1,0),(0,1,2)A E F M ,所以(1,1,2),(2,1,0)EM AF =-=,其中平面ABCD 的一个法向量为(0,0,1)n =,所以ME与平面ABCD 所成角的正弦值为6sin EM n EM n α⋅==⋅,所以tan 2α=EM 与AF 所成角的余弦值为cos EM AF EM AFβ⋅=⋅30=(0,]2πβ∈,所以异面直线EM 与AF 30考点:空间向量的运算及空间角的求解.19.【分析】建立空间直角坐标系得到相关点的坐标后求出直线AE 的方向向量=(011)和平面A1ED1的法向量然后利用向量的共线可得直线AE 与平面A1ED1垂直于是得所求角为【详解】以D 为原点以DADCDD 解析:90【分析】建立空间直角坐标系,得到相关点的坐标后,求出直线AE 的方向向量AE =(0,1,1)和平面A 1ED 1的法向量()0,1,1n =,然后利用向量的共线可得直线AE 与平面A 1ED 1垂直,于是得所求角为90. 【详解】以D 为原点,以DA ,DC ,DD 1分别为x ,y ,z 轴建立空间直角坐标系, 则A (1,0,0),E (1,1,1),A 1(1,0,2),D 1(0,0,2), 于是AE =(0,1,1),1AE =(0,1,-1),11A D =(-1,0,0). 设平面A 1ED 1的法向量为(),,n x y z =,则1110,0,n A E y z n A D x ⎧⋅=-=⎪⎨⋅=-=⎪⎩得,0,y z x =⎧⎨=⎩令1z =,得()0,1,1n =. 所以AE ∥n ,故直线AE 与平面A 1ED 1垂直,即所成角为90°. 故答案为90° 【点睛】本题考查空间位置关系的向量解法,将几何问题转化为数的运算的问题处理,解题的关键是建立适当的空间直角坐标系、正确地求出直线的方向向量和平面的法向量,由于解题时需要进行数的运算,因此还要注意计算的准确性.20.【解析】分析:设正三棱锥P-ABC 的侧棱长为2aPO 为三棱锥的高做PD 垂直于AB 连OD 则PD 为侧面的高OD 为底面的高的三分之一在三角形POD 中构造勾股定理列出方程得到斜高即可详解:设正三棱锥P-AB【解析】分析:设正三棱锥P-ABC 的侧棱长为2a,PO 为三棱锥的高,做PD 垂直于AB ,连OD ,则PD 为侧面的高,OD 为底面的高的三分之一,在三角形POD 中构造勾股定理,列出方程,得到斜高即可.详解:设正三棱锥P-ABC 的侧棱长为2a,PO 为三棱锥的高,做PD 垂直于AB ,连OD ,则PD 为侧面的高,OD 为底面的高的三分之一,在三角形POD中OD ==⇒=故全面积为:1111122⨯⨯⨯⨯点睛:这个题目考查了正三棱锥的表面积的求法,其中涉及到体高,斜高和底面的高的三分之一构成的常见的模型;正三棱锥还有一特殊性即对棱垂直,这一性质在处理相关小题时经常用到.三、解答题21.(1)证明见解析;(2)56π. 【分析】(1)建立空间直角坐标系,证明平面111A B C 法向量与向量CE 垂直. (2)求二面角两个半平面的法向量所成角即可. 【详解】(1)因为点1B 在平面ABC 内的正投影为B ,所以1B B BA ⊥,1B BBC ,又AB BC ⊥,如图建立空间直角坐标系B xyz -,()0,0,0B ,()2,0,0A ,()0,2,0C ,()12,0,4A ,()10,0,4B ,()10,2,2C ,()1,0,2E ,设平面111A B C 的法向量()1,,n x y z =,()112,0,0A B =-,()110,2,2B C =-, 即20,220,x y z -=⎧⎨-=⎩取1y =,得1(0,1,1)n =,又()1,2,2CE =-,()10112210CE n ⋅=⨯+⨯-+⨯=, 所以1CE n ⊥,又CE ⊄平面111A B C 所以//CE 平面111A B C ;(2)设平面111A B C 的法向量()2,,n x y z =,()12,0,4B A =-,()110,2,2B C =-,即240,220,x z y z -=⎧⎨-=⎩取1y =,得()22,1,1n =, 同理可求平面1ACC 的法向量()31,1,0n =, 所以2323233cos ,2n n n n n n ⋅==⋅,由图知二面角11B AC C --的平面角是钝角, 所以二面角11B AC C --的平面角是56π. 【点睛】关键点睛:利用题设垂直条件,建立空间直角坐标系. 22.(Ⅰ)证明见解析;(Ⅱ)3π.【分析】(Ⅰ)通过证明PO AD ⊥和PO CD ⊥,结合线面垂直的判定定理证明出PO ⊥平面ABCD ;(Ⅱ)先求解出平面EFG 和平面ABCD 的法向量,然后求解出法向量夹角的余弦值,由此确定出锐二面角的余弦值,从而锐二面角的大小可求. 【详解】(Ⅰ)因为PAD △是正三角形,O 是AD 的中点,所以PO AD ⊥, 又因为CD ⊥平面PAD ,PO ⊂平面PAD ,所以PO CD ⊥,AD CD D =,,AD CD ⊂平面ABCD ,所以PO ⊥面ABCD ;(Ⅱ)如图,以O 点为原点分别以,,OA OG OP 所在直线为x 轴、y 轴、z 轴建立空间直角坐标系,则(0,0,0),(2,0,0),(2,4,0),(2,4,0),(2,0,0),(0,4,0),(0,0,23)O A B C D G P--,(1,2,3),(1,0,3)E F --,(0,2,0),(1,2,3)EF EG =-=-,设平面EFG 的法向量为(,,),m x y z =因为00m EF m EG ⎧⋅=⎨⋅=⎩,所以20230y x y z -=⎧⎪⎨+-=⎪⎩,令1z =,则(3,0,1)m =, 又平面ABCD 的法向量(0,0,1)n =, 设平面EFG 与平面ABCD 所成锐二面角为θ , 所以||1cos 2||||311m n m n θ⋅===+⋅.所以平面EFG 与平面ABCD 所成锐二面角为3π.【点睛】思路点睛:向量方法求解二面角的余弦值的步骤:(1)建立合适空间直角坐标系,写出二面角对应的两个半平面中相应点的坐标; (2)设出法向量,根据法向量垂直于平面中任意方向向量,求解出半平面的一个法向量;(注:若半平面为坐标平面,直接取法向量亦可)(3)计算(2)中两个法向量夹角的余弦值,结合立体图形中二面角的实际情况,判断二面角是钝角还是锐角,从而得到二面角的余弦值. 23.(Ⅰ)证明见解析;(Ⅱ)3913. 【分析】(Ⅰ)根据题中的边长以及垂直关系,可求出,OA OP ,利用勾股定理判断OP OA ⊥,再根据等边三角形三线重合,判断OP BC ⊥,即可证明PO ⊥平面ABCD ;(Ⅱ)根据垂直关系,以O 为坐标原点,建立空间直角坐标系,利用向量的坐标公式求CB 与平面PBD 所成角的正弦值. 【详解】(Ⅰ)证明:在ACD △中,由已知得3AC =,ABC PBC 均为边长为3的等边三角形,且O 为BC 的中点 ,OA BC OP BC ∴⊥⊥,且32OA OP ==. 在PAO 中,已知322PA =, 则有222,PO OA PA OP OA +=∴⊥. 又,OA BC O OA ⋂=⊂平面,ABCD BC ⊂平面,ABCD OP ∴⊥平面ABCD .(Ⅱ)以O 为坐标原点,,,OA OC OP 分别为x 轴,y 轴,z 轴的正方向,建立如图所示的空间直角坐标系,则3330,0,,0,,2P B C ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,3D ⎛⎫ ⎪ ⎪⎝⎭. (0,3,0)(1,3,0)BC BD ∴==,,3333)2BP ⎛⎫== ⎪ ⎪⎝⎭.设平面PBD 的法向量为(,,)n x y z =,则00n BP n BD ⎧⋅=⎨⋅=⎩即00x y ⎧=⎪⎨=⎪⎩,令1z =.则3y x ==. ∴平面PBD 的一个法向量为(3,3,1)n =-,39sin |cos ,|BCn θ∴=<>=.sin θ∴= 【点睛】方法点睛:1.利用面面垂直的性质定理,得到线面垂直,进而确定线面角中的垂足,明确斜线在平面内的射影,即可确定线面角;2.在构成线面角的直角三角形中,可利用等体积法解垂线段的长度h ,而不必画出线面角,利用sin h θ= /斜线段长,进行求角;3.建立空间直角坐标系,利用向量法求解,设a 是直线l 的方向向量,n 是平面的法向量,利用公式sin cos ,a n θ=<>求解. 24.(Ⅰ)证明见解析;(Ⅱ)6【分析】(Ⅰ)解法1.利用线面平行的判定定理证明; 解法2.以A 为坐标原点,,,AB AD AP 所在直线分别为x 轴、y 轴、z 轴,建立如图所示空间直角坐标系A xyz -,利用空间向量证明直线BC 与平面PAD 的法向量垂直,从而证明结论.(Ⅱ)建立空间直角坐标系后,后利用空间向量的坐标运算求得两平面的法向量的坐标,进而计算. 【详解】 (Ⅰ)证明:解法1. 因为//BC ADBC ⊄平面PAD AD ⊂平面PAD 所以//BC 平面PAD解法2.因为PA AD ⊥,PA AB ⊥,AD AB ⊥,所以以A 为坐标原点,,,AB AD AP 所在直线分别为x 轴、y 轴、z 轴,建立如图所示空间直角坐标系A xyz -,则(0,0,0),(2,0,0),(0,4,0),(0,0,2),(2,2,0)A B D P C , 平面PAD 的法向量为(1,0,0)t, (0,2,0)BC = ,因为 0120000t BC ⋅=⨯+⨯+⨯= ,BC ⊄平面PAD ,所以//BC 平面PAD ;(Ⅱ)解:因为PA AD ⊥,PA AB ⊥AD AB ⊥, 所以以A 为坐标原点,,,AB AD AP 所在直线分别为x 轴、y 轴、z 轴,建立如图所示空间直角坐标系A xyz -,则(0,0,0),(2,0,0),(0,4,0),(0,0,2),(2,2,0)A B D P C所以平面PAB 的法向量为(0,1,0)n = , 设平面PCD 的法向量为(,,)m x y z =(2,2,2)PC =-,(0,4,2)PD =- ,所以2220042020x y z x ym PC m PC y z z y m PD m PD ⎧⎧+-==⎧⎧⊥⋅=⇒⇒⇒⎨⎨⎨⎨-==⊥⋅=⎩⎩⎩⎩ , 令1(1,1,2)y m ==得 ,16cos ,616n m n m n m⋅<>===⨯ 设平面PAB 与平面PCD 所成角为θθ,为锐角, 所以6cos θ=. 【点睛】本题考查利用空间向量证明线面垂直和求二面角问题,关键是平面的法向量的求解和夹角余弦值的计算,注意所求为两平面所成的锐二面角的余弦值,因此对两平面的法向量所成角的余弦值与两平面所成锐角的余弦值要注意区分与联系. 25.(1)225;(2)22 【分析】(1)根据题意可知OA ,OB ,OP 两两垂直,建立空间直角坐标系,根据题所给的长度可算出面BDM 的法向量和PB 的坐标,再根据线面夹角的向量法,代入公式可得最后答案.(2)根据(1)可知AM 的坐标和面BDM 的一个法向量n 坐标,根据公式n nAM ⋅,即可求出点A 到平面BDM 的距离. 【详解】(1)∵四边形ABCD 为菱形,AC BD ∴⊥,又OP ⊥面ABCD ,OA ∴,OB ,OP 两两垂直,∴以OA 为x 轴,OB 为y 轴,OP 为z 轴建立如图所示的空间直角坐标系O xyz -,根据题可知4OA =,3OB =,4OP =,且M 为PC 中点,(4,0,0)A ∴,(0,3,0)B ,(0,3,0)D -,(0,0,4)P ,(4,0,0)C -,(2,0,2)M -, (0,3,4)PB ∴=-,(2,3,2)BM =--,(0,6,0)BD =-,设面BDM 的法向量为(),,n x y z =,00n BM n BD ⎧⋅=∴⎨⋅=⎩,232060x y z y --+=⎧∴⎨-=⎩,0y ∴=,令1x =,则1z =,()1,0,1n ∴=,22cos 5||||25n PB n PB n PB ⋅∴〈⋅〉===⋅⋅,∴直线PB 与平面BDM 所成角的正弦值为25; (2)由(1)可知(6,0,2)AM =-,面BDM 的一个法向量为(1,0,1)n =, ∴点A 到平面BDM 的距离|||cos |22||2n AM d AM n AM n ⋅=⋅〈⋅〉=== ∴点A 到平面BDM 的距离为22 【点睛】方法点睛:(1)求直线PB 与平面BDM 所成角的正弦值用向量法:建立空间直角坐标系、求出PB 和平面BDM 的法向量n 的坐标、根据公式cos ||||n PBn PB n PB ⋅〈⋅〉=⋅求解;(2)求点A 到平面BDM 的距离用向量法:建立空间直角坐标系、在平面BDM 上找一点如M 点、求出AM 的坐标和面BDM 的一个法向量n 坐标、根据公式|||cos |AM n AM ⋅〈⋅〉求解.26.(1)证明见解析;(2)24. 【分析】(1)连接AO ,证明CA ⊥平面PAO ,说明PAO ∠是PA 与平面ABC 的角,通过证明//OB AC ,推出//OB 平面PAC .(2)建立直角坐标系求解【详解】解:(1)连AO ,因为PO ⊥平面ABC ,得PO CA ⊥. 又因为CA PA ⊥,POPA P =,PO ⊂平面PAO ,PA ⊂平面PAO所以CA ⊥平面PAO ,AO ⊂平面PAO ,所以CA AO ⊥ 因为PAO ∠是PA 与平面ABC 的角,60PAO ∠=︒. 因为23PA =,得3OA =.在OAB 中,903060OAB ∠=︒-︒=︒,故有OB OA ⊥, 从而有//OB AC ,OB ⊄平面PAC ,AC ⊂平面PAC 所以//OB 平面PAC .(2)以,,OB OA OP 所在直线分别为x 轴、y 轴、z 轴建立坐标系, 则(0,0,3)P ,(0,3,0)A ,(3,0,0)B ,3,0)C(4,0,0),(0,3,3),(3,0,3)AC PA PB ∴==-=- 设平面PAC 的法向量(,,)n x y z =则40330n AC x n PA y z ⎧⋅==⎪⎨⋅=-=⎪⎩得(0,3,1)n = 2sin cos ,232||||n PB n PB n PB α⋅∴=<>==⨯⋅ 即直线PB 与平面PAC 所成角的正弦值为24.【点睛】本题考查了立体几何中的面面垂直的判定和二面角的求解问题,意在考查学生的空间想象能力和逻辑推理能力;解答本题关键在于能利用直线与直线、直线与平面、平面与平面关系的相互转化,通过严密推理,同时对于立体几何中角的计算问题,往往可以利用空间向量法,通过求解平面的法向量,利用向量的夹角公式求解.。

高中数学选修2-1试题(后附详细答案)

高中数学选修2-1试题(后附详细答案)

高中数学选修2-1试卷 班级________姓名:_________考试时间:120分钟 试卷满分:150分一、选择题:本大题共12小题,每小题5分,共60分.将答案写在后面的框内,否则一律不给9分.1.“1x ≠”是“2320x x -+≠”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件2.已知命题p q ,,若命题“p ⌝”与命题“p q ∨”都是真命题,则( )A .p 为真命题,q 为假命题B .p 为假命题,q 为真命题C .p ,q 均为真命题D .p ,q 均为假命题3. 设M 是椭圆22194x y +=上的任意一点,若12,F F 是椭圆的两个焦点,则12||||MF MF + 等于( )A . 2B . 3C . 4D . 64.(重庆高考)命题“对任意x ∈R ,都有x 2≥0”的否定为( )A .存在x 0∈R ,使得x 20<0B .对任意x ∈R ,都有x 2<0C .存在x 0∈R ,使得x 20≥0D .不存在x ∈R ,使得x 2<05. 抛物线24y x =的焦点到其准线的距离是( )A . 4B . 3C . 2D . 16. 两个焦点坐标分别是12(5,0)(5,0)F F -,,离心率为45的双曲线方程是( ) A . 22143x y -= B . 22153x y -= C .221259x y -= D .221169x y -= 7. 下列各组向量平行的是( )A .(1,1,2),(3,3,6)=-=--a bB .(0,1,0),(1,0,1)==a bC .(0,1,1),(0,2,1)=-=-a bD .(1,0,0),(0,0,1)==a b8. 在空间四边形OABC 中,OA AB CB +-等于( )A .OAB .ABC .OCD .AC9. 已知向量(2,3,1)=a ,(1,2,0)=b ,则-a b 等于 ( )A .1 BC .3D .910. 如图,在三棱锥A BCD -中,DA ,DB ,DC 两两垂直,且DB DC =,E 为BC 中点,则AE BC ⋅ 等于( )A .3B .2C .1D .011. 已知抛物线28y x =上一点A 的横坐标为2,则点A 到抛物线焦点的距离为( )A .2B .4C .6D .812.正方体1111ABCD A B C D -中,M 为侧面11ABB A 所在平面上的一个动点,且M 到平面11ADD A 的距离是M 到直线BC 距离的2倍,则动点M 的轨迹为( )二、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中横线上. 13.命题“若0a >,则1a >”的否命题是_____________________.14.双曲线22194x y -=的渐近线方程是_____________________. 15.已知点(2,0),(3,0)A B -,动点(,)P x y 满足2AP BP x ⋅=,则动点P 的轨迹方程是 .16. 已知椭圆12222=+by a x 的左、右焦点分别为21,F F ,点P 为椭圆上一点,且AEDCB3021=∠F PF , 6012=∠F PF ,则椭圆的离心率e 等于 .三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤. 17.求渐近线方程为x y 43±=,且过点)3,32(-A 的双曲线的标准方程及离心率。

高二数学选修2-1测试试题及答案

高二数学选修2-1测试试题及答案

(选修2-1)模块测试试题命题人:铁一中 周粉粉(本试题满分150分,用时100分钟)一、选择题:(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.命题“若a b >,则88a b ->-”的逆否命题是 ( )A.若a b <,则88a b -<-B.若88a b ->-,则a b >C.若a ≤b ,则88a b -≤-D.若88a b -≤-,则a ≤b2.如果方程x 2+k y 2=2表示焦点在y 轴上的椭圆,那么实数k 的取值范围是( ) A .(0, +∞)B .(0, 2)C .(0, 1)D . (1, +∞)3.P:12≥-x ,Q:0232≥+-x x ,则“非P ”是“非Q ”的( )A 、充分不必要条件B 、必要不充分条件C 、充要条件D 、既不充分也不必要条件4.双曲线221169x y -=的左、右焦点分别为F 1,F 2,在左支上过点F 1的弦AB 的长为5,那么△ABF 2的周长是( )A 、24B 、25C 、26D 、 285.若焦点在x 轴上的椭圆1222=+m y x 的离心率为21,则m=( ) A.3 B.23 C.38 D.32 6.在同一坐标系中,方程)0(0122222>>=+=+b a by ax by a x 与的曲线大致是( )7.椭圆221259x y +=的两个焦点分别为F 1、F 2,P 为椭圆上的一点,已知PF 1⊥PF 2,则∆PF 1F 2的面积为( )A.9B.12C.10D.8 8.正方体1111ABCD A B C D -的棱长为1,E 是11A B 的中点,则E 到平面11ABC D 的距离是( ) A.32B.22C.12D.339.若向量a 与b 的夹角为60°,4=b ,(2)(3)72a b a b +-=-,则a =( ) A.2 B.4C.6D.1210.方程22111x y k k表示双曲线,则k 的取值范围是( )A .11<<-kB .0>kC .0≥kD .1>k 或1-<k11.方程12222=+kb y ka x (a >b >0,k >0且k ≠1),与方程12222=+by a x (a >b >0)表示的椭圆( ) (A )有等长的短轴、长轴 (B )有共同的焦点(C )有公共的准线 (D )有相同的离心率 12.如图1,梯形ABCD 中,AB CD ∥,且AB ⊥平面α,224AB BC CD ===,点P 为α内一动点,且APB DPC ∠=∠,则P 点的轨迹为( ) A.直线 B.圆 C.椭圆 D.双曲线二、填空题:(本大题共5小题,每小题6分,共30分.将正确答案填在答题卷上对应题号的横线上.)13.设甲、乙、丙是三个命题,如果甲是乙的必要条件,丙是乙的充分条件,但不是乙的必要条件,那么丙是甲的 (①.充分而不必要条件,②.必要而不充分条件 ,③.充要条件) 14.在棱长为a 的正方体1111ABCD A B C D -中,向量1BA 与向量AC 所成的角为 . 15.已知向量)0,3,2(-=a ,)3,0,(k b =,若b a ,成1200的角,则k= .16.抛物线的的方程为22x y =,则抛物线的焦点坐标为____________17.以下三个关于圆锥曲线的命题中:①设A 、B 为两个定点,K 为非零常数,若|PA |-|PB |=K ,则动点P 的轨迹是双曲线。

高二数学选修2-1空间向量试卷与答案

高二数学选修2-1空间向量试卷与答案

高二数学(选修2-1 )空间向量试题宝鸡铁一中司婷一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确答案的代号填在题后的括号内(每小题 5 分,共 60 分).1.在正三棱柱ABC—A1B1C1中,若AB=2BB1,则 AB1与 C1B 所成的角的大小为()A. 60°B. 90°C. 105°D.75°2.如图,ABCD—A1B1C1D1是正方体,B1E1=D1F1=A1B1,则 BE1 4与 DF1所成角的余弦值是()A.15B.1172图8D.3C.2173.如图, 1 1 1—是直三棱柱,∠=90°,点1、 1 分别是 1 1、A B C ABC BCA D F A BA1C1的中点,若 BC=CA=CC1,则 BD1与 AF1所成角的余弦值是()A.C.30110B.230图1515D.104.正四棱锥S ABCD 的高 SO 2 ,底边长AB 2 ,则异面直线BD 和 SC 之间的距离().15.5C.2 5A5B55 5.已知ABC A1 B1 C1是各条棱长均等于 a 的正三棱柱, D 是侧棱 CC1的中点.点 C1到平面 AB1 D 的距离()A. 2 a B. 2 a48A 1D.5C110B1D A CB图C.32 a D. 2 a 426.在棱长为 1 的正方体ABCD A1 B1C1D1中,则平面 AB1C 与平面 A1 C1 D 间的距离()A.3B.3C.2 3D.363327.在三棱锥-中,⊥,==1,点、D 分别是、的中点,⊥底P ABC AB BC AB BC2PA O AC PC OP 面 ABC,则直线 OD与平面 PBC所成角的正弦值()A.21B.8 3C210 D .2106360308.在直三棱柱ABC A1B1C1中,底面是等腰直角三角形,ACB 90,侧棱 AA1 2 ,D,E 分别是CC1与A1B的中点,点 E 在平面AB D 上的射影是ABD 的重心G.则A1B 与平面 AB D所成角的余弦值()A.2B.7C.3D.3 33279.正三棱柱ABC A1 B1C1的底面边长为3,侧棱AA133 ,D是C B延长线上一点,2且 BD BC ,则二面角B1AD B 的大小()A.3B.6C.5D.26310.正四棱柱ABCD A1B1C1D1中,底面边长为 2 2 ,侧棱长为4, E,F 分别为棱AB,CD的中点,EF BD G .则三棱锥B1EFD1的体积V()A.6B.16 3C.16D.1663311.有以下命题:①如果向量 a, b 与任何向量不能构成空间向量的一组基底,那么a, b 的关系是不共线;② O , A, B,C 为空间四点,且向量OA, OB, OC不构成空间的一个基底,则点 O, A, B,C一定共面;③已知向量 a, b, c 是空间的一个基底,则向量 a b, a b, c 也是空间的一个基底。

高中数学选修2-1全册综合测试题含答案

高中数学选修2-1全册综合测试题含答案

选修2-1综合测试一、选择题(本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,有且只有一项是符合题目要求的)1.已知p :2x -3<1,q :x 2-3x <0,则p 是q 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件2.抛物线y =14x 2的焦点坐标为( ) A .(116,0) B .(-116,0) C .(0,1) D .(0,-1)3.已知命题p :3是奇数,q :3不是质数.由它们构成的“p ∨q ”“p ∧q ”“非p ”形式的命题中真命题有( )A .0个B .1个C .2个D .3个4.双曲线x 24+y 2k=1的离心率e ∈(1,2),则k 的取值范围是( ) A .(-∞,0) B .(-3,0) C .(-12,0) D .(-60,-12)5.下列结论正确的个数是( )①命题“所有的四边形都是平行四边形”是特称命题;②命题“∀x ∈R ,x 2+1>0”是全称命题;③若p :∃x ∈R ,x 2+2x +1≤0,则非p :∀x ∈R ,x 2+2x +1≤0.A .0B .1C .2D .36.设α,β,γ是互不重合的平面,m ,n 是互不重合的直线,给出下列命题:①若m ⊥α,m ⊥β,则α∥β;②若α⊥γ,β⊥γ,则α∥β;③若m ⊥α,m ∥β,则α⊥β;④若m ∥α,n ⊥α,则m ⊥n .其中真命题的个数是( )A .1B .2C .3D .47.已知a =(m +1,0,2m ),b =(6,2n -1,2),若a ∥b ,则m 与n 的值分别为( ) A.15,12 B .5,2 C .-15,-12D .-5,-2 8.若双曲线x 23-16y 2p 2=1的左焦点在抛物线y 2=2px 的准线上,则p 的值为( ) A .2 B .3 C .4 D .4 29.已知双曲线x 2a 2-y 2b 2=1的左、右焦点分别为F 1、F 2,点P 在双曲线上,且|PF 1|=4|PF 2|,则此双曲线的离心率e 的最大值为( )A.43B.32C.53D .210.如图所示,在直三棱柱ABC -A 1B 1C 1中,AB =BC =AA 1,∠ABC =90°,点EF 分别是棱AB ,BB 1的中点,则直线EF 和BC 1所成的角是( )A .45°B .60°C .90°D .120°11.给出下列曲线,其中与直线y =-2x -3有交点的所有曲线是( )①4x +2y -1=0;②x 2+y 2=3;③x 22+y 2=1;④x 22-y 2=1. A .①③ B .②④ C .①②③ D .②③④12.过点M (-2,0)的直线l 与椭圆x 2+2y 2=2交于P 1,P 2两点,设线段P 1P 2的中点为P .若直线l 的斜率为k 1(k 1≠0),直线OP 的斜率为k 2,则k 1·k 2等于( )A .-12 B.12C .-2D .2 二、填空题(本大题共4小题,每小题5分,满分20分.把答案填在题中横线上)13.命题“存在一个三角形没有外接圆”的否定是________.14.已知命题p :1≤x ≤2,q :a ≤x ≤a +2,且綈p 是綈q 的必要不充分条件,则实数a 的取值范围是________.15.已知直线l 1的一个方向向量为(-7,4,3),直线l 2的一个方向向量为(x ,y,6),且l 1∥l 2,则x =________,y =________.16.如图在长方体ABCD -A 1B 1C 1D 1中,AB =BC =2,AA 1=1,则AC 1与平面ABCD 所成角的余弦值为________.三、解答题(本大题共6小题,满分70分.解答应写出必要的文字说明、证明过程或演算步骤)17.(10分)已知命题p :不等式|x -1|>m -1的解集为R ,命题q :f (x )=-(5-2m )x 是减函数,若p 或q 为真命题,p 且q 为假命题,求实数m 的取值范围.18.(12分)求证:a +2b =0是直线ax +2y +3=0和直线x +by +2=0互相垂直的充要条件.19.(12分)抛物线y =-x 22与过点M (0,-1)的直线l 相交于A ,B 两点,O 为原点,若OA 和OB 的斜率之和为1,求直线l 的方程.20.(12分)已知椭圆C 的中心为平面直角坐标系xOy 的原点,焦点在x 轴上,它的一个顶点到两个焦点的距离分别是7和1.(1)求椭圆C 的方程;(2)若P 为椭圆C 上的动点,M 为过P 且垂直于x 轴的直线上的点,|OP ||OM |=e (e 为椭圆C 的离心率),求点M 的轨迹方程,并说明轨迹是什么曲线.21.(12分)如图,在正三棱柱ABC -A 1B 1C 1中,AB =2AA 1,点D 是A 1B 1的中点,点E 在A 1C 1上,且DE ⊥AE .(1)证明:平面ADE⊥平面ACC1A1;(2)求直线AD和平面ABC1所成角的正弦值.22.(12分)如图所示,在直四棱柱ABCD-A1B1C1D1中,已知DC=DD1=2AD=2AB,AD⊥DC,AB∥DC.(1)设E是DC的中点,求证:D1E∥平面A1BD;(2)求二面角A1—BD—C1的余弦值.1.解析 p :x <2,q :0<x <3.∴pD ⇒/q ,qD ⇒/p .∴p 是q 的既不充分也不必要条件.答案 D2.解析 由y =14x 2,得x 2=4y ,∴焦点坐标为(0,1).答案 C2.解析 命题p 为真,q 为假,∴“p ∨q ”为真,“p ∧q ”、“綈p ”为假,故应选B.答案 B4.解析 由x 24+y 2k =1表示双曲线知,k <0,且a 2=4,b 2=-k ,∴e 2=c 2a 2=4-k 4,∵1<e <2,∴1<4-k 4<4.∴4<4-k <16,∴-12<k <0.答案 C5.解析 ①是全称命题,②是全称命题,③綈p :∀x ∈R ,x 2+2x +1>0.∴①不正确,②正确,③不正确.答案 B6.解析 ①正确,②不正确,③正确,④正确.答案 C7.解析 ∵a ∥b ,∴a =λb ,∴⎩⎪⎨⎪⎧ m +1=6λ,0=λ(2n -1),2m =2λ,解得⎩⎪⎨⎪⎧ m =15,n =12,λ=15.∴m =15,n =12.答案 A 8.解析 设双曲线的焦距为2c ,由双曲线方程知c 2=3+p 216,则其左焦点为(-3+p 216,0).由抛物线方程y 2=2px 知其准线方程为x =-p 2,由双曲线的左焦点在抛物线的准线上知,3+p 216=p 24,且p >0,解得p =4.答案 C9.解析 由双曲线的定义知,|PF 1|-|PF 2|=2a ,又|PF 1|=4|PF 2|,∴|PF 1|=8a 3,|PF 2|=2a 3.又|PF 2|≥c -a ,即2a 3≥c -a .∴c a ≤53.即e ≤53.答案 C10.解析 建立空间直角坐标如图所示.设AB =2,则EF →=(0,-1,1).BC 1→=(2,0,2),∴cos 〈EF →·BC 1→〉=EF →·BC 1→|EF →||BC 1→|=28·2=12, 故EF 与BC 1所成的角为60°.答案 B11.解析 直线y =-2x -3与4x +2y -1=0平行,所以与①不相交.②中圆心(0,0)到直线2x +y +3=0的距离d =35< 3.所以与②相交.把y =-2x -3代入x 22+y 2=1,得x 22+4x 2+12x +9=1,即9x 2+24x +16=0,Δ=242-4×9×16=0,所以与③有交点.观察选项知,应选D.答案 D12.解析 设直线l 的方程为y =k 1(x +2),代入x 2+2y 2=2,得(1+2k 21)x 2+8k 21x +8k 21-2=0,设P 1(x 1,y 1),P 2(x 2,y 2),则x 1+x 2=-8k 211+2k 21, 而y 1+y 2=k 1(x 1+x 2+4)=4k 11+2k 21. ∴k 2=y 1+y 22x 1+x 22=-12k 1,∴k 1·k 2=-12. 答案 A13.解析 命题“存在一个三角形没有外接圆”是特称命题,它的否定是全称命题“任意一个三角形都有外接圆.”答案 任意一个三角形都有外接圆14.解析 “p 是q 的必要不充分条件”的逆否命题是“q 是p 的必要不充分条件”.∴{x |1≤x ≤2}{x |a ≤x ≤a +2},∴0≤a ≤1. 答案 0≤a ≤115.答案 -14 816.解析 由题意知,AC 1=22+22+1=3,AC =22+22=22,在Rt △AC 1C 中,cos ∠C 1AC =AC AC 1=223.答案 22317.解 由|x -1|>m -1的解集为R ,知m -1<0,∴m <1.即p :m <1.又f (x )=-(5-2m )x 是减函数,∴5-2m >1,即m <2,即q :m <2.若p 真q 假,则⎩⎨⎧ m <1,m ≥2,m 不存在. 若p 假q 真,则⎩⎨⎧ m ≥1,m <2,∴1≤m <2.综上知,实数m 的取值范围是[1,2).18.证明 充分性:当b =0时,如果a +2b =0,那么a =0,此时直线ax +2y +3=0平行于x 轴,直线x +by +2=0平行于y 轴,它们互相垂直;当b ≠0时,直线ax +2y +3=0的斜率k 1=-a 2,直线x+by +2=0的斜率k 2=-1b ,如果a +2b =0,那么k 1k 2=(-a 2)×(-1b )=-1.故两直线互相垂直.必要性:如果两条直线互相垂直且斜率都存在,那么k 1k 2=(-a 2)×(-1b )=-1,所以a +2b =0,若两条直线中有直线的斜率不存在,且互相垂直,则b =0,且a =0,所以a +2b =0.综上可知,a +2b =0是直线ax +2y +3=0和直线x +by +2=0互相垂直的充要条件.19.解 显然直线l 垂直于x 轴不合题意,故设所求的直线方程为y =kx -1,代入抛物线方程化简,得x 2+2kx -2=0.由根的判别式Δ=4k 2+8=4(k 2+2)>0,于是有k ∈R .设点A 的坐标为(x 1,y 1),点B 的坐标为(x 2,y 2),则y 1x 1+y 2x 2=1.① 因为y 1=kx 1-1,y 2=kx 2-1,代入① ,得2k -(1x 1+1x 2)=1.② 又因为x 1+x 2=-2k ,x 1x 2=-2,代入②得k =1.所以直线l 的方程为y =x -1.20.解 (1)设椭圆长半轴长及半焦距分别为a ,c 由已知得⎩⎨⎧ a -c =1,a +c =7,解得⎩⎨⎧ a =4,c =3,所以椭圆C 的方程为x 216+y 27=1.(2)设M (x ,y ),P (x ,y 1),其中x ∈[-4,4].由已知得x 2+y 21x 2+y 2=e 2.而e =34,故16(x 2+y 21)=9(x 2+y 2).① 由点P 在椭圆C 上得y 21=112-7x 216,代入①式并化简得9y 2=112,所以点M 的轨迹方程为y =±473(-4≤x ≤4),它是两条平行于x轴的线段.21.解 (1)证明:由正三棱柱ABC -A 1B 1C 1的性质知AA 1⊥平面A 1B 1C 1.又DE ⊂平面A 1B 1C 1,所以DE ⊥AA 1.而DE ⊥AE ,AA 1∩AE =A ,所以DE ⊥平面ACC 1A 1.又DE ⊂平面ADE ,故平面ADE ⊥平面ACC 1A 1.(2)如图所示,设O 是AC 的中点,以O 为原点建立空间直角坐标系.不妨设AA 1=2,则AB =2,相关各点的坐标分别是A (0,-1,0),B (3,0,0),C 1(0,1,2),D (32,-12,2).易知AB →=(3,1,0),AC 1→=(0,2,2),AD →=(32,12,2).设平面ABC 1的一个法向量为n =(x ,y ,z ),则有⎩⎨⎧n ·AB →=3x +y =0,n ·AC 1→=2y +2z =0.解得x =-33y ,z =-2y .故可取n =(1,-3,6).所以cos 〈n ,AD →〉=n ·AD →|n ||AD →|=2310×3=105.由此可知,直线AD和平面ABC1所成角的正弦值为10 5.22.解(1)证明:在图中连接B,E,则四边形DABE为正方形,∴BE=AD=A1D1,且BE∥AD∥A1D1.∴四边形A1D1EB为平行四边形.∴D 1E ∥A 1B .又D 1E ⊄平面A 1BD ,A 1B ⊂平面A 1BD ,∴D 1E ∥平面A 1BD .(2)以D 为原点,DA ,DC ,DD 1所在直线分别为x 轴,y 轴,z 轴建立如图所示的空间直角坐标系,不妨设DA =1,则D (0,0,0),A (1,0,0),B (1,1,0),C 1(0,2,2),A 1(1,0,2).∴DA 1→=(1,0,2),DB →=(1,1,0).设n =(x ,y ,z )为平面A 1BD 的一个法向量,由n ⊥DA 1→,n ⊥DB →,得⎩⎨⎧x +2z =0,x +y =0,取z =1,则n =(-2,2,1).又DC 1=(0,2,2),DB →=(1,1,0),设m =(x 1,y 1,z 1)为平面C 1BD 的一个法向量,由m ⊥DC 1→,m ⊥DB →, 得⎩⎨⎧ 2y 1+2z 1=0,x 1+y 1=0,取z 1=1,则m =(1,-1,1).设m 与n 的夹角为α,二面角A 1-BD -C 1为θ,显然θ为锐角,∴cos α=m ·n |m ||n |=-39×3=-33.∴cosθ=3 3,即所求二面角A1-BD-C1的余弦值为3 3.。

高二数学选修2-1测试题

高二数学选修2-1测试题

高二数学选修2-1测试题1.“x1”是“x23x2”的(必要不充分条件)。

2.若p q是假命题,则(p是真命题,q是假命题)。

3.F1,F2是距离为6的两定点,动点M满足∣MF1∣+∣MF2∣=6,则M点的轨迹是(椭圆)。

4.双曲线x2y21=0的渐近线方程为(y=±x/√3)。

5.中心在原点的双曲线,一个焦点为F(0,3),一个焦点到最近顶点的距离是31,则双曲线的方程是(y2/4-x2/3=1)。

6.已知正方形ABCD的顶点A,B为椭圆的焦点,顶点C,D 在椭圆上,则此椭圆的离心率为(2-√2)。

7.椭圆4a2x2+a2y2=4a2与双曲线x2/a2-y2/b2=1有相同的焦点,则a的值为(2)。

8.与双曲线y2/9-x2/16=1有共同的渐近线,且过点(2,2)的双曲线标准方程为(9y2-16x2=144)。

9.已知A(-1,-2,6),B(1,2,-6)O为坐标原点,则向量OA,与OB的夹角是(cosθ=0)。

10.与向量a(1,3,2)平行的一个向量的坐标是(2,-6,4)。

11.已知圆C与直线x-y=0及x-y-4=0都相切,圆心在直线x+y=0上,则圆C的方程为(x+1)²+(y-1)²=2)。

12.若直线x+y=m与圆x²+y²=m²相切,则m的值为(1)。

解析】解题分析:设圆心为O,则由题意可知O在直线y=x上,又因为圆心到直线x+y=2的距离为2,所以O到直线y=x的距离为2.由于直线y=x与直线x+y=2的距离为$\frac{\sqrt{2}}{2}$,所以O到直线y=x的距离也为$\frac{\sqrt{2}}{2}$。

因此,O的坐标为$(\frac{3}{2},\frac{3}{2})$,半径为$\sqrt{2}$,圆的方程为$(x-\frac{3}{2})^2+(y-\frac{3}{2})^2=2$。

故选C。

高中数学选修2-1第一章测试题

高中数学选修2-1第一章测试题

第一章综合能力检测时间120分钟,满分150分。

一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中只有一个是符合题目要求的)1.△ABC 中,sin A =sin B 是∠A =∠B 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件[答案] C[解析] △ABC 中,sin A =sin B ⇔A =B .2.如果命题“綈(p 或q )”为假命题,则( )A .p 、q 均为真命题B .p 、q 均为假命题C .p 、q 中至少有一个为真命题D .p 、q 中至多有一个为真命题[答案] C[解析] ∵綈(p 或q )假,∴p 或q 真,∴p 与q 至少一真.3.与命题“若a ∈M ,则b ∉M ”等价的命题是( )A .若a ∉M ,则b ∉MB .若b ∉M ,则a ∈MC .若a ∉M ,则b ∈MD .若b ∈M ,则a ∉M[答案] D[解析] 即原命题的逆否命题,结论的否定b ∈M 作条件,条件的否定a ∉M 作结论,故选D.4.如果不等式|x -a |<1成立的充分非必要条件是12<x <32,则实数a 的取值范围是( ) A.12<a <32B.12≤a ≤32C .a >32或a <12D .a ≥32或a ≤12[答案] B[解析] |x -a |<1⇔a -1<x <a +1由题意知⎝⎛⎭⎫12,32(a -1,a +1)则有⎩⎨⎧a -1≤12a +1≥32,且等号不同时成立解得12≤a ≤32,故选B.5.设集合U ={(x ,y )|x ∈R ,y ∈R },A ={(x ,y )|2x -y +m >0},B ={(x ,y )|x +y -n ≤0},那么点P (2,3)∈A ∩(∁U B )的充要条件是( )A .m >-1,n <5B .m <-1,n <5C .m >-1,n >5D .m <-1,n >5[答案] A[解析] ∵P ∈A ∩∁U B ,∴P ∈A 且P ∉B ,∴⎩⎪⎨⎪⎧ 2×2-3+m >02+3-n >0, ∴⎩⎨⎧m >-1n <5,故选A. 6.设A 、B 、C 、D 是空间四个不同的点,在下列命题中,不正确...的是( ) A .若AC 与BD 共面,则AD 与BC 共面B .若AC 与BD 是异面直线,则AD 与BC 是异面直线C .若AB =AC ,DB =DC ,则AD =BCD .若AB =AC ,DB =DC ,则AD ⊥BC[答案] C7.已知数列{a n },“对任意的n ∈N *,点P n (n ,a n )都在直线y =3x +2上”是“{a n }为等差数列”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件[答案] A[解析] 点P n (n ,a n )在直线y =3x +2上,即有a n =3n +2,则能推出{a n }是等差数列;但反过来,{a n }是等差数列,a n =3n +2未必成立,所以是充分不必要条件,故选A.8.(2010·福建文,8)若向量a =(x,3)(x ∈R ),则“x =4”是“|a |=5”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分又不必要条件[答案] A[解析] 本题主要考查充分必要条件问题.当x =4时,|a |=42+32=5 当|a |=x 2+9=5时,解得x =±4.所以“x =4”是“|a |=5”的充分而不必要条件.9.在命题“若抛物线y =ax 2+bx +c 的开口向下,则集合{x |ax 2+bx +c <0}≠∅”的逆命题,否命题,逆否命题的真假结论是( )A .都真B .都假C .否命题真D .逆否命题真[答案] D[解析] 若抛物线y =ax 2+bx +c 的开口向下,又x ∈R ,则必存在x ,使ax 2+bx +c <0. 故原命题真,其逆否命题也为真,其逆命题为“若{x |ax 2+bx +c <0}≠∅,则抛物线y =ax 2+bx +c 的开口向下.”当a =0时,显然为假命题,则其否命题也为假,故选D.10.(09·宁夏海南理)有四个关于三角函数的命题:p 1:∃x ∈R ,sin 2x 2+cos 2x 2=12p 2:∃x 、y ∈R ,sin(x -y )=sin x -sin yp 3:∀x ∈[0,π],1-cos2x 2=sin x p 4:sin x =cos y ⇒x +y =π2其中假命题的是( )A .p 1,p 4B .p 2,p 4C .p 1,p 3D .p 3,p 4[答案] A [解析] p 1是假命题,∵∀x ∈R ,sin 2x 2+cos 2x 2=1;p 2是真命题,例如:当x =y =π2时, sin(x -y )=sin x -sin y =0.p 3是真命题,∵∀x ∈[0,π],sin x >0,∴1-cos2x 2=|sin x |=sin x . p 4是假命题,例如:sin π6=cos 7π3x +y =π2. 11.“θ=2π3”是“tan θ=2cos ⎝⎛⎭⎫π2+θ”的( ) A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件[答案] A[解析] 解法一:∵θ=2π3为方程tan θ=2cos ⎝⎛⎭⎫π2+θ的解, ∴θ=2π3是tan θ=2cos ⎝⎛⎭⎫π2+θ成立的充分条件; 又∵θ=8π3也是方程tan θ=2cos ⎝⎛⎭⎫π2+θ的解, ∴θ=2π3不是tan θ=2cos ⎝⎛⎭⎫π2+θ的必要条件,故选A.解法二:∵tan θ=2cos ⎝⎛⎭⎫π2+θ,∴sin θ=0或cos θ=-12, ∴方程tan θ=2cos ⎝⎛⎭⎫π2+θ的解集为A =⎩⎨⎧⎭⎬⎫θ⎪⎪θ=k π或θ=2k π±23π,k ∈Z , 显然⎩⎨⎧⎭⎬⎫2π3A ,故选A. 12.设a 、b 、c 表示三条直线,α、β表示两个平面,则下列命题中逆命题不成立的是( )A .已知c ⊥α,若c ⊥β,则α∥βB .已知b ⊂β,c 是a 在β内的射影,若b ⊥c ,则b ⊥aC .已知b ⊂β,若b ⊥α,则β⊥αD .已知b ⊂α,c ⊄α,若c ∥α,则b ∥c[答案] C[解析] A 的逆命题是:c ⊥α,若α∥β,则c ⊥β,真命题;B 的逆命题是b ⊂β,c 是a 在β内的射影,若b ⊥a ,则b ⊥c .二、填空题(本大题共4个小题,每小题4分,共16分,把正确答案填在题中横线上)13.设有两个命题:p :|x |+|x -1|≥m 的解集为R ;q :函数f (x )=-(7-3m )x 是减函数,若这两个命题中有且只有一个真命题,实数m 的取值范围是________.[答案] 1<m <2[解析] 若p 为真命题,则根据绝对值的几何意义可知m ≤1.若q 为真命题,则7-3m >1,所以m <2,若p 真q 假,则m ∈∅.若p 假q 真,则1<m <2.综上所述,1<m <2.14.把下面不完整的命题补充完整,并使之成为真命题:若函数f (x )=3+log 2x 的图象与g (x )的图象关于________对称,则函数g (x )=________.(注:填上你认为可以成为真命题的一种情形即可,不必考虑所有可能的情形).[答案] 可以填以下几种情形之一:①x 轴,-3-log 2x②y 轴,3+log 2(-x )③原点,-3-log 2(-x )④直线y =x,2x -315.已知p:a+b≠5,q:a≠2或b≠3,则p是q的________条件.[答案]充分不必要[解析]命题:“如果a+b≠5,则a≠2或b≠3”的逆否命题为“如果a=2且b=3,则a+b=5”,显然是真命题.∴p⇒q即有:p是q的充分条件.同理:p不是q的必要条件.∴p是q的充分条件,但不是必要条件.16.(2010·四川文,16)设S为实数集R的非空子集,若对任意x,y∈S,都有x+y,x -y,xy∈S,则称S为封闭集.下列命题:①集合S={a+b 3.a,b为整数}为封闭集;②若S为封闭集,则一定有0∈S;③封闭集一定是无限集;④若S为封闭集,则满足S⊆T⊆C的任意集合T也是封闭集.其中的真命题是________.(写出所有真命题的序号)[答案]①②[解析]本题考查根据所给信息解决实际问题的能力,要注意从基本概念,基本公式着手,理解题目中给出的信息是什么.对于①②都正确,对于③,封闭集不一定是无限集,例如当S={0}时,S是有限集,对于④不正确,例如当S={0},M是自然数集N时,M不是封闭集.三、解答题(本大题共6个大题,共74分,解答应写出文字说明,证明过程或演算步骤)17.(本小题满分12分)将下列命题改写为“若p,则q”的形式.并判断真假.(1)偶数能被2整除;(2)奇函数的图象关于原点对称;(3)在同圆或等圆中,同弧或等弧所对的圆周角不相等.[解析](1)若一个数是偶数,则它能被2整除.真命题.(2)若一个函数是奇函数,则它的图象关于原点对称.真命题.(3)在同圆或等圆中,若两个角是同弧或等弧所对的圆周角,则它们不相等.假命题.18.(本题满分12分)“菱形的对角线互相垂直”,将此命题写成“若p则q”的形式,写出它的逆命题、否命题、逆否命题,并指出其真假.[解析]“若p则q”形式:“若一个四边形是菱形,则它的对角线互相垂直”逆命题:“若一个四边形的对角线互相垂直,则它是菱形”,假.否命题:“若一个四边形不是菱形,则它的对角线不垂直”,假.逆否命题:“若一个四边形的对角线不垂直,则它不是菱形”,真.19.(本小题满分12分)已知命题p :lg(x 2-2x -2)≥0;命题q :|1-x 2|<1.若p 是真命题,q 是假命题,求实数x 的取值范围.[解析] 由lg (x 2-2x -2)≥0得x 2-2x -2≥1,即x 2-2x -3≥0,即(x -3)(x +1)≥0,∴x ≥3或x ≤-1.由|1-x 2|<1,-1<1-x 2<1 ∴0<x <4.∵命题q 为假,∴x ≤0或x ≥4,则{x |x ≥3或x ≤-1}∩{x |x ≤0或x ≥4}={x |x ≤-1或x ≥4},∴满足条件的实数x 的取值范围为(-∞,-1]∪[4,+∞).20.(本小题满分12分)已知p :x 2-8x -20>0,q :x 2-2x +1-a 2>0,若p 是q 的充分不必要条件,求实数a 的取值范围.[解析] p :A ={x |x <-2或x >10},q :b ={x |x <1-a 或x >1+a ,a >0}如图依题意,p ⇒q ,但q ⇒/ p ,说明A B ,则有⎩⎨⎧ a >01-a ≥-21+a ≤10且等号不同时成立,解得0<a ≤3∴实数a 的取值范围是0<a ≤321.(本小题满分12分)求使函数f (x )=(a 2+4a -5)x 2-4(a -1)x +3的图象全在x 轴上方成立的充要条件.[解析] 要使函数f (x )的图象全在x 轴上方的充要条件是:⎩⎪⎨⎪⎧ a 2+4a -5>0Δ=16(a -1)2-4(a 2+4a -5)×3<0,或⎩⎪⎨⎪⎧a 2+4a -5=0a -1=0 解得1<a <19或a =1,故1≤a <19.所以使函数f (x )的图象全在x 轴的上方的充要条件是1≤a <19.22.(本小题满分14分)证明二次函数f (x )=ax 2+bx +c (a ≠0)的两个零点在点(m,0)的两侧的充要条件是af (m )<0.[解析] 充分性:设Δ=b 2-4ac ≤0则af (x )=a 2x 2+abx +ac =a 2(x +b 2a )2-b 24+ac =a 2(x +b 2a )2-14(b 2-4ac )≥0, 所以af (m )≥0,这与af (m )<0矛盾,即b 2-4ac >0.故二次函数f (x )=ax 2+bx +c (a ≠0)有两个不等的零点,设为x 1,x 2,且x 1<x 2,从而f (x )=a (x -x 1)(x -x 2),af (m )=a 2(m -x 1)(m -x 2)<0,所以x 1<m <x 2.必要性:设x 1,x 2是方程的两个零点,且x <x 2,由题意知x 1<m <x 2,因为f (x )=a (x -x 1)(x -x 2),且x 1<m <x 2.∴af (m )=a 2(m -x 1)(m -x 2)<0,即af (m )<0.综上所述,二次函数f (x )的两个零点在点(m,0)的两侧的充要条件是af (m )<0.。

(易错题)高中数学高中数学选修2-1第二章《空间向量与立体几何》检测题(含答案解析)

(易错题)高中数学高中数学选修2-1第二章《空间向量与立体几何》检测题(含答案解析)

一、选择题1.已知平行六面体''''ABCD A B C D -中,4AB =,3AD =,'5AA =,90BAD ∠=,''60BAA DAA ∠=∠=.则'AC 的长为( )A .85B .97C .12D .2302.正方体''''ABCD A B C D -棱长为6,点P 在棱AB 上,满足PA PB =,过点P 的直线l 与直线''A D 、'CC 分别交于E 、F 两点,则EF =( ) A .313B .95C .18D .213.如图为一正方体的平面展开图,在这个正方体中,有以下结论:①AN GC ⊥,②CF 与EN 所成的角为60︒,③BD //MN ,④二面角E BC N --的大小为45︒,其中正确的个数是( )A .1B .2C .3D .44.阅读材料:空间直角坐标系O ﹣xyz 中,过点P (x 0,y 0,z 0)且一个法向量为=(a ,b ,c )的平面α的方程为a (x ﹣x 0)+b (y ﹣y 0)+c (z ﹣z 0)=0;过点P (x 0,y 0,z 0)且一个方向向量为d =(u ,v ,w )(uvw≠0)的直线l 的方程为000x x y y z z u v w---==,阅读上面材料,并解决下面问题:已知平面α的方程为x+2y ﹣2z ﹣4=0,直线l 是两平面3x ﹣2y ﹣7=0与2y ﹣z+6=0的交线,则直线l 与平面α所成角的大小为( ) A .arcsin 1414 B .arcsin 421C .arcsin51442D .arcsin123773775.如图:在直棱柱111ABC A B C -中,1AA AB AC ==,AB AC ⊥,,,P Q M 分别是A 1B 1,BC,CC 1的中点,则直线PQ 与AM 所成的角是( )A .6π B .4π C .3π D .2π6.如图,在正方体1111ABCD A B C D ﹣中,1A H ⊥平面11AB D ,垂足为H ,给出下面结论:①直线1A H 与该正方体各棱所成角相等; ②直线1A H 与该正方体各面所成角相等;③过直线1A H 的平面截该正方体所得截面为平行四边形; ④垂直于直线1A H 的平面截该正方体,所得截面可能为五边形, 其中正确结论的序号为( )A .①③B .②④C .①②④D .①②③7.如图,在大小为45°的二面角A -EF -D 中,四边形ABFE ,CDEF 都是边长为1的正方形,则B ,D 两点间的距离是( )A .3B .2C .1D .32-8.如图,在空间四边形OABC 中,点E 为BC 中点,点F 在OA 上,且2OF FA =, 则EF 等于( )A .121+232OA OB OC - B .211+322OA OB OC -+ C .111222OA OB OC +- D .211322OA OB OC -- 9.侧棱长都都相等的四棱锥P ABCD -中,下列结论正确的有( )个①P ABCD -为正四棱锥;②各侧棱与底面所成角都相等; ③各侧面与底面夹角都相等;④四边形ABCD 可能为直角梯形 ( ) A .1B .2C .3D .410.如图,在平行六面体1111ABCD A BC D -中,M 为11AC 与11B D 的交点.若AB a =,AD b =,1AA c =,则下列向量中与BM 相等的向量是( )A .11+22+a b c B .1122a b c -+ C .1122-++a b c D .1122+-a b c 11.如图,在长方体ABCD ﹣A 1B 1C 1D 1中,DC =2,DA =DD 1=1,点M 、N 分别为A 1D 和CD 1上的动点,若MN ∥平面AA 1C 1C ,则MN 的最小值为( )A 5B .23C 5D 512.如图,在四棱柱1111ABCD A BC D -中,底面ABCD 为正方形,侧棱1AA ⊥底面ABCD ,3AB =,14AA =,P 是侧面11BCC B 内的动点,且1AP BD ⊥,记AP 与平面11BCC B 所成的角为θ,则tan θ的最大值为( )A .43B .53C .2D .259二、填空题13.如图,已知正三棱柱111ABC A B C -中,12AB AA ==,,M N 分别为1,CC BC 的中点,点P 在直线11A B 上且满足111().A P A B R λλ=∈若平面PMN 与平面ABC 所成的二面角的平面角的大小为45,则实数λ的值为______.14.如图,在矩形ABCD 中,4,2AB AD ==,E 为AB 的中点.将ADE 沿DE 翻折,得到四棱锥1A DEBC -.设1AC 的中点为M ,在翻折过程中,有下列三个命题:①总有BM ∥平面1A DE ; ②线段BM 的长为定值;③存在某个位置,使DE 与1AC 所成的角为90°. 其中正确的命题是_______.(写出所有正确命题的序号)15.在三棱锥S -ABC 中,△ABC 是边长为6的正三角形,SA =SB =SC =15,平面DEFH 分别与AB ,BC ,SC ,SA 交于点D ,E ,F ,H.且D ,E 分别是AB ,BC 的中点,如果直线SB ∥平面DEFH ,那么四边形DEFH 的面积为________.16.正四棱锥S ABCD -的八条棱长都相等,SB 的中点是E ,则异面直线AE ,SD 所成角的余弦为__________.17.已知空间向量(1,0,0)a =,13(,,0)22b =,若空间向量c 满足2c a ⋅=,52c b ⋅=,且对任意,x y R ∈,()()00001(,)c xa yb c x a y b x y R -+≥-+=∈,则c =__________. 18.如图所示,三棱锥O ABC -中,OA a =,OB b =,OC c =,点M 在棱OA 上,且2OM MA =,N 为BC 中点,则MN =__________.(用a ,b ,c 表示)19.若向量()()()1,1,,1,2,1,1,1,1a x b c ===,满足条件()()·22c a b -=-,则x = __________.20.已知平行六面体中,则____.三、解答题21.如图,平面ABCDE ⊥平面CEFG ,四边形CEFG 为正方形,点B 在正方形ACDE 的外部,且5,4AB BC AC ===.(1)证明:AD CF ⊥.(2)求平面BFG 与平面ABCDE 所成锐二面角的余弦值.22.如图所示,在多面体ABCDE 中,//DE AB ,AC BC ⊥,平面DAC ⊥平面ABC ,24BC AC ==,2AB DE =,DA DC =,点F 为BC 的中点.(1)证明:EF ⊥平面ABC ;(2)若直线BE 与平面ABC 所成的角为60︒,求平面DCE 与平面ADC 所成的锐二面角的余弦值.23.在多面体ABCDE 中,平面ACDE ⊥平面ABC ,四边形ACDE 为直角梯形,//CD AE ,AC AE ⊥,AB BC ⊥,1CD =,2AE AC ==,F 为DE 的中点,且点E 满足4EB EG =.(1)证明://GF 平面ABC .(2)当多面体ABCDE 的体积最大时,求二面角A BE D --的余弦值.24.如图,已知三棱柱111ABC A B C -的底面是正三角形,侧面11BB C C 是矩形,,M N 分别为11,BC B C 的中点,P 为AM 上一点,过11B C 和P 的平面交AB 于E ,交AC 于F .(1)证明:平面111A AMN EB C F ⊥;(2)设O 为111A B C △的中心,若//AO 平面11EB C F ,且AO AB =,求直线1B E 与平面1A AMN 所成角的正弦值.25.如图,在三棱柱111ABC A B C -中,1AA ⊥平面ABC ,1AB BC CA AA ===,D 为AB 的中点.(1)求证:1//BC 平面1DAC ;(2)求平面1DAC 与平面11AAC C 所成的锐二面角....的余弦值. 26.如图,在多面体EF ABCD -中,AD //BC ,CD //EF ,1AD DC DE ===,2BC EF ==,2CDE CDA π∠=∠=.(1)若M 为EF 中点,求证:CD ⊥BM ; (2)若二面角A DC E --的平面角为3π,求直线AE 与平面EFB 所成角的大小.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】用空间向量基本定理表示出AC ',然后平方后转化为数量积的运算求得. 【详解】记a AB =,b AD =,c AA '=,则43cos900a b ⋅=⨯⨯︒=,同理152b c ⋅=,10a c ⋅=,由空间向量加法法则得AC a b c '=++,∴22222()222AC a b c a b c a b b c a c'=++=+++⋅+⋅+⋅222154352210852=+++⨯+⨯=, ∴85AC '=85AC '=. 故选:A . 【点睛】方法点睛:本题考查求空间线段长,解题方法是空间向量法,即选取基底,用基底表示出向量,然后利用向量模的平方等于向量的平方转化为向量的数量积进行计算.2.C解析:C 【分析】画图分析可得过P 的直线l 与直线''A D 、'CC 的交点E 、F 在线段''D A 、'C C 的延长线上.再建立空间直角坐标系求解即可. 【详解】画图分析可得过P 的直线l 与直线''A D 、'CC 的交点E 、F 在线段''D A 、'C C 的延长线上.以A 为坐标原点建立如图空间直角坐标系,则设(,0,6)E e ,(6,6,)F f ,(0,3,0)P又,,E P F 共线,则EP PF λ=,故(,3,6)(6,3,)e f λ--=,故6133666e e f f λλλλ-==⎧⎧⎪⎪=⇒=-⎨⎨⎪⎪-==-⎩⎩.故(6,0,6)E -,(6,6,6)F -,则222(12)6(12)18EF =++=.故选:C 【点睛】本题主要考查了利用空间直角坐标系求解共线问题的方法等,属于中等题型.3.C解析:C 【分析】根据题意画出正方体直观图,建立空间直角坐标系,计算0AN GC ⋅=,由此判断①正确.根据线线角的知识,判断②正确.根据线线的位置关系,判断③错误.根据二面角的知识,判断④正确. 【详解】画出正方体的直观图,如下图所示,设正方体边长为2,以,,DA DC DG 分别为,,x y z 轴建立空间直角坐标系.则()()()()2,0,0,0,2,2,0,0,2,0,2,0A N G C ,所以()()2,2,20,2,20AN GC ⋅=-⋅-=,所以AN GC ⊥,故①正确.由于//EN AC ,所以CF 与EN 所成的角为FCA ∠,而在FAC ∆中,AF FC CA ==,也即FAC ∆是等边三角形,故60FCA ∠=,所以②正确.由于//EN AC ,而AC 与BD 相交,故,BD MN 不平行,③错误.由于,EB BC FB BC ⊥⊥,所以EBF ∠即是二面角E BC N --的平面角.EBF ∆是等腰直角三角形,所以45EBF ∠=,故④正确. 综上所述,正确的命题个数为3个. 故选:C.【点睛】本小题主要考查空间线线、面面的位置关系有关命题的真假性判断,属于中档题.4.B解析:B 【分析】先根据两个平面的方程,求出平面交线的方向向量,结合已知平面的方程确定平面的法向量,然后求解. 【详解】平面α的法向量为n =(1,2,﹣2),联立方程组3270260x y y z --=⎧⎨-+=⎩,令x =1,得y =﹣2,z =2,令x =3,得y =1,z =8,故点P (1,﹣2,2)和点Q (3,1,8)为直线l 的两个点,∴PQ =(2,3,6)为直线l 的方向向量, ∵44cos ,3721||||PQ n PQ n PQ n ⋅-<>===-⨯ ,∴直线l 与平面α所成角的正弦值为421,【点睛】本题主要考查直线和平面所成角的正弦,属于信息提供题目,理解题中所给的信息是求解关键.5.D解析:D【分析】建立空间直角坐标系,结合直线的方向向量确定异面直线所成的角即可.【详解】以点A 为坐标原点,建立如图所示的空间直角坐标系A xyz -,设2AB =,则()()()()0,0,0,1,0,2,1,1,0,0,2,1A P Q M ,据此可得:()()0,1,2,0,2,1PQ AM =-=,0PQ AM ⋅=,故PQ AM ⊥,即直线PQ 与AM 所成的角是2π. 本题选择D 选项.【点睛】本题主要考查空间向量的应用,异面直线所成的角的求解等知识,意在考查学生的转化能力和计算求解能力.6.D解析:D【解析】【分析】由A 1C ⊥平面AB 1D 1,直线A 1H 与直线A 1C 重合,结合线线角和线面角的定义,可判断①②;由四边形A 1ACC 1为矩形,可判断③;由垂直于直线A 1H 的平面与平面AB 1D 1平行,可判断④.如图,在正方体ABCD﹣A1B1C1D1中,A1H⊥平面AB1D1,垂足为H,连接A1C,可得A1C⊥AB1,A1C⊥AD1,即有A1C⊥平面AB1D1,直线A1H与直线A1C重合,直线A1H与该正方体各棱所成角相等,均为2①正确;直线A1H与该正方体各面所成角相等,均为arctan22,故②正确;过直线A1H的平面截该正方体所得截面为A1ACC1为平行四边形,故③正确;垂直于直线A1H的平面与平面AB1D1平行,截该正方体,所得截面为三角形或六边形,不可能为五边形.故④错误.故选:D.【点睛】本题考查线线角和线面角的求法,以及正方体的截面的形状,考查数形结合思想和空间想象能力,属于中档题.7.D解析:D【分析】由DB ED FE BF=++,利用数量积运算性质展开即可得到答案【详解】BD ED FE BF=++,22222221112 BD BF FE ED BF FE FE ED BF ED∴=+++++=++故32BD=-故选D【点睛】本题是要求空间两点之间的距离,运用空间向量将其表示,然后计算得到结果,较为基础.8.D解析:D【解析】分析:利用向量多边形与三角形法则即可求出,首先分析题中各选项都是由从O出发的三个向量表示的,所以将待求向量用从O出发的向量来表示,之后借助于向量的差向量的特征以及中线向量的特征,求得结果.详解:由题意可得21()32EF OF OE OA OB OC =-=-+ 211322OA OB OC =--,故选D. 点睛:该题考查的是有关空间向量基本定理,考查了用向量表示几何的量,向量的线性运算,解题的关键是根据图形把所研究的向量用三个基向量表示出来,本题是向量的基础题. 9.A解析:A【解析】分析:紧扣正四棱锥的概念,即可判定命题的真假.详解:由题意,当四棱锥P ABCD -的底面ABCD 为一个矩形时,设AC BD O ⋂=且PO ⊥底面ABCD ,此时可得PA PB PC PD ===,而四棱锥此时不是正四棱锥,所以①不正确的,同时各个侧面与底面所成的角也不相等,所以③不正确的;因为四棱锥P ABCD -满足PA PB PC PD ===,所以顶点P 在底面ABCD 内的射影O 为底面ABCD 的外心,而直角梯形ABCD 没有外接圆,所以底面不可能是直角梯形,所以④不正确;设四棱锥P ABCD -满足PA PB PC PD ===,所以顶点P 在底面ABCD 内的射影O 为底面ABCD 的外心,所以各条测量与底面ABCD 的正弦值都相等,所以②正确的, 综上,故选A.点睛:本题主要考查了正四棱锥的概念,我们把底面是正方形,且顶点在底面上的射影是底面正方形的中心的四棱锥,叫做正四棱锥,其中紧扣正棱锥的概念是解答的关键. 10.C解析:C【分析】根据空间向量的运算法则,化简得到11122BM AB AD AA =-++,即可求解. 【详解】由题意,根据空间向量的运算法则,可得1111112BM BB B M AA B D =+=+ 1111111111111()()222222AA A D A B AA AD AB AB AD AA a b c =+-=+-=-++=-++. 故选:C.【点睛】在空间向量的线性运算时,要尽可能转化为平行四边形或三角形中,运用平行四边形法则、三角形法则,以及利用三角形的中位线、相似三角形等平面几何的性质,把未知向量转化为已知向量有直接关系的向量来解决.11.A解析:A【分析】先建立空间坐标系,设出(),0,M m m ,()0,22,N n n -+,转化条件得1m n +=,利用函数即可得解.【详解】如图建系,由题意可设(),0,M m m ,()0,22,N n n -+,∴(),22,MN m n n m =---,又 ()10,0,1AA =,()1,2,0AC =-,∴平面11AAC C 的法向量()2,1,0n =,又 //MN 面11AACC ,∴=0MN n ⋅即1m n +=, ∴()()2222222941MN m n n m m m =+-+-=-+,∴MN 最小值为5 故选:A.【点睛】本题考查了空间向量的应用,考查了转化化归和函数思想,属于中档题. 12.B解析:B【分析】建立空间直角坐标系,利用向量法能求出线面角的正切值的最大值.【详解】以1,,DA DC DD 所在直线分别为,,x y z 轴,建立空间直角坐标系,设(,3,)P x z ,则1(3,3,),(3,3,4)AP x z BD =-=--,11,0AP BD AP BD ⊥∴⋅=,33(3)3340,4x z z x ∴---⨯+=∴=, 22225||(3)6916BP x z x x ∴=-+=-+225488191625255x ⎛⎫=-+ ⎪⎝⎭, ||5tan ||3AB BP θ∴=, tan θ∴的最大值为53. 故选:B .【点睛】本题主要考查的是线面所成角,解题的关键是找到线面所成角的平面角,是中档题.二、填空题13.【分析】从二面角的大小入手利用空间向量求解【详解】以N 为坐标原点NCNA 所在直线分别为x 轴y 轴建立空间直角坐标系如图则由可得设为平面的一个法向量则即令可得易知平面ABC 的一个法向量为因为平面与平面所 解析:2-【分析】从二面角的大小入手,利用空间向量求解.【详解】以N 为坐标原点,NC,NA 所在直线分别为x 轴,y 轴建立空间直角坐标系,如图则()()()()()10,0,0,1,0,1,1,0,0,3,0,3,2N M B A A - ,由111A P A B λ=可得()11111133,2NP NA A P NA A B NA AB λλλλ=+=+=+=-, ()1,0,1NM =,设(),,n x y z =为平面PMN 的一个法向量,则00n NM n NP ⎧⋅=⎨⋅=⎩,即)03120x z x y z λλ+=⎧⎪⎨--+=⎪⎩, 令1z =-,可得()()321,,131n λλ⎛⎫+=- ⎪ ⎪-⎝⎭,易知平面ABC 的一个法向量为()0,0,1m =. 因为平面PMN 与平面ABC 所成的二面角的平面角的大小为45, 所以1cos45n m n m n ⋅︒==,即2n =,所以21211231λλ+⎛⎫++= ⎪-⎝⎭,解得2λ=-. 【点睛】本题主要考查空间向量的应用,利用二面角求解参数.二面角的求解和使用的关键是求解平面的法向量,把二面角转化为向量的夹角问题.14.①②【分析】取D 的中点N 连接MNEN 根据四边形MNEB 为平行四边形判断①②假设DE ⊥C 得出矛盾结论判断③【详解】取D 的中点N 连接MNEN 则MN 为△CD 的中位线∴MN ∥CD 且MN=CD 又E 为矩形ABC解析:①②【分析】取1A D 的中点N ,连接MN ,EN ,根据四边形MNEB 为平行四边形判断①,②,假设DE ⊥1A C 得出矛盾结论判断③.【详解】取1A D 的中点N ,连接MN ,EN ,则MN 为△1A CD 的中位线,∴MN ∥12CD ,且MN=12CD 又E 为矩形ABCD 的边AB 的中点,∴BE ∥12CD ,且BE=12CD ∴MN ∥BE ,且MN=BE 即四边形MNEB 为平行四边形,∴BM ∥EN ,又EN ⊂平面A 1DE ,BM ⊄平面A 1DE ,∴BM ∥平面1A DE ,故①正确;由四边形MNEB 为平行四边形可得BM =NE ,而在翻折过程中,NE 的长度保持不变,故BM 的长为定值,故②正确;取DE 的中点O ,连接1A O ,CO ,由1A D =1A E 可知1A O ⊥DE ,若DE ⊥1A C ,则DE ⊥平面1A OC ,∴DE ⊥OC ,又∠CDO =90°﹣∠ADE =45°,∴△OCD 为等腰直角三角形,故而CD 2=OD , 而OD 12=DE 2=,CD =4,与CD 2=OD 矛盾,故DE 与1A C 所成的角不可能为90°. 故③错误.故答案为①②.【点睛】本题考查命题真假,线面平行的判定,线面垂直的判定与性质,空间想象和推理运算能力,属于中档题.15.【解析】【分析】利用平面可以得到从而为中点同理可得为中点再根据三棱锥为正三棱锥得到故四边形为矩形从而可计算其面积【详解】因为故在底面上的射影为底面三角形的外心又为等边三角形故在底面上的射影为底面三角 解析:452【解析】【分析】利用SB 平面DEFH 可以得到DHSB ,从而H 为SA 中点,同理可得F 为SC 中点,再根据三棱锥S ABC -为正三棱锥得到AC SB ⊥,故四边形HDEF 为矩形,从而可计算其面积.【详解】因为SA SB SC ==,故S 在底面上的射影为底面三角形的外心,又ABC ∆为等边三角形,故S 在底面上的射影为底面三角形的中心,所以三棱锥S ABC -为正三棱锥,所以SB AC ⊥.因SB 平面DEFH ,SB ⊂平面ABS ,平面ABS平面DEFH DH =,故SB DH ,因AD DB =,故AH HS =,1,2DH BS DH BS =,同理1,2EF BS EF BS =, 故,DH EF DH EF =,所以四边形DEFH 为平行四边形,又由,D E 为中点可得DEAC ,故DH DE ⊥,故四边形DEFH 为矩形. 又153,2DE DH ==,故矩形DEFH 的面积为452. 【点睛】 (1)正三棱锥中,对棱是相互垂直的,且顶点在底面的投影是底面正三角形的中心. (2)通过线面平行可以得到线线平行,注意利用线面平行这个条件时,要合理构建过已知直线的平面(该平面与已知平面有交线).16.【解析】以正方形的中心为原点平行于的直线为轴平行于的直线为轴为轴建立如图所示空间直角坐标系设四棱锥棱长为则所以∴故异面直线所成角的余弦值为 解析:33【解析】以正方形ABCD 的中心O 为原点,平行于AB 的直线为x 轴,平行于AD 的直线为y 轴, SO 为z 轴建立如图所示空间直角坐标系O xyz -,设四棱锥S ABCD -棱长为2,则(1,1,0)A --,(1,1,0)B -,2)S ,(1,1,0)D -,112,,222E ⎛- ⎝⎭,所以312,22AE ⎛= ⎝⎭,(1,1,2)SD =--,∴311cos,AE SD-+-==故异面直线AE,SD所成角的余弦值为3.17.【分析】设空间向量由已知条件可得的值由对任意得:进而得到答案【详解】解:空间向量设空间向量空间向量又由对任意则故故答案为:【点睛】本题考查的知识点是空间向量的数量积运算空间向量的模属于中档题解析:【分析】设空间向量(),,c m n z=,由已知条件可得m、n的值,由对任意x,y R∈,00|()||()|1c xa yb c x a y b-+-+=得:||1z=,进而得到答案.【详解】解:空间向量(1,0,0)a=,13(,22b=,设空间向量(),,c m n z=,2c a⋅=,52c b⋅=,2m∴=,1522m =2m∴=,3n=,∴空间向量()2,3,c z=,又由对任意x,y R∈,()()001c xa yb c x a y b-+≥-+=,则||1z=,故(22c=+=故答案为:【点睛】本题考查的知识点是空间向量的数量积运算,空间向量的模,属于中档题.18.【解析】解析:211322a b c-++【解析】MN MA AB BN=++11()32OA OB OA BC =+-+ 21()32OA OB OC OB =-++- 211322OA OB OC =-++ 211322a b c =-++. 19.2【解析】因为向量所以则解之得应填答案解析:2【解析】因为向量(1,1,),(1,2,1),(1,1,1)a x b c ===,所以(0,0,1),2(2,4,2)c a x b -=-=,则()(2)222c a b x -⋅=-=-,解之得2x =,应填答案2。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

6 ,椭圆 C 上任意一点到椭圆两
个焦点的距离之和为 6.(Ⅰ)求椭圆 C 的方程;
(Ⅱ)设直线 l : y kx 2 与椭圆 C 交于 A, B 两点,点 P (0,1),且 PA = PB ,求 直线 l 的方程.
更多精品文档
学习-----好资料
22.如图,在四棱锥 P ABCD 中, PD 底面 ABCD ,底面 ABCD 为正方形, PD DC , E, F 分别是 AB, PB 的中点. (1)求证: EF CD ; (2)在平面 PAD 内求一点 G ,使 GF 平面 PCB ,并证明你的结论; (3)求 DB 与平面 DEF 所成角的正弦值.
()
A.0
B. 2
C.
D. 3 2
10.与向量 a (1, 3, 2) 平行的一个向量的坐标是 ( )
A.( 1 ,1,1) B.(-1,-3,2) C.(- 1 , 3 ,-1) D.( 2 ,-3,-2 2 )
3
22
11.已知圆 C 与直线 x y 0 及 x y 4 0 都相切,圆心在直线 x y 0 上,则
16 9
4 ,选 C.
5.A 【解析】
试题分析:由焦点为 F (0 , 3) ,所以,双曲线的焦点在 y 轴上,且 c = 3 ,焦点到最近
更多精品文档
学习-----好资料
顶点的距离是 3 1,所以,a = 3 -( 3 1)=1,所以,b c2 a2 = 2 ,所以, 双曲线方程为: y2 x2 1.本题容易错选 B,没看清楚焦点的位置,注意区分.
考点: 命题真假的判断. 3.C 【解析】
解题分析:因为 F1 , F2 是距离为 6,动点 M 满足∣ MF1 ∣+∣ MF2 ∣=6,所以 M 点的轨迹是 线段 F1F2 。故选 C。
考点:主要考查椭圆的定义。 点评:学习中应熟读定义,关注细节。 4.C
【解析】因为双曲线 x2 y2 1,a=4,b=3,c=5,则其渐近线方程为 y 3 x
3k 2k
更多精品文档
学习-----好资料 16.在正方体 ABCD A1B1C1D1 中, E 为 A1B1 的中点,则异面直线 D1E 和 BC1 间的距 离. 三、解答题 17.求过点(-1,6)与圆 x 2 +y 2 +6x-4y+9=0 相切的直线方程.
18.求渐近线方程为 y 3 x ,且过点 A(2 3,3) 的双曲线的标准方程及离心率。 4
B. y 9 x 16
C. y 3 x 4
D. y 4 x 3
5.中心在原点的双曲线,一个焦点为 F (0 , 3) ,一个焦点到最近顶点的距离是 3 1,
则双曲线的方程是( )
A. y2 x2 1 2
B. x2 y2 1 2
C. x2 y2 1 2
D. y2 x2 1 2
A.1
B. 2
C.2
D.3
8.与双曲线 y 2 x 2 1有共同的渐近线,且过点(2,2)的双曲线标准方程为( ) 4
(A) y 2 x 2 1 3 12
(B) x 2 y 2 1 3 12
(C) y 2 x 2 1 (D) x 2 y 2 1
28
28
9.已知 A(-1,-2,6),B(1,2,-6)O 为坐标原点,则向量 OA,与OB 的夹角是
6.已知正方形 ABCD 的顶点 A, B 为椭圆的焦点,顶点 C, D 在椭圆上,则此椭圆的离
心率为(
)
A. 2 1
B. 2 2
C. 2 1
D. 2 2
7.椭圆 x 2 y 2 1与双曲线 x 2 y 2 1 有相同的焦点,则 a 的值为(

4 a2
a2
更多精品文档
学习-----好资料
更多精品文档
学习-----好资料
1.B 【解析】
参考答案
试题分析: x2 3x 2 0 (x 1)(x 2) 0 ,则 x 1且 x 2 ;反之,x 1且 x 2 时, x2 3x 2 0 ,故选 B.
考点:充要条件的判断. 2.C 【解析】
试题分析:当 p 、q 都是真命题 pq 是真命题,其逆否命题为: pq 是假命题 p 、 q 至少有一个是假命题,可得 C 正确.
19.求与 x 轴相切,圆心 C 在直线 3x-y=0 上,且截直线 x-y=0 得的弦长为 2 7 的 圆的方程. 更多精品文档
学习-----好资料
20.已知抛物线的顶点在原点,对称轴是 x 轴,抛物线上的点 M(-3,m)到焦点的距 离等于 5,求抛物线的方程和 m 的值.
21.已知椭圆 C : x 2 y 2 1(a b 0) 的焦距为 2 a2 b2
C. 2
D. 0 或 2
13.直线 y x 被圆 x2 ( y 2)2 4 截得的弦长为_______________.
14.已知椭圆 x2 ky2 3k(k 0)的一个焦点与抛物线 y 2 12 x 的焦点重合,则该
椭圆的离心率是

15.已知方程 x 2 y 2 1表示椭圆,则 k 的取值范围为___________
圆 C 的方程为( )
A. (x 1)2 ( y 1)2 2
B. (x 1)2 ( y 1)2 2
C. (x 1)2 ( y 1)2 2
D. (x 1)2 ( y 1)2 2
12.若直线 x y m 与圆 x 2 y 2 m 相切,则 m 的值为( )
A. 0
B.1
二、填空题
学习-----好资料
姓名:___________ 班级:___________一、选择题
1.“ x 1”是“ x2 3x 2 0 ”的( )
A.充分不必要条件 C.充要条件
B.必要不充分条件 D.既不充分也不必要条件
2.若 pq 是假命题,则( )
A. p 是真命题, q 是假命题 C. p 、 q 至少有一个是假命题
B. p 、 q 均为假命题 D. p 、 q 至少有一个是真命题
ห้องสมุดไป่ตู้
3. F1 , F2 是距离为 6 的两定点,动点 M 满足∣ MF1 ∣+∣ MF2 ∣=6,则 M 点的轨迹是


A.椭圆
B.直线
C.线段
D.圆
4. 双曲线 x2 y2 1的渐近线方程为( ) 16 9
A. y 16 x 9
相关文档
最新文档