2015-2016学年江苏省苏州市相城区七年级(上)期末数学试卷解析

合集下载

,2015 – 2016 学年七年级第一学期期末考试试卷及答案(苏科版)

,2015 – 2016 学年七年级第一学期期末考试试卷及答案(苏科版)

2015 – 2016 学年七年级第一学期期末考试试卷数学试题 2016.1,22一.选择题 本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项前的字母代号填写在答题纸相应的位置上.1.一个物体作左右方向的运动,规定向右运动5m 记作5m +,那么向左运动5m 记作A. 5m -B. 5mC. 10mD. 10m -2. 下列计算正确的是A. 32a a a -=B. 23523a a a +=C. 222235a a a +=D. 2221a a -=3.下列各组中,不是同类项的是A. 23与32B. 3ab -与baC. 20.2a b 与215a b D. 23a b 与32a b - 4. 有理数a ,b 在数轴上对应点的位置如图所示,下列各式正确的是A. 0a b +<B. a b -<0C. a b >D. 0b a> 5. 如图,AB ∥CD ,EF 平分AEG ∠,若40FGE ∠=︒,那么FEG ∠的度数为A . 35︒B . 40︒C . 70︒D . 140︒6. 如图是由一些完全相同的小正方体搭成的几何体的俯视图和左视图,则组成这个几何体的小正方体的个数是A. 5或6或7B. 6或7C. 7或8D. 6或7或87. 如图,直线AB 、CD 相交于点O ,OA OE ⊥,则1∠和2∠的关系是A. 相等B. 互补C. 互余D. 以上三种都不是8. 若320x y ++-=,则x y +的值为A. 5B. -5C. 1D. -19. 某品牌自行车1月份销售量为100辆,每辆车售价相同, 2月份的销售量比1月份增加10%,每辆车的售价比1月份降低了80元,若2月份与1月份的销售总额相同,则1月份的售价为A. 880元B. 800元C. 720元D. 1080元10. 有理数a 、b在数轴上的位置如图所示,则化简a b a b -++的结果为A. 2a -B. 2aC. 2bD. 2b -二. 填空题: 本大题共8小题,每小题3分,共24分,把答案直接填在答题纸相对应的位上.11. 2014年常熟市的人均可支配收入约为38300元,将38300用科学记数表示为 .12. 多项式223xy xy -+的次数是 次.13. 已知1x =-是方程310ax a =+的解,则a = .14. 如果代数式8a b +的值为5-,那么代数式()()3252a b a b --+的值为 .15. 已知一个锐角为5521︒',则这个锐角的补角是 .16. 如图,小黄和小陈观察蜗牛爬行,蜗牛在以A 为起点沿数轴匀速爬向B 点的过程中,到达C 点时用了9分钟,那么到达B 点还需要 分钟.第16题 第17题17. 如图,线段8AB =,C 是AB 的中点,点D 在直线CB 上,DB =1.5,则线段CD 的长等于 .18. 如图,在数轴上,点A 表示1,现将点A 沿x 轴做如下移动,第一次点A 向左移动2个单位长度到达点1A ,第二次将点1A ,向右移动4个单位长度到达点2A ,第三次将点2A 向左移动6个单位长度到达点3A ,按照这种移动规律移动下去,第n 次移动到点n A ,如果点n A 与原点的距离等于19,那么n的值是 .第18题三、解答题:本大题共10小题,共76分,把解答过程写在答题纸相对应的位置上,解答时应写出必要的计算过程、推演步骤或文字说明,作图时用2B 铅笔或黑色墨水签字笔.19. (本题满分8分,每小题4分)计算:(1)()()24361--⨯-+-⨯-; (2)24211130.833⎡⎤⎛⎫--⨯-⨯--⎢⎥ ⎪⎝⎭⎢⎥⎣⎦20. (本题满分10分,每小题5分)先化简,再求值:(1) 求()()22223343x y xy xy x y ---+的值,其中12x =-、1y =.(2) 求()()22221238222xy xy x y xy x y ⎡⎤----⎢⎥⎣⎦的值,其中23x =、0.2y =- . 21. (本题满分10分,每小题5分)解下列方程:(1) ()13126x x --=+; (2) 521163x x ---= 22. (本题满分6分)某股票上周五的收盘价为39.60元,本周此股票每日的涨跌情况如下表:(当天的收盘价高出前一个交易日的收盘价2.1元记作+2.1元;当天的收盘价低于前一个交易日的收盘价1. 5元记作-1. 5元.)(1) 本周星期四此股票的收盘价是多少?(2) 若本周星期五此股票的收盘价为42. 6元,求a 的值,并说明星期五此股票是涨了还是跌了,涨或跌了多少元?23. (本题满分5分)如图,DF 平分ADE ∠,AC //DE ,168∠=︒,136ADE ∠=︒ .(1) 求A ∠的度数;(2) 试说明:DF //BC .24. (本题满分5分)已知122x y -=,2213x y -=,当x 取何值时,1y 比2y 大1?25. (本题满分6分)已知2362A x x =--,2241B x x =--(1) 试比较2A 与3B 的大小关系: 2A 3B (填“>”、“<”或“=”);(2) 求()423A A B --的值,其中1x =-.26. (本题8分)如图,直线AB ,CD 相交于点O ,OE 平分BOD ∠.(1) 若55EOF ∠=︒,OD OF ⊥,求AOC ∠的度数;(2) 若OF 平分COE ∠,15BOF ∠=︒,求DOE ∠的度数.27. (本题8分)某水果零售商店在杨梅销售季节分两批次从批发市场共购进杨梅60箱,已知 第一、二次进货价分别为每箱50元、40元,且第二次比第一次多付款600元.(1) 求第一、二次各购进杨梅多少箱数;(2) 若商店对这60箱杨梅先按每箱60元销售了25箱,其余的每箱打八折销售完.求商店销售完全部杨梅所获得的利润.(注:按整箱出售,利润=销售总收人一进货总成本)28. (本题10分)如图,120AOB ∠=︒,射线OC 从OA 开始,绕点O 逆时针旋转,旋转的速度为每分钟20︒;射线OD 从OB 开始,绕点O 逆时针旋转,旋转的速度为每分钟5︒,OC 和OD 同时旋转,设旋转的时间为t ()015t ≤≤.(1) 当t 为何值时,射线OC 与OD 重合;(2) 当t 为何值时,射线OC OD ⊥;(3) 试探索:在射线OC 与OD 旋转的过程中,是否存在某个时刻,使得射线OC ,OB 与OD 中的某一条射线是另两条射线所夹角的角平分线?若存在,请求出所有满足题意的t 的取值,若不存在,请说明理由.第28题 备用图1 备用图2。

苏州市相城区七年级上学期期末考试数学试题

苏州市相城区七年级上学期期末考试数学试题

苏州市相城区11-12学年七年级上学期期末考试试卷(数学)缺答案考前须知:1. 本试卷由填空题、选择题和解答题三大题组成,共29题,总分值分.考试用时120分钟.2. 答题前,考生务必将白己的姓名、考点名称、考场号、座位号、准考证号填写清楚.准考证号相应的数字用NB钳笔涂黑.3. 答客观题必须用2B铅笔把答题卡上对应题目的答案标号涂黑:答主观题必须用0.5盘米黑色损水签字笔写在答题卡指定的位置上,不在答题区域内的答案一律无效,不得用其他第答题.4. 考生答题必须在答题卡上,答在试卷和草稿纸上一律.无效.一、选择题本大题共10小题,每题3分,共30分,在每题给出的四个选项中.只有一项为哪一项符合题目要求的.清将选择题的答案填.涂在答题卷相应的位置上.>1.计算(一1)‘的结果是A. 1 B・一1 C・ 3 D. 一32 .化简一2Q+(2D的结果是A. —4a— 1B. 4&—1C. 1 D・—13. 以下算式正确的选项是A. (一10)一 1 = 一9B. 0—(一7)=7C. (一3)一(一4)=一7D. |3 — 5| = 一(5一3)4. 假设(1 一m):+|〃 + 2|=0,那么m+n 的值为A. -1B. -3C. 3D.不能确定7. 假设不等式(m+2).v<m+2的解集是*>1,那么m的取(ft范围是A. m>0B. m<-2C. m>~2 D・ m<~l8. 以下说法正确的选项是A. 如果Zl + Z2+Z3=180* ,那么NL匕2、互为补角B. 和等于90°的两个角互为补角G. 一个锐角的补角比这个角的余角大90°D. 一个角的补角一定大于这个角9. 如下图的三视图对应的几何体是10. 随假设空调市场竞争日益剧烈,某品牌空调在原碍价n的根底上降低m元,“十一”黄金周期间为了促销,再次下调25知那么现传价为5 5 3 3A. (―n—m)兀B. (―n+m)兀C, 一(n—m)兀 D.—(n+m)兀4 4 4 4二、填空题」本大题共8小题,每题324分,把答案直接填在答题卷相应的横线上.)11- 一6是▲的相反数.12. 如图,把弯曲的河道改宜,能够缩短航程,这样做根据的道理是4・13. 不等式—1的非负整数解是—4・214“假设》一3尸一1,那么5-2】+6y的值是工假设关于x 的方程(3—勿 W +1=0也一元一次方程,那么K ▲.如图是一数值转换机,假设输入*的值为一3, y 的值为一 1, 那么输出的结果为=▲.己知a. b 、c 在数抽上的位置如下图,a1 1 化简 |4+|人一 4一|。

2015-2016学年苏科版七年级上数学期末综合试卷(1)及答案_共7页

2015-2016学年苏科版七年级上数学期末综合试卷(1)及答案_共7页

2015-2016学年第一学期初一数学期末综合试卷(1)命题:汤志良;知识涵盖:苏科版七年级上册;分值:130分;一、选择题:(本题共10小题,每小题3分,共30分)1.(2015•盘锦)的相反数是………………………………………………………( )12-A .2;B .-2;C .;D .;1212-2.(2015•玉林)下列运算中,正确的是……………………………………………………( )A .;B .;C .;D .;325a b ab +=325235a a a +=22330a b ba -=22541a a -=3.(2015•绥化)如图是一些完全相同的小正方体搭成的几何体的三视图.这个几何体只能是……………………………………………………………( )4.已知∠AOB=30°,自∠AOB 顶点O 引射线OC ,若∠AOC︰∠AOB=4︰3,那么∠BOC 的度数是( )A .10°B .40°C .70°D .10°或70°5.已知点C 在线段AB 上,则下列条件中,不能确定点C 是线段AB 中点的是…………( )A .AC =BC ;B .AC +BC =AB ; C .AB =2AC ;D .BC =12AB ;6.若=,则实数在数轴上的对应点一定在……………………………( )a a -a A .原点左侧; B .原点或原点左侧;C .原点右侧 ;D .原点或原点右侧;7.(2014•梅州)如图,把一块含有45°的直角三角形的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是………………………………………………( )A .15°B .20°C .25°D .30°8.如图,将一张长方形的纸片沿折痕E 、F 翻折,使点C 、D 分别落在点M 、N的位置,且∠BFM=∠EFM,则∠BFM的度数为………………………………………………………( 12第10题A .B .C .D .第7题第8题)A .30°B .36°C .45°D .60°9.已知a ,b ,c 在数轴上的位置如图所示,化简的结果22a c a b c b +----是……………………( )A .0;B .;C . ;D .;4b 22a c --24a b -10. 根据如图的程序,计算当输入值时,输出结果为……………………( )2x =-y A .1; B .5; C .7; D .以上都有可能;二、填空题:(本题共8小题,每小题3分,共24分)11.的绝对值是 .2--12.地球离太阳约有一亿五千万千米,用科学记数法表示这个数是 千米.13.已知∠=39°23′,则∠的补角的度数是 .αα14.(2015•岳阳)单项式的次数是 .2312x y -15.当n= 时,与是同类项.253x y 2312n x y --16.已知代数式的值是3,则代数式的值是 .21x y ++132x y --17.(2015•甘孜州)已知关于x 的方程的解为2,则代数式的值332x a x -=+221a a -+是 .18.(2015•绥化)填在下面各正方形中的四个数之间都有一定的规律,按此规律得出= .a b c ++三、解答题:(本大题共76分)19.计算:(本题满分8分)(1); (2)()375244128⎛⎫-+-⨯- ⎪⎝⎭()241123522-+⨯--÷⨯20. (本题满分8分)解方程:(1); (2) ;()4232x x -=--2151136x x +--=21.(本题满分8分,每小题4分)先化简,再求值:(1) 5a 2b +4-3a 2b -5ab +5-2a 2b +6ab ,其中a =4,b =-5;(2),其中x =-2. ()221374322x x x x ⎡⎤----⎢⎥⎣⎦22. (本题满分8分)已知,.13y x =-+223y x =- (1)当取何值时,;x 12y y = (2)当取何值时,的值比的值的2倍大8;x 1y 2y 23.(本题满分6分)如图,点P ,Q 分别是∠AOB 的边OA ,OB 上的点.(1)过点P 画OB 的垂线,垂足为H ;(2)过点Q 画OA 的垂线,交OA 于点C ,连接PQ ;(3)线段QC 的长度是点Q 到 的距离, 的长度是点P 到直线OB 的距离,因为直线外一点和直线上各点连接的所有线段中,垂线段最短,所以线段PQ 、PH 的大小关系是 (用“<”号连接).24.(本题满分6分)已知线段AB ,在AB 的延长线上取一点C ,使BC=3AB ,在BA 的延长线上取一点D ,使DA=AB ,E 为DB 的中点,且EB=30cm ,求DC 的长.3225.(本题满分5分)如图所示,直线AB 、CD 相交于O ,OE 平分∠AOD,∠FOC=90°,∠1=40°,求∠2和∠3的度数.26.(本题满分6分)某商场因换季,将一品牌服装打折销售,每件服装如果按标价的六折出售将亏10元,而按标价的八折出售将赚70元,问:(1)每件服装的标价和成本分别是多少元?(2)为使销售该品牌服装每件获得20%的利润率,应按标价的几折出售?27. (本题满分6分)如图,在数轴上的、、、…,这20个点所表示的1A 2A 3A 4A 20A 数分别为、、、、….若,且=20,1a 2a 3a 4a 20a 12231920A A A A A A ===L 3a .1412a a -=(1)求的值;1a (2)若,求的值;124a x a a -=+x (3)求的值.20a 28.(本题满分7分)如图1,已知AB=12cm ,点C 为线段AB 上的一个动点,点D 、E 分别是AC 、BC 的中点.①若点C 恰为AB 的中点,则DE= _________ cm ;②若AC=4cm ,则DE= _________ cm ;③DE 的长度与点C 的位置是否有关?请说明理由.(2)如图2,已知∠AOB=120°,过角的内部任一点C 画射线OC ,若OD 、OE 分别是∠AOC、∠BOC 的平分线,则∠DOE 的大小与射线OC 的位置是否有关?请说明理由.29. (本题满分8分)如图,AC⊥CB,垂足为C 点,AC =CB =8cm ,点Q 是AC 的中点,动点P 由B 点出发,沿射线BC 方向匀速移动.点P 的运动速度为2cm/s.设动点P 运动的时间为ts .为方便说明,我们分别记三角形ABC 面积为,三角形PCQ 的面积为,三角形S 1S PAQ 的面积为,三角形ABP 的面积为.2S 3S (1) = ㎝(用含t 的代数式表示);3S 2(2)当点P 运动几秒,=,说明理由;1S 14S (3)请你探索是否存在某一时刻,使得==,若存在,求出值,若不存在,说明1S 2S 3S t 理由.2015-2016学年第一学期初一数学期末综合试卷(1)参考答案一、选择题:1.C ;2.C ;3.A ;4.D ;5.B ;6.B ;7.C ;8.B ;9.B ;10.C ;二、填空题:11.2;12.;13.140°37′;14.5;15. 2;16.2;17.1;81.510⨯18.10;三、解答题:19.计算:(1)19;(2)-3;20.(1);(2);2x =3x =-21.(1)-11;(2)28.5;22.(1);(2);2x =15x =23.(1)略;(2)略;(3)直线OA ,线段PH ;PH <PQ ;24.132㎝;25.(1)∠2=65°,∠2=50°;26.解:(1)设每件标价为x 元.由题意,得0.6x+10=0.8x 一70,解得:x=400,则成本为:0.6x+10=0.6×400+10=250;(2)250×(1+20%)÷400=0.75,即应按标价的7.5折出售.答:每件服装的标价标价400元,成本价250元,应按标价的7.5折出售.27.(1)12;(2)-28或52;(3)88;28.解:(1)①6cm;②6cm;③DE 的长度与点C 的位置无关;因为点D 、E 分别是AC 、BC 的中点,AD=DC ,CE=EB ,∴DE=DC+CE=AD+EB=AB ,所以DE 的长度与点C 位置无关.(2)的大小与射线OC 的位置无关.因为OD 、OE 分别是∠AOC、∠BOC 的平分线,,∴,则∠DOE 的大小与射线OC 的位置无关.29.(1)8t ;(2)由题意,得当0≤t≤4时,,()18241642t S t -⨯==-当t >4时,,()12844162t S t -⨯==-∴当16-4t=×8×8×时,t=2,1412当4t-16=×8×8×时,t=6.1412答:当点P 运动2秒或6秒时,=;1S 14S (3)由题意,得16-4t=8t ,解得:t=.43答:当t=时,==.431S 2S 3S。

七年级上册苏州数学期末试卷练习(Word版 含答案)

七年级上册苏州数学期末试卷练习(Word版 含答案)

七年级上册苏州数学期末试卷练习(Word版含答案)一、初一数学上学期期末试卷解答题压轴题精选(难)1.如图,直线SN与直线WE相交于点O,射线ON表示正北方向,射线OE表示正东方向.已知射线OB的方向是南偏东m°,射线OC的方向是北偏东n°,且m+n=90°.(1)①若m=50,则射线OC的方向是________,②图中与∠BOE互余的角有________,与∠BOE互补的角有________.(2)若射线OA是∠BON的角平分线,则∠SOB与∠AOC是否存在确定的数量关系?如果存在,请写出你的结论以及计算过程;如果不存在,请说明理由.【答案】(1)北偏东40°;∠BOS,∠EOC;∠BOW(2)解:∠AOC= ∠SOB.理由如下:∵OA平分∠BON,∴∠NOA= ∠NOB,又∵∠BON=180°-∠SOB,∴∠NOA= ∠BON=90°- ∠SOB,∵∠NOC=90°-∠EOC,由(1)知∠BOS=∠EOC,∴∠NOC=90°-∠SOB,∠AOC=∠NOA-∠NOC=90°- ∠SOB-(90°-∠SOB),即∠AOC= ∠SOB.【解析】【解答】解:(1)①∵m+n=90°,m=50°,∴n=40°,∴射线OC的方向是北偏东40°;②∵∠BOE+∠BOS=90°,∠BOE+∠EOC=90°,∴图中与∠BOE互余的角有∠BOS,∠EOC;∠BOE+∠BOW=180°,∴图中与∠BOE互补的角有∠BOW,故答案为:①北偏东40°;②∠BOS,∠EOC;∠BOW.【分析】(1)①由m+n=90°,m=50°可求得n值,从而可得射线OC的方向.②根据余角定义可知∠BOE+∠BOS=90°,∠BOE+∠EOC=90°,从而可得图中与∠BOE互余的角;由补角定义可得∠BOE+∠BOW=180°,从而可得图中与∠BOE互补的角.(2)∠AOC=∠SOB.理由如下:由角平分线定义和领补角定义可得∠NOA= ∠BON=90°-∠SOB,结合(1)中条件可得∠NOC=90°-∠SOB;由∠AOC=∠NOA-∠NOC即可求得它们之间的数量关系.2.如图,已知数轴上点A表示的数为8,B是数轴上一点,且AB=14.动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.(1)写出数轴上点B表示的数________ ,点P表示的数________(用含t的代数式表示);(2)动点Q从点B出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P、Q同时出发,问点P运动多少秒时追上点Q?(3)若M为AP的中点,N为PB的中点.点P在运动的过程中,线段MN的长度是否发生变化?若变化,请说明理由;若不变,请你画出图形,并求出线段MN的长;(4)若点D是数轴上一点,点D表示的数是x,请你探索式子|x+6|+|x﹣8|是否有最小值?如果有,直接写出最小值;如果没有,说明理由.【答案】(1)点B表示的数是﹣6;点P表示的数是8﹣5t(2)解:设点P运动x秒时,在点C处追上点Q (如图)则AC=5x,BC=3x,∵AC﹣BC=AB∴5x﹣3x=14…解得:x=7,∴点P运动7秒时,在点C处追上点Q(3)解:没有变化.分两种情况:①当点P在点A.B两点之间运动时:MN=MP+NP= AP+ BP= (AP+BP)= AB=7…②当点P运动到点B的左侧时:MN=MP﹣NP= AP﹣ BP= (AP﹣BP)= AB=7…综上所述,线段MN的长度不发生变化,其值为7…(4)解:式子|x+6|+|x﹣8|有最小值,最小值为14.…【解析】【分析】(1)由于A点表示的数是8,故OA=8,又AB=14,从而得出OB=AB-OA=6,由于点B表示的数在原点的左边,故B点表示的数是-6,根据路程等于速度乘以时间得出AP=5t,从而得出P点表示的数是8-5t;(2)设点P运动x秒时,在点C处追上点Q (如图)格努路程定于速度乘以时间得出AC=5x,BC=3x,然后由AC﹣BC=AB列出方程求解即可得出x的值;(3)没有变化.根据线段中点的定义得出PM=AP,NP=BP,分两种情况:①当点P在点A.B两点之间运动时,由MN=MP+NP= AP+ BP= (AP+BP)= AB得出答案;②当点P运动到点B的左侧时:MN=MP-NP= AP- BP= (AP-BP)= AB得出答案,综上所述即可得出答案;(4)式子|x+6|+|x﹣8|有最小值,最小值为14,点D是数轴上一点,点D表示的数是x,那么|x+6|表示点D,B两点间的距离,|x﹣8|表示点D,A两点间的距离,要|x+6|+|x﹣8|其实质就是DB+AD的和,要DB+AD的和最小,只有在D为线段AB上的时候,DB+AD的和最小=AB,即可得出答案。

苏科版2015-2016学年第一学期初一数学期末综合试卷(三)及答案

苏科版2015-2016学年第一学期初一数学期末综合试卷(三)及答案

苏科版2015-2016学年第一学期初一数学期末综合试卷(三)2015.12.19一、选择题:(本大题共10小题,每小题3分,共30分)1.-21的相反数是…………………………………………………………………………( )A .21 ; B .2; C .-21 ; D .-2 ; 2.下列说法中,正确的是…………………………………………………………( )A.倒数等于它本身的数是1;B.如果两条线段不相交,那么它们一定互相平行;C.等角的余角相等;D.任何有理数的平方都是正数;3.下列一组数:﹣8,2.6,3--,π-, 227-,0.1010010001…,(每两个1之间依次多一个0)中,无理数有………………………………………………………………( )A . 0个;B . 1个;C . 2个;D . 3个;4. 若1x =是方程260x m +-=的解,则m 的值是………………………………( )A .-4 ;B .4;C .-8;D .8;5.(2013•遵义)一个几何体的三视图如图所示,则这个几何体是………………………( )A .-4 ;B .4;C .-8;D .8;6.(2014.抚州)已知a 、b 满足方程组2226a b a b -=⎧⎨+=⎩,则3a b +的值为……………( )A .8 ;B .4;C .-4;D .-8;7.如图,AB 、CD 相交于点O ,EO ⊥AB ,则∠1与∠2的关系是…………………( )A .相等;B .互余 ;C .互补 ;D .对顶角;A. B. C. D. 第7题图第10题图8.已知有理数a ,b 在数轴上的位置如图所示,则化简代数式a b a b +--的结果是…………( )A .b -;B .a ;C .2b -;D .2a b -;9.(2013•扬州)下列图形中,由AB ∥CD ,能得到∠1=∠2的是………………………( )10.一块正方体木块的六个面上分别标上数字1~6,如图是从不同方向所看到的数字情况,则5对面的数字是………………………………………………………………( )A .3 ;B .4;C .6;D .无法确定;二、填空题:(本大题共8小题,每小题3分,共24分)11.单项式32y x -的系数是___ _. 12.“激情盛会,和谐亚洲”第16届亚运会在中国广州举行,广州亚运城的建筑面积约是358000平方米,将358000用科学记数法表示为____________ .13.如图,点C 是线段AB 上的任一点,点D 是线段BC 的中点,若AB =10,AC =6,则CD =______.14.某商店销售一批服装,每件售价150元,打8折出售后,仍可获利20元,设这种服装的成本价为每件x 元,则x 满足的方程是 .15.若代数式b a 3+的值为8-,则代数式()()b a b a +++24132的值为__________.16.一个角的补角是它的余角的3倍,则这个角的度数为 .17.(2014•长沙)如图,直线//a b ,直线c 分别与a ,b 相交,若∠1=70°,则∠2= 度.A. B. C. D.第18题图第13题第17题图18.(2014•黔西南州)如图,将矩形纸片ABCD 折叠,使边AB 、CB 均落在对角线BD 上,得折痕BE 、BF ,则∠EBF= °.三、解答题:(本题共76分)19.(每小题4分,共8分)计算:(1))12()216141(-⨯-+; (2))3(4)2(2132--÷-+⨯-.20. (本题满分5分)化简求值:求()()222245233a ab b a ab b -+--+的值,其中225a b -=,2ab =;21. (本题满分8分)解下列方程(组):(1)⎩⎨⎧=-+=-.11)(323y x y y x , (2)14126110312-+=+--x x x ;22.(本题满分5分)如图,在平面内有A 、B 、C 三点.(1)画直线AC ,线段BC ,射线AB ,过C 作CH ⊥AB 于H ;(2)取线段BC 的中点D ,连接AD .(保留作图痕迹,不要求写作法)23.(本题满分6分)如图,已知线段AB =6,延长线段AB 到C ,使BC =2AB ,点D 是AC 的中点.求:(1)AC 的长;(2)BD 的长.24.(本题共6分)如果关于x 、y 的二元一次方程组212x y x y a+=⎧⎨+=⎩的x 和y 的绝对值相等,求a 的值.25.(本题满分6分)已知2232A a b =-,226B a b =+.(1) 22a b += ;(用含A ,B 的代数式表示)(2)若2323a b x y +与514a b x y +-是同类项,求A -2B 的值; (3)若A =5,B =15,求22224a a b b -+的值.26. (本题满分8分)如图,直线AB 与CD 相交于点O ,OE ⊥AB ,OF ⊥CD ,OP 是∠BOC 的平分线.(1)图中除直角外,还有相等的角吗?请写出两对:① ;② .(2)如果∠DOA =60°,①那么根据 ,可得∠BOC = 度.②因为 ,所以∠COP = 度.③求∠BOF 的度数.27. (本题满分6分)如图,已知:E 为DF 上的点,B 为AC 上的点,∠1=∠2,∠C =∠D. 求证:⑴ DB ∥EC ;⑵ DF ∥AC .28.(本题满分8分)(1)观察下列各图,第①个图中有1个三角形,第②个图中有3个三角形,第③个图中有6个三角形,第④个图中有 个三角形,……,根据这个规律可知第n 个图中有 个三角形(用含正整数n 的式子表示).(2)问在上述图形中是否存在这样的一个图形,该图形中共有35个三角形?若存在,求出n 的值;若不存在请说明理由.(3)在下图中,点B 是线段AC 的中点,D 为AC 延长线上的一个动点,记△PDA 的面积为1s ,△PDB 的面积为2s ,△PDC 的面积为3s .试探索1s 、2s 、3s 之间的数量关系,并说明理由.D C BE F12G H29.(本题满分10分)知识的迁移与应用.问题一:如图①,甲、乙两人分别从相距30km的A、B两地同时出发,若甲的速度为80km/h,乙的速度为60km/h,设甲追到乙所花时间为xh,则可列方程为:;问题二:如图②,若将线段AC弯曲后视作钟表的一部分,线段AB对应钟表上的弧AB(1小时的间隔),易知∠AOB=30°.(1)分针OC的速度为每分钟转动度;时针OD的速度为每分钟转动度;(2)若从1:00起计时,几分钟后分针与时针第一次重合?(3)在(2)的条件下,几分钟后分针与时针互相垂直(在1:00~2:00之间)?参考答案一、选择题:1.A ;2.C ;3.C ;4.B ;5.C ;6.A ;7.B ;8.C ;9.B ;10.B ;二、填空题:11. 13-;12. 53.5810⨯;13.2;14. 201500.8x +=⨯;15.-80;16. 45°;17.110°;18.45°;三、解答题:19.(1)1;(2)-1;20. 222226a b ab --=;21. (1)41x y =⎧⎨=⎩;(2)16x =;22.略; 23.(1)18;(2)3;24.解:①当x y =,即0x y -=时,方程组两式相减得1x y a -=-,∴10a -=,∴1a =; ②当x y =-,即0x y +=时,()31x y a +=+,∴10a +=,∴1a =-.25.(1)4A B +;(2)-10;(3)5; 26. 解:(1)①∠COP=∠BOP ,②∠COB=∠AOD ,③∠BOF=∠EOC ;(2)①根据对顶角相等,可得∠BOC=60°.②因为OP 是∠BOC 的平分线,所以∠COP=30°.③∵OF ⊥CD ,∴∠COF=90°,又∵∠BOC=∠DOA=60°,∴∠BOF=∠COF-∠BOC=90°-60°=30°.故答案为:(1)∠COP=∠BOP ;∠COB=∠AOD ;(2)对顶角相等;60;OP 是∠BOC 的平分线;30°.27.略;28. 解:(1)10;(1)2n n +; (2)不存在(解法一)当n=7时,三角形的个数为(1)2n n +=()771282⨯+=; 当n=8时,三角形的个数为(1)2n n +=()881362⨯+=;所以不存在n 使三角形的个数为35. (解法二)由(1)352n n +=,得(1)70n n +=,而不存在两个连续整数的乘积为70, 所以不存在n 使三角形的个数为35.(3)1322S S S +=.∵点B 是线段AC 的中点,∴AB=BC ,∴PAB PBC S S = ,∴1322S S S +=.29.解:问题一:806030x x -=;问题二:(1)6,0.5;(2)60.530x x -=,解得6011x =;(3)设x 分钟后分针与时针互相重合. 如图①:60.53090x x =++,解得24011x =;如图②:60.530270x x =++;解得60011x =; 综上所述:当24011x =或60011x =时,分针与时针互相垂直.。

江苏省苏州市立达中学2015-2016学年度七年级数学上学期期末考试试题(含解析) 苏科版

江苏省苏州市立达中学2015-2016学年度七年级数学上学期期末考试试题(含解析) 苏科版

江苏省苏州市立达中学2015-2016学年度七年级数学上学期期末试题一、选择题(共10小题,每小题2分,共20分)1.﹣5的相反数是()A.5 B.﹣5 C. D.2.a、b两数在数轴上位置如图所示,将a、b、﹣a、﹣b用“<”连接,其中正确的是()A.a<﹣a<b<﹣b B.﹣b<a<﹣a<b C.﹣a<b<﹣b<a D.﹣b<a<b<﹣a3.已知|x|=5,|y|=2,且x<y,则x+y的值()A.7 B.3 C.﹣3或3 D.﹣3或﹣74.多项式﹣x|m|+(m﹣4)x+7是关于x的四次三项式,则m的值是()A.4 B.﹣2 C.﹣4 D.4或﹣45.已知代数式﹣5a m﹣1b6和是同类项,则m﹣n的值是()A.1 B.﹣1 C.﹣2 D.﹣36.苏州市对城区主干道进行绿化,计划把某一段公路的一侧全部栽上桂花树,要求路的两端各栽一棵,并且每两棵树的间隔相等.如果每隔5米栽1棵,则树苗缺21棵;如果每隔6米栽一棵,则树苗正好用完.设原有树苗a棵,则根据题意列出方程正确的是()A.5(a+21﹣1)=6(a﹣1)B.5(a+21)=6(a﹣1)C.5(a+21)﹣1=6a D.5(a+21)=6a 7.如图,是一个几何体从正面、左面、上面看得到的平面图形,下列说法错误的是()A.这是一个棱锥 B.这个几何体有4个面C.这个几何体有5个顶点 D.这个几何体有8条棱8.下列图形中,不是正方体的展开图的是()A. B. C. D.9.如图所示,将一块直角三角板的直角顶点O放在直尺的一边CD上,如果∠AOC=28°,那么∠BOD 等于()A.72° B.62° C.52° D.28°10.按下面的程序计算:当输入x=100时,输出结果是299;当输入x=50时,输出结果是446;如果输入x的值是正整数,输出结果是257,那么满足条件的x的值最多有()A.1个B.2个C.3个D.4个二、填空题(本大题共8小题,每空2分,共16分)11.比较大小:.12.一粒纽扣式电池能够污染60升水,某市每年报废的纽扣式电池有近1200 000粒,如果废旧电池不回收,一年报废的电池所污染的水约有升(用科学记数法表示)13.已知代数式x﹣2y的值是﹣5,则代数式3﹣x+2y的值是.14.多项式x2﹣3kxy﹣3y2+6xy﹣8不含xy项,则k= .15.已知3是关于x的方程4x﹣3a=1的解,则a= .16.某种商品的进价为100元,出售标价为150元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于20%,则最多可打折.17.已知∠AOB=60°,其角平分线为OM,∠BOC=20°,其角平分线为ON,则∠MON=.18.如图,两条直线相交只有1个交点,三条直线相交最多有3个交点,四条直线相交最多有6个交点,五条直线相交最多有10个交点,六条直线相交最多有个交点,二十条直线相交最多有个交点.三、解答题.(本大题共10小题,共64分)19.计算:(1)﹣1.5+1.4﹣(﹣3.6)﹣1.4+(﹣5.2)(2)﹣22×7﹣(﹣3)×6﹣5÷(﹣).20.解方程:(1)4﹣x=3(2﹣x);(2).21.先化简,再求值:2(3a2b﹣ab2)﹣(ab2+3a2b),其中a=2,b=﹣1.22.关于x的方程2(x﹣1)=3m﹣1与3x+2=﹣2(m+1)的解互为相反数,求m的值.23.如图,所有小正方形的边长都为1,A、B、C都在格点上.(1)过点C画直线AB的平行线(不写画法,下同);(2)过点A画直线BC的垂线,并注明垂足为G;过点A画直线AB的垂线,交BC于点H.(3)线段的长度是点A到直线BC的距离;(4)线段AG、AH的大小关系为AG AH.(填写下列符号>,<,≤,≥之一)24.如图,是由若干个完全相同的小正方体组成的一个几何体.(1)请画出这个几何体的三视图;(2)如果在这个几何体上再添加一些相同的小正方体,并保持这个几何体的正视图和俯视图不变,那么最多可以再添加个小正方体.25.(1)如图所示,点D、E分别为线段CB、AC的中点,若ED=6,求线段AB的长度.(2)若点C在线段AB的延长线上,点D、E分别为线段CB、AC的中点,DE=6,画出图形并求AB的长度.26.某城市按以下规定收取每月的水费:用水量如果不超过6吨,按每吨1.2元收费;如果超过6吨,未超过的部分仍按每吨1.2元收取,而超过部分则按每吨2元收费.如果某用户5月份水费平均为每吨1.4元,那么该用户5月份应交水费多少元?27.如图,直线AB与CD相交于点O,OE⊥AB,OF⊥CD.(1)图中∠AOF的余角是、、(把符合条件的角都填出来)(2)图中除直角相等外,还有相等的角,请写出三对:①;②;③.(3)①如果∠AOD=160°.那么根据可得∠BOC=度.②如果∠AOD=4∠EOF,求∠EOF的度数.28.已知直线l上有一点O,点A、B同时从O出发,在直线l上分别向左、向右作匀速运动,且A、B的速度比为1:2,设运动时间为ts.(1)当t=2s时,AB=12cm.此时,①在直线l上画出A、B两点运动2秒时的位置,并回答点A运动的速度是cm/s;点B运动的速度是cm/s.②若点P为直线l上一点,且PA﹣PB=OP,求的值;(2)在(1)的条件下,若A、B同时按原速向左运动,再经过几秒,OA=2OB.江苏省苏州市立达中学2015~2016学年度七年级上学期期末数学试卷参考答案与试题解析一、选择题(共10小题,每小题2分,共20分)1.﹣5的相反数是()A.5 B.﹣5 C. D.【考点】相反数.【分析】根据只有符号不同的两个数互为相反数,可得一个数的相反数.【解答】解:﹣5的相反数是5,故选:A.【点评】本题考查了相反数,在一个数的前面加上负号就是这个数的相反数.2.a、b两数在数轴上位置如图所示,将a、b、﹣a、﹣b用“<”连接,其中正确的是()A.a<﹣a<b<﹣b B.﹣b<a<﹣a<b C.﹣a<b<﹣b<a D.﹣b<a<b<﹣a【考点】有理数大小比较;数轴.【分析】根据a、b在数轴上的位置,可对a、b赋值,然后即可用“<”连接.【解答】解:令a=﹣0.8,b=1.5,则﹣a=0.8,﹣b=﹣1.5,则可得:﹣b<a<﹣a<b.故选B.【点评】本题考查了有理数的大小比较及数轴的知识,同学们注意赋值法的运用,这可以给我们解题带来很大的方便.3.已知|x|=5,|y|=2,且x<y,则x+y的值()A.7 B.3 C.﹣3或3 D.﹣3或﹣7【考点】有理数的加法;绝对值.【分析】由已知|x|=5,|y|=2,且x<y,可得出x=﹣5,y=±2,两数相加即可求得结论.【解答】解:∵|x|=5,|y|=2,且x<y,∴x=﹣5,y=﹣2,或者x=﹣5,y=2,x+y=﹣5+(﹣2)=﹣7,或者x+y=﹣5+2=﹣3.故选D.【点评】本题考查了有理数的加法以及去绝对值,解题的关键是由“|x|=5,|y|=2,且x<y”,得出x=﹣5,y=±2.4.多项式﹣x|m|+(m﹣4)x+7是关于x的四次三项式,则m的值是()A.4 B.﹣2 C.﹣4 D.4或﹣4【考点】多项式.【分析】根据四次三项式的定义可知,该多项式的最高次数为4,项数是3,所以可确定m的值.【解答】解:∵多项式﹣x|m|(m﹣4)x+7是关于x的四次三项式,∴|m|=4,﹣(m﹣4)≠0,∴m=﹣4.故选:C.【点评】本题考查了与多项式有关的概念,解题的关键是理解四次三项式的概念,多项式中每个单项式叫做多项式的项,有几项叫几项式,这些单项式中的最高次数,就是这个多项式的次数.5.已知代数式﹣5a m﹣1b6和是同类项,则m﹣n的值是()A.1 B.﹣1 C.﹣2 D.﹣3【考点】同类项.【分析】本题考查同类项的定义,由同类项的定义可先求得m和n的值,从而求出代数式的值.【解答】解:根据题意得:,解得:,则m﹣n=2﹣3=﹣1.故选B.【点评】本题考查了同类项定义,定义中的两个“相同”:相同字母的指数相同,是易混点,因此成了2016届中考的常考点.6.苏州市对城区主干道进行绿化,计划把某一段公路的一侧全部栽上桂花树,要求路的两端各栽一棵,并且每两棵树的间隔相等.如果每隔5米栽1棵,则树苗缺21棵;如果每隔6米栽一棵,则树苗正好用完.设原有树苗a棵,则根据题意列出方程正确的是()A.5(a+21﹣1)=6(a﹣1)B.5(a+21)=6(a﹣1)C.5(a+21)﹣1=6a D.5(a+21)=6a 【考点】由实际问题抽象出一元一次方程.【分析】设原有树苗x棵,根据首、尾两端均栽上树,每间隔5米栽一棵,则缺少21棵,可知这一段公路长为5(a+21﹣1);若每隔6米栽1棵,则树苗正好用完,可知这一段公路长又可以表示为6(a﹣1),根据公路的长度不变列出方程即可.【解答】解:设原有树苗x棵,由题意得:5(a+21﹣1)=6(a﹣1),故选A.【点评】考查了由实际问题抽象出一元一次方程,本题是根据公路的长度不变列出的方程.“表示同一个量的不同式子相等”是列方程解应用题中的一个基本相等关系,也是列方程的一种基本方法.7.如图,是一个几何体从正面、左面、上面看得到的平面图形,下列说法错误的是()A.这是一个棱锥 B.这个几何体有4个面C.这个几何体有5个顶点 D.这个几何体有8条棱【考点】由三视图判断几何体.【分析】由主视图和左视图可得此几何体为锥体,根据俯视图是正方形可判断出此几何体为四棱锥.【解答】解:∵主视图和左视图都是三角形,∴此几何体为锥体,∵俯视图是一个正方形,∴此几何体是一个四棱锥,四棱锥有5个面,5个顶点,8条棱.故错误的是B.故选B.【点评】考查了由三视图判断几何体,用到的知识点为:三视图里有两个相同可确定该几何体是柱体,锥体还是球体,由另一个视图确定其具体形状.8.下列图形中,不是正方体的展开图的是()A. B. C. D.【考点】几何体的展开图.【专题】压轴题.【分析】利用正方体及其表面展开图的特点解题.【解答】解:A、B、C经过折叠均能围成正方体,D折叠后下边没有面,不能折成正方体,故选D.【点评】解题时勿忘记四棱柱的特征及正方体展开图的各种情形.9.如图所示,将一块直角三角板的直角顶点O放在直尺的一边CD上,如果∠AOC=28°,那么∠BOD 等于()A.72° B.62° C.52° D.28°【考点】余角和补角.【分析】根据平角的度数为180°即可得出∠BOD的度数.【解答】解:由题意得,∠AOC+∠AOB+∠BOD=180°,解得:∠BOD=62°.故选B.【点评】本题考查了余角的知识,仔细审图,得出∠AOC与∠BOD互余是解答本题的关键.10.按下面的程序计算:当输入x=100时,输出结果是299;当输入x=50时,输出结果是446;如果输入x的值是正整数,输出结果是257,那么满足条件的x的值最多有()A.1个B.2个C.3个D.4个【考点】一元一次方程的应用;代数式求值.【专题】图表型.【分析】利用逆向思维来做,分析第一个数就是直接输出257,可得方程3x﹣1=257,解方程即可求得第一个数,再求得输出为这个数的第二个数,以此类推即可求得所有答案.【解答】解:第一个数就是直接输出其结果的:3x﹣1=257,解得:x=86,第二个数是(3x﹣1)×3﹣1=257解得:x=29;第三个数是:3[3(3x﹣1)﹣1]﹣1=257,解得:x=10,第四个数是3{3[3(3x﹣1)﹣1]﹣1}﹣1=257,解得:x=(不合题意舍去);第五个数是3(81x﹣40)﹣1=257,解得:x=(不合题意舍去);故满足条件所有x的值是86、29或10.故选C.【点评】本题考查了列一元一次方程解实际问题的运用.解答本题时注意理解题意与逆向思维的应用是解题的关键.二、填空题(本大题共8小题,每空2分,共16分)11.比较大小:>.【考点】有理数大小比较.【专题】计算题.【分析】先计算|﹣|==,|﹣|==,然后根据负数的绝对值越大,这个数反而越小即可得到它们的关系关系.【解答】解:∵|﹣|==,|﹣|==,而<,∴﹣>﹣.故答案为:>.【点评】本题考查了有理数的大小比较:正数大于零,负数小于零;负数的绝对值越大,这个数反而越小.12.一粒纽扣式电池能够污染60升水,某市每年报废的纽扣式电池有近1200 000粒,如果废旧电池不回收,一年报废的电池所污染的水约有7.2×107升(用科学记数法表示)【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将60×1 200 000用科学记数法表示为7.2×107.故答案为:7.2×107.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.13.已知代数式x﹣2y的值是﹣5,则代数式3﹣x+2y的值是8 .【考点】代数式求值.【专题】计算题;实数.【分析】原式后两项提取﹣1变形后,将x﹣2y的值代入计算即可求出值.【解答】解:∵x﹣2y=﹣5,∴原式=3﹣(x﹣2y)=3+5=8.故答案为:8.【点评】此题考查了代数式求值,熟练掌握运算法则是解本题的关键.14.多项式x2﹣3kxy﹣3y2+6xy﹣8不含xy项,则k= 2 .【考点】多项式.【专题】方程思想.【分析】先将原多项式合并同类项,再令xy项的系数为0,然后解关于k的方程即可求出k.【解答】解:原式=x2+(﹣3k+6)xy﹣3y2﹣8,因为不含xy项,故﹣3k+6=0,解得:k=2.故答案为:2.【点评】本题考查了合并同类项法则及对多项式“项”的概念的理解,题目设计巧妙,有利于培养学生灵活运用知识的能力.15.已知3是关于x的方程4x﹣3a=1的解,则a= .【考点】一元一次方程的解.【分析】把x=3代入方程,即可得出一个关于a的方程,求出方程的解即可.【解答】解:把x=3代入方程4x﹣3a=1得:12﹣3a=1,解得:a=,故答案为:.【点评】本题考查了解一元一次方程,一元一次方程的解的应用,能得出一个关于a的一元一次方程是解此题的关键.16.某种商品的进价为100元,出售标价为150元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于20%,则最多可打八折.【考点】一元一次不等式的应用.【分析】设最多可以打x折,根据利润不低于20%,即可列出一元一次不等式150x﹣100≥100×20%,解不等式即可得出结论.【解答】解:设最多可以打x折,根据题意可得:150x﹣100≥100×20%,解得x≥0.8.所以最多可以打八折.故答案为:八.【点评】本题考查一元一次不等式的应用,解题的关键是根据最低利润列出不等式150x﹣100≥100×20%.17.已知∠AOB=60°,其角平分线为OM,∠BOC=20°,其角平分线为ON,则∠MON=40°或20°.【考点】角平分线的定义.【分析】分OC在∠AOB外部和内部两种情况,由OM、ON分别平分∠AOB、∠BOC可得∠BOM、∠BON 度数,在根据两种位置分别求之.【解答】解:①如图,当OC在∠AOB外部时,∵∠AOB=60°,OM平分∠AOB,∴∠BOM=∠AOB=30°,又∵∠BOC=20°,ON平分∠BOC,∴∠BON=∠BOC=10°,∴∠MON=∠BOM+∠BON=40°;②如图,当OC在∠AOB内部时,∵∠AOB=60°,OM平分∠AOB,∴∠BOM=∠AOB=30°,又∵∠BOC=20°,ON平分∠BOC,∴∠BON=∠BOC=10°,∴∠MON=∠BOM﹣∠BON=20°,故答案为:40°或20°.【点评】本题主要考查角平分线定义的运用能力,能考虑到OC在∠AOB外部和内部两种情况是关键.18.如图,两条直线相交只有1个交点,三条直线相交最多有3个交点,四条直线相交最多有6个交点,五条直线相交最多有10个交点,六条直线相交最多有15 个交点,二十条直线相交最多有190 个交点.【考点】规律型:图形的变化类.【分析】根据题意,结合图形,发现:3条直线相交最多有3个交点,4条直线相交最多有6个交点,5条直线相交最多有10个交点.而3=1+2,6=1+2+3,10=1+2+3+4,故可猜想,n条直线相交,最多有1+2+3+…+(n﹣1)=n(n﹣1)个交点.【解答】解:6条直线两两相交,最多有n(n﹣1)=×6×5=15,20条直线两两相交,最多有n(n﹣1)=×20×19=190.故答案为:15,190.【点评】此题主要考察了图形的变化类问题,在相交线的基础上,着重培养学生的观察、实验和猜想、归纳能力,掌握从特殊向一般猜想的方法.三、解答题.(本大题共10小题,共64分)19.计算:(1)﹣1.5+1.4﹣(﹣3.6)﹣1.4+(﹣5.2)(2)﹣22×7﹣(﹣3)×6﹣5÷(﹣).【考点】有理数的混合运算.【分析】(1)先去括号,再从左到右依次计算即可;(2)先算乘方,再算乘除,最后算加减即可.【解答】解:(1)原式=﹣1.5+1.4+3.6﹣1.4﹣5.2=﹣0.1+3.6﹣1.4﹣5.2=3.5﹣1.4﹣5.2=2.1﹣5.2=﹣3.1;(2)原式=﹣4×7+3×6﹣5×(﹣5)=﹣28+18+25=﹣10+25=15.【点评】本题考查的是有理数的混合运算,熟知有理数混合运算的法则是解答此题的关键.20.解方程:(1)4﹣x=3(2﹣x);(2).【考点】解一元一次方程.【专题】计算题.【分析】(1)此题主要是去括号,移项,合并同类项.(2)方程两边每一项都要乘各分母的最小公倍数12,切勿漏乘不含有分母的项,另外分数线有两层意义,一方面它是除号,另一方面它又代表着括号,所以在去分母时,应该将分子用括号括上.【解答】解:(1)4﹣x=6﹣3x,3x﹣x=6﹣4,2x=2,x=1;(2)去分母得:3(x+2)﹣2(2x﹣3)=12,去括号得:3x+6﹣4x+6=12,移项合并得:﹣x=0,系数化为1得:x=0.【点评】本题考查解一元一次方程的知识,题目难度不大,但是出错率很高,是失分率很高的一类题目,同学们要在按步骤解答的基础上更加细心的解答.21.先化简,再求值:2(3a2b﹣ab2)﹣(ab2+3a2b),其中a=2,b=﹣1.【考点】整式的加减—化简求值.【专题】计算题;整式.【分析】原式去括号合并得到最简结果,把a与b的值代入计算即可求出值.【解答】解:原式=6a2b﹣2ab2﹣ab2﹣3a2b=3a2b﹣3ab2,当a=2,b=﹣1时,原式=﹣12﹣6=﹣18.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.22.关于x的方程2(x﹣1)=3m﹣1与3x+2=﹣2(m+1)的解互为相反数,求m的值.【考点】一元一次方程的解.【专题】计算题.【分析】根据一元一次方程的解法求出两方程的解,再根据互为相反数的和等于要0列方程,然后再解关于m的一元一次方程即可.【解答】解:由2(x﹣1)=3m﹣1,解得,x=,由3x+2=﹣2(m+1),解得,x=,∵两方程的解互为相反数,∴+=0,解得m=1.故答案为:m=1.【点评】本题考查了一元一次方程的解,以及一元一次方程的解法,分别表示出两个方程的解,再根据互为相反数的定义列出关于m的方程是解题的关键.23.如图,所有小正方形的边长都为1,A、B、C都在格点上.(1)过点C画直线AB的平行线(不写画法,下同);(2)过点A画直线BC的垂线,并注明垂足为G;过点A画直线AB的垂线,交BC于点H.(3)线段AG 的长度是点A到直线BC的距离;(4)线段AG、AH的大小关系为AG <AH.(填写下列符号>,<,≤,≥之一)【考点】作图—基本作图;垂线段最短;点到直线的距离.【分析】(1)根据网格结构特点,过点C作长2宽1的长方形的对角线即可;(2)根据网格结构以及长方形的性质作出即可;(3)根据点到直线的距离的定义解答;(4)结合图形直接进行判断即可得解.【解答】解:(1)如图所示,直线CD即为所求作的直线AB的平行线;(2)如图所示:(3)线段AG的长度是点A到直线BC的距离;(4)线段AG、AH的大小关系为AG<AH.故答案为:AG;<.【点评】本题考查了基本作图,利用网格结构作垂线,平行线,点到直线的距离的定义,都是基础知识,需熟练掌握.24.如图,是由若干个完全相同的小正方体组成的一个几何体.(1)请画出这个几何体的三视图;(2)如果在这个几何体上再添加一些相同的小正方体,并保持这个几何体的正视图和俯视图不变,那么最多可以再添加 2 个小正方体.【考点】作图-三视图.【分析】(1)由已知条件可知,主视图有3列,每列小正方数形数目分别为3,2,1;左视图有2列,每列小正方形数目分别为3,1;俯视图有3列,每列小正方数形数目分别为2,1,1;据此可画出图形.(2)可在第二层第1列第一行加一个,第三层第1列第一行加一个,共2个.【解答】解:(1)画图如下:(2)最多可以再添加2个小正方体.故答案为:2.【点评】本题考查几何体的三视图画法.由立体图形,可知主视图、左视图、俯视图,并能得出有几列即每一列上的数字.25.(1)如图所示,点D、E分别为线段CB、AC的中点,若ED=6,求线段AB的长度.(2)若点C在线段AB的延长线上,点D、E分别为线段CB、AC的中点,DE=6,画出图形并求AB的长度.【考点】两点间的距离.【分析】(1)根据图象得出AC=2CE,BC=2CD,即AB=AC+BC=2CE+2CD,进而求出即可;(2)根据已知画出图形,进而利用AB=2CE﹣2CD=2DE求出即可.【解答】解:(1)∵点D、E分别为线段CB、AC的中点,∴AC=2CE,BC=2CD,∴AB=AC+BC=2CE+2CD=2DE=2×6=12;(2)如图所示:∵点D、E分别为线段CB、AC的中点,∴AC=2CE,BC=2CD,∵AB=AC﹣BC,∴AB=2CE﹣2CD=2DE=2×6=12.【点评】此题主要考查了两点之间距离求法,根据题意画出正确图形是解题关键.26.某城市按以下规定收取每月的水费:用水量如果不超过6吨,按每吨1.2元收费;如果超过6吨,未超过的部分仍按每吨1.2元收取,而超过部分则按每吨2元收费.如果某用户5月份水费平均为每吨1.4元,那么该用户5月份应交水费多少元?【考点】一元一次方程的应用.【专题】应用题;经济问题;压轴题.【分析】水费平均为每吨1.4元大于1.2,说明本月用水超过了6吨,那么标准内的水费加上超出部分就是实际水费.根据这个等量关系列出方程求解.【解答】解:设该用户5月份用水x吨,则1.2×6+(x﹣6)×2=1.4x,7.2+2x﹣12=1.4x,0.6x=4.8,x=8,∴1.4×8=11.2(元),答:该用户5月份应交水费11.2元.【点评】解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.27.如图,直线AB与CD相交于点O,OE⊥AB,OF⊥CD.(1)图中∠AOF的余角是∠EOF、∠BOD、∠AOC(把符合条件的角都填出来)(2)图中除直角相等外,还有相等的角,请写出三对:①∠AOC=∠EOF;②∠AOC=∠BOD;③∠DOE=∠AO F .(3)①如果∠AOD=160°.那么根据对顶角相等可得∠BOC=160 度.②如果∠AOD=4∠EOF,求∠EOF的度数.【考点】垂线.【分析】(1)余角即与令一个角的和为90°的角;(2)相等的角可以是与同一个角互余的角,也可以是对顶角等;(3)①是对顶角相等,②是利用平角为180°求解.【解答】解:(1)∠EOF、∠BOD、∠AOC;(2)∠AOC=∠EOF,∠AOC=∠BOD,∠DOE=∠AOF,答案不唯一;(3)①:对顶角相等,160°;36°.②:∵∠AOC=∠EOF,∠AOC+∠AOD=180°,即5∠AOC=180°,则∠EOF=∠AOC=36°.【点评】本题主要考查了垂线的一些性质问题,能够掌握并利用其性质求解一些简单的计算问题.28.已知直线l上有一点O,点A、B同时从O出发,在直线l上分别向左、向右作匀速运动,且A、B的速度比为1:2,设运动时间为ts.(1)当t=2s时,AB=12cm.此时,①在直线l上画出A、B两点运动2秒时的位置,并回答点A运动的速度是 2 cm/s;点B运动的速度是 4 cm/s.②若点P为直线l上一点,且PA﹣PB=OP,求的值;(2)在(1)的条件下,若A、B同时按原速向左运动,再经过几秒,OA=2OB.【考点】一元一次方程的应用;两点间的距离.【分析】(1)①设A的速度为xcm/s,B的速度为2xcm/s,根据2s相距的距离为12建立方程求出其解即可;②分情况讨论如图2,如图3,建立方程求出OP的值就可以求出结论;(2)设A、B同时按原速向左运动,再经过几a秒OA=2OB,根据追击问题的数量关系建立方程求出其解即可.【解答】解:(1)①设A的速度为xcm/s,B的速度为2xcm/s,由题意,得2x+4x=12,解得:x=2,∴B的速度为4cm/s;故答案为:2,4②如图2,当P在AB之间时,∵PA﹣OA=OP,PA﹣PB=OP,∴PA﹣OA=PA﹣PB,∴OA=PB=4,∴OP=4.∴.如图3,当P在AB的右侧时,∵PA﹣OA=OP,PA﹣PB=OP,∴PA﹣OA=PA﹣PB,∴OA=PB=4,∴OP=12.∴答:=或1;(2)设A、B同时按原速向左运动,再经过几a秒OA=2OB,由题意,得2a+4=2(8﹣4a)或2a+4=2(4a﹣8)解得:a=或答:再经过或秒时OA=2OB.【点评】本题考查了数轴的运用,列一元一次方程解实际问题的运用,追击问题的数量关系的运用,解答时由行程问题的数量关系建立方程是关键.。

苏科版2015-2016学年度第一学期七年级期末数学试题及答案

苏科版2015-2016学年度第一学期七年级期末数学试题及答案

苏科版2015-2016学年度第一学期七年级期末数学试卷(全卷满分:150分 考试时间:120分钟)2016.1.20 一、精心选一选(本题共8小题,每小题3分,共24分) 1.21—的倒数是( ▲ ) A .21- B .21 C .—2 D .22.下列式子中正确的是( ▲ )A .―3―2=―1B .325a b ab +=C .77--=D .550xy yx -=3.直线l 外一点P 与直线l 上两点的连线段长分别为3cm ,5cm ,则点P 到直线l 的距离是( ▲ )A . 不超过3cmB . 3cmC . 5cmD . 不少于5cm4.小明在日历上圈出五个数,呈十字框形,它们的和是40,则中间的数是( ▲ )A .7B .8C .9D .10 5.如图,某测绘装置上一枚指针原来指向南偏西600,把这枚指针按顺时针方向旋转41周,则结果指针的指向( ▲ )A .南偏东30ºB .南偏东60ºC .北偏西30ºD .北偏西60º6.甲、乙两班共有98人,若从甲班调3人到乙班,那么两班人数正好相等.设甲班原有人数是x 人,可列出方程( ▲ ) A .98+x =x -3 B .98-x =x -3 C .(98-x )+3=x D .(98-x )+3=x -37.下列语句中:①一条直线有且只有一条垂线;②不相等的两个角一定不是对顶角;③两条不相交的直线叫做平行线;④过一点有且只有一条直线与已知直线平行。

其中错误的有( ▲ )A .1个B .2个C .3个D .4个8.如图所示的数码叫“莱布尼茨调和三角形”,它们是由整数的倒数组成的,第n 行有n 个数,且两端的数均为,每个数是它下一行左右相邻两数的和,则第8行第3个数(从A(第15题)二、认真填一填(本题共10小题,每小题3分,共30分)9.扬州今年冬季某天测得的最低气温是-6℃,最高气温是5℃,则当日温差是 ▲ ℃. 10.如图,为抄近路践踏草坪是一种不文明的现象.请你用学过的数学知识解释出现这一现象的原因:________ ▲ __________.11.钓鱼岛是中国领土一部分.钓鱼岛诸岛总面积约5平方千米,岛屿周围的海域面积约170 000平方千米.170 000用科学计数法表示为 ▲ . 12.一个角的补角是它的余角的3倍,则这个角的度数是 ▲ . 13. 代数式2231a a ++的值是6,那么代数式2695a a ++的值是 ▲ .14.小华同学在解方程=-15x ( )3+x 时,发现 “( )”处的数字模糊不清,但察看答案可知解为,2=x 则“( )”处的数字为 ▲ .15.一个正方体的每个面上都写有一个汉字,其平面展开图如图所示,那么在该正方体中和“文”相对的字是 ▲ .16.服装店销售某款服装,一件服装的标价为300元,若按标价的八折销售, 仍可获利60元,则这款服装每件的进价为 ▲ 元.17.已知线段AB=20cm ,直线..AB 上有一点C ,且BC=6cm , M 是线段AC 的中点,则线段AM 的长度为 ▲ .18.如图所示, 两人沿着边长为90m 的正方形,按A→B→C→D→A……的方向行走,甲从A 点以65m/min 的速度、乙从B 点以75m/min 的速度行走, 当乙第一次追上甲时,将在正方形的 ▲ 边上.南 东(第5题)(第8题)(第18题)三、运算大比武 19.(本题满分8分)计算:(1)537(72)9818⎛⎫-+⨯- ⎪⎝⎭(2)63)211(14-⨯÷--- 20.(本题满分8分)先化简,再求值:)3(2)2(42222b a ab ab b a +---,其中2-=a ,3=b . 21.(本题满分8分)解方程:(1)4)5(211=--x x (2) 341125x x -+-=22.(本题满分8分) 已知关于x 的方程23x m mx -=+与x -1=2(2x -1),它们的解互为倒数,求m 的值.四、漫游图形世界23.(本题满分10分)如图,点P 是AOB ∠的边OB 上的一点. (1)过点P 画OB 的垂线,交OA 于点C ; (2)过点P 画OA 的垂线,垂足为H ;(3)线段PH 的长度是点P 到 ▲ 的距离,线段 ▲ 的长度是点C 到直线OB 的距离.因为直线外一点到直线上各点连接的所有线中,垂线段最短,所以线段PC 、PH 、OC 这三条线段大小关系是 ▲ . (用“<”号连接) 24.(本题满分10分)如图,是由8个大小相同的小正方体组合成的简单几何体.(1)该几何体的主视图如图所示,请在下面方格纸中分别画出它的左视图和俯视图;(2)如果在这个几何体上再添加一些相同的小正方体,并保持这个几何体的俯视图和主视图不变,那么请在下面的网格中画出添加小正方体后所得几何体所有可能的左视图.25.(本题满分10分)如图,点O 是直线AB 、CD 的交点,OE ⊥AB ,OF ⊥CD ,OM 是∠BOF 的平分线,∠AOC=32. (1)填空:①由OM 是∠BOF 的平分线,可得∠ ▲ =∠ ▲ ; ②根据 ▲ ,可得∠BOD = ▲ 度; ③根据 ▲ ,可得∠EOF=∠AOC ; (2)计算:求∠COM 的度数.(写出过程)MFEODC BA五、实践与运用26.(本题满分10分)国庆期间,小明、小亮等同学随家长一同到瘦西湖公园游玩,下面是购买门票时,小明与他爸爸的对话(如图),试根据图中的信息,解答下列问题:(1)小明他们一共去了几个成人,几个学生?(2) 请你帮助小明算一算,用哪种方式购票更省钱?说明理由.27. (本题满分12分)某校的一间阶梯教室,第1排的座位数为12,从第2排开始,每一排都比前一排增加a个座位.(1)请你在下表的空格里填写一个适当的代数式:(2)已知第15排座位数是第5排座位数的2倍,求a的值;(3)在(2)的条件下计算第21排有多少座位?28. (本题满分12分),三角板A PD答案及评分标准一、精心选一选(本题共8小题,每小题3分,共24分)二、认真填一填(本题共10小题,每小题3分,共30分)9. 11 ; 10. 两点之间,线段最短 ;11.5107.1⨯;12. 45° ; 13. 20 ; 14. 3 ;15. 强 ;16. 180 ; 17. 7或13 ;18. AD . 19. (本题满分8分,每小题4分)(1)537(72)9818⎛⎫-+⨯- ⎪⎝⎭(2)63)211(14-⨯÷--- 解:原式=-40+27-28 (3分) 解:原式= -1-1 (3分) =-41 (4分) =-2 (4分) 20.(本题满分8分))3(2)2(42222b a ab ab b a +---,其中2-=a ,3=b .解:原式=b a ab ab b a 22226248-+- (4分) =2222ab b a - (6分)当a=-2,b=3时,原式=60 (8分) 21.(本题满分8分,每小题4分)(1)4)5(211=--x x (2) 341125x x -+-= 解:11x-2x+10=4 (2分) 解:5(x-3)-2(4x+1)=10 (2分) 9x=-6 (3分) 5x-15-8x-2=10 (3分)x=—32(4分) x= —9 (4分) 22.(本题满分8分) 先解x -1=2(2x -1)得x=31(3分)∴23x m mx -=+的解为x=3 (4分) 代入方程求出m= -59(8分)23. (本题满分10分)(1)(2)作图略 (各2分,共4分)(3) OA , PC ; (4) PH ﹤PC ﹤OC (用“<”号连接).(每空2分) 24. (本题满分10分)(1)图略 (每图2分,共4分) (2)图略 (每图3分,共6分)25. (本题满分10分)(1)①∠ FOM =∠ BOM ;②根据 对顶角相等 ,可得∠BOD = 32 度;③根据 同角的余角相等 ,可得∠EOF=∠AOC ;(每空1分,共5分) (2) 119° (10分) 26.(本题满分10分) 解:(1)设:x 个成人,(15- x )个学生。

易错汇总2015年江苏省苏州市七年级上学期数学期末试卷和解析版

易错汇总2015年江苏省苏州市七年级上学期数学期末试卷和解析版
11.( 3 分)某市在端午节准备举行划龙舟大赛,预计 15 个队共 330 人参加.已 知每个队一条船,每条船上人数相等,且每条船上有 1 人击鼓, 1 人掌舵,其余 的人同时划桨.设每条船上划桨的有 x 人,那么可列出一元一次方程为 15(x+2) =330 . 【解答】 解:设每条船上划桨的有 x 人,则每条船上有 x+2 人,根据等量关系列 方程得: 15(x+2)=330.

A.| ﹣5| =﹣ 5 B.﹣ | 5| =﹣ 5 C.
D.
14.( 3 分)实数 a,b 在数轴上的位置如图所示,则下列式子成立的是(

A.a+b> 0 B.a>﹣ b C.a+b<0 D.﹣ a<b
15.( 3 分)经过任意三点中的两点共可以画出的直线条数是(

A.一条或三条 B.三条 C.两条 D.一条
日是( )
A.15 号 B.16 号 C.17 号 D.18 号
18.( 3 分)观察表 1,寻找规律.表 2 是从表 1 中截取的一部分,其中 a,b,c
的值分别为(

表 1:
1
2
3
4

2
4
6
8

3
6
9
12

4
8
12
16






表 2:
16 a
20 b c 30 A.20,25,24 B.25,20, 24 C. 18,25,24 D.20, 30,25
14.( 3 分)实数 a,b 在数轴上的位置如图所示,则下列式子成立的是(

A.a+b> 0 B.a>﹣ b C.a+b<0 D.﹣ a<b 【解答】 解:根据题意得, a<0,b>0,| a| >b, ∴ a+b<0;a<﹣ b;﹣ a>b, ∴ A、 B、 D 选项都错误, C 选项正确. 故选: C.

2015-2016学年江苏省苏州市高新区七年级上学期期末考试数学试卷(带解析)

2015-2016学年江苏省苏州市高新区七年级上学期期末考试数学试卷(带解析)

绝密★启用前2015-2016学年江苏省苏州市高新区七年级上学期期末考试数学试卷(带解析)试卷副标题考试范围:xxx ;考试时间:125分钟;命题人:xxx学校:___________姓名:___________班级:___________考号:___________注意事项.1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)一、选择题(题型注释)1、a 、b 是有理数,如果,那么对于结论(1)a 一定不是负数;(2)b 可能是负数.其中() A .只有(1)正确 B .只有(2)正确 C .(1),(2)都正确 D .(1),(2)都不正确2、如果一个角α的度数为13°14',那么关于x 的方程的解为( ) A .76°46'B .76°86'C .86°56'D .166°46'3、下列说法中:①棱柱的上、下底面的形状相同; ②若AB=BC ,则点B 为线段AC 的中点;③相等的两个角一定是对顶角; ④不相交的两条直线叫做平行线;⑤直线外一点与直线上各点连接的所有线段中,垂线段最短。

正确的有( ) A .1个B .2个C .3个D .4个4、下列图形中,能折叠成正方体的是( )5、下列计算正确的是( ) A .3a +4b =7ab B .7a -3a =4 C .3a +a =3a 2 D .3a 2b -4a 2b =-a 2b6、下列四个数中,在-2到0之间的数是( ) A .3B .1C .-3D .-17、 A .-3B .3C .-D .8、已知a ,b 两数在数轴上的位置如图所示,则化简代数式的结果是( )A .1B .2a -3C .2b +3D .-1第II 卷(非选择题)二、填空题(题型注释)9、如图,每一幅图中均含有若干个正方形,第1幅图中有1个正方形;第2幅图中有5个正方形;…按这样的规律下去,第7幅图中有 个正方形.10、有m 辆校车及n 个学生,若每辆校车乘坐40名学生,则还有10名学生不能上车;若每辆校车乘坐43名学生,则只有1名学生不能上车.现有下列四个方程: ①40m +10=43m -1;②;③;④40m +10=43m +1.其中正确的是 (请填写相应的序号)11、直线AB 外有C 、D 两个点,由点A 、B 、C 、D 可确定的直线条数是 .12、如图是2016年1月份的日历,在日历上任意圈出一个竖列上相邻的3个数.如果被圈出的三个数的和为54,则这三个数中最大的一个数表示:2016年1月 日.13、已知∠AOB =80o ,以O 为顶点,OB 为一边作∠BOC =20o ,则∠AOC 的度数为 .14、已知关于x 的方程kx=7-x 有正整数解,则整数k 的值为 .15、如图,C 为线段AB 上一点,AC=5,CB=3,若点E 、F 分别是线段AC 、CB 的中点,则线段EF 的长度为 .16、五个完全相同的小长方形拼成如图所示的大长方形,大长方形的周长是32 cm ,则小长方形的面积是 cm 2.17、若代数式x -y 的值为3,则代数式2x -3-2y 的值是 .18、与原点的距离为2.5个单位的点所表示的有理数是 .三、计算题(题型注释)19、某车间共有75名工人生产A 、B 两种工件,已知一名工人每天可生产A 种工件15件或B 种工件20件,但要安装一台机械时,同时需A 种工件1件,B 种工件2件,才能配套.问车间如何分配工人生产,才能保证一天连续安装机械时,两种工件恰好配套?20、(1)由大小相同的小立方块搭成的几何体如左图,请在右图的方格中画出该几何体的俯视图和左视图.(2)用小立方体搭一几何体,使得它的俯视图和左视图与你在上图方格中所画的图一致,则这样的几何体最少要 个小立方块,最多要 个小立方块.21、某班同学分组参加迎新年活动,原来每组8人,后来重新编组,每组6人,这样比原来增加2组.这个班共有多少人?22、计算: (1)(2)(-1)3×(-5)÷[(-3)2+2×(-5)].四、解答题(题型注释)23、如图1,已知数轴上有三点A 、B 、C ,AB =60,点A 对应的数是40.(1)若,求点C 到原点的距离;(2)如图2,在(1)的条件下,动点P 、Q 两点同时从C 、A 出发向右运动,同时动点R 从点A 向左运动,已知点P 的速度是点R 的速度的3倍,点Q 的速度是点R 的速度2倍少5个单位长度/秒.经过5秒,点P 、Q 之间的距离与点Q 、R 之间的距离相等,求动点Q 的速度;(3)如图3,在(1)的条件下,O 表示原点,动点P 、T 分别从C 、O 两点同时出发向左运动,同时动点R 从点A 出发向右运动,点P 、T 、R 的速度分别为5个单位长度/秒、1个单位长度/秒、2个单位长度/秒,在运动过程中,如果点M 为线段PT 的中点,点N 为线段OR 的中点.请问的值是否会发生变化?若不变,请求出相应的数值;若变化,请说明理由.24、如图,直线AB 、CD 相交于点O ,OE 平分∠BOD ,∠AOC =72°,∠DOF =90°.(1)写出图中任意一对互余的角; (2)求∠EOF 的度数.25、如果方程的解与方程的解相同,求式子的值.26、随着人们的生活水平的提高,家用轿车越来越多地进入家庭.小明家中买了一辆小轿车,他连续记录了7天中每天行驶的路程(如下表),以50km 为标准,多于50km 的记为“+”,不足50km 的记为“-”,刚好50km 的记为“0”.(1)请你用所学的数学知识,估计小明家一个月(按30天计)要行驶多少千米? (2)若每行驶100km 需用汽油8L ,汽油每升4.74元,试求小明家一年(按12个月计)的汽油费用是多少元?27、解方程(组): (1)4-3x =6-5x ; (2); (3).28、先化简,再求值:2m 2-4m +1-2(m 2+2m -),其中m =-1.参考答案1、A2、A3、B4、A5、D6、D7、B8、C9、14010、③④11、6或412、2513、60°或100°14、0,615、416、1217、318、±2.519、30名工人生产A种工件,45名工人生产B种工件20、(1)答案见解析;(2)5;7.21、48人22、(1)23;(2)-5.23、(1)100;(2)7个单位长度/秒;(3)不会发生改变,定值为30.24、(1)∠BOF与∠BOD或∠DOE与∠EOF;(2)∠EOF=54°.25、-326、(1)1500千米;(2)6825.6元.27、(1)x=1;(2)x=;(3)28、-8m+2;10.【解析】1、试题分析:根据绝对值的性质可得:a≥0,b≤0,则a一定不是负数,b一定不是正数.考点:绝对值的性质2、试题分析:1°=60′,根据题意可得:2x=180°-2α,解得:x=90°-α=90°-13°14′=76°46′.考点:角度的计算3、试题分析:①、正确;②、当A、B、C三点不在同一条直线上时,则错误;③、对顶角是指有公共顶点,且两个角的两边在同一条直线上,则错误;④、缺少在同一个平面内这个前提条件,则错误;⑤、正确.考点:(1)棱柱的性质;(2)线段的中点;(3)对顶角的定义;(4)平行线的定义;(5)点到直线的距离.4、试题分析:根据正方体的展开图的性质可得:A选项为正方体的展开图.考点:正方体的展开图5、试题分析:A和C两个选项不是同类项,无法进行计算;B、原式=(7-3)a=4a;D、计算正确.考点:单项式求和6、试题分析:零大于一切负数,小于一切正数,正数大于负数;当两个负数比较大小时,绝对值越大则说明原数越小;当两个正数比较大小时,绝对值越大则说明原数就越大.考点:数的大小比较7、试题分析:当两数只有符号不同时,则称两数互为相反数,则-3的相反数为3.考点:相反数的定义8、试题分析:根据数轴可得:a+b>0,a-1>0,b+2>0,则原式=a+b-a+1+b+2=2b+3.考点:(1)数轴;(2)绝对值的化简.9、试题分析:第一幅有1个正方形,第二幅有1+4=5个正方形,第三幅有1+4+9=14个正方形;第四幅有1+4+9+16=30个正方形,根据题意可得:第7幅有1+4+9+16+25+36+49=140个正方形.考点:规律题10、试题分析:设有m辆校车,则根据题意可得:40m+10=43m+1;设有n名学生,则根据题意可得:.考点:方程的应用11、试题分析:本题需要分两种情况来进行讨论,当A、C、D或B、C、D任意三点都不共线时有6条直线;当A、C、D或B、C、D有任意三点共线时有4条直线.考点:线段的条数12、试题分析:设最大的一个数为x,则其他的两个数为(x-7)和(x-14),则根据题意得:x+x-7+x-14=54,解得:x=25,即最大的一个数表示2016年1月25日.考点:一元一次方程的应用13、试题分析:本题需要分两种情况进行讨论计算,当OB在角内部时,∠AOC=80°-20°=60°;当OB在角外部时,则∠AOC=80°+20°=100°.考点:角度的计算14、试题分析:根据一元一次方程的解法可得:x=,因为x为正整数,k为整数,则k=0或6.考点:一元一次方程15、试题分析:根据中点的性质可得:EC=AC=2.5,CF=BC=1.5,则EF=EC+CF=2.5+1.5=4.考点:线段长度的计算16、试题分析:设小长方形的长为xcm,宽为ycm,则根据题意可得:,解得:,则小长方形的面积为6×2=12.考点:二元一次方程组的应用17、试题分析:将原式化简可得:原式=2(x-y)-3=2×3-3=3.考点:整体思想求解18、试题分析:互为相反数的两个数位于原点两侧且到原点的距离相等,则到原点距离2.5个单位长度的点所表示的有理数为±2.5.考点:绝对值的性质19、试题分析:首先设分配x名工人生产A种工件,然后根据A种工件数量的2倍等于B种工件的数量列出方程进行求解,得出答案.试题解析:设分配x名工人生产A种工件,根据题意,得:2×15x=20(75-x)解得:x=30 ∴75-x=75-30=45答:分配30名工人生产A种工件,45名工人生产B种工件.考点:一元一次方程的应用20、试题分析:(1)根据三视图的画法画出三视图;(2)根据立体图形的俯视图和左视图推导出小正方体的个数.试题解析:(1)如图所示:(2)最少5块;最多7块;考点:三视图21、试题分析:首先设班级人数为x,然后根据两种方法的组数关系列出方程进行求解.试题解析:设这个班学生共有x人,根据题意得:=-2,解得:x=48,答:这个班学生共有48人.考点:一元一次方程的应用.22、试题分析:(1)根据乘法分配律进行计算;(2)首先进行幂的计算,然后根据有理数的乘法法则进行计算.试题解析:(1)原式=18-4+9=23(2)原式=(-1)×(-5)×(-1)=-5.考点:有理数的计算.23、试题分析:(1)首先根据比值得出AC的长度,然后根据数轴的性质得出点C所表示的数,从而得到距离;(2)设R的速度为每秒x个单位,从而分别得出R、P、Q 所对应的数,求出PQ和QR的长度,然后根据题意列出方程得出答案;(3)首先设运动时间为t秒,求出点P、T、R、M、N所对应的数,求出PT和MN的长度,然后得出PT-MN的值.试题解析:(1)根据题意可得:AC=140,则点C所表示的数为40-140=-100∴点C到原点的距离为100;(2)设R的速度为每秒x个单位,则R对应的数为,P对应的数为,Q对应的数为,PQ=或QR=∵PQ=QR ∴或解得x=-9(不合题意,故舍去)或x=7 ∴动点Q的速度是7个单位长度/秒.(3)设运动时间为t秒,P对应的数为,T对应的数为,R对应的数为,PT=M对应的数为,N对应的数为, MN=∴PT-MN=30∴的值不会发生变化,是30.考点:(1)数轴;(2)分类讨论思想;(3)动点问题.24、试题分析:(1)根据两角互余的性质得出互余的角;(2)首先根据题意得出∠COF=90°,根据∠AOC的度数得出∠BOF和∠BOD的度数,根据角平分线的性质得出∠BOE的度数,从而根据∠EOF=∠BOF+∠BOE得出答案.试题解析:(1)∠BOF与∠BOD或∠DOE与∠EOF(2)∵∠COF=180°-∠DOF=90°,∴∠BOF=180°-∠AOC-∠COF=180°-72°-90°=18°∴∠BOD=∠DOF-∠BOF=90°-18°=72°,∵OE平分∠BOD,∴∠BOE=∠BOD =36°,∴∠EOF=∠BOF+∠BOE=18°+36°=54°考点:角度的计算25、试题分析:首先根据方程的解法求出第一个方程的解,然后将x的值代入第二个方程,从而求出a的值,最后将a的值代入代数式求出代数式的值.试题解析:解方程可得:x=10把x=10代入方程4x-(3a+1)=6x+2a-1得:40-3a-1=60+2a-1 解得:a=-4∴=考点:(1)解一元一次方程;(2)代数式求值.26、试题分析:(1)首先求出前七天的平均值,然后求出一个月的行驶千米数;(2)首先求出一个月的汽油费,然后求出一年的费用.试题解析:(1)50+(-8+-11-14+0-16+41+8)÷7=50(千米)50×30=1500(千米)(2)1500××4.74×12=6825.6元考点:有理数的计算27、试题分析:(1)进行移项合并同类项,最后将系数化为1求出方程的解;(2)首先进行去分母,然后进行去括号、移项合并同类项,最后将系数化为1求出方程的解;(3)首先将y的系数化成互为相反数,然后利用加减消元法求出方程组的解.试题解析:(1)4-3x=6-5x移项,得5x-3x=6-4.合并同类项,得2x=2.系数化为1,得x=1(2).去分母,得3(x+1)-6=2(2-x).去括号,得3x+3-6=4-2x.移项、合并同类项,得5x=7.系数化为1,得x=.(3)①×3+②,得9x+x=20x=2把x=2代入①中,得y=-1∴方程组的解是考点:(1)解一元一次方程;(2)解二元一次方程组.28、试题分析:首先根据去括号的法则将括号去掉,然后再进行合并同类项化简,最后将m的值代入化简后的式子进行计算,得出答案.试题解析:2-4m+1-2(+2m-)=2-4m+1-2-4m+1=-8m+2;当m=-1时,原式=8+2=10.考点:化简求值。

江苏省苏州工业园区2015-2016学年七年级上学期期末考试数学试题解析(解析版)

江苏省苏州工业园区2015-2016学年七年级上学期期末考试数学试题解析(解析版)

一、选择题(每小题2分,共20分)1.下列算式中,运算结果为负数的是 ( )A. -32B. |-3|C. -(-3)D.(-3)2 【答案】 A.【解析】试题解析:-32=-9;|-3|=3; -(-3)=3;(-3)2=9故选A.考点:正数和负数.2.苏州地铁4号线,2017年上半年通车试运营,主线全程长约为42000m ,北起相城区荷塘月色公园,南至吴江同津大道站,共设31站。

将42000 用科学记数法表示应为( )A .0.42×105B .4.2×104C .44×103D .440×102【答案】B .【解析】试题解析:将42000用科学记数法表示为:4.2×104.故选B .考点:科学记数法—表示较大的数.3.如果y x >,则下列变形中正确的是 ( ) A.y x 2121->- ; B. y x 2121< ; C.y x 53>; D. 33->-y x ; 【答案】D .【解析】试题解析:A 、两边都乘以-12,故A 错误; B 、两边都乘以12,故B 错误; C 、左边乘3,右边乘5,故C 错误;D 、两边都减3,故D 正确;故选D .考点:不等式的性质.4.如果22-=-x x ,那么x 的取值范围是 ( )A . x ≤2;B . x ≥2;C . x <2;D . x >2;【答案】B .【解析】试题解析:∵|x-2|=x-2,∴x-2≥0,即x ≥2.故选B .考点:1.解一元一次不等式;2.绝对值.5.已知代数式x +2y 的值是3,则代数式2x +4y +1的值是 ( )A. 1B. 4C. 7D. 不能确定【答案】C .【解析】试题解析:∵x+2y=3,∴2x+4y+1=2(x+2y )+1,=2×3+1,=6+1,=7.故选C .考点:代数式求值.6.如图,若C 为线段AB 的中点,D 在线段CB 上,6=DA ,4=DB ,则CD 的长度是( )A .0.5B .1C .1.5D .2【答案】A .【解析】试题解析:∵线段DA=6,线段DB=4,∴AB=10,∵C 为线段AB 的中点,∴AC=BC=5,∴CD=AD-AC=1.故选A .考点:两点间的距离.7.若∠A, ∠B 互为补角,且∠A ﹤∠B ,则∠A 的余角是 ( )A.21(∠A+∠B ) B . 21∠B C . 21(∠B -∠A ) D .21∠A 【答案】C .【解析】试题解析:根据题意得,∠A+∠B=180°,∴∠A 的余角为:90°-∠A=1802︒-∠A , =12(∠A+∠B )-∠A , =12(∠B-∠A ). 故选C .考点:余角和补角.8.下边给出的是某月的日历表,任意圈出一竖列上、相邻的三个数,请你运用方程思想来研究,发现这三个数的和不可能 ( )A .27B .40C . 54D . 69【答案】C .考点:列代数式.9.-件工作,甲单独做20 h 完成,乙单独做12 h 完成,现甲单独做4h 后,乙加入和甲一起做,还要几小时完成?若设还要x h 完成,则依题意可列方程为 ( )A .41202012x x --=B .41202012x x -+=C .41202012x x +-=D .41202012x x ++= 【答案】D .【解析】试题解析:设还要xh 完成,由题意得41202012x x ++=. 故选D .考点:由实际问题抽象出一元一次方程.10.钟面角是指时钟的时针与分针所成的角,如果时间从下午2点整到下午4点整,钟面角为90°的情况有 ( )A .有一种B .有二种C . 有三种D .有四种【答案】D .考点:钟面角.二、填空题(每小题3分,共24分)11.单项式253a bc -的次数是 . 【答案】4.【解析】试题解析:根据单项式次数的定义,单项式的次数为4.考点:单项式.12.若单项式2x 2y m 与-13x n y 3是同类项,则m+n 的值是 【答案】5.【解析】试题解析:由同类项的定义可知n=2,m=3,则m+n=5.考点:同类项.13.在数轴上与2的距离等于3个单位的点表示的数是【答案】5或-1.【解析】试题解析:若该数在2的左边,则这个数为:2-3=-1;若该数在2的右边,则这个数为:2+3=5.因此答案为:5或-1.考点:数轴.14.不等式31221-≥+x x 的非负整数解的和是 . 【答案】15.【解析】试题解析:解不等式得:x ≤5,故其非负整数解为:5,4,3,2,1,0.故其和5+4+3+2+1+0=15考点:一元一次不等式组的整数解.15.如图,直线AB 、CD 相交于点O ,∠DOE=∠BOD ,OF 平分∠AOE ,若∠BOD=32°,则∠BOF= .【答案】122°.【解析】试题解析:∵∠BOD=32°,∠DOE=∠BOD∴∠BOE=32°+32°=64°∴∠AOE=180°-64°=116°∵OF 平分∠AOE ,∴∠EOF=12∠AOE=12×116°=58°, ∴∠BOF ═58°+64°=122°.考点:1.对顶角、邻补角;2.角平分线的定义.16.如图,该平面展开图按虚线折叠成正方体后,相对面上两个数之和为8,则x+y = .【答案】10.【解析】试题解析:∵“4”与“y”是对面,“x”与“2”是对面,∴x=6,y=4.∴x+y=10.考点:正方体相对两个面上的文字.17.若有理数a、b、c在数轴上的位置如图所示,则化简:|a|+|a-b|-|c+b|=.【答案】2a+c.【解析】试题解析:根据数轴上点的位置得:c<b<0<a,∴a-b>0,c+b<0,则原式=a+a-b+c+b=2a+c.考点:1.整式的加减;2.数轴;绝对值.18.如图,若开始输入的x的值为正整数,最后输出的结果为144,则满足条件的x的值为.【答案】29或6.【解析】试题解析:第一个数就是直接输出其结果的:5x-1=144,解得:x=29,第二个数是(5x-1)×5-1=144解得:x=6;第三个数是:5[5(5x-1)-1]-1=144,解得:x=1.4(不合题意舍去),第四个数是5{5[5(5x-1)-1]-1}-1=144,解得:x=1225(不合题意舍去)∴满足条件所有x的值是29或6.考点:一元一次不等式的应用.三、解答题(共56分)19.计算(每小题4分,共8分)(1)[]24)3(3611-+-⨯-- (2)77°53′26"+33.3° 【答案】(1)-2;(2)111°11′26″.【解析】试题分析:(1)先算乘方,再算括号里面的运算,再算乘法,最后算减法;(2)把33.3°换算成33°18′,再进一步相加即可.试题解析:(1)原式=-1-16×[-3+9] =-1-1=-2;(2)原式=77°53′26″+33°18′=111°11′26″.考点:1.有理数的混合运算;2.度分秒的换算.20.解关于x 的方程与不等式: (每小题4分,共8分)(1)()x x -=-234 (2)215321x x +>--; 【答案】(1)x=1;(2)x >-1.【解析】试题分析:(1)根据一元一次方程的解法,去括号,移项,合并同类项,系数化为1,即可得解.(2)首先去分母,去括号,然后移项,合并同类项,即可求得不等式的解集.试题解析:(1)4-x=3(2-x )去括号得,4-x=6-3x ,移项,合并同类项得,2x=2,系数化为1得,x=1;(2)215321x x +>-- 去分母得,10-2(2-3x )>5(1+x )去括号得,10-4+6x >5+5x ,移项,合并同类项得,x >-1.考点:1.解一元一次不等式;2.解一元一次方程.21.一个角比它的余角大20°,求这个角的度数.【答案】55°.【解析】试题分析:设这个角的度数是x ,则其余角为90°-x ,进而可得出结论.试题解析:设这个角的度数是x ,则其余角为90°-x ,∵此角比它的余角大20°,∴x-(90°-x )=20°,解得x=55°.答:这个角是55°.考点:余角和补角.22.用五个小正方体搭成如图的几何体,请画出它的三视图。

苏科版2015~2016学年度第一学期期末考试七年级数学试题及答案

苏科版2015~2016学年度第一学期期末考试七年级数学试题及答案

第5题图苏科版2015~2016学年度第一学期期末考试七年级数学试卷(满分:150分 考试时间:120分钟) 2016.1.22一、选择题(每小题3分,共18分)1.﹣2的相反数是A .12-B .12C .2D .±22.下列几何体中,俯视图是矩形的是3.下列图形可由平移得到的是4.服装店销售某款服装,每件服装的标价为300元,若按标价的八折销售,仍可获利60元,则这款服装每件的标价比进价多 A .60元 ;. B .80元; C .120元; D .180元;5.如图,能判定EB ∥AC 的条件是 A .∠C=∠ABE B .∠A=∠EBD C .∠C=∠ABC D .∠A=∠ABE6.如图,点P 是直线a 外的一点,点A 、B 、C 在直线a 上,且PB ⊥a ,垂足是B ,PA ⊥PC ,则下列不正确...的表述是 A .线段PB 的长是点P 到直线a 的距离; B .PA 、PB 、PC 三条线段中,PB 最短 ;C .线段AC 的长是点A 到直线PC 的距离;D .线段PC 的长是点C 到直线PA 的距离;第6题图 A . B. C. D.第12题图 第13题图二、填空题(每空3分,共30分) 7.计算:()23-= .8.70°30′的余角为_________°. 9.单项式b a 32-的次数是____________.10.若有理数a 、b 满足2a -+(b +1)2=0,则a +b 的值为 .11.已知4x =-是关于x 的方程384xx a -=-的解,则a = . 12.如图是正方体的一种展开图,其每个面上都标有一个数字,那么在原正方体中,与数字“2”相对的面上的数字是 . 13.如图,小明从点A 向北偏东75°方向走到B 点,又从B 点向南偏西30°方向走到点C ,则∠ABC 的度数为 .14.某村原有林地108公顷,旱地54公顷,为保护环境,需把一部分旱地改造为林地,使旱地占林地面积的20%,设把x 公顷旱地改为林地,则可列关于x 的方程________.15.观察:1091+⨯=a ;2192+⨯=a ;3293+⨯=a ;4394+⨯=a ;…… 请根据你猜想的规律写出n a =__________ __.16.已知∠ABC 与∠DEF 的两边分别满足:BA ∥ED ,BC ∥EF ,若∠ABC=45°,则∠DEF的度数为 . 三、解答题(本大题共102分) 17.(每小题5分,共10分)计算:(1) 3)45()43(----+ (2))3(9)1(3220162-÷--⨯+-18.(每小题6分,共12分)解方程: (1)3(2)13x x +-=- (2)x -12223x x -+=-19.(本题满分8分)求222233()(6)3x x x x x x ++--+的值,其中x =-6.20.(本题满分12分,其中第1题8分,第2题4分)作图题: (1)按下列要求画图,并解答问题: ①如图,取BC 边的中点D ,画射线..AD ;②分别过点B 、C 画BE ⊥AD 于点E ,CF ⊥AD 于点F ;③BE 和CF 的位置关系是_______ ,通过度量猜想BE 和CF 的数量关系是_______. (2)如图,请根据图中的信息将小船ABCD 进行平移,画出平移后小船A ′B'C'D'的位置.21.(本题满分8分)请补全说理过程: 如图,直线MN 分别交直线AB ,CD 于点E ,F ,若AB ∥CD , EG 平分∠BEF ,∠1=50°, 求∠2的度数. 解:因为AB ∥CD (已知) 所以∠1+∠BEF=180°理由是: 因为∠1=50°(已知) 所以∠BEF= ° 因为EG 平分∠BEF (已知)所以∠BEG =21∠ =65°理由是:角平分线的定义 因为AB ∥CD (已知) 所以∠2=∠BEG=65°理由是: .22.(本题满分10分)如图,BD 平分∠ABC ,ED ∥BC ,∠1=30,∠4=120°. (1)求∠2,∠3的度数; (2)证明:DF ∥AB .E E ′23.(本题满分8分)列方程解应用题:某校七年级学生去春游,如果减少一辆客车,每辆车正好坐60人,如果增加一辆客车,每辆车正好坐50人.问七年级共有多少学生?24.(本题满分12分)如图,点C 在线段AB 上,点M 、N 分别是AC 、BC 的中点. (1)若AC=8cm ,CB=6cm ,求线段MN 的长;(2)若C 为线段AB 上任一点,满足AC+CB=a ,其它条件不变,你能猜想MN 的长度吗?写出你的结论并说明理由; (3)若C 为直线..AB ..上线段...AB ..之外..的任一点,且AC=m ,CB=n ,则线段MN 的长为____________.25.(本题满分12分)电信公司推出两种移动电话计费方法:方法A :免收月租费,按每分钟0.5元收通话费;方法B :每月收取月租费30元,再按每分钟0.2元收通话费. 现在设通话时间是x 分钟.(1)请分别用含x 的代数式表示计费方法A 、B 的通话费用.(2)用计费方法A 的用户一个月累计通话150分钟所需的话费,若改用计费方法B ,则可通话多少分钟?(3)请你分析,当通话时间超过多少分钟时采用计费方法B 合算?26.(本题满分14分)已知∠AOB =140°,∠AOC =30°,若射线OE 绕点O 在∠AOB 内部旋转,OF 平分∠AOE .(1)如图1,当∠EOB =40°时,请直接写出∠AOF 和∠COF 的度数:图1 C B A O备用图∠AOF=_______°;∠COF=________°;(2) 请分别求出当∠COF=35°和10°时,∠EOB的度数(利用备用图,画出图形并写出简要的过程);(3) 若∠COF=n°(0<n<30),请用含n的式子表示∠EOB的度数(直接写出结果)。

七年级数学上学期期末试卷含解析苏科版1

七年级数学上学期期末试卷含解析苏科版1

2015-2016学年江苏省南京市玄武区七年级(上)期末数学试卷一、选择题(本题共8小题,每小题2分,共16分)1.在﹣22、(﹣2)2、﹣(﹣2)、﹣|﹣2|中,负数的个数是()A.4个B.3个C.2个D.1个2.在1,﹣1,﹣2这三个数中,任意两数之和的最大值是()A.1 B.0 C.﹣1 D.﹣33.国家体育场“鸟巢”的建筑面积达258000m2,用科学记数法表示为()A.×105B.×105C.×106D.×1074.下列各式中运算正确的是()A.3a﹣4a=﹣1 B.a2+a2=a4C.3a2+2a3=5a5D.5a2b﹣6a2b=﹣a2b5.如图所示几何体的俯视图是()A. B. C. D.6.一家游泳馆的游泳收费标准为30元/次,若购买会员年卡,可享受如下优惠:会员年卡类型办卡费用(元)每次游泳收费(元)A 类50 25B 类200 20C 类400 15例如,购买A类会员年卡,一年内游泳20次,消费50+25×20=550元,若一年内在该游泳馆游泳的次数介于45~55次之间,则最省钱的方式为()A.购买A类会员年卡 B.购买B类会员年卡C.购买C类会员年卡 D.不购买会员年卡7.下列结论中,不正确的是()A.两点确定一条直线B.两点之间的所有连线中,线段最短C.对顶角相等D.过一点有且只有一条直线与已知直线平行8.某商品的标价为200元,8折销售仍赚40元,则商品进价为()元.A.140 B.120 C.160 D.100二、填空题(本题共10小题,每小题2分,共20分)9.﹣的绝对值是,﹣的倒数是.10.在,,…,中,分数有个.11.|x﹣3|+(y+2)2=0,则y x为.12.一个几何体的表面展开图如图所示,则这个几何体是.13.如果按图中虚线对折可以做成一个上底面为无盖的盒子,那么该盒子的下底面的字母是.14.如果一个角是23°15′,那么这个角的余角是°.15.已知代数式x+2y的值是3,则代数式1﹣2x﹣4y的值是.16.如图,线段AB=BC=CD=DE=1cm,图中所有线段的长度之和为cm.17.将一堆糖果分给幼儿园的小朋友,如果每人2颗,那么就多8颗;如果每人3颗,那么就少12颗.设,可得方程.18.如图,阴影部分是由4段以正方形边长的一半为半径的圆弧围成的,这个图形被称作为斯坦因豪斯图形.若图中正方形的边长为a,则阴影部分的面积为.三、解答题(本题共9小题,共64分)19.计算(1)4×(﹣5)﹣16÷(﹣8)﹣(﹣10)(2)﹣12014﹣(1﹣)÷[﹣32÷(﹣2)2].20.(5分)先化简,再求值:﹣a2b+(3ab2﹣a2b)﹣2(2ab2﹣a2b),其中 a=﹣1,b=﹣2.21.解方程(1)4(2x﹣3)﹣(5x﹣1)=7(2).22.(6分)如图,已知OD是∠AOB的角平分线,C点OD上一点.(1)过点C画直线CE∥OB,交OA于E;(2)过点C画直线CF∥OA,交OB于F;(3)过点C画线段CG⊥OA,垂足为G.根据画图回答问题:①线段长就是点C到OA的距离;②比较大小:CE CG(填“>”或“=”或“<”);③通过度量比较∠AOD与∠ECO的关系是:∠AOD ∠ECO.23.如图,小华用若干个正方形和长方形准备拼成一个长方体的展开图.拼完后,小华看来看去总觉得所拼图形似乎存在问题.(1)请你帮小华分析一下拼图是否存在问题:若有多余块,则把图中多余部分涂黑;若还缺少,则直接在原图中补全.(2)若图中的正方形边长为2cm,长方形的长为3cm,宽为2cm,请直接写出修正后所折叠而成的长方体的容积:cm3.24.如图,O为直线AB上一点,OD平分∠AOC,∠DOE=90°.(1)图中共有对互补的角.(2)若∠AOD=50°,求出∠BOC的度数;(3)判断OE是否平分∠BOC,并说明理由.25.如图,∠AOB=90°,在∠AOB的内部有一条射线OC.(1)画射线OD⊥OC.(2)写出此时∠AOD与∠BOC的数量关系,并说明理由.26.根据国家发改委实施“阶梯电价”的有关文件要求,某市结合地方实际,决定从2015年5月1日起对居民生活用电实施“阶梯电价”收费,具体收费标准见下表:一户居民一个月用电量的范围电费价格(单位:元/千瓦时)不超过150千瓦时的部分 a超过150千瓦时,但不超过300千瓦时的部分 b超过300千瓦时的部分a+2015年5月份,该市居民甲用电100千瓦时,交费60元;居民乙用电200千瓦时,交费元.(1)求上表中a、b的值.(2)实施“阶梯电价”收费以后,该市一户居民月用电多少千瓦时,其当月交费元?(3)实施“阶梯电价”收费以后,该市一户居民月用电多少千瓦时,其当月的平均电价等于元/千瓦时?27.甲、乙两地之间的距离为900km,一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时出发.已知快车的速度是慢车的2倍,慢车12小时到达甲地.(1)慢车速度为每小时km;快车的速度为每小时km;(2)当两车相距300km时,两车行驶了小时;(3)若慢车出发3小时后,第二列快车从乙地出发驶往甲地,速度与第一列快车相同.在第二列快车行驶的过程中,当它和慢车相距150km时,求两列快车之间的距离.2015-2016学年江苏省南京市玄武区七年级(上)期末数学试卷参考答案与试题解析一、选择题(本题共8小题,每小题2分,共16分)1.在﹣22、(﹣2)2、﹣(﹣2)、﹣|﹣2|中,负数的个数是()A.4个B.3个C.2个D.1个【考点】正数和负数.【专题】探究型.【分析】先化简原题中的各数,然后即可判断哪些数是负数,本题得以解决.【解答】解:∵﹣22=﹣4,(﹣2)2=4,﹣(﹣2)=2,﹣|﹣2|=﹣2,∴在﹣22、(﹣2)2、﹣(﹣2)、﹣|﹣2|中,负数的个数是2个,故选C.【点评】本题考查正数和负数,解题的关键是明确负数的定义,可以对题目中的数进行化简.2.在1,﹣1,﹣2这三个数中,任意两数之和的最大值是()A.1 B.0 C.﹣1 D.﹣3【考点】有理数大小比较;有理数的加法.【专题】计算题.【分析】求最大值,应是较大的2个数的和,找到较大的两个数,相加即可.【解答】解:∵在1,﹣1,﹣2这三个数中,只有1为正数,∴1最大;∵|﹣1|=1,|﹣2|=2,1<2,∴﹣1>﹣2,∴任意两数之和的最大值是1+(﹣1)=0.故选B.【点评】考查有理数的比较及运算;得到三个有理数中2个较大的数是解决本题的突破点.3.国家体育场“鸟巢”的建筑面积达258000m2,用科学记数法表示为()A.×105B.×105C.×106D.×107【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将258000用科学记数法表示为×105.故选B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.下列各式中运算正确的是()A.3a﹣4a=﹣1 B.a2+a2=a4C.3a2+2a3=5a5D.5a2b﹣6a2b=﹣a2b【考点】合并同类项.【分析】根据合并同类项进行解答即可.【解答】解:A、3a﹣4a=﹣a,错误;B、a2+a2=2a2,错误;C、3a2与2a3不是同类项,不能合并,错误;D、5a2b﹣6a2b=﹣a2b,正确.故选D.【点评】此题考查合并同类项问题,理解合并同类项法则,是解决这类问题的关键.5.如图所示几何体的俯视图是()A. B. C. D.【考点】简单组合体的三视图.【分析】找到从几何体的上面看所得到的图形即可.【解答】解:从几何体的上面看可得,故选:C.【点评】此题主要考查了简单几何体的三视图,关键是所看到的线都要用实线表示.6.一家游泳馆的游泳收费标准为30元/次,若购买会员年卡,可享受如下优惠:会员年卡类型办卡费用(元)每次游泳收费(元)A 类50 25B 类200 20C 类400 15例如,购买A类会员年卡,一年内游泳20次,消费50+25×20=550元,若一年内在该游泳馆游泳的次数介于45~55次之间,则最省钱的方式为()A.购买A类会员年卡 B.购买B类会员年卡C.购买C类会员年卡 D.不购买会员年卡【考点】一次函数的应用.【分析】设一年内在该游泳馆游泳的次数为x次,消费的钱数为y元,根据题意得:y A=50+25x,y B=200+20x,y C=400+15x,当45≤x≤55时,确定y的范围,进行比较即可解答.【解答】解:设一年内在该游泳馆游泳的次数为x次,消费的钱数为y元,根据题意得:y A=50+25x,y B=200+20x,y C=400+15x,当45≤x≤55时,1175≤y A≤1425;1100≤y B≤1300;1075≤y C≤1225;由此可见,C类会员年卡消费最低,所以最省钱的方式为购买C类会员年卡.故选:C.【点评】本题考查了一次函数的应用,解决本题的关键是根据题意,列出函数关系式,并确定函数值的范围.7.下列结论中,不正确的是()A.两点确定一条直线B.两点之间的所有连线中,线段最短C.对顶角相等D.过一点有且只有一条直线与已知直线平行【考点】命题与定理.【分析】利用确定直线的条件、线段公理、对顶角的性质及平行线的定义分别判断后即可确定正确的选项.【解答】解:A、两点确定一条直线,正确;B、两点之间的所有连线中,线段最短,正确;C、对顶角相等,正确;D、过直线外一点有且只有一条直线与已知直线平行,故错误,故选D.【点评】本题考查了命题与定理的知识,解题的关键是了解确定直线的条件、线段公理、对顶角的性质及平行线的定义,属于基础题,难度不大.8.某商品的标价为200元,8折销售仍赚40元,则商品进价为()元.A.140 B.120 C.160 D.100【考点】一元一次方程的应用.【分析】设商品进价为每件x元,则售价为每件×200元,由利润=售价﹣进价建立方程求出其解即可.【解答】解:设商品的进价为每件x元,售价为每件×200元,由题意,得×200=x+40,解得:x=120.故选:B.【点评】本题考查了销售问题的数量关系利润=售价﹣进价的运用,列一元一次方程解实际问题的运用,解答时根据销售问题的数量关系建立方程是关键.二、填空题(本题共10小题,每小题2分,共20分)9.﹣的绝对值是,﹣的倒数是.【考点】倒数;绝对值.【分析】根据倒数和绝对值的定义解答即可.【解答】解:﹣的绝对值是,﹣的倒数是,故答案为:;.【点评】本题考查了倒数、绝对值的定义,熟练掌握定义是解题的关键.10.在,,…,中,分数有 3 个.【考点】有理数.【分析】根据整数和分数统称为有理数解答即可.【解答】解:,,…是分数,故答案为:3.【点评】本题考查的是有理数的概念,掌握整数和分数统称为有理数是解题的关键.11.|x﹣3|+(y+2)2=0,则y x为﹣8 .【考点】非负数的性质:偶次方;非负数的性质:绝对值.【分析】根据非负数的性质列式求出x、y的值,然后代入代数式进行计算即可得解.【解答】解:根据题意得,x﹣3=0,y+2=0,解得x=3,y=﹣2,所以y x=(﹣2)3=﹣8.故答案为:﹣8.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.12.一个几何体的表面展开图如图所示,则这个几何体是四棱锥.【考点】几何体的展开图.【分析】根据四棱锥的侧面展开图得出答案.【解答】解:如图所示:这个几何体是四棱锥;故答案为:四棱锥.【点评】此题主要考查了几何体的展开图,熟记常见立体图形的平面展开图的特征是解决此类问题的关键.13.如果按图中虚线对折可以做成一个上底面为无盖的盒子,那么该盒子的下底面的字母是 C .【考点】专题:正方体相对两个面上的文字.【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“A”与“E”是相对面,“B”与“D”是相对面,“C”与盒盖是相对面.故答案为:C.【点评】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.14.如果一个角是23°15′,那么这个角的余角是°.【考点】余角和补角;度分秒的换算.【分析】根据余角的定义即可得出结论.【解答】解:∵一个角是23°15′,∴这个角的余角=90°﹣23°15′=66°75′=°.故答案为:.【点评】本题考查的是余角和补角,熟知如果两个角的和等于90°(直角),就说这两个角互为余角是解答此题的关键.15.已知代数式x+2y的值是3,则代数式1﹣2x﹣4y的值是﹣5 .【考点】代数式求值.【分析】直接将代数式变形进而化简求值答案.【解答】解:∵代数式x+2y的值是3,∴代数式1﹣2x﹣4y=1﹣2(x+2y)=1﹣2×3=﹣5.故答案为:﹣5.【点评】此题主要考查了代数式求值,正确将所求代数式变形是解题关键.16.如图,线段AB=BC=CD=DE=1cm,图中所有线段的长度之和为20 cm.【考点】两点间的距离.【分析】从图可知长为1厘米的线段共4条,长为2厘米的线段共3条,长为3厘米的线段共2条,长为4厘米的线段仅1条,再把它们的长度相加即可.【解答】解:因为长为1厘米的线段共4条,长为2厘米的线段共3条,长为3厘米的线段共2条,长为4厘米的线段仅1条.所以图中所有线段长度之和为:1×4+2×3+3×2+4×1=20(厘米).故答案为:20.【点评】本题考查了两点间的距离,关键是能够数出1cm,2cm,3cm,4cm的线段的条数,从而求得解.17.将一堆糖果分给幼儿园的小朋友,如果每人2颗,那么就多8颗;如果每人3颗,那么就少12颗.设这堆糖果有x个,可得方程.【考点】由实际问题抽象出一元一次方程.【分析】设这堆糖果有x个,根据不同的分配方法,小朋友的人数是一定的,据此列方程.【解答】解:设这堆糖果有x个,若每人2颗,那么就多8颗,则有小朋友人,若每人3颗,那么就少12颗,则有小朋友人,据此可知=.故答案为这堆糖果有x个.【点评】本题考查了由实际问题抽象出的一元一次方程,比较简单,关键是根据题意设出未知数,此题还可以设糖果的总量为x,这样得出的方程会不一样,但最终的结果是一样的.18.如图,阴影部分是由4段以正方形边长的一半为半径的圆弧围成的,这个图形被称作为斯坦因豪斯图形.若图中正方形的边长为a,则阴影部分的面积为.【考点】列代数式.【分析】利用割补法可得阴影部分的面积等于正方形面积的一半.【解答】解:如图所示,S阴影=S正方形ABCD=AC×BD=a2,故答案为: a2.【点评】此题主要考查了列代数式的能力,利用割补法判断出阴影部分的面积是解决本题的难点.三、解答题(本题共9小题,共64分)19.计算(1)4×(﹣5)﹣16÷(﹣8)﹣(﹣10)(2)﹣12014﹣(1﹣)÷[﹣32÷(﹣2)2].【考点】有理数的混合运算.【专题】计算题;实数.【分析】(1)原式先计算乘除运算,再计算加减运算即可得到结果;(2)原式先计算乘方运算,再计算除法运算,最后算加减运算即可得到结果.【解答】解:(1)原式=﹣20+2+10=﹣20+12=﹣8;(2)原式=﹣1﹣÷(﹣)=﹣1+×=﹣1+=﹣.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.20.先化简,再求值:﹣a2b+(3ab2﹣a2b)﹣2(2ab2﹣a2b),其中 a=﹣1,b=﹣2.【考点】整式的加减—化简求值;合并同类项.【专题】计算题.【分析】先去括号,然后合并同类项,从而得出最简整式,然后将x及y的值代入即可得出答案.【解答】解:原式=﹣a2b+3ab2﹣a2b﹣4ab2+2a2b=﹣ab2,当a=﹣1,b=﹣2时,原式=4.【点评】此题考查了整式的加减及化简求值的知识,化简求值是课程标准中所规定的一个基本内容,它涉及对运算的理解以及运算技能的掌握两个方面,也是一个常考的题材.21.解方程(1)4(2x﹣3)﹣(5x﹣1)=7(2).【考点】解一元一次方程.【专题】计算题;一次方程(组)及应用.【分析】(1)方程去括号,移项合并,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:(1)去括号得:8x﹣12﹣5x+1=7,移项合并得:3x=18,解得:x=6;(2)去分母得:2(2x﹣1)﹣(5﹣x)=﹣12,去括号得:4x﹣2﹣5+x=﹣12,移项合并得:5x=﹣5,解得:x=﹣1.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.22.如图,已知OD是∠AOB的角平分线,C点OD上一点.(1)过点C画直线CE∥OB,交OA于E;(2)过点C画直线CF∥OA,交OB于F;(3)过点C画线段CG⊥OA,垂足为G.根据画图回答问题:①线段CG 长就是点C到OA的距离;②比较大小:CE >CG(填“>”或“=”或“<”);③通过度量比较∠AOD与∠ECO的关系是:∠AOD = ∠ECO.【考点】作图—复杂作图;角的大小比较;垂线段最短;点到直线的距离.【分析】根据已知条件画出图形,然后根据图形即可得到结论.【解答】解:①线段CG长就是点C到OA的距离;②比较大小:CE>CG(填“>”或“=”或“<”);③通过度量比较∠AOD与∠ECO的关系是:∠AOD=∠ECO.故答案为:CG,>,=.【点评】本题考查了作图﹣复杂作图,角的大小的比较,垂线段的性质,点到直线的距离,熟记各概念是解题的关键.23.如图,小华用若干个正方形和长方形准备拼成一个长方体的展开图.拼完后,小华看来看去总觉得所拼图形似乎存在问题.(1)请你帮小华分析一下拼图是否存在问题:若有多余块,则把图中多余部分涂黑;若还缺少,则直接在原图中补全.(2)若图中的正方形边长为2cm,长方形的长为3cm,宽为2cm,请直接写出修正后所折叠而成的长方体的容积:12 cm3.【考点】展开图折叠成几何体.【分析】(1)由于长方体有6个面,且相对的两个面全等,所以展开图是6个长方形(包括正方形),而图中所拼图形共有7个面,所以有多余块,应该去掉一个;又所拼图形中有3个全等的正方形,结合平面图形的折叠可知,可将第二行最左边的一个正方形去掉;(2)由题意可知,此长方体的长、宽、高可分别看作3厘米、2厘米和2厘米,将数据代入长方体的体积公式即可求解.【解答】解:(1)拼图存在问题,如图:(2)折叠而成的长方体的容积为:3×2×2=12(cm3).故答案为:12.【点评】本题考查了平面图形的折叠与长方体的展开图及其体积的计算,比较简单.24.如图,O为直线AB上一点,OD平分∠AOC,∠DOE=90°.(1)图中共有 5 对互补的角.(2)若∠AOD=50°,求出∠BOC的度数;(3)判断OE是否平分∠BOC,并说明理由.【考点】余角和补角.【分析】(1)根据角平分线的定义得到∠1=∠2,根据邻补角的性质解答即可;(2)根据角平分线的定义和补角的概念计算;(3)根据等角的补角相等证明.【解答】解:(1)∵OD平分∠AOC,∴∠1=∠2,∵∠DOE=90°,∴∠2+∠3=90°,∴∠1+∠4=90°,∴∠1与∠DOB互补,∠2与∠DOB互补,∠3与∠AOE互补,∠4与∠AOE互补,∠AOC与∠BOC,故答案为:5;(2)∵∠AOD=50°,∴∠AOC=2∠AOD=100°,∴∠BOC=180°﹣100°=80°;(3)∵∠1=∠2,∠2+∠3=90°,∠1+∠4=90°,∴∠3=∠4,∴OE平分∠BOC.【点评】本题考查的是余角和补角的概念、角平分线的定义,掌握如果两个角的和等于90°,这两个角互为余角.如果两个角的和等于180°,这两个角互为补角是解题的关键.25.如图,∠AOB=90°,在∠AOB的内部有一条射线OC.(1)画射线OD⊥OC.(2)写出此时∠AOD与∠BOC的数量关系,并说明理由.【考点】垂线.【分析】(1)根据垂线的定义,可得答案;(2)根据余角的性质,可得答案;根据角的和差,可得答案.【解答】解:(1)如图:,;(2)如图1:,∠AOD=∠BOC.因为∠AOB=90°,所以∠AOC+∠BOC=90°.因为OD⊥OC,所以∠AOD+∠AOC=90°.所以∠AOD=∠BOC;如图2:,∠AOD+∠BOC=180°.因为∠AOD=∠AOC+∠BOC+∠BOD,所以∠AOD+∠BOC=∠AOC+∠BOC+∠BOD+∠BOC=∠AOB+∠COD=180°.【点评】本题考查了垂线,利用了余角的性质,角的和差,要分类讨论,以防遗漏.26.根据国家发改委实施“阶梯电价”的有关文件要求,某市结合地方实际,决定从2015年5月1日起对居民生活用电实施“阶梯电价”收费,具体收费标准见下表:一户居民一个月用电量的范围电费价格(单位:元/千瓦时)不超过150千瓦时的部分 a超过150千瓦时,但不超过300千瓦时的部分 b超过300千瓦时的部分a+2015年5月份,该市居民甲用电100千瓦时,交费60元;居民乙用电200千瓦时,交费元.(1)求上表中a、b的值.(2)实施“阶梯电价”收费以后,该市一户居民月用电多少千瓦时,其当月交费元?(3)实施“阶梯电价”收费以后,该市一户居民月用电多少千瓦时,其当月的平均电价等于元/千瓦时?【考点】一元一次方程的应用.【分析】(1)利用居民甲用电100千瓦时,交电费60元,可以求出a的值,进而利用居民乙用电200千瓦时,交电费元,求出b的值即可;(2)首先判断出用电是否超过300千瓦时,再根据收费方式可得等量关系:前150千瓦时的部分的费用+超过150千瓦时,但不超过300千瓦时的部分的费用+超过300千瓦时的部分的费用=交费元,根据等量关系列出方程,再解即可;(3)根据当居民月用电量y≤150时,≤,当居民月用电量y满足150<y≤300时,﹣≤,当居民月用电量y满足y>300时,﹣≤,分别得出即可.【解答】解:(1)a=60÷100=,150×+50b=,解得b=.(2)若用电300千瓦时,×150+×150=<,所以用电超过300千瓦时.设该户居民月用电x千瓦时,则×150+×150+(x﹣300)=,解得x=400答:该户居民月用电400千瓦时.(3)设该户居民月用电y千瓦时,分三种情况:①若y不超过150,平均电价为<,故不合题意;②若y超过150,但不超过300,则=×150+(y﹣150),解得y=250;③若y大于300,则=×150+×150+(y﹣300),解得.此时y<300,不合题意,应舍去.综上所述,y=250.答:该户居民月用电250千瓦时.【点评】此题主要考查了一元一次方程的应用,关键是正确理解题意,找出题目中的等量关系,列出方程.27.甲、乙两地之间的距离为900km,一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时出发.已知快车的速度是慢车的2倍,慢车12小时到达甲地.(1)慢车速度为每小时75 km;快车的速度为每小时150 km;(2)当两车相距300km时,两车行驶了或小时;百度文库- 让每个人平等地提升自我(3)若慢车出发3小时后,第二列快车从乙地出发驶往甲地,速度与第一列快车相同.在第二列快车行驶的过程中,当它和慢车相距150km时,求两列快车之间的距离.【考点】一元一次方程的应用.【分析】(1)由速度=路程÷时间计算即可;(2)需要分类讨论:相遇前距离300km和相遇后相距300km;(3)设第二列快车行x时,第二列快车和慢车相距150km.分两种情况:慢车在前和慢车在后.【解答】解:(1)慢车速度为:900÷12=75(千米/时).快车的速度:75×2=150(千米/时).故答案是:75,150;(2)①当相遇前相距300km 时, =(小时);②当相遇后相距300km 时, =(小时);综上所述,当两车相距300km 时,两车行驶了或小时;故答案是:或;(3)设第二列快车行x时,第二列快车和慢车相距150km.分两种情况:①慢车在前,则75×3+75x﹣150=150x,解得x=1.此时900﹣150×(3+1)﹣150×1=150.②慢车在后,则75×3+75x+150=150x,解得x=5.此时第一列快车已经到站,150×5=750.综上,第二列快车和慢车相距150km时,两列快车相距150km或750km.【点评】本题考查了一元一次方程的应用.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.注意:分类讨论数学思想的应用.21。

2015-2016学年苏科版七年级上册期末数学试卷(含答案)

2015-2016学年苏科版七年级上册期末数学试卷(含答案)

2015-2016学年七年级(上)期末数学试卷一、选择题:24分1.﹣5的倒数是( )A.B.﹣C.5 D.﹣52.下列各式计算正确的是( )A.6a+a=6a2B.﹣2a+5b=3abC.4m2n﹣2mn2=2mn D.3ab2﹣5b2a=﹣2ab23.若x=2是关于x的方程2x﹣3m﹣1=0的解,则m的值为( )A.﹣1 B.0 C.1 D.4.下图中,是正方体的展开图是( )A.B.C.D.5.如果|﹣a|=﹣a,下列成立的是( )A.a<0 B.a≤0 C.a>0 D.a≥06.平面上不重合的两点确定一条直线,不同三点最多可确定3条直线,若平面上不同的n 个点最多可确定21条直线.则n的值为( )A.5 B.6 C.7 D.87.已知x2﹣2x﹣3=0,那么代数式2x2﹣4x﹣5的值为( )A.1 B.2 C.3 D.48.该试题已被管理员删除二、填空题:16分9.写出一个大于﹣4的负分数__________.10.单项式的系数是__________.11.太阳半径大约是696 000千米,用科学记数法表示为__________米.12.某书店把一本新书按标价的九折出售,仍可获利20%.若该书的进价为21元,则标价为__________元.13.如图,将长方形ABCD沿AE折叠,使点D落在BC边上的点F,若∠BAF=56°,则∠DAE=__________.14.有一些相同的小立方块搭成的几何体的三视图,则搭成该几何体的小立方块有__________块15.已知∠α是锐角,∠α与∠β互补,∠α与∠γ互余,则∠β﹣∠γ=__________.16.某信用卡上的号码由17位数字组成,每一位数字写在下面的一个方格中,如果任何相邻的三个数字之和都等于20,则x+y的值等于__________.三、解答题:12分17.计算:(1)(﹣15)﹣18÷(﹣3)+|﹣5|;(2).18.解方程:(1)3(2x﹣1)﹣2(1﹣x)=0;(2).19.先化简,再求值:4xy﹣[(x2+5xy﹣y2)﹣(x2+3xy﹣2y2)],其中x=﹣,y=.20.(1)画出把△ABC沿射线CB方向平移2cm后得到的△A1B1C1;(2)线段AB与线段A1B1有怎么样的关系__________.21.阅读计算:阅读下列各式:(a•b)2=a2b2,(a•b)3=a3b3,(a•b)4=a4b4…回答下列三个问题:①验证:(4×0.25)100=__________.4100×0.25100=__________.②通过上述验证,归纳得出:(a•b)n=__________;(abc)n=__________.③请应用上述性质计算:(﹣0.125)2013×22012×42012.22.如图,A、B、C、D四点在同一直线上,M是AB的中点,N是CD的中点.(1)若MB=3,BC=2,CN=2.5,则AD=__________.(2)若MN=a,BC=b,用a、b表示线段AD.23.如图,直线AB与CD相交于点D,OE⊥AB,OF⊥CD.(1)图中∠AOF的余角有__________;(把符合条件的角都填出来)(2)如果∠AOD=140°,那么根据__________,可得∠BOC=__________度;(3)∠EOF=∠AOD,求∠EOF的度数.24.古运河是扬州的母亲河,为打造古运河风光带,现有一段河道整治任务由A、B两工程队完成.A工程队单独整治该河道要16天才能完成;B工程队单独整治该河道要24天才能完成.现在A工程队单独做6天后,B工程队加入合做完成剩下的工程,问A工程队一共做了多少天?25.甲、乙两个旅行团同时去苏州旅游,已知乙团人数比甲团人数多4人,两团人数之和恰等于两团人数之差的18倍.(1)问甲、乙两个旅行团的人数各是多少?(2)若乙团中儿童人数恰为甲团人数的3倍少2人,某景点成人票价为每张100元,儿童票价是成人票价的六折,两旅行团在此景点所花费的门票费用相同,求甲、乙两团儿童人数各是多少?26.如图,数轴的原点为0,点A、B、C是数轴上的三点,点B对应的数位1,AB=6,BC=2,动点P、Q同时从A、C出发,分别以每秒2个长度单位和每秒1个长度单位的速度沿数轴正方向运动.设运动时间为t秒(t>0)(1)求点A、C分别对应的数;(2)求点P、Q分别对应的数(用含t的式子表示)(3)试问当t为何值时,OP=OQ?2015-2016学年七年级(上)期末数学试卷一、选择题:24分1.﹣5的倒数是( )A.B.﹣C.5 D.﹣5考点:倒数.分析:根据乘积为1的两个数互为倒数,可得一个数的倒数.解答:解:﹣5的倒数是﹣,故选:B.点评:本题考查了倒数,分子分母交换位置是求一个数的倒数的关键.2.下列各式计算正确的是( )A.6a+a=6a2B.﹣2a+5b=3abC.4m2n﹣2mn2=2mn D.3ab2﹣5b2a=﹣2ab2考点:合并同类项.分析:根据同类项的定义及合并同类项的方法进行判断即可.解答:解:A、6a+a=7a≠6a2,错误;B、﹣2a与5b不是同类项,不能合并,错误;C、4m2n与2mn2不是同类项,不能合并;D、3ab2﹣5ab2=﹣2ab2,正确.故选:D.点评:本题考查的知识点为:同类项的定义:所含字母相同,相同字母的指数相同.合并同类项的方法:字母和字母的指数不变,只把系数相加减.不是同类项的一定不能合并.3.若x=2是关于x的方程2x﹣3m﹣1=0的解,则m的值为( )A.﹣1 B.0 C.1 D.考点:一元一次方程的解.专题:计算题.分析:根据方程的解的定义,把x=2代入方程2x﹣3m﹣1=0即可求出m的值.解答:解:∵x=2是关于x的方程2x﹣3m﹣1=0的解,∴2×2﹣3m﹣1=0,解得:m=1.故选C.点评:此题考查的知识点是一元一次方程的解,本题的关键是理解方程的解的定义,就是能够使方程左右两边相等的未知数的值.4.下图中,是正方体的展开图是( )A.B.C.D.考点:几何体的展开图.分析:由平面图形的折叠及正方体的展开图解题.解答:解:由四棱柱四个侧面和上下两个底面的特征可知,A、多了一个面,不可以拼成一个正方体;B、可以拼成一个正方体;C、不符合正方体的展开图,不可以拼成一个正方体;D、不符合正方体的展开图,不可以拼成一个正方体.故选B.点评:解题时勿忘记四棱柱的特征及正方体展开图的各种情形.5.如果|﹣a|=﹣a,下列成立的是( )A.a<0 B.a≤0 C.a>0 D.a≥0考点:绝对值.专题:计算题.分析:根据绝对值的意义由|﹣a|=﹣a得到﹣a≥0,然后解不等式即可.解答:解:∵|﹣a|=﹣a,∴﹣a≥0,∴a≤0.故选B.点评:本题考查了绝对值:若a>0,则|a|=a;若a=0,则|a|=0;若a<0,则|a|=﹣a.6.平面上不重合的两点确定一条直线,不同三点最多可确定3条直线,若平面上不同的n 个点最多可确定21条直线.则n的值为( )A.5 B.6 C.7D.8考点:一元二次方程的应用.专题:规律型.分析:这是个规律性题目,关键是找到不在同一直线上的n个点,可以确定多少条直线这个规律,当有n个点时,就有,从而可得出n的值.解答:解:设有n个点时,=21n=7或n=﹣6(舍去).故选C.点评:本题是个规律性题目,关键知道当不在同一平面上的n个点时,可确定多少条直线,代入21可求出解.7.已知x2﹣2x﹣3=0,那么代数式2x2﹣4x﹣5的值为( )A.1 B.2 C.3 D.4考点:代数式求值.专题:整体思想.分析:由x2﹣2x﹣3=0得,x2﹣2x=3,所以代入2x2﹣4x﹣5=2(x2﹣2x)﹣5即可求得它的值.解答:解:∵x2﹣2x﹣3=0,∴x2﹣2x=3,又知:2x2﹣4x﹣5=2(x2﹣2x)﹣5=2×3﹣5=1.故本题选A.点评:代数式中的字母表示的数没有明确告知,而是隐含在题设中,首先应从题设中获取代数式x2﹣2x的值,然后利用“整体代入法”求代数式的值.8.该试题已被管理员删除二、填空题:16分9.写出一个大于﹣4的负分数﹣.考点:有理数大小比较.专题:开放型.分析:根据有理数的大小比较法则和负分数的意义找出即可.解答:解:大于﹣4的负分数有﹣,﹣3等;故答案为:﹣.点评:本题考查了负分数和有理数的大小比较,注意:两个负数比较大小,其绝对值大的反而小.10.单项式的系数是﹣.考点:单项式.分析:根据单项式系数的定义进行解答即可.解答:解:∵单项式的数字因数是﹣∴此单项式的系数是﹣.故答案为:﹣.点评:本题考查的是单项式的系数,熟知单项式中的数字因数叫做单项式的系数是解答此题的关键.11.太阳半径大约是696 000千米,用科学记数法表示为6.96×108米.考点:科学记数法—表示较大的数.专题:应用题.分析:先把696 000千米转化成696 000 000米,然后再用科学记数法记数记为6.96×108米.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.解答:解:696 000千米=696 000 000米=6.96×108米.点评:用科学记数法表示一个数的方法是:(1)确定a:a是只有一位整数的数;(2)确定n:当原数的绝对值≥10时,n为正整数,n等于原数的整数位数减1;当原数的绝对值<1时,n为负整数,n的绝对值等于原数中左起第一个非零数前零的个数(含整数位数上的零).12.某书店把一本新书按标价的九折出售,仍可获利20%.若该书的进价为21元,则标价为28元.考点:一元一次方程的应用.专题:销售问题.分析:设标价是x元.则0.9x=21×(1+20%),解方程即可.解答:解:设标价是x元,列方程得0.9x=21×(1+20%),解得x=28.故填28.点评:此题首先读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.13.如图,将长方形ABCD沿AE折叠,使点D落在BC边上的点F,若∠BAF=56°,则∠DAE=17°.考点:翻折变换(折叠问题).分析:先由折叠的性质可知△ADE≌△AFE,故∠DAE=∠EAF,再由∠BAD=90°即可解答.解答:解:∵△AEF是△AED沿直线AE折叠而成,∴△ADE≌△AFE,∴∠DAE=∠EAF,∵∠BAF=56°,∠BAD=90°,∴∠DAF=90°﹣∠BAF=90°﹣56°=34°,∴∠DAE=∠DAF=×34°=17°.故答案为:17°.点评:本题考查的是图形的翻折变换,熟知图形折叠的性质是解答此题的关键.14.有一些相同的小立方块搭成的几何体的三视图,则搭成该几何体的小立方块有4块考点:由三视图判断几何体.分析:从俯视图中可以看出最底层小正方体的个数及形状,从主视图和左视图可以看出每一层小正方体的层数和个数,从而算出总的个数.解答:解:从俯视图可得最底层有3个小正方体,由主视图可得有2层上面一层是1个小正方体,下面有2个小正方体,从左视图上看,后面一层是2个小正方体,前面有1个小正方体,所以此几何体共有4个正方体.故答案为4.点评:此题主要考查了由三视图想象立体图形.做这类题时要借助三种视图表示物体的特点,从主视图上弄清物体的上下和左右形状;从俯视图上弄清物体的左右和前后形状;从左视图上弄清楚物体的上下和前后形状,综合分析,合理猜想,结合生活经验描绘出草图后,再检验是否符合题意.15.已知∠α是锐角,∠α与∠β互补,∠α与∠γ互余,则∠β﹣∠γ=90°.考点:余角和补角.分析:根据互余两角之和为90°,互补两角之和为180°,结合题意即可得出答案.解答:解:由题意得,∠α+∠β=180°,∠α+∠γ=90°,两式相减可得:∠β﹣∠γ=90°.故答案为:90°.点评:此题考查了余角和补角的知识,掌握互余两角之和为90°,互补两角之和为180°,是解答本题的关键.16.某信用卡上的号码由17位数字组成,每一位数字写在下面的一个方格中,如果任何相邻的三个数字之和都等于20,则x+y的值等于11.考点:有理数的加法.专题:计算题.分析:根据每一位数字写在下面的一个方格中,如果任何相邻的三个数字之和都等于20,确定出x与y的值,即可求出x+y的值.解答:解:根据题意得到x前面的数字为9,后面的数字为2,则有9+x+2=20,即x=9,表格中的数字为9,9,2,9,9,2,9,9,2,9,9,2,9,9,2,9,9,即y=2,则x+y=11.故答案为:11.点评:此题考查了有理数的加法,熟练掌握运算法则是解本题的关键.三、解答题:12分17.计算:(1)(﹣15)﹣18÷(﹣3)+|﹣5|;(2).考点:有理数的混合运算.专题:计算题.分析:(1)原式先计算除法运算及绝对值运算,再计算加减运算即可得到结果;(2)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果.解答:解:(1)原式=﹣15+6+5=﹣15+11=﹣4;(2)原式=﹣8××+1.8+=﹣8+2.6=﹣5.4.点评:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.18.解方程:(1)3(2x﹣1)﹣2(1﹣x)=0;(2).考点:解一元一次方程.专题:计算题.分析:(1)注意移项要变号;(2)这是一个带分母的方程,所以要先去分母,再去括号,最后移项,化系数为1,从而得到方程的解.解答:解:(1)6x﹣3﹣2+2x=0整理得:8x=5∴x=;(2)去分母得:3y﹣18=﹣5+2﹣2y整理得:5y=15∴y=3.点评:主要考查了一元一次方程的解法,解题的关键是要掌握去括号,移项的方法.注意括号前是负号,去掉括号后各项要变号,移项要变号.去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号.19.先化简,再求值:4xy﹣[(x2+5xy﹣y2)﹣(x2+3xy﹣2y2)],其中x=﹣,y=.考点:整式的加减—化简求值.专题:计算题.分析:原式去括号合并得到最简结果,把x与y的值代入计算即可求出值.解答:解:原式=4xy﹣x2﹣5xy+y2+x2+3xy﹣2y2=2xy﹣y2,当x=﹣,y=时,原式=﹣﹣=﹣.点评:此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.20.(1)画出把△ABC沿射线CB方向平移2cm后得到的△A1B1C1;(2)线段AB与线段A1B1有怎么样的关系相等.考点:作图-平移变换.分析:(1)根据题意画出△A1B1C1即可;(2)由图形平移的性质即可得出结论.解答:解:(1)如图所示;(2)∵△A1B1C1由△ABC平移而成,∴AB=A1B1.故答案为:相等.点评:本题考查的是作图﹣平移变换,熟知图形平移不变性的性质是解答此题的关键.21.阅读计算:阅读下列各式:(a•b)2=a2b2,(a•b)3=a3b3,(a•b)4=a4b4…回答下列三个问题:①验证:(4×0.25)100=1.4100×0.25100=1.②通过上述验证,归纳得出:(a•b)n=a n b n;(abc)n=a n b n c n.③请应用上述性质计算:(﹣0.125)2013×22012×42012.考点:有理数的乘方.专题:阅读型.分析:①先算括号内的,再算乘方,先乘方,再算乘法.②根据有理数乘方的定义求出即可;③根据同底数幂的乘法计算,再根据积的乘方计算,即可得出答案.解答:解:①:(4×0.25)100=1100=1;4100×0.25100=1,故答案为:1,1.②(a•b)n=a n b n,(abc)n=a n b n c n,故答案为:a n b n,(abc)n=a n b n c n.③原式=(﹣0.125)2012×22012×42012×(﹣0.125)=(﹣0.125×2×4)2012×(﹣0.125)=(﹣1)2012×(﹣0.125)=1×(﹣0.125)=﹣0.125.点评:本题考查了同底数幂的乘法,再根据积的乘方,有理数乘方的定义的应用,主要考查学生的计算能力.22.如图,A、B、C、D四点在同一直线上,M是AB的中点,N是CD的中点.(1)若MB=3,BC=2,CN=2.5,则AD=13.(2)若MN=a,BC=b,用a、b表示线段AD.考点:两点间的距离.专题:计算题.分析:(1)由已知M是AB的中点,N是CD的中点,可求出AB和CD,从而求出AD;(2)由已知M是AB的中点,N是CD的中点,推出AM=MB=AB,CN=ND=CD,则推出AB+CD=2a﹣2b,从而得出答案.解答:解:(1)∵M是AB的中点,N是CD的中点,∴AB=2MB=6,CD=2CN=5,∴AD=AB+BC+CD=6+2+5=13,故答案为:13;(2)∵M是AB的中点,N是CD的中点,∴AM=MB=AB,CN=ND=CD,∵MN=MB+BC+CN=a,∴MB+CN=MN﹣BC=a﹣b,∴AB+CD=2MB+2CN=2(a﹣b),∴AD=AB+BC+CD=2a﹣2b+b=2a﹣b.点评:此题考查的知识点是两点间的距离,关键是根据线段的中点及各线段间的关系求解.23.如图,直线AB与CD相交于点D,OE⊥AB,OF⊥CD.(1)图中∠AOF的余角有∠EOF,∠AOC,∠BOD;(把符合条件的角都填出来)(2)如果∠AOD=140°,那么根据对顶角相等,可得∠BOC=140度;(3)∠EOF=∠AOD,求∠EOF的度数.考点:对顶角、邻补角;余角和补角.分析:(1)根据余角的定义、性质,可得答案;(2)根据对顶角的性质,可得答案;(3)根据余角的性质,可得∠EOF与∠BOD的关系,根据平角的定义,可得答案.解答:解:(1)图中∠AOF的余角有∠EOF,∠AOC,∠BOD;(把符合条件的角都填出来)(2)如果∠AOD=140°,那么根据对顶角相等,可得∠BOC=140度;故答案为:∠EOF,∠AOC,∠BOD;对顶角相等,140;(3)∵∠EOF+AOF=90°,∠AOC+∠AOF=90°,∴∠EOF=∠AOC=∠BOD.∵∠AOD+∠BOD=180°,∠EOF=∠AOD∴5∠EOF+∠BOD=180°,即6∠EOF=180°,∠EOF=30°.点评:本题考查了对顶角、邻补角,利用了余角的性质,对顶角的性质,邻补角的性质.24.古运河是扬州的母亲河,为打造古运河风光带,现有一段河道整治任务由A、B两工程队完成.A工程队单独整治该河道要16天才能完成;B工程队单独整治该河道要24天才能完成.现在A工程队单独做6天后,B工程队加入合做完成剩下的工程,问A工程队一共做了多少天?考点:一元一次方程的应用.分析:设A工程队一共做的天数为x天,根据工作总量为“1”列出方程并解答.解答:解:设A工程队一共做的天数为x天,则由题意得:x+(x﹣6)=1,解得:x=12答:A工程队一共做的天数为12天.点评:本题考查了一元一次方程的应用,解答本题的关键是表示出两工程队的工作效率,根据工作总量为单位1,建立方程.25.甲、乙两个旅行团同时去苏州旅游,已知乙团人数比甲团人数多4人,两团人数之和恰等于两团人数之差的18倍.(1)问甲、乙两个旅行团的人数各是多少?(2)若乙团中儿童人数恰为甲团人数的3倍少2人,某景点成人票价为每张100元,儿童票价是成人票价的六折,两旅行团在此景点所花费的门票费用相同,求甲、乙两团儿童人数各是多少?考点:一元一次方程的应用.专题:应用题.分析:(1)设甲旅行团的人数为x人,那么乙旅行团的人为(x+4)人,由于两团人数之和恰等于两团人数之差的18倍,即:两数之和为:4×18=72,以两数之和为等量关系列出方程求解;(2)设甲团儿童人数为m人,则可知乙团儿童人数为(3m﹣2)人,根据等量关系:甲乙所花门票相等可以列出方程,求解即可.解答:解:(1)设甲旅行团的人数为x人,那么乙旅行团的人为x+4人,由题意得:x+x+4=4×18解得:x=34,∴x+4=38答:甲、乙两个旅行团的人数各是34人,38人.(2)设甲团儿童人数为m人,则可知乙团儿童人数为(3m﹣2)人,所以甲团成人有(34﹣m)人,乙团成人有(38﹣3m+2)人.根据题意列方程得:100(34﹣m)+m×100×60%=100(38﹣3m+2)+(3m﹣2)×100×60%,解得:m=6.∴3m﹣2=16.答:甲团儿童人数为6人,乙团儿童人数为16人.点评:本题考查了一元一次方程的运用,解决本类问题一般都是找到等量关系列方程求解即可.属于基本的题型.26.如图,数轴的原点为0,点A、B、C是数轴上的三点,点B对应的数位1,AB=6,BC=2,动点P、Q同时从A、C出发,分别以每秒2个长度单位和每秒1个长度单位的速度沿数轴正方向运动.设运动时间为t秒(t>0)(1)求点A、C分别对应的数;(2)求点P、Q分别对应的数(用含t的式子表示)(3)试问当t为何值时,OP=OQ?考点:一元一次方程的应用;数轴.分析:(1)根据点B对应的数为1,AB=6,BC=2,得出点A对应的数是1﹣6=﹣5,点C 对应的数是1+2=3.(2)根据动点P、Q分别同时从A、C出发,分别以每秒2个单位和1个单位的速度沿数轴正方向运动,表示出移动的距离,即可得出对应的数;(3)分两种情况讨论:当点P与点Q在原点两侧时和当点P与点Q在同侧时,根据OP=OQ,分别列出方程,求出t的值即可.解答:解:(1)∵点B对应的数为1,AB=6,BC=2,∴点A对应的数是1﹣6=﹣5,点C对应的数是1+2=3.(2)∵动点P、Q分别同时从A、C出发,分别以每秒2个单位和1个单位的速度沿数轴正方向运动,∴点P对应的数是﹣5+2t,点Q对应的数是3+t;(3)①当点P与点Q在原点两侧时,若OP=OQ,则5﹣2t=3+t,解得:t=;②当点P与点Q在同侧时,若OP=OQ,则﹣5+2t=3+t,解得:t=8;当t为或8时,OP=OQ.点评:此题考查了一元一次方程的应用和数轴,解题的关键是掌握点的移动与点所表示的数之间的关系,在计算时(3)要注意分两种情况进行讨论.。

2015-2016学年苏教版七年级上数学期末考试卷(含答案),推荐文档

2015-2016学年苏教版七年级上数学期末考试卷(含答案),推荐文档


A.1800 元
B.1700 元
C.1710 元
D.1750 元
8、中国古代问题:有甲、乙两个牧童,甲对乙说:“把你的羊给我一只,我的羊数就是你的羊数的 2 倍”。乙回答说:
“最好还是把你的羊给我一只,我们羊数就一样了”。若设甲有 x 只羊,则下列方程正确的是(

A. x 1 2(x 2) C. x 1 2(x 3)
4
27
20、 7 (5) ( 7 ) 9 7 8
22
22
22
21、解方程: x 3 1 3 2x
6
4
22、已知 x y 3 , xy 1 ,求代数式(5x 2) (3xy 5 y) 的值。
23、求代数式 2x 2 1 [3y 2 2(x 2 y 2 ) 6] 的值,其中 x 1, y 2 。 2
B. x 3 2(x 1)
x1 D. x 1 1
2
9、某中学学生军训,沿着与笔直的铁路并列的公路匀速前进,每小时走 4500 米。一列火车以每小时 120 千米的速度
迎开来,测得火车头与队首学生相遇,到车尾与队末学生相遇,共经过 60 秒。如果队伍长 500 米,那么火车长(

A.1500 米
8、 D(点拨:甲有 x 只羊,则乙有(x 2) 只羊,由甲的回答可列出方程为 x 1 2(x 2 1) 。)
4500 120000
9、 B(点拨:设火车长 x 米,则有
3600
60 500 x ,解得: x 1575 )
10、D
11、C
12、A(点拨:只有①正确)
13、 2010 (点拨: x 1时,代数式为 a b 1 1012 ,即 a b 2011,当 x 1时,代数式为

2015-2016学年江苏省苏州市吴中区七年级上学期期末数学试卷(带解析)

2015-2016学年江苏省苏州市吴中区七年级上学期期末数学试卷(带解析)

绝密★启用前2015-2016学年江苏省苏州市吴中区七年级上学期期末数学试卷(带解析)试卷副标题考试范围:xxx ;考试时间:133分钟;命题人:xxx学校:___________姓名:___________班级:___________考号:___________注意事项.1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)一、选择题(题型注释)1、(2015秋•吴中区期末)有下列三个生活、生产现象: ①用两个钉子就可以把木条固定在干墙上; ②把弯曲的公路改直能缩短路程;③植树时只要定出两颗树的位置,就能确定同一行所在的直线. 其中可用“两点之间,线段最短”来解释的现象有 (填序号).2、(2014•武汉)观察下列一组图形中点的个数,其中第1个图中共有4个点,第2个图中共有10个点,第3个图中共有19个点,…按此规律第5个图中共有点的个数是( )A .31B .46C .51D .663、A .(c ﹣1﹣2a )B .(c+1)C .(﹣1﹣c )D .(2b+c ﹣1)4、(2015秋•吴中区期末)下列说法中,正确的个数是( ) (1)同角的余角相等 (2)相等的角是对顶角(3)在同一平面内,不相交的两条直线叫平行线(4)直线外一点与直线上各点连接的所有线段中,垂线段最短. A .1B .2C .3D .45、如图表示一个由相同小立方块搭成的几何体的俯视图,小正方形中的数字表示该位置上小立方块的个数,则该几何体的主视图为A .B .C .D .6、(2015秋•吴中区期末)下列四个图中,能用∠1、∠AOB 、∠O 三种方法表示同一个角的是( )A .B .C .D .7、(2015秋•吴中区期末)方程2﹣3x=4﹣2x 的解是( ) A .x=1B .x=﹣2C .x=2D .x=﹣18、(2015秋•吴中区期末)下列运算正确的是( ) A .2a ﹣a=2 B .2a+b=2abC.3a2+2a2=5a4D.﹣a2b+2a2b=a2b9、(2015秋•吴中区期末)2016年国家公务员考试报名人数约为1390000,将1390000用科学记数法表示,表示正确的为()A.1.39×105B.1.39×106C.13.9×105D.13.9×10610、A.﹣(﹣2)B.|﹣2|C.(﹣2)3D.(﹣2)211、A.2B.﹣C.±2D.第II卷(非选择题)二、填空题(题型注释)12、(2015秋•吴中区期末)如图长方形MNPQ是菜市民健身广场的平面示意图,它是由6个正方形拼成的长方形,中间最小的正方形A的边长是1,观察图形特点可知长方形相对的两边是相等的(如图中MN=PQ).正方形四边相等.请根据这个等量关系,试计算长方形MNPQ的面积,结果为.13、(2015秋•吴中区期末)A、B两地相距450千米,甲、乙两车分别从A、B两地同时出发,相向而行.已知甲车的速度为120千米/时,乙车的速度为80千米/时,t时后两车相距50千米,则t的值为.14、(2015秋•吴中区期末)关于x的方程2x+m=1﹣x的解是x=﹣2,则m的值为.15、(2015秋•吴中区期末)如果一个角的度数是70°28′,则这个角的补角度数是.16、(2015秋•吴中区期末)当x= 时,代数式﹣2x+1的值是0.17、(2011•黄冈校级三模)绝对值等于5的数是.18、(2015秋•吴中区期末)单项式的系数为.三、计算题(题型注释)19、(2015秋•吴中区期末)如图,直线AB 、CD 相交于O ,∠2﹣∠1=30°,∠3=140°.(1)求∠2的度数;(2)试说明OM 平分∠AOD .20、(2015秋•吴中区期末)计算: (1);(2)52﹣3×[﹣32+(﹣2)×(﹣3)]+(﹣4)3.四、解答题(题型注释)21、(2015秋•吴中区期末)如图,∠AOB 的边OA 上有一动点P ,从距离O 点18cm 的点M 处出发,沿线段MO ,射线OB 运动,速度为2cm/s ;动点Q 从点O 出发,沿射线OB 运动,速度为1cm/s .P 、Q 同时出发,设运动时间是t (s ).(1)当点P 在MO 上运动时,PO= cm (用含t 的代数式表示); (2)当点P 在MO 上运动时,t 为何值,能使OP=OQ ?(3)若点Q 运动到距离O 点16cm 的点N 处停止,在点Q 停止运动前,点P 能否追上点Q ?如果能,求出t 的值;如果不能,请说出理由.22、(2015秋•吴中区期末)在计算1+4+7+10+13+16+19+22+25+28时,我们发现,从第一个数开始,后面的每个数与它的前面一个数的差都是一个相等的常数,具有这种规律的一列数,除了直接相加外,我们还可以用下列公式来求和S ,(其中n 表示数的个数,a 1表示第一个数,a n 表示最后一个数).所以,1+4+7+10+13+16+19+22+25+28==145.用上面的知识解答下面问题:某公司对外招商承包一个分公司,符合条件的两个企业A 、B 分别拟定上缴利润方案如下:A :每年结算一次上缴利润,第一年上缴1.5万元,以后每年比前一年增加1万元;B :每半年结算一次上缴利润,第一个半年上缴0.3万元,以年每半年比前半年增加0.3万元.(1)如果承包期限2年,则A 企业上缴利润的总金额为 万元,B 企业上缴利润的总金额为 万元;(2)如果承包期限为n 年,则A 企业上缴利润的总金额为 万元,B 企业上缴利润的总金额为 万元(用含n 的代数式表示);(3)承包期限n=20时,通过计算说明哪个企业上缴利润的总金额比较多?多多少万元?23、(2015秋•吴中区期末)已知:多项式﹣3x+1的次数是3.(1)填空:n= ; (2)直接判断:单项式b 与单项式﹣3a 2b n 是否为同类项 (填“是”或“否”);(3)如图,线段AB=12cm ,点C 是直线AB 上一点,且BC=n•AC ,若点D 是AC 的中点,求线段CD 的长.24、(2015秋•吴中区期末)某校初一(1)班举行“庆祝元旦”诗歌朗诵比赛.为了鼓励学生积极参与活动,班委会决定奖励比赛成绩优秀的同学,准备用184元班费,买3个书包和5本词典,分别奖给三名一等奖、五名二等奖获得者,已知每个书包的价格比每本词典的价格多8元,每个书包和每本词典的价格各是多少元?25、(2015秋•吴中区期末)已知,x=2是方程2﹣(m ﹣x )=2x 的解,求代数式m 2﹣(6m+2)的值.26、(2015秋•吴中区期末)已知∠AOB.(用三角尺和量角器画图)Array(1)画∠AOB的平分线OC,并在OC上任取一点P;(2)过点P画平行于OA的直线交OB于Q;(3)过点P画PD⊥OA、PE⊥OB,垂足分别为D、E,并直接判断PD与PE的大小关系.27、(2015秋•吴中区期末)解下列方程:(1)5(x﹣1)﹣2(1﹣x)=x﹣3;(2).28、(2015秋•吴中区期末)(1)化简:5a2﹣[3a﹣(2a﹣3)+4a2];(2)先化简,再求值:(x+2y﹣3xy)﹣(﹣2x﹣y+xy)+2xy﹣1,其中:x+y=2015,xy=2014.参考答案1、②.2、B3、A4、C5、C6、D7、B8、D9、B10、C11、A12、143.13、2小时或2.5小时.14、7.15、109°32′.16、17、±518、﹣19、(1)70°;(2)见解析20、(1)7;(2)﹣30.21、(1)(18﹣2t);(2)t=6时,能使OP=OQ;(3)点P追上点Q需要18s,此时点Q已经停止运动.22、(1)4;3;(2);(0.6n2+0.3n);(3)企业B比企业A多26万元23、(1)2;(2)否;(3)CD=2或6.24、每个书包和每本词典的价格各是28元和20元.25、38.26、见解析27、(1)x=;(2)x=.28、(1)a2﹣a﹣3;(2)2016.【解析】1、试题分析:分别根据两点确定一条直线;两点之间,线段最短进行解答即可.解:①用两个钉子就可以把木条固定在干墙上,根据两点确定一条直线;②把弯曲的公路改直能缩短路程,根据两点之间,线段最短;③植树时只要定出两颗树的位置,就能确定同一行所在的直线根据两点确定一条直线;故答案为:②.考点:线段的性质:两点之间线段最短.2、试题分析:由图可知:其中第1个图中共有1+1×3=4个点,第2个图中共有1+1×3+2×3=10个点,第3个图中共有1+1×3+2×3+3×3=19个点,…由此规律得出第n 个图有1+1×3+2×3+3×3+…+3n个点.解:第1个图中共有1+1×3=4个点,第2个图中共有1+1×3+2×3=10个点,第3个图中共有1+1×3+2×3+3×3=19个点,…第n个图有1+1×3+2×3+3×3+…+3n个点.所以第5个图中共有点的个数是1+1×3+2×3+3×3+4×3+5×3=46.故选:B.考点:规律型:图形的变化类.3、试题分析:直接利用数轴结合a、b、c在数轴上位置得出a+b<0,b﹣1<0,c﹣a>0,进而去绝对值化简即可.解:由数轴可得:a+b<0,b﹣1<0,c﹣a>0,故|a+b|﹣|b﹣1|+|c﹣a|=﹣a﹣b+b﹣1+c﹣a=﹣2a+c﹣1.故选:A.考点:整式的加减;数轴;绝对值.4、试题分析:根据余角定义,对顶角定义,垂线段最短,平行线定义逐个判断即可.解:同角的余角相等,故(1)正确;如图:∠ACD=∠BCD=90°,但两角不是对顶角,故(2)错误;在同一平面内,不相交的两条直线叫平行线,故(3)正确;直线外一点与直线上各点连接的所有线段中,垂线段最短,故(4)正确;即正确的个数是3,故选C.考点:余角和补角;对顶角、邻补角;垂线段最短;平行线.5、试题分析:根据俯视图可得从正面看可看到每列正方体的最多个数分别为4,3,2,再表示为平面图形即可.解:根据俯视图中的每个数字是该位置小立方块的个数,得出主视图有3列,从左到右的列数分别是4,3,2.故选C.考点:由三视图判断几何体;简单组合体的三视图.6、试题分析:根据角的表示方法和图形选出即可.解:A、图中的∠AOB不能用∠O表示,故本选项错误;B、图中的∠1和∠AOB不是表示同一个角,故本选项错误;C、图中的∠1和∠AOB不是表示同一个角,故本选项错误;D、图中∠1、∠AOB、∠O表示同一个角,故本选项正确;故选D.考点:角的概念.7、试题分析:先移项,再合并同类项,最后化系数为1,从而得到方程的解.解:移项得:﹣3x+2x=4﹣2,合并得:﹣x=2,系数化为1得:x=﹣2.故选B.考点:解一元一次方程.8、试题分析:根据合并同类项的法则,合并同类项是把同类项系数相加减而字母和字母的指数不变,即可解答.解:A、2a﹣a=a,故错误;B、2a与b不是同类项,故错误;C、3a2+2a2=5a2,故错误;D、正确;故选:D.考点:合并同类项.9、试题分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解:将1390000用科学记数法表示为1.39×106.故选B.考点:科学记数法—表示较大的数.10、试题分析:根据在一个数的前面机上负号就是这个数的相反数,负数的绝对值是它的相反数,负数的奇数次幂是负数,负数的偶数次幂是正数,可得答案.解:A、﹣(﹣2)=2,故A错误;B、|﹣2|=2,故B错误;C、(﹣2)3=﹣8,故C正确;D、(﹣2)2=4,故D错误;故选:C.考点:正数和负数.11、试题分析:根据只有符号不同的两个数互为相反数,可得答案.解:﹣2的相反数是2,故选:A.考点:相反数.12、试题分析:由题可知,由于矩形平面示意图中全是正方形,则右下角两个小正方形一样大小,而顺时针方向每个大正方形边长都增大1,等量关系:边长都是旁边一个正方形边长+最小正方形边长.解:设右下方两个并排的正方形的边长为x,则x+2+x+3=x+1+x+x,解得x=4所以长方形长为3x+1=13,宽为2x+3=11,所以长方形面积为13×11=143.答:结果为143.故答案为:143.考点:一元一次方程的应用.13、试题分析:设t时后两车相距50千米,分为两种情况,两人在相遇前相距50km和两人在相遇后相距50千米,分别建立方程求出其解即可.解:设t时后两车相距50千米,由题意,得450﹣120t﹣80t=50或10t+80t﹣450=50,解得:t=2或2.5.故答案为:2小时或2.5小时.考点:一元一次方程的应用.14、试题分析:方程的解就是能够使方程左右两边相等的未知数的值,把x=﹣2代入方程2x+m=1﹣x就得到关于m的方程,从而求出m的值.解:把x=﹣2代入方程2x+m=1﹣x,得:﹣4+m=1+2,解得:m=7.故答案为:7.考点:一元一次方程的解.15、试题分析:根据补角的定义求解即可.解:这个角的补角=108°﹣70°28′=109°32′.故答案为:109°32′.考点:余角和补角.16、试题分析:根据题意列出方程,求出方程的解即可得到x的值.解:根据题意得:﹣2x+1=0,移项合并得:2x=1,解得:x=,故答案为:考点:解一元一次方程.17、试题分析:根据绝对值的性质得,|5|=5,|﹣5|=5,故求得绝对值等于5的数.解:因为|5|=5,|﹣5|=5,所以绝对值等于5的数是±5.考点:绝对值.18、试题分析:单项式的系数是单项式里面的数字因数.解:﹣的系数是﹣.故答案为:﹣.考点:单项式.19、试题分析:(1)根据邻补角的性质求出∠1的度数,根据题意计算即可得到∠2的度数;(2)根据题意求出∠DOM的度数,根据角平分线的定义判断即可.解:(1)∵∠3=140°,∠1+∠3=180°,∴∠1=180°﹣∠3=40°,∵∠2﹣∠1=30°,∴∠2=30°+∠1=70°;(2)∵∠1=40°,∠2=70°,∠1+∠DOM+∠2=180°,∴∠DOM=70°,∴∠DOM=∠2,∴OM平分∠AOD.考点:对顶角、邻补角.20、试题分析:(1)原式从左到右依次计算即可得到结果;(2)原式先计算乘方运算,再计算乘法运算,最后算加减运算即可得到结果.解:(1)原式=48××=7;(2)原式=52﹣3×(﹣9+6)+(﹣4)3=25﹣3×(﹣3)﹣64=25+9﹣64=34﹣64=﹣30.考点:有理数的混合运算.21、试题分析:(1)利用P点运动速度以及OM的距离进而得出答案;(2)利用OP=OQ列出方程求出即可;(3)利用假设追上时,求出所用时间,进而得出答案.解:(1)∵P点运动速度为2cm/s,MO=18cm,∴当点P在MO上运动时,PO=(18﹣2t)cm,故答案为:(18﹣2t);(2)当OP=OQ时,则有18﹣2t=t,解这个方程,得t=6,即t=6时,能使OP=OQ;(3)不能.理由如下:设当t秒时点P追上点Q,则2t=t+18,解这个方程,得t=18,即点P追上点Q需要18s,此时点Q已经停止运动.考点:一元一次方程的应用.22、试题分析:(1)根据两企业的利润方案计算即可;(2)归纳总结,根据题意列出两企业上缴利润的总金额即可;(3)把n=20代入代数式解答即可.解:(1)根据题意得:企业A,2年上缴的利润总金额为1.5+(1.5+1)=4(万元);企业B,2年上缴的利润总金额为0.3+(0.3+0.3)+(0.3+0.6)+(0.3+0.9)=3(万元).故答案为:4;3;(2)企业A,n年上缴的利润总金额为1.5n+(1+2+…+n﹣1)=1.5n+=(万元);企业B,n年上缴的利润总金额为0.6n+[0.3+0.6+…+0.3(2n﹣1)]=0.6n+=0.6n+0.3n(2n﹣1)=0.6n2+0.3n(万元).故答案为:;(0.6n2+0.3n);(3)当n=20时,企业A上缴利润的总金额是:(万元),企业B上缴利润的总金额是:0.6n2+0.3n=0.6×202+0.3×20=246(万元).所以,企业B比企业A多26万元考点:列代数式;代数式求值.23、试题分析:(1)根据单项式的次数的概念列出关于n的方程,解方程即可;(2)根据同类项的概念进行判断即可;(2)分点C是线段AB上的点、点C是线段BA的延长线上的点两种情况,根据线段中点的定义、结合图形计算即可.解:(1)∵多项式﹣3x+1的次数是3,∴n+1=3,解得,n=2,故答案为:2;(2)单项式a2b与单项式﹣3a2b2不是同类项,故答案为:否;(3)①显然,点C不在线段AB的延长线上,②如图1,当点C是线段AB上的点时∵n=2,BC=n•AC∴BC=2AC∵AB=12,∴AC=4,又∵D是AC的中点,∴CD=2;②如图2,当点C是线段BA的延长线上的点时,∵n=2,BC=n•AC,∴BC=2AC,∵AB=12,∴AC=12,又∵D是AC的中点,∴CD=6.综上所述,CD=2或6.考点:两点间的距离;同类项;多项式.24、试题分析:设每个书包的价格是x元,则每本词典的价格是(x﹣8)元,等量关系是:3个书包的价钱+5本词典的价钱=184,依此列出方程,求解即可.解:设每个书包的价格是x元,则每本词典的价格是(x﹣8)元.根据题意,得3x+5(x﹣8)=184,解这个方程,得x=28,则x﹣8=20.答:每个书包和每本词典的价格各是28元和20元.考点:一元一次方程的应用.25、试题分析:把x=2代入方程得到一个关于m的方程,解方程求得m的值,然后代入所求的解析式即可求解.解:把x=2代入方程得:2﹣(m﹣2)=4,解得:m=﹣4,则m2﹣(6m+2)=16﹣(﹣24+2)=38.考点:一元一次方程的解.26、试题分析:(1)根据角平分线的作法,以O为圆心,任意长为半径画弧,再以弧与角的两边的交点为圆心,大于两点距离为半径画弧,得出两弧交点即可作出角平分线,再在OC上任一取一点P即可;(2)过点P画PQ∥OA即可;(3)利用直角三角板画垂直即可,再利用角平分线定理:角平分线上的点到角的两边距离相等即可得到PD=PE.解:(1)作图如下:(2)画图如下:(3)画图如下:PD=PE.考点:作图—复杂作图.27、试题分析:(1)方程去括号,移项合并,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.解:(1)去括号,得5x﹣5﹣2+2x=x﹣3,移项、合并同类项,得6x=4,两边都除以6,得x=;(2)两边都乘以6,得2(2﹣3x)=3(x+1)﹣6,去括号,得4﹣6x=3x+3﹣6,移项、合并同类项,得﹣9x=﹣7,两边都除以9,得x=.考点:解一元一次方程.28、试题分析:(1)原式去括号合并即可得到结果;(2)原式去括号合并得到最简结果,把x+y与xy的值代入计算即可求出值.解:(1)原式=5a2﹣(3a﹣2a+3+4a2)=5a2﹣(4a2+a+3)=5a2﹣4a2﹣a﹣3=a2﹣a﹣3;(2)原式=x+2y﹣3xy+2x+y﹣xy+2xy﹣1=3x+3y﹣2xy﹣1=3(x+y)﹣2xy﹣1,当x+y=2015,xy=2014时,原式=3×2015﹣2×2014﹣1=6045﹣4028﹣1=2016.考点:整式的加减—化简求值;整式的加减.。

学年相城区七年级数学期末试题有答案

学年相城区七年级数学期末试题有答案

2014学年相城区七年级数学期末试题(有答案)选择题:(本大题共有10小题,每小题3分,共30分,以下各题都有四个选项,其中只有一个是正确的,选出正确答案,并在答题卷上将该项涂黑°)1.一个数的相反数是2,这个数是A.B.-C.2D.-22.下列运算正确的是A.-a2b+2a2b=a2bB.2a-a=2C.3a2+2a2=5a4D.2a+b=2ab3.方程2-3x=4-2x的解是A.x=1B.x=-2C.x=2D.x=-14.一个几何体的三视图如图所示,这个几何体是A.正方体B.球C.圆柱D.圆锥5.下列四个图中能用∠1,∠AOB,∠O三种方法表示同一个角的是6.把方程去分母后,正确的结果是A.2x-1=1-(3-x)B.2(2x-1)=1-(3-x)C.2(2x-1)=8-3+xD.2(2x-1)=8-3-x7.已知(a+3)2+=0,则ab的值是A.-6B.6C.-9D.98.三个连续自然数的和小于15,这样的自然数组共有A.6组B.5组C.4组D.3组9.小明同学在用一副三角板画角时画出了许多不同度数的角,但下列哪个度数他画不出来A.135°B.120°C.75°D.25°10.一个机器人从数轴原点出发,沿数轴正方向,以每前进3步再后退2步的程序运动.设该机器人每秒前进或后退1步,并且每步的距离为一个单位长度,xn表示第n秒时机器人在数轴上位置所对应的数,则下列结论中错误的是A.x3=3B.x5=1C.x103x104D.x2013x2014二、填空题:(本大题共8小题,每小题3分,共24分,把答案直接填在答题卷相对应的位置上)11.8°18'=▲°.12.最接近于(-)3的负整数是▲.13.已知x-4,则x可取的负整数的和是▲.14,某数x的43%比它的一半还少7,则列出求x的方程应是▲.15.在梯形面积公式S=(a+b)h中,已知a=12,h=8,S=120,则b=▲.16.如图是一个正方体的展开图,它所有相对的面上两数之和相等,则x的值为▲.17.观察下面的一列数,按其规律在横线上填上适当的数:,▲.18.如果∠α和∠β互补,且∠α∠β,则下列表示∠的余角的式子中:①90°-∠β;②∠α=90°;③(∠α+∠β):④(∠α-∠β).正确的有▲个.三、解答题:(本大题共10小题,共76分.把解答过程写在答题卷相应的位置上,解答时应写出必要的计算过程、推演步骤或文字说明)°19.(本题满分10分,每小题5分)计算:(1)2+(-3)-(-5)(2)20.(本题满分10分,每小题5分)解方程:(1)3(x-1)=5x+4(2)21.(本题满分5分)解不等式.22.(本题满分6分)已知A=y2-ay-1,B=2y2+3ay -2y-1,且多项式2A-B的值与字母y的取值无关,求a的值.23.(本题满分6分)如图,点P是∠AOB的边OB上的一点.(1)过点P画OB的垂线,交OA于点C;(2)过点P画OA的垂线,垂足为H;(3)线段PH的长度是点P到▲的距离,线段▲是点C到直线OB的距离;(4)线段PC、PH、OC这三条线段大小关系是▲(用“”号连接);理由是▲.24.(本题满分6分)某校的一间阶梯教室,第1排的座位数为12,从第2排开始,每一排都比前一排增加a个座位.(1)则第4排的座位数为▲;第n排的座位数为▲;(2)已知前5排座位数和是第15排座位数的2倍,求a 的值.。

江苏省苏州市相城区七年级数学上学期期末考试试题

江苏省苏州市相城区七年级数学上学期期末考试试题

2016-2017学年第一学期期末考试试卷七年级数学本试卷由填空题、选择题和解答题三大题组成,共28题,满分130分。

考试用时120分钟。

注意事项:1. 答题前,考生务必将学校、姓名、考场号、座位号、考试号填写在答题卷相应的位置上.2. 答题必须用0.5mm 黑色墨水签字笔写在答题卷指定的位置上,不在答题区域内的答案一律无效,不得用其他笔答题.3. 考生答题必须在答题卷上,答在试卷和草稿纸上一律无效.一、选择题:(本大题共有10小题,每小题3分,共30分.以下各题都有四个选项,其中只有一个是正确的,选出正确答案,并在答题卷上将该项涂黑.)1. 下列各组数中,互为相反数的是A. 3-与13-B. 3-与3C. 13-与13-D. 13-与13-- 2. 下列计算正确的是A.277a a a +=B.532y y -=C.22232x y yx x y -=D.325a b ab +=3. 解方程2(3)3(4)5x x ---=时,下列去括号正确的是A.23345x x --+=B.26345x x ---=C.233125x x ---=D.263125x x --+=4. 下列图形中,能够折叠成一个正方体的是5. 不等式组211x -≤+<的解集,在数轴上表示正确的是6. 已知点C 在线段AB 上,则下列条件中,不能确定点C 是线段AB 中点的是A.AC BC =B.2AB AC =C.AC BC AB +=D.12BC AB =7. 不等式1243x -≥的正整数解有A. 3个B. 2个C. 1个D. 0个8. 某公园将一长方形草地改造,长增加20%,宽减少20%,则这块长方形草地的面积A.减少4%B.不改变C.增大4%D.增大10%9. 已知30AOB ∠=︒,自AOB ∠顶点O 引射线OC ,若:4:3AOC AOB ∠∠=,那么BOC ∠的度数是A. 10°B. 40°或30°C. 70°D. 10°或70°10. 1011(2)(2)-+-的值为A.212-B.22-C.2-D.102-二、填空题: (本大题共8小题,每小题3分,共24分,把答案直接填在答题卡相对应的位置上。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2015-2016学年江苏省苏州市相城区七年级(上)期末数学试卷一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)﹣3的绝对值是()A.﹣3 B.3 C.D.2.(3分)中国航空母舰“辽宁号”的满载排水量为67500吨.将数67500用科学记数法表示为()A.0.675×105B.6.75×104C.67.5×103D.675×1023.(3分)在下列单项式中,与2xy是同类项的是()A.2x2y2B.3y C.xy D.4x4.(3分)已知∠α=35°,那么∠α的补角等于()A.35°B.55°C.65°D.145°5.(3分)由x<y得到ax>ay的条件是()A.a≥0 B.a≤0 C.a>0 D.a<06.(3分)如果x=2是方程x+a=﹣1的解,那么a的值是()A.﹣2 B.2 C.0 D.﹣67.(3分)一个正方体的每个面都有一个汉字,其展开图如图所示,那么在该正方体中和“值”字相对的字是()A.记B.观C.心D.间8.(3分)已知a﹣2b=﹣2,则4﹣2a+4b的值是()A.0 B.2 C.4 D.89.(3分)关于x的不等式组的解集为x>1,则a的取值范围是()A.a≥1 B.a>1 C.a≤1 D.a<110.(3分)如图棋盘上有黑、白两色棋子若干,找出所有三颗颜色相同的棋并且在同一直线上的直线,这样直线共有多少条()A.6条B.5条C.4条D.3条二、填空题(本大题共8小题,每小题3分,共24分)11.(3分)单项式7a3b2的次数是.12.(3分)下列各数﹣4,,π,0,0.1010010001…中,无理数有个.13.(3分)若关于x的方程3x﹣2a=0与2x+3a﹣13=0的解相同,则这两个方程的解为x=.14.(3分)如图,想在河堤两岸搭建一座桥,图中搭建方式中,最短的是PB,理由.15.(3分)几个人共同种一种树苗,如果每人种10棵,则剩下6棵树苗未种,如果每人种12棵,则缺6棵树苗,参加种树的有人.16.(3分)已知2﹣a和3﹣2a的值的符号相反,则a的取值范围是.17.(3分)求上午10时30分,钟面上时针和分针的夹角=度.18.(3分)设a,b,c是从1到9的互不相同的整数,则的最大值为.三、解答题(本大题共10小题,共76分)19.(10分)计算:(1)3+(﹣9)﹣(﹣6)(2).20.(10分)解方程:(1)5x﹣1=3(x+1)(2).21.(5分)解不等式2(x+1)﹣1≥4x+3,并把它的解集在数轴上表示出来.22.(5分)解不等式组.23.(6分)先化简,再求值3x2y﹣[2xy﹣2(xy﹣x2y)+xy],其中x=3,y=﹣.24.(6分)由几个相同的边长为1的小立方块搭成的几何体的俯视图如图,方格中的数字表示该位置的小立方块的个数.(1)请在图方格纸中分别画出该几何体的主视图和左视图;(2)根据三视图,这个几何体的表面积为个平方单位.(包括面积)25.(8分)情景:试根据图中信息,解答下列问题:(1)购买6根跳绳需元,购买12根跳绳需元.(2)小红比小明多买2根,付款时小红反而比小明少5元,你认为有这种可能吗?若有,请求出小红购买跳绳的根数;若没有请说明理由.26.(8分)如图,直线AB、CD、EF相交于点O,OG⊥CD,∠BOD=32°.(1)求∠AOG的度数;(2)如果OC是∠AOE的平分线,那么OG是∠AOF的平分线吗?请说明理由.27.(8分)已知关于x的方程4x+2m+1=2x+5的解是负数.(1)求m的取值范围;(2)在(1)的条件下,解关于x的不等式2(x﹣2)>mx+3.28.(10分)如图,在数轴上点A表示的数为a,点B表示的数为b,且a,b满足|a+2|+(3a+b)2=0,O为原点.(1)则a=,b=;(2)若动点P从点A出发,以每秒1个单位长度的速度沿数轴向右匀速运动,①当PO=2PB时,求点P的运动时间t;②当点P运动到线段OB上时,分别取AP和OB的中点E、F,则的值为.(3)有一动点Q从原点O出发第一次向左运动1个单位长度,然后在新的位置第二次运动,向右运动2个单位长度,在此位置第三次运动,向左运动3个单位长度…按照如此规律不断地左右运动,当运动到2015次时,求点Q所对应的有理数.2015-2016学年江苏省苏州市相城区七年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分;以下各题都有四个选项,其中只有一个是正确的,选出正确答案,并在答题卷上将该项涂黑.)1.(3分)(2014•舟山)﹣3的绝对值是()A.﹣3 B.3 C.D.【解答】解:|﹣3|=3.故﹣3的绝对值是3.故选:B.2.(3分)(2015•酒泉)中国航空母舰“辽宁号”的满载排水量为67500吨.将数67500用科学记数法表示为()A.0.675×105B.6.75×104 C.67.5×103 D.675×102【解答】解:将67500用科学记数法表示为:6.75×104.故选:B.3.(3分)(2015•柳州)在下列单项式中,与2xy是同类项的是()A.2x2y2B.3y C.xy D.4x【解答】解:与2xy是同类项的是xy.故选:C.4.(3分)(2015秋•相城区期末)已知∠α=35°,那么∠α的补角等于()A.35°B.55°C.65°D.145°【解答】解:∵∠α=35°,∴∠α的补角=180°﹣35°=145°,故选D.5.(3分)(1997•河北)由x<y得到ax>ay的条件是()A.a≥0 B.a≤0 C.a>0 D.a<0【解答】解:∵由x<y得到ax>ay,不等号的方向发生了可改变,∴a<0.故选D.6.(3分)(2015秋•相城区期末)如果x=2是方程x+a=﹣1的解,那么a的值是()A.﹣2 B.2 C.0 D.﹣6【解答】解:把x=2代入方程x+a=﹣1得:2×+a=﹣1,解得:a=﹣2,故选A.7.(3分)(2015•济宁)一个正方体的每个面都有一个汉字,其展开图如图所示,那么在该正方体中和“值”字相对的字是()A.记B.观C.心D.间【解答】解:对于正方体的平面展开图中相对的面一定相隔一个小正方形,由图形可知,与“值”字相对的字是“记”.故选:A.8.(3分)(2010•仙桃)已知a﹣2b=﹣2,则4﹣2a+4b的值是()A.0 B.2 C.4 D.8【解答】解:∵a﹣2b=﹣2,代入4﹣2a+4b,得4﹣2(a﹣2b)=4﹣2×(﹣2)=8.故选D.9.(3分)(2015秋•相城区期末)关于x的不等式组的解集为x>1,则a的取值范围是()A.a≥1 B.a>1 C.a≤1 D.a<1【解答】解:∵关于x的不等式组的解集为x>1,∴a的取值范围是:a≤1.故选:C.10.(3分)(2015秋•相城区期末)如图棋盘上有黑、白两色棋子若干,找出所有三颗颜色相同的棋并且在同一直线上的直线,这样直线共有多少条()A.6条B.5条C.4条D.3条【解答】解:如下图所示:则所有三颗颜色相同的棋并且在同一直线上的直线共有五条:①竖直的三颗黑色的,②竖直的三颗白色的,③斜着三颗黑色的,④斜着三颗白色的,⑤斜着的三颗白色的.故选B.二、填空题(本大题共8小题,每小题3分,共24分,把答案直接填在答题卡相应的位置上.)11.(3分)(2015•桂林)单项式7a3b2的次数是5.【解答】解:单项式7a3b2的次数是5,故答案为:5.12.(3分)(2015秋•相城区期末)下列各数﹣4,,π,0,0.1010010001…中,无理数有2个.【解答】解:无理数有:π,0,0.1010010001…共2个.故答案是:2.13.(3分)(2015秋•相城区期末)若关于x的方程3x﹣2a=0与2x+3a﹣13=0的解相同,则这两个方程的解为x=2.【解答】解:3x﹣2a=0,3x=2a,x=,2x+3a﹣13=0,2x=13﹣3a,x=,∵关于x的方程3x﹣2a=0与2x+3a﹣13=0的解相同,∴=,解得:a=3,∴x==2,故答案为:2.14.(3分)(2016春•阿荣旗期末)如图,想在河堤两岸搭建一座桥,图中搭建方式中,最短的是PB,理由垂线段最短.【解答】解:根据垂线段定理,连接直线外一点与直线上所有点的连线中,垂线段最短,∵PB⊥AD,∴PB最短.故答案为:垂线段最短.15.(3分)(2015•道外区二模)几个人共同种一种树苗,如果每人种10棵,则剩下6棵树苗未种,如果每人种12棵,则缺6棵树苗,参加种树的有6人.【解答】解:设参与种树的人数为x人.则10x+6=12x﹣6,x=6,即:6人参与种树.故答案是:6.16.(3分)(2015秋•相城区期末)已知2﹣a和3﹣2a的值的符号相反,则a的取值范围是 1.5<a<2.【解答】解:由题意得,(1),或(2);由(1)得无解;由(2)得,所以a的取值范围为1.5<a<2.17.(3分)(2015秋•相城区期末)求上午10时30分,钟面上时针和分针的夹角=135度.【解答】解:钟面平均分成12,可得每份是30°,时针只在6上,分针指在10与11的=处,时针与分针相距(4+)份30°×(4+)=135°,故答案为:135.18.(3分)(2016•柘城县校级一模)设a,b,c是从1到9的互不相同的整数,则的最大值为1.【解答】解:因为分母是相乘的关系,放大倍数大,所以应该尽量使a、b、c的取值小才能确保分式的值最大.故选a=1,b=2,c=3.∴的最大值为1.故填1.三、解答题(本大题共10小题,共76分,把解答过程写在答题卡相应的位置上,解答时应写出必要的计算过程、推演步骤或文字说明.)19.(10分)(2015秋•相城区期末)计算:(1)3+(﹣9)﹣(﹣6)(2).【解答】解:(1)原式=3﹣9+6=0;(2)原式=2×9﹣5×2×2=18﹣20=﹣2.20.(10分)(2015秋•相城区期末)解方程:(1)5x﹣1=3(x+1)(2).【解答】解:(1)去括号得:5x﹣1=3x+3,移项合并得:2x=4,解得:x=2;(2)去分母得:3(x+2)﹣12=2(2x﹣1),去括号得:3x+6﹣12=4x﹣2,移项合并得:x=﹣4.21.(5分)(2015秋•相城区期末)解不等式2(x+1)﹣1≥4x+3,并把它的解集在数轴上表示出来.【解答】解:去括号得:2x+2﹣1≥4x+3,移项、合并同类项得:2x≤﹣2,系数化为1得:x≤﹣1,在数轴上表示为:.22.(5分)(2015秋•相城区期末)解不等式组.【解答】解:∵解不等式①得:x<4,解不等式②得:x≥2,∴不等式组的解集为2≤x<4.23.(6分)(2015秋•相城区期末)先化简,再求值3x2y﹣[2xy﹣2(xy﹣x2y)+xy],其中x=3,y=﹣.【解答】解:原式=3x2y﹣[2xy﹣2xy+3x2y+xy],=3x2y﹣3x2y﹣xy,=﹣xy,当x=3,y=﹣时,原式=﹣3×(﹣)=1.24.(6分)(2015秋•相城区期末)由几个相同的边长为1的小立方块搭成的几何体的俯视图如图,方格中的数字表示该位置的小立方块的个数.(1)请在图方格纸中分别画出该几何体的主视图和左视图;(2)根据三视图,这个几何体的表面积为24个平方单位.(包括面积)【解答】解:(1)如图所示:;(2)能看到的:第一层表面积为12,第二层表面积为:7,第三层表面积为:5,∴这个几何体的表面积为24个平方单位.故答案为:24.25.(8分)(2014•抚州)情景:试根据图中信息,解答下列问题:(1)购买6根跳绳需150元,购买12根跳绳需240元.(2)小红比小明多买2根,付款时小红反而比小明少5元,你认为有这种可能吗?若有,请求出小红购买跳绳的根数;若没有请说明理由.【解答】解:(1)25×6=150(元),25×12×0.8=300×0.8=240(元).答:购买6根跳绳需150元,购买12根跳绳需240元.(2)有这种可能.设小红购买跳绳x根,则25×0.8x=25(x﹣2)﹣5,解得x=11.故小红购买跳绳11根.26.(8分)(2015秋•相城区期末)如图,直线AB、CD、EF相交于点O,OG⊥CD,∠BOD=32°.(1)求∠AOG的度数;(2)如果OC是∠AOE的平分线,那么OG是∠AOF的平分线吗?请说明理由.【解答】解:(1)由对顶角相等,得∠AOC=∠BOD=32°,由角的和差,得∠AOG=∠COG﹣∠AOC=90°﹣32°=58°;(2)如果OC是∠AOE的平分线,那么OG是∠AOF的平分线,理由如下:由OC是∠AOE的平分线,得∠COE=∠AOC=32°,由对顶角相等,得∠DOF=∠COE,等量代换,得∠DOF=∠AOC.∠AOC+∠AOG=∠COG=90°,∠DOF+∠FOG=∠DOG=90°,由等角的余角相等,得∠AOG=∠FOG,OG是∠AOF的平分线.27.(8分)(2015秋•相城区期末)已知关于x的方程4x+2m+1=2x+5的解是负数.(1)求m的取值范围;(2)在(1)的条件下,解关于x的不等式2(x﹣2)>mx+3.【解答】解:(1)方程4x+2m+1=2x+5的解是:x=2﹣m.由题意,得:2﹣m<0,所以m>2.(2)2(x﹣2)>mx+3,2x﹣4>mx+3,2x﹣mx>3+4,(2﹣m)x>7,因为m>2,所以2﹣m<0,所以x<.28.(10分)(2015秋•相城区期末)如图,在数轴上点A表示的数为a,点B表示的数为b,且a,b满足|a+2|+(3a+b)2=0,O为原点.(1)则a=﹣2,b=6;(2)若动点P从点A出发,以每秒1个单位长度的速度沿数轴向右匀速运动,①当PO=2PB时,求点P的运动时间t;②当点P运动到线段OB上时,分别取AP和OB的中点E、F,则的值为2.(3)有一动点Q从原点O出发第一次向左运动1个单位长度,然后在新的位置第二次运动,向右运动2个单位长度,在此位置第三次运动,向左运动3个单位长度…按照如此规律不断地左右运动,当运动到2015次时,求点Q所对应的有理数.【解答】解:(1)∵|a+2|+(3a+b)2=0,∴a+2=0,3a+b=0,∴a=﹣2,b=6;(2)①∵若动点P从点A出发,以每秒1个单位长度的速度沿数轴向右匀速运动,∴运动t秒后P点对应的数为﹣2+t,∵点A表示的数为﹣2,点B表示的数为6,∴PO=|﹣2+t|,PB=|﹣2+t﹣6|=|t﹣8|,当PO=2PB时,有|﹣2+t|=2|t﹣8|,解得t=6或14.答:点P的运动时间t为6或14秒;②当点P运动到线段OB上时,AP中点E表示的数是=,OB的中点F表示的数是3,所以EF=3﹣=,则==2;(3)依题意得:﹣1+2﹣3+4﹣5+6﹣7+…+2014﹣2015=(﹣1+2)+(﹣3+4)+(﹣5+6))+…+(﹣2013+2014)﹣2015 =1007﹣2015=﹣1008.答:点Q所对应的有理数的值为﹣1008.故答案为﹣2,6;2.参与本试卷答题和审题的老师有:HJJ;gbl210;1987483819;zjx111;ZJX;sjzx;HLing;sd2011;zgm666;sdwdmahongye;zhjh;dbz1018;wangming;CJX;wdzyzlhx;caicl;sks;bjf;2300680618;Linaliu(排名不分先后)菁优网2016年12月25日。

相关文档
最新文档