2010年江苏省南通市中考数学试卷(参考答案)
2010年江苏省南通市中考数学试卷解析
2010年江苏省南通市中考数学试卷一、选择题(共10小题,每小题3分,满分30分)1.(3分)(2010•凉山州)﹣4的倒数是()A.B.﹣4 C.4D.﹣2.(3分)(2012•包头)9的算术平方根是()A.3B.﹣3 C.81 D.﹣813.(3分)(2010•南通)用科学记数法表示数0.031,其结果是()A.3.1×102B.3.1×10﹣2C.0.31×10﹣1D.31×1034.(3分)(2010•南通)若使二次根式在实数范围内有意义,则x的取值范围是()A.x≥2B.x>2 C.x<2 D.x≤25.(3分)(2010•南通)如图,⊙O的直径AB=4,点C在⊙O上,∠ABC=30°,则AC的长是()A.1B.C.D.26.(3分)(2010•南通)某纺织厂从10万件同类产品中随机抽取了100件进行质检,发现其中有5件不合格,那么估计该厂这10万件产品中合格品约为()A.9.5万件B.9万件C.9500件D.5000件7.(3分)(2010•南通)关于x的方程mx﹣1=2x的解为正实数,则m的取值范围是()A.m≥2B.m≤2C.m>2 D.m<28.(3分)(2010•南通)如图,在菱形ABCD中,AB=5,∠BCD=120°,则对角线AC等于()1A.20 B.15 C.10 D.59.(3分)(2010•南通)如图,已知▱ABCD的对角线BD=4cm,将▱ABCD绕其对称中心O旋转180°,则点D所转过的路径长为()A.4πcm B.3πcm C.2πcm D.πcm10.(3分)(2010•南通)在平面直角坐标系xOy中,已知点P(2,2),点Q在y轴上,△PQO是等腰三角形,则满足条件的点Q共有()A.5个B.4个C.3个D.2个二、填空题(共8小题,每小题3分,满分24分)11.(3分)(2010•南通)如果正比例函数y=kx的图象经过点(1,﹣2),那么k的值等于.12.(3分)(2010•南通)若△ABC∽△DEF,△ABC与△DEF的相似比为1:2,则△ABC与△DEF的周长比为.13.(3分)(2010•南通)分解因式:ax2﹣ax= .14.(3分)(2010•南通)质地均匀的正方体骰子,其六个面上分别刻有1,2,3,4,5,6六个数字,投掷这个骰子一次,则向上一面的数字是奇数的概率为.15.(3分)(2010•南通)在平面直角坐标系中,已知线段MN的两个端点的坐标分别是M(﹣4,﹣1)、N(0,1),将线段MN平移后得到线段M′N′(点M、N分别平移到点M′、N′的位置),若点M′的坐标为(﹣2,2),则点N′的坐标为.216.(3分)(2010•南通)如图,小章利用一张左、右两边已经破损的长方形纸片ABCD做折纸游戏,他将纸片沿EF折叠后,D、C两点分别落在D′、C′的位置,并利用量角器量得∠EFB=65°,则∠AED′等于度.17.(3分)(2010•南通)如图,正方形ABCD的边长为4,点M在边DC上,M、N两点关于对角线AC对称,若DM=1,则tan∠ADN=.18.(3分)(2010•南通)设x1、x2是一元二次方程x2+4x﹣3=0的两个根,2x1(x22+5x2﹣3)+a=2,则a= .三、解答题(共10小题,满分96分)19.(10分)(2010•南通)计算:(1)(﹣4)2+(π﹣3)0﹣23﹣|﹣5|;(2)÷(1﹣)20.(8分)(2010•南通)如图,⊙O的直径AB垂直弦CD于M,且M是半径OB的中点,CD=6cm,求直径AB的长.3。
2010年江苏中考数学试题(含答案)
二0一0年江苏常州市升学统一考试数学试卷说明:1.本试卷共5页,全卷满分120分,考试时间为120分钟。
考生应将答案全部填写在答题卡相应位置上,写在本试卷上无效,考试结束后,请将本试卷和答题卡一并交回,考试时不允许使用计算器。
2.答题前,考生务必将自己的姓名,考试证号填写在试卷上,并填写好答题卡上的考生信息。
3.作图必须用2B 铅笔,并请加黑加粗,描写清楚。
一、选择题(本大题共有8小题,每小题2分,共16分。
在每小题所给的四个选项中,只有一个是正确的)1.用激光测距仪测得之间的距离为14000000米,将14000000用科学记数法表示为A.71410⨯ B. 61410⨯ C.71.410⨯ D.80.1410⨯2.函数2y x=的图像经过的点是 A.(2,1) B.(2,1)- C.(2,4) D.1(,2)2-3.函数13y x =-的自变量x 的取值范围是 A.0x ≠ B.3x > C.3x ≠- D.3x ≠4.如图所示几何体的主视图是5.下列运算错误的是235= B. 236= 623= D.2(2)2= 6.若两圆的半径分别为2和3,圆心距为5,则两圆的位置关系为A.外离B.外切C.相交D.内切 7.某一公司共有51名员工(包括经理),经理的工资高于其他员工的工资。
今年经理的工资从去年的200000元增加到225000元,而其他员工的工资同去年一样,这样,这家公司所有员工今年工资的平均数和中位数与去年相比将会A.平均数和中位数不变B.平均数增加,中位数不变C.平均数不变,中位数增加D.平均数和中位数都增加8.如图,一次函数122y x =-+的图像上有两点A 、B ,A 点的横坐标为2,B 点的横坐标为(042)a a a <<≠且,过点A 、B 分别作x 的垂线,垂足为C 、D ,AOC BOD ∆∆、的面积分别为12S S 、,则12S S 、的大小关系是A. 12S S >B. 12S S =C. 12S S <D. 无法确定二、填空题(本大题共有9小题,第9小题4分,其余8小题每小题2分,共20分。
2010年江苏省南通市中考数学试题及答案(word版)
年南通市初中毕业、升学考试2010学数项事意注考生在答题前请认真阅读本注意事项分钟.考试结束后,请将本试卷和答题卡一并交120分,考试时间为150页,满分为6.本试卷共1 回.毫米黑色字迹的签字笔填写在试卷及答题卡指定0.5.答题前,请务必将自己的姓名、考试证号用2 的位置..答案必须按要求填涂、书写在答题卡上,在试卷、草稿纸上答题一律无效.3 分.在每小题给出的四个选项中,恰有一项是30分,共3小题,每小题10一、选择题:本大题共上.位置符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应.......的倒数是4-.111.C4 .-B .-4 D .A 44 的算术平方根是9 .2 81 .-D 81 .C 3 .-B 3 .A ,结果是0.000031用科学记数法表示.36454---- 1031×.D 10 0.31×.C 103.1× .B 103.1×.A的取值范围是在实数范围内有意义,则若.4x6 3 .D .C .B .的长是AC,则=30°ABC上,∠O在⊙C,点=4AB的直径O如图,⊙.5.B 1 .A2.C2 .D 3 O · A B 件进行质检,发现100万件同类产品中随机抽取了10某纺织厂从.6 万件产品中合格品约为10件不合格,那么估计该厂这5其中有C 9.5.A 万件9.B 万件题)5(第件5000.D 件9500.C 的取值范围是m的解为正实数,则的方程x关于..B 2 ≥m.A . 欢迎大家评论.龙门书局的初中数学北师大版的《三点一测》值得一看 12 <m.D 2 >m.C ,则对角线 = 120°BCD,∠= 5AB 中,ABCD如图,菱形.8 A 的长是AC D B 15 .B20 .A 5 .D10 .C C 题)8(第绕其对ABCD,将=4cmBD的对角线ABCD如图,已知.9□□所转过的路径长为D,则点180°旋转O称中心 A D cmπ3.B cm π4.A O D cm π2.C cmπ. C B 题)9(第轴上,y在Q,点)2,2(P中,已知点xOy.在平面直角坐标系10共有Q是等腰三角形,则满足条件的点PQO△个5.A 个2.D 个3.C 个4.B 小题,每小题8二、填空题:本大题共不需写出解答过程,请把答案直接填写在答.分24分,共3.上.题卡相应位置.......▲的值等于k ,那么)2,-1的图象经过点(.如果正比例函数.▲的周长比为DEF与△ABC,则△2∶1的相似比为DEF与△ABC△, DEF∽△ABC.若△12.分解因式:.13 ▲=2六个数字,投掷这个骰子一次,6,5,4,3,2,1.质地均匀的正方体骰子,其六个面上分别刻有14.▲则向上一面的数字是偶数的概率为的两个端点的坐标分别是MN.在平面直角坐标系中,已知线段15 E A D ′N ′M 平移后得到线段MN,将线段)1,0(N、)1,-4(-MD′的坐标为′M ,若点的位置)′N 、′M 分别平移到点N、M(点 B C F .▲的坐标为′N ,则点)2,2(-C′题)16(第做折ABCD.如图,小章利用一张左、右两边已经破损的长方形纸片16的位′C 、′D 两点分别落在C、D折叠后,EF纸游戏,他将纸片沿等于′AED ,则∠65°=EFB置,并利用量角器量得∠度.▲ D A 两点关N、M上,DC在边M,点4的边长为ABCD.如图,正方形17·M tan,则=1DM对称,若AC于对角线.▲=ADN∠ 2 的两个根,3=0-x+4x 是一元二次方程x、x.设1821 C B · N 2 .▲=a,则 =2a3)+-x+5x(x2122题)17(第 . 欢迎大家评论.龙门书局的初中数学北师大版的《三点一测》值得一看 2内作答,解答时应写出文字说明、分.请在答题卡指定区域96小题,共10三、解答题:本大题共.......证明过程或演算步骤.分)10(本小题满分.19);1(计算:302|5|23)(4)(239.)2()(12a96分)8(本小题满分.20的中点,OB是P,垂足CD垂直于弦AB的直径O如图,⊙ A 的长.AB,求直径6 cm=CD ·O C D P B 题)20(第 21分)9(本小题满分.k两点.B、)1,2(A相交于与双曲线如图,直线x y 的值;k及m)求1( 3 2A , 1 的坐标;B直接写出点的方程组y、x)不解关于2(, 3 1 x 2 1 2 3 O x--- 1 -吗?请说明理由.B经过点)直线3(m42B 2 - 3 -题)21(第分)8(本小题满分.22分)进行了统计,x某地区随机抽取若干名八年级学生进行地理会考模拟测试,并对测试成绩(具体统计结果见下表: . 欢迎大家评论.龙门书局的初中数学北师大版的《三点一测》值得一看 3 某地区八年级地理会考模拟测试成绩统计表60 ≤x70 ≤x<6080 ≤x<7090 ≤x<80100 ≤x<90 分数段 217 480 642 1461 1200 人数)填空:1(名学生;▲ ①本次抽样调查共测试了上;▲ ②参加地理会考模拟测试的学生成绩的中位数落在分数段的人数所对应扇形的圆心角的100≤x<90③若用扇形统计图表示统计结果,则分数段为;▲度数为.现已97%分)的为合格,要求合格率不低于60分以上(含60)该地区确定地理会考成绩2(人,通过计算说明本次地理会考模拟测试的合格率是否117分的学生有60知本次测试得达到要求?分)9(本小题满分.23的速度向正m/min50 )班开展数学实践活动,小李沿着东西方向的公路以1光明中学九年级(C处,测得建筑物B后他走到20min 方向上,60°在北偏东C处测得建筑物A东方向行走,在)(已知的距离.AB到公路C方向上,求建筑物45°在北偏西北北C °45 °60 B A 题)23(第分)8(本小题满分.245、吨的货物分配给甲、乙两船运输.现甲、乙两船已分别运走其任务数的490)将一批重1(73甲船比乙船多运在已运走的货物中,,乙两船的任务数各多少吨?求分配给甲、吨.307 )自编一道应用题,要求如下:2(21必须全部用到,不添加其他数据.,,100①是路程应用题.三个数据55 . 欢迎大家评论.龙门书局的初中数学北师大版的《三点一测》值得一看 4②只要编题,不必解答.分)8(本小题满分.25 .DF=AC,CE=FBC在一条直线上,E、、F、B如图,已知:点?如果能,请给出证明;如果不能,请从下列三个条件中ED∥AB能否由上面的已知条件证明成立,并给出证明.ED∥AB,添加到已知条件中,使合适的条件选择一个.......:供选择的三个条件(请从其中选择一个) A ;ED=AB① C ;EF=BC② B E F ACB③∠.DFE∠= D 题)25(第分)10(本小题满分.26如有两个数字已模糊不清.电话本上的小陈手机号码中,由于保管不善,小沈准备给小陈打电话,个数11(手机号码由580y370x139表示这两个看不清的数字,那么小陈的手机号码为y、x果用的整数倍.20个数字之和是11,小沈记得这字组成)y+x)求1(的值;)求小沈一次拨对小陈手机号码的概率.2(分)12(本小题满分.27是大于m(m=AB中,ABCD如图,在矩形C、B上的动点(不与BC为线段E,8=BC,的常数)0y,DE⊥EF,作DE.连结重合).=BF,x=CE,设F交于点BA与射线EFy 的函数关系式;x关于)求1( A D y 的值最大,最大值是多少?为何值时,x,求8=m)若2( F 12y 的值应为多少?m为等腰三角形,DEF△,要使)若3(=m C B E 分)14(本小题满分.272y时,这条抛物线上3=x和3=x)两点,当0,,2(B、)34(A经过c+bx+ax已知抛物线=-- 0(C对应点的纵坐标相等.经过点为坐标原点.O轴平行,x与l)的直线2,-和这条抛物线的解析式;AB)求直线1(为圆心,A)以2(的位置关系,并说明理由;A与⊙l,判断直线A为半径的圆记为⊙AO2yPDO△上的动点,当c+bx+ax)是抛物线n,m(P,1的横坐标为D上的点AB)设直线3(=-的面积.CODP的周长最小时,求四边形 y . 欢迎大家评论.龙门书局的初中数学北师大版的《三点一测》值得一看 5 x O. 欢迎大家评论.龙门书局的初中数学北师大版的《三点一测》值得一看 6年南通市中考数学试卷答案2010 B 、10 C 、9 、D 、8 C 、7 3A、6 D 、5 C 、 4 B A、2 D 、141 8 、18 、17、50°、16 4) ,(2、15 14 ax(x-1) 、13 1:2 、12 -2 、1132a 4 、⑴19 ⑵、2034;⑵k=2 , m=-1、⑴21 B 经过点;⑶)-2,-1(;108°③90 ≤x<80②4000 ① 、⑴>%=符合要求,合格率⑵4000吨280吨和210、分配给甲、乙两船的任务数分别是24 m 、、略25 ) 为整数36+x+y=20k(k根据题意,设、⑴26 x+y=20k-36则18 ≤x+y≤0∵ 18 ≤20k-36≤0∴ 2.7 ≤k≤1.8 为整数k∵k=2 ∴ 2-36=4 x+y=20×∴⑵ 4 3 2 1 0 x 0 1 2 3 4 y 1 小沈一次拨对小陈手机号码的概率是5 90°=CED∠+BEF,∴∠90°=DEF,∴∠DE⊥EF)∵1(、解:27 CED∠=BFE,∴∠90°=BFE∠+BEF∵∠ CDE∽△BEF,∴△90°=C∠=B 又∵∠y xCEBF ,即∴==分4···································································∴···············x+x =- mm1122y 2 +)4x(x+x,则8=m)若2(==---88yy 分7·················时,·············4=x∴当···························2 =的值最大,最大1212812y x+x,则)若3(==- mmmm . 欢迎大家评论.龙门书局的初中数学北师大版的《三点一测》值得一看 72 分 8························································6 =x,2=x,解得0=12+x8x∴-21EF=DE为等腰三角形,只能DEF△为直角三角形,∴要使DEF△∵14422222222222y+)x8(=+)=x8(=BF+BEEF,x+m=CE+CD=DE又--2m1441442222 0 =64x16+m,即+)x8(=x+m∴---22mm144242 0 =144m32m,即0=32m时,2=x当----2m22 (舍去)4=m或36=m解得-··············6·=m,∴0>m∵分10······································································144242 0 =144m32+m,即0=32+m时,6=x当--2m22 4 =m(舍去)或36=m解得-·······2·=m,∴0>m∵分12·············································································y q+px的解析式为AB)设直线1(、解:28=1=-q+p4=3-2解得则+p2=01=q1y的解析式为AB∴直线分 2·························································1 ·+x=-2 y 时,这条抛物线上对应点的纵坐标相等3=x和3=x∵当-2yy c+ax,∴0=b轴,∴∴抛物线的对称轴为=)代入,得:0,2(B、)3,4(A把-1=+a16=34 A 解得+a4=01=c- B 12y分 4·····················1·x∴抛物线的解析式为=- O x 4 l E C 22 5 的半径为A,即⊙5==AO,∴)3,4(A)∵2(4+3-轴平行x与l)的直线2,0(C∵经过点-y 5 的距离为l到直线A,∴点2=的解析式为l∴直线-················· ·相切A与⊙l∴直线分 8·······························································331yy),1(D,∴,得1+x代入1=x)把3(==---22212 1 +m,即2+n=PH,则H于l⊥直线PH作P过点4 . 欢迎大家评论.龙门书局的初中数学北师大版的《三点一测》值得一看 811222222 1 +m===PO又∵n++m 44 分10·······PO··········=···········PH············∴····················································· ·的周长最小PDO最小时,△PH+PD即PO+PD的长度为定值,∴当DO∵三点在一条直线上时,H、P、D当最小PH+PD3 =n,代入抛物线的解析式,得1的横坐标为P∴点--43 分12·········,···············1················(··)P∴-- 4 的面积为:CODP此时四边形SS=S+ PCO PDOCODP△△四边形 171331 分14··············( =121)=++×××× 82422 y A D B x O P l H C . 欢迎大家评论.龙门书局的初中数学北师大版的《三点一测》值得一看 9。
南通中考数学试题及答案
南通中考数学试题及答案一、选择题(每题3分,共30分)1. 下列选项中,哪一个是无理数?A. 2B. 2.5C. √2D. 0.5答案:C2. 一个数的相反数是-5,那么这个数是:A. 5B. -5C. 1D. -1答案:A3. 已知一个等腰三角形的两边长分别为3和5,那么这个三角形的周长是:A. 11B. 13C. 14D. 16答案:C4. 计算(2x-1)-(3x+2)的结果是:A. -x-3B. -x+1C. x-3D. x+1答案:A5. 一个数的平方等于9,那么这个数是:A. 3B. -3C. 3或-3D. 以上都不是答案:C6. 已知一个函数的图象是一条直线,那么这个函数是:A. 一次函数B. 二次函数C. 三次函数D. 常数函数答案:A7. 一个圆的半径是4,那么这个圆的面积是:A. 16πB. 64πC. 12πD. 8π答案:B8. 计算(-2)^3的结果是:A. -8B. 8C. -6D. 6答案:A9. 一个数的绝对值是5,那么这个数是:A. 5B. -5C. 5或-5D. 以上都不是答案:C10. 计算2^2 * 3^3的结果是:A. 36B. 72C. 108D. 216答案:D二、填空题(每题3分,共15分)1. 一个数的立方等于27,那么这个数是______。
答案:32. 一个角的补角是120°,那么这个角的度数是______。
答案:60°3. 一个数的平方根是4,那么这个数是______。
答案:164. 一个数的倒数是1/2,那么这个数是______。
答案:25. 一个数的绝对值是5,那么这个数可以是______。
答案:5或-5三、解答题(每题10分,共55分)1. 解方程:2x - 3 = 7。
答案:x = 52. 已知一个矩形的长是10,宽是6,求这个矩形的面积。
答案:603. 已知一个直角三角形的两个直角边长分别是3和4,求斜边的长度。
2010年江苏省南通市中考数学试题答案
2010年南通市中考数学试卷答案1、D2、A3、B4、C5、D6、A7、C8、D9、C 10、B 11、-2 12、1:2 13、ax(x-1) 14、21 15、(2,4) 16、50°17、34 18、8 19、⑴4 ⑵3+a a20、34 21、⑴ m=-1,k=2 ;⑵ (-1,-2);⑶经过点B 22、⑴ ①4000 ②80<x ≤90 ③108°; ⑵ 符合要求,合格率=5.97975.040001172171==--%>97%23、)13(50-m 24、分配给甲、乙两船的任务数分别是210吨和280吨 25、略 26、⑴根据题意,设36+x+y=20k(k 为整数) 则x+y=20k-36∵0≤x+y ≤18∴0≤20k-36≤18 1.8≤k ≤2.7 ∵k 为整数∴k=2∴x+y=20×2-36=4 ⑵小沈一次拨对小陈手机号码的概率是5127、解:(1)∵EF ⊥DE ,∴∠DEF =90°,∴∠BEF +∠CED =90°∵∠BEF +∠BFE =90°,∴∠BFE =∠CED 又∵∠B =∠C =90°,∴△BEF ∽△CDE ∴BE BF =CD CE ,即x y -8=mx∴y =-m 1x2+m8x ·························································································· 4分 (2)若m =8,则y =-81x2+x =-81( x -4)2+2∴当x =4时,y 的值最大,y 最大=2 ······························································· 7分(3)若y =m 12,则-m 1x2+m8x =m 12∴x2-8x +12=0,解得x 1=2,x 2=6 ····························································· 8分 ∵△DEF 为直角三角形,∴要使△DEF 为等腰三角形,只能DE =EF 又DE 2=CD 2+CE 2=m2+x2,EF 2=BE 2+BF 2=( 8-x )2+y2=( 8-x )2+2144m∴m2+x2=( 8-x )2+2144m ,即m2+16x -64-2144m =0 当x =2时,m 2-32-2144m=0,即m 4-32m2-144=0解得m2=36或m2=-4(舍去)∵m >0,∴m =6 ···························································································· 10分当x =6时,m2+32-2144m=0,即m4+32m2-144=0解得m2=-36(舍去)或m2=4∵m >0,∴m =2 ···························································································· 12分28、解:(1)设直线AB 的解析式为y =px +q则⎩⎪⎨⎪⎧3=-4p +q0=2p +q 解得⎩⎪⎨⎪⎧p =-21q =1∴直线AB 的解析式为y =-21x +1 ······················································································· 2分 ∵当x =3和x =-3时,这条抛物线上对应点的纵坐标相等∴抛物线的对称轴为y 轴,∴b =0,∴y =ax2+c把A (-4,3)、B (2,0)代入,得:⎩⎪⎨⎪⎧3=16a +c 0=4a +c 解得⎩⎪⎨⎪⎧a =41c =-1∴抛物线的解析式为y =41x2-1 ··············································· 4分 (2)∵A (-4,3),∴AO =2243+=5,即⊙A 的半径为∵经过点C (0,-2)的直线l 与x 轴平行∴直线l 的解析式为y =-2,∴点A 到直线l 的距离为5∴直线l 与⊙A 相切 ························································································· 8分 (3)把x =-1代入y =-21x +1,得y =23,∴D (-1,23) 过点P 作PH ⊥直线l 于H ,则PH =n +2,即41m2+1 又∵PO =22n m+=222141)(-m m+=41m2+1 ∴PH =PO ……10分∵DO 的长度为定值,∴当PD +PO 即PD +PH 最小时,△当D 、P 、H 三点在一条直线上时,PD +PH 最小 ∴点P 的横坐标为-1,代入抛物线的解析式,得n =-43 ∴P (-1,-43) 12分 此时四边形CODP 的面积为: S 四边形CODP=S △PDO +S △PCO=21×( 23+43)×1+21×2×1=817 14分。
江苏省2010年中考数学试题(13份含有答案及解析)-6
泰州市二○一○年初中毕业、升学统一考试数学试题(考试时间:120分钟 满分:150分)请注意:1.本试卷分选择题和非选择题两部分.2.所有试题的答案均填写在答题卡上,答案写在试卷上无效.3.作图必须用2B 铅笔作答,并请加黑加粗,描写清楚.第一部分 选择题(共24分)一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上)1.(2010江苏泰州,1,3分)3-的倒数为( )A.3-B.31C.3D. 31- 【分析】如果两个数的积为1,那么这两个数互为倒数.所以3-的倒数为31-. 【答案】D【涉及知识点】有理数的有关概念【点评】涉及与有理数有关的概念题型,关键是对概念的理解,“回到定义中去”直接运用概念解题.【推荐指数】★★★★2.(2010江苏泰州,2,3分)下列运算正确的是( )A.623·a a a = B. 632)(a a -=- C. 33)(ab ab = D.428a a a =÷ 【分析】根据幂的运算性质,“同底数幂相乘,底数不变,指数相加”,选项A 不正确;“积的乘方,等于积中各因式乘方的积”,选项C 不正确;“同底数幂相除,底数不变,指数相减”,选项D 也不正确.【答案】B【涉及知识点】幂的运算性质【点评】用幂的运算性质解答问题,只要熟练掌握根据幂的运算性质即可.【推荐指数】★★★3.(2010江苏泰州,3,3分)据新华社2010年2月9日报道:受特大干旱天气影响,我国西南地区林地受灾面积达到43050000亩.用科学计数法可表示为( )A.810305.4⨯亩B. 610305.4⨯亩C. 71005.43⨯亩D. 710305.4⨯亩【分析】43050000可表示为4.305×10000000,100000=107,因此43050000=4.305×107.【答案】D【涉及知识点】科学记数法【点评】把一个数写成a ×10n的形式(其中1≤a <10,n 为整数,这种计数法称为科学记数法.科学记数法是每年中考试卷中的必考问题,应掌握:⑴表达形式为:,101(10<≤⨯a a n n 表示小数点移动的位数).科学记数法可以表示绝对值大于10的数,也可以表示绝对值小于1的数.⑵当表示绝对值大于10的数时应注意:小数点向左移到第一位数字后,看小数点移动了几位,n 的值就是几,表达式中的n 是应为正整数.⑶当表示绝对值小于1的数时应注意:小数点向右移到第一位不为零的数后,看小数点移动了几位,n 的值就是几,表达式中的n 应为负整数.【推荐指数】★★★★★4.(2010江苏泰州,4,3分)下面四个几何体中,主视图与其它几何体的主视图不同的是( )A. B. C. D.【分析】选项A 、B 、D 的主视图都是矩形,只有选项C 的主视图是三角形与其它三个几何体的主视图不同.【答案】C【涉及知识点】三视图【点评】由立体图形到视图的过程,通常称为读图.要注意两点:一是长、宽、高的关系;二是上下、左右、前后的关系.当然,平时学习中知识的积累也很重要.【推荐指数】★★★★5.(2010江苏泰州,5,3分)下列函数中,y 随x 增大而增大的是( ) A.x y 3-= B. 5+-=x y C. 12y x = D. )0(212<=x x y 【分析】选项A 反比例函数,其增减性要有前提条件,即在“各个象限内”,不能笼统地进行描述,应舍去;B 是一次函数,系数小于零,所以y 随x 增大而减小,舍去,选项D 中的二次函数开口向上,在对称轴的左侧(0)x <,y 随x 增大而减小,舍去.故选C .【答案】C【涉及知识点】一次函数、反比例函数、二次函数的增减性【点评】关于函数的增减性,对于一次函数而言,由系数k 即可确定,二次函数要由开口方向与对称轴来确定,而反比例函数,特别要注意“在每一个象限”这一限制条件.【推荐指数】★★★★6.(2010江苏泰州,6,3分)下列命题:①正多边形都是轴对称图形;②通过对足球迷健康状况的调查可以了解我国公民的健康状况;③方程1312112-=+--x x x 的解是0=x ;④如果一个角的两边与另一个角的两边分别平行,那么这两个角相等.其中真命题的个数有( )A.1个B.2个C.3个D.4个【分析】正多边形都是轴对称图形,对于正偶数边形,即是轴对称图形又是中心对称图形,①正确;对足球迷健康状况调查样本不具有代表性,②不正确;通过解答,③也是正确的;如果一个角的两边与另一个角的两边分别平行,那么这两个角相等或互补,④不正确.【答案】B【涉及知识点】轴对称与中心对称 随机抽样 分式方程的解法 简单的推理【点评】选择题中的判断正误题,往往是多个数学知识点组合在一起,在判断时,一是注意其表达的语言方式,二是注意漏解的情况.【推荐指数】★★★7.(2010江苏泰州,7,3分)一个铝质三角形框架三条边长分别为24cm 、30cm 、36cm ,要做一个与它相似的铝质三角形框架,现有长为27cm 、45cm 的两根铝材,要求以其中的一根为一边,从另一根上截下两段(允许有余料)作为另外两边.截法有( )A.0种B. 1种C. 2种D. 3种【分析】⑴假设以27cm 为一边,把45cm 截成两段,设这两段分别为xcm 、ycm (x <y ).则可得:24303627x y ==①或24303627x y==②(注:27cm 不可能是最小边),由①解得x=18,y=22.5,符合题意;由②解得x =1085,y =1625,x + y =1085+1625=2705=54>45,不合题意,舍去.⑵假设以45cm 为一边,把27cm 截成两段,设这两段分别为xcm 、ycm (x <y ).则可得:24303645x y ==(注:只能是45是最大边),解得x =30,y =752,x + y =30+37.5=67.5>27,不合题意,舍去.综合以上可知,截法只有一种.【答案】B【涉及知识点】相似三角形的判定【点评】在判定三角形相似,未明确对应关系时,特别注意不要忘了分类,再根据不同的对应关系分别计算要求的线段.【推荐指数】★★★★8.(2010江苏泰州,8,3分)已知m m Q m P 158,11572-=-=(m 为任意实数),则P 、Q 的大小关系为( )A.Q P >B. Q P =C. Q P <D.不能确定【分析】可用特殊值法或差值法.特殊值法:取m =15,分别代入得P =6,Q =217,故P <Q ;差值法:P -Q =27811515m m m ⎛⎫⎛⎫--- ⎪ ⎪⎝⎭⎝⎭=21m m -+-=21324m ⎛⎫--- ⎪⎝⎭<0,故P <Q .【答案】C【涉及知识点】代数式的大小比较【点评】代数式的大小比交,最常用的方法就是特殊值法、差值法及商值法,在填空题及选择题中,用特殊值法是最简捷的,要注意字母所取值必满足条件.【推荐指数】★★★第二部分 非选择题(共126分)二、填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)9.(2010江苏泰州,9,3分)数据-1,0,2,-1,3的众数为 .【分析】众数是指一组数据中出现次数最多的那个数,因为这组数据中-1出现的次数最多,所以这组数据的众数为-1.【答案】-1【涉及知识点】众数的概念【点评】平均数、中位数、众数概念是中考试题中的基本题型,只要掌握它们的概念,对照概念即可求出结果.要注意的是,求中位数时要先按大小顺序排列,另外,一组数据的平均数、中位数只有一个,而众数可能多于一个或者没有.【推荐指数】★★10.(2010江苏泰州,10,3分)不等式642-<x x 的解集为 .【分析】移项得246x x -<-、合并同类项得26x -<-、系数化为1,得x >3.【答案】x >3【涉及知识点】一元一次不等式的解法【点评】一元一次不等式的解法步骤与一元一次方程的解法相似,只是在不等式两边乘或除以同一个负数时,不等号的方向要改变.【推荐指数】★★★★11.(2010江苏泰州,11,3分)等腰△ABC 的两边长分别为2和5,则第三边长为 .【分析】等腰三角形有两条边相等,所以这个等腰三角形的三边长可以是2、2、5或2、5、5这两种情况,但2+2<5,不满足三角形三边关系定理,故舍去,其第三边长只能为5.【答案】5【涉及知识点】等腰三角形 三角形三边关系【点评】在计算等腰三角形的有关边长时,往往只注意分情况求边长,而忘了等腰三角形的三边长仍然需要满足三角形的三边关系定理,在解决此类问题时,千万不能顾此失彼.【推荐指数】★★★★★12.(2010江苏泰州,12,3分)已知扇形的圆心角为120°,半径为15cm ,则扇形的弧长为 cm (结果保留π).【分析】n °圆心角的弧长公式是: 180n R l π=.所以只要将n =120,R =15代入即可. 【答案】10π【涉及知识点】弧长计算公式【点评】圆周长公式为:C=2R π;所以n °圆心角的弧长公式即为: 180n R l π=.在计算弧长时只需将n 、R 分别代入.有时计算不规则图形时,要把不规则图形的问题转化为规则图形的问题.【推荐指数】★★★★★13.(2010江苏泰州,13,3分)一次函数b kx y +=(k 为常数且0≠k )的图象如图所示,则使0>y 成立的x 的取值范围为 .【分析】观察图象可知,直线在x 轴上方即0 y 时,x 的取值在-2的左侧,所以x 的取值范围是x <-2.【答案】x <-2【涉及知识点】一次函数与二元一次方程的关系【点评】二元一次方程转化为用含一个未知数的代数式表示另一个未知数,即得一次函数,在直角坐标系中画出其图象即可直观地看出当自变量取何值时,函值y 的值是大于0、等于0、还是小于0,这也是数形结合思想方法的简单运用.【推荐指数】★★★★★14.(2010江苏泰州,14,3分)已知点A 、B 的坐标分别为(2,0),(2,4),以A 、B 、P 为顶点的三角形与△ABO 全等,写出一个符合条件的点P 的坐标: .【分析】由题意在平面直角坐标系中标出点A 、点B ,要使以A 、B 、P 为顶点的三角形与△ABO 全等,因AB 是公共边,所以∠PBA 或∠PAB 为直角,且PA 或PB 等于2,由此可标出P 1(4,0),再由对称、翻折等图形的变化可求得满足条件的点P 有4个.【答案】(4,0);(4,4);(0,4);(0,0)(只要写出一个即可)【涉及知识点】平面直角坐标系 全等三角形的判定【点评】将全等三角形的判定置于平面直角坐标系中,只要画出图形,根据全等三角形的判定,确定其它的边的位置及大小,即可很方便地求出其坐标.【推荐指数】★★★★★15.(2010江苏泰州,15,3分)一个均匀的正方体各面上分别标有数字1、2、3、4、5、6,这个正方体的表面展开图如图所示.抛掷这个正方体,则朝上一面所标数字恰好等于朝下一面所标数字的3倍的概率是 .【分析】由正方体的展开图可知:1与3相对;2与6相对;4与5相对.这样抛掷这个正方体,点数朝上共有6种等可能的结果,其中朝上一面是6或3时恰好等于朝下一面所标数字的3倍,所以其概率是26即13. 【答案】13【涉及知识点】求简单事件发生的概率.【点评】简单的一步试验事件发生的概率等于事件包含的结果数k 除以所有等可能出现的结果数n ,k P n=.本题就是用这个公式得出方程从而求出n 的值.概率是研究随机现象规律的学科,是新课程增加的内容之一,在中考中作为重要的考点.近年来,概率题不只以“投骰子”和 “扑克牌”为背景,更多的是以生活实际、游戏和新课程核心内容为背景,成为中考试题中一道亮丽的风景..【推荐指数】★★★★★16.(2010江苏泰州,16,3分)如图在68⨯的网格图(每个小正方形的边长均为1个单位长度)中,⊙A 的半径为2个单位长度,⊙B 的半径为1个单位长度,要使运动的⊙B 与静止的⊙A 内切,应将⊙B 由图示位置向左平移 个单位长度.【分析】由图形可直观地得到⊙B 应向左平移4个或6个单位长度,即可与⊙A 内切.【答案】4或6【涉及知识点】两圆内切的概念【点评】注意⊙B 向左移动与⊙A 慢慢靠近再渐渐远去的过程,就不会出现漏解的情况.【推荐指数】★★★17. (2010江苏泰州,17,3分)观察等式:①4219⨯=-,②64125⨯=-,③86149⨯=-…按照这种规律写出第n 个等式: .【分析】先看等式左边,①式是32-1,②式是52-1,③式是72-1…所以第n 个等式左边应是()2211n +-;再看等式右边,①式是24⨯,②式是46⨯,③式是68⨯,所以第n 个等式右边应是2(22)n n +.【答案】())22(21122+=-+n n n 【涉及知识点】规律归纳猜想【点评】规律性猜想题,提供的信息是一种规律,但它隐含在题目中,有待挖掘和开发,一般只要注重观察数字(式)变化规律,经归纳便可猜想出结论.如果实在有困难,还可在平面直角坐标系中描点,根据图像猜测其蕴含的规律.【推荐指数】★★★★18.(2010江苏泰州,18,3分)如图⊙O 的半径为1cm ,弦AB 、CD 的长度分别为2,1cm cm ,则弦AC 、BD 所夹的锐角α= .【分析】由题意易得AB 所对的圆心角为90°,CD 所对的圆心角为60°,连结AD ,则锐角α=∠1+∠2,而∠1与∠2分别是CD 和AB 所对的圆周角,所以∠1+∠2=12(90°+60°).【答案】75°【涉及知识点】圆周角的性质【点评】解决圆中角度计算问题关键是掌握圆心角和圆周角之间的关系,利用同弧和等弧之间的关系进行转化.另外,往往添加能构成直径上的圆周角的辅助线,以便利用直径所对的圆周角是直角这个条件进行计算和证明.【推荐指数】★★★三、解答题:(本大题共有10小题,共96分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.(2010江苏泰州,19⑴,8分)计算: (1)12)21(30tan 3)21(01+-+︒---;【分析】根据零指数幂与负整指数幂即:a 0=1(a ≠0)、pp a a 1=-(a ≠0)可得1111()212--=⎛⎫- ⎪⎝⎭=-2、0(12)-=1,由特殊锐角三角函数值可知03tan 303=,再化简二次根式2122323=⨯=.【答案】原式=3231233--⨯++=23123--++=13-+.【涉及知识点】实数的混合运算 零指数幂与负整指数幂 特殊锐角三角函数值 二次根式的化简【点评】实数的混合运算首先注意运算顺序,其次运算律的灵活运用,最后是掌握幂的运算性质、特殊锐角三角函数值、二次根式的化简等知识点.【推荐指数】★★★(2010江苏泰州,19⑵,8分)(2))212(112aa a a a a +-+÷--. 【分析】先对括号内的两个分式通分,最简公分母是a (a +2),再做除法,最后做加减.【答案】原式=()21112a a a a a ---÷+=()()()21111a a a a a a +--⋅+-=211a a +-+ =()121a a a +-++=121a a a +--+=11a -+. 【涉及知识点】分式的加减乘除混合运算【点评】分式的混合运算,要牢记运算法则和运算顺序,并能灵活应用,分式的运算结果应是最简分式或整式.这里要强调一下,在进行分式通分后,根据分式加减法法则进行分式的加减运算,是分母不变,把分子相加减,有些同学生容易受解分式方程去分母这一步的影响,同时把分母去掉了,要引起重视,不能相混淆.【推荐指数】★★★★20.(2010江苏泰州,20,8分)已知△ABC ,利用直尺和圆规,根据下列要求作图(保留作图痕迹,不要求写作法),并根据要求填空:(1)作∠ABC 的平分线BD 交AC 于点D ;(2)作线段BD 的垂直平分线交AB 于点E ,交BC 于点F .由⑴、⑵可得:线段EF 与线段BD 的关系为【分析】(1)作∠ABC 的平分线BD 交AC 于点D :①用圆规在BA 、BC 边上分别截取等长的两线段BG 、BH .②分别以点G 、点H 为圆心,以相同半径画弧,两弧交点为O .③连结BO 并延长交AC 于点D .(2)作线段BD 的垂直平分线交AB 于点E ,交BC 于点F :①分别以点A 和点B 为圆心,以大于21AB 的长为半径作弧,两弧相交于点M 和点N ;②作直线MN .分别交AB 于点E ,交BC 于点F .由作图可证得四边形EBFD 是菱形,所以EF 与BD 互相垂直平分.【答案】⑴、⑵题作图如下:由作图可知线段EF 与线段BD 的关系为:互相垂直平分..【涉及知识点】尺规作图作角的平分线作线段的垂直平分线【点评】中考需要掌握的尺规作图部分有如下的要求:①完成以下基本作图:作一条线段等于已知线段,作一个角等于已知角,作角的平分线,作线段的垂直平分线.②利用基本作图作三角形:已知三边作三角形;已知两边及其夹角作三角形;已知两角及其夹边作三角形;已知底边及底边上的高作等腰三角形.③探索如何过一点、两点和不在同一直线上的三点作圆.④了解尺规作图的步骤,对于尺规作图题,会写已知、求作和作法(不要求证明).我们在掌握这些方法的基础上,还应该会解一些新颖的作图题,进一步培养形象思维能力.【推荐指数】★★★★21.(2010江苏泰州,21,8分)学校奖励给王伟和李丽上海世博园门票共两张,其中一张为指定日门票,另一张为普通日门票.班长提出由王伟和李丽分别转动下图的甲、乙两个转盘(转盘甲被二等分、转盘乙被三等分)确定指定日门票的归属,在两个转盘都停止转动后,若指针所指的两个数字之和为偶数,则王伟获得指定日门票;若指针所指的两个数字之和为奇数,则李丽获得指定日门票;若指针指向分隔线,则重新转动.你认为这个方法公平吗?请画树状图或列表,并说明理由.【分析】求两步(或超过两步)事件概率的题目是中考命题的重点,其计算方法有两种,一种列表法,另一种是画树状图法.用利表法或画树状图法计算两步试验的随机事件的概率时,应把两步试验的所有可能的情况表示出来,从而计算随机事件的概率.【答案】根据题意列表(或画树状图)如下:由列表(或树状图)可知:()2163==和为偶数P ,()2163==和为奇数P . 所以这个方法是公平的.【涉及知识点】利用事件发生的概率判断游戏的公平性【点评】判断事件是否公平,要先用树状图或列表法求出双方获胜的概率,看游戏的规则使双方获胜的可能性是否相同,即概率是否相等.这种类型的题目,如果游戏不公平,有时还要求修改游戏规则使游戏变得公平,修改的方法一是看所有可能的结果中,哪些结果占一半【推荐指数】★★★★★22.(2010江苏泰州,22,8分)如图,四边形ABCD 是矩形,∠EDC =∠CAB ,∠DEC =90°.(1)求证:AC ∥DE ;(2)过点B 作BF ⊥AC 于点F ,连结EF ,试判断四边形BCEF 的形状,并说明理由.【分析】(1)要证AC ∥DE ,设法证两个内错角相等,由已知∠EDC =∠CAB ,再由矩形利用两边平行将∠ACD 作为中间量进行转化;(2)可先猜想四边形BCEF 是平行四边形,设法证EF 、BC 与AD 的关系运用EF 、BC 平行且相等可得证.【答案】⑴在矩形ABCD 中,AC ∥DE ,∴∠DCA =∠CAB ,∵∠EDC =∠CAB ,∴∠DCA =∠EDC ,∴AC ∥DE ;⑵四边形BCEF 是平行四边形.理由:由∠DEC =90°,BF ⊥AC ,可得∠AFB =∠DEC =90°,又∠EDC =∠CAB ,AB=CD ,∴△DEC ≌△AFB ,∴DE =AF ,由⑴得AC ∥DE ,∴四边形AFED 是平行四边形,∴AD ∥EF 且AD =EF ,∵在矩形ABCD 中,AD ∥BC 且AD =BC ,∴EF ∥BC 且EF =BC ,∴四边形BCEF 是平行四边形.【涉及知识点】矩形的性质 平行四边形的判定 全等三角形的判定【点评】从中考试卷来看,平行四边形这一节不会有很复杂的证明题,主要考查平行四边形的性质特征及判别方法综合运用. 掌握这部分内容,首先搞清平行四边形与矩形、菱形、 正方形之间的包含关系.注重把握特殊平行四边形与一般平行四边形的异、同点,才能准确地、灵活地运用.【推荐指数】★★★★★23.(2010江苏泰州,23,10分)近期以来,大蒜和绿豆的市场价格离奇攀升,网民戏称为“蒜你狠”、“豆你玩”.以绿豆为例,5月上旬某市绿豆的市场价已达16元/千克.市政府决定采取价格临时干预措施,调进绿豆以平抑市场价格.经市场调研预测,该市每调进100吨绿豆,市场价格就下降1元/千克.为了即能平抑绿豆的市场价格,又要保护豆农的生产积极性,绿豆的市场价格控制在8元/千克到10元/千克之间(含8元/千克和10元/千克).问调进绿豆的吨数应在什么范围内为宜?【分析】理解了“每调进100吨绿豆,市场价格就下降1元/千克”,即“每调进1吨绿豆,市场价格就下降1001元/千克”,并比较容易列不等式组了. 【答案】设调进绿豆x 吨,根据题意,得1681001610.100x x -≥-≤⎧⎪⎪⎨⎪⎪⎩, 解得 600≤x ≤800. 答:调进绿豆的吨数应不少于600吨,并且不超过800吨.【涉及知识点】一元一次不等式组的应用【点评】本例是不等式组在实际生活中的综合运用,侧重考查如何把生活问题转化为数学问题的能力,建立不等式模型,即“数学建模”. 从近两年的中考题来看,一元一次不等式(组)的实际应用题比以前要有所增加,其呈现的方式通常是与方程、一次函数等知识结合来求解.另外还常常辅以图表来说明有关信息,我们要抓住相等或不等的数量关系,结合图表观察、分析、猜想、归纳从而找到解题的最佳途径.【推荐指数】★★★★24.(2010江苏泰州,24,10分)玉树地震后,全国人民慷慨解囊,积极支援玉树人民抗震救灾,他们有的直接捐款,有的捐物.国家民政部、中国红十字会、中华慈善总会及其他基金会分别接收了捐赠,青海省也直接接收了部分捐赠.截至5月14日12时,他们分别接收捐赠(含直接捐款数和捐赠物折款数)的比例见扇形统计图(图①),其中,中华慈善总会和中国红十字会共接收...捐赠约合人民币15.6亿元.请你根据相关信息解决下列问题:(1)其他基金会接收捐赠约占捐赠总数的百分比是 ;(2)全国接收直接捐款数和捐物折款数共计约 亿元;(3)请你补全图②中的条形统计图;(4)据统计,直接捐款数比捐赠物折款数的6倍还多3亿元,那么直接捐款数和捐赠物折款数各多少亿元?【分析】⑴1-33%-33%-13%-17%=4%,故应填4%;⑵因为中华慈善总会和中国红十字会共接收...捐赠约合人民币15.6亿元,而这两家机构点捐赠的百分比为(13%+17%)=30%,所以全国接收的捐款数和捐物折款数为:15.6÷30%=52亿,应填52亿.⑶由13%×52=6.76亿,可知中华慈善总会所受赠款物的条形高度.⑷小题是一道简单的一元一次方程的应用题,只要抓住总接收的捐款数和和捐物折款数为52亿即可列出方程.【答案】⑴4%;⑵52亿;⑶补全图如下:⑷设直接捐款数为x,则捐赠物折款数为:(52-x)依题意得:x=6(52-x)+3解得x=45(亿)(52-x)=52-45=7(亿)答:直接捐款数和捐赠物折款数分别为45亿,7亿元..【涉及知识点】扇形统计图条形统计图【点评】对数据进行整理和分析,要能从统计图中获取信息和数据,并作出合理的判断和预测,有些题目还要求对由数据得到的结论进行合理的质疑.这类题型充分展现了数学的实效性.解决这类题要以生活经验寻求基本的数量关系,要有针对性,要克服光靠图象,不加数学分析的主观臆断.【推荐指数】★★★★★25.(2010江苏泰州,25,10分)庞亮和李强相约周六去登山,庞亮从北坡山脚C处出发,以24米/分钟的速度攀登,同时,李强从南坡山脚B 处出发.如图,已知小山北坡的坡度31∶=i ,山坡长为240米,南坡的坡角是45°.问李强以什么速度攀登才能和庞亮同时到达山顶A ?(将山路AB 、AC 看成线段,结果保留根号)【分析】由题意通过作辅助线构造两个共边的直角三角形,再由解直角三角形的知识可求得山坡AB 的长,要使得李强和庞亮同时到达山项,只要将庞亮登到山项的时间算出即可得李强的速度.【答案】过点A 作AD ⊥BC 于点D ,在Rt △ADC 中,由3:1=i 得tan C =3331=∴∠C =30°∴AD =21AC =21×240=120(米) 在Rt △ABD 中,∠B =45°∴AB =2AD =1202(米) 1202÷(240÷24)=1202÷10=122(米/分钟)答:李强以122米/分钟的速度攀登才能和庞亮同时到达山顶A .【涉及知识点】解直角三角形【点评】转化是解直角三解形的关键,解斜三角形一般要通过辅助线把斜三角形转化为几个直角三角形,再解直角三角形.【推荐指数】★★★★★26.(2010江苏泰州,26,10分)保护生态环境,建设绿色社会已经从理念变为人们的行动.某化工厂2009年1 月的利润为200万元.设2009年1 月为第1个月,第x 个月的利润为y 万元.由于排污超标,该厂决定从2009年1 月底起适当限产,并投入资金进行治污改造,导致月利润明显下降,从1月到5月,y 与x 成反比例.到5月底,治污改造工程顺利完工,从这时起,该厂每月的利润比前一个月增加20万元(如图).⑴分别求该化工厂治污期间及治污改造工程完工后y 与x 之间对应的函数关系式.⑵治污改造工程完工后经过几个月,该厂月利润才能达到2009年1月的水平?⑶当月利润少于100万元时为该厂资金紧张期,问该厂资金紧张期共有几个月?【分析】当1≤x ≤5时,图象是反比例函数的图象,设解析式将(1,200)代入即可求其解析式;当x >5时,是一次函数的图象,根据从这时起,该厂每月的利润比前一个月增加20万元,可得一次函数解析式.利润少于100万元要分别从反比例函数和一次函数中求对应的月份.【答案】⑴①当1≤x ≤5时,设k y x =,把(1,200)代入,得200k =,即200y x =;②当5x =时,40y =,所以当x >5时,4020(5)2060y x x =+-=-;⑵当y =200时,20x -60=200,x=13,所以治污改造工程顺利完工后经过13-5=8个月后,该厂利润达到200万元; ⑶对于200y x=,当y =100时,x =2;对于y =20x -60,当y =100时,x =8,所以资金紧张的时间为8-2=6个月.【涉及知识点】反比例函数、一次函数的性质及应用【点评】本题是一道反比例函数及一次函数有关的图象信息题,巧妙地这两个函数结合在一起,考查了同学们对数学知识的实际应用能力.图象信息题的主要特点是已知条件陷臧在给出的图象中,解决此类问题的关键是读懂图象,从图象中找出解题所需要的相关条件,然后正确求解.【推荐指数】★★★★27.(2010江苏泰州,27,12分)如图,二次函数c x y +-=221的图象经过点D ⎪⎭⎫ ⎝⎛-29,3,与x 轴交于A 、B 两点.⑴求c 的值;⑵如图①,设点C 为该二次函数的图象在x 轴上方的一点,直线AC 将四边形ABCD 的面积二等分,试证明线段BD 被直线AC 平分,并求此时直线AC 的函数解析式;⑶设点P 、Q 为该二次函数的图象在x 轴上方的两个动点,试猜想:是否存在这样的点P 、Q ,使△AQP ≌△ABP ?如果存在,请举例验证你的猜想;如果不存在,请说明理由.(图②供选用)。
江苏省南通市中考数学试卷及答案(Word解析版)
江苏省南通市中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上)1.(3分)(•南通)下列各数中,小于﹣3的数是()A.2B.1C.﹣2 D.﹣4考点:有理数大小比较分析:根据有理数的大小比较法则(正数都大于0,负数都小于0,正数都大于负数,两个负数,其绝对值大的反而小)比较即可.解答:解:A、2>﹣3,故本选项错误;B、1>﹣3,故本选项错误;C、∵|﹣2|=2,|﹣3|=3,∴﹣2>﹣3,故本选项错误;D、∵|﹣4|=4,|﹣3|=3,∴﹣4<﹣3,故本选项正确;故选D.点评:本题考查了有理数的大小比较法则的应用,注意:理数的大小比较法则是:正数都大于0,负数都小于0,正数都大于负数,两个负数,其绝对值大的反而小.2.(3分)(•南通)某市参加中考的考生人数约为85000人,将85000用科学记数法表示为()A.8.5×104B.8.5×105C.0.85×104D.0.85×105考点:科学记数法—表示较大的数分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于85000有5位,所以可以确定n=5﹣1=4.解答:解:85 000=8.5×104.故选A.点评:此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.3.(3分)(•南通)下列计算,正确的是()A.x4﹣x3=x B.x6÷x3=x2C.x•x3=x4D.(xy3)2=xy6考点:同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方专题:计算题.分析:A、本选项不能合并,错误;B、利用同底数幂的除法法则计算得到结果,即可做出判断;C、利用同底数幂的乘法法则计算得到结果,即可做出判断;D、利用积的乘方与幂的乘方运算法则计算得到结果,即可做出判断.解答:解:A、本选项不能合并,错误;B、x6÷x3=x3,本选项错误;C、x•x3=x4,本选项正确;D、(xy3)2=x2y6,本选项错误.故选C.点评:此题考查了同底数幂的乘除法,幂的乘方与积的乘方,以及二次根式的乘除法,熟练掌握运算法则是解本题的关键.4.(3分)(•南通)如图所示的几何图形中,既是轴对称图形又是中心对称图形的个数是()A.4B.3C.2D.1考点:中心对称图形;轴对称图形分析:根据轴对称图形与中心对称图形的概念对各图形分析判断后解答即可.解答:解:第一个图形是轴对称图形,不是中心对称图形;第二个图形是轴对称图形,不是中心对称图形;第三个图形是轴对称图形,也是中心对称图形;第四个图形是轴对称图形,不是中心对称图形;第五个图形是轴对称图形,也是中心对称图形;综上所述,第三个和第五个图形既是中心对称图形又是轴对称图形,共2个.故选B.点评:本题考查了轴对称图形与中心对称图形,轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.5.(3分)(•南通)有3cm,6cm,8cm,9cm的四条线段,任选其中的三条线段组成一个三角形,则最多能组成三角形的个数为()A.1B.2C.3D.4考点:三角形三边关系分析:从4条线段里任取3条线段组合,可有4种情况,看哪种情况不符合三角形三边关系,舍去即可.解答:解:四条木棒的所有组合:3,6,8和3,6,9和6,8,9和3,8,9;只有3,6,8和6,8,9;3,8,9能组成三角形.故选:C.点评:此题主要考查了三角形三边关系,三角形的三边关系:任意两边之和>第三边,任意两边之差<第三边;注意情况的多解和取舍.6.(3分)(•南通)函数中,自变量x的取值范围是()A.x>1 B.x≥1 C.x>﹣2 D.x≥﹣2考点:函数自变量的取值范围分析:根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x的范围.解解:根据题意得:x﹣1>0,答:解得:x>1.故选A.点评:考查了函数自变量的取值范围,函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.7.(3分)(•南通)如图,用尺规作出∠OBF=∠AOB,作图痕迹是()A.以点B为圆心,OD为半径的圆B.以点B为圆心,DC为半径的圆C.以点E为圆心,OD为半径的圆D.以点E为圆心,DC为半径的圆考点:作图—基本作图分析:根据作一个角等于已知角的作法进行解答即可.解答:解:作∠OBF=∠AOB的作法,由图可知,①以点O为圆心,以任意长为半径画圆,分别交射线OA、OB分别为点C,D;②以点B为圆心,以OC为半径画圆,分别交射线BO、MB分别为点E,F;③以点E为圆心,以CD为半径画圆,交射于点N,连接BN即可得出∠OBF,则∠OBF=∠AOB.故选D.点评:本题考查的是基本作图,熟知作一个角等于已知角的基本步骤是解答此题的关键.8.(3分)(•南通)用如图所示的扇形纸片制作一个圆锥的侧面,要求圆锥的高是4cm,底面周长是6πcm,则扇形的半径为()A.3cm B.5cm C.6cm D.8cm考点:圆锥的计算分析:首先根据圆锥的底面周长求得圆锥的底面半径,然后根据勾股定理求得圆锥的母线长就是扇形的半径.解答:解:∵底面周长是6πcm,∴底面的半径为3cm,∵圆锥的高为4cm,∴圆锥的母线长为:=5 ∴扇形的半径为5cm,故选B.点评:本题考查了圆锥的计算,解题的关键是了解圆锥的母线、高及底面半径围成一个直角三角形.9.(3分)(•南通)小李与小陆从A地出发,骑自行车沿同一条路行驶到B地,他们离出发地的距离S(单位:km)和行驶时间t(单位:h)之间的函数关系的图象如图所示,根据图中提供的信息,有下列说法:(1)他们都行驶了20km;(2)小陆全程共用了1.5h;(3)小李与小陆相遇后,小李的速度小于小陆的速度;(4)小李在途中停留了0.5h.其中正确的有()A.4个B.3个C.2个D.1个考点:一次函数的应用专题:压轴题.分析:首先注意横纵坐标的表示意义,再观察图象可得他们都行驶了20km;小陆从0.5时出发,2时到达目的地,全程共用了:2﹣0.5=1.5h;小李与小陆相遇后,他们距离目的地有相同的路程,但是小陆到达目的地所用时间小于小李到达目的地所用时间,根据速度=路程÷时间可得小李的速度小于小陆的速度;小李出发0.5小时后停留了0.5小时,然后根据此信息分别对4种说法进行判断.解答:解:(1)根据图象的纵坐标可得:他们都行驶了20km,故原说法正确;(2)根据图象可得:小陆全程共用了:2﹣0.5=1.5h,故原说法正确;(3)根据图象可得:小李与小陆相遇后,他们距离目的地有相同的路程,但是小陆用1个小时到B地,小李用1.5个小时到B地,所以小李的速度小于小陆的速度,故原说法正确;(4)根据图象可得:表示小李的S﹣t图象从0.5时开始到1时结束,时间在增多,而路程没有变化,说明此时在停留,停留了1﹣0.5=0.5小时,故原说法正确.故选A.点评:此题主要考查了学生从图象中读取信息的数形结合能力.同学们要注意分析其中的“关键点”,还要善于分析各图象的变化趋势.10.(3分)(•南通)如图.Rt△ABC内接于⊙O,BC为直径,AB=4,AC=3,D是的中点,CD与AB的交点为E,则等于()A.4B.3.5 C.3D.2.8考点:垂径定理;勾股定理;圆周角定理;相似三角形的判定与性质.专题:压轴题.分析:利用垂径定理的推论得出DO⊥AB,AF=BF,进而得出DF的长和△DEF∽△CEA,再利用相似三角形的性质求出即可.解答:解:连接DO,交AB于点F,∵D是的中点,∴DO⊥AB,AF=BF,∵AB=4,∴AF=BF=2,∴FO是△ABC的中位线,AC∥DO,∵BC为直径,AB=4,AC=3,∴BC=5,∴DO=2.5,∴DF=2.5﹣1.5=1,∵AC∥DO,∴△DEF∽△CEA,∴=,∴==3.故选C.点评:此题主要考查了垂径定理的推论以及相似三角形的判定与性质,根据已知得出△DEF∽△CEA是解题关键.二、填空题(本大题共8小题,每小题3分,共24分.不需要写出解答过程,请把答案直接填写在答题卡相应位置上)11.(3分)(•南通)若反比例函数y=的图象经过点A(1,2),则k=2.考点:反比例函数图象上点的坐标特征专压轴题.题:分析:根据反比例函数图象上点的坐标特点可得k=1×2=2.解答:解:∵反比例函数y=的图象经过点A(1,2),∴k=1×2=2,故答案为:2.点评:此题主要考查了反比例函数图象上点的坐标特点,关键是掌握反比例函数图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.12.(3分)(•南通)如图,直线AB,CD相交于点O,OE⊥AB,∠BOD=20°,则∠COE等于70度.考点:垂线;对顶角、邻补角分析:根据对顶角相等求出∠AOC,根据垂直求出∠AOE,相减即可求出答案.解答:解:∵∠BOD=20°,∴∠AOC=∠BOD=20°,∵OE⊥AB,∴∠AOE=90°,∴∠COE=90°﹣20°=70°,故答案为:70.点评:本题考查了垂直定义,对顶角的应用,关键是求出∠AOE和∠AOC的大小.13.(3分)(•南通)一个几何体的主视图、俯视图和左视图都是大小相同的圆,则这个几何体是球体.考点:由三视图判断几何体分析:主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.解答:解:球的主视图、左视图、俯视图都是圆,故答案为:球体.点评:考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.14.(3分)(•南通)如图,在Rt△ABC中,CD是斜边AB上的中线,已知CD=2,AC=3,则sinB的值是.考点:锐角三角函数的定义;直角三角形斜边上的中线分析:首先根据直角三角形斜边中线等于斜边一半求出AB的长度,然后根据锐角三角函数的定义求出sinB即可.解答:解:∵Rt△ABC中,CD是斜边AB上的中线,CD=2,∴AC=2CD=4,则sinB==.故答案为:.点评:本题考查了锐角三角函数的定义,属于基础题,解答本题的关键是掌握直角三角形斜边上的中线定理和锐角三角函数的定义.15.(3分)(•南通)已知一组数据5,8,10,x,9的众数是8,那么这组数据的方差是2.8.考点:方差;众数分析:根据众数的定义求出x的值,再根据平均数的计算公式求出这组数据的平均数,再根据方差公式进行计算即可.解答:解:∵一组数据5,8,10,x,9的众数是8,∴x是8,∴这组数据的平均数是(5+8+10+8+9)÷5=8,∴这组数据的方差是:[(5﹣8)2+(8﹣8)2+(10﹣8)2+(8﹣8)2+(9﹣8)2]=2.8.故答案为:2.8.点评:此题考查了众数、平均数和方差,掌握众数、平均数和方差的定义及计算公式是此题的关键,众数是一组数据中出现次数最多的数.一般地设n个数据,x1,x2,…x n 的平均数为,则方差S2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2].16.(3分)(•南通)如图,经过点B(﹣2,0)的直线y=kx+b与直线y=4x+2相交于点A(﹣1,﹣2),则不等式4x+2<kx+b<0的解集为﹣2<x<﹣1.考点:一次函数与一元一次不等式分析:由图象得到直线y=kx+b与直线y=4x+2的交点A的坐标(﹣1,﹣2)及直线y=kx+b 与x轴的交点坐标,观察直线y=4x+2落在直线y=kx+b的下方且直线y=kx+b落在x 轴下方的部分对应的x的取值即为所求.解答:解:∵经过点B(﹣2,0)的直线y=kx+b与直线y=4x+2相交于点A(﹣1,﹣2),∴直线y=kx+b与直线y=4x+2的交点A的坐标为(﹣1,﹣2),直线y=kx+b与x 轴的交点坐标为B(﹣2,0),又∵当x<﹣1时,4x+2<kx+b,当x>﹣2时,kx+b<0,∴不等式4x+2<kx+b<0的解集为﹣2<x<﹣1.故答案为﹣2<x<﹣1.点评:本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.17.(3分)(•南通)如图,在▱ABCD中,AB=6cm,AD=9cm,∠BAD的平分线交BC 于点E,交DC的延长线于点F,BG⊥AE,垂足为G,BG=4cm,则EF+CF的长为5 cm.考点:相似三角形的判定与性质;等腰三角形的判定与性质;勾股定理;平行四边形的性质专题:压轴题.分析:首先,由于AE平分∠BAD,那么∠BAE=∠DAE,由AD∥BC,可得内错角∠DAE=∠BEA,等量代换后可证得AB=BE,即△ABE是等腰三角形,根据等腰三角形“三线合一”的性质得出AE=2AG,而在Rt△ABG中,由勾股定理可求得AG的值,即可求得AE的长;然后,利用平行线分线段成比例的性质分别得出EF,FC的长,即可得出答案.解答:解:∵AE平分∠BAD,∴∠DAE=∠BAE;又∵AD∥BC,∴∠BEA=∠DAE=∠BAE,∴AB=BE=6cm,∴EC=9﹣6=3(cm),∵BG⊥AE,垂足为G,∴AE=2AG.在Rt△ABG中,∵∠AGB=90°,AB=6cm,BG=4cm,∴AG==2(cm),∴AE=2AG=4cm;∵EC∥AD,∴====,∴=,=,解得:EF=2(cm),FC=3(cm),∴EF+CF的长为5cm.故答案为:5.点评:本题考查了平行四边形的性质,相似三角形的判定与性质,勾股定理等知识的掌握程度和灵活运用能力,同时也体现了对数学中的数形结合思想的考查,难度适中.18.(3分)(2013•南通)已知x=2m+n+2和x=m+2n时,多项式x2+4x+6的值相等,且m﹣n+2≠0,则当x=3(m+n+1)时,多项式x2+4x+6的值等于3.考点:二次函数的性质专题:压轴题.分析:先将x=2m+n+2和x=m+2n时,多项式x2+4x+6的值相等理解为x=2m+n+2和x=m+2n时,二次函数y=x2+4x+6的值相等,则抛物线的对称轴为直线x=,又二次函数y=x2+4x+6的对称轴为直线x=﹣2,得出=﹣2,化简得m+n=﹣2,即可求出当x=3(m+n+1)=3(﹣2+1)=﹣3时,x2+4x+6的值.解答:解:∵x=2m+n+2和x=m+2n时,多项式x2+4x+6的值相等,∴二次函数y=x2+4x+6的对称轴为直线x==,又∵二次函数y=x2+4x+6的对称轴为直线x=﹣2,∴=﹣2,∴3m+3n+2=﹣4,m+n=﹣2,∴当x=3(m+n+1)=3(﹣2+1)=﹣3时,x2+4x+6=(﹣3)2+4×(﹣3)+6=3.故答案为3.点评:本题考查了二次函数的性质及多项式求值,难度中等.将x=2m+n+2和x=m+2n时,多项式x2+4x+6的值相等理解为x=2m+n+2和x=m+2n时,二次函数y=x2+4x+6的值相等是解题的关键.三、解答题(本大题共10小题,共96分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.(11分)(•南通)(1)计算:;(2)先化简,再求代数式的值:,其中m=1.考点:分式的化简求值;零指数幂;二次根式的混合运算分析:(1)本题涉及零指数幂、绝对值、二次根式化简三个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果;(2)先通分,然后进行四则运算,最后将m=1代入.解答:解:(1)=÷÷1﹣3=﹣3;(2)=•=,当m=1时,原式=﹣.点评:(1)主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握零指数幂、绝对值、二次根式等考点的运算;(2)解答此题的关键是把分式化到最简,然后代值计算.20.(9分)(•南通)在平面直角坐标系xOy中,已知A(﹣1,5),B(4,2),C (﹣1,0)三点.(1)点A关于原点O的对称点A′的坐标为(1,﹣5),点B关于x轴的对称点B′的坐标为(4,﹣2),点C关于y轴的对称点C的坐标为(1,0).(2)求(1)中的△A′B′C′的面积.考点:关于原点对称的点的坐标;三角形的面积;关于x轴、y轴对称的点的坐标分析:(1)关于原点对称的两点的横、纵坐标都是互为相反数;关于x轴对称的两点的横坐标相同,纵坐标互为相反数;关于y轴对称的两点的横坐标互为相反数,纵坐标相同;(2)根据点A′(1,﹣5),B′(4,﹣2),C′(1,0)在平面直角坐标系中的位置,可以求得A′C′=5,B′D=3,所以由三角形的面积公式进行解答.解答:解:(1)∵A(﹣1,5),∴点A关于原点O的对称点A′的坐标为(1,﹣5).∵B(4,2),∴点B关于x轴的对称点B′的坐标为(4,﹣2).∵C(﹣1,0),∴点C关于y轴的对称点C的坐标为(1,0).故答案分别是:(1,﹣5),(4,﹣2),(1,0).(2)如图,∵A′(1,﹣5),B′(4,﹣2),C′(1,0).∴A′C′=|﹣5﹣0|=5,B′D=|4﹣1|=3,∴S△A′B′C′=A′C′•B′D=×5×3=7.5,即(1)中的△A′B′C′的面积是7.5.点评:本题考查了关于原点、x轴、y轴对称的点的坐标,三角形的面积.解答(2)题时,充分体现了“数形结合”数学思想的优势.21.(8分)(•南通)某水果批发市场将一批苹果分为A,B,C,D四个等级,统计后将结果制成条形图,已知A等级苹果的重量占这批苹果总重量的30%.回答下列问题:(1)这批苹果总重量为4000kg;(2)请将条形图补充完整;(3)若用扇形图表示统计结果,则C等级苹果所对应扇形的圆心角为90度.考点:条形统计图;扇形统计图分析:(1)根据A等级苹果的重量÷A等级苹果的重量占这批苹果总重量的30%,求得这批苹果总重量;(2)求得C等级苹果的重量,补全统计图;(3)求得C等级苹果的百分比,然后计算其所占的圆心角度数.解答:解:(1)1200÷30%=4000(kg).故这批苹果总重量为4000kg;(2)4000﹣1200﹣1600﹣200=1000(kg),将条形图补充为:(3)×360°=90°.故C等级苹果所对应扇形的圆心角为90度.故答案为:4000,90.点评:本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.22.(10分)(•南通)在不透明的袋子中有四张标着数字1,2,3,4的卡片,小明、小华两人按照各自的规则玩抽卡片游戏.小明画出树状图如图所示:小华列出表格如下:第一次第二次1 2 3 41 (1,1)(2,1)(3,1)(4,1)2 (1,2)(2,2)①(4,2)3 (1,3)(2,3)(3,3)(4,3)4 (1,4)(2,4)(3,4)(4,4)回答下列问题:(1)根据小明画出的树形图分析,他的游戏规则是,随机抽出一张卡片后不放回(填“放回”或“不放回”),再随机抽出一张卡片;(2)根据小华的游戏规则,表格中①表示的有序数对为(3,2);(3)规定两次抽到的数字之和为奇数的获胜,你认为谁获胜的可能性大?为什么?考点:列表法与树状图法分析:(1)根据小明画出的树形图知数字1在第一次中出现,但没有在第二次中出现可以判断;(2)根据横坐标表示第一次,纵坐标表示第二次可以得到答案;(3)根据树状图和统计表分别求得其获胜的概率,比较后即可得到答案.解答:解:(1)观察树状图知:第一次摸出的数字没有在第二次中出现,∴小明的实验是一个不放回实验,(2)观察表格发现其横坐标表示第一次,纵坐标表示第二次,(3)理由如下:∵根据小明的游戏规则,共有12种等可能的结果,数字之和为奇数的有8种,∴概率为:=;∵根据小华的游戏规则,共有16种等可能的结果,数字之和为奇数的有8种,∴概率为:=,∵>∴小明获胜的可能性大.故答案为不放回;(3,2).点评:本题考查了列表法和树状图法,利用列表法或树状图法展示某一随机事件中所有等可能出现的结果数n,再找出其中某一事件所出现的可能数m,然后根据概率的定义可计算出这个事件的概率=.23.(8分)(•南通)若关于x的不等式组恰有三个整数解,求实数a的取值范围.考点:一元一次不等式组的整数解分析:首先利用a表示出不等式组的解集,根据解集中的整数恰好有3个,即可确定a的值.解答:解:解+>0,得x>﹣;解3x+5a+4>4(x+1)+3a,得x<2a,∴不等式组的解集为﹣<x<2a.∵关于x的不等式组恰有三个整数解,∴2<2a≤3,解得1<a≤.点评:本题考查不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.24.(8分)(•南通)如图,AB=AC,AD=AE,DE=BC,且∠BAD=∠CAE.求证:四边形BCDE是矩形.考点:矩形的判定;全等三角形的判定与性质专题:证明题.分析:求出∠BAE=∠CAD,证△BAE≌△CAD,推出∠BEA=∠CDA,BE=CD,得出平行四边形BCDE,根据平行线性质得出∠BED+∠CDE=180°,求出∠BED,根据矩形的判定求出即可.解答:证明:∵∠BAD=∠CAE,∴∠BAD﹣∠BAC=∠CAE﹣∠BAC,∴∠BAE=∠CAD,∵在△BAE和△CAD中∴△BAE≌△CAD(SAS),∴∠BEA=∠CDA,BE=CD,∵DE=BC,∴四边形BCDE是平行四边形,∵AE=AD,∴∠AED=∠ADE,∵∠BEA=∠CDA,∴∠BED=∠CDE,∵四边形BCDE是平行四边形,∴BE∥CD,∴∠CDE+∠BED=180°,∴∠BED=∠CDE=90°,∴四边形BCDE是矩形.点评:本题考查了矩形的判定,平行四边形的性质和判定,平行线的性质全等三角形的性质和判定的应用,主要考查学生运用定理进行推理的能力,注意:有一个角是直角的平行四边形是矩形.25.(8分)(•南通)如图,△ABC内接于⊙O,AB是⊙O的直径,∠BAC=2∠B,⊙O 的切线AP与OC的延长线相交于点P,若PA=cm,求AC的长.考点:切线的性质分析:根据直径求出∠ACB=90°,求出∠B=30°,∠BAC=60°,得出△AOC是等边三角形,得出∠AOC=60°,OA=AC,在Rt△OAP中,求出OA,即可求出答案.解答:解:∵AB是⊙O直径,∴∠ACB=90°,∵∠BAC=2∠B,∴∠B=30°,∠BAC=60°,∵OA=OC,∴△AOC是等边三角形,∴∠AOC=60°,AC=OA,∵PA是⊙O切线,∴∠OAP=90°,在Rt△OAP中,PA=6cm,∠AOP=60°,∴OA===6,∴AC=OA=6.点评:本题考查了圆周角定理,切线的性质,解直角三角形,等边三角形的性质和判定的应用,主要考查学生的推理能力.26.(8分)(•南通)某公司营销A、B两种产品,根据市场调研,发现如下信息:信息1:销售A种产品所获利润y(万元)与销售产品x(吨)之间存在二次函数关系y=ax2+bx.在x=1时,y=1.4;当x=3时,y=3.6.信息2:销售B种产品所获利润y(万元)与销售产品x(吨)之间存在正比例函数关系y=0.3x.根据以上信息,解答下列问题;(1)求二次函数解析式;(2)该公司准备购进A、B两种产品共10吨,请设计一个营销方案,使销售A、B两种产品获得的利润之和最大,最大利润是多少?考点:二次函数的应用分析:(1)把两组数据代入二次函数解析式,然后利用待定系数法求解即可;(2)设购进A产品m吨,购进B产品(10﹣m)吨,销售A、B两种产品获得的利润之和为W元,根据总利润等于两种产品的利润的和列式整理得到W与m的函数关系式,再根据二次函数的最值问题解答.解答:解:(1)∵当x=1时,y=1.4;当x=3时,y=3.6,∴,解得,所以,二次函数解析式为y=﹣0.1x2+1.5x;(2)设购进A产品m吨,购进B产品(10﹣m)吨,销售A、B两种产品获得的利润之和为W元,则W=﹣0.1m2+1.5m+0.3(10﹣m)=﹣0.1m2+1.2m+3=﹣0.1(m﹣6)2+6.6,∵﹣0.1<0,∴当m=6时,W有最大值6.6,∴购进A产品6吨,购进B产品4吨,销售A、B两种产品获得的利润之和最大,最大利润是6.6万元.点评:本题考查了二次函数的应用,主要利用了待定系数法求二次函数解析式,二次函数的最值问题,比较简单,(2)整理得到所获利润与购进A产品的吨数的关系式是解题的关键.27.(13分)(•南通)如图,在Rt△ABC中,∠ACB=90°,AC=,BC=3,△DEF是边长为a(a为小于3的常数)的等边三角形,将△DEF沿AC方向平移,使点D在线段AC上,DE∥AB,设△DEF与△ABC重叠部分的周长为T.(1)求证:点E到AC的距离为一个常数;(2)若AD=,当a=2时,求T的值;(3)若点D运动到AC的中点处,请用含a的代数式表示T.考点:相似形综合题分析:(1)解直角三角形,求得点E到AC的距离等于a,这是一个定值;(2)如答图2所示,作辅助线,将四边形MDEN分成一个等边三角形和一个平行四边形,求出其周长;(3)可能存在三种情形,需要分类讨论:①若0<a≤,△DEF在△ABC内部,如答图3所示;②若<a≤,点E在△ABC内部,点F在△ABC外部,在如答图4所示;③若<a<3,点E、F均在△ABC外部,如答图5所示.解答:解:(1)由题意得:tanA===,∴∠A=60°.∵DE∥AB,∴∠CDE=∠A=60°.如答图1所示,过点E作EH⊥AC于点H,则EH=DE•sin∠CDE=a•=a.∴点E到AC的距离为一个常数.(2)若AD=,当a=2时,如答图2所示.设AB与DF、EF分别交于点M、N.∵△DEF为等边三角形,∴∠MDE=60°,由(1)知∠CDE=60°,∴∠ADM=180°﹣∠MDE﹣∠CDE=60°,又∵∠A=60°,∴△ADM为等边三角形,∴DM=AD=.过点M作MG∥AC,交DE于点G,则∠DMG=∠ADM=60°,∴△DMG为等边三角形,∴DG=MG=DM=.∴GE=DE﹣DG=2﹣=.∵∠MGD=∠E=60°,∴MG∥NE,又∵DE∥AB,∴四边形MGEN为平行四边形.∴NE=MG=,MN=GE=.∴T=DE+DM+MN+NE=2+++=.(3)若点D运动到AC的中点处,分情况讨论如下:①若0<a≤,△DEF在△ABC内部,如答图3所示:∴T=3a;②若<a≤,点E在△ABC内部,点F在△ABC外部,在如答图4所示:设AB与DF、EF分别交于点M、N,过点M作MG∥AC交DE于点G.与(2)同理,可知△ADM、△DMG均为等边三角形,四边形MGEN为平行四边形.∴DM=DG=NE=AD=,MN=GE=DE﹣DG=a﹣,∴T=DE+DM+MN+NE=a++(a﹣)+=2a+;③若<a<3,点E、F均在△ABC外部,如答图5所示:设AB与DF、EF分别交于点M、N,BC与DE、EF分别交于点P、Q.在Rt△PCD中,CD=,∠CDP=60°,∠DPC=30°,∴PC=CD•tan60°=×=.∵∠EPQ=∠DPC=30°,∠E=60°,∴∠PQE=90°.由(1)知,点E到AC的距离为a,∴PQ=a﹣.∴QE=PQ•tan30°=(a﹣)×=a﹣,PE=2QE=a﹣.由②可知,四边形MDEN的周长为2a+.∴T=四边形MDEN的周长﹣PE﹣QE+PQ=(2a+)﹣(a﹣)﹣(a﹣)+(a﹣)=a+﹣.综上所述,若点D运动到AC的中点处,T的关系式为:T=.点评:本题考查了运动型综合题,新颖之处在于所求是重叠部分的周长而非面积.难点在于第(3)问,根据题意,可能的情形有三种,需要分类讨论,避免漏解.28.(13分)(•南通)如图,直线y=kx+b(b>0)与抛物线相交于点A(x1,y1),B(x2,y2)两点,与x轴正半轴相交于点D,与y轴相交于点C,设△OCD的面积为S,且kS+32=0.(1)求b的值;(2)求证:点(y1,y2)在反比例函数的图象上;(3)求证:x1•OB+y2•OA=0.考点:二次函数综合题专题:压轴题.分析:(1)先求出直线y=kx+b与x轴正半轴交点D的坐标及与y轴交点C的坐标,得到△OCD的面积S=﹣,再根据kS+32=0,及b>0即可求出b的值;(2)先由y=kx+8,得x=,再将x=代入y=x2,整理得y2﹣(16+8k2)y+64=0,然后由已知条件直线y=kx+8与抛物线相交于点A(x1,y1),B (x2,y2)两点,知y1,y2是方程y2﹣(16+8k2)y+64=0的两个根,根据一元二次方程根与系数的关系得到y1•y2=64,即点(y1,y2)在反比例函数的图象上;(3)先由勾股定理,得出OA2=+,OB2=+,AB2=(x1﹣x2)2+(y1﹣y2)2,由(2)得y1•y2=64,又易得x1•x2=﹣64,则OA2+OB2=AB2,根据勾股定理的逆定理得出∠AOB=90°.再过点A作AE⊥x轴于点E,过点B作BF⊥x轴于点F,根据两角对应相等的两三角形相似证明△AEO∽△OFB,由相似三角形对应边成比例得到=,即可证明x1•OB+y2•OA=0.解答:(1)解:∵直线y=kx+b(b>0)与x轴正半轴相交于点D,与y轴相交于点C,∴令x=0,得y=b;令y=0,x=﹣,∴△OCD的面积S=(﹣)•b=﹣.∵kS+32=0,∴k(﹣)+32=0,解得b=±8,∵b>0,∴b=8;(2)证明:由(1)知,直线的解析式为y=kx+8,即x=,将x=代入y=x2,得y=()2,整理,得y2﹣(16+8k2)y+64=0.∵直线y=kx+8与抛物线相交于点A(x1,y1),B(x2,y2)两点,∴y1,y2是方程y2﹣(16+8k2)y+64=0的两个根,∴y1•y2=64,∴点(y1,y2)在反比例函数的图象上;(3)证明:由勾股定理,得OA2=+,OB2=+,AB2=(x1﹣x2)2+(y1﹣y2)2,由(2)得y1•y2=64,同理,将y=kx+8代入y=x2,得kx+8=x2,即x2﹣8kx﹣64=0,∴x1•x2=﹣64,∴AB2=+++﹣2x1•x2﹣2y1•y2=+++,又∵OA2+OB2=+++,∴OA2+OB2=AB2,∴△OAB是直角三角形,∠AOB=90°.如图,过点A作AE⊥x轴于点E,过点B作BF⊥x轴于点F.∵∠AOB=90°,∴∠AOE=90°﹣∠BOF=∠OBF,又∵∠AEO=∠OFB=90°,∴△AEO∽△OFB,∴=,∵OE=﹣x1,BF=y2,∴=,∴x1•OB+y2•OA=0.点评:本题是二次函数的综合题型,其中涉及到的知识点有二次函数、反比例函数图象上点的坐标特征,三角形的面积,一次函数与二次函数的交点,一元二次方程根与系数的关系,勾股定理及其逆定理,相似三角形的判定与性质,综合性较强,难度适中.求出△OCD的面积S是解第(1)问的关键;根据函数与方程的关系,得到y1,y2是方程y2﹣(16+8k2)y+64=0的两个根,进而得出y1•y2=64是解第(2)问的关键;根据函数与方程的关系,一元二次方程根与系数的关系,勾股定理及其逆定理得出∠AOB=90°,是解第(3)问的关键.21 / 21。
江苏省2010年中考数学试题(13份含有答案及解析)-4
江苏省淮安市2010年初中毕业暨中等学校招生文化统一考试数学试题欢迎参加中考,相信你能成功!请先目读以下几点注意事项:1.本卷分为第1卷和第Ⅱ卷两部分,共6页。
满分150分。
考试时闻120分钟。
2.第1卷每小题选出答案后,请用2B铅笔把答题卡上对应题目的答案标号涂黑,如需要改动,请用橡皮擦干净后.再选涂其他答案。
答案答在本试题卷上无效。
3.作答第Ⅱ卷时,用O.5毫米黑色墨水签字笔将答案写在答题卡上的指定位置。
答案答在本试题卷上或规定区域以外无效。
4.作图必须用2B铅笔作答,并请加黑加粗,描写清楚。
5.考试结束,将本试卷和答题卡一并交回。
第Ⅰ卷(选择题共24分)一、选择题(本大题共有8小题,每小题3分,共24分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上) 1.(2010江苏淮安,1,3分)-(-2)的相反数是A.2 B.12C.-12D.-2【分析】一个实数a的相反数为-a,所以首先对-(-2)化简为,-(-2)表示-2 的相反数,所以-(-2)=2,故-(-2)的相反数是-2.【答案】D【涉及知识点】相反数的意义【点评】本题属于基础题,主要考查学生对概念的掌握以及多重符号的化简的知识,考查知识点单一,有利于提高本题的信度.【推荐指数】★2.(2010江苏淮安,2,3分)计算32a a 的结果是A.a6B.a5C.2a3D.a【分析】同底数幂的乘法,底数不变指数相加,所以结果为B.【答案】B【涉及知识点】同底数幂的乘法法则【点评】本题属于基础题,主要考查学生对法则的应用,知识点比较单一.【推荐指数】★3.(2010江苏淮安,3,3分)2010年5月27日,上海世博会参观人数达到37.7万人,37.7万用科学记数法表示应为A.0.377×l06 B.3.77×l05C.3.77×l04D.377×103【分析】37.7万可以表示为377000,用a×10n科学记数法表示时,10指数为整数位数减去1,所以377000=3.77×l05.【答案】B【涉及知识点】科学记数法【点评】本题属于基础题,主要考查学生对较大数的科学记数法的表示方法,以及“万”、“亿”等单位与0之间的转化,此类问题一般是比较简单的问题.【推荐指数】★★★★4.(2010江苏淮安,4,3分)在一次信息技术考试中,某兴趣小组8名同学的成绩(单位:分)分别是:7,10,9,8,7,9,9,8,则这组数据的众数是A.7 B.8 C.9 D.10【分析】众数是一组数据中出现次数最多的数据,所以次数据中的众数为9.【答案】C【涉及知识点】众数的概念【点评】本题属于基础题,主要考查学生对概念的掌握,考查知识点单一,有利于提高本题的信度.【推荐指数】★5.(2010江苏淮安,5,3分)若一个多边形的内角和小于其外角和,则这个多边形的边数是A.3 B.4 C.5 D.6【分析】三角形的内角和为180°,四边形的内角和是360°,而且边数越多,内角和越大,而多边形的外角和是360°与边数无关,所以选择A.【答案】A【涉及知识点】多边形的内角和、外角和【点评】本题主要是常见多边形的内角和与外角和的应用,本题比较简单,但是也可以利用不等式的问题解决.【推荐指数】★★6.(2010江苏淮安,6,3分)如图,圆柱的主视图是【分析】主视图是在正面内得到由前向后观察的视图,所以应选择B.【答案】B【涉及知识点】主视图的概念【点评】本题属于基础题,主要考查学生对概念的理解,掌握好正视图概念是解决此问题的关键.【推荐指数】★★7.(2010江苏淮安,7,3分)下面四个数中与11最接近的数是A.2 B.3 C.4 D.5【分析】由于9<11<16,所以11的平方根应在3和4 之间,又因为3.52=12.25,所以11最接近的数为B.【答案】B【涉及知识点】实数的估算【点评】本题主要考察对实数的估算的知识,解决此类问题的步骤是首先确定所在整数的范围,然后再确定两个整数之间的数的平方,进而确定出其范围.【推荐指数】★★8.(2010江苏淮安,8,3分)观察下列各式:()1121230123⨯=⨯⨯-⨯⨯ ()1232341233⨯=⨯⨯-⨯⨯()1343452343⨯=⨯⨯-⨯⨯……计算:3×(1×2+2×3+3×4+…+99×100)= A .97×98×99 B .98×99×100 C .99×100×101 D .100×101×102 【分析】从材料可以得出1×2,2×3,3×4,……可以用式子表示,即原式=.()()()1113123012234123991001019899100333⎡⎤⨯⨯⨯-⨯⨯+⨯⨯-⨯⨯+⋅⋅⋅⋅⋅⋅+⨯⨯-⨯⨯⎢⎥⎣⎦=123012234123991001019899100⨯⨯-⨯⨯+⨯⨯-⨯⨯+⋅⋅⋅⋅⋅⋅+⨯⨯-⨯⨯=99×100×101,所以选择C. 【答案】C【涉及知识点】材料阅读题【点评】对于材料阅读的问题是中考问题中的常见问题,也属于难度较大的问题,这种问题的规律性比较强,所以找出材料中的规律是解决此类问题的关键. 【推荐指数】★★★★第Ⅱ卷(非选择题 共126分)二、填空题(本大题共有lO 小题,每小题3分,共30分.不需写出解答过程,请把答案直接写在答题卡相应位置上)9. (2010江苏淮安,9,3分)当x= 时,分式13x -与无意义. 【分析】分式无意义的条件是分母为0,所以x -3=0,即x=3. 【答案】x=3【涉及知识点】分是无意义的条件【点评】本题属于基础题,主要考查学生对分式无意义的条件的考察,考查知识点单一. 【推荐指数】★10.(2010江苏淮安,10,3分)已知周长为8的等腰三角形,有一个腰长为3,则最短的一条串位线长为 .【分析】根据等腰三角形的周长和一腰的长,可以求出底边长为5,所以根据三角形中位线的性质,可知较短的中位线是与腰平行的中位线,所以长度为1.5.【答案】1.5【涉及知识点】三角形的中位线和等腰三角形【点评】本题是结合等腰三角形的知识和中位线的性质的问题,三角形的中位线是指连接三角形两边中点的线段,中位线的特征是平行于第三边且等于第三边的一半.【推荐指数】★★11.(2010江苏淮安,11,3分)化简:()()2222x x x+--= .【分析】首先根据完全平方公式可得224444x x x xx++-+-,然后再得88xx=.【答案】8【涉及知识点】分式的约分和完全平方公式【点评】本题属于基础题,主要考查学生的计算能力和对公式的把握程度.【推荐指数】★★12.(2010江苏淮安,12,3分)若一次函数y=2x+l的图象与反比例函数图象的一个交点横坐标为l,则反比例函数关系式为.【分析】由于交点在一次函数上,所以把x=1代入函数的解析式,可得y=3,所以点的坐标为(1,3),设反比例函数的解析式为kyx=,把(1,3)代入可得k=3,所以反比例函数的解析式为3yx =.【答案】B【涉及知识点】反比例函数和一次函数【点评】本题主要考察点在函数图像上的知识和反比例函数解析式的确定方法,属于中等难度的问题.【推荐指数】★★★13.(2010江苏淮安,13,3分)如图,已知点A,B,C在⊙O上,AC∥0B,∠BOC=40°,则∠ABO= .题13图【分析】由于∠BOC和∠BAC都是弧BC所对的圆周角和圆心角,所以可知2∠BAC=∠BOC,所以∠BAC=20°,又因为AC∥0B,所以∠ABO=∠BAC=20°.【答案】20°【涉及知识点】圆周角的性质和平行线的性质【点评】本题是圆周角与平行线知识相结合的问题,属于中等难度的问题,解决此类问题的关键是记忆在同圆或等圆中,同弧或等弧所对的圆周角等于圆心角的一半.【推荐指数】★★14.(2010江苏淮安,14,3分)在比例尺为1:200的地图上,测得A,B两地间的图上距离为4.5 cm,则A,B两地间的实际距离为m.【分析】根据图上距离:实际距离=比例尺,所以可以得到A、B间的实际距离=4.5×200=900cm=9m.【答案】9【涉及知识点】相似比【点评】本题属于基础问题,主要考察的是比例尺=图上距离:实际距离.【推荐指数】★15.(2010江苏淮安,15,3分)将半径为5,圆心角为144°的扇形围成一个圈锥的侧面,则这个圆锥的底面半径为.【分析】根据弧长公式可以求出圆锥底面周长为14454180ππ⨯=,所以底面半径为422ππ=. 【答案】2【涉及知识点】弧长公式【点评】本题属于中难度的问题,主要是考察对弧长公式的记忆,以及圆锥和扇形之间的关系.【推荐指数】★★★★16.(2010江苏淮安,16,3分)小明根据方程5x+2=6x -8编写了一道应用题.请你把空缺的部分补充完整.某手工小组计划教师节前做一批手工品赠给老师,如果每人做5个,那么就比计划少2个; .请问手工小组有几人?(设手工小组有x 人)【分析】从题目可以看出总工作量为5x+2,所以该空格可以填写,若每人作6个,就比原计划多8个.【答案】若每人作6个,就比原计划多8个 【涉及知识点】一元一次方程【点评】本题是实际应用型的问题,属于中等难度的问题. 【推荐指数】★ 17.(2010江苏淮安,17,3分)如图,在直角三角形ABC 中,∠ABC=90°,AC=2,BC=3,以点A 为圆心,AB 为半径画弧,交AC 于点D ,则阴影部分的面积是 .题17图 题18图 【分析】首先根据勾股定理求出AB=1,又因为AC=2,所以∠C=30°,然后根据阴影部分的面积等于三角形的面积131322⨯⨯=,减去扇形的面积6013606ππ⋅⋅=,所以阴影部分的面积为326π-. 【答案】326π- 【涉及知识点】扇形的面积公式、勾股定理、直角三角形30°的判定 【点评】本题属于综合型的问题,属于中等偏难的问题. 【推荐指数】★★★★18.(2010江苏淮安,18,3分)已知菱形ABCD 中,对角线AC=8cm ,BD=6cm ,在菱形内部(包括边界)任取一点P ,使△ACP 的面积大于6 cm 2的概率为 . 【分析】根据三角形的面积公式可知当△ACP 面积为6时,高为32cm ,所以当点P 在垂直于BD 距离AC 32cm 的直线上时,所构成的面积均为6,然后再结合相似三角形的面积比,可知概率为:14. 【答案】14【涉及知识点】菱形的性质、相似三角形的性质、概率【点评】本题是概率的知识和相似三角形的知识的综合问题,属于较难的问题. 【推荐指数】★★★三、解答题(本大题共有10小题,共96分.请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)19.(2010江苏淮安,19,8分)(1)计算:1913-+--;(2)解不等式组30,2(1) 3.x x x -<⎧⎨+≥+⎩【答案】(1)原式=3+1-3=1.(2)30,.2(1)3x x x -<⎧⎨++⎩①≥②解①得:x <3,解②得:x ≥1,所以不等式的解集为:1≤x <3.【点评】本题主要是考察基本运算和不等式的基本解法,题目一般是不难,最主要是书写格式必须要注意.【推荐指数】★★★ 20.(2010江苏淮安,20,8分)已知:如图,点C 是线段AB 的中点,CE=CD ,∠ACD=∠BCE, 求证:AE=BD .题20图【分析】要证明AE=BD ,所以可以证明△ACE 和△BCD 全等,由于两个三角形中具备AC=BC ,CE=CD 两条边相等,所以只要再具备夹角相等即可. 【答案】证明:∵点C 是线段AB 的中点, ∴AC=BC ,∵∠ACD=∠BCE,∴∠ACD+∠DCE=∠BCE+∠DCE, 即∠ACE=∠BCD,在△ACE和△BCD中,AC BCACE BCD CE CD⎧=⎪∠=∠⎨⎪=⎩,∴△ACE≌△BCD(SAS),∴AE=BD.【涉及知识点】三角形全等的条件【点评】本题是一个简单考察三角形全等条件的证明题,关键是对证明方法的选用.【推荐指数】★★★21.(2010江苏淮安,21,8分)在完全相同的五张卡片上分别写上1,2,3,4,5五个数字后,装入一个不透明的口袋内搅匀.(1)从口袋内任取一张卡片,卡片上数字是偶数的概率是;(2)从口袋内任取一张卡片记下数字后放回.搅匀后再从中任取一张,求两张卡片上数字和为5的概率.【分析】在(1)中由于卡片中共有5个数字,而偶数的个数为2个,所以概率为25;(2)中的问题可以列出树形图,共有25中可能,而其中是5的倍数的有5中情况,所以概率为1 5【答案】解:(1)2 5(2)1 5【涉及知识点】概率【点评】本题主要是对概率的求法,此问题属于中等难度的问题.【推荐指数】★★★★22.(2010江苏淮安,22,8分)有A,B,C,D四个城市,人口和面积如下表所示:A城市B城市C城市D城市人口(万人) 300 150 200 100面积(万平方公里) 20 5 10 4(1)问A城市的人口密度是每平方公里多少人?(2)请用最恰当的统计图......表示这四个城市的人口密度.【分析】人口密度表示单位面积中人口的数量,所以可以求出人口密度.【答案】解:(1)A城市的人口密度:3001520=(万人/万平方公里);B城市的人口密度:150305=(万人/万平方公里);C城市的人口密度:2002010=(万人/万平方公里);D城市的人口密度:100254=(万人/万平方公里).(2)可以用条形统计图表示:【涉及知识点】统计图【点评】统计图表是中考的必考内容,本题主要考察合理选择统计图表的知识,数据的问题在中考试卷中也有越来越综合的趋势.【推荐指数】★★★★23.(2010江苏淮安,23,10分)玉树地震后,有一段公路急需抢修.此项工程原计划由甲工程队独立完成,需要20天.在甲工程队施工4天后,为了加快工程进度,又调来乙工程队与甲工程队共同施工,结果比原计划提前10天,为抗震救灾赢得了宝贵时间.求乙工程队独立完成这项工程需要多少天.【分析】可设乙工程队单独完成这项任务需要x天,则可以根据甲工作4天的工作量与甲乙合作6天的工作量的和为整体1解决.【答案】解:设乙工程队独立完成这项工程需要x天,所以1114()(20104)12020x⨯++⨯--=,解得x=12,经检验x=12是分式方程的解,所以乙工程队独立完成这项工程需12天.【涉及知识点】分式方程的应用【点评】本题属于难度比较大的问题,所考察的知识点比较单一,主要是考察利用分式方程解决实际问题,这种问题是中考中的常见问题,通常是以社会生活中的热点问题为背景.【推荐指数】★★★★24.(2010江苏淮安,24,10分)已知二次函数y=ax2+bx+c的图象与y轴交于点A(O,-6),与x轴的一个交点坐标是B(-2,0).(1)求二次函数的关系式,并写出顶点坐标;(2)将二次函数图象沿x轴向左平移52个单位长度,求所得图象对应的函数关系式.【分析】.【答案】解:(1)【涉及知识点】【点评】.【推荐指数】★★★★★25.(2010江苏淮安,25,10分)某公园有一滑梯,横截面如图薪示,AB表示楼梯,BC 表示平台,CD表示滑道.若点E,F均在线段AD上,四边形BCEF是矩形,且sin∠BAF=23,BF=3米,BC=1米,CD=6米.求:(1) ∠D的度数;(2)线段AE的长.题25图【分析】(1)要求∠D的度数,可以求出CE和CD的长度,进而根据直角三角形30°角的判定方法求出∠D的度数;(2)要求AD的长度,可以根据解直角三角形的正弦值,求出AF,然后再结合勾股定理求出DE,从而求出AD.【答案】解:(1)∵四边形BCEF是矩形,∴∠BFE=∠CEF=90°,CE=BF,BC=FE,∴∠BFA=∠CED=90°,∵CE=BF,BF=3米,∴CE=3米,∵CD=6米,∠CED=90°,∴∠D=30°.(2)∵sin∠BAF=23,∴23 BFAB,∵BF=3米,∴AB=92米,∴22935322AF⎛⎫=-=⎪⎝⎭米,∵CD=6米,∠CED=90°,∠D=30°,∴3 cos302DECD==∴33DE=米,∴AE=9322+米.【涉及知识点】解直角三角形、勾股定理、直角三角形的性质、矩形的性质【点评】本题属于综合性的问题,设计的知识点比较多,属于中等偏难的问题.【推荐指数】★★★★26.(2010江苏淮安,26,10分)(1)观察发现如题26(a)图,若点A,B在直线l同侧,在直线l上找一点P,使AP+BP的值最小.做法如下:作点B关于直线l的对称点B',连接AB',与直线l的交点就是所求的点P 再如题26(b)图,在等边三角形ABC中,AB=2,点E是AB的中点,AD是高,在AD 上找一点P,使BP+PE的值最小.做法如下:作点B关于AD的对称点,恰好与点C重合,连接CE交AD于一点,则这点就是所求的点P,故BP+PE的最小值为.题26(a)图题26(b)图(2)实践运用如题26(c)图,已知⊙O的直径CD为4,AD的度数为60°,点B是AD的中点,在直径CD上找一点P,使BP+AP的值最小,并求BP+AP的最小值.题26(c)图题26(d)图(3)拓展延伸如题26(d)图,在四边形ABCD的对角线AC上找一点P,使∠APB=∠APD.保留作图痕迹,不必写出作法.【分析】(1)由于等边三角形是极其特殊的三角形,所以根据勾股定理求出CE的长度;(2)首先根据材料提供的方法求出P点的位置,然后再结合圆周角等的性质,求出最短的距离;(3)从(1)(2)可以得出,理由轴对称来解决,找B关于AC对称点E,连DE 延长交AC于P即可.【答案】解:(1)3;(2)如图:作点B关于CD的对称点E,则点E正好在圆周上,连接OA、OB、OE,连接AE交CD与一点P,AP+BP最短,因为AD的度数为60°,点B是AD的中点,所以∠AEB=15°,因为B关于CD的对称点E,所以∠BOE=60°,所以△OBE为等边三角形,所以∠OEB=60°,所以∠OEA=45°,又因为OA=OE,所以△OAE为等腰直角三角形,所以AE=22.(3)找B关于AC对称点E,连DE延长交AC于P即可,【涉及知识点】圆周角的性质、勾股定理、对称【点评】本题属于综合性的问题,此类问题设计的知识点比较多,解决起来有点难度.【推荐指数】★★★★★27.(2010江苏淮安,27,12分)红星食品厂独家生产具有地方特色的某种食品,产量y1(万千克)与销售价格x(元/千克)(2≤x≤10)满足函数关系式y1=0.5x+11.经市场调查发现:该食品市场需求量y2(万千克)与销售价格x(元/千克)(2≤x≤10)的关系如图所示.当产量小于或等于市场需求量时,食品将被全部售出;当产量大于市场需求量时,只能售出符合市场需求量的食品,剩余食品由于保质期短将被无条件销毁.(1)求y2与x的函数关系式;(2)当销售价格为多少时,产量等于市场需求量?(3)若该食品每千克的生产成本是2元,试求厂家所得利润W(万元)与销售价格x(元/千克) (2≤x ≤10)之间的函数关系式.题27图【分析】从图像可以看出函数是一次函数,所以可以根据待定系数法求出函数的解析式,然后再根据题意表示出利润和销售价格之间的函数关系.【答案】解:(1)设函数的解析式为y 2=kx+b ,把(2,12)和(10,4)代入函数的解析式可得:212104k b k b ⎧+=⎨+=⎩,解得114k b ⎧=-⎨=⎩,所以函数的解析式为y 2=-x+14.(2)由题意可得:0.5x+11=-x+14,所以x=2,所以当销售价格为2元时,产量等于市场需求量.(3)设当销售单价为x 时,产量为y , 则由题意得:W=(x -2)y=(x -2)(0.5x+11) =0.5x 2+10x -22=()2110722x +-(2≤x ≤10) 【涉及知识点】二次函数、一次函数【点评】本题属于综合性的问题,设计的知识点比较多,此类问题是每年中考问题中的必考点.【推荐指数】★★★★★28.(2010江苏淮安,28,12分)如题28(a)图,在平面直角坐标系中,点A 坐标为(12,0),点B 坐标为(6,8),点C 为OB 的中点,点D 从点O 出发,沿△OAB 的三边按逆时针方向以2个单位长度/秒的速度运动一周.(1)点C 坐标是( , ),当点D 运动8.5秒时所在位置的坐标是( , ); (2)设点D 运动的时间为t 秒,试用含t 的代数式表示△OCD 的面积S,并指出t 为何值 时,S 最大;(3)点E 在线段AB 上以同样速度由点A 向点B 运动,如题28(b)图,若点E 与点D 同时 出发,问在运动5秒钟内,以点D ,A ,E 为顶点的三角形何时与△OCD 相似(只考虑以点A .O 为对应顶点的情况):题28(a)图 题28(b)图【分析】(1)若求点的坐标,可以过该点作x 轴的垂线,所以可以借助于平行线等分线段定理解决,求出D 和C 的坐标;(2)此问题是分类得问题,当点D 在不同的边上时,三角形的面积是不同的,然后根据图形之间的关系求出函数解析式,然后根据求最值的问题解决;(3)与(2)一样,只不过借助于三角形相似来解决.【答案】解:(1)C (3,4)、D (9,4)(2)当D 在OA 上运动时,14242S t t =⨯⨯=(0<t <6); 当D 在AB 上运动时,过点O 作OE ⊥AB ,过点C 作CF ⊥AB ,垂足分别为E 和F ,过D 作DM ⊥OA ,过B 作BN ⊥OA ,垂足分别为M 和N ,如图:设D 点运动的时间为t 秒,所以DA=2t -12,BD=22-2t , 又因为C 为OB 的中点, 所以BF 为△BOE 的中位线, 所以12CF OE =, 又因为11822AB OE OA ⋅=⨯, 所以485OE =,所以245CF =, 因为BN ⊥OA ,DM ⊥OA , 所以△ADM ∽△ABN , 所以212108t DM-=,所以8485t DM -=, 又因为△△△△BCD OCDOAB OAD SS S S =--,所以△1184812412812(222)22525OCD t S t -=⨯⨯-⨯⨯-⨯-⨯, 即△2426455OCD t S =-+(6≤t <11), 所以当t=6时,△OCD 面积最大,为△2462642455OCD S ⨯=-+=; 当D 在OB 上运动时,O 、C 、D 在同一直线上,S=0(11≤t ≤16). (3)设当运动t 秒时,△OCD ∽△ADE ,则O CO DA DA E=,即521222tt t=-,所以t=3.5;设当运动t 秒时,△OCD ∽△AED ,则O C O DA E A D=,即522122t t t =-,所以225300t t +-=,所以152654t -+=,252654t --=(舍去),所以当t 为3.5秒或52654-+秒时两三角形相似.【涉及知识点】一次函数的最值、平面直角坐标系、相似三角形【点评】本题是综合性比较强的问题,它巧妙的运用运动的观点,把相似三角形和平面直角坐标系以及一次函数等知识结合起来,属于难度较大的问题.【推荐指数】★★★★★。
2010年江苏省南通市中考数学试卷(参考答案)
2010年南通市初中毕业、升学考试数 学一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应.....位置..上. 1. -4的倒数是 A .4B .-4C .14D .-142. 9的算术平方根是 A .3B .-3C .81D .-813. 用科学记数法表示0.000031,结果是A .3.1×10-4 B .3.1×10-5C .0.31×10-4D .31×10-64. x 的取值范围是A .2x -≥B .2x ≠-C .2x ≥D .2x ≠5. 如图,⊙O 的直径AB =4,点C 在⊙O 上,∠ABC =30°,则AC 的长是A .1B CD .26. 某纺织厂从10万件同类产品中随机抽取了100件进行质检,发现其中有5件不合格,那么估计该厂这10万件产品中合格品约为 A .9.5万件 B .9万件 C .9500件D .5000件7. 关于x 的方程12mx x -=的解为正实数,则m 的取值范围是(第5题)·O ABCA .m ≥2B .m ≤2C .m >2D .m <28. 如图,菱形ABCD 中,AB = 5,∠BCD = 120°,则对角线AC 的长是 A .20 B .15 C .10D .59. 如图,已知□ABCD 的对角线BD =4cm ,将□ABCD 绕其对称中心O 旋转180°,则点D 所转过的路径长为 A .4π cmB .3π cmC .2π cmD .π cm10.在平面直角坐标系xOy 中,已知点P (2,2),点Q 在y 轴上,△PQO 是等腰三角形,则满足条件的点Q 共有 A .5个 B .4个 C .3个 D .2个二、填空题:本大题共8小题,每小题3分,共24分.不需写出解答过程,请把答案直接填写在答题卡相应位置.......上. 11.如果正比例函数y kx =的图象经过点(1,-2),那么k 的值等于 ▲ .12.若△ABC ∽△DEF , △ABC 与△DEF 的相似比为1∶2,则△ABC 与△DEF 的周长比为 ▲ .13.分解因式:2ax ax -= ▲ .14.质地均匀的正方体骰子,其六个面上分别刻有1,2,3,4,5,6六个数字,投掷这个骰子一次,则向上一面的数字是偶数的概率为 ▲ . 15.在平面直角坐标系中,已知线段MN 的两个端点的坐标分别是M (-4,-1)、N (0,1),将线段MN 平移后得到线段M ′N ′ (点M 、N 分别平移到点M ′、N ′的位置),若点M ′的坐标为 (-2,2),则点N ′的坐标为 ▲ .16.如图,小章利用一张左、右两边已经破损的长方形纸片ABCD 做折纸游戏,他将纸片沿EF 折叠后,D 、C 两点分别落在D ′、C ′的位 置,并利用量角器量得∠EFB =65°,则∠AED ′等于 ▲ 度. 17.如图,正方形ABCD 的边长为4,点M 在边DC 上,M 、N 两点关BACD(第8题)(第9题)ABCDOA(第17题)BDM NC··(第16题)于对角线AC对称,若DM=1,则tan∠ADN=▲.18.设x1、x2是一元二次方程x2+4x-3=0的两个根,2x1(x22+5x2-3)+a =2,则a=▲.三、解答题:本大题共10小题,共96分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤.19.(本小题满分10分)计算:(1)203(4)(π3)2|5|-+----;(2)2293(1)69aa a a-÷-++.20.(本小题满分8分)如图,⊙O的直径AB垂直于弦CD,垂足P是OB的中点,CD=6 cm,求直径AB的长.21.(本小题满分9分)如图,直线y x m=+与双曲线kyx=相交于A(2,1)、B两点.(1)求m及k的值;(2)不解关于x、y的方程组,,y x mkyx=+⎧⎪⎨=⎪⎩直接写出点B的坐标;(3)直线24y x m=-+经过点B吗?请说明理由.OBAD C·P(第20题)(第21题)某地区随机抽取若干名八年级学生进行地理会考模拟测试,并对测试成绩(x分)进行了统计,具体统计结果见下表:某地区八年级地理会考模拟测试成绩统计表分数段90<x≤100 80<x≤90 70<x≤80 60<x≤70 x≤60人数1200 1461 642 480 217(1)填空:①本次抽样调查共测试了▲名学生;②参加地理会考模拟测试的学生成绩的中位数落在分数段▲上;③若用扇形统计图表示统计结果,则分数段为90<x≤100的人数所对应扇形的圆心角的度数为▲;(2)该地区确定地理会考成绩60分以上(含60分)的为合格,要求合格率不低于97%.现已知本次测试得60分的学生有117人,通过计算说明本次地理会考模拟测试的合格率是否达到要求?23.(本小题满分9分)光明中学九年级(1)班开展数学实践活动,小李沿着东西方向的公路以50 m/min的速度向正东方向行走,在A处测得建筑物C在北偏东60°方向上,20min后他走到B处,测得建筑物C在北偏西45°方向上,求建筑物C到公路AB的距离.1.732)(第23题)(1)将一批重490吨的货物分配给甲、乙两船运输.现甲、乙两船已分别运走其任务数的57、37,在已运走的货物中,甲船比乙船多运30吨.求分配给甲、乙两船的任务数各多少吨? (2)自编一道应用题,要求如下:①是路程应用题.三个数据100,25,15必须全部用到,不添加其他数据. ②只要编题,不必解答.25.(本小题满分8分)如图,已知:点B 、F 、C 、E 在一条直线上,FB =CE ,AC =DF .能否由上面的已知条件证明AB ∥ED ?如果能,请给出证明;如果不能,请从下列三个条件中选择一个..合适的条件.....,添加到已知条件中,使AB ∥ED 成立,并给出证明. 供选择的三个条件(请从其中选择一个): ①AB =ED ; ②BC =EF ; ③∠ACB =∠DFE .26.(本小题满分10分)小沈准备给小陈打电话,由于保管不善,电话本上的小陈手机号码中,有两个数字已模糊不清.如果用x 、y 表示这两个看不清的数字,那么小陈的手机号码为139x 370y 580(手机号码由11个数字组成),小沈记得这11个数字之和是20的整数倍. (1)求x +y 的值;(2)求小沈一次拨对小陈手机号码的概率.DE(第25题)如图,在矩形ABCD 中,AB =m (m 是大于0的常数),BC =8,E 为线段BC 上的动点(不与B 、C 重合).连结DE ,作EF ⊥DE ,EF 与射线BA 交于点F ,设CE =x ,BF =y . (1)求y 关于x 的函数关系式;(2)若m =8,求x 为何值时,y 的值最大,最大值是多少? (3)若12y m,要使△DEF 为等腰三角形,m 的值应为多少?28.(本小题满分14分)已知抛物线y =ax 2+bx +c 经过A (-4,3)、B (2,0)两点,当x =3和x =-3时,这条抛物线上对应点的纵坐标相等.经过点C (0,-2)的直线l 与 x 轴平行,O 为坐标原点.(1)求直线AB 和这条抛物线的解析式;(2)以A 为圆心,AO 为半径的圆记为⊙A ,判断直线l 与⊙A 的位置关系,并说明理由;(3)设直线AB 上的点D 的横坐标为-1,P (m ,n )是抛物线y =ax 2+bx +c 上的动点,当△PDO 的周长最小时,求四边形CODP 的面积.A BCDEF(第27题)(第28题)2010年南通市中考数学试卷答案(参考答案)1、D2、A3、B4、C5、D6、A7、C8、D9、C 10、B11、-2 12、1:2 13、ax(x-1) 14、21 15、(2,4) 16、50°17、3418、819、⑴4 ⑵ 3+a a20、3421、⑴ m=-1,k=2 ;⑵ (-1,-2);⑶经过点B 22、⑴ ①4000 ②80<x ≤90 ③108°;⑵ 符合要求,合格率=5.97975.040001172171==--%>97% 23、)13(50- m 24、分配给甲、乙两船的任务数分别是210吨和280吨 25、略26、⑴根据题意,设36+x+y=20k(k 为整数) 则x+y=20k-36 ∵0≤x+y ≤18 ∴0≤20k-36≤18 1.8≤k ≤2.7 ∵k 为整数 ∴k=2∴x+y=20×2-36=44 0小沈一次拨对小陈手机号码的概率是5127、⑴mx x y 28-=;⑵ x=4,y=2 ⑶ m=628、⑴直线AB 解析式:121+-=x y ,抛物线的解析式:1412-=x y ; ⑵相切;⑶四边形CODP 的面积是817 略解过程如下:(/*/以下过程是:证明当点D 、P 、H 三点共线时,△PDO 的周长最小/*/)如图1,过点P 作P H ⊥l ,垂足为H ,延长HP 交x 轴于点G ,设P (m,n )则1412-=m y P , ∴22222222)141()141(+=-+=+=m m m GP OG OP ,∴1412+=m OP∵141)2(14122+=---=-=m m y y PH H P∴OP=PH要使△PDO 的周长最小,因为OD 是定值,所以只要OP+PD 最小, ∵OP=PH∴只要PH+PD 最小根据“直线外一点与直线上各点连接的所有线段中,垂线段最短。
2010年江苏省南通市中考数学试卷及解析答案
2010年广东省深圳市中考数学试卷一、选择题(共10小题,每小题3分,满分30分)1、(2010•凉山州)﹣4的倒数是()A、B、﹣C、4D、﹣4考点:倒数。
分析:根据倒数的定义可知﹣4的倒数是﹣.解答:解:因为﹣4×(﹣)=1,所以﹣4的倒数是﹣.故选B.点评:主要考查了倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.要求掌握并熟练运用.2、(2010•赤峰)9的算术平方根是()A、±3B、3C、﹣3D、考点:算术平方根。
专题:计算题。
分析:根据算术平方根的定义:一个非负数的正的平方根,即为这个数的算术平方根.所以结果必须为正数,由此即可求出9的算术平方根.解答:解:∵32=9,∴9的算术平方根是3.故选B.点评:此题主要考查了算术平方根的定义,易错点正确区别算术平方根与平方根的定义.3、(2010•南通)用科学记数法表示数0.031,其结果是()A、3.1×102B、3.1×10﹣2C、0.31×10﹣1D、31×103考点:科学记数法—表示较小的数。
分析:科学记数法就是将一个数字表示成(a×10的n次幂的形式),其中1≤|a|<10,n表示整数.n为整数位数减1,即从左边第一位开始,在首位非零的后面加上小数点,再乘以10的n次幂.此题n<0,n=﹣2.解答:解:0.031=3.1×10﹣2.故选B.点评:用科学记数法表示一个数的方法是(1)确定a:a是只有一位整数的数;(2)确定n:当原数的绝对值≥10时,n为正整数,n等于原数的整数位数减1;当原数的绝对值<1时,n为负整数,n的绝对值等于原数中左起第一个非零数前零的个数(含整数位数上的零).4、(2010•南通)若使二次根式在实数范围内有意义,则x的取值范围是()A、x≥2B、x>2C、x<2D、x≤2考点:二次根式有意义的条件。
分析:根据二次根式的定义可知被开方数必须为非负数,即可求解.解答:解:根据题意得:x﹣2≥0,求得x≥2.故选A.点评:主要考查了二次根式的意义和性质.概念:式子(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.5、(2010•南通)如图,⊙O的直径AB=4,点C在⊙O上,∠ABC=30°,则AC的长是()A、1B、C、D、2考点:圆周角定理;含30度角的直角三角形。
南通中考数学试题及答案
南通中考数学试题及答案一、选择题(每题2分,共10分)1. 下列哪个数是无理数?A. 2.5B. √3C. 0.33333D. 3答案:B2. 一个直角三角形的两条直角边分别为3和4,斜边的长度是多少?A. 5B. 6C. 7D. 8答案:A3. 如果一个数的平方等于16,那么这个数可能是:A. 4B. -4C. 4或-4D. 以上都不是答案:C4. 一个圆的半径为5,那么它的面积是多少?A. 25πB. 50πC. 75πD. 100π答案:B5. 以下哪个选项是二次方程的解?A. x = 2B. x = 3C. x = -1D. x = 1/2答案:C二、填空题(每题2分,共10分)6. 一个数的绝对值是5,这个数可能是______。
答案:±57. 如果一个角是直角的一半,那么这个角的度数是______。
答案:45°8. 一个长方体的长、宽、高分别是2、3、4,那么它的体积是______。
答案:249. 一个数的立方根等于2,那么这个数是______。
答案:810. 如果一个分数的分子是5,分母是10,那么这个分数化简后是______。
答案:1/2三、计算题(每题5分,共15分)11. 计算下列表达式的值:(3x - 2) / (x + 1),当x = 1时。
答案:当x = 1时,(3 * 1 - 2) / (1 + 1) = 1 / 2 = 0.512. 解下列方程:2x + 5 = 3x - 1答案:将方程化简得 x = 613. 计算下列多项式的乘积:(2x + 3)(3x - 2)答案:6x^2 + 5x - 6四、解答题(每题10分,共20分)14. 一个等腰三角形的底边长为8,两腰的长度相等,且底角为60°,求两腰的长度。
答案:由于底角为60°,且三角形是等腰三角形,可以推断出这是一个等边三角形。
因此,两腰的长度等于底边长,即8。
15. 某工厂生产一批零件,计划在30天内完成,每天生产x个零件。
南通市2007-2010年中考数学试卷参考答案
南通市2007-2010年中考数学试卷参考答案1.2007年(扫描版)2.2008年说明:本评分标准每题只提供一种解法,如有其他解法,请参照本标准的精神给分.一、填空题:本大题共14小题,每小题3分,共42分.1.-7 2.12 3.50 4.38a 5.6 6.2 7.x ≥2 8.479.m <3 10.60 11.(4,-4) 12.4 13. 120 14.52二、选择题:本大题共4小题,每小题4分,共16分. 15.C 16.D 17.B 18.C三、解答题:本大题共10小题,共92分.19.(1)解:原式=÷………………………………………4分=42…………………………………………………………5分(2)解:原式=(2)(4)(2)(2)x x x x ++++- …………………………………………7分=(2)(22)x x ++ ………………………………………………………9分 =2(2)(1)x x ++.……………………………………………………10分 20.解:方程两边同乘以x (x+3)(x -1),得5(x -1)-(x+3)=0.…………………2分解这个方程,得2x =.…………………………………………………………4分 检验:把2x =代入最简公分母,得2×5×1=10≠0.∴原方程的解是2x =.……………………………………………………………………6分 21.解: 过P 作PC ⊥AB 于C 点,根据题意,得AB =18×2060=6,∠PAB =90°-60°=30°, ∠PBC =90°-45°=45°,∠PCB =90°, ∴PC =BC . ……………………………2分 在Rt△PAC 中,tan30°=6PC PCAB BC PC =++, …………4分6PC PC=+,解得PC=3. 6分∵3>6,∴海轮不改变方向继续前进无触礁危险.……………………………7分 22.解:(1)连结OM .∵点M 是 AB 的中点,∴OM ⊥AB . …………………………1分 过点O 作OD ⊥MN 于点D ,由垂径定理,得12MD MN == ………………………3分在Rt △ODM 中,OM =4,MD =OD2. 故圆心O 到弦MN 的距离为2 cm . …………………………5分(第22题)ABCMNO ·D (第21题)A P60︒45︒北东(2)cos ∠OMD=MD OM =,…………………………………6分 ∴∠OMD =30°,∴∠ACM =60°.……………………………8分 23.解:(1)设A 市投资“改水工程”年平均增长率是x ,则2600(1)1176x +=.…………………………………………………………………………2分解之,得0.4x =或 2.4x =-(不合题意,舍去).………………………………………4分 所以,A 市投资“改水工程”年平均增长率为40%. …………………………………5分 (2)600+600×1.4+1176=2616(万元).A 市三年共投资“改水工程”2616万元. ………………………………………………7分 24.解:由抛物线2y ax bx c =++与y 轴交点的纵坐标为-6,得c =-6.……………………1分 ∴A (-2,6),点A 向右平移8个单位得到点A '(6,6). …………………………3分 ∵A 与A '两点均在抛物线上,∴426636666a b a b --=⎧⎨+-=⎩,. 解这个方程组,得14a b =⎧⎨=-⎩,. ……………………………………6分故抛物线的解析式是2246(2)10y x x x =--=--.∴抛物线的顶点坐标为(2,-10). ……………………………………………………8分 25.解:(1)……………………4分(2)22,50; ………………………………………………………………………………8分 (3)[21÷(21+30+38+42+20+39+50+73+70+37)]×100=5,预计地区一增加100周岁以上男性老人5人. …………………………………………10分 26.(1)证明:∵AD CD =,DE AC ⊥,∴DE 垂直平分AC ,∴AF CF =,∠DFA =∠DFC =90°,∠DAF =∠DCF .……………………………1分 ∵∠DAB =∠DAF +∠CAB =90°,∠CAB +∠B =90°,∴∠DCF =∠DAF =∠B .2分 在Rt △DCF 和Rt △ABC 中,∠DFC =∠ACB =90°,∠DCF =∠B ,∴△DCF ∽△ABC . ……………………………………………………………………3分∴CD CF AB CB =,即CD AFAB CB=.∴AB ·AF =CB ·CD . ………………………………4分 (2)解:①∵AB =15,BC =9,∠ACB =90°,∴12AC =,∴6CF AF ==.……………………………5分(第25题)∴1963272y x x =+⨯=+()(0x >). ………………………………………………7分②∵BC =9(定值),∴△PBC 的周长最小,就是PB +PC 最小.由(1)知,点C 关于直线DE 的对称点是点A ,∴PB +PC =PB +PA ,故只要求PB +PA 最小.显然当P 、A 、B 三点共线时PB +PA 最小.此时DP =DE ,PB +PA =AB . ………8分 由(1),A D F F A E ∠=∠,90DFA ACB ∠=∠=︒,得△DAF ∽△ABC . EF ∥BC ,得11522AE BE AB ===,EF =92. ∴AF ∶BC =AD ∶AB ,即6∶9=AD ∶15.∴AD =10.……………………………10分 Rt △ADF 中,AD =10,AF =6,∴DF =8.∴925822DE DF FE =+=+=. ………………………………………………………11分 ∴当252x =时,△PBC 的周长最小,此时1292y =.………………………………12分27.解:(1)理由如下: ∵扇形的弧长=16×π2=8π,圆锥底面周长=2πr ,∴圆的半径为4cm .………2分由于所给正方形纸片的对角线长为,而制作这样的圆锥实际需要正方形纸片的对角线长为16420++=+cm ,20+>∴方案一不可行. ………………………………………………………………………5分 (2)方案二可行.求解过程如下:设圆锥底面圆的半径为r cm ,圆锥的母线长为R cm ,则(1r R += ① 2π2π4Rr =. ② …………………………7分由①②,可得R =,r == ………………9分cm . ………10分28.解:(1)∵D (-8,0),∴B 点的横坐标为-8,代入14y x =中,得y =-2. ∴B 点坐标为(-8,-2).而A 、B 两点关于原点对称,∴A (8,2).从而8216k =⨯=.……………………………………………………………………3分 (2)∵N (0,-n ),B 是CD 的中点,A 、B 、M 、E 四点均在双曲线上, ∴mn k =,B (-2m ,-2n),C (-2m ,-n ),E (-m ,-n ). ……………4分 S 矩形DCNO 22mn k ==,S △DBO =1122mn k =,S △OEN =1122mn k =, ………………7分∴S 四边形OBCE = S 矩形DCNO -S △DBO - S △OEN =k .∴4k =. …………………………8分由直线14y x =及双曲线4y x=,得A (4,1),B (-4,-1), ∴C (-4,-2),M (2,2).………………………………………………………9分 设直线CM 的解析式是y ax b =+,由C 、M 两点在这条直线上,得 42,2 2.a b a b -+=-⎧⎨+=⎩ 解得23a b ==. ∴直线CM 的解析式是2233y x =+.………………………………………………11分 (3)如图,分别作AA 1⊥x 轴,MM 1⊥x 轴,垂足分别为A 1、M 1. 设A 点的横坐标为a ,则B 点的横坐标为-a .于是 111A M MA a mp MP M O m-===. 同理MB m aq MQ m+==, (13)∴p q -…14分(第28题)3.2009年4.2010年1、D2、A3、B4、C5、D6、A7、C8、D9、C 10、B11、-2 12、1:2 13、ax(x-1) 14、21 15、(2,4) 16、50°17、34 18、819、⑴4 ⑵3+a a 20、34 21、⑴ m=-1,k=2 ;⑵ (-1,-2);⑶经过点B22、⑴ ①4000 ②80<x ≤90 ③108°;⑵ 符合要求,合格率=5.97975.040001172171==--%>97% 23、)13(50- m 24、分配给甲、乙两船的任务数分别是210吨和280吨25、略26、⑴根据题意,设36+x+y=20k(k 为整数)则x+y=20k-36∵0≤x+y ≤18∴0≤20k-36≤181.8≤k ≤2.7∵k 为整数∴k=2∴x+y=20×2-36=44小沈一次拨对小陈手机号码的概率是51 27、⑴mx x y 28-=;⑵ x=4,y=2 ⑶ m=628、⑴直线AB 解析式:121+-=x y ,抛物线的解析式:1412-=x y ; ⑵相切;⑶四边形CODP 的面积是817 略解过程如下:(/*/以下过程是:证明当点D 、P 、H 三点共线时,△PDO 的周长最小/*/)如图1,过点P 作P H ⊥l ,垂足为H ,延长HP 交x 轴于点G ,设P (m,n )则1412-=m y P , ∴22222222)141()141(+=-+=+=m m m GP OG OP , ∴1412+=m OP ∵141)2(14122+=---=-=m m y y PH H P ∴OP=PH要使△PDO 的周长最小,因为OD 是定值,所以只要OP+PD 最小,∵OP=PH∴只要PH+PD 最小根据“直线外一点与直线上各点连接的所有线段中,垂线段最短。
2010年南通市初三中考数学模拟测试以及答案
数学练习题一、选择题(本大题共八小题,每小题3分,共24分,在每小题给出的四个选项中,有且只有一个选项是正确的,请把这个选项前面的字母填在括号内)1、—22等于A 、—4B 、4C 、—41D 、41 2、下列运算结果正确的是A 、x 2﹒x 3=2x 6B 、(—x 2)3=x 6C 、(5x)3=125x 3D 、x 3÷x=x 33、已知2x+y=2k+1 且—1<x -y <0,则k 的取值范围为X+2y=4kA 、21<k <1B 、0<k <21C 、0<k <1D 、—1<k <—21 4、如果两个相似三角形的相似比是1:2,那么它们的面积比是A .1:2B .1:4C .D .2:15、玉树地震发生后,某学习小组7名同学自发组织捐款,数额分别为(单位:元)50,20,50,30,50,25,135。
这组数据的众数和中位数分别为 A 、50,20 B 、50,30 C 、50,50 D 、135,506、以正方形ABCD 的边BC 为直径作半圆O ,过点D 作直线切半圆于点F , 交AB 于点E ,则⊿ADE 和直角梯形EBCD 周长之比为 A 、3:4 B 、4:5 C 、5:6 D 、6:77、若A (-413,y 1)、B (-45,y 2)、C (41,y 3)为二次函数y=x 2+4x-5的 图像上三点,则y 1、y 2、y 3的大小关系为A 、y 2<y 1<y 3B 、y 1<y 2<y 3C 、y 3<y 1<y 2D 、y 1<y 3<y 28、右图是蜘蛛结网过程示意图,一只蜘蛛先以O 为起点结六条线OA OB OC 、、、OD 、OE OF 、后,再从线OA 上某点开始按逆时针方向依次在OA 、O B O 、、OD 、OE 、OF 、O A O 、、…上结网,若将各线上的结点依次记为1、2、3、4、5、6、7、8、…,那么第200个结点在( )A .线OA 上B .线OB 上C .线OC 上D .线OF 上二、填空题(本大题共10小题,每小题3分,共计30分)9、数16的算术平方根为 。
江苏南通2010年九年级数学中考调研试卷人教版
数学(本试卷满分150分,考试时间120分钟)第Ⅰ卷(选择题 共30分)一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个是正确的) 1. 在实数32-,0,2,π,9中,无理数有( )A .1个B .2个C .3个D .4个2. 如图,AB ∥CD ,AD 和BC 相交于点O ,∠A=350,∠AOB=750,则∠C 等于( )A .350B .750C .700D .8003.自变量的取值范围是函数1-=x xy ( )A .0≠xB .1≠xC .0≥xD .1≥x4.关于x 的不等式22≤+-a x 的解集如图所示,那么a 的值是( )A .-4B .-2C .0D .25. 以O 为圆心的两个同心圆的半径分别为9cm 和5cm ,若⊙P 与这两个圆都相切,则下列说法中正确的是( ). A .⊙P 的半径一定是2cmB .⊙P 的半径一定是7 cm C .符合条件的点P 有2个 D .⊙P 的半径是2 cm 或7cm6.在下面的四个几何体中,它们各自的左视图与主视图不全等的是( )7. 若1x 、2x 是一元二次方程0572=+-x x 的两根,则2111x x +的值是( ) A .57B .57-C .75D .75- 8. 一个三角形的两边长分别为3和7,且第三边长为整数,这样的三角形的周长最小值是( ) A .14B .15C .16D .17A BCDOA .B .C .D .9. 一家服装店将某种服装按进价提高50%后标价,又以八折销售,售价为每件360元,则每件服装获利( ) A .168元B .108元C .60元D .40元10.如图,A 、B 、C 、D 为圆O 的四等分点,动点P 从圆心O 出发,沿O —C —D —O 路线作匀速运动,设运动时间为x(秒),∠APB =y(度),右图函数图象表示y 与x 之间函数关系,则点M 的横坐标应为( ) A .2 B .2πC .12π+D .2π+2第Ⅱ卷(非选择题 共120分)二、填空题(本大题共8小题,每小题3分, 共24分,请把答案填在题中横线上)11. 地球距离月球表面约为384000千米,将这个距离用科学记数法表示为__________米.12.如图,︒=∠601,︒=∠20A ,则=∠C 度. 13.因式分解:2232x y xy y -+=.14. 跳远训练时,甲、乙两同学在相同条件下各跳10次,统计得,他们的平均成绩都是,甲的方差为,乙的方差为,那么成绩较为稳定的是 __________________________.(填“甲”或“乙”).15.两个相似三角形的面积分别为64和36,则它们周长的比是______. 16. 在平面直角坐标系中,已知()3,6A 、()0,6B 两点,以坐标原点O 为位似中心,相似比为31,把线段AB 缩小后得到线段B A '',则B A ''的长度等于.17.如图,一次函数与反比例函数的图象相交于A 、B 两点,则图中使反比例函数的值小于一次函数的值的x 的取值X 围是.18.如图,在等腰梯形ABCD 中,AD ∥BC ,BC =24,DBCOA90 1 M xy45 OPAD =2,∠B =450,直角三角板含450角的顶 点E 在边BC 上移动,一直角边始终经过点A ,斜 边与CD 交于点F 。
江苏省南通市中考数学试卷(附答案解析)
第 1 页 共 25 页2020年江苏省南通市中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.计算|﹣1|﹣3,结果正确的是( )A .﹣4B .﹣3C .﹣2D .﹣12.今年6月13日是我国第四个文化和自然遗产日.目前我国世界遗产总数居世界首位,其中自然遗产总面积约68000km 2.将68000用科学记数法表示为( )A .6.8×104B .6.8×105C .0.68×105D .0.68×1063.下列运算,结果正确的是( )A .√5−√3=√2B .3+√2=3√2C .√6÷√2=3D .√6×√2=2√34.以原点为中心,将点P (4,5)按逆时针方向旋转90°,得到的点Q 所在的象限为( )A .第一象限B .第二象限C .第三象限D .第四象限5.如图,已知AB ∥CD ,∠A =54°,∠E =18°,则∠C 的度数是( )A .36°B .34°C .32°D .30°6.一组数据2,4,6,x ,3,9,5的众数是3,则这组数据的中位数是( )A .3B .3.5C .4D .4.57.下列条件中,能判定▱ABCD 是菱形的是( )A .AC =BDB .AB ⊥BC C .AD =BD D .AC ⊥BD8.如图是一个几何体的三视图(图中尺寸单位:cm ),则这个几何体的侧面积为( )A .48πcm 2B .24πcm 2C .12πcm 2D .9πcm 29.如图①,E 为矩形ABCD 的边AD 上一点,点P 从点B 出发沿折线B ﹣E ﹣D 运动到点D。
南通中考数学试题及答案
南通中考数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是无理数?A. √2B. 0.5C. 0.33333...D. -3答案:A2. 已知一个直角三角形的两条直角边分别为3和4,求斜边的长度。
A. 5B. 6C. 7D. 8答案:A3. 一个数的平方根是4,这个数是:A. 16B. -16C. 8D. 2答案:A4. 一个圆的半径是5,求这个圆的面积。
A. 25πB. 50πC. 75πD. 100π答案:B5. 一个等差数列的首项是2,公差是3,第10项是多少?A. 29B. 32C. 35D. 38答案:A6. 一个长方体的长、宽、高分别是2、3和4,求这个长方体的体积。
A. 24B. 36C. 48D. 60答案:A7. 一个分数的分子是5,分母是8,化简后是多少?A. 5/8B. 1/2C. 1/16D. 5/16答案:B8. 一个多项式P(x) = 3x^2 - 5x + 2,求P(2)的值。
B. 4C. 8D. 12答案:B9. 一个函数f(x) = 2x + 3,当x=1时,f(x)的值是多少?A. 5B. 6C. 7D. 8答案:A10. 一个方程2x - 5 = 9的解是:A. x = 3B. x = 4C. x = 5D. x = 6答案:C二、填空题(每题2分,共20分)11. 一个数的立方根是2,这个数是______。
答案:812. 一个数的绝对值是5,这个数可以是______或______。
答案:5,-513. 一个圆的直径是10,这个圆的周长是______π。
14. 一个三角形的内角和等于______度。
答案:18015. 一个等腰三角形的底边长是6,两腰边长是5,这个三角形的面积是______。
答案:1516. 一个函数y = kx + b的斜率是2,当x=0时,y=1,求k和b的值。
答案:k=2,b=117. 一个方程3x + 7 = 22,解得x=______。
[编号_1213922]2010年南通市初三中考模拟试卷数学人教版
2010年某某市初三中考模拟试卷数 学 (满分150分,答卷时间120分钟)一、选择题:本大题共10小题,每小题3分,共计30分.在每小题所给出的四个选项中,恰有..一项..是符合题目要求的,请将正确选项的序号填涂在答题卡上. 1. -2的绝对值是A .-2B .2C .12-D .122. 下列运算中,正确的是A .2a a a +=B .22a a a ⨯= C .22(2)4a a =D .325()a a =3. 如图,直线AB 、CD 相交于点E ,DF ∥AB .若∠AEC =100°,则∠D 等于A .70°B .80°C .90°D .100°4. 已知一个凸n 边形的内角和等于540°,那么n 的值是A .4B .5C .6D .7 5. 一个等腰三角形的两边长分别为2和5,则它的周长为A .7B .9C .12D .9或12 6. 要使分式11x +有意义,则x 应满足的条件是A .0x ≠B .1x ≠-C .1x ≠D .1x >7. ⊙O 1和⊙O 2的半径分别为5和2,O 1O 2=3,则⊙O 1和⊙O 2的位置关系是A .内切B .外切C . 相交D .内含 8. 下列轴对称图形中,对称轴的条数最少的图形是A .正三角形B .正六边形C .正方形D .圆9.下列事件中,必然事件是CAE B FD(第3题)A .掷一枚硬币,着地时正面向上B . 两直线被第三条直线所截,同位角相等C .买一X 福利彩票,开奖后会中奖D . 正数的平方根一定有两个10.如图,正方形ABCD 的顶点A 、B 分别在x 轴、y 轴的正半轴上, 反比例函数(0)ky k x=>的图象经过另外两个顶点C 、D ,且 点D (4,n )(0<n <4),则k 的值为A .12B .8C .6D .4 二、填空题:本大题共8小题,每小题3分,共计24分. 不需写出解答过程,请把答案直接填写在答题卡相应位置.......上. 11.已知∠α=43°,则∠α的余角等于▲.12.2010年某某世博园区规划占地面积达5 280 000平方米, “5 280 000”用科学记数法表示为▲.13.关于x 的一元二次方程220x x m -+=有两个不相等的实数根,则m 的取值X 围 是▲.14.一个圆锥的母线长为5cm ,底面圆半径为3 cm ,则这个圆锥的侧面积是▲cm 2(结 果保留π).15.一个长方体的三视图如图所示,若其俯视图为正方形,则这个长方体的体积为▲.16.已知:如图,E (-6,2),F (-2,-2),以原点O 为位似中心,相似比1∶2,把△EFO(第16题)xyEFO(第15题)OAB CDxy(第10题)在点O 另一侧缩小,则点E 的对应点E ′的坐标为▲.17.已知铅球行进高度y (单位:m )与水平距离x (单位:m )之间的函数关系是21251233y x x =-++,那么该铅球行进过程中的最大高度是▲m .18.如图所示的运算程序中,若开始输入的x 值为72,我们发现第1次输出的结果为36,第 2次输出的结果为18,……,请你探索第2010次输出的结果为▲.三、解答题:本大题共10小题,共计96分.请在答.题卡指定区域......内作答,解答时应写出文 字说明、证明过程或演算步骤. 19.(本题满分10分)(1)计算211(3)()2--(2)分解因式3222x x y xy -+20.(本题满分8分)解下列不等式组,并把解集在数轴上表示出来.205121123x x x ->⎧⎪+-⎨+⎪⎩,≥,21.(本题满分8分)八年级学生去距学校10千米的博物馆参观,一部分同学骑自行车先走,过了20分钟后,其余同学乘汽车出发,结果他们同时到达.已知汽车的速度是骑自行车同学速度的2倍,求骑车同学的速度.22.(本题满分8分)1995年联合国教科文组织把每年4月23日确定为“世界读书日”.某中学为了解全校10000 1 2 3 4 5(第18题)名学生平均每天阅读课外书报的时间,随机调查了该校50名学生一周内平均每天阅读课外书报的时间,结果如下表(时间单位:分):小明同学根据上述信息制作了如下频数分布直方图,根据上述信息完成下列各题: (1)在统计表中,众数是▲分,中位数是▲分;(2)估计该学校平均每天阅读课外书报的时间不少于35分钟的学生大约有多少人? (3)请补全频数分布直方图.23.(本题满分8分) (1)如图,要在一块形状为直角三角形(∠C 为直角)的铁皮上裁出一个半圆形的铁皮,需先在这块铁皮上画出一个半圆,使它的圆心O 在线段AC 上,且与AB 、BC 都相切.请你用直尺和圆规画出来(要求用尺规作图,保留作图痕迹,不要求写作法). (2)若AC =3,BC =4,求上述半圆的直径.24.(本题满分8分)如图,某幢大楼顶部有一块广告牌CD ,甲、乙两人分别在相距8m 的A ,B 两处测得D 点CBA(第23题)时间(分)和C 点的仰角分别为45°和60°,且A ,B ,E 三点在一条直线上,若BE =15m ,求这块广1.73,计算结果保留整数).25.(本题满分8分)七年级1班将竞选出正、副班长各1名,现有甲、乙两位男生和丙、丁两位女生参加竞选. (1)女生当选班长的概率是▲;(2)请用列表法或画树形图的方法求出两位男生同时当选正、副班长的概率.26.(本题满分12分)如图1,A 、B 是直线a 上的两个定点,点C 、D 在直线b 上运动(点C 在点D 的左侧),AB =CD =4cm .已知a ∥b ,a 、b .连接AC 、BD 、BC ,把△ABC 沿直线BC 翻折得△A 1BC .当A 1、D 两点不重合时,连结A 1D . (1)探究A 1D 与BC 的位置关系,并说明理由; (2)如图2,若四边形A 1CBD 是矩形,求AC 的长.A 1DCbA 1DCb27.(本题满分12分)甲乙两车先后都以60km/h 的速度从M 地将一批物品运往N 地.两车出发后,发货站发现甲车遗漏一件物品,遂派丙车将遗漏物品送达甲车.丙车完成任务后,即沿原路返回(物品交接时间忽略不计).如图表示三辆车离M 地的距离s (km )随时间t (min )变化的图象. 请根据图象进行以下探究: 信息读取(1)说明图象中点B 的实际意义; 图象理解(2)甲车出发多长时间后被丙车追上?此时追及点距M 地多远? 问题解决(3)丙车与乙车在距离M 地多远处迎面..相遇?28.(本题满分14分)如图,在平面直角坐标系中,已知△AOB 是等腰三角形,OB =AB ,∠OBA =120°,点B 的坐标是(0,4),点AR 是x 轴上的一个动点,连结BR ,并把△BOR 绕着点B 按逆时针方向(第27题)甲乙旋转,使边BO 与BA 重合,得到△BAQ . (1) 求点A 的坐标;(2)当点R 运动到点(332,0)时,求此时点Q 的坐标; (3)当点Q 落在x 轴上时,请直接写出点R 的坐标;(4)是否存在点R ,使△ORQ的面积等于2?若存在,请求出所有符合条件的点R 的坐标;若不存在,请说明理由.2010年某某市初三中考模拟试卷数学参考答案和评分标准(第28题)说明:本评分标准每题一般只提供一种解法,如有其他解法,请参照本标准的精神给分. 一、选择题:本大题共10小题,每小题3分,共30分.1.B 2.C 3.B 4.B 5.C 6.B 7.A 8.A .9.D 10.B 二、填空题:本大题共8小题,每小题3分,共24分. 11.47°×106 13.m <1 14. 15π 15.12 16.( 3,-1) 17.3 18. 4 三、解答题:本大题共10小题,共96分. 19. (1)解:原式=9-2+23分 =95分(2)解:原式=22(2)x x xy y -+3分=2()x x y -. ······································································· 5分20.解:解不等式①,得2x <.3分解不等式②,得1x -≥.6分所以,不等式组的解集是12x -<≤. ·················································· 7分 不等式组的解集在数轴上表示如下:······················································································· 8分21. 解:设骑车同学的速度为x 千米/时,根据题意列方程,得 ································ 1分101020260x x =+··················································································· 3分 整理,得30=15+x ············································································ 4分 解得x =15······················································································· 6分 经检验x =15是原方程的根.7分 答:骑车同学的速度为15千米/时.8分22.解:(1)20,25 ························································································· 4分(2)434232100050360+++++⨯=6分 (3)(略) ························································································· 8分23. (1)作出角平分线得1分,作出半圆再得1分,小结1分,共3分.(2)方法一:解:设半⊙O 切BA 于点D∵AC =3,BC =4 ∴22345AB =+=4分 ∵半⊙O 切BA 、BC 于点D 、C ∴BD =BC =4∴AD =AB -BD =15分 又∵AB 与⊙O 相切于点D ∴OD ⊥AB ,∴∠ADO =90°设半⊙O 的半径为r ,在R t △ADO 中,由勾股定理得 222AD OD OA +=即2221(3)r r +=-7分 解得43r =,823r = ABCO∴半⊙O 的直径等于83.8分方法二:同一,证得∠ADO =90°,∵∠ACB =90°∴∠ADO =∠ACB ∵∠A =∠A ∴△ADO ∽△ACB ∴AD ODAC BC=即134r =, 解得43r = ∴半⊙O 的直径等于83.方法三:同一,证得∠ADO =90°∵1122ABOSAB OD AO BC =⋅=⋅ ∴AB OD AO BC ⋅=⋅ 即54(3)r r =- 解得43r =∴半⊙O 的直径等于83.24.解:8AB =,15BE =,∴23AE =.···················································································· 1分 在Rt ADE △中,45DAE ∠=,∴23DE AE ==. ······························ 4分 在Rt BCE △中,60CBE ∠=,∴tan 6015CE BE =⋅=. ····················6分 ∴23 2.953CD CE DE =-=≈≈.答:这块广告牌的高度约为3m . ·························································· 8分25.解:(1)12; ··························································································· 3分DOBCA(2)树状图为:·················································································································· 7分 所以,两位男生同时当选正、副班长的概率是21126.(列表法求解略) ··········· ·················································································································· 8分26.(1)设A 1B 、CD 相交于点O .由翻折可知:∠2=∠6, ········································································· 1分 ∵a ∥b∴∠4=∠6 ······················································································ 2分 ∴∠2=∠4∴OC =OB ······················································································ 3分 ∵AB =A 1B =CD ∴A 1O =DO∴∠1=∠5 ······················································································ 4分 ∵∠1+∠5=∠2+∠4=∠BOD ∴2∠1=2∠2,即∠1=∠2.∴A 1D ∥BC . ···················································································· 5分甲乙 丙 丁 √× ×乙甲 丙 丁 √ × ×丙甲 乙 丁 × × ×丁甲 乙 丙 × × ×EbaA 1DC BA(第25题 2)(第25题 1)O654321A 1DCBAba(2)如图2过点C 作CE ⊥AB ,垂足为点E ∵四边形A 1CBD 是矩形∴∠ACB =∠A 1CB =90° ········································································· 6分 ∵CE ⊥AB 于点E ∴R t △ACE ∽R t △CBE ∴CE AEBE CE=即2CE AE BE =⨯ ···················································································· 8分 (直接用射影定理亦可)设AE =x ,则2(4)x x =⨯- ·································································· 10分 解得121,3x x == ···················································································· 11分∴当11x =时,AC =2; 当23x =时,AC = ········································· 12分 27.解:方法一:(1)丙车在甲车出发后40min 时追上乙车,此时丙、乙两车距离M 地30km ; ··················································· 3分(2)由题意可知,丙车速度为90km/h , ·················································· 4分设甲车出发x h 被丙车追上,列方程得16090()3x x =- ··························· 6分解得 1x = ··············································································· 7分 此时, 60x =60×1=60.答:甲车出发1小时被丙车追上,此时追及点距M 地60km . ················· 8分(3)由(2)可知,丙车追上甲车时行驶了60km ,此时乙车行驶了50min ,离M 地50km································································································ 9分 设丙车从返回到遇上乙车用了y h ,列方程得(60906050y +=-)··········· 10分解得115y=h,即y=4 min ························································11分答:乙车一共行驶的时间为54min,丙车与乙车在距离M地54km处迎面相遇.12分方法二:(参照法一评分)(1)同法一.(2)根据题意,甲车离M地的距离s(km)随时间t(min)变化的函数为s t=.乙车离M地的距离s(km)随时间t(min)变化的函数为10s t=-.而丙车离M地的距离s(km)随时间t(min)变化的函数为1.530(2060),1.5150(60100). s t ts t t=-≤≤⎧⎨=-+<≤⎩解方程组,1.530.s ts t=⎧⎨=-⎩得60,60.ts=⎧⎨=⎩所以甲车出发60 min后被丙车追上.(3)解方程组10,1.5150.s ts t=-⎧⎨=-+⎩得64,54.ts=⎧⎨=⎩.所以丙车与乙车在距离M地54 km处迎面相遇.28.解:(1)如图1,过点A作AE⊥x轴于点E,作AF⊥y轴于点F,则AF=AB sin∠ABF=································································· 1分BF= AB cos∠ABF=2,从而AE=OF=4+2=6, ··········································· 2分∴点A的坐标为(6).····························································· 3分(2)如图2,∵△BAQ由△BOR旋转得到,∴△BAQ≌△BOR∴AQ=OR BAQ=∠BOR=90°. ················································· 4分过点Q作AE的垂线交EA的延长线于点H,交y轴于点N,则∠BAE=60°,∠QAH=30°.∴在Rt△AHQ中,AH=AQ cos30°=1,QH=AQ sin30°.∴QN=-=HE=6+1=7. ····················································· 5分∴点Q7). ····························································· 6分(3)点R(-0). ···················································································· 8分(4)假设存在点R,在它的运动过程中,使△ORQ.设点R的坐标为(t,0),下面分三种情况讨论.①当0t>时,如图3,AQ=OR=t,AH,HE6+,∴16)2t+=··············································································· 9分解得1t=-2t=(舍去). ··········································10分②当0t-≤时,如图4,AQ=OR=-t,AH=,HE=6()6-=.∴1(6)2t-=············································································11分解得1t=-2t=. ······················································12分图1 图2 图3③当t <-5,AQ =OR =-t ,AH=,HE=6-.∴1(6)2t --=解得1t =,2t =. ············································· 13分 ∴符合条件的点R,0,0)或(0)或(-0). ················································································· 14分图4 图5。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2010年南通市初中毕业、升学考试数 学一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应.....位置..上. 1. -4的倒数是 A .4B .-4C .14D .-142. 9的算术平方根是 A .3B .-3C .81D .-813. 用科学记数法表示0.000031,结果是A .3.1×10-4 B .3.1×10-5C .0.31×10-4D .31×10-64. x 的取值范围是A .2x -≥B .2x ≠-C .2x ≥D .2x ≠5. 如图,⊙O 的直径AB =4,点C 在⊙O 上,∠ABC =30°,则AC 的长是A .1B CD .26. 某纺织厂从10万件同类产品中随机抽取了100件进行质检,发现其中有5件不合格,那么估计该厂这10万件产品中合格品约为 A .9.5万件 B .9万件 C .9500件D .5000件7. 关于x 的方程12mx x -=的解为正实数,则m 的取值范围是(第5题)·O ABCA .m ≥2B .m ≤2C .m >2D .m <28. 如图,菱形ABCD 中,AB = 5,∠BCD = 120°,则对角线AC 的长是 A .20 B .15 C .10D .59. 如图,已知□ABCD 的对角线BD =4cm ,将□ABCD 绕其对称中心O 旋转180°,则点D 所转过的路径长为 A .4π cmB .3π cmC .2π cmD .π cm10.在平面直角坐标系xOy 中,已知点P (2,2),点Q 在y 轴上,△PQO 是等腰三角形,则满足条件的点Q 共有 A .5个 B .4个 C .3个 D .2个二、填空题:本大题共8小题,每小题3分,共24分.不需写出解答过程,请把答案直接填写在答题卡相应位置.......上. 11.如果正比例函数y kx =的图象经过点(1,-2),那么k 的值等于 ▲ .12.若△ABC ∽△DEF , △ABC 与△DEF 的相似比为1∶2,则△ABC 与△DEF 的周长比为 ▲ .13.分解因式:2ax ax -= ▲ .14.质地均匀的正方体骰子,其六个面上分别刻有1,2,3,4,5,6六个数字,投掷这个骰子一次,则向上一面的数字是偶数的概率为 ▲ . 15.在平面直角坐标系中,已知线段MN 的两个端点的坐标分别是M (-4,-1)、N (0,1),将线段MN 平移后得到线段M ′N ′ (点M 、N 分别平移到点M ′、N ′的位置),若点M ′的坐标为 (-2,2),则点N ′的坐标为 ▲ .16.如图,小章利用一张左、右两边已经破损的长方形纸片ABCD 做折纸游戏,他将纸片沿EF 折叠后,D 、C 两点分别落在D ′、C ′的位 置,并利用量角器量得∠EFB =65°,则∠AED ′等于 ▲ 度. 17.如图,正方形ABCD 的边长为4,点M 在边DC 上,M 、N 两点关BACD(第8题)(第9题)ABCDOA(第17题)BDM NC··(第16题)于对角线AC对称,若DM=1,则tan∠ADN=▲.18.设x1、x2是一元二次方程x2+4x-3=0的两个根,2x1(x22+5x2-3)+a =2,则a=▲.三、解答题:本大题共10小题,共96分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤.19.(本小题满分10分)计算:(1)203(4)(π3)2|5|-+----;(2)2293(1)69aa a a-÷-++.20.(本小题满分8分)如图,⊙O的直径AB垂直于弦CD,垂足P是OB的中点,CD=6 cm,求直径AB的长.21.(本小题满分9分)如图,直线y x m=+与双曲线kyx=相交于A(2,1)、B两点.(1)求m及k的值;(2)不解关于x、y的方程组,,y x mkyx=+⎧⎪⎨=⎪⎩直接写出点B的坐标;(3)直线24y x m=-+经过点B吗?请说明理由.OBAD C·P(第20题)(第21题)某地区随机抽取若干名八年级学生进行地理会考模拟测试,并对测试成绩(x分)进行了统计,具体统计结果见下表:某地区八年级地理会考模拟测试成绩统计表分数段90<x≤100 80<x≤90 70<x≤80 60<x≤70 x≤60人数1200 1461 642 480 217(1)填空:①本次抽样调查共测试了▲名学生;②参加地理会考模拟测试的学生成绩的中位数落在分数段▲上;③若用扇形统计图表示统计结果,则分数段为90<x≤100的人数所对应扇形的圆心角的度数为▲;(2)该地区确定地理会考成绩60分以上(含60分)的为合格,要求合格率不低于97%.现已知本次测试得60分的学生有117人,通过计算说明本次地理会考模拟测试的合格率是否达到要求?23.(本小题满分9分)光明中学九年级(1)班开展数学实践活动,小李沿着东西方向的公路以50 m/min的速度向正东方向行走,在A处测得建筑物C在北偏东60°方向上,20min后他走到B处,测得建筑物C在北偏西45°方向上,求建筑物C到公路AB的距离.1.732)(第23题)(1)将一批重490吨的货物分配给甲、乙两船运输.现甲、乙两船已分别运走其任务数的57、37,在已运走的货物中,甲船比乙船多运30吨.求分配给甲、乙两船的任务数各多少吨? (2)自编一道应用题,要求如下:①是路程应用题.三个数据100,25,15必须全部用到,不添加其他数据. ②只要编题,不必解答.25.(本小题满分8分)如图,已知:点B 、F 、C 、E 在一条直线上,FB =CE ,AC =DF .能否由上面的已知条件证明AB ∥ED ?如果能,请给出证明;如果不能,请从下列三个条件中选择一个..合适的条件.....,添加到已知条件中,使AB ∥ED 成立,并给出证明. 供选择的三个条件(请从其中选择一个): ①AB =ED ; ②BC =EF ; ③∠ACB =∠DFE .26.(本小题满分10分)小沈准备给小陈打电话,由于保管不善,电话本上的小陈手机号码中,有两个数字已模糊不清.如果用x 、y 表示这两个看不清的数字,那么小陈的手机号码为139x 370y 580(手机号码由11个数字组成),小沈记得这11个数字之和是20的整数倍. (1)求x +y 的值;(2)求小沈一次拨对小陈手机号码的概率.DE(第25题)如图,在矩形ABCD 中,AB =m (m 是大于0的常数),BC =8,E 为线段BC 上的动点(不与B 、C 重合).连结DE ,作EF ⊥DE ,EF 与射线BA 交于点F ,设CE =x ,BF =y . (1)求y 关于x 的函数关系式;(2)若m =8,求x 为何值时,y 的值最大,最大值是多少? (3)若12y m,要使△DEF 为等腰三角形,m 的值应为多少?28.(本小题满分14分)已知抛物线y =ax 2+bx +c 经过A (-4,3)、B (2,0)两点,当x =3和x =-3时,这条抛物线上对应点的纵坐标相等.经过点C (0,-2)的直线l 与 x 轴平行,O 为坐标原点.(1)求直线AB 和这条抛物线的解析式;(2)以A 为圆心,AO 为半径的圆记为⊙A ,判断直线l 与⊙A 的位置关系,并说明理由;(3)设直线AB 上的点D 的横坐标为-1,P (m ,n )是抛物线y =ax 2+bx +c 上的动点,当△PDO 的周长最小时,求四边形CODP 的面积.A BCDEF(第27题)(第28题)2010年南通市中考数学试卷答案(参考答案)1、D2、A3、B4、C5、D6、A7、C8、D9、C 10、B11、-2 12、1:2 13、ax(x-1) 14、21 15、(2,4) 16、50°17、3418、819、⑴4 ⑵ 3+a a20、3421、⑴ m=-1,k=2 ;⑵ (-1,-2);⑶经过点B 22、⑴ ①4000 ②80<x ≤90 ③108°;⑵ 符合要求,合格率=5.97975.040001172171==--%>97% 23、)13(50- m 24、分配给甲、乙两船的任务数分别是210吨和280吨 25、略26、⑴根据题意,设36+x+y=20k(k 为整数) 则x+y=20k-36 ∵0≤x+y ≤18 ∴0≤20k-36≤18 1.8≤k ≤2.7 ∵k 为整数 ∴k=2∴x+y=20×2-36=44 0小沈一次拨对小陈手机号码的概率是5127、⑴mx x y 28-=;⑵ x=4,y=2 ⑶ m=628、⑴直线AB 解析式:121+-=x y ,抛物线的解析式:1412-=x y ; ⑵相切;⑶四边形CODP 的面积是817 略解过程如下:(/*/以下过程是:证明当点D 、P 、H 三点共线时,△PDO 的周长最小/*/)如图1,过点P 作P H ⊥l ,垂足为H ,延长HP 交x 轴于点G ,设P (m,n )则1412-=m y P , ∴22222222)141()141(+=-+=+=m m m GP OG OP ,∴1412+=m OP∵141)2(14122+=---=-=m m y y PH H P∴OP=PH要使△PDO 的周长最小,因为OD 是定值,所以只要OP+PD 最小, ∵OP=PH∴只要PH+PD 最小根据“直线外一点与直线上各点连接的所有线段中,垂线段最短。
”可知,当点D 、P 、H 三点共线时,PH+PD 最小,因此,当点D 、P 、H 三点共线时,△PDO 的周长最小。
(/*/以下过程是:求四边形CODP 的面积./*/)如图2,点D 的横坐标是-1,所以1-==p D x x , 把x=-1分别代入直线:121+-=x y 和抛物线:1412-=x y 中,得 231)1(21=+-⨯-=D y ,431)1(412-=--⨯=P y∴DP=49)43(23=--=-P D y y ,∵点C (0,-2),∴OC=2, ∴四边形CODP 的面积=()OC DP OG +21=817)249(121=+⨯⨯。