信息论与编码习题与答案第三章
合集下载
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解:信道容量
由于 ,每个二元符号的信息量为1bit,14000个符号14000bit的信息,传输14000bit的信息需要时间
不能无失真的传输
=
bit/symbol
(3)当接收为 ,发为 时正确,如果发的是 则为错误,各自的概率为:
则错误概率为:
(4)
从接收端看平均错误概率为
(5)从发送端看的平均错误概率为:
(6)能看出此信道不好。原因是信源等概率分布,从转移信道来看正确发送的概率x1→y1的概率0.5有一半失真;x2→y2的概率0.3有严重失真;x3→y3的概率0完全失真。
(1)接收端收到一个符号后得到的信息量H(Y);
(2)计算噪声熵 ;
(3)计算接收端收到一个符号 的错误概率;
(4)计算从接收端看的平均错误概率;
(5)计算从发送端看的平均错误概率;
(6)从转移矩阵中能看出该新到的好坏吗?
(7)计算发送端的H(X)和 。
解:(1)
(2)联合概率 ,后验概率
H(Y/X)=
解:由题意可知该二元信道的转移概率矩阵为: 为一个BSC信道所以由BSC信道的信道容量计算公式得到:
3-6设有扰离散信道的传输情况分别如图3-17所示。求出该信道的信道容量。
解:信道转移概率矩阵为P= 该信道为离散对称信道DMC
3-7发送端有三种等概率符号 , ,接收端收到三种符号 ,信道转移概率矩阵为
3.1设二元对称信道的传递矩阵为
(1)若P(0)= 3/4,P(1)= 1/4,求H(X), H(X/Y), H(Y/X)和I(X;Y);
(2)求该信道的信道容
其最佳输入分布为
3.3在有扰离散信道上传输符号0和1,在传输过程中每100个符号发生一个错误,已知P(0)=P(1)=1/2,信源每秒内发出1000个符号,求此信道的信道容量。
(7) bit/symbol
H(X/Y)=
i
bit/symbol
3-10一个平均功率受限制的连续信道,其通频带为1MHZ,信道上存在白色高斯噪声。
(1)已知信道上的信号与噪声的平均功率比值为10,求该信道的信道容量;
(2)信道上的信号与噪声的平均功率比值降至5,要达到相同的信道容量,信道通频带应为多大?
(3)若信道通频带减小为0.5MHZ时,要保持相同的信道容量,信道上的信号与噪声的平均功率比值应等于多大?
解:(1)
(2)
(3)
3-12有一个二元对称信道,其信道转移概率如下图所示,该信道以1500个二元符号/s的速度传输输入符号。现有一消息序列共有14000个二元符号,并设在这消息中p(0)=p(1)=1/2。问从信息传输的角度来考虑,10秒钟内能否将这消息序列无失真地传送完?
由于 ,每个二元符号的信息量为1bit,14000个符号14000bit的信息,传输14000bit的信息需要时间
不能无失真的传输
=
bit/symbol
(3)当接收为 ,发为 时正确,如果发的是 则为错误,各自的概率为:
则错误概率为:
(4)
从接收端看平均错误概率为
(5)从发送端看的平均错误概率为:
(6)能看出此信道不好。原因是信源等概率分布,从转移信道来看正确发送的概率x1→y1的概率0.5有一半失真;x2→y2的概率0.3有严重失真;x3→y3的概率0完全失真。
(1)接收端收到一个符号后得到的信息量H(Y);
(2)计算噪声熵 ;
(3)计算接收端收到一个符号 的错误概率;
(4)计算从接收端看的平均错误概率;
(5)计算从发送端看的平均错误概率;
(6)从转移矩阵中能看出该新到的好坏吗?
(7)计算发送端的H(X)和 。
解:(1)
(2)联合概率 ,后验概率
H(Y/X)=
解:由题意可知该二元信道的转移概率矩阵为: 为一个BSC信道所以由BSC信道的信道容量计算公式得到:
3-6设有扰离散信道的传输情况分别如图3-17所示。求出该信道的信道容量。
解:信道转移概率矩阵为P= 该信道为离散对称信道DMC
3-7发送端有三种等概率符号 , ,接收端收到三种符号 ,信道转移概率矩阵为
3.1设二元对称信道的传递矩阵为
(1)若P(0)= 3/4,P(1)= 1/4,求H(X), H(X/Y), H(Y/X)和I(X;Y);
(2)求该信道的信道容
其最佳输入分布为
3.3在有扰离散信道上传输符号0和1,在传输过程中每100个符号发生一个错误,已知P(0)=P(1)=1/2,信源每秒内发出1000个符号,求此信道的信道容量。
(7) bit/symbol
H(X/Y)=
i
bit/symbol
3-10一个平均功率受限制的连续信道,其通频带为1MHZ,信道上存在白色高斯噪声。
(1)已知信道上的信号与噪声的平均功率比值为10,求该信道的信道容量;
(2)信道上的信号与噪声的平均功率比值降至5,要达到相同的信道容量,信道通频带应为多大?
(3)若信道通频带减小为0.5MHZ时,要保持相同的信道容量,信道上的信号与噪声的平均功率比值应等于多大?
解:(1)
(2)
(3)
3-12有一个二元对称信道,其信道转移概率如下图所示,该信道以1500个二元符号/s的速度传输输入符号。现有一消息序列共有14000个二元符号,并设在这消息中p(0)=p(1)=1/2。问从信息传输的角度来考虑,10秒钟内能否将这消息序列无失真地传送完?