成都中考——第20题专题训练
2023年中考数学压轴题专题20 二次函数与对称变换综合问题【含答案】
专题20二次函数与对称变换综合问题【例1】(2021秋•开化县月考)定义:关于x轴对称且对称轴相同的两条抛物线叫作“镜像抛物线”.例如:y=(x﹣h)2﹣k的“镜像抛物线”为y=﹣(x﹣h)2+k.(1)请写出抛物线y=(x﹣2)2﹣4的顶点坐标,及其“镜像抛物线”y=﹣(x﹣2)2+4的顶点坐标.写出抛物线的“镜像抛物线”为.(2)如图,在平面直角坐标系中,点B是抛物线L:y=ax2﹣4ax+1上一点,点B的横坐标为1,过点B作x轴的垂线,交抛物线L的“镜像抛物线”于点C,分别作点B,C关于抛物线对称轴对称的点B',C',连接BC,CC',B'C',BB'.①当四边形BB'C'C为正方形时,求a的值.②求正方形BB'C'C所含(包括边界)整点个数.(说明:整点是横、纵坐标均为整数的点)【例2】(2022•巩义市模拟)已知,二次函数y=ax2+bx﹣3的图象与x轴交于A,B两点(点A在点B的左边),与y轴交于C点,点A的坐标为(﹣1,0),且OB=OC.(1)求二次函数的解析式;(2)当0≤x≤4时,求二次函数的最大值和最小值分别为多少?(3)设点C'与点C关于该抛物线的对称轴对称.在y轴上是否存在点P,使△PCC'与△POB 相似,且PC与PO是对应边?若存在,求出点P的坐标;若不存在,请说明理由.【例3】(2022•济宁二模)如图,抛物线y=﹣x2+bx+c与x轴交于A,B两点,与y轴交于C点,已知B点的坐标为(3,0),C点的坐标为(0,3).(1)求抛物线的解析式;(2)图1中,点P为抛物线上的动点,且位于第二象限,过P,B两点作直线l交y轴于点D,交直线AC于点E.是否存在这样的直线l:以C,D,E为顶点的三角形与△ABE相似?若存在,请求出这样的直线l的解析式;若不存在,请说明理由.(3)图2中,点C和点C'关于抛物线的对称轴对称,点M在抛物线上,且∠MBA=∠CBC',求M点的横坐标.【例4】(2022•合肥四模)已知抛物线L1:y=ax2+bx﹣3与x轴交于点A(﹣3,0),B(1,0).(1)求抛物线的表达式;(2)若两个抛物线的交点在x轴上,且顶点关于x轴对称,则称这两个抛物线为“对称抛物线”,求抛物线L1对称抛物线L2的解析式;(3)在(2)的条件下,点M是x轴上方的抛物线L2上一动点,过点M作MN⊥x轴于点N,设M的横坐标为m,记W=MN﹣2ON,求W的最大值.一.解答题(共20题)1.(2022•广陵区二模)已知二次函数y=﹣mx2﹣4mx﹣4m+4(m为常数,且m>0).(1)求二次函数的顶点坐标;(2)设该二次函数图象上两点A(a,y a)、B(a+2,y b),点A和点B间(含点A,B)的图象上有一点C,将点C纵坐标的最大值和最小值的差记为h.①当m=1时,若点A和点B关于二次函数对称轴对称,求h的值;②若存在点A和点B使得h的值是4,则m的取值范围是.2.(2022•绿园区二模)在平面直角坐标系中,已知某二次函数的图象同时经过点A(0,3)、B(2m,3)、C(m,m+3).其中,m≠0.(1)当m=1时.①该二次函数的图象的对称轴是直线.②求该二次函数的表达式.(2)当|m|≤x≤|m|时,若该二次函数的最大值为4,求m的值.(3)若同时经过点A、B、C的圆恰好与x轴相切时,直接写出该二次函数的图象的顶点坐标.3.(2022•荷塘区校级模拟)已知二次函数y=ax2+bx+c(a<0)与x轴交于A(x1,0),B (x2,0)两点,且(x1<0<x2),交y轴于点C,顶点为D.(1)a=﹣1,b=2,c=4,①求该二次函数的对称轴方程及顶点坐标;②定义:若点P在某函数图象上,且点P的横纵坐标互为相反数,则称点P为这个函数的“零和点”,求证:此二次函数有两个不同的“零和点”;(2)如图,过D、C两点的直线交x轴于点E,满足∠ACE=∠CBE,求ac的值.4.(2022•绥江县二模)已知二次函数y=ax2+bx﹣3a(a<0)的图象经过(3,0).(1)求二次函数的对称轴;(2)点A的坐标为(1,0),将点A向右平移1个单位长度,再向上平移3个单位长度后得到点B,若二次函数的图象与线段AB有公共点,求a的取值范围.5.(2022•兴化市二模)已知一次函数y=kx+m的图象过点(2,3),A(k,y1)、B(k+1,y2)是二次函数y=x2﹣(m﹣2)x+2m图象上的两点.(1)若该二次函数图象的对称轴是直线x=1,分别求出一次函数和二次函数的表达式;(2)当点A、B在二次函数的图象上运动时,满足|y1﹣y2|=1,求m的值;(3)点A、B的位置随着k的变化而变化,设点A、B的运动路线分别与直线x=n交于点P、Q,当PQ=2时,求n的值.6.(2022•三门峡一模)已知二次函数y=ax2﹣2ax+2a(a≠0).(1)该二次函数图象的对称轴是直线x=;(2)若该二次函数的图象开口向上,当﹣1≤x≤4时,y的最大值是5,求抛物线的解析式;(3)若对于该抛物线上的两点P(x1,y1),Q(x2,y2),当x2取大于3的任何实数时,均满足y1<y2,请结合图象,直接写出x1的取值范围.7.(2022•无锡二模)二次函数y=ax2+bx+4的图象与x轴交于两点A、B,与y轴交于点C,且A(﹣1,0)、B(4,0).(1)求此二次函数的表达式;(2)①如图1,抛物线的对称轴m与x轴交于点E,CD⊥m,垂足为D,点F(﹣,0),动点N在线段DE上运动,连接CF、CN、FN,若以点C、D、N为顶点的三角形与△FEN 相似,求点N的坐标;②如图2,点M在抛物线上,且点M的横坐标是1,将射线MA绕点M逆时针旋转45°,交抛物线于点P,求点P的坐标;(3)已知Q在y轴上,T为二次函数对称轴上一点,且△QOT为等腰三角形,若符合条件的Q恰好有2个,直接写出T的坐标.8.(2022秋•乐陵市校级月考)如图,已知二次函数的图象经过A(2,0)、B(0,﹣6)两点.(1)求这个二次函数的解析式;(2)求这个二次函数的对称轴、顶点坐标;(3)设该二次函数的对称轴与x轴交于点C,连结BA、BC,求△ABC的面积.(4)若点D为抛物线与x轴的另一个交点,在抛物线上是否存在一点M,使△ADM的面积为△ABC的面积的2倍,若存在,请求出M的坐标,若不存在,请说明理由.9.(2022秋•永城市月考)如图,关于x的二次函数y=﹣x2+bx+3的图象与x轴交于A、B两点,与y轴交于点C,且过点D(﹣1,4).(1)求b的值及该二次函数图象的对称轴;(2)连接AC,AD,CD,求△ADC的面积;(3)在AC上方抛物线上有一动点M,请直接写出△ACM的面积取到最大值时,点M的坐标.10.(2022秋•越秀区校级月考)如图,在平面直角坐标系xOy中,A(1,0),B(0,2),以AB为边向右作等腰直角△ABC,∠BAC=90°,AB=AC,二次函数的图象经过点C.(1)求二次函数的解析式;(2)平移该二次函数图象的对称轴所在的直线l,若直线l恰好将△ABC的面积分为1:2两部分,请求出直线l平移的最远距离;(3)将△ABC以AC所在直线为对称轴翻折,得到△AB'C,那么在二次函数图象上是否存在点P,使△PB'C是以B'C为直角边的直角三角形?若存在,请求出P点坐标;若不存在,请说明理由.11.(2022秋•西城区校级期中)定义:若两个函数的图象关于某一点Q中心对称,则称这两个函数关于点Q互为“对称函数”.例如,函数y=x2与y=﹣x2关于原点O互为“对称函数”.(1)函数y=﹣x+1关于原点O的“对称函数”的函数解析式为,函数y=(x﹣2)2﹣1关于原点O的“对称函数”的函数解析式为;(2)已知函数y=x2﹣2x与函数G关于点Q(0,1)互为“对称函数”,若函数y=x2﹣2x 与函数G的函数值y都随自变量x的增大而减小,求x的取值范围;(3)已知点A(0,1),点B(4,1),点C(2,0),二次函数y=ax2﹣2ax﹣3a(a>0),与函数N关于点C互为“对称函数”,将二次函数y=ax2﹣2ax﹣3a(a>0)与函数N的图象组成的图形记为W,若图形W与线段AB恰有2个公共点,直接写出a的取值范围.12.(2022春•鼓楼区校级期末)在平面直角坐标系xOy中,已知抛物线y=ax2﹣2(a+1)x+a+2(a≠0).(1)当a=﹣时,求抛物线的对称轴及顶点坐标;(2)请直接写出二次函数图象的对称轴是直线(用含a的代数式表示)及二次函数图象经过的定点坐标是.(3)若当1≤x≤5时,函数值有最大值为8,求二次函数的解析式;(4)已知点A(0,﹣3)、B(5,﹣3),若抛物线与线段AB只有一个公共点,请直接写出a的取值范围.13.(2022春•西湖区校级期末)如图所示,在矩形AOCD中,把点D沿AE对折,使点D 落在OC上的F点.已知AO=8,AD=10.(1)求F点的坐标;(2)如果一条不与抛物线对称轴平行的直线与抛物线仅一个交点,我们把这条直线称为抛物线的切线,已知抛物线经过O,F,且直线y=6x﹣36是该抛物线的切线.求抛物线的解析式.并验证点M(5,﹣5)是否在该抛物线上.(3)在(2)的条件下,若点P是位于该二次函数对称轴右侧图象上不与顶点重合的任意一点,试比较∠POF与∠MOF的大小(不必证明),并写出此时点P的横坐标x P的取值范围.14.(2022•南京模拟)已知,如图,抛物线与坐标轴相交于点A(﹣1,0),C(0,﹣3)两点,对称轴为直线x=1,对称轴与x轴交于点D.(1)求抛物线的解析式;(2)点P是抛物线上的点,当∠ACP=45°时,求点P的坐标;(3)点F为二次函数图象上与点C对称的点,点M在抛物线上,点N在抛物线的对称轴上,是否存在以点F,A,M,N为顶点的平行四边形?若存在,直接写出点M的坐标,若不存在,说明理由.15.(2022•兴宁区校级模拟)如图,已知二次函数y=ax2+bx+c的图象经过点C(2,﹣3),且与x轴交于原点及点B(8,0),点A为抛物线的顶点.(1)求二次函数的表达式;(2)在抛物线的对称轴上是否存在点M,使△ABM是等腰三角形?如果存在,请求出点M 的坐标.如果不存在,请说明理由;(3)若点P为⊙O上的动点,且⊙O的半径为,求的最小值.16.(2022•南京模拟)已知二次函数解析式为y=x﹣1(a≠0),该抛物线与y 轴交于点A,其顶点记为B,点A关于抛物线对称轴的对称点记为C.已知点D在抛物线上,且点D的横坐标为2,DE⊥y轴交抛物线于点E.(1)求点D的纵坐标.(2)当△ABC是等腰直角三角形时,求出a的值.(3)当0≤x≤2时,函数的最大值与最小值的差为2时,求a的取值范围.(4)设点R(a﹣3,﹣1),点A、R关于直线DE的对称点分别为N、M,当抛物线在以A、R、M、N为顶点的四边形内部的图象中,y随x的增大而增大或y随x的增大而减小时,直接写出a的取值范围.17.(2021•九龙坡区校级模拟)若直线y=﹣2x+4与y轴交于点A,与x轴交于点B,二次函数y=ax2+3x+c的图象经过点A,交x轴于C、D两点,且抛物线的对称轴为直线x=.(1)求二次函数的解析式;(2)过点C作直线CE∥AB交y轴于点E,点P是直线CE上一动点,点Q是第一象限抛物线上一动点,求四边形APBQ面积的最大值与此时点Q的坐标;(3)在(2)的结论下,点E是抛物线的顶点,对称轴与x轴交于点G,直线EQ交x轴于点F,在抛物线的对称轴上是否存在一点M,使得∠MFQ+∠CAO=45°,求点M的坐标.18.(2022•成都模拟)如图1所示,直线y=x+3与x轴、y轴分别相交于点A,点B,点C(1,2)在经过点A,B的二次函数y=ax2+bx+c的图象上.(1)求抛物线的解析式;(2)点P为线段AB上(不与端点重合)的一动点,过点P作PQ∥y轴交抛物线于点Q,求PQ+PB取得最大值时点P的坐标;(3)如图2,连接BC并延长,交x轴于点D,E为第三象限抛物线上一点,连接DE,点G为x轴上一点,且G(﹣1,0),直线CG与DE交于点F,点H在线段CF上,且∠CFD+∠ABH=45°,连接BH交OA于点M,已知∠GDF=∠HBO,求点H的坐标.19.(2022秋•甘井子区校级月考)抛物线y=x2+bx+c过A(﹣1,0),B(3,0)两点,与y轴相交于点C,点C、D关于抛物线的对称轴对称.(1)抛物线的解析式是,△ABD的面积为;(2)在直线AD下方的抛物线上存在点P,使△APD的面积最大,求出最大面积.(3)当t≤x≤t+1时,函数y=x2+bx+c的最小值为5,求t的值.(4)若点M在y轴上运动,点N在x轴上运动,当以点D、M、N为顶点的三角形为等腰直角三角形时,请直接写出此时M点的坐标.20.(2021秋•沙坪坝区月考)如图,抛物线与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,点E与点C关于抛物线对称轴对称,抛物线的对称轴与x轴交于点G.(1)求直线AE的解析式及△ACE的面积.(2)如图1,连接AE,交y轴于点D,点P为直线AE上方抛物线一点,连接PD、PE,直线l过点B且平行于AE,点F为直线l上一点,连接FD、FE,当四边形PDFE面积最大时,在y轴上有一点N,连接PN,过点N作NM垂直于抛物线对称轴于点M,求的最小值.(3)连接AC,将△AOC向右平移得△A'O'C',当A'C'的中点恰好落在∠CAB的平分线上时,将△A'O'C'绕点O'旋转,记旋转后的三角形为△A″O′C″,在旋转过程中,直线A″C″与y轴交于点K,与直线AC交于点H,在平面中是否存在一点Q,使得以C、K、H、Q为顶点的四边形是以KH为边的菱形,若存在,请直接写出点Q的坐标;若不存在,请说明理由.【例1】(2021秋•开化县月考)定义:关于x轴对称且对称轴相同的两条抛物线叫作“镜像抛物线”.例如:y=(x﹣h)2﹣k的“镜像抛物线”为y=﹣(x﹣h)2+k.(1)请写出抛物线y=(x﹣2)2﹣4的顶点坐标(2,﹣4),及其“镜像抛物线”y =﹣(x﹣2)2+4的顶点坐标(2,4).写出抛物线的“镜像抛物线”为.(2)如图,在平面直角坐标系中,点B是抛物线L:y=ax2﹣4ax+1上一点,点B的横坐标为1,过点B作x轴的垂线,交抛物线L的“镜像抛物线”于点C,分别作点B,C关于抛物线对称轴对称的点B',C',连接BC,CC',B'C',BB'.①当四边形BB'C'C为正方形时,求a的值.②求正方形BB'C'C所含(包括边界)整点个数.(说明:整点是横、纵坐标均为整数的点)【分析】(1)根据定义直接求解即可;(2)①分别求出B(1,1﹣3a),C(1,3a﹣1),B'(3,1﹣3a),C'(3,3a﹣1),由正方形的性质可得BB'=BC,即2=6a﹣2,求出a即可;②由①求出B(1,﹣1),C(1,1),B'(3,﹣1),C'(3,1),在此区域内找出所含的整数点即可.【解答】解:(1)y=(x﹣2)2﹣4的顶点坐标为(2,﹣4),y=﹣(x﹣2)2+4的顶点坐标为(2,4),的“镜像抛物线”为,故答案为:(2,﹣4),(2,4),;(2)①∵y=ax2﹣4ax+1=a(x﹣2)2+1﹣4a,∴抛物线L的“镜像抛物线”为y=﹣a(x﹣2)2﹣1+4a,∵点B的横坐标为1,∴B(1,1﹣3a),C(1,3a﹣1),∵抛物线的对称轴为直线x=2,∴B'(3,1﹣3a),C'(3,3a﹣1),∴BB'=2,BC=6a﹣2,∵四边形BB'C'C为正方形,∴2=6a﹣2,∴a=;②∵a=,∴B(1,﹣1),C(1,1),B'(3,﹣1),C'(3,1),∴正方形BB'C'C所含(包括边界)整点有(1,﹣1),(1,1),(3,﹣1),(3,1),(1,0),(3,0),(2,﹣1),(2,0),(2,1)共9个.【例2】(2022•巩义市模拟)已知,二次函数y=ax2+bx﹣3的图象与x轴交于A,B两点(点A在点B的左边),与y轴交于C点,点A的坐标为(﹣1,0),且OB=OC.(1)求二次函数的解析式;(2)当0≤x≤4时,求二次函数的最大值和最小值分别为多少?(3)设点C'与点C关于该抛物线的对称轴对称.在y轴上是否存在点P,使△PCC'与△POB 相似,且PC与PO是对应边?若存在,求出点P的坐标;若不存在,请说明理由.【分析】(1)根据OB=OC可得B点的坐标为(3,0),把A、B的坐标代入二次函数y=ax2+bx﹣3,求出a、b的值即可;(2)求出二次函数的顶点坐标为(1,﹣4),根据二次函数的性质即可得出答案;(3)先设出P的坐标,根据相似三角形的性质列出方程,解出方程即可得到点P的坐标.【解答】解:(1)∵二次函数y=ax2+bx﹣3的图象与y轴交于C点,∴C(0,﹣3).∵OB=OC,点A在点B的左边,∴B(3,0).∵点A的坐标为(﹣1,0),由题意可得,解得:,∴二次函数的解析式为y=x2﹣2x﹣3;(2)∵二次函数的解析式为y=x2﹣2x﹣3=(x﹣1)2﹣4,∴二次函数顶点坐标为(1,﹣4),∴当x=1时,y=﹣4,最小值∵当0≤x≤1时,y随着x的增大而减小,∴当x=0时,y=﹣3,∵当1<x≤4时,y随着x的增大而增大,∴当x=4时,y=5.∴当0≤x≤4时,函数的最大值为5,最小值为﹣4;(3)在y轴上存在点P,使△PCC'与△POB相似,理由如下:设P(0,m),如图,∵点C'与点C关于该抛物线的对称轴直线x=1对称,C(0,﹣3).∴C′(2,﹣3).∴CC'∥OB,∵△PCC'与△POB相似,且PC与PO是对应边,∴,即:,解得:m=﹣9或m=﹣,∴存在,P(0,﹣9)或P(0,﹣).【例3】(2022•济宁二模)如图,抛物线y=﹣x2+bx+c与x轴交于A,B两点,与y轴交于C点,已知B点的坐标为(3,0),C点的坐标为(0,3).(1)求抛物线的解析式;(2)图1中,点P为抛物线上的动点,且位于第二象限,过P,B两点作直线l交y轴于点D,交直线AC于点E.是否存在这样的直线l:以C,D,E为顶点的三角形与△ABE相似?若存在,请求出这样的直线l的解析式;若不存在,请说明理由.(3)图2中,点C和点C'关于抛物线的对称轴对称,点M在抛物线上,且∠MBA=∠CBC',求M点的横坐标.【分析】(1)利用待定系数法求解析式即可;(2)存在直线l,证明△ACO≌△DBO(ASA)得到OA=OD,求出A点坐标即可求出D点坐标,再利用待定系数法求直线解析式即可;(3)连接BM,CC′,作C′H⊥BC交BC于H,求出tan∠MBA=,进一步可求出N(0,)或N(0,﹣)分情况讨论,即可求出M的横坐标为﹣或﹣.【解答】(1)解:抛物线y=﹣x2+bx+c过B(3,0),C(0.3),∴,解得:,∴函数解析式为:y=﹣x2+2x+3;(2)解:存在直线l使得以C,D,E为顶点的三角形与△ABE相似,当l⊥AC时,以C,D,E为顶点的三角形与△ABE相似,∴∠ACD=∠EBO,在Rt△ACO和Rt△DBO中,,∴ΔΑCO≌△DBO(ASA),∴OA=OD,解﹣x2+2x+3=0,得:x1=3(不符合题意,舍去),x2=﹣1,∴A(﹣1,0),∴D(0,1),设直线的解析式为:y=kx+b,将B(3,0),D(0,1)代入解析式可得,解得:,∴直线的解析式为:y=x+1;(3)解:连接BM,CC′,作C′H⊥BC交BC于H,∵抛物线对称轴为直线:x==1,∴CC′=2,∵OB=OC,∴∠BCO=45°,∴∠C′CB=45°,∵C′H⊥BC,CC′=2,∴C′H=CH=,∵OB=OC=3,∴BC=3,∴BH=,∴tan∠CBC′=,∵∠MBA=∠CBC′,∴tan∠MBA=,∴ON=,∴N(0,)或N(0,﹣),当N(0,),如图:∵B(3,0),∴,∴,∴直线BN解析式为:y=x+,解方程﹣x2+2x+3=﹣x+,得:(不符合题意,舍去),∴M的横坐标为﹣;当N(0,﹣),如图:∵B(3,0),∴,∴,∴直线BN解析式为:y=x﹣,解方程﹣x2+2x+3=x﹣,得:(不符合题意,舍去),∴M的横坐标为﹣,综上所述:M的横坐标为﹣或﹣.【例4】(2022•合肥四模)已知抛物线L1:y=ax2+bx﹣3与x轴交于点A(﹣3,0),B(1,0).(1)求抛物线的表达式;(2)若两个抛物线的交点在x轴上,且顶点关于x轴对称,则称这两个抛物线为“对称抛物线”,求抛物线L1对称抛物线L2的解析式;(3)在(2)的条件下,点M是x轴上方的抛物线L2上一动点,过点M作MN⊥x轴于点N,设M的横坐标为m,记W=MN﹣2ON,求W的最大值.【分析】(1)将点A(﹣3,0),B(1,0)代入y=ax2+bx﹣3,即可求解;(2)求出顶点的对称点为(﹣1,4),设抛物线L2的解析式为y=n(x+1)2+4,再将抛物线与x轴的交点为(﹣3,0)或(1,0)代入,即可求解析式;(3)由题意可知M(m,﹣m2﹣2m+3),N(m,0),则MN=﹣m2﹣2m+3,ON=|m|,分两种情况讨论;当﹣3<x≤0时,W=﹣m2+3,当m=0时,W有最大值3;当0≤x<1时,W=﹣(m+2)2+7,当m=0时,W有最大值3.【解答】解:(1)将点A(﹣3,0),B(1,0)代入y=ax2+bx﹣3,∴,解得,∴y=x2+2x﹣3;(2)令y=0,则x2+2x﹣3=0,解得x=﹣3或x=1,∴抛物线与x轴的交点为(﹣3,0)或(1,0),∵y=x2+2x﹣3=(x+1)2﹣4,∴顶点为(﹣1,﹣4),∴顶点关于x轴的对称点为(﹣1,4),设抛物线L2的解析式为y=n(x+1)2+4,∵抛物线经过点(﹣3,0)或(1,0),∴n=﹣1,∴y=﹣x2﹣2x+3;(3)∵点M是x轴上方的抛物线L2上一动点,∴﹣3<x<1,∵M的横坐标为m,∴M(m,﹣m2﹣2m+3),N(m,0),∴MN=﹣m2﹣2m+3,ON=|m|,当﹣3<x≤0时,W=MN﹣2ON=﹣m2﹣2m+3+2m=﹣m2+3,∴当m=0时,W有最大值3;当0≤x<1时,W=MN﹣2ON=﹣m2﹣2m+3﹣2m=﹣m2﹣4m+3=﹣(m+2)2+7,∴当m=0时,W有最大值3;综上所述:W的最大值为3.一.解答题(共20题)1.(2022•广陵区二模)已知二次函数y=﹣mx2﹣4mx﹣4m+4(m为常数,且m>0).(1)求二次函数的顶点坐标;(2)设该二次函数图象上两点A(a,y a)、B(a+2,y b),点A和点B间(含点A,B)的图象上有一点C,将点C纵坐标的最大值和最小值的差记为h.①当m=1时,若点A和点B关于二次函数对称轴对称,求h的值;②若存在点A和点B使得h的值是4,则m的取值范围是0<m≤4.【分析】(1)利用配方法求出顶点坐标即可.(2)①根据A,B关于抛物线的对称轴对称,求出a的值,在求出﹣3≤x≤﹣1时,二次函数的最大值,最小值,可得结论.②分四种情形:当a+2≤﹣2,即a≤﹣4时,当﹣4<a≤﹣3时,当﹣3<a≤﹣2时,当a >﹣2时,分别求出满足条件的m的取值范围,可得结论.【解答】解:(1)y=﹣mx2﹣4mx﹣4m+4=﹣m(x2+4x+4)+4=﹣m(x+2)2+4,∴二次函数的顶点坐标为(﹣2,4).(2)①∵点A、B关于对称轴对称=﹣2,∴a=﹣3,当m=1时,y=﹣x2﹣4x﹣4+4=﹣x2﹣4x,则当x=﹣3(或x=﹣1)时,y=3,最小值=4,当x=﹣2时,y最大值∴h=1.②结论:0<m≤4,理由如下:当a+2≤﹣2,即a≤﹣4时,h=y b﹣y a=﹣m(a+2+2)2+4﹣[﹣m(a+2)2+4]=﹣4m(a+3),∵h=4,∴4=﹣4m(a+3),∴a=﹣﹣3≤﹣4,∵m>0,解得m≤1,当﹣4<a≤﹣3时,h=4﹣y a=4﹣[﹣m(a+2)2+4]=m(a+2)2,∴可得a=﹣﹣2,∴﹣4<﹣﹣2≤﹣3,解得1<m≤4,当﹣3<a≤﹣2时,h=4﹣y b=4﹣[﹣m(a+2+2)2+4]=m(a+4)2,可得a=﹣4,∴﹣3<﹣4≤﹣2,不等式无解.当a>﹣2时,h=y a﹣y b=﹣m(a+2)2+4﹣[﹣m(a+2+2)2+4]=4m(a+3),可得a=﹣3,∴﹣3>﹣2,∴m<1,综上所述,满足条件的m的值为0<m≤4.故答案为:0<m≤4.2.(2022•绿园区二模)在平面直角坐标系中,已知某二次函数的图象同时经过点A(0,3)、B(2m,3)、C(m,m+3).其中,m≠0.(1)当m=1时.①该二次函数的图象的对称轴是直线x=1.②求该二次函数的表达式.(2)当|m|≤x≤|m|时,若该二次函数的最大值为4,求m的值.(3)若同时经过点A、B、C的圆恰好与x轴相切时,直接写出该二次函数的图象的顶点坐标.【分析】(1)①根据所给的点可知A、B两点关于抛物线对称轴对称,利用对称性可求对称轴;②利用待定系数法求函数的解析式即可;(2)用的待定系数法求函数的解析式y=﹣(x﹣m)2+m+3,再分两种情况讨论:当m>0时,m≤x≤m,当x=m时,函数有最大值m+3;当m<0时,﹣m≤x≤﹣m,当x=﹣m时,函数有最大值;分别求m的值即可求解;(3)先判断△ABC是等腰直角三角形,且∠ACB=90°,则过点A、B、C的圆是以AB的中点M为圆心,AB为半径,再分两种情况讨论:当m>0时,MN=AM=|m|=3,可求C 点坐标;当m<0时,CM=AM=3=|m|,可求C点坐标.【解答】解:(1)①∵A(0,3)、B(2m,3),∴A、B两点关于抛物线对称轴对称,∵m=1,∴抛物线的对称轴为直线x=1,故答案为:x=1;②设y=ax2+bx+c(a≠0),∵m=1,∴B(2,3)、C(1,4),将点A、B、C代入y=ax2+bx+c,∴,解得,∴y=﹣x2+2x+3;(2)∵A(0,3)、B(2m,3)两点关于抛物线的对称轴对称,∴抛物线的对称轴为直线x=m,设抛物线的解析式为y=a(x﹣m)2+m+3,将点A(0,3)代入,∴am2+m+3=3,∴a=﹣,∴y=﹣(x﹣m)2+m+3,当m>0时,m≤x≤m,∴当x=m时,函数有最大值m+3,∴m+3=4,∴m=1;当m<0时,﹣m≤x≤﹣m,∴当x=﹣m时,函数有最大值,∴4=﹣(﹣m﹣m)2+m+3,解得m=﹣;综上所述:m的值为1或﹣;(3)∵A(0,3)、B(2m,3)、C(m,m+3),∴AB=|2m|,AC=|m|,BC=|m|,∴△ABC是等腰直角三角形,且∠ACB=90°,∴过点A、B、C的圆是以AB的中点M为圆心,AB为半径,如图1,当m>0时,∵⊙M与x轴相切,∴MN=AM=|m|=3,∴m=3,∴C(3,6);如图2,当m<0时,∵⊙M与x轴相切,∴CM=AM=3=|m|,∴m=﹣3,∴C(﹣3,0);综上所述:该二次函数的图象的顶点坐标为(3,6)或(﹣3,0).3.(2022•荷塘区校级模拟)已知二次函数y=ax2+bx+c(a<0)与x轴交于A(x1,0),B (x2,0)两点,且(x1<0<x2),交y轴于点C,顶点为D.(1)a=﹣1,b=2,c=4,①求该二次函数的对称轴方程及顶点坐标;②定义:若点P在某函数图象上,且点P的横纵坐标互为相反数,则称点P为这个函数的“零和点”,求证:此二次函数有两个不同的“零和点”;(2)如图,过D、C两点的直线交x轴于点E,满足∠ACE=∠CBE,求ac的值.【分析】(1)①运用配方法将二次函数解析式化为顶点式,即可得出答案;②由y=﹣x与y=ax2+bx+c联立可得x2﹣3x﹣4=0,运用根的判别式可得Δ>0,即可得出结论;(2)如图,连接AC,先求出直线CD的解析式为y=x+c,可得E(﹣,0),再利用求根公式可得:A(,0),B(,0),再证明△EAC∽△ECB,可得CE2=AE•BE,即c2+=(+)(+),化简即可得出答案.【解答】解:(1)①当a=﹣1,b=2,c=4时,抛物线解析式为y=﹣x2+2x+4,∵y=﹣x2+2x+4=﹣(x﹣1)2+5,∴抛物线的对称轴为直线x=1,顶点为D(1,5);②当y=﹣x时,﹣x2+2x+4=﹣x,整理得:x2﹣3x﹣4=0,∵Δ=(﹣3)2﹣4×1×(﹣4)=25>0,∴二次函数y=﹣x2+2x+4有两个不同的“零和点”;(2)如图,连接AC,∵y=ax2+bx+c,∴C(0,c),顶点D(﹣,),设直线CD的解析式为y=kx+n,则,解得:,∴直线CD的解析式为y=x+c,∴E(﹣,0),∵A(,0),B(,0),∴AE=﹣(﹣)=+,BE=﹣(﹣)=+,∵∠ACE=∠CBE,∠AEC=∠CEB,∴△EAC∽△ECB,∴=,∴CE2=AE•BE,在Rt△CEO中,CE2=OC2+OE2=c2+()2=c2+,∴c2+=(+)(+),化简得:ac=﹣1,故ac的值为﹣1.4.(2022•绥江县二模)已知二次函数y=ax2+bx﹣3a(a<0)的图象经过(3,0).(1)求二次函数的对称轴;(2)点A的坐标为(1,0),将点A向右平移1个单位长度,再向上平移3个单位长度后得到点B,若二次函数的图象与线段AB有公共点,求a的取值范围.【分析】(1)首先利用待定系数法确定函数解析式,然后利用对称轴方程求解;(2)根据平移的性质求得B(2,3),然后由“二次函数的图象与线段AB有公共点”得到4a﹣4a﹣3a≤3,通过解该不等式求得答案.【解答】解:(1)∵二次函数y=ax2+bx﹣3a(a<0)的图象经过(3,0),∴把(3,0)代入y=ax2+bx﹣3a,得9a+3b﹣3a=0,化简,得b=﹣2a,∴二次函数的对称轴为:.(2)∵点A的坐标为(1,0),将点A向右平移1个单位长度,再向上平移3个单位长度后得到点B,∴B(2,3),∵a<0,开口向下,∴二次函数图象与线段AB有交点时,4a﹣4a﹣3a≤3,解得a≥﹣1,故a的取值范围是:﹣1≤a<0.5.(2022•兴化市二模)已知一次函数y=kx+m的图象过点(2,3),A(k,y1)、B(k+1,y2)是二次函数y=x2﹣(m﹣2)x+2m图象上的两点.(1)若该二次函数图象的对称轴是直线x=1,分别求出一次函数和二次函数的表达式;(2)当点A、B在二次函数的图象上运动时,满足|y1﹣y2|=1,求m的值;(3)点A、B的位置随着k的变化而变化,设点A、B的运动路线分别与直线x=n交于点P、Q,当PQ=2时,求n的值.【分析】(1)利用对称轴为1求出m的值,可得二次函数的解析式,将点(2,3)和m=4代入一次函数y=kx+m,可得一次函数的解析式;(2)将A(k,y1)、B(k+1,y2)两点分别代入y=x2﹣(m﹣2)x+2m,求出|y1﹣y2|=1,再利用y=kx+m过点(2,3),得出m=3﹣2k,代入①式,最后得出结果;(3)将A,B坐标代入分别表示出y P和y Q,再由m=3﹣2k,得出y P=k2﹣(m﹣2)k+2m,y Q=(k+1)2﹣(m﹣2)(k+1)+2m,再将k=n,k+1=n代入,得出用n表示的y P和y Q,,进而得出|y P﹣y Q|=|2n﹣4|=2,求解即可.【解答】解:(1)∵对称轴为x=1,∴,∴,解得m=4,∴二次函数的表达式为:y=x2﹣(4﹣2)x+2x4=x2﹣2x+8,将点(2,3)和m=4代入一次函数y=kx+m,得到3=2k+4,解得:k=﹣,∴一次函数的表达式为y=﹣x+4;∴一次函数表达式:,二次函数的表达式:y=x2﹣2x+8;(2)将A(k,y1)、B(k+1,y2)两点分别代入y=x2﹣(m﹣2)x+2m,得到y1=k2﹣(m﹣2)k+2m,y2=(k+1)2﹣(m﹣2)(k+1)+2m,∵|y1﹣y2|=1,∴y1﹣y2=±1,∴k2﹣(m﹣2)k+2m﹣[(k+1)2﹣(m﹣2)(k+1)+2m]=±1,整理得:m﹣2k﹣3=±1①,∵y=kx+m过点(2,3),代入得:m=3﹣2k,将m=3﹣2k代入①式得:k=±,即k=或k=﹣,当k=时,m=3﹣2×=;当k=﹣时,m=3﹣2×(﹣)=,综上所述,m=或m=.(3)解:将A(k,)B(k+1,y2)代入二次函数y=x2﹣(m﹣2)x+2m,得y P=k2﹣(m﹣2)k+2m,y Q=(k+1)2﹣(m﹣2)(k+1)+2m,又∵一次函数y=kx+m过点(2,3),代入得:m=3﹣2k,∴y P=3k2﹣5k+6,y Q=3k2﹣k+6,∵k=n,k+1=n,把k=n代入得y P=3n2﹣5n+6,把k=n﹣1代入y Q=3(n﹣1)2﹣(n﹣1)+6,∴|y P﹣y Q|=|2n﹣4|=2,解得n=1或3.6.(2022•三门峡一模)已知二次函数y=ax2﹣2ax+2a(a≠0).(1)该二次函数图象的对称轴是直线x=1;(2)若该二次函数的图象开口向上,当﹣1≤x≤4时,y的最大值是5,求抛物线的解析式;(3)若对于该抛物线上的两点P(x1,y1),Q(x2,y2),当x2取大于3的任何实数时,均满足y1<y2,请结合图象,直接写出x1的取值范围.【分析】(1)利用对称轴公式计算即可;(2)构建方程求出a的值即可解决问题;(3)结合图象,分两种情况讨论,当x2取大于3的任何实数时,均满足y1<y2,推出当抛物线开口向上,当﹣1≤x1≤3时,满足条件,由此即可解决问题.【解答】解:(1)对称轴x=﹣=1.故答案为1;(2)∵该二次函数的图象开口向上,对称轴为直线x=1,且当﹣1≤x≤4时,y的最大值是5,∴当x=4时,y的最大值为5,∴16a﹣8a+2a=5,∴a=,∴抛物线的解析式为y=x2﹣x+1;(3)如图,∵对称轴为直线x=1,∴x=﹣1与x=3时的y值相等,∵x2>3时,均满足y1<y2,②当a<0时,抛物线开口向下,如图1,不成立;②当a>0时,抛物线开口向上,如图2,当x2取大于3的任何实数时,均满足y1<y2,此时,x1的取值范围是:﹣1≤x1≤3;∴由①②知:当a>0时,抛物线开口向上.当x2取大于3的任何实数时,均满足y1<y2,此时,x1的取值范围是:﹣1≤x1≤3.7.(2022•无锡二模)二次函数y=ax2+bx+4的图象与x轴交于两点A、B,与y轴交于点C,且A(﹣1,0)、B(4,0).(1)求此二次函数的表达式;(2)①如图1,抛物线的对称轴m与x轴交于点E,CD⊥m,垂足为D,点F(﹣,0),动点N在线段DE上运动,连接CF、CN、FN,若以点C、D、N为顶点的三角形与△FEN 相似,求点N的坐标;②如图2,点M在抛物线上,且点M的横坐标是1,将射线MA绕点M逆时针旋转45°,交抛物线于点P,求点P的坐标;(3)已知Q在y轴上,T为二次函数对称轴上一点,且△QOT为等腰三角形,若符合条件的Q恰好有2个,直接写出T的坐标.【分析】(1)先求得点C的坐标,设抛物线的解析式为y=a(x+1)(x﹣4),将点C的坐标代入求得a的值,从而得到抛物线的解析式;(2)①当点C、D、N为顶点的三角形与△FEN相似时分两种情况:△CDN∽△FEN和△CDN∽△NEF,列比例式可解答;②如图2所示:过点A作GH∥y轴,过点M作MG⊥GH于G,过点A作AE⊥AM,交MP于点E,证明△AEM是等腰直角三角形,得AM=AE,计算点M的坐标,证明△MGA ≌△AHE(AAS),则EH=AG=6,AH=GM=2,利用待定系数法可得直线EA的解析式为y=−2x+8,与二次函数解析式联立方程,解出可得结论;(3)分T在x轴上,x轴上方和下方三种情况:根据符合条件的Q恰好有2个正确画图可得结论.【解答】解:(1)y=ax2+bx+4,当x=0时,y=4,∴C(0,4),设抛物线的解析式为y=a(x+1)(x−4),将点C的坐标代入得:−4a=4,解得a=−1,∴抛物线的解析式为y=−x2+3x+4;(2)①如图1,抛物线的对称轴是:x=−=,∴CD=,EF=+==,设点N的坐标为(,a)则ND=4−a,NE=a,当△CDN∽△FEN时,=,即=,解得a=,∴点N的坐标为(,);当△CDN∽△NEF时,=,即=,解得:a1=a2=2,∴点N的坐标为(,2),综上所述,点N的坐标为(,)或(,2);②如图2所示:过点A作GH∥y轴,过点M作MG⊥GH于G,过点A作AE⊥AM,交MP于点E,∵∠AMP=45°,∠MAE=90°,∴△AEM是等腰直角三角形,∴AM=AE,将x=1代入抛物线的解析式得:y=6,∴点M的坐标为(1,6),∴MG=2,AG=6,∵∠GAM+∠EAH=90°,∠EAH+∠AEH=90°,∴∠GAM=∠AEH,∵∠G=∠H=90°,。
四川省成都市九年级数学2020年中考复习-20题-圆综合
(2019 成都新都区·20 题·10 分)【求比值】
如图,已知 A0 为 Rt△ABC 的角平分线,∠ACB=90°,以 O 为圆心,OC 为半径的圆分别交 A0,BC 于点 D,E,连接 ED 并延长交 AC 于点 F
(1)求证:AB 是⊙O 的切线;
AC 4
BE
(2)当
时,求 的值;
BC 3
(2019 陕西中考·23 题·8 分) 如图,AC 是⊙O 的直径,AB 是⊙O 的一条弦,AP 是⊙O 的切线,作 BM=AB,并与 AP 交于点 M,延长 MB 交 AC 于点 E,交⊙O 于点 D,连接 AD. (1)求证:AB=BE; (2)若⊙O 的半径 R=5,AB=6,求 AD 的长。
CE
CF
(3)在(2)的条件下,若⊙O 的半径为 4,求 的值。
AD
题型六、相似、勾股求线段长
(2019 绵阳中考·22 题·11 分) 如图,AB 是⊙O 的直径,点 C 为 BD 的中点,CF 为⊙O 的弦,且 CF⊥AB,垂足为 E,连接 BD 交 CF 于点 G,连接 CD,AD,BF。 (1)求证:△BFG≌△CDG; (2)若 AD=BE=2,求 BF 的长.
4
2 )若 tan∠ADB= ,DE=6,求 BF 的长.
3
(2019·成都温江区二诊·20 题·10 分) 如图,AB 是⊙O 的直径,弦 CD⊥AB,垂足为 H,连接 AC,过弧 BD 上一点 E 作 EG∥AC 交 CD 的延长线于点 G,连接 AE 交 CD 于点 F,且 EG=FG,连接 CE. (1)求证:△ECF~△GCE; (2)求证:EG 是⊙O 的切线;
E,交⊙O 于点 F,角 A=60°,AE、BD 的长是 x2 kx 2 3 0 的两根。 ① 求证:PA·BD=PB·AE; ② 求证:⊙O 直径 AB=k; ③ 求 tan FPA。
2024成都中考数学复习专题 矩形、菱形、正方形的性质与判定(含答案)
2024成都中考数学复习专题矩形、菱形、正方形的性质与判定基础题1. (2023上海)在四边形ABCD中,AD∥BC,AB=C D.下列说法能使四边形ABCD为矩形的是()A. AB∥CDB. AD=BCC. ∠A=∠BD. ∠A=∠D2. (2023自贡)如图,边长为3的正方形OBCD两边与坐标轴正半轴重合,点C的坐标是()A. (3,-3)B. (-3,3)C. (3,3)D. (-3,-3)第2题图3. (2022玉林)若顺次连接四边形ABCD各边的中点所得的四边形是正方形,则四边形ABCD 的两条对角线AC,BD一定是()A. 互相平分B. 互相垂直C. 互相平分且相等D. 互相垂直且相等4. (2023深圳)如图,在平行四边形ABCD中,AB=4,BC=6,将线段AB水平向右平移a 个单位长度得到线段EF,若四边形ECDF为菱形时,则a的值为()第4题图A. 1B. 2C. 3D. 45. (2023十堰)如图,将四根木条用钉子钉成一个矩形框架ABCD,然后向左扭动框架,观察所得四边形的变化.下面判断错误的是()A. 四边形ABCD由矩形变为平行四边形B. 对角线BD的长度减小C. 四边形ABCD的面积不变D. 四边形ABCD的周长不变第5题图6. 如图,菱形ABCD中,点E,F分别为AB,BC的中点,EF=2,BD=8,则该菱形的面积为()第6题图A. 12B. 16C. 20D. 327. (2023杭州)如图,矩形ABCD的对角线AC,BD相交于点O.若∠AOB=60°,则ABBC=()A. 12 B.3-12 C.32 D.33第7题图8. (2023大庆)将两个完全相同的菱形按如图方式放置,若∠BAD=α,∠CBE=β,则β=()第8题图A. 45°+12α B. 45°+32αC. 90°-12αD. 90°-32α 9. (2023河北)如图,在Rt △ABC 中,AB =4,点M 是斜边BC 的中点,以AM 为边作正方形AMEF .若S 正方形AMEF =16,则S △ABC =( ) A. 4 3 B. 8 3 C. 12 D. 16第9题图10. [新考法—条件开放](2023齐齐哈尔)如图,在四边形ABCD 中,AD =BC ,AC ⊥BD 于点O .请添加一个条件:________,使四边形ABCD 成为菱形.第10题图 11. (2023怀化)如图,点P 是正方形ABCD 的对角线AC 上的一点,PE ⊥AD 于点E ,PE =3.则点P 到直线AB 的距离为________.第11题图12. (2023绍兴)如图,在菱形ABCD 中,∠DAB =40°,连接AC ,以点A 为圆心,AC 长为半径作弧,交直线AD 于点E ,连接CE ,则∠AEC 的度数是________.第12题图13. (2023河南)矩形ABCD 中,M 为对角线BD 的中点,点N 在边AD 上,且AN =AB =1.当以点D ,M ,N 为顶点的三角形是直角三角形时,AD 的长为________.14. [新考法—条件开放](2023十堰)如图,▱ABCD 的对角线AC ,BD 交于点O ,分别以点B ,C 为圆心,12AC ,12BD 长为半径画弧,两弧交于点P ,连接BP ,CP . (1)试判断四边形BPCO 的形状,并说明理由;(2)请说明当▱ABCD 的对角线满足什么条件时,四边形BPCO 是正方形?第14题图15. 如图,在平行四边形ABCD 中,点E ,F 分别在边BC ,AD 上,且BE =DF ,连接AE ,CF ,EH ⊥CF 于点H ,FG ⊥AE 于点G .(1)判断四边形EGFH 的形状,并说明理由;(2)若AE =5,tan ∠DAE =2,EG =2GF ,求AG 的长.第15题图拔高题16. (2022青羊区模拟)我们规定菱形与正方形接近程度称为“接近度”,设菱形相邻两个内角的度数分别为α,β,将菱形的“接近度”定义为|α-β|,于是|α-β|越小,菱形越接近正方形.第16题图①若菱形的一个内角为80°,则该菱形的“接近度”为________;②当菱形的“接近度”等于________时,菱形是正方形.课时2基础题1. (2023湘潭)如图,菱形ABCD中,连接AC,BD,若∠1=20°,则∠2的度数为()A. 20°B. 60°C. 70°D. 80°第1题图2. 如图,在菱形ABCD中,AC,BD为菱形的对角线,∠DBC=60°,BD=10,点F为BC 中点,则EF的长为()第2题图A. 3B. 4C. 5D. 63. 如图所示,将一张矩形纸片沿虚线对折两次,当剪刀与纸片的夹角∠ABC=45°时,已知AB=4 cm,则剪下来图形的周长为()第3题图A. 4 cmB. 4 2 cmC. 16 cmD. 16 2 cm4. (2022青岛改编)如图,O 为正方形ABCD 对角线AC 的中点,△ACE 为等边三角形.若AB =2,则OE 的长度为________.第4题图5. [新考法—数学文化](2023内江)出入相补原理是我国古代数学的重要成就之一,最早是由三国时期数学家刘徽创建.“将一个几何图形,任意切成多块小图形,几何图形的总面积保持不变,等于所分割成的小图形的面积之和”是该原理的重要内容之一.如图,在矩形ABCD 中,AB =5,AD =12,对角线AC 与BD 交于点O ,点E 为BC 边上的一个动点,EF ⊥AC ,EG ⊥BD ,垂足分别为点F ,G ,则EF +EG =________.第5题图6. (2023天津)如图,在边长为3的正方形ABCD 的外侧,作等腰三角形ADE ,EA =ED =52.第6题图(1)△ADE 的面积为________;(2)若F 为BE 的中点,连接AF 并延长,与CD 相交于点G ,则AG 的长为________.7. (2023内江)如图,在△ABC 中,D 是BC 的中点,E 是AD 的中点,过点A 作AF ∥BC 交CE 的延长线于点F .(1)求证:F A =BD ;(2)连接BF ,若AB =AC ,求证:四边形ADBF 是矩形.第7题图8. (2023兰州)如图,矩形ABCD的对角线AC与BD相交于点O,CD∥OE,直线CE是线段OD的垂直平分线,CE分别交OD,AD于点F,G,连接DE.(1)判断四边形OCDE的形状,并说明理由;(2)当CD=4时,求EG的长.第8题图拔高题9. (2023绍兴改编)如图,在矩形ABCD中,O为对角线BD的中点,∠ABD=60°,动点E 在线段OB上,动点F在线段OD上,点E,F同时从点O出发,分别向终点B,D运动,且始终保持OE=OF.点E关于AD,AB的对称点为E1,E2;点F关于BC,CD的对称点为F1,F2.当E,F,O三点重合时,当点E,F分别为OB,OD的中点时,当E,F分别运动到B,D两点时,四边形E1E2F1F2形状的变化依次是()第9题图A. 菱形→平行四边形→矩形B. 菱形→矩形→菱形C. 平行四边形→矩形→平行四边形D. 平行四边形→菱形→正方形10. (2023武侯区二诊节选)如图①,在矩形ABCD中,AD=nAB(其中n>1),点P是AD边上一动点(点P不与点A重合),点E是AB边的中点,连接PE,将矩形ABCD沿直线PE进行翻折,其顶点A翻折后的对应点为O,连接PO并延长,交BC边于点F(点F不与点C重合),过点F作∠PFC的平分线FG,交矩形ABCD的边于点G.(1)求证:PE∥FG;(2)如图②,在点P运动过程中,若E,O,G三点在同一条直线上时,点G与点D刚好重合,求n的值.图①图②第10题图参考答案与解析1. C2. C 【解析】∵正方形的边长为3,∴DC =BC =3,DC 与BC 分别垂直于y 轴和x 轴.∵点C 在第一象限,∴点C 的坐标为(3,3).3. D 【解析】如解图,E ,F ,G ,H 分别为AB ,BC ,CD ,DA 的中点,则EH ∥DB ∥GF ,HG ∥AC ∥EF ,EF =12 AC ,FG =12BD ,∴四边形EFGH 为平行四边形.要使其为正方形,即EF ⊥FG ,FE =FG ,则AC ⊥BD ,AC =BD ,即对角线一定互相垂直且相等.第3题解图4. B 【解析】∵四边形ABCD 是平行四边形,∴AB ∥CD ,CE ∥FD ,CD =AB =4.∵将线段AB 水平向右平移得到线段EF ,∴AB ∥EF ∥CD ,∴四边形ECDF 为平行四边形,当CD =CE =4时,▱ECDF 为菱形,此时a =BE =BC -CE =6-4=2.5. C 【解析】将四根木条用钉子钉成一个矩形框架ABCD ,然后向左扭动框架,∵两组对边的长度分别相等,∴四边形ABCD 是平行四边形,故A 正确,∵向左扭动框架,∴BD 的长度减小,故B 正确;∵平行四边形ABCD 的底不变,高变小了,∴平行四边形ABCD 的面积变小,故C 错误;∵平行四边形ABCD 的四条边长度不变,∴四边形ABCD 的周长不变,故D 正确.6. B 【解析】如解图,连接AC ,∵点E ,F 分别为AB ,BC 的中点,∴EF 是△ABC 的中位线,∴AC =2EF =4.∵四边形ABCD 是菱形,∴AC ⊥BD ,∴S 菱形ABCD =12 AC ·BD =12×4×8=16.第6题解图7. D 【解析】∵四边形ABCD 是矩形,∴OA =OB =OC =OD ,∠ABC =90°,∴∠OBC =∠OCB .∵∠AOB =60°,∴∠ACB =12 ∠AOB =30°,∴AB BC =tan ∠ACB =tan 30°=33. 8. D 【解析】∵四边形ABCD 和四边形BGHF 是完全相同的菱形,∴∠DBE =∠BAD =α,AB =AD ,∠ABD =∠CBD =∠CBE +∠DBE =β+α.∴∠ADB =∠ABD =β+α.∵∠BAD +∠ADB +∠ABD =180°,∴α+β+α+β+α=180°,∴β=90°-32α. 9. B 【解析】∵S 正方形AMEF =16,∴AM =4.∵M 是斜边BC 的中点,∴AM 是Rt △ABC 斜边上的中线,∴BC =2AM =8.在Rt △ABC 中,由勾股定理,得AC =BC 2-AB 2 =43 ,∴S △ABC =12 AB ·AC =12×4×43 =83 . 10. AD ∥BC (答案不唯一) 【解析】当AD ∥BC ,AD =BC 时,四边形ABCD 为平行四边形,又∵AC ⊥BD ,∴四边形ABCD 是菱形.11. 3 【解析】如解图,过点P 作PF ⊥AB 于点F ,∵四边形ABCD 是正方形,AC 是对角线,∴∠DAC =∠BAC .∵PE ⊥AD ,PF ⊥AB ,∴∠AEP =∠AFP .∵AP =AP ,∴△AEP ≌△AFP (AAS),∴PE =PF .∵PE =3,∴点P 到直线AB 的距离为PF =3.第11题解图12. 10°或80° 【解析】如解图,以点A 为圆心,AC 长为半径作弧,交直线AD 于点E 和E ′.在菱形ABCD 中,∠DAC =∠BAC ,∵∠DAB =40°,∴∠DAC =20°.∵AC =AE ,∴∠AEC =(180°-20°)÷2=80°.∵AE ′=AC ,∴∠AE ′C =∠ACE ′=10°.综上所述,∠AEC 的度数是10°或80°.第12题解图 13. 2或2 +1 【解析】分两种情况,①当∠DNM =90°时,如解图①,则MN ∥AB ,∴AN BM=AD BD.∵M 是BD 的中点,∴BD =2BM ,∴AD =2AN =2;②当∠DMN =90°时,如解图②,连接BN ,∵M 是BD 的中点,∠DMN =90°,∴BN =DN =AB 2+AN 2 =12+12 =2 ,∴AD =2 +1.综上所述,AD 的长为2或2 +1.图①图②第13题解图14. 解:(1)四边形BPCO 为平行四边形.理由如下:由作法得,BP =12 AC ,CP =12BD , ∵四边形ABCD 为平行四边形,∴OC =12 AC ,OB =12BD, ∴OC =BP ,OB =CP ,∴四边形BPCO 为平行四边形.(2)当▱ABCD 的对角线垂直且相等时,四边形BPCO 为正方形.理由:∵AC ⊥BD ,∴四边形BPCO 为矩形,∵AC =BD ,∴OB =OC ,∴四边形BPCO 为正方形.15. 解:(1)四边形EGFH 是矩形.理由如下:∵四边形ABCD 是平行四边形,∴AD =BC ,AD ∥BC .∵BE =DF ,∴AD -DF =BC -BE ,∴AF =CE ,∴四边形AECF 是平行四边形,∴AE ∥CF ,∴∠AEH +∠FHE =180°.∵EH ⊥CF ,FG ⊥AE ,∴∠FGE =∠FHE =∠GEH =90°,∴四边形EGFH 是矩形;(2)∵FG ⊥AE ,∴∠AGF =90°.在Rt △AGF 中,tan ∠DAE =GF AG=2, ∴GF =2AG .∵EG =2GF ,∴EG =4AG .∵AE =AG +EG =5,∴AG =1,即AG 的长为1.16. 20°;0° 【解析】①∵菱形相邻两个内角的度数和为180°,∴α+β=180°,即80°+β=180,解得β=100°,∴该菱形的“接近度”为|α-β|=|80°-100°|=20°;②∵当α=β=90°时,菱形是正方形,∴|α-β|=0°时,菱形是正方形.课时21. C 【解析】∵四边形ABCD 是菱形,∴AB ∥CD ,AC ⊥BD ,∴∠DCA =∠1=20°,∴∠2=90°-∠DCA =70°.2. C 【解析】∵四边形ABCD 是菱形,∴BC =DC ,BE =DE ,∵∠DBC =60°,∴△BDC是等边三角形,∴CD =BD =10.∵点F 为BC 中点,∴EF =12CD =5. 3. D 【解析】由折叠可知,剪下的图形两条对角线互相垂直且平分,此时图形为菱形,∵∠ABC =45°,∴剪下的图形有一个角为90°,∴有一个角为90°的菱形是正方形,∵AB =4 cm ,根据勾股定理得BC =42 cm ,故剪下来图形的周长为4×42 =16 2 cm. 4. 6 【解析】∵四边形ABCD 为正方形,AB =2,∴AC =22 .∵O 为正方形ABCD 对角线AC 的中点,△ACE 为等边三角形,∴∠AOE =90°,∴AC =AE =22 ,AO =2 ,∴OE=6 .5. 6013【解析】如解图,连接OE ,∵四边形ABCD 是矩形,∴∠BAD =90°, AB =CD =5,AD =BC =12.在Rt △ABD 中,BD =AB 2+AD 2 =13.∴AC =BD =13.∵AC 与BD 交于点O ,∴AO =CO =BO =DO =132 .∵S △BCO =14 S 四边形ABCD =14×12×5=15,∴S △BCO =S △BEO +S △CEO =12 BO ·EG +12 CO ·EF =12 ×132 (EG +EF )=15,∴EF +EG =15×413 =6013.第5题解图6. (1)3 【解析】(1)如解图,过点E 作EM ⊥AD 于点M ,∵△ADE 是等腰三角形,EA =ED =52 ,AD =3,∴AM =12 AD =32,∴EM =AE 2-AM 2 =(52)2-(32)2 =2,∴S △ADE =12 AD ·EM =12 ×3×2=3. (2)13 【解析】如解图,延长EM 交AG 于点N ,∵∠BAD =∠AME =90°,∴AB ∥NE ,∴∠ABF =∠FEN ,∠BAF =∠ENF .又∵点F 为BE 中点,∴BF =EF ,∴△AFB ≌△NFE ,∴EN =BA =3.由(1)知,EM =2,∴NM =1.∵∠NMD =∠ADC =90°,且M 为AD 中点,∴NM ∥GD ,∴NM 为△AGD 的中位线,∴GD =2NM =2,∴AG =AD 2+GD 2 =13 .第6题解图7. 证明:(1)∵AF ∥BC ,∴∠AFE =∠DCE .又∵E 是AD 的中点,∴AE =DE .在△AFE 和△DCE 中,∵ ⎩⎪⎨⎪⎧∠AFE =∠DCE ,∠AEF =∠DEC ,AE =DE ,∴△AFE≌△DCE,∴AF=DC.又∵D是BC的中点,∴BD=CD,∴AF=BD;(2)∵AB=AC,∴△ABC是等腰三角形.又∵D是BC的中点,∴∠ADB=90°,由(1)知F A=BD,又∵F A∥BD,∴四边形ADBF是平行四边形.又∵∠ADB=90°,∴四边形ADBF是矩形.8. 解:(1)四边形OCDE为菱形,理由如下:∵CE是线段OD的垂直平分线,∴OF=DF,OC=DC.∵CD∥OE,∴∠EOF=∠CDF.∵∠EFO=∠CFD,∴△OFE≌△DFC,∴OE=CD,∴四边形OCDE是平行四边形.又∵OC=CD,∴四边形OCDE是菱形;(2)∵四边形ABCD是矩形,∴DO=OC=OA,由(1)可知,OC=DC,∴OC=DO=CD,∴△OCD 是等边三角形,∴∠DCO =∠CDO =60°,∴∠FDG =90°-60°=30°.∵四边形OCDE 是菱形,∴∠DEC =∠DCE =30°,∠CGD =90°-∠DCE =60°,∴∠EDG =30°,∴DG =EG .∵CD =4,∴tan ∠DCG =DG CD =DG 4, ∴DG =4·tan 30°=4×33 =433, ∴EG =433. 9. B 【解析】∵四边形ABCD 为矩形,∠ABD =60°,∴∠CDF =60°,∠EDA =∠CBD =30°.∵OE =OF ,O 为对角线BD 的中点,∴DF =EB .由对称的性质得DF =DF 2,BF =BF 1,BE =BE 2,DE =DE 1,∠F 2DC =∠CDF =60°,∠EDA =∠E 1DA =30°,∠F 1BC =∠FBC =30°,∴E 1F 2=E 2F 1,∠E 1DB =60°,∠F 1BD =60°,∴DE 1∥BF 1,∴E 1F 2∥E 2F 1,∴四边形E 1E 2F 1F 2是平行四边形,如解图①,当E ,F ,O 三点重合时,DO =BO ,∴DE 1=DF 2=AE 1=AE 2,即E 1E 2=E 1F 2,∴四边形E 1E 2F 1F 2是菱形,如解图②,当E ,F 分别为OB ,OD 的中点时,设DB =4,则DF 2=DF =1,DE 1=DE =3,在Rt △ABD 中,AB =2,AD =23 ,连接AE ,易得AE =32 AB =3 ,根据对称性可得AE 1=AE =3 ,∵AD 2=12,DE 21 =9,AE 21 =3,即AD 2=AE 21 +DE 21 ,∴△DE 1A 是直角三角形,且∠E 1=90°,∴四边形E 1E 2F 1F 2是矩形;如解图③,当F ,E 分别与D ,B 重合时,△BE 1D ,△BDF 1都是等边三角形,则四边形E 1E 2F 1F 2是菱形,∴在这三个位置时,四边形E 1E 2F 1F 2形状的变化依次是菱形→矩形→菱形.图①图②图③第9题解图10. (1)证明:由翻折知,∠APE=∠OPE,∵FG平分∠PFC,∴∠PFG=∠CFG.∵AD∥BC,∴∠APF=∠CFP,∴∠EPF=∠PFG,∴PE∥FG;(2)解:由翻折知,EA=EO,∠EOP=90°.∵E,O,D三点在同一条直线上,∴∠DOF=∠EOF=∠C=90°.又∵DF=DF,∠OFG=∠CFG,∴△DOF≌△DCF(AAS),∴DO=DC=AB.∵E是AB的中点,∴设EA=EB=EO=a,∴OD=CD=AB=2a,∴DE=OE+OD=3a.在Rt△ADE中,由勾股定理,得AD2+AE2=DE2,∴AD=(3a)2-a2=22a.∵AD=nAB,∴22a=2na,∴n=2.。
成都中考历史试题及答案
成都中考历史试题及答案一、选择题(每题2分,共20分)1. 成都历史上被称为“天府之国”,其主要原因是:A. 地理位置优越B. 农业发达C. 自然资源丰富D. 历史文化底蕴深厚2. 成都的金沙遗址出土的太阳神鸟金箔,是哪一个时期的文物?A. 商朝B. 周朝C. 战国时期D. 秦朝3. 成都平原的灌溉系统“都江堰”,是由哪位古代水利工程师主持修建的?A. 李冰B. 张骞C. 郑国D. 司马迁4. 成都在三国时期属于哪个国家?A. 魏国B. 蜀国C. 吴国D. 秦国5. 成都在宋代是著名的商业中心,被称为:A. “锦城”B. “天府之国”C. “蜀都”D. “蜀锦之都”6. 成都的宽窄巷子是明清时期保留下来的传统街巷,其主要特色是:A. 古建筑风格B. 传统手工艺C. 地方小吃D. 所有选项7. 成都茶文化源远流长,以下哪个不是成都茶馆的传统活动?A. 听评书B. 看川剧变脸C. 打麻将D. 跳广场舞8. 成都的熊猫基地是世界上最大的大熊猫繁育研究基地,其主要任务是:A. 旅游观光B. 大熊猫繁育C. 科学研究D. 所有选项9. 成都的武侯祠是为了纪念哪位历史人物而建?A. 诸葛亮B. 关羽C. 张飞D. 刘备10. 成都在20世纪初的保路运动中发挥了重要作用,这场运动的直接目的是:A. 推翻清朝统治B. 保护四川铁路的建设权C. 促进民族工业发展D. 推动地方自治答案:1-5 B A A B A;6-10 D D A B B二、填空题(每空1分,共10分)11. 成都的市花是________,市树是________。
12. 成都的“三绝”指的是________、________和________。
13. 成都的“三国文化”中,刘备、关羽和张飞在________结义。
14. 成都的“锦里”是一条以________为主题的古街。
15. 成都的“蜀绣”是中国四大名绣之一,以其________和________著称。
专题20图形的旋转(共38题)-备战2023年中考数学必刷真题考点分类专练(全国通用)【原卷版】
备战2023年中考数学必刷真题考点分类专练(全国通用)专题20图形的旋转(共38题)一.选择题(共21小题)1.(2022•遵义)在平面直角坐标系中,点A(a,1)与点B(﹣2,b)关于原点成中心对称,则a+b的值为()A.﹣3B.﹣1C.1D.32.(2022•内江)2022年2月第24届冬季奥林匹克运动会在我国北京成功举办,以下是参选的冬奥会会徽设计的部分图形,其中既是轴对称图形又是中心对称图形的是()A.B.C.D.3.(2022•哈尔滨)下列图形中既是轴对称图形又是中心对称图形的是()A.B.C.D.4.(2022•临沂)剪纸艺术是最古老的中国民间艺术之一,先后入选中国国家级非物质文化遗产名录和人类非物质文化遗产代表作名录.鱼与“余”同音,寓意生活富裕、年年有余,是剪纸艺术中很受喜爱的主题.以下关于鱼的剪纸中,既是轴对称图形又是中心对称图形的是()A.B.C.D.5.(2022•长沙)在平面直角坐标系中,点(5,1)关于原点对称的点的坐标是()A.(﹣5,1)B.(5,﹣1)C.(1,5)D.(﹣5,﹣1)6.(2022•包头)如图,在Rt△ABC中,∠ACB=90°,∠A=30°,BC=2,将△ABC绕点C顺时针旋转得到△A'B'C,其中点A'与点A是对应点,点B'与点B是对应点.若点B'恰好落在AB边上,则点A到直线A'C的距离等于()A.3B.2C.3D.27.(2022•雅安)在平面直角坐标系中,点(a+2,2)关于原点的对称点为(4,﹣b),则ab的值为()A.﹣4B.4C.12D.﹣128.(2022•永州)剪纸是我国具有独特艺术风格的民间艺术,反映了劳动人民对现实生活的深刻感悟.下列剪纸图形中,是中心对称图形的有()A.①②③B.①②④C.①③④D.②③④9.(2022•宜昌)将四个数字看作一个图形,则下列四个图形中,是中心对称图形的是()A.B.C.D.10.(2022•天津)如图,在△ABC中,AB=AC,若M是BC边上任意一点,将△ABM绕点A逆时针旋转得到△ACN,点M的对应点为点N,连接MN,则下列结论一定正确的是()A.AB=AN B.AB∥NC C.∠AMN=∠ACN D.MN⊥AC11.(2022•常德)如图,在Rt△ABC中,∠ABC=90°,∠ACB=30°,将△ABC绕点C顺时针旋转60°得到△DEC,点A,B的对应点分别是D,E,点F是边AC的中点,连接BF,BE,FD.则下列结论错误的是()A.BE=BC B.BF∥DE,BF=DEC.∠DFC=90°D.DG=3GF12.(2022•内江)如图,在平面直角坐标系中,点B、C、E在y轴上,点C的坐标为(0,1),AC=2,Rt△ODE是Rt△ABC经过某些变换得到的,则正确的变换是()A.△ABC绕点C逆时针旋转90°,再向下平移1个单位B.△ABC绕点C顺时针旋转90°,再向下平移1个单位C.△ABC绕点C逆时针旋转90°,再向下平移3个单位D.△ABC绕点C顺时针旋转90°,再向下平移3个单位13.(2022•杭州)如图,在平面直角坐标系中,已知点P(0,2),点A(4,2).以点P为旋转中心,把点A按逆时针方向旋转60°,得点B.在M1(﹣,0),M2(﹣,﹣1),M3(1,4),M4(2,)四个点中,直线PB经过的点是()A.M1B.M2C.M3D.M414.(2022•南充)如图,将直角三角板ABC绕顶点A顺时针旋转到△AB′C′,点B′恰好落在CA的延长线上,∠B=30°,∠C=90°,则∠BAC′为()A.90°B.60°C.45°D.30°15.(2022•绥化)如图,线段OA在平面直角坐标系内,A点坐标为(2,5),线段OA绕原点O逆时针旋转90°,得到线段OA',则点A'的坐标为()A.(﹣5,2)B.(5,2)C.(2,﹣5)D.(5,﹣2)16.(2022•黑龙江)下列图形是汽车的标识,其中是中心对称图形但不是轴对称图形的是()A.B.C.D.17.(2022•大庆)观察下列图形,其中既是轴对称图形又是中心对称图形的是()A.B.C.D.18.(2022•齐齐哈尔)下面四个交通标志中,是中心对称图形的是()A.B.C.D.19.(2022•桂林)下列图形中,是中心对称图形的是()A.等边三角形B.圆C.正五边形D.扇形20.(2022•遂宁)下面图形中既是轴对称图形又是中心对称图形的是()A.科克曲线B.笛卡尔心形线C.阿基米德螺旋线D.赵爽弦图21.(2022•毕节市)下列垃圾分类标识的图形中,既是中心对称图形又是轴对称图形的是()A.B.C.D.二.填空题(共8小题)22.(2022•吉林)第二十四届北京冬奥会入场式引导牌上的图案融入了中国结和雪花两种元素.如图,这个图案绕着它的中心旋转角α(0°<α<360°)后能够与它本身重合,则角α可以为度.(写出一个即可)23.(2022•贺州)如图,在平面直角坐标系中,△OAB为等腰三角形,OA=AB=5,点B到x轴的距离为4,若将△OAB绕点O逆时针旋转90°,得到△OA′B′,则点B′的坐标为.24.(2022•怀化)已知点A(﹣2,b)与点B(a,3)关于原点对称,则a﹣b=.25.(2022•云南)点A(1,﹣5)关于原点的对称点为点B,则点B的坐标为.26.(2022•泸州)点(﹣2,3)关于原点的对称点的坐标为.27.(2022•无锡)△ABC是边长为5的等边三角形,△DCE是边长为3的等边三角形,直线BD与直线AE 交于点F.如图,若点D在△ABC内,∠DBC=20°,则∠BAF=°;现将△DCE绕点C旋转1周,在这个旋转过程中,线段AF长度的最小值是.28.(2022•永州)如图,图中网格由边长为1的小正方形组成,点A为网格线的交点.若线段OA绕原点O 顺时针旋转90°后,端点A的坐标变为.29.(2022•丽水)一副三角板按图1放置,O是边BC(DF)的中点,BC=12cm.如图2,将△ABC绕点O顺时针旋转60°,AC与EF相交于点G,则FG的长是cm.三.解答题(共9小题)30.(2022•武汉)如图是由小正方形组成的9×6网格,每个小正方形的顶点叫做格点.△ABC的三个顶点都是格点.仅用无刻度的直尺在给定网格中完成画图,画图过程用虚线表示.(1)在图(1)中,D,E分别是边AB,AC与网格线的交点.先将点B绕点E旋转180°得到点F,画出点F,再在AC上画点G,使DG∥BC;(2)在图(2)中,P是边AB上一点,∠BAC=α.先将AB绕点A逆时针旋转2α,得到线段AH,画出线段AH,再画点Q,使P,Q两点关于直线AC对称.31.(2022•温州)如图,在2×6的方格纸中,已知格点P,请按要求画格点图形(顶点均在格点上).(1)在图1中画一个锐角三角形,使P为其中一边的中点,再画出该三角形向右平移2个单位后的图形.(2)在图2中画一个以P为一个顶点的钝角三角形,使三边长都不相等,再画出该三角形绕点P旋转180°后的图形.32.(2022•安徽)如图,在由边长为1个单位长度的小正方形组成的网格中,△ABC的顶点均为格点(网格线的交点).(1)将△ABC向上平移6个单位,再向右平移2个单位,得到△A1B1C1,请画出△A1B1C1;(2)以边AC的中点O为旋转中心,将△ABC按逆时针方向旋转180°,得到△A2B2C2,请画出△A2B2C2.33.(2022•黑龙江)如图,在边长为1个单位长度的小正方形组成的网格中,△ABC与△DEF关于点O成中心对称,△ABC与△DEF的顶点均在格点上,请按要求完成下列各题.(1)在图中画出点O的位置.(2)将△ABC先向右平移4个单位长度,再向下平移2个单位长度,得到△A1B1C1,请画出△A1B1C1;(3)在网格中画出格点M,使A1M平分∠B1A1C1.34.(2022•广元)在Rt△ABC中,AC=BC,将线段CA绕点C旋转α(0°<α<90°),得到线段CD,连接AD、BD.(1)如图1,将线段CA绕点C逆时针旋转α,则∠ADB的度数为;(2)将线段CA绕点C顺时针旋转α时①在图2中依题意补全图形,并求∠ADB的度数;②若∠BCD的平分线CE交BD于点F,交DA的延长线于点E,连结BE.用等式表示线段AD、CE、BE之间的数量关系,并证明.35.(2022•连云港)【问题情境】在一次数学兴趣小组活动中,小昕同学将一大一小两个三角板按照如图1所示的方式摆放.其中∠ACB =∠DEB=90°,∠B=30°,BE=AC=3.【问题探究】小昕同学将三角板DEB绕点B按顺时针方向旋转.(1)如图2,当点E落在边AB上时,延长DE交BC于点F,求BF的长.(2)若点C、E、D在同一条直线上,求点D到直线BC的距离.(3)连接DC,取DC的中点G,三角板DEB由初始位置(图1),旋转到点C、B、D首次在同一条直线上(如图3),求点G所经过的路径长.(4)如图4,G为DC的中点,则在旋转过程中,点G到直线AB的距离的最大值是.36.(2022•重庆)在△ABC中,∠BAC=90°,AB=AC=2,D为BC的中点,E,F分别为AC,AD 上任意一点,连接EF,将线段EF绕点E顺时针旋转90°得到线段EG,连接FG,AG.(1)如图1,点E与点C重合,且GF的延长线过点B,若点P为FG的中点,连接PD,求PD的长;(2)如图2,EF的延长线交AB于点M,点N在AC上,∠AGN=∠AEG且GN=MF,求证:AM+AF =AE;(3)如图3,F为线段AD上一动点,E为AC的中点,连接BE,H为直线BC上一动点,连接EH,将△BEH沿EH翻折至△ABC所在平面内,得到△B′EH,连接B′G,直接写出线段B′G的长度的最小值.37.(2022•成都)如图,在矩形ABCD中,AD=nAB(n>1),点E是AD边上一动点(点E不与A,D重合),连接BE,以BE为边在直线BE的右侧作矩形EBFG,使得矩形EBFG∽矩形ABCD,EG交直线CD于点H.【尝试初探】(1)在点E的运动过程中,△ABE与△DEH始终保持相似关系,请说明理由.【深入探究】(2)若n=2,随着E点位置的变化,H点的位置随之发生变化,当H是线段CD中点时,求tan∠ABE 的值.【拓展延伸】(3)连接BH,FH,当△BFH是以FH为腰的等腰三角形时,求tan∠ABE的值(用含n的代数式表示).38.(2022•重庆)如图,在锐角△ABC中,∠A=60°,点D,E分别是边AB,AC上一动点,连接BE交直线CD于点F.(1)如图1,若AB>AC,且BD=CE,∠BCD=∠CBE,求∠CFE的度数;(2)如图2,若AB=AC,且BD=AE,在平面内将线段AC绕点C顺时针方向旋转60°得到线段CM,连接MF,点N是MF的中点,连接CN.在点D,E运动过程中,猜想线段BF,CF,CN之间存在的数量关系,并证明你的猜想;(3)若AB=AC,且BD=AE,将△ABC沿直线AB翻折至△ABC所在平面内得到△ABP,点H是AP 的中点,点K是线段PF上一点,将△PHK沿直线HK翻折至△PHK所在平面内得到△QHK,连接PQ.在点D,E运动过程中,当线段PF取得最小值,且QK⊥PF时,请直接写出的值.。
20 中国的地形-三年(2020-2022)中考地理真题分项汇编(全国通用)
专题20 中国的地形一、选择题(2022·海南·中考真题)我国地域辽阔,自然环境复杂多样。
读图“中国地势三级阶梯分布示意图(北纬36°剖面)”,完成下面小题。
1.我国地势的总体特征是()A.东高西低,呈斜坡状分布B.南高北低,呈阶梯状分布C.北高南低,呈斜坡状分布D.西高东低,呈阶梯状分布2.位于地势第一级阶梯的地形区是()A.青藏高原B.黄土高原C.华北平原D.四川盆地3.(2022·黑龙江·中考真题)我国地形类型多样,下列地形区与其描述对应正确的是()A.四川盆地—我国面积最大的盆地B.柴达木盆地—我国海拔最高的盆地C.云贵高原——我国最平坦的高原D.长江中下游平原——我国面积最大的平原4.(2022·黑龙江牡丹江·中考真题)下图中的山脉是大兴安岭山脉,其两侧的地形区①②分别是()A.长江中下游平原四川盆地B.青藏高原四川盆地C.内蒙古高原东北平原D.黄土高原华北平原(2022·广西贺州·中考真题)“冰墩墩”是第24届冬奥会的吉祥物,其形象憨厚可爱,深受大家的喜欢。
读图,完成下面小题。
5.冰墩墩的家乡在我国的()A.四川盆地B.塔里木盆地C.准噶尔盆地D.柴达木盆地6.冰墩墩的家乡素有“天府之国”美称,是因为该地()A.物产丰富B.人口众多C.畜牧产品丰富D.旅游资源丰富(2022·广西贺州·中考真题)“一江春水向东流”,反映出我国的地势特征。
读“我国沿32°N线地形剖面图”,完成下面小题。
7.我国沿32°N线地势特征是()A.西高东低B.东高西低C.南高北低D.北高南低8.图中甲处的地形特征是()A.地势险峻B.地表崎岖C.沟壑纵横D.地势低平(2022·黑龙江哈尔滨·中考真题)读中央气象台2022年五一假期天气提示图,完成下面小题。
9.据图可知,提示注意保暖的地区是()A.东南丘陵B.华北平原C.青藏高原D.四川盆地10.图中气温适宜的省区是()A.云南省B.黑龙江省C.广东省D.陕西省11.(2022·黑龙江·中考真题)下列是我国地势第一、二级阶梯分界线且符合西北—东南走向的山脉是()A.巫山B.祁连山脉C.昆仑山脉D.武夷山脉(2022·湖南湘西·中考真题)苏轼《念奴娇·赤壁怀古》中写道“大江东去,浪淘尽,千古风流人物”。
2019年中考英语真题 分类 专题20.1 补全对话(选择型)(第02期)(解析版)
2019年中考真题英语分项汇编专题20补全对话考点1 选择型Passage 1(2019 •四川省成都市)根据对话内容,从右边方框中选出适当的选项补全对话。
Holly: Hey, Luke. ___11___Luke: Pretty good. You know I moved into a new house.Holly: Really? ___12___Luke: A week ago.Holly: Where’s your new house?Luke: ___13___Hol ly: That’s a good place. ___14___Luke: Yes. It’s expensive but nice. All my family like it.Holly: Congratulations! I guess you’ll have a house-warming party, right?Luke: Of course. ___15___ Will you come then?Holly: Cool. I can’t wait to see your new h ouse.A. When was it?B. It’s on Red Tree Street.C. How’s it going with you?D. It’s next Monday, the 17th.E. Did you spend a lot of money?【答案与解析】【文章大意】在对话中,霍莉问卢克的近况,得知卢克搬进了新房子,认为卢克会有一个乔迁派对;卢克回答是是下星期一(17号),并邀请霍莉参加,霍莉高兴地接受了邀请。
11. C 根据卢克的回答Pretty good.可知对方问的是最近的境况,备选句子How's it going with you?符合句意,故选C。
12. A 根据卢克的回答A week ago.可知对方问的是时间;A week ago用于一般过去时,备选句子Whenwas it?符合句意,故选A。
2024成都中考数学第一轮专题复习 全等与相似三角形的性质与判定(含位似) 知识精练(含答案)
2024成都中考数学第一轮专题复习之第四章第三节全等与相似三角形的性质与判定(含位似) 知识精练基础题1. (2023长春)如图,工人师傅设计了一种测零件内径AB的卡钳,卡钳交叉点O为AA′、BB′的中点,只要量出A′B′的长度,就可以知道该零件内径AB的长度.依据的数学基本事实是()第1题图A. 两边及其夹角分别相等的两个三角形全等B. 两角及其夹边分别相等的两个三角形全等C. 两条直线被一组平行线所截,所得的对应线段成比例D. 两点之间线段最短2. 已知图中的两个三角形全等,则∠1的度数是()第2题图A. 76°B. 60°C. 54°D. 50°3. (2022云南)如图,OB平分∠AOC,D,E,F分别是射线OA,射线OB,射线OC上的点,D,E,F与O点都不重合,连接ED,EF.若添加下列条件中的某一个,就能使△DOE≌△FOE.你认为要添加的那个条件是()A. OD=OEB. OE=OFC. ∠ODE=∠OEDD. ∠ODE=∠OFE第3题图4. 如图,在菱形ABCD 中,E 是CD 边上一点,连接AE ,点F ,G 均在AE 上,连接BF ,DG ,且∠BFE =∠BAD ,只添加一个条件,能判定△ABF ≌△DAG 的是( )第4题图A. ∠DGE =∠BADB. BF =EFC. AF =DGD. ∠EDG =∠BAD5. (2023重庆A 卷)若两个相似三角形周长的比为1∶4,则这两个三角形对应边的比是( ) A. 1∶2 B. 1∶4 C. 1∶8 D. 1∶166. 如图,已知△ABC ∽△EDC ,AC ∶EC =2∶3,若AB 的长度为6,则DE 的长度为( ) A. 4 B. 9 C. 12 D. 13.5第6题图7. (2023恩施州)如图,在△ABC 中,DE ∥BC 分别交AC ,AB 于点D ,E ,EF ∥AC 交BC 于点F ,若AE BE =25,BF =8,则DE 的长为( )第7题图A.165 B. 167C. 2D. 3 8. (2023陕西)如图,DE 是△ABC 的中位线,点F 在DB 上,DF =2BF ,连接EF 并延长,与CB的延长线相交于点M.若BC=6,则线段CM的长为()A. 132 B. 7 C.152 D. 8第8题图9. 如图,在四边形ABCD中,对角线AC,BD相交于点O,OA=OC,添加一个条件使△AOB≌△COD,则这个条件可以是______________.(写出一个即可)第9题图10. (2023江西)《周髀算经》中记载了“偃矩以望高”的方法.“矩”在古代指两条边呈直角的曲尺(即图中的ABC).“偃矩以望高”的意思是把“矩”仰立放,可测量物体的高度.如图,点A,B,Q在同一水平线上,∠ABC和∠AQP均为直角,AP与BC相交于点D.测得AB=40 cm,BD=20 cm,AQ=12 m,则树高PQ=________m.第10题图11. 如图,△ABC≌△ADE,BC的延长线交AD于点F,交DE于点G.若∠D=28°,∠E=115°,∠DAC=50°,则∠DGB的度数为________.第11题图12. (2023鄂州)如图,在平面直角坐标系中,△ABC与△A1B1C1位似,原点O是位似中心,且ABA1B1=3.若A(9,3),则点A1的坐标是________.第12题图13. (2023乐山)如图,在平行四边形ABCD 中,E 是线段AB 上一点,连接AC ,DE 交于点F .若AE EB =23,则S △ADF S △AEF=________.第13题图14. (2023江西)如图,AB =AD ,AC 平分∠BA D.求证:△ABC ≌△ADC .第14题图15. (2023陕西)如图,在△ABC 中,∠B =50°,∠C =20°.过点A 作AE ⊥BC ,垂足为E ,延长EA 至点D ,使AD =AC ,在边AC 上截取AF =AB ,连接DF .求证:DF =CB .第15题图16. (2022盐城)如图,在△ABC与△A′B′C′中,点D,D′分别在边BC,B′C′上,且△ACD∽△A′C′D′,若________,则△ABD∽△A′B′D′.请从①BDCD=B′D′C′D′;②ABCD=A′B′C′D′;③∠BAD=∠B′A′D′这3个选项中选择一个作为条件(写序号),并加以证明.第16题图17. (2023舟山)如图,在菱形ABCD中,AE⊥BC于点E,AF⊥CD于点F,连接EF.(1)求证:AE=AF;(2)若∠B=60°,求∠AEF的度数.第17题图拔高题18. (2023绥化)如图,在平面直角坐标系中,△ABC 与△AB ′C ′的相似比为1∶2,点A 是位似中心,已知点A (2,0),点C (a ,b ),∠C =90°,则点C ′的坐标为________.(结果用含a ,b 的式子表示)第18题图19. (2023杭州)如图,在△ABC 中,AB =AC ,∠A <90°,点D ,E ,F 分别在边AB ,BC ,CA 上,连接DE ,EF ,FD ,已知点B 和点F 关于直线DE 对称.设BC AB =k ,若AD =DF ,则CFF A =________(结果用含k 的代数式表示).第19题图20. (2023温州)如图,已知矩形ABCD ,点E 在CB 延长线上,点F 在BC 延长线上,过点F 作FH ⊥EF 交ED 的延长线于点H ,连接AF 交EH 于点G ,GE =GH . (1)求证:BE =CF ; (2)当AB FH =56,AD =4时,求EF 的长.第20题图参考答案与解析1. A 【解析】∵点O 为AA ′、BB ′的中点,∴OA =OA ′,OB =OB ′,由对顶角相等得∠AOB =∠A ′OB ′,在△AOB 和△A ′OB ′中,⎩⎪⎨⎪⎧OA =OA ′,∠AOB =∠A ′OB ′,OB =OB ′,∴△AOB ≌△A ′OB ′(SAS),∴AB =A ′B ′,即只要量出A ′B ′的长度,就可以知道该零件内径AB 的长度.2. D 【解析】第一个三角形中b ,c 之间的夹角为180°-76°-54°=50°,∠1是b ,c 之间的夹角.∵两个三角形全等,∴∠1=50°.3. D 【解析】由题意得∠AOB =∠BOC ,OE =OE ,若要使△DOE ≌△FOE ,则需OD =OF 或除已知外的一组对应角相等即可.根据选项可知∠ODE =∠OFE 满足条件.4. A 【解析】∵四边形ABCD 是菱形,∴AB =DA .∵∠BFE =∠BAD ,∴∠ABF +∠BAF =∠DAG +∠BAF ,∴∠ABF =∠DAG .当∠DGE =∠BAD 时,∠ADG +∠DAG =∠DAG +∠BAF ,∴∠BAF =∠ADG ,∴△ABF ≌△DAG (ASA).5. B6. B 【解析】∵△ABC ∽△EDC ,AC ∶EC =2∶3.∴AB ED =AC EC =BC DC =23,∴当AB =6时,DE =9.7. A 【解析】∵DE ∥BC ,EF ∥AC ,∴∠B =∠AED ,∠BEF =∠A ,∴△BEF ∽△EAD ,∴BF ED =BE EA =52 .∵BF =8,∴DE =165. 8. C 【解析】∵DE 是△ABC 的中位线,∴DE ∥BC ,DE =12 BC =12 ×6=3,∴△DEF ∽△BMF ,∴DE BM =DF BF =2BF BF =2,∴BM =32 ,CM =BC +BM =152.9. OB =OD (答案不唯一) 【解析】∵OA =OC ,∠AOB =∠COD ,OB =OD ,∴△AOB ≌△COD (SAS).10. 6 【解析】∵∠ABC 和∠AQP 均为直角,∴BC ∥PQ ,∴△ABD ∽△AQP ,∴BD AB =PQAQ ,∴2040 =PQ12,∴PQ =6 m. 11. 87° 【解析】∵△ABC ≌△ADE ,∴∠B =∠D =28°,∠ACB =∠E =115°,∴∠ACG =65°.∵∠DAC =50°,∴∠AFC =∠GFD =65°,∴∠DGF =180°-∠D -∠DFG =87°.12. (3,1) 【解析】∵△ABC 与△A 1B 1C 1位似,且原点O 为位似中心,ABA 1B 1 =3,点A (9,3),∴13 ×9=3,13×3=1,即点A 1的坐标是(3,1).13. 52 【解析】如题图,∵AE EB =23 ,∴AE AB =25 .∵四边形ABCD 为平行四边形,∴DC=AB ,DC ∥AB ,∴DF EF =DC AE .∵AE AB =25 ,DC =AB ,∴AE DC =25 ,∴DC AE =52 ,∴DF EF =52 ,∴S △ADF S △AEF =DF EF =52 . 14. 证明:∵ AC 平分∠BAD , ∴∠BAC =∠DAC . 在△ABC 和△ADC 中, ⎩⎪⎨⎪⎧AB =AD ,∠BAC =∠DAC ,AC =AC ,∴△ABC ≌△ADC (SAS).15. 证明:∵在△ABC 中,∠B =50°,∠C =20°, ∴∠CAB =180°-∠B -∠C =110°. ∵AE ⊥BC , ∴∠AEC =90°,∴∠DAF =∠AEC +∠C =110°, ∴∠DAF =∠CAB . 又∵AD =AC ,AF =AB , ∴△DAF ≌△CAB , ∴DF =CB . 16. 解:选择①BD CD =B ′D ′C ′D ′, 证明:∵△ACD ∽△A ′C ′D ′, ∴∠ADC =∠A ′D ′C ′,AD A ′D ′ =CDC ′D ′, ∴∠ADB =∠A ′D ′B ′. 又∵BD CD =B ′D ′C ′D ′ ,∴BD B ′D ′ =CDC ′D ′,∴BD B ′D ′ =CD C ′D ′ =ADA ′D ′, ∴△ABD ∽△A ′B ′D ′. 选择③∠BAD =∠B ′A ′D ′. 证明:∵△ACD ∽△A ′C ′D ′, ∴∠ADC =∠A ′D ′C ′, ∴∠ADB =∠A ′D ′B ′. ∵∠BAD =∠B ′A ′D ′, ∴△ABD ∽△A ′B ′D ′.17. (1)证明:∵四边形ABCD 是菱形,∴AB =AD ,∠B =∠D . 又∵AE ⊥BC ,AF ⊥CD , ∴∠AEB =∠AFD =90°.在△ABE 和△AFD 中,⎩⎪⎨⎪⎧∠AEB =∠AFD ,∠B =∠D ,AB =AD ,∴△ABE ≌△ADF (AAS), ∴AE =AF ;(2)∵四边形ABCD 是菱形, ∴∠B +∠BAD =180°. ∵∠B =60°, ∴∠BAD =120°.又∵∠AEB =90°,∠B =60°, ∴∠BAE =180°-∠AEB -∠B =30°. 由(1)知△ABE ≌△ADF , ∴∠DAF =∠BAE =30°,∴∠EAF =120°-∠DAF -∠BAE =60°. ∵AE =AF ,∴△AEF 是等边三角形, ∴∠AEF =60°.18. (6-2a ,-2b ) 【解析】如解图,过点C 作CM ⊥AB 于点M ,过C ′作C ′N ⊥AB ′于点N ,则∠ANC ′=∠AMC =90°,∵△ABC 与△AB ′C ′的相似比为1∶2,∴AC AC ′ =12.∵∠NAC ′=∠MAC ,∴△ACM ∽△AC ′N ,∴AM AN =CM C ′N =AC AC ′.∵点A (2,0),点C (a ,b ),∴OA =2,OM =a ,CM =b ,∴AM =a -2,∴a -2AN =b C ′N =12 ,∴AN =2a -4,C ′N =2b ,∴ON =AN-OA =2a -6,∴点C ′的坐标为(6-2a ,-2b ).第18题解图19. k 22-k 2 【解析】设∠B =α,BE =x ,∵AB =AC ,∴∠C =α,∠A =180°-2α.∵点B 和点F 关于直线DE 对称,∴△DBE ≌△DFE ,∴∠DFE =∠B =α,EF =BE =x .∵AD =DF ,∴∠DF A =∠A =180°-2α,∴∠CFE =180°-∠AFD -∠DFE =180°-(180°-2α)-α=α,∴∠CFE =∠C ,∴CE =EF =x ,∴BC =2x ,∴∠CFE =∠C =∠B =α,∴△CEF ∽△CAB ,∴EF AB =CF CB ,即x AB =CF 2x ,∴AB ·CF =2x 2.∵BC AB =k ,∴AB =BC k =2x k ,∴CF =2x 2AB =2x 2·k 2x =kx ,∴F A =AC -CF =AB -CF =2x k -kx =2-k 2k x ,∴CF F A =kx 2-k 2kx =k 22-k 2. 20. (1)证明:∵FH ⊥EF ,GE =GH ,∴GE =GF =GH , ∴∠GFE =∠E .∵四边形ABCD 是矩形,∴AB =CD ,∠ABC =∠DCB =90°, ∴△ABF ≌△DCE (AAS), ∴BF =CE ,∴CE -BC =BF -BC ,即BE =CF ; (2)解:∵CD ∥FH , ∴△DCE ∽△HFE , ∴EC EF =CD FH . ∵CD =AB , ∴CD FH =AB FH =56 . 设BE =CF =x ,∵BC=AD=4,∴CE=x+4,EF=2x+4.∴x+42x+4=5 6,解得x=1,∴EF=6.。
2024成都中考数学复习专题 线、角、相交线与平行线(含命题) (含答案)
2024成都中考数学复习专题线、角、相交线与平行线(含命题)基础题1.(2022柳州)如图,从学校A到书店B有①、②、③、④四条路线,其中最短的路线是()A.①B.②C.③D.④第1题图2.如图,点P在△ABC的AB边上从点A向点B移动,当S△APC=S△BPC时,则CP是△ABC 的()第2题图A.高B.角平分线C.中线D.中位线3.(2023兰州改编)如图,直线AB与CD相交于点O,则∠BOD=()第3题图A.40°B.50°C.55°D.60°4.(2023临沂)在同一平面内,过直线l外一点P作l的垂线m,再过P作m的垂线n,则直线l与n的位置关系是()A.相交B.相交且垂直C.平行D.不能确定5.(2023广西)如图,一条公路两次转弯后又回到与原来相同的方向,∠A=130°,那么∠B的度数是()第5题图A.160°B.150°C.140°D.130°6.已知m +2n n =157(mn ≠0),则n m 值为()A.2 B.5 C.7 D.277.如图,AB ∥CD ,E 是直线AB 上一点,且∠DEF =150°,若∠BEF =4∠BED ,则∠D 的度数为()A.28° B.30° C.35° D.25°第7题图8.(2023金华)如图,已知∠1=∠2=∠3=50°,则∠4的度数是()第8题图A.120°B.125°C.130°D.135°9.(2023绥化)将一副三角板按下图所示摆放在一组平行线内,∠1=25°,∠2=30°,则∠3的度数为()第9题图A.55°B.65°C.70°D.75°10.(2023恩施州)将含60°角的直角三角板按如图方式摆放,已知m ∥n ,∠1=20°,则∠2=()A.40°B.30°C.20°D.15°第10题图11.(2023深圳改编)如图为商场某品牌椅子的侧面图,∠DEF=120°,DE与地面平行,∠ABD =50°,则∠ACB=()第11题图A.70°B.65°C.60°D.50°12.如图,在△ABC中,D,E,F分别是AB,AC,BC上的点,且DE∥BC,EF∥AB,若BF∶FC=2∶3,AB=15,则BD=()A.6B.9C.10D.12第12题图13.(2023达州改编)命题“到一条线段两个端点距离相等的点,在这条线段的垂直平分线上”是________命题(填“真”或“假”).14.(2023烟台)一杆古秤在称物时的状态如图所示,已知∠1=102°,则∠2的度数为________.第14题图15.(2023乐山)如图,点O在直线AB上,OD是∠BOC的平分线,若∠AOC=140°,则∠BOD 的度数为________.第15题图16.如图,已知直线l 1∥l 2,点A ,B 分别在直线l 1,l 2上,点P 是直线l 1,l 2间一点,连接P A ,PB .若∠1=∠2=130°,则∠APB =________°.第16题图17.(2023北京)如图,直线AD ,BC 交于点O ,AB ∥EF ∥C D.若AO =2,OF =1,FD =2,则BE EC的值为________.第17题图18.(2023台州)用一张等宽的纸条折成如图所示的图案,若∠1=20°,则∠2的度数为________.第18题图拔高题19.(2023徐州)如图,在△ABC 中,若DE ∥BC ,FG ∥AC ,∠BDE =120°,∠DFG =115°,则∠C =________°.第19题图20.(2023达州)如图,乐器上的一根弦AB =80cm ,两个端点A ,B 固定在乐器面板上,支撑点C 是靠近点B 的黄金分割点,支撑点D 是靠近点A 的黄金分割点,则支撑点C ,D 之间的距离为______cm.(结果保留根号)第20题图参考答案与解析1.B2.C3.B【解析】由题图可得∠AOC =50°,∴∠BOD =50°.4.C 【解析】∵l ⊥m ,n ⊥m ,∴l ∥n .5.D 【解析】∵公路两次转弯后又回到与原来相同的方向,∴AC ∥BD ,∴∠B =∠A =130°.6.C 【解析】∵m +2n n=157,∴7m +14n =15n ,∴7m =n ,∴n m =7.7.B 【解析】∵∠BEF =4∠BED ,∴5∠BED =∠DEF =150°,∴∠BED =30°.∵AB ∥CD ,∴∠D =∠BED =30°.8.C 【解析】如解图,∵∠1=∠3=50°,∴a ∥b .∵∠2=50°,∴∠2=∠5=50°,∴∠4=180°-∠5=130°.第8题解图9.C 【解析】∵两条直线平行,∠1=25°,∴∠3+45°=∠1+90°,∴∠3=45°+∠1=45°+25°=70°.10.A 【解析】如解图,作l ∥m ,∵m ∥n ,∴l ∥m ∥n ,∴∠2=∠3,∠1=∠4,∴∠1+∠2=∠4+∠3=60°,∴∠2=60°-20°=40°.第10题解图11.A 【解析】∵DE ∥AB ,∠ABD =50°,∴∠D =∠ABD =50°.∵∠DEF =120°,且∠DEF 是△DCE 的外角,∴∠DCE =∠DEF -∠D =70°,∴∠ACB =∠DCE =70°.12.B 【解析】∵EF ∥AB ,BF ∶FC =2∶3,∴BF FC =AE EC =23,∴AC EC =53.∵DE ∥BC ,∴AB BD =AC EC ,∴15BD =53,∴BD =9.13.真14.78°【解析】如解图,由题意得AB ∥CD ,∴∠2=∠BCD .∵∠1=102°,∴∠BCD =78°,∴∠2=78°.第14题解图15.20°【解析】∵点O 在直线AB 上,∴∠AOC +∠BOC =180°,∴∠BOC =180°-∠AOC =180°-140°=40°.∵OD 为∠BOC 的平分线,∴∠BOD =12∠BOC =12×40°=20°,∴∠BOD =20°.16.100【解析】如解图,过点P 作l 1的平行线PQ ,∵l 1∥l 2∥PQ ,则∠1+∠APQ =∠2+∠QPB =180°,∵∠1=∠2=130°,∴∠APQ =∠QPB =180°-130°=50°,∴∠APB =∠APQ +∠QPB =50°+50°=100°.第16题解图17.32【解析】∵AB ∥EF ∥CD ,∴BE EC =AF FD =AO +OF FD.∵AO =2,OF =1,FD =2,∴BE EC =2+12=32.18.140°【解析】如解图,由折叠的性质得∠1=∠3=20°,由题意得AB ∥CD ,∴∠4=∠1+∠3=40°,∴∠2=180°-∠4=140°.第18题解图19.55【解析】∵DE ∥BC ,∠BDE =120°,∴∠B =180°-∠BDE =60°,同理∠A =65°.∵∠A +∠B +∠C =180°,∴∠C =180°-∠A -∠B =55°.20.(805-160)【解析】由题得,弦AB =80cm ,点C 是靠近点B 的黄金分割点,设BC =x ,则AC =80-x ,∴80-x 80=5-12,解得x =120-405.∵点D 是靠近点A 的黄金分割点,∴设AD =y ,则BD =80-y ,∴80-y 80=5-12,解得y =120-405,∴支撑点C ,D 之间的距离为80-x -y =80-120+405-120+405=(805-160)cm.。
成都市第二十中学校中考物理试题 含答案
成都市第二十中学校中考物理试题 含答案一、选择题 1.下列有关力和运动的说法中,正确的是( ) A .物体不受力时,一定处于静止状态B .物体只受一个力作用时,一定做加速运动C .物体受力情况相同时,它的运动状态也一定相同D .物体做曲线运动时,一定受力的作用2.如图所示,电源电压为U 且恒定,定值电阻0R 与滑动变阻器R 串联的电路,已知:0R R ,在滑动变阻器的滑片P 移动过程中,下列表示0R 和R 消耗的电功率0P 和R P 随两电压表示数1U 、2U 的变化关系图线中,可能正确的是( )A .B .C .D .3.关于声现象,下列说法正确的是( )A .“闻其声而知其人”是根据声音的响度来判断的B .“不敢高声语,恐惊天上人”中的“高”是指声音的音调高C .高速公路两侧安装透明板墙是在声源处减弱噪声D .超声波可以粉碎结石,说明声音具有能量4.下列数据中与实际相符的是( )A .教室内的温度约为50°CB .两个鸡蛋的质量约为100gC .教室的空调在正常工作时,通过的电流约为1AD .学生课桌的高度约为2m5.突如其来的“新冠病毒”疫情给全国人民带来很大影响,为了保护自己与他人,出门必须要戴口罩。
当你戴上口罩之后与人交谈时,他人听到你的声音( )A .音调变低B .音调变高C .响度变小D .响度变大6.如图甲所示是“探究不同物质吸热升温的现象”实验装置,两个相同的易拉罐中分别装有质量和初温都相同的a、b两种液体,用相同的装置加热,根据记录的实验数据绘制的温度与时间的关系图像如图乙所示,下列说法正确的是()A.调节下面铁圈的高度时,不需要点燃酒精灯B.实验中需控制酒精灯中酒精的质量相等C.升高相同温度,b液体吸收的热量更多D.a液体的比热容大于b液体的比热容7.“中国诗词大会”节目深受观众喜爱,对下列诗词中涉及的物态变化现象及其吸放热情况分析正确的是()A.月落乌啼霜满天,江枫渔火对愁眠——霜的形成是凝华现象,该过程放热B.可怜九月初三夜,露似真珠月似弓——露的形成是液化现象,该过程吸热C.风雨送春归,飞雪迎春到——雪的形成是升华现象,该过程吸热D.岚雾今朝重,江山此地深——雾的形成是汽化现象,该过程吸热8.如图所示,小明用水平推力推静止在水平地面上的箱子,但箱子却没有运动.下列说法正确的是A.此时箱子所受推力与地面对箱子的摩擦力是一对平衡力B.此时箱子所受推力小于地面对箱子的摩擦力C.地面对箱子的支持力是和箱子对地面的压力是一对平衡力D.箱子受到的重力和地面对箱子的支持力是一对相互作用力9.如图所示,金属小球从光滑轨道中的A点处由静止滑下,经过B点,到达最低点C 后,再沿轨道向上运动,若不计空气阻力,则下列说法中正确的是A.小球能沿轨道向上运动到E点处B.小球从A点加速下滑到C点时,重力没有对小球做功C.小球到达C点时,它的动能最大,重力势能最小D.小球到达D点时的机械能大于它到达B点时的机械能10.如图所示的四个装置,关于它们的说法错误的是()A.图A可以说明电可以产生磁B.将图B中滑片向右移动电磁铁吸引大头针数目会减少C.根据图C装置可以制成发电机D.图D装置可以用来研究电磁感应现象11.如甲图所示,小明用弹簧测力计水平拉木块,使它先后两次水平木板滑动相同的距离,乙图是他两次拉动同一木块得到的距离随时间变化的图像、下列说法正确的是()A.两次木块都受到平衡力的作用B.第一次的拉力比第二次的拉力大C.第一次的惯性比第二次的惯性大D.第一次拉力做功比第二次拉力做功多12.如图所示,关于生活中的一些物理现象,下列表述不正确的是()A.鞋底印有花纹是为了增大摩擦B.吸盘“吸”在玻璃上,利用大气压的作用C.人离平面镜越近,所成的像越大D.伞被吹翻是因为伞上表面风速大,压强小13.下列估测结果与实际不相符...的是()A.人正常步行的速度约1.4km/h B.挂壁式空调的额定功率约1.2kWC.九(2)班的小明身高约168cm D.物理课本的质量约0.25kg14.在物理学的发展过程中,许多物理学家做出了杰出的贡献.通过大量的实验研究得出电流与电压和电阻关系的科学家是A.安培B.欧姆C.伏特D.焦耳15.下列四幅图中,解释不合理的是()A.甲图,说明电流的周围存在磁场B.乙图,闭合开关后,小磁针N极将顺时针偏转C.丙图,发电机应用了磁场对电流的作用D.丁图,说明电流相同时,线圈匝数越多,电磁铁磁性越强16.用下列器材测量同一物体,在月球上与地球上的测量值不同()①杆秤②弹簧秤③天平④磅秤A.仅有②B.有②④C.有①②④D.①②③④全是17.降低噪声污染的途径有许多,下列措施中属于从声源处控制噪声的方法是()A..高架桥两侧装设墙板B.机旁人员带有耳罩的头盔C.禁鸣喇叭D.路旁种植行道树18.交通法规定,不但司机要系安全带,副驾驶也应该系安全带.假设驾驶员和副驾驶的安全带分别对应开关S1和S2,系好安全带,相当于闭合开关,且只有当两人都系好安全带时,才会指示灯熄灭,提示音消失.符合上述要求的正确电路图是A.B.C.D.19.与头发摩擦过的塑料尺能“吸”起纸屑.下列现象中“吸”的物理原理与其相同的是( ) A.挤压后的塑料吸盘“吸”在瓷砖上B.削平的铅柱挤压后会“吸”在一起C.干手搓开的新塑料袋“吸”在手上D.行驶的汽车的窗帘被“吸”出窗外20.根据生活经验,下列数据符合实际的是()A.一张试卷纸的厚度约为15mmB.炎热夏天,人体感觉最舒适的温度约为37℃C.一枚鸡蛋的质量大约是50gD.一般人正常步行的速度约为15km/h21.关于光现象及其解释,下列描述错误的是A.漫反射的光线杂乱无章但遵循光的反射定律B.立竿见影是由光的直线传播形成的C.平静水面上的倒影是光的反射形成的D.水面“折断”的铅笔是光反射形成的22.如图是一种自动测定油箱内油面高度的装置,R2是滑动变阻器,它的金属滑片连在杠杆的一端,从油量表(由电流表改装而成)指针所指的刻度,就可以知道油箱内油面的高度,当油面上升时()A .电压表和油量表示数都变小B .电压表和油量表示数都变大C .电压表示数变大,油量表示数变小D .电压表示数变小,油量表示数变大23.在如图的电路中,电源电压保持不变,R 0为定值电阻,滑动变阻器R 的最大阻值为R M ,移动滑动变阻器的滑片P 从A 端到B 端,滑动变阻器的电功率随电流表示数变化的完整图线如图,图线中a 、b 两点对应的电功率均为P 1,且c 点对应的是滑动变阻器的最大电功率P 2,且12:3:4P P ,则图线中b 点对应的电路状态中,滑动变阻器接入电路中的电阻大小( )A .02RB .03RC .2R 0D .3R 024.如图是灵敏电流计的内部结构图,下列选项中与其工作原理相同的是( )A .B .C .D .25.春晚节目中的创意表演《青春跃起来》熔歌舞、蹦床、灌篮等表演于一炉,展现了无奋斗、不青春的精神。
成都市第二十中学初三化学中考模拟试题及答案
成都市第二十中学初三化学中考模拟试题及答案一、选择题(培优题较难)1.根据下图所示的溶解度曲线,判断下列说法中正确的是( )A.甲物质的溶解度小于乙物质的溶解度B.t2℃时,甲物质的饱和溶液和乙物质的饱和溶液中含有溶质的质量相等C.将t3℃时的甲、乙两物质的饱和溶液降温到t2℃时都会析出晶体D.当甲物质中混有少量乙物质时,可采用蒸发溶剂的方法提纯甲【答案】C【解析】A、在温度为t1℃时,图中乙物质曲线处于甲物质曲线上方,说明此时甲物质的溶解度小于乙物质,A没指明温度,错误;B、曲线图显示,在温度为t2℃时两曲线相交于一点,说明此时甲、乙两物质的溶解度相等。
此时若两物质的饱和溶液量相等所含溶质的量也就相等,但本选项的说法中没有说明饱和溶液质量是相等的,所以也就不能得出所含溶质质量相等的结论错误;C、据图知:温度降低甲、乙两物质的溶解度都减小。
所以,随温度降低甲、乙两物质的饱和溶液都会因溶质溶解能力减小而析出晶体,正确;D、曲线图显示,甲物质溶解度受温度影响较大,乙物质的溶解度受温度影响不大。
当甲物质中混有少量乙物质时,可采用冷却热饱和溶液的方法提纯甲,冷却结晶时少量的乙物质仍溶解在溶液中没有析出,正确。
故选C。
2.现有一包由5.6g铁、7.2g镁、1.0g碳混合而成的粉末,把它加入一定量的CuCl2溶液中。
实验结束后,测得剩余固体中含有三种物质。
则剩余固体的质量不可能是A.26. 2gB.26.6gC.26. 0gD.25. 8g【答案】B【解析】【分析】镁的金属活动性强于铁,铁强于铜,镁先和氯化铜反应生成氯化镁和铜,镁完全反应后,铁和氯化铜反应生成氯化亚铁和铜,碳和氯化铜不反应。
【详解】设7.2g镁和氯化铜完全反应产生铜的质量为xMg+CuCl=MgCl+Cu2224647.2g x2464=7.2g xx=19.2g若铁没有反应,剩余固体的质量为19.2g+1.0g+5.6g=25.8g设5.6g铁和硝酸铜完全反应产生铜的质量为yFe+CuCl=FeCl+Cu2256645.6g y5664=5.6g yy=6.4g若铁完全反应,剩余固体的质量为19.2g+1.0g+6.4g=26.6g铁没有反应或部分反应,因此剩余固体的质量大于或等于25.8g,小于26.6g。
成都市第二十中学初三化学中考模拟试题及答案
成都市第二十中学初三化学中考模拟试题及答案一、选择题(培优题较难)1.甲、乙两种固体物质(不含结晶水)的溶解度曲线如图所示,下列说法正确的是A.t2℃时,甲乙两物质溶液的溶质质量分数一定相等B.要使接近饱和的乙溶液成为饱和溶液,可蒸发溶剂C.分别将t2℃甲、乙两种物质的溶液降温至t1℃,一定都有晶体析出D.t1℃时,50g甲的饱和溶液中溶解了10g的甲物质【答案】B【解析】A、不知道溶液的状态,故t2℃时,甲乙两物质溶液的溶质质量分数不能确定是否相等,错误;B、乙的溶解度随温度的升高变化不明显,故要使接近饱和的乙溶液成为饱和溶液,可蒸发溶剂,正确;C、将t2℃甲、乙两种物质的饱和溶液溶液降温至t1℃,一定都有晶体析出,错误;D、t1℃时,甲的溶解度是20g,表明在该温度下50g水中溶解了10g的甲物质,错误;故选B。
点睛:根据固体的溶解度曲线可以:①查出某物质在一定温度下的溶解度,从而确定物质的溶解性,②比较不同物质在同一温度下的溶解度大小,从而判断饱和溶液中溶质的质量分数的大小,③判断物质的溶解度随温度变化的变化情况,从而判断通过降温结晶还是蒸发结晶的方法达到提纯物质的目的。
2.用数形结合的方法表示某些化学知识直观、简明、易记.下列用数轴表示正确的是()A.不同物质的着火点:B.硫及其化合物与化合价的关系:C.50g19.6%的稀硫酸与足量的金属反应产生氢气的质量:D.物质形成溶液的pH:【答案】B【解析】A、白磷的着火点比铁的低,B化合物中元素的化合价代数和为零,单质中元素的化合价为零。
所以硫化氢中硫元素的化合价为-2价,硫中硫元素的化合价为0。
二氧化硫中硫元素的化合价为+4价,硫酸中硫元素的化合价为+6价;C、50g19.6%的稀硫酸与足量的金属反应产生氢气的质量相同。
因为金属足量,酸反应完,氢气的质量由酸决定。
D、纯碱是碳酸钠,溶液呈碱性,pH大于7;氯化钠溶液呈中性,pH等于7;酸奶呈酸性,pH小于7。
成都市第二十中学校中考化学试题 含答案
成都市第二十中学校中考化学试题含答案一、选择题1.根据图2所示的溶解度曲线判断,下列说法正确的是()A.甲物质的溶解度大于乙物质的溶解度B.甲物质的不饱和溶液温度升高后变成饱和溶液C.将t2℃甲、乙两物质的饱和溶液温度降低到t1℃时都会析出晶体D.t2℃时,甲物质的饱和溶液和乙物质的饱和溶液中含有相等质量的溶质2.实验小组将未打磨的铝片和稀盐酸放入密闭容器中,用传感器探究反应过程中温度和压强的变化,结果如下图。
下列说法不正确的A.反应过程中有热量放出B.50s时,溶液中溶质为A1Cl3C.0-50s,发生稀盐酸与A12O3的反应D.100s-140s,压强减小是因为温度降低3.下列图像中有关量的变化趋势与选项要求相符合的是A.向硝酸溶液中不断加水B.过氧化氢分解生成氧气,一份加入二氧化锰,一份不加入二氧化锰C.在恒温条件下,将饱和NaCl溶液蒸发适量水D.向一定量的稀硫酸和硫酸镁的混合溶液中滴入氢氧化钠溶液至过量4.如图是A、B、C三种固体物质的溶解度曲线,下列分析正确的是()A.20℃时等质量的A和C两种物质的溶液中溶质的质量相等B.50℃时把50gA放入100g水中能得到A的饱和溶液,其溶质质量分数为50%C.将50℃时A、B、C三种物质的饱和溶液都降温至20℃时,这三种溶液的溶质质量分数的大小关系是B>A=CD.将C的饱和溶液变为不饱和溶液,可采用降温的方法5.在硝酸银、硝酸铜的混合溶液中加入一定量锌粉,反应停止后过滤,滤液仍为蓝色,有关判断正确的是()A.滤渣中一定有银、没有铜和锌B.滤渣中一定有银和锌,可能有铜C.滤液中一定有硝酸锌、硝酸铜、硝酸银D.滤液中一定有硝酸锌、硝酸铜,可能有硝酸银6.下列各组转化中,一定条件下均能一步实现的组合是A.①②B.①③C.②③D.①②③7.下列有关物质的鉴别、检验、除杂所用的试剂或方法正确的是()A.A B.B C.C D.D8.下图所示的四个图像,能正确反映对应变化关系的是A.电解水一段时间B.向二氧化锰中加入一定质量的过氧化氢溶液C.向一定质量铁粉中加入硫酸铜溶液D.等质量的镁、铝分别与质量分数相等且足量的稀硫酸反应9.某同学欲从量筒中倒出部分液体,他先俯视量筒内液体凹液面最低处读数为30ml,倒出部分液体后,又仰视液体凹液面最低处读数为14ml,则他实际倒出液体的体积( ) A.等于16ml B.大于16ml C.小于16ml D.不能确定10.学习金属单元后,我们知道Zn、Fe、Cu三种金属的活动性顺序为:Zn>Fe>Cu。
专题20 折叠综合问题(原卷版)-【搞定压轴题】2022年中考数学压轴题全揭秘(四川专用)
专题20 折叠综合问题【真题精选】1.(2020·成都) 在矩形ABCD 的CD 边上取一点E ,将BCE ∆沿BE 翻折,使点C 恰好落在AD 边上点F 处.(1)如图1,若2BC BA =,求CBE ∠的度数;(2)如图2,当5AB =,且10AF FD ⋅=时,求BC 的长;(3)如图3,延长EF ,与ABF ∠的角平分线交于点M ,BM 交AD 于点N ,当NF AN FD =+时,求AB BC出的值.2.(2021·达州)某数学兴趣小组在数学课外活动中,对多边形内两条互相垂直的线段做了如下探究:【现察与猜想】 (1)如图1,在正方形ABCD 中,点E ,F 分别是AB ,AD 上的两点,连接DE ,CF ,DE ⊥CF ,则的值为 ;(2)如图2,在矩形ABCD 中,AD =7,CD =4,点E 是AD 上的一点,连接CE ,BD ,且CE ⊥BD ,则的值为 ;【类比探究】(3)如图3,在四边形ABCD 中,∠A =∠B =90°,点E 为AB 上一点,连接DE ,过点C 作DE 的垂线交ED 的延长线于点G ,交AD 的延长线于点F ,求证:DE •AB =CF •AD ;【拓展延伸】(4)如图4,在Rt△ABC中,∠BAD=90°,AD=9,tan∠ADB=,将△ABD沿BD 翻折,点A落在点C处得△CBD,点E,F分别在边AB,AD上,连接DE,CF,DE⊥CF.①求的值;②连接BF,若AE=1,直接写出BF的长度.【例题讲解】例1.(求值类型)已知四边形ABCD是矩形,AB=2,BC=4,E为BC边上一动点且不与B、C重合,连接AE(1)如图1,过点E作EN⊥AE交CD于点N.①若BE=1,求CN的长;②将△ECN沿EN翻折,点C恰好落在边AD上,求BE的长;(2)如图2,连接BD,设BE=m,试用含m的代数式表示S四边形CDFE:S△ADF值.例2.(探究型)实践操作:第一步:如图1,将矩形纸片ABCD沿过点D的直线折叠,使点A落在CD上的点A'处,得到折痕DE,然后把纸片展平.第二步:如图2,将图1中的矩形纸片ABCD沿过点E的直线折叠,点C恰好落在AD上的点C'处,点B落在点B'处,得到折痕EF,B C''交AB于点M,C F'交DE于点N,再把纸片展平.问题解决:(1)如图1,填空:四边形AEA D '的形状是_____________________;(2)如图2,线段MC '与ME 是否相等?若相等,请给出证明;若不等,请说明理由;(3)如图2,若2cm,'4cm AC DC '==,求:DN EN 的值.【课后训练】1.如图,在△ABC 中,AB =4√2,△B =45°,△C =60°.(1)求BC 边上的高线长.(2)点E 为线段AB 的中点,点F 在边AC 上,连结EF ,沿EF 将△AEF 折叠得到△PEF . △如图2,当点P 落在BC 上时,求△AEP 的度数.△如图3,连结AP ,当PF △AC 时,求AP 的长.2.已知在△ABC 中,AC =BC =m ,D 是AB 边上的一点,将△B 沿着过点D 的直线折叠,使点B 落在AC 边的点P 处(不与点A ,C 重合),折痕交BC 边于点E .(1)特例感知 如图1,若△C =60°,D 是AB 的中点,求证:AP =12AC ;(2)变式求异 如图2,若△C =90°,m =,AD =7,过点D 作DH △AC 于点H ,求DH 和AP 的长;(3)化归探究 如图3,若m =10,AB =12,且当AD =a 时,存在两次不同的折叠,使点B 落在AC 边上两个不同的位置,请直接写出a 的取值范围.3.已知在△ABC 中,AC =BC =m ,D 是AB 边上的一点,将△B 沿着过点D 的直线折叠,使点B 落在AC 边的点P 处(不与点A ,C 重合),折痕交BC 边于点E .(1)特例感知 如图1,若△C =60°,D 是AB 的中点,求证:AP =12AC ;(2)变式求异如图2,若△C=90°,m=6√2,AD=7,过点D作DH△AC于点H,求DH和AP的长;(3)化归探究如图3,若m=10,AB=12,且当AD=a时,存在两次不同的折叠,使点B落在AC边上两个不同的位置,请直接写出a的取值范围.4.如图,在△ABC中,AB=4√2,△B=45°,△C=60°.(1)求BC边上的高线长.(2)点E为线段AB的中点,点F在边AC上,连结EF,沿EF将△AEF折叠得到△PEF.△如图2,当点P落在BC上时,求△AEP的度数.△如图3,连结AP,当PF△AC时,求AP的长.5.如图,四边形ABCD是正方形,点E在直线BC上,连接AE.将△ABE沿AE所在直线折叠,点B的对应点是点B′,连接AB′并延长交直线DC于点F.(1)当点F与点C重合时如图(1),易证:DF+BE=AF(不需证明);(2)当点F在DC的延长线上时如图(2),当点F在CD的延长线上时如图(3),线段DF、BE、AF有怎样的数量关系?请直接写出你的猜想,并选择一种情况给予证明.。
2023年四川成都中考英语试题(含答案)
2023年四川成都中考英语试题(含答案)第一部分:听力理解 (共20小题,每小题1分,满分20分)1. A. The shoes were on sale.B. The shoes were expensive.C. The shoes were out of stock.D. The shoes were old-fashioned.答案:A2. A. It's a sunny day.B. It's a snowy day.C. It's a rainy day.D. It's a windy day.答案:C3. A. At 5:00 pm.B. At 6:00 pm.C. At 7:00 pm.D. At 8:00 pm.答案:B...第二部分:阅读理解 (共40小题,每小题2分,满分80分)A. 阅读下面短文,然后根据短文内容选择正确答案。
Passage 1Have you ever wanted to be a detective? Well, now you can be one! Join our detective club and solve mysteries with us. You'll learn all the skills you need, like how to search for clues, interview witnesses, and analyze evidence. We meet every Saturday at the library from 2-4 pm. Membership is free, so don't miss out on this exciting opportunity!1. What is the purpose of this passage?A. To introduce a detective club.B. To advertise a library.C. To discuss detective skills.D. To invite people to join a meeting.答案:A...第三部分:书面表达 (共1题,满分20分)请根据以下要点,以“A Memorable Trip”为题,写一篇短文。
2024年四川省成都中考数学模拟试题
2024年四川省成都中考数学模拟试题一、单选题1.中国是最早采用正负数表示相反意义的量的国家.成都实行的“新中考”中“引体向上”项目男生满分标准为15次,若在平时训练时小成把18次记为3+,则应把14次记为( ) A .1-B .0C .1+D .2+2.2024年3月20日-22日,第110届全国糖酒商品交易会在成都举办,本届糖酒会展览总面积达 32.5万平方米,创糖酒会历届之最.将数据32.5万用科学记数法表示为( ) A .3.2510⨯B .43.2510⨯C .53.2510⨯D .63.2510⨯3.如图所示的几何体是由6个大小相同的小立方块搭成,从三个不同方向观察该几何体得到的视图面积相等的是( )A .主视图与左视图B .主视图与俯视图C .俯视图与左视图D .主视图,俯视图,左视图4.下列计算正确的是( ) A .32xy y x -= B .()326328x y x y -=C .()2211x x -=-D .()()2339x x x +-=-5.郑板桥有诗《山中雪后》云:“晨起开门雪满山,雪晴云淡日光寒”描绘了一幅冬日山居雪景图.想感受冬日山居雪景的小颖密切关注寒假期间成都某山区一周的最低气温(℃)以便出行,该山区某周的最低气温预报如下:则最低气温的众数、中位数分别是( ) A .4,4--B .4,5--C .5,3--D .5,4--6.如图,点E 、F 、C 、B 在同一直线上,AB DE =,B E ∠=∠,添加下列一个条件,不能判定ABC DEF ≌△△的条件是( )A .BF EC =B .AC DF = C .AD ∠=∠ D .ACB DFE ∠=∠7.我国古代著作《九章算术》中记载了这样一题:“今有共买鸡,人出九,盈十一;人出六,不足十六.问人数、鸡价各几何?”题目大意是:今有人合伙买鸡,每人出九钱,会多出11钱;每人出6钱,又差16钱.问人数、买鸡的钱数各是多少?设人数为x ,买鸡的钱数为y ,则可列方程组为( ) A .911616x y x y -=⎧⎨-=⎩B .911616x y x y -=⎧⎨+=⎩C .911616x y x y +=⎧⎨-=⎩D .911616x y x y -=⎧⎨+=⎩8.如图,二次函数2y ax bx c =++的图象与x 轴交于()1,0A ,()4,0B -两点,下列说法正确的是( )A .0c <B .抛物线的对称轴是直线2x =-C .当1x >-时,y 的值随x 值的增大而减小D .420a b c -+<二、填空题9.在平面直角坐标系中,点()1,2A 向右平移3个单位长度,再向下平移2个单位长度后的对应点A '的坐标是 .10.已知1x =是分式方程3122x ax x--=---的解,则实数a 的值为. 11.如图,在矩形ABCD 中,连接,AC BD ,过点A 作AE BD ⊥于点E .若6AB =,8AD =,则BE 的长为.12.若点19,2A x ⎛⎫⎪⎝⎭,()2,4B x 都在一次函数31y x =+的图象上,则1x 2x (填“>”或“<”).13.如图,在ABC V 中,120BAC ∠=︒,按以下步骤作图:①以点B 为圆心,以适当长为半径作弧,分别交,AB BC 于点,M N ;②分别以,M N 为圆心,以大于12MN 的长为半径作弧,两弧在ABC ∠内交于点P ;③作射线BP ,交AC 于点D ;④过点D 作DE BC ⊥于点E .若2AD =,则DE 的长为.三、解答题14.(1)计算:()0π 3.142cos303︒-. (2)解不等式组:()32213115x x x x ⎧+-≥-⎪⎨-<+⎪⎩①② 15.成都大运会闭幕式上,最后出场的“花花”流下的两滴“泪水”表达了不舍的情绪,让人非常感动.花花作为成都大熊猫繁育研究基地的“顶流明星”,无数游客前去成都大熊猫繁育研究基地看花花,园区采用单循环的观赏模式,每30名左右游客看熊猫时间3分钟,保证不会有人群杂音、闪光灯等干扰到幼年熊猫的休息.某中学为了解学生对花花的喜爱程度,随机调查了部分学生,并将调查结果绘制成如下两幅不完整的统计图.根据统计图信息,解答下列问题:(1)本次调查的学生总人数为______人,扇形统计图中“喜欢”对应的扇形圆心角度数为______; (2)若该校共有1200名学生,请你估计对花花的喜爱程度为“一般”的学生人数;(3)本次调查中,“很喜欢”的4人中有一名男生和三名女生,若从中随机抽取两人前往成都大熊猫繁育研究基地观看花花,请利用画树状图或列表的方法,求恰好抽到一名男生和一名女生的概率.16.《无人驾驶航空器飞行管理暂行条例》自2024年1月1日起实施,填补了无人驾驶航空器管理法规空白.有飞行操控梦的佳佳爸爸购买了一款无人机,该款无人机的部分信息如下表:如图,佳佳爸爸想了解该款无人机的最大飞行高度是否达到信息介绍的最低标准,佳佳打算用测角仪和卷尺解决爸爸的困惑,她让爸爸把无人机飞到其能飞行的最大高度A 点处,佳佳站在地面上B 点处用测角仪观测到无人机的仰角为60︒,佳佳向后退30步到达D 点处用测角仪观测到无人机的仰角为55︒,已知佳佳的步长为47cm ,测角仪的高度为1.6m (点,B D 在一条直线上,点,E C 在一条直线上).请帮佳佳解决爸爸的困惑.(结果精确到1m ,参考数据:sin550.82︒≈,cos550.57︒≈,tan55 1.43︒≈ 1.73≈)17.如图,O e 是ABC V 的外接圆,AB 为直径,BD 平分ABC ∠交O e 于点D ,交AC 于点E ,连接OD 交AC 于点F ,连接CD .(1)求证:OD AC ⊥; (2)若2OF =,4cos 5OBD ∠=,求EF 和CD 的长. 18.如图,在平面直角坐标系xOy 中,直线43y x =与反比例函数k y x =的图象交于()3,A m ,B 两点.(1)求反比例函数的表达式及点B 的坐标;(2)过点A 的直线交反比例函数图象于点C ,交y 轴于点D ,连接BD ,当AD BD ⊥时,求ABC V 的面积;(3)在(2)的条件下,当点D 在y 轴负半轴上时,在射线BD 上有一点Q 满足22AB BD BQ =⋅,求点Q 的坐标.四、填空题19.若2230x x +-=,则代数式114222x x x x ⎛⎫-÷⎪+--⎝⎭的值为. 20.如图,在等边ABC V 中,,,,,,D E F G M N 分别是边,,AB BC CA 的三等分点,连接,,EF GM ND ,随机在ABC V 内取一点,则这个点恰好在阴影部分的概率为.21.我国古代直至20世纪六七十年代,民间航海主要依靠海图指引航行,海图上有详尽数据,包括岛屿,灯塔,暗礁,水深等,船长结合灯塔的位置,通过测定角度来确定是否会遇到暗礁.如图,A B ,表示灯塔,暗礁分布在经过A B ,两点的一个圆形区域内,C 是有触礁危险的临界点,ACB ∠就是“危险角”,船P 与暗礁在AB 的同侧,若AB =5AC =,7BC =,当船P 位于安全区域时,它与两个灯塔的夹角APB ∠的取值范围是.22.定义:在平面直角坐标系xOy 中,若点(),P a b 满足a b ab +=,则称点P 为“积和点”.例如:()0,0,()2,2就是“积和点”.若直线y x m =-+上所有的点中只有唯一一个“积和点”,则m =.23.如图,在Rt ABC △中,90BAC ∠=︒,3AB =,4AC =,AD BC ⊥于点D ,点P 是线段AD 上一动点,以CP 为直角边作Rt CPE △,且∠=∠P E C A B C ,连接DE ,则当DE AB ∥时,AP 的长为;点P 在运动过程中,DE 的最小值为 .五、解答题24.近年来,盲盒备受潮玩商家关注.某潮玩商家推出2024年生肖龙公仔,并将A 类毛绒玩具和B 类毛绒挂件放在一起采用盲盒模式销售,一个盲盒内随机装一个A 类毛绒玩具和一个B 类毛绒挂件(不同盲盒内所装的玩具与挂件仅颜色不同),已知一个盲盒成本为22元/个.该商家销售该盲盒一段时间后,发现该盲盒的周销售量y (个)和盲盒单价x (元)满足一次函数关系的图象如图所示.(1)求该盲盒周销售量y (个)和盲盒单价x (元)的函数表达式;(2)该商家应如何定价才能使盲盒的周销售利润最大?并求出此时的最大利润.25.如图,在平面直角坐标系xOy 中,已知抛物线21y ax bx =++与x 轴交于()3,0A ,()1,0B -两点,与y 轴交于点C ,直线():2l y k x =-与抛物线交于点D ,与x 轴交于点P ,连接CP .(1)求抛物线的函数表达式; (2)若1tan 2CPD ∠=,求点D 的坐标;(3)直线l 交抛物线对称轴于点Q ,过点P 作PM PQ ⊥,交过点C 且平行于x 轴的直线于点M .试探究:无论()0k k ≠取何值,PM PQ =始终成立.26.探究式学习是新课程倡导的重要学习方式,某兴趣小组拟做以下探究. 【尝试初探】(1)如图①,在四边形ABCD 中,若90ABC ADC ∠=∠=︒,5AB AD ==,120BAD ∠=︒,求AC 的长; 【深入探究】(2)如图②,在四边形ABCD 中,若90ABC ADC ∠=∠=︒,45BCD ∠=︒,AC =BD 的长;【拓展延伸】(3)如图③,在四边形ABCD 中,若180ABC ADC ∠+∠=︒,60ADC ∠=︒,AD AB ==延长,DA CB 相交于点E ,DE CE ⊥,P 是线段AC 上一动点,连接PD ,求2DP CP +的最小值.。
成都市第二十中学校中考物理试题 含答案
成都市第二十中学校中考物理试题含答案一、选择题1.我国空间站将于2022年前后完成建造。
关于空间站,以下说法正确的是()A.不受任何力B.与地面通讯是利用电磁波C.做匀速直线运动D.在舱内可以用弹簧测力计测重力2.如图所示,这是合肥某天的天气预报截图,关于图中信息说法正确的是()A.-5℃读作“零下5度”B.云是由水蒸气组成的C.雪的形成是凝华现象D.雾在形成过程中吸收热量3.将一根带正电的玻璃棒靠近一个用绝缘线悬挂的不带电金属小球。
关于金属小球两侧带电性与达到平衡状态时的位置示意图,如图中正确的是A.B.C.D.4.如图所示,电源电压保持不变,R为滑动变阻器,P为滑片,闭合开关,两灯泡L1、L2正常发光,若将滑片P向左移动,下列说法正确的是()A.L1灯变暗B.L2灯变暗C.干路中的电流变大D.电路消耗的总功率变大5.用两根绝缘细线,分别将甲、乙两个相同的轻质小球悬挂起来,两个小球都带正电,但甲球带的电荷比乙球的多,在将乙球慢慢靠近甲球时,会出现的情形是A.B.C.D.6.如图所示,叠放在一起的A、B两物体在水平拉力F的作用下,沿水平方向起向右做勾速直线运动,下列说法正确的是()A.A、B之间无摩擦力B.B受到A施加的摩擦力方向水平向右C.A对B的压力与地面对B的支持力是一对作用力与反作用力D.地面对B的支持力与B受到的重力是一对平衡力7.如图所示,甲、乙两个质量不同的小球从相同高度静止释放,假球下落过程中经过P、Q两点,忽略空气阻力,下列说法正确的是()A.着地瞬间,两球的动能相等B.甲球在P点和Q点的机械能相等C.释放瞬间,两球的重力势能相等D.从释放到着地,两球所受重力做的功相等8.在体育测试过程中,以下选项正确的是()A.跳远测试时,必须选用分度值为1mm的刻度尺进行测量B.小明在50m测试中看到旁边的看台向后运动,选取的参照物是跑道C.小明50m测试的成绩是7s,则他的平均速度为6.25m/sD.1000m测试小明的平均速度为5m/s、小亮的成绩是240s,小明更快9.一束平行光从水中射入空气,OP是其中的一条反射光线,如图所示.能正确反映光线OP的光路图是()A.B.C.D.10.关于声现象,下列说法正确的是()A.只要物体振动,人们就能听到声音B.人们能分辨蛙声和蝉鸣,是因为它们的音调不同C.学校周边“禁止鸣笛”,是在声源处控制噪声D.人们利用超声检测锅炉是否有裂纹,说明声音可以传递能量11.为探究动滑轮和定滑轮的特点,设计如下两种方式拉升重物,下面关于探究的做法和认识正确的是()A.减小动滑轮质量可以提高动滑轮的机械效率B.若用定滑轮拉重物,当拉力竖直向下最省力C.用动滑轮提升重物升高h时,测力计也升高hD.若拉升同一物体上升相同高度,用动滑轮拉力更小,且做功更少12.关于信息和能源的说法中正确的是()A.目前建成的核能发电站利用了核聚变原理B.电磁波的频率越高,在真空中传播越快C.我国自主建立的北斗卫星导航系统是利用电磁波传递信息D.化石能源、电能是直接从自然界获得的能源,称为一次能源13.家庭电路中属于控制电路通断元件的是A.空气开关B.电能表C.导线D.节能灯14.如图,四个完全相同的玻璃瓶内装有质量不等的同种液体,用大小相同的力敲击四个玻璃瓶的同一位置,如果能分别发出“dou(1)”、“ruai(2)”、“mi(3)“、“fa (4)”四个音阶,则与这四个音阶相对应的玻璃瓶的序号是()A.丁丙乙甲B.乙甲丙丁C.丁甲丙乙D.甲丙乙丁15.下列图像中,能正确反映同种物质的质量和体积关系的是()A.B.C.D.16.下列估测数据中,符合实际的是()A.一张试卷纸的厚度约为80μm B.普通成年人身体的体积约为600dm3 C.日光灯正常工作时的电流约为2A D.九年级物理教科书的重约为20N17.“安全用电,珍惜生命”是每个公民应有的意识。
成都市第二十中学校中考物理试题 含答案
成都市第二十中学校中考物理试题含答案一、选择题1.下列有关力和运动的说法中,正确的是()A.物体不受力时,一定处于静止状态B.物体只受一个力作用时,一定做加速运动C.物体受力情况相同时,它的运动状态也一定相同D.物体做曲线运动时,一定受力的作用2.69.【2017•山西卷】酒驾易造成交通事故,利用酒精测试仪可以检测司机是否酒驾,其电路原理如图甲所示.R1为“气敏传感器”,它的电阻值与它接触到的酒精气体浓度的关系如图乙所示,R2为定值电阻,阻值为60Ω,电源电压恒为12V.若酒精气体浓度≥0.2mg/mL时,则判定被检者为酒驾.以下说法正确的是()A.被检者的酒精气体浓度越高,电流表示数越小B.电流表的示数为0.12A时,判定被检者为酒驾C.电压表示数为3V时,R2消耗的电功率为0.45WD.被检者酒精气体浓度为0.2mg/mL时,电压表的示数是4V3.如图所示,一只鱼鹰发现河面上的鱼,沿虚线斜向下匀速俯冲,此过程中,空气对鱼鹰作用力的方向可能是()A.竖直向上B.竖直向下C.与运动方向相同D.与运动方向相反4.如图所示,闭合开关S,电路正常工作。
过了一段时间,灯泡1L和2L同时熄灭,电压表示数明显变大。
出现这一现象的原因可能是()A .灯泡1L 灯丝断了B .灯泡1L 短路了C .灯泡2L 灯丝断了D .灯泡2L 短路了5.如图是汽车四冲程发动机的一个冲程示意图,下列说法正确的是A .该冲程是做功冲程B .该冲程机械能转化为内能C .这种汽车对环境没有污染D .此发动机的效率可达90% 6.下列关于热现象的一些说法,你认为正确的是( )A .破镜不能重圆,说明分子间有斥力B .在寒冷的北方不用水银温度计测量气温,是因为水银的凝固点较高C .两物体相互接触时,热量总是从内能大的物体转移到内能小的物体D .夏天在室内洒水降温,利用了水的比热容较大的性质7.小华在实验操作中连接了如图所示的电路,闭合开关,发现灯泡1L 亮、2L 不亮,调节变阻器滑片P ,灯泡1L 的亮度发生变化,但灯泡2L 始终不亮,出现这一现象的原因可能是( )A .灯泡2L 灯丝断了B .灯泡2L 的灯座上两接线柱直接相连C.滑动变阻器接触不良D.滑动变阻器短路了8.溧阳平桥石坝,没有使用钢筋混凝土,靠浆砌石建成,近年来成为远近闻名的旅游景点,如图所示为溧阳平桥石坝的切面示意图、水坝左侧水面高,右侧水面低,A和B两点处于同一高度,A和C两点到各自液面的距离相等,水在A、B和C三点产生的压强分别为p A、p B和p C.则()A.p A=p B>p C B.p A=p B<p C C.p A=p C>p B D.p A=p C<p B9.下列与声现象有关的说法中正确的是()A.一切发声的物体都在振动B.公路旁安装“声障墙”是在声源处减弱噪声C.声和电磁波都能传递信息,且都可以在真空中传播D.用大小不同的力敲鼓可以改变声音的音调10.如图所示,以下器具,在使用时属于省力杠杆的是A.筷子B.夹子C.钳子D.镊子11.如图所示物态变化过程中,放出热量的是()A.樟脑丸逐渐变小B.露珠的形成C.正在消融的冰凌D.夏天湿衣服晒干12.“网课”让学习更加便捷,但也容易使人们用眼过度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
成都中考A 卷第20题专题训练
1、(2014.成都七中中考预测卷)已知:在正方形ABCD 中,E 为BC 延长线上一点,连结AE 分别交 DC 、DB 于F 、G .求证: ①、∠DAG=∠DCG ; ②、AG 2=GE•GF ;
2、(2007. 成都第20题)已知:如图,ABC △中,45ABC ∠=°,CD AB ⊥于D ,BE 平分ABC ∠, 且BE AC ⊥于E ,与CD 相交于点F H ,是BC 边的中点,连结DH 与BE 相交于点G .
①、求证:BF AC =;
②、求证:1
2
CE BF =;
③、CE 与BG 的大小关系如何?试证明你的结论.
D A
E F
C
H
G
B
3、(2008. 成都第20题)已知:在梯形ABCD 中,AD ∥BC ,AB = DC ,E 、F 分别是AB 和BC 边上的点. (1)如图①,以EF 为对称轴翻折梯形ABCD ,使点B 与点D 重合,且DF ⊥BC.若AD =4,BC=8, 求梯形ABCD 的面积ABCD S 梯形的值;
(2)如图②,连接EF 并延长与DC 的延长线交于点G ,如果FG=k ·EF (k 为正数),试猜想BE 与CG 有何
数量关系?写出你的结论并证明之.
4、(2009. 成都第20题)已知A 、D 是一段圆弧上的两点,且在直线l 的同侧,分别过这两点作l 的垂线,垂足 为B 、C ,E 是BC 上一动点,连结AD 、AE 、DE ,且∠AED=90° (1)如图①,如果AB=6,BC=16,且BE :CE=1:3,求AD 的长
(2)如图②,若点E 恰为这段圆弧的圆心,则线段AB 、BC 、CD 之间有怎样的等量关系?请写出你的结论
并予以证明。
再探究:当A 、D 分别在直线l 两侧且AB≠CD ,而其余条件不变时,线段AB 、BC 、CD 之 间又有怎样的等量关系?请直接写出结论,不必证明。
图 ①
l
A
C
E D
B A
D
B
D
5、(2010. 成都第20题)已知:在菱形ABCD 中,O 是对角线BD 上的一动点.
(1)如图甲,P 为线段BC 上一点,连接PO 并延长交AD 于点Q ,当O 是BD 的中点时,求证:OP OQ =; (2)如图乙,连结AO 并延长,与DC 交于点R ,与BC 的延长线交于点S .
若460,10AD DCB BS ===,∠,求AS 和OR 的长.
6、(2011. 成都第20题)如图,已知线段AB ∥CD ,AD 与B C 相交于点K ,E 是线段AD 上一动点。
(1)、若BK=
52KC ,求CD
AB
的值; (2)、连接BE ,若BE 平分∠ABC ,则当AE=
1
2AD 时,猜想线段AB 、BC 、CD 三者之间有怎样的等量关系? 请写出你的结论并予以证明.再探究:当AE=1
n
AD (n >2),而其余条件不变时,线段AB 、BC 、CD 三者
之间又有怎样的等量关系?请直接写出你的结论,不必证明.
7、(2012. 成都第20题) 如图,△ABC 和△DEF 是两个全等的等腰直角三角形,∠BAC=∠EDF=90°,△DEF 的顶点E 与△ABC 的斜边BC 的中点重合.将△DEF 绕点E 旋转,旋转过程中,线段DE 与线段AB 相交于 点P ,线段EF 与射线CA 相交于点Q .
(1)如图①,当点Q 在线段AC 上,且AP=AQ 时,求证:△BPE ≌△CQE ;
(2)如图②,当点Q 在线段CA 的延长线上时,求证:△BPE ∽△CEQ ;并求当BP=a ,CQ=
9
2
a 时,
P 、Q 两点间的距离 (用含a 的代数式表示).
8、(2013. 成都第20题)如图,点B 在线段AC 上,点D ,E 在AC 同侧,90A C ∠=∠=o ,BD BE ⊥,
AD BC =.
(1)求证:CE AD AC +=;
(2)若3AD =,5CE =,点P 为线段AB 上的动点,连接DP ,作DP PQ ⊥,交直线BE 与点Q ; i )当点P 与A ,B 两点不重合时,求
DP
PQ
的值; ii )当点P 从A 点运动到AC 的中点时,求线段DQ 的中点所经过的路径(线段)长.(直接写出结果,不必 写出解答过程)。