高考第二轮等差等比数列综合复习
高考数学二轮复习数列求和及其综合应用
(2)在各项均为正数的数列{an}中,a1=1,a2n+1-2an+1an-3a2n=0,Sn 是数列 {an}的前 n 项和,若对 n∈N*,不等式 an(λ-2Sn)≤27 恒成立,则实数 λ 的 取值范围为_(-__∞__,__1_7_]_.
∵a2n+1-2an+1an-3a2n=0, ∴(an+1+an)(an+1-3an)=0, ∵an>0,∴an+1=3an,又a1=1, ∴数列{an}是首项为1,公比为3的等比数列, ∴an=3n-1, Sn=11--33n=32n-12, ∴不等式 an(λ-2Sn)≤27 即 λ≤2Sn+2a7n=3n+32n-71-1 对 n∈N*恒成立,
所以 2an1
2an
=4,
所以an+1-an=2,
所以数列{an}是公差为2的等差数列,
因为a2,a4,a7成等比数列,
所以 a24=a2a7,
所以(a1+6)2=(a1+2)(a1+12), 解得a1=6,
所以an=6+2(n-1)=2n+4, 因为Sn为数列{bn}的前n项和,且bn是1和Sn的等差中项, 所以Sn+1=2bn, 当n≥2时,有Sn-1+1=2bn-1, 两式相减得bn=2bn-2bn-1,即bn=2bn-1, 当n=1时,有S1+1=b1+1=2b1, 所以b1=1, 所以数列{bn}是首项为1,公比为2的等比数列,所以bn=2n-1,
考向3 错位相减法
例3 (2022·上饶模拟)从①b5-b4=18b2,②S5=b4-2,③log3bn+1-1= log3bn这三个条件中任选一个,补充在下面问题中,并解答. 已知数列{an}的前n项和为Sn,数列{bn}是正项等比数列,且2an=an+1+ an-1(n≥2),S3=b3=9,b4=a14,________. (1)求数列{an}和{bn}的通项公式; 注:如果选择多个条件分别解答,按第一个解答计分.
高考第二轮等差等比数列综合复习
高考第二轮等差等比数列综合复习等差、等比数列综合教学目标 1.熟练运用等差、等比数列的概念、通项公式、前n项和公式以及有关性质,分析和解决等差、等比数列的综合问题2.突出方程思想的应用,能选择简捷合理的运算途径,提高运算速度和能力3.用方程的观点认识等差、等比数列的基础知识,从本质上掌握公式4.解决应用问题时,分清是等差数列还是等比数列问题;分清an和Sn弄清项数n双基联系 1.已知等差数列{an}的前n项和为Sn,若a2?a5?a7?a9?a12是一个确定的常数,则下列表达式也是一个确定的常数的是( ) A.S5 B.S7 C.S9D.S132.已知等比数列{an},若a2a5a9a12?16,则a6a7a8?( ) A.4 B.8 C.±4 D.±83.命题p:若2b=a+c,则a,b,c成等差数列;命题q:若b?ac,则a,b,c成等比数列。
下列判断中正确的是 ( ) A.p或q是假命题 B.p且q是真命题 C.p且q是假命题 D.以上都不对 4.在等差数列{an}中,a1,a4,a25依次成等比数列,且a1+a4+a25=114,则成等比数列的这三个数依次为 . 5.设{an}为等差数列,bn?()n,已知b1?b2?b3?求等差数列的通项an.212a211,b1b2b3?, 88典型例题【例1】互不相等的三个数a、b、c成等差数列,又a,c,b恰成等比数列,求a:b:c的值.【思路点拨】本题考查三个数成等差数列以及三个数成等比数列的相应等式,采用方法是,两个等式消去一个“元”,从而求得三个数的比. 【解】由题意得??2b?a?c22c?bc?2b?0,解之得c=b或c=-2b 消去a可得2?c?ab 当c=b时,a=b,故a:b:c=1:1:1,此时不合题意,舍去;当c=-2b时,a=4b,故a:b:c=4:1:(-2)[点评]这道题根据题意列出两个等式不难,主要是结合钥匙目标,求三个数的比,只有两个等式,不可能同时解出三个量的值,所以要用消元的方法。
高考数学二轮复习专题4数列第1讲等差数列与等比数列理
第1讲等差数列与等比数列等差、等比数列的基本运算1.(2015新课标全国卷Ⅰ)已知{a n}是公差为1的等差数列,S n为{a n}的前n项和.若S8=4S4,则a10等于( B )(A)(B)(C)10 (D)12解析:设等差数列{a n}的首项为a1,公差为d.由题设知d=1,S8=4S4,所以8a1+28=4(4a1+6),解得a1=,所以a10=+9=,选B.2.(2015辽宁省锦州市质量检测(一))已知各项不为0的等差数列{a n}满足a4-2+3a8=0,数列{b n}是等比数列,且b7=a7,则b2b8b11等于( D )(A)1 (B)2 (C)4 (D)8解析:因为a4-2+3a8=0,所以a1+3d-2+3(a1+7d)=0,所以4(a1+6d)-2=0,即4a7-2=0,又a7≠0,所以a7=2,所以b7=2,所以b2b8b11=b1q·b1q7·b1q10=(b1q6)3==8.故选D.3.(2015河南郑州第二次质量预测)设等比数列{a n}的前n项和为S n,若27a3-a6=0,则= .解析:设等比数列公比为q(q≠1),因为27a3-a6=0,所以27a3-a3q3=0,所以q3=27,q=3,所以====28.答案:28等差、等比数列的性质及应用4.(2015河南省六市第二次联考)已知数列{a n}为等比数列,若a4+a6=10,则a7(a1+2a3)+a3a9的值为( C )(A)10 (B)20 (C)100 (D)200解析:a7(a1+2a3)+a3a9=a1a7+2a3a7+a3a9=+2a4a6+=(a4+a6)2=102=100.故选C.5.设等比数列{a n}中,前n项和为S n,已知S3=8,S6=7,则a7+a8+a9等于( A )(A)(B)-(C)(D)解析:因为a7+a8+a9=S9-S6,在等比数列中S3,S6-S3,S9-S6也成等比数列,即8,-1,S9-S6成等比数列,所以有8(S9-S6)=1,即S9-S6=.故选A.6.(2015新课标全国卷Ⅱ)已知等比数列{a n}满足a1=,a3a5=4(a4-1),则a2等于( C )(A)2 (B)1 (C)(D)解析:法一根据等比数列的性质,结合已知条件求出a4,q后求解.因为a3a5=,a3a5=4(a4-1),所以=4(a4-1),所以-4a4+4=0,所以a4=2.又因为q3===8,所以q=2,所以a2=a1q=×2=.故选C.法二直接利用等比数列的通项公式,结合已知条件求出q后求解.因为a3a5=4(a4-1),所以a1q2·a1q4=4(a1q3-1),将a1=代入上式并整理,得q6-16q3+64=0,解得q=2,所以a2=a1q=.故选C.7.(2015哈师大附中、东北师大附中、辽宁实验中学第一次联合模拟)设S n是公差不为零的等差数列{a n}的前n项和,且a1>0,若S5=S9,则当S n最大时,n等于( B )(A)6 (B)7 (C)8 (D)9解析:依题意得S9-S5=a6+a7+a8+a9=0,所以2(a7+a8)=0,所以a7+a8=0,又a1>0,所以该等差数列的前7项为正数,从第8项开始为负数.所以当S n最大时,n=7.故选B.8.(2015东北三校第一次联合模拟)若等差数列{a n}中,满足a4+a6+a2010+a2012=8,则S2015= .解析:因为a4+a6+a2010+a2012=8,所以2(a4+a2012)=8,所以a4+a2012=4.所以S2015===4030.答案:4030等差、等比数列的综合问题9.(2015甘肃二诊)设等差数列{a n}的前n项和为S n,且满足S17>0,S18<0,则,,…,中最大的项为( C )(A)(B)(C)(D)解析:因为S17==17a9>0,S18==9(a10+a9)<0,所以a9>0,a10+a9<0,所以a10<0.所以等差数列为递减数列,则a1,a2,…,a9为正,a10,a11,…为负,S1,S2,…,S17为正,S18,S19,…为负,所以>0,>0,…,>0,<0,<0,…,<0,又S1<S2<…<S9,a1>a2>…>a9,所以,,…,中最大的项为.故选C.10.(2014辽宁卷)设等差数列{a n}的公差为d,若数列{}为递减数列,则( C )(A)d<0 (B)d>0(C)a1d<0 (D)a1d>0解析:因为数列{}为递减数列,a1a n=a1[a1+(n-1)d]=a1dn+a1(a1-d),等式右边为关于n的一次函数,所以a1d<0.11.(2015兰州高三诊断)在等比数列{a n}中,已知a1=2,a4=16.(1)求数列{a n}的通项公式;(2)若a3,a5分别为等差数列{b n}的第3项和第5项,试求数列{b n}的前n项和S n.解:(1)因为{a n}为等比数列,所以=q3=8;所以q=2.所以a n=2·2n-1=2n.(2)b3=a3=23=8,b5=a5=25=32,又因为{b n}为等差数列,所以b5-b3=24=2d,所以d=12,b1=a3-2d=-16,所以S n=-16n+×12=6n2-22n.一、选择题1.(2015云南第二次检测)设S n是等差数列{a n}的前n项和,若a1∶a2=1∶2,则S1∶S3等于( D )(A)1∶3 (B)1∶4 (C)1∶5 (D)1∶6解析:S1∶S3=a1∶(a1+a2+a3)=a1∶3a2,又a1∶a2=1∶2,所以S1∶S3=1∶6.故选D.2.(2015银川九中月考)已知数列{a n}的前n项和为S n,a1=1,S n=2a n+1,则S n等于( B )(A)2n-1 (B)()n-1(C)()n-1(D)解析:由S n=2a n+1得S n=2(S n+1-S n),所以S n+1=S n.所以{S n}是以S1=a1=1为首项,为公比的等比数列.所以S n=()n-1.故选B.3.(2015河北石家庄二模)等比数列{a n}的前n项和为S n,已知S3=a2+5a1,a7=2,则a5等于( A )(A)(B)-(C)2 (D)-2解析:设公比为q,因为S3=a2+5a1,所以a1+a2+a3=a2+5a1,所以a3=4a1,所以q2==4,又a7=2,所以a5===.故选A.4.已知{a n}为等比数列,a4+a7=2,a5a6=-8,则a1+a10等于( D )(A)7 (B)5 (C)-5 (D)-7解析:法一利用等比数列的通项公式求解.由题意得所以或所以a1+a10=a1(1+q9)=-7.法二利用等比数列的性质求解.由解得或所以或所以a1+a10=a1(1+q9)=-7.故选D.5.(2015兰州高三诊断)已知等差数列{a n}的前n项和为S n,若a4=18-a5,则S8等于( D )(A)18 (B)36 (C)54 (D)72解析:因为a4=18-a5,所以a4+a5=18,所以S8====72.故选D.6.(2014郑州市第二次质量预测)在数列{a n}中,a n+1=ca n(c为非零常数),前n项和为S n=3n+k,则实数k为( A )(A)-1 (B)0 (C)1 (D)2解析:由a n+1=ca n,可知{a n}是等比数列,设公比q,由S n=,得S n=-·q n+.由S n=3n+k,知k=-1.故选A.7.设{a n}是公差不为零的等差数列,满足+=+,则该数列的前10项和等于( C )(A)-10 (B)-5 (C)0 (D)5解析:设等差数列{a n}的首项为a1,公差为d(d≠0),由+=+得,(a1+3d)2+(a1+4d)2=(a1+5d)2+(a1+6d)2,整理得2a1+9d=0,即a1+a10=0,所以S10==0.故选C.8.(2015北京卷)设{a n}是等差数列,下列结论中正确的是( C )(A)若a1+a2>0,则a2+a3>0(B)若a1+a3<0,则a1+a2<0(C)若0<a1<a2,则a2>(D)若a1<0,则(a2-a1)(a2-a3)>0解析:因为{a n}为等差数列,所以2a2=a1+a3.当a2>a1>0时,得公差d>0,所以a3>0,所以a1+a3>2,所以2a2>2,即a2>,故选C.9.(2015大连市二模)已知等差数列{a n}的前n项和为S n,a2=4,S10=110,则的最小值为( C )(A)7 (B)(C)(D)8解析:设等差数列{a n}的公差为d,则解得所以a n=2+2(n-1)=2n,S n=2n+×2=n2+n,所以==++≥2+=.当且仅当=,即n=8时取等号.故选C.10.(2015福建卷)若a,b是函数f(x)=x2-px+q(p>0,q>0)的两个不同的零点,且a,b,-2这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则p+q的值等于( D ) (A)6 (B)7 (C)8 (D)9解析:由题可知a,b是x2-px+q=0的两根,所以a+b=p>0,ab=q>0,故a,b均为正数.因为a,b,-2适当排序后成等比数列,所以-2是a,b的等比中项,得ab=4,所以q=4.又a,b,-2适当排序后成等差数列,所以-2是第一项或第三项,不妨设a<b,则-2,a,b成递增的等差数列,所以2a=b-2,联立消去b得a2+a-2=0,得a=1或a=-2,又a>0,所以a=1,此时b=4,所以p=a+b=5,所以p+q=9.故选D.二、填空题11.(2015黑龙江高三模拟)等差数列{a n}中,a4+a8+a12=6,则a9-a11= .解析:设等差数列{a n}公差为d,因为a4+a8+a12=6,所以3a8=6,即a8=a1+7d=2,所以a9-a11=a1+8d-(a1+10d)=a1+ d=(a1+7d)=×2=.答案:12.(2015宁夏石嘴山高三联考)若正项数列{a n}满足a2=,a6=,且=(n≥2,n∈N*),则log2a4= .解析:因为=(n≥2,n∈N*),所以=a n-1·a n+1,所以数列{a n}为等比数列.又a2=,a6=,所以q4==.因为数列为正项数列,所以q>0,所以q=.所以a4=a2q2=×=,所以log2a4=log2=-3.答案:-313.(2015安徽卷)已知数列{a n}中,a1=1,a n=a n-1+(n≥2),则数列{a n}的前9项和等于.解析:因为a1=1,a n=a n-1+(n≥2),所以数列{a n}是首项为1、公差为的等差数列,所以前9项和S9=9+×=27.答案:2714.(2015湖南卷)设S n为等比数列{a n}的前n项和.若a1=1,且3S1,2S2,S3成等差数列,则a n= .解析:设等比数列{a n}的公比为q(q≠0),依题意得a2=a1·q=q,a3=a1q2=q2, S1=a1=1,S2=1+q,S3=1+q+q2.又3S1,2S2,S3成等差数列,所以4S2=3S1+S3,即4(1+q)=3+1+q+q2,所以q=3(q=0舍去).所以a n=a1q n-1=3n-1.答案:3n-1。
数学二轮复习教案: 第一部分 专题三 数列 第一讲 等差数列、等比数列
专题三数列第一讲等差数列、等比数列[考情分析]等差数列、等比数列的判定及其通项公式在考查基本运算、基本概念的同时,也注重对函数与方程、等价转化、分类讨论等数学思想的考查;对等差数列、等比数列的性质考查主要是求解数列的等差中项、等比中项、通项公式和前n项和的最大、最小值等问题,主要是中低档题;等差数列、等比数列的前n项和是高考考查的重点。
年份卷别考查角度及命题位置201 7Ⅰ卷等差、等比数列的综合应用·T17201 5Ⅰ卷等差数列的通项公式及前n项和公式·T7等比数列的概念及前n项和公式·T13Ⅱ卷等差数列的通项公式、性质及前n项和公式·T5[真题自检]1.(2015·高考全国卷Ⅱ)设S n是等差数列{a n}的前n项和,若a1+a3+a5=3,则S5=( )A.5 B.7C.9 D.11解析:法一:∵a1+a5=2a3,∴a1+a3+a5=3a3=3,∴a3=1,∴S5=错误!=5a3=5.法二:∵a1+a3+a5=a1+(a1+2d)+(a1+4d)=3a1+6d=3,∴a1+2d =1,∴S5=5a1+错误!d=5(a1+2d)=5.解析:A2.(2015·高考全国卷Ⅰ)已知{a n}是公差为1的等差数列,S n为{a n}的前n项和,若S8=4S4,则a10=( )A。
错误!B。
错误!C.10 D.12解析:∵公差为1,∴S8=8a1+错误!×1=8a1+28,S4=4a1+6.∵S8=4S4,∴8a1+28=4(4a1+6),解得a1=错误!,∴a10=a1+9d=错误!+9=错误!。
答案:B3.(2015·高考全国卷Ⅰ改编)在数列{a n}中,a1=2,a n+1=2a n,S n 为{a n}的前n项和.若S n=126,求n的值.解析:∵a1=2,a n+1=2a n,∴数列{a n}是首项为2,公比为2的等比数列.又∵S n=126,∴错误!=126,∴n=6.等差数列、等比数列的基本运算[方法结论]1.两组求和公式(1)等差数列:S n=错误!=na1+错误!d;(2)等比数列:S n=错误!=错误!(q≠1).2.在进行等差(比)数列项与和的运算时,若条件和结论间的联系不明显,则均可化成关于a1和d(q)的方程组求解,但要注意消元法及整体计算,以减少计算量.[题组突破]1.(2017·贵阳模拟)等差数列{a n}的前n项和为S n,且a3+a9=16,则S 11=( )A .88B .48C .96D .176解析:依题意得S 11=11a 1+a 112=错误!=错误!=88,选A 。
高考数学二轮复习考点知识与题型专题讲解26---等差数列、等比数列
高考数学二轮复习考点知识与题型专题讲解第26讲 等差数列、等比数列[考情分析] 1.等差、等比数列基本量和性质的考查是高考热点,经常以小题形式出现.2.等差、等比数列求和及综合应用是高考考查的重点.考点一 等差数列、等比数列的基本运算 核心提炼等差数列、等比数列的基本公式(n ∈N *)(1)等差数列的通项公式:a n =a 1+(n -1)d .(2)等比数列的通项公式:a n =a 1q n -1.(3)等差数列的求和公式:S n =n (a 1+a n )2=na 1+n (n -1)2d .(4)等比数列的求和公式:S n =⎩⎪⎨⎪⎧a 1(1-q n )1-q =a1-a n q 1-q ,q ≠1,na 1,q =1.例1 (1)(2022·南通调研)设S n 是公差不为0的等差数列{a n }的前n 项和,且S 5=4a 4,则S12a 5等于() A .10 B .14 C .15 D .18答案 C解析 设等差数列{a n }的公差为d (d ≠0),因为S 5=4a 4,所以5a 1+5×42d =4(a 1+3d ),得a 1=2d (d ≠0),所以S 12a 5=12a 1+12×112d a 1+4d=24d +66d 6d =15. (2)(2022·日照模拟)河南洛阳的龙门石窟是中国石刻艺术宝库之一,现为世界文化遗产,龙门石窟与莫高窟、云冈石窟、麦积山石窟并称中国四大石窟.现有一石窟的某处“浮雕像”共7层,上层的数量是下层的2倍,总共有1 016个“浮雕像”,这些“浮雕像”构成一幅优美的图案,若从最下层往上“浮雕像”的数量构成一个数列{a n },则log 2(a 3·a 5)的值为( )A .8B .10C .12D .16答案 C解析 ∵最下层的“浮雕像”的数量为a 1,依题意有,公比q =2,n =7,S 7=a 1(1-27)1-2=1 016, 解得a 1=8,则a n =8×2n -1=2n +2(1≤n ≤7,n ∈N *), ∴a 3=25,a 5=27,从而a 3·a 5=25×27=212,∴log 2(a 3·a 5)=log 2212=12.规律方法 等差数列、等比数列问题的求解策略(1)抓住基本量,首项a 1、公差d 或公比q .(2)熟悉一些结构特征,如前n 项和为S n =an 2+bn (a ,b 是常数)的形式的数列为等差数列,通项公式为a n =p ·q n -1(p ,q ≠0)的形式的数列为等比数列. (3)由于等比数列的通项公式、前n 项和公式中变量n 在指数位置,所以常用两式相除(即比值的方式)进行相关计算.跟踪演练1 (1)(2022·全国乙卷)已知等比数列{a n }的前3项和为168,a 2-a 5=42,则a 6等于( )A .14B .12C .6D .3答案 D解析 方法一设等比数列{a n }的首项为a 1,公比为q ,由题意可得⎩⎪⎨⎪⎧ S 3=168,a 2-a 5=42, 即⎩⎪⎨⎪⎧a 1(1+q +q 2)=168,a 1q (1-q 3)=42, 解得⎩⎪⎨⎪⎧ a 1=96,q =12,所以a 6=a 1q 5=3. 方法二 设等比数列{a n }的首项为a 1,公比为q ,由题意可得⎩⎪⎨⎪⎧S 3=168,a 2-a 5=42, 即⎩⎪⎨⎪⎧ a 1(1-q 3)1-q =168,a 1q (1-q 3)=42,解得⎩⎪⎨⎪⎧a 1=96,q =12,所以a 6=a 1q 5=3. (2)(多选)(2022·广东联考)北京天坛圜丘坛的地面由石板铺成,最中间的是圆形的天心石,围绕天心石的是9圈扇环形的石板,从内到外各圈的石板数依次为a 1,a 2,a 3,…,a 9,设数列{a n }为等差数列,它的前n 项和为S n ,且a 2=18,a 4+a 6=90,则( )A .a 1=6B .{a n }的公差为9C .a 6=3a 3D .S 9=405答案 BD解析 设{a n }的公差为d .由a 4+a 6=90,得a 5=45,又a 2=18,联立方程组⎩⎪⎨⎪⎧ a 1+d =18,a 1+4d =45, 解得⎩⎪⎨⎪⎧a 1=9,d =9,故A 错误,B 正确; 因为a 6=9+5×9=54,a 3=9+2×9=27,所以a 6=2a 3,故C 错误;因为S 9=9(a 1+a 9)2=9a 5=405,故D 正确.考点二 等差数列、等比数列的性质 核心提炼1.通项性质:若m +n =p +q =2k (m ,n ,p ,q ,k ∈N *),则对于等差数列,有a m +a n =a p +a q =2a k ,对于等比数列,有a m a n =a p a q =a 2k .2.前n 项和的性质:(1)对于等差数列有S m ,S 2m -S m ,S 3m -S 2m ,…成等差数列;对于等比数列有S m ,S 2m -S m ,S 3m -S 2m ,…成等比数列(q =-1且m 为偶数时除外).(2)对于等差数列有S 2n -1=(2n -1)a n .例2 (1)(2022·南昌模拟)已知公差不为0的等差数列{a n }满足a 25+a 26=a 27+a 28,则( )A .a 6=0B .a 7=0C .S 12=0D .S 13=0答案 C解析 ∵a 25+a 26=a 27+a 28,∴a 27-a 25+a 28-a 26=0,∴2d (a 7+a 5)+2d (a 8+a 6)=0,又d ≠0,a 8+a 5=a 6+a 7,∴2(a 7+a 6)=0,∴S 12=12(a 1+a 12)2=12(a 6+a 7)2=0. (2)(2022·武汉质检)已知等比数列{a n }的各项均为正数,公比为q ,a 1>1,a 6+a 7>a 6a 7+1>2,记{a n }的前n 项积为T n ,则下列选项错误的是( )A .0<q <1B .a 6>1C .T 12>1D .T 13>1答案 D解析 ∵等比数列{a n }的各项均为正数,a 1>1,a 6+a 7>a 6a 7+1>2,∴(a 6-1)(a 7-1)<0,∵a 1>1,若a 6<1,则一定有a 7<1,不符合题意,则a 6>1,a 7<1,∴0<q <1,故A ,B 正确;∵a 6a 7+1>2,∴a 6a 7>1,T 12=a 1a 2a 3…a 12=(a 6a 7)6>1,故C 正确;T 13=a 137<1,故D 错误.规律方法 等差数列、等比数列的性质问题的求解策略(1)抓关系,抓住项与项之间的关系及项的序号之间的关系,从这些特点入手,选择恰当的性质进行求解.(2)用性质,数列是一种特殊的函数,具有函数的一些性质,如单调性、周期性等,可利用函数的性质解题.跟踪演练2 (1)若数列{a n }为等比数列,且a 1+a 2=1,a 3+a 4=2,则a 15+a 16等于( )A .32B .64C .128D .256答案 C解析 因为{a n }是等比数列,a 1+a 2=1≠0,所以数列{a 2n -1+a 2n }仍然是等比数列,记b n =a 2n -1+a 2n ,设其公比为q ,由b 1=1,b 2=2得,q =b2b 1=2, 所以a 15+a 16=b 8=28-1=128.(2)(多选)(2022·济宁检测)已知等差数列{a n }的前n 项和为S n ,且a 1>0,a 4+a 11>0,a 7·a 8<0,则() A .数列{a n }是递增数列B .S 6>S 9C .当n =7时,S n 最大D .当S n >0时,n 的最大值为14答案 BCD解析 ∵在等差数列{a n }中,a 1>0,a 4+a 11=a 7+a 8>0,a 7·a 8<0,∴a 7>0,a 8<0,∴公差d <0,数列{a n }是递减数列,A 错误;∵S 9-S 6=a 7+a 8+a 9=3a 8<0,∴S 6>S 9,B 正确;∵a 7>0,a 8<0,数列{a n }是递减数列,∴当n =7时,S n 最大,C 正确;∵a 4+a 11>0,a 7>0,a 8<0,∴S 14=14(a 1+a 14)2=14(a 4+a 11)2>0,S 15=15(a 1+a 15)2=15×2a 82<0,∴当S n >0时,n 的最大值为14,D 正确.考点三 等差数列、等比数列的判断 核心提炼证明数列为等差(比)数列一般使用定义法.例3(2022·连云港模拟)若数列{a n }满足:a 1=1,a 2=5,对于任意的n ∈N *,都有a n +2= 6a n +1-9a n .(1)证明:数列{a n +1-3a n }是等比数列;(2)求数列{a n }的通项公式.(1)证明 由a n +2=6a n +1-9a n ,得a n +2-3a n +1=3a n +1-9a n =3(a n +1-3a n ),且a 2-3a 1=5-3=2,所以数列{a n +1-3a n }为等比数列,首项为2,公比为3.(2)解 由(1)得a n +1-3a n =2×3n -1, 等式左右两边同时除以3n +1,可得 a n +13n +1-3a n 3n +1=29,即a n +13n +1-a n 3n =29,且a 131=13, 所以数列⎩⎨⎧⎭⎬⎫a n 3n 为等差数列,首项为13,公差为29, 所以a n 3n =13+(n -1)×29=2n +19,所以a n =2n +19×3n =(2n +1)×3n -2. 易错提醒 (1)a 2n =a n -1a n +1(n ≥2,n ∈N *)是{a n }为等比数列的必要不充分条件,也就是判断一个数列是等比数列时,要注意各项不为0.(2){a n }为等比数列,可推出a 1,a 2,a 3成等比数列,但a 1,a 2,a 3成等比数列并不能说明{a n }为等比数列.(3)证明{a n }不是等比数列可用特值法.跟踪演练3 (2022·湖北七市(州)联考)已知数列{a n }的前n 项和为S n ,且满足a n =3S n -2(n ∈N *).(1)求数列{a n }的通项公式;(2)求证:对任意的m ∈N *,S m ,S m +2,S m +1成等差数列.(1)解 当n =1时,a 1=3S 1-2=3a 1-2,所以a 1=1;当n ≥2时,因为a n =3S n -2,所以a n -1=3S n -1-2,所以a n -a n -1=3a n ,即a n =-12a n -1, 所以数列{a n }是等比数列,其通项公式为a n =⎝⎛⎭⎫-12n -1. (2)证明 对任意的m ∈N *,2S m +2=2×1-⎝⎛⎭⎫-12m +21+12=43⎣⎡⎦⎤1-⎝⎛⎭⎫-12m +2, S m +S m +1=1-⎝⎛⎭⎫-12m 1+12+1-⎝⎛⎭⎫-12m +11+12=23⎣⎡⎦⎤2-⎝⎛⎭⎫-12m -⎝⎛⎭⎫-12m +1 =43⎣⎡⎦⎤1-⎝⎛⎭⎫-12m +2,所以2S m +2=S m +S m +1,即S m ,S m +2,S m +1成等差数列.专题强化练一、单项选择题1.(2022·荆州联考)已知数列{a n }是首项为a 1,公差为d 的等差数列,前n 项和为S n ,满足2a 4=a 3+5,则S 9等于( )A .35B .40C .45D .50答案 C解析 由题意2a 4=a 3+5,得2(a 1+3d )=a 1+2d +5,即a 1+4d =5,即a 5=5,所以S 9=9(a 1+a 9)2=9a 5=9×5=45. 2.(2022·济宁模拟)在等比数列{a n }中,a 1+a 3=1,a 6+a 8=-32,则a 10+a 12a 5+a 7等于( ) A .-8 B .16 C .32 D .-32答案 D解析 设等比数列{a n }的公比为q ,则a 6+a 8=(a 1+a 3)q 5=1×q 5=-32,所以q 5=-32,故a 10+a 12a 5+a 7=(a 5+a 7)q 5a 5+a 7=q 5=-32. 3.(2022·漳州质检)我国的《洛书》中记载着世界上最古老的一个幻方:将1,2,…,9填入3×3的方格内,使三行、三列、对角线的三个数之和都等于15,如图所示.一般地,将连续的正整数1,2,3,…,n 2填入n ×n 个方格中,使得每行、每列、每条对角线上的数的和相等,这个正方形叫做n 阶幻方.记n 阶幻方中数的和即方格内的所有数的和为S n ,如图三阶幻方中数的和S 3=45,那么S 9等于( )A .3 321B .361C .99D .33答案 A解析 由题意知,S 9=1+2+3+…+92=92×(1+92)2=3 321. 4.(2021·全国甲卷)等比数列{a n }的公比为q ,前n 项和为S n .设甲:q >0,乙:{S n }是递增数列,则( )A .甲是乙的充分条件但不是必要条件B .甲是乙的必要条件但不是充分条件C .甲是乙的充要条件D .甲既不是乙的充分条件也不是乙的必要条件答案 B解析 当a 1<0,q >1时,a n =a 1q n -1<0,此时数列{S n }单调递减,所以甲不是乙的充分条件.当数列{S n }单调递增时,有S n +1-S n =a n +1=a 1q n >0,若a 1>0,则q n >0(n ∈N *),即q >0;若a 1<0,则q n <0(n ∈N *),不存在.所以甲是乙的必要条件.5.已知S n 是数列{a n }的前n 项和,a 1=1,a 2=2,a 3=3,记b n =a n +a n +1+a n +2且b n +1-b n =2,则S 31等于( )A .171B .278C .351D .395答案 C解析 由b n +1-b n =2,得b n +1-b n =a n +1+a n +2+a n +3-(a n +a n +1+a n +2)=a n +3-a n =2,所以a 1,a 4,a 7,…是首项为1,公差为2的等差数列,a 2,a 5,a 8,…是首项为2,公差为2的等差数列,a 3,a 6,a 9,…是首项为3,公差为2的等差数列,所以S 31=(a 1+a 4+…+a 31)+(a 2+a 5+…+a 29)+(a 3+a 6+…+a 30)=1×11+11×10×22+2×10+10×9×22+3×10+10×9×22=351. 6.(2022·佛山模拟)公比为q 的等比数列{a n }满足:a 9=ln a 10>0,记T n =a 1a 2a 3…a n ,则当q 最小时,使T n ≥1成立的n 的最小值是( )A .17B .18C .20 D.21答案 A解析 已知{a n }是等比数列,∵a 9=ln a 10>0,∴a 9>0,a 10>1,又∵a 9=ln a 10=ln(a 9·q )=ln a 9+ln q ,∴ln q =a 9-ln a 9,设函数f (x )=x -ln x ,f ′(x )=x -1x ,当x >1时,f ′(x )>0,当0<x <1时,f ′(x )<0,∴在x =1时,f (x )取极小值1,∴ln q ≥1,q ≥e ,由题意得q =e ,a 9=1,a 1=e -8,∴a n =e -8·e n -1=e n -9,由T n =a 1a 2a 3…a n =e -8·e -7·e -6·…·e n -9()172=e n n -≥1,解得n ≥17,∴n 的最小值是17.二、多项选择题7.(2022·福州质检)已知等差数列{a n }的前n 项和为S n ,公差d ≠0.若S n ≤S 6,则() A .a 1<0 B .d <0 C .a 6=0 D .S 13≤0答案 BD解析 因为S n ≤S 6,所以S 5≤S 6且S 7≤S 6,即a 6=S 6-S 5≥0,a 7=S 7-S 6≤0,因为d ≠0,即a 6,a 7不同时为零,所以d =a 7-a 6<0,故B 正确,C 错误;因为a 6≥0,即a 1+5d ≥0,所以a 1>0,故A 错误;S 13=13(a 1+a 13)2=13a 7≤0,故D 正确. 8.(2022·保定模拟)已知数列{a n }的前n 项和为S n ,且满足a 1=1,a 2=2,a n +1=4a n -3a n -1,则下面说法正确的是( )A .数列{a n +1-a n }为等比数列B .数列{a n +1-3a n }为等差数列C .a n =3n -1+1 D .S n =3n -14+n 2答案 ABD解析 根据题意得a n +1=4a n -3a n -1,即a n +1+ka n =(k +4)a n -3a n -1=(k +4)·⎝⎛⎭⎫a n -3k +4a n -1, 令k =-3k +4,整理得k 2+4k +3=0, 解得k =-1或k =-3,所以可得a n +1-a n =3(a n -a n -1)或a n +1-3a n =a n -3a n -1,所以数列{a n +1-a n }为公比为3的等比数列,故A 正确;数列{a n +1-3a n }为常数列,即为公差为0的等差数列,故B 正确;所以a n +1-a n =1×3n -1,且a n +1-3a n =-1, 解得a n =3n -1+12,故C 错误;S n=a1+a2+…+a n=30+12+31+12+…+3n-1+12=12×(30+31+…+3n-1)+n2=12×1-3n1-3+n2=3n-14+n2,故D正确.三、填空题9.(2022·中山模拟)在数列{a n}中,a1=2,a n+1=a n+2,则数列{a n}的通项公式为________.答案a n=2n2解析由a n+1=a n+2得,a n+1-a n=2,而a1=2,于是得数列{a n}是以2为首项,2为公差的等差数列,则有a n=a1+(n-1)d=2+2(n-1)=2n,所以数列{a n}的通项公式为a n=2n2.10.(2022·邯郸模拟)“中国剩余定理”又称“孙子定理”,可见于中国南北朝时期的数学著作《孙子算经》卷下第十六题的“物不知数”问题,原文如下:今有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二.问物几何?现有一个相关的问题:将1到2 022这2 022个自然数中被3除余2且被5除余4的数按照从小到大的顺序排成一列,构成一个数列,则该数列的项数为________.答案134解析因为由1到2 022这2 022个自然数中被3除余2且被5除余4的数按照从小到大的顺序所构成的数列是一个首项为14,公差为15的等差数列{a n},所以该数列的通项公式为a n=14+15(n-1)=15n-1.令a n=15n-1≤2 022,解得n≤134,即该数列的项数为134.11.(2022·南昌模拟)已知等比数列{a n}满足:a1+a2+a3+a4+a5=6,a3=3,则1a1+1a2+1a3+1a4+1a5=________.答案23解析 因为{a n }是等比数列,所以a 1a 5=a 2a 4=a 23=9,所以1a 1=a 59,1a 5=a 19,1a 2=a 49,1a 4=a 29, 所以1a 1+1a 2+1a 3+1a 4+1a 5=19(a 5+a 4+a 3+a 2+a 1)=69=23. 12.(2022·梅州模拟)分形几何学的创立为解决传统科学众多领域的难题提供了全新的思路.图1是长度为1的线段,将图1中的线段三等分,以中间部分的线段为边,向外作等边三角形,再将中间部分的线段去掉得到图2,称为“一次分形”;用同样的方法把图2中的每条线段重复上述操作,得到图3,称为“二次分形”…,依次进行“n 次分形”(n ∈N *).规定:一个分形图中所有线段的长度之和为该分形图的长度,要得到一个长度不小于30的分形图,则n 的最小整数值是________.(取lg 3≈0.477 1,lg 2≈0.301 0)答案 12解析 由题意得,“n 次分形”后线段之和是“(n -1)次分形”后所得线段之和的43,且一次分形后线段之和为13×4=43,故每次分形后所得线段之和可看做首项为43,公比是43的等比数列,故“n 次分形”后线段之和为43×⎝⎛⎭⎫43n -1=⎝⎛⎭⎫43n ,故⎝⎛⎭⎫43n ≥30,两边取对数得(2lg 2-lg 3)n ≥1+lg 3,又n ∈N *,解得n ≥12,故n 的最小整数值为12.四、解答题13.(2022·新高考全国Ⅱ)已知{a n }是等差数列,{b n }是公比为2的等比数列,且a 2-b 2=a 3-b 3=b 4-a 4.(1)证明:a 1=b 1;(2)求集合{k |b k =a m +a 1,1≤m ≤500}中元素的个数.(1)证明 设等差数列{a n }的公差为d ,由a 2-b 2=a 3-b 3得a 1+d -2b 1=a 1+2d -4b 1,即d =2b 1,由a 2-b 2=b 4-a 4得a 1+d -2b 1=8b 1-(a 1+3d ),即a 1=5b 1-2d ,将d =2b 1代入,得a 1=5b 1-2×2b 1=b 1,即a 1=b 1.(2)解 由(1)知a n =a 1+(n -1)d =a 1+(n -1)×2b 1=(2n -1)a 1,b n =b 1·2n -1, 由b k =a m +a 1,得b 1·2k -1=(2m -1)a 1+a 1, 由a 1=b 1≠0得2k -1=2m , 由题知1≤m ≤500,所以2≤2m ≤1 000,所以k =2,3,4,…,10,共9个数,即集合{k |b k =a m +a 1,1≤m ≤500}={2,3,4,…,10}中元素的个数为9.14.(2022·太原模拟)已知数列{a n }中,S n =a 1+a 2+…+a n ,T n =S 1·S 2·…·S n ,且S n +T n =1.(1)求证:数列⎩⎨⎧⎭⎬⎫1S n -1是等差数列; (2)求证:对于任意的正整数n ,T n 是a n 与S n 的等比中项.证明 (1)当n =1时,S 1=T 1,S 1+T 1=1,则S 1=T 1=12, 由S n +T n =1可得S n -1=-T n ,则S n +1-1=-T n +1,则S n +1-1S n -1=-T n +1-T n=S n +1, 即1S n -1=S n +1S n +1-1=1+1S n +1-1, 即1S n +1-1-1S n -1=-1, 故数列⎩⎨⎧⎭⎬⎫1S n -1是首项为1S 1-1=-2,公差为-1的等差数列.(2)由(1)知,1S n -1=-2+(n -1)×(-1) =-n -1,则S n =n n +1, 当n =1时,a 1=S 1=T 1=12, 则a 1·S 1=T 21;当n ≥2时,a n =S n -S n -1=n n +1-n -1n =1n (n +1), T n =S 1·S 2·…·S n =12×23×…×n n +1=1n +1, 则a n ·S n =1n (n +1)·n n +1=1(n +1)2=T 2n . 综上可得,对于任意的正整数n ,T n 是a n 与S n 的等比中项.。
高考数学《等差数列、等比数列》复习
(1)等差数列通项公式:an=a1+(n-1)d.
(2)等差数列前 n 项和公式:Sn=n
a1+an 2
=na1+n
n- 2
d.
(3)等差中项公式:2an=an-1+an+1(n∈N*,n≥2).
2.等比数列
(1)等比数列通项公式:an=a1qn-1.
na1 q=
(2)等比数列前n项和公式:Sn= a1 -qn 1-q
高考数学《等差数列、等比数列》复习
高考考点
1. 等差(比)数列的基本运算 2. 等差(比)数列的判断与证明 3. 等差(比)数列的性质
考点解读
1. 在等差(比)数列中, a1,an, Sn,n,d(q) 这五个量中已知其中的三个量, 求另外两个量 2. 考查等差(比)数列的通项公式,前n项和公式, 考查方程的思想以及运算能力
(2)等差数列中连续 k 项的和成等差数列,即 Sk,S2k-Sk,S3k-S2k,…成等差数列, 公差为 k2d.
5.若 A2n-1,B2n-1 分别为等差数列{an},{bn}的前 2n-1 项的和, 则an=A2n-1.
bn B2n-1
解题技巧
判断或证明数列是否为等差或等比数列, 一般是依据等差数列、等比数列的定义, 或利用等差中项、等比中项进行判断.
A.15
B.30
C.45
√D.60
S100 a1 a2 a100 90 ,设 S a1 a3 a99 ,则 2S a2 a4 a100 ,S 2S S100 90,S 30 , 故 a2 a4 a100 2S 60 .故选 D.
1.不能忽视等比数列的条件:判断一个数列是等比数列时, 注意各项都不为零的条件. 2.不能漏掉等比中项:正数a,b的等比中项是±,不能漏掉-. 3.对等比数列的公比的讨论: 应用等比数列前n项和公式时应首先讨论公式q是否等于1
等差数列与等比数列+课件-2024届高三数学二轮复习专题
5
为 ak+1+ak+2+…+ak+10=2 -2 ,所以
5
10
k+1
5
+ (- )
-
15
5
k+1
10
=2 -2 ,即 2 (2 -
1)=2 (2 -1),所以 2 =2 ,所以 k+1=5,所以 k=4.故选 C.
4.[等差数列基本量](2023·全国甲卷)记Sn为等差数列
列{an}中,a1=2,am+n=aman.若ak+1+ak+2+…+ak+10=215-25,则
k等于(
A.2
)
B.3
C.4
√
D.5
解析:因为 a1=2,am+n=aman,令 m=1,则 an+1=a1an=2an,所以{an}是
n-1
n
以 a1=2 为首项,2 为公比的等比数列,所以 an=2×2 =2 .又因
可得
即
- = ,
(- ) = ,
= ,
5
解得
所以 a6=a1q =3.故选 D.
= ,
法二
设等比数列{an}的首项为 a1,公比为 q,由题意可得
+ + = ,
- = ,
(- )
即
-
= ,
(- ) = ,
所以{an}是以 a1 为首项,2a1 为公差的等差数列.
考法聚焦 讲练突破
热点一
等差、等比数列的基本运算
典例 1
(2023·新课标Ⅰ卷)设等差数列{an}的公差为 d,且
高考数学二轮复习 专题3 数列 第一讲 等差数列与等比数列 理
高考数学二轮复习 专题3 数列 第一讲 等差数列与等比数列 理第一讲 等差数列与等比数列1.等差数列的定义.数列{a n }满足a n +1-a n =d (其中n∈N *,d 为与n 值无关的常数)⇔{a n }是等差数列. 2.等差数列的通项公式.若等差数列的首项为a 1,公差为d ,则a n =a 1+(n -1)d =a m +(n -m )d (n ,m ∈N *). 3.等差中项.若x ,A ,y 成等差数列,则A =x +y2,其中A 为x ,y 的等差中项.4.等差数列的前n 项和公式.若等差数列首项为a 1,公差为d ,则其前n 项和S n =n (a 1+a n )2=na 1+n (n -1)d2.1.等比数列的定义. 数列{a n }满足a n +1a n=q (其中a n ≠0,q 是与n 值无关且不为零的常数,n ∈N *)⇔{a n }为等比数列.2.等比数列的通项公式.若等比数列的首项为a 1,公比为q ,则a n =a 1·q n -1=a m ·qn -m(n ,m ∈N *).3.等比中项.若x ,G ,y 成等比数列,则G 2=xy ,其中G 为x ,y 的等比中项,G 值有两个. 4.等比数列的前n 项和公式.设等比数列的首项为a 1,公比为q ,则S n =⎩⎪⎨⎪⎧na 1,q =1,a 1(1-q n )1-q=a 1-a n q 1-q ,q ≠1.判断下面结论是否正确(请在括号中打“√”或“×”).(1)若一个数列从第二项起每一项与它的前一项的差都是常数,则这个数列是等差数列.(×)(2)数列{a n }为等差数列的充要条件是对任意n ∈N *,都有2a n +1=a n +a n +2.(√) (3)数列{a n }为等差数列的充要条件是其通项公式为n 的一次函数.(×) (4)满足a n +1=qa n (n ∈N *,q 为常数)的数列{a n }为等比数列.(×) (5)G 为a ,b 的等比中项⇔G 2=ab .(×) (6)1+b +b 2+b 3+b 4+b 5=1-b51-b.(×)1.在等差数列{a n }中,a 2=1,a 4=5,则数列{a n }的前5项和S 5=(B ) A .7 B .15 C .20 D .25解析:2d =a 4-a 2=5-1=4⇒d =2,a 1=a 2-d =1-2=-1,a 5=a 2+3d =1+6=7,故S 5=(a 1+a 5)×52=6×52=15.2. (2015·北京卷)设{a n }是等差数列,下列结论中正确的是(C ) A .若a 1+a 2>0,则a 2+a 3>0 B .若a 1+a 3<0,则a 1+a 2<0 C .若0<a 1<a 2,则a 2>a 1a 3 D .若a 1<0,则(a 2-a 1)(a 2-a 3)>0解析:设等差数列{a n}的公差为d,若a1+a2>0,a2+a3=a1+d+a2+d=(a1+a2)+2d,由于d正负不确定,因而a2+a3符号不确定,故选项A错;若a1+a3<0,a1+a2=a1+a3-d=(a1+a3)-d,由于d正负不确定,因而a1+a2符号不确定,故选项B错;若0<a1<a2,可知a1>0,d>0,a2>0,a3>0,∴a22-a1a3=(a1+d)2-a1(a1+2d)=d2>0,∴a2>a1a3,故选项C正确;若a1<0,则(a2-a1)(a2-a3)=d·(-d)=-d2≤0,故选项D错.3.(2015·新课标Ⅱ卷)已知等比数列{a n}满足a1=3,a1+a3+a5=21,则a3+a5+a7=(B)A.21 B.42C.63 D.84解析:∵ a1=3,a1+a3+a5=21,∴ 3+3q2+3q4=21.∴ 1+q2+q4=7.解得q2=2或q2=-3(舍去).∴a3+a5+a7=q2(a1+a3+a5)=2×21=42.故选B.4.等差数列{a n}的公差不为零,首项a1=1,a2是a1和a5的等比中项,则数列的前10项之和是(B)A.90 B.100C.145 D.190解析:设公差为d,则(1+d)2=1·(1+4d).∵d≠0,解得d=2,∴S10=100.一、选择题1.已知等差数列{a n}中,前n项和为S n,若a3+a9=6,则S11=(B)A.12 B.33 C.66 D.99解析:∵{a n}为等差数列且a3+a9=6,∴a 6+a 6=a 3+a 9=6. ∴a 6=3. ∴S 11=a 1+a 112×11=a 6+a 62×11=11a 6=11×3=33.2.在等比数列{a n }中,若a 1+a 2=20,a 3+a 4=40,则数列{a n }的前6项和S 6=(B ) A .120 B .140 C .160 D .180 解析:∵{a n }为等比数列,∴a 1+a 2,a 3+a 4,a 5+a 6为等比数列. ∴(a 3+a 4)2=(a 1+a 2)(a 5+a 6). 即a 5+a 6=(a 3+a 4)2a 1+a 2=40220=80.∴S 6=a 1+a 2+a 3+a 4+a 5+a 6=20+40+80=140.3.已知数列{a n }的前n 项和S n =n 2-2n -1,则a 3+a 17=(C ) A .15 B .17 C .34 D .398 解析:∵S n =n 2-2n -1, ∴a 1=S 1=12-2-1=-2. 当n ≥2时,a n =S n -S n -1=n 2-2n -1-[(n -1)2-2(n -1)-1] =n 2-(n -1)2+2(n -1)-2n -1+1 =n 2-n 2+2n -1+2n -2-2n =2n -3.∴a n =⎩⎪⎨⎪⎧-2,n =1,2n -3,n ≥2.∴a 3+a 17=(2×3-3)+(2×17-3)=3+31=34. 4.(2014·陕西卷)原命题为“若a n +a n +12<a n ,n ∈N *,则{a n }为递减数列”,关于逆命题,否命题,逆否命题真假性的判断依次如下,正确的是(A )A .真,真,真B .假,假,真C .真,真,假D .假,假,假 解析:由a n +a n +12<a n ⇒a n +1<a n ⇒{a n }为递减数列,所以原命题为真命题;逆命题:若{a n }为递减数列,则a n +a n +12<a n ,n ∈N +;若{a n }为递减数列,则a n +1<a n ,即a n +a n +12<a n ,所以逆命题为真;否命题:若a n +a n +12≥a n ,n ∈N +,则{a n }不为递减数列;由a n +a n +12≥a n ⇒a n ≤a n +1⇒{a n }不为递减数列,所以否命题为真;因为逆否命题的真假为原命题的真假相同,所以逆否命题也为真命题. 故选A.5.某棵果树前n 年的总产量S n 与n 之间的关系如图所示,从目前记录的结果看,前m 年的年平均产量最高,m 的值为(C )A .5B .7C .9D .11解析:由图可知6,7,8,9这几年增长最快,超过平均值,所以应该加入m =9,因此选C.二、填空题6.(2015·安徽卷)已知数列{a n }中,a 1=1,a n =a n -1+12(n ≥2),则数列{a n }的前9项和等于27.解析:由a 1=1,a n =a n -1+12(n ≥2),可知数列{a n }是首项为1,公差为12的等差数列,故S 9=9a 1+9×(9-1)2×12=9+18=27.7.设公比为q (q >0)的等比数列{a n }的前n 项和为S n .若S 2=3a 2+2,S 4=3a 4+2,则q =32. 解析:将S 2=3a 2+2,S 4=3a 4+2两个式子全部转化成用a 1,q 表示的式子,即⎩⎪⎨⎪⎧a 1+a 1q =3a 1q +2,a 1+a 1q +a 1q 2+a 1q 3=3a 1q 3+2,两式作差得:a 1q 2+a 1q 3=3a 1q (q 2-1),即:2q 2-q -3=0,解得q =32或q =-1(舍去).8.(2014·广东卷)等比数列{a n }的各项均为正数,且a 1a 5=4,则log 2a 1+log 2a 2+log 2a 3+log 2a 4+log 2a 5=5.解析:由题意知a 1a 5=a 23=4,且数列{a n }的各项均为正数,所以a 3=2, ∴a 1a 2a 3a 4a 5=(a 1a 5)·(a 2a 4)·a 3=(a 23)2·a 3=a 53=25,∴log 2a 1+log 2a 2+log 2a 3+log 2a 4+log 2a 5=log 2(a 1a 2a 3a 4a 5)=log 225=5. 三、解答题9.已知数列{a n }满足,a 1=1,a 2=2,a n +2 =a n +a n +12,n ∈N *.(1)令b n =a n +1-a n ,证明:{b n }是等比数列; (2)求{a n }的通项公式. 解析:(1)b 1=a 2-a 1=1, 当n ≥2时,b n =a n +1-a n =a n -1+a n2-a n =-12(a n -a n -1)=-12b n -1,所以{b n }是以1为首项,-12为公比的等比数列.(2)由(1)知b n =a n +1-a n =⎝ ⎛⎭⎪⎫-12n -1,当n ≥2时,a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1)=1+1+⎝ ⎛⎭⎪⎫-12+…+⎝ ⎛⎭⎪⎫-12n -2=1+1-⎝ ⎛⎭⎪⎫-12n -11-⎝ ⎛⎭⎪⎫-12=1+23⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫-12n -1=53-23⎝ ⎛⎭⎪⎫-12n -1, 当n =1时,53-23⎝ ⎛⎭⎪⎫-121-1=1=a 1.所以a n =53-23⎝ ⎛⎭⎪⎫-12n -1(n ∈N *).10.(2015·安徽卷)已知数列{a n }是递增的等比数列,且a 1+a 4=9,a 2a 3=8. (1)求数列{a n }的通项公式; (2)设S n 为数列{a n }的前n 项和,b n =a n +1S n S n +1,求数列{b n }的前n 项和T n . 解析:(1)由题设知a 1·a 4=a 2·a 3=8,又a 1+a 4=9,可解得⎩⎪⎨⎪⎧a 1=1,a 4=8或⎩⎪⎨⎪⎧a 1=8,a 4=1(舍去). 由a 4=a 1q 3得公比q =2,故a n =a 1qn -1=2n -1.(2)S n =a 1(1-q n )1-q=2n-1.又b n =a n +1S n S n +1=S n +1-S n S n S n +1=1S n -1S n +1, 所以T n =b 1+b 2+…+b n =⎝ ⎛⎭⎪⎫1S 1-1S 2+⎝ ⎛⎭⎪⎫1S 2-1S 3+…+⎝ ⎛⎭⎪⎫1S n -1S n +1=1S 1-1S n +1=1-12n +1-1.。
2025年高考数学二轮复习-3.1-等差数列、等比数列-专项训练【含答案】
2025年高考数学二轮复习-3.1-等差数列、等比数列-专项训练一、基本技能练1.已知等比数列{a n}满足a1=2,a3a5=4a26,则a3的值为()A.1B.2C.1或-1D.122.设数列{a n}是等差数列,S n是数列{a n}的前n项和,a3+a5=10,S5=15,则S6=()A.18B.24C.30D.363.北京天坛的圜丘坛为古代祭天的场所,分上、中、下三层.上层中心有一块圆形石板(称为天心石),环绕天心石砌9块扇面形石板构成第一环,向外每环依次增加9块.下一层的第一环比上一层的最后一环多9块.向外每环依次也增加9块.已知每层环数相同,且下层比中层多729块,则三层共有扇面形石板(不含天心石)()A.3699块B.3474块C.3402块D.3339块4.若等差数列{a n}的前n项和为S n,则“S2022>0,S2023<0”是“a1011a1012<0”的()A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件5.(多选)已知等比数列{a n}的公比为q,且a5=1,则下列选项正确的是()A.a3+a7≥2B.a4+a6≥2C.a7-2a6+1≥0D.a3-2a4-1≥06.(多选)已知数列{a n}的前n项和为S n,下列说法正确的是()A.若S n=n2+1,则{a n}是等差数列B.若S n=3n-1,则{a n}是等比数列C.若{a n}是等差数列,则S9=9a5D.若{a n}是等比数列,且a1>0,q>0,则S1·S3>S227.写出一个公差为2,且前3项和小于第3项的等差数列a n=________.8.已知数列{a n}的前n项和是S n,且S n=2a n-1,若a n∈(0,2022),则称项a n为“和谐项”,则数列{a n}的所有“和谐项”的和为________.9.已知数列{a n}满足a1=1,(a n+a n+1-1)2=4a n a n-1,且a n+1>a n(n∈N*),则数列{a n}的通项公式a n=________.10.已知数列{a n}是各项均为正数的等比数列,S n为数列{a n}的前n项和,若S2+a2=S3-3,则a4+3a2的最小值为________.11.设等比数列{a n}满足a1+a2=4,a3-a1=8.(1)求{a n}的通项公式;(2)记S n为数列{log3a n}的前n项和.若S m+S m+1=S m+3(m∈N*),求m.12.已知{a n}是等差数列,{b n}是公比为2的等比数列,且a2-b2=a3-b3=b4-a4.(1)证明:a1=b1;(2)求集合{k|b k=a m+a1,1≤m≤500}中元素的个数.二、创新拓展练13.(多选)在等比数列{a n}中,公比为q,其前n项积为T n,并且满足a1>1,a99·a100-1>0,a99-1a100-1<0,下列结论中正确的是()A.0<q<1B.a99·a101-1<0C.T100的值是T n中最大的D.使T n>1成立的最大自然数n值等于19814.(多选)已知数列{a n}满足a1=10,a5=2,且a n+2-2a n+1+a n=0(n∈N*),则下列结论正确的是()A.a n=12-2nB.|a1|+|a2|+|a3|+…+|a n|,n≤5,2+5,n>5C.|a n|的最小值为0D.当且仅当n=5时,a1+a2+a3+…+a n取得最大值3015.(多选)已知S n是数列{a n}的前n项和,且a1=a2=1,a n=a n-1+2a n-2(n≥3),则下列结论正确的是()A.数列{a n+1+a n}为等比数列B.数列{a n+1-2a n}为等比数列C.a n=2n+1+(-1)n3(410-1)D.S20=2316.已知数列{a n}的前n项和为S n,a1=1·(2-S n)=1.2,S n+1(1)(2)2023的数.参考答案与解析一、基本技能练1.答案A解析由题意得a3a5=a24=4a26,又在等比数列中偶数项同号,∴a4=2a6,∴q2=12,∴a3=a1q2=1,故选A.2.答案B解析由等差数列的性质知a4=a3+a52=5,而S5=a1+a52×5=5a3=15,则a3=3,等差数列{a n}的公差d=a4-a3=2,所以a1=a3-2d=-1,则S6=6a1+6×(6-1)2·d=-6+30=24.3.答案C解析设每一层有n环,由题意可知,从内到外每环之间构成公差为d=9,首项为a1=9的等差数列.由等差数列的性质知S n,S2n-S n,S3n-S2n成等差数列,且(S3n-S2n)-(S2n-S n)=n2d,则9n2=729,解得n=9,则三层共有扇面形石板S3n=S27=27×9+27×262×9=3402(块).4.答案B解析因为S2022>0,S2023<0,所以(a1+a2022)×20222>0,(a1+a2023)×20232<0,即a1+a2022=a1011+a1012>0,a1+a2023=2a1012<0,所以a 1011>0,a 1012<0,且a 1011>|a 1012|,所以a 1011a 1012<0,充分性成立;而当a 1011a 1012<0时,a 1011>0,a 1012<0或a 1011<0,a 1012>0,则S 2022>0,S 2023<0不一定成立.故“S 2022>0,S 2023<0”可以推出“a 1011a 1012<0”,但“a 1011a 1012<0”不能推出“S 2022>0,S 2023<0”,所以“S 2022>0,S 2023<0”是“a 1011a 1012<0”的充分不必要条件.故选B.5.答案AC解析因为等比数列{a n }的公比为q ,且a 5=1,所以a 3=1q 2,a 4=1q ,a 6=q ,a 7=q 2,因为a 3+a 7=1q2+q 2≥2,当且仅当q 2=1时等号成立,故A 正确;因为a 4+a 6=1q+q ,当q <0时式子为负数,故B 错误;因为a 7-2a 6+1=q 2-2q +1=(q -1)2≥0,故C 正确;因为a 3-2a 4-1=1q 2-2q-1-2,则a 3-2a 4-1≥0不成立,故D 错误.6.答案BC解析若S n =n 2+1,当n ≥2时,a n =2n -1,a 1=2不满足a n =2n -1,故A 错误;若S n =3n -1,当n ≥2时,a n =S n -S n -1=2·3n -1,由于a 1=S 1=31-1=2,满足a n =2·3n -1,所以{a n }是等比数列,故B 正确;若{a n }是等差数列,则S 9=9(a 1+a 9)2=9a 5,故C 正确;当q =1时,S 1·S 3-S 22=a 21(1+q +q 2)-a 21(1+q )2=-a 21q <0,故D 错误,综上,选BC.7.答案2n-4(n∈N*)(答案不唯一)解析1+a2+a3<a3,=2,解得a1<-1,不妨令a1=-2,∴a n=2n-4.8.答案2047解析当n≥2时,a n=S n-S n-1=2a n-1-(2a n-1-1)=2a n-2a n-1,∴a n=2a n-1,又由a1=S1=2a1-1,得a1=1,∴{a n}是公比为2,首项为1的等比数列,∴a n=2n-1,由a n=2n-1<2022,得n-1≤10,即n≤11,∴所求和为S11=1-2111-2=2047.9.答案n2解析因为a1=1,a n+1>a n≥a1>0,所以a n+1>a n.由(a n+a n+1-1)2=4a n a n+1得a n+1+a n-1=2a n a n+1,所以(a n+1-a n)2=1,所以a n+1-a n=1,所以数列{a n}是首项为1,公差为1的等差数列,所以a n=n,即a n=n2.10.答案18解析由S2+a2=S3-3得a2=S3-S2-3=a3-3,所以a1q=a1q2-3⇒a1=3q2-q>0⇒q>1,所以a4+3a2=a1q3+3a1q=3(q3+3q)q2-q=3(q2+3)q-1=3×(q-1)2+2(q-1)+4q-1=3(q-1)+4q-1+6≥3×2(q-1)·4q-1+6=18,当且仅当q-1=4q-1,即q=3时等号成立,故a4+3a2的最小值为18.11.解(1)设{a n}的公比为q,则a n=a1q n-1.1+a1q=4,1q2-a1=8,1=1,=3.所以{a n}的通项公式为a n=3n-1(n∈N*).(2)由(1)知log3a n=n-1,故S n=n(n-1)2(n∈N*).由S m+S m+1=S m+3,得m(m-1)+(m+1)m=(m+3)(m+2),即m2-5m-6=0.解得m=-1(舍去)或m=6.12.(1)证明设等差数列{a n}的公差为d,由a2-b2=a3-b3得a1+d-2b1=a1+2d-4b1,即d=2b1,由a2-b2=b4-a4得a1+d-2b1=8b1-(a1+3d),即a1=5b1-2d,将d=2b1代入,得a1=5b1-2×2b1=b1,即a1=b1.(2)解由(1)知a n=a1+(n-1)d=a1+(n-1)×2b1=(2n-1)a1,b n=b1·2n-1,由b k=a m+a1,得b1·2k-1=(2m-1)a1+a1,由a1=b1≠0得2k-1=2m,由题知1≤m≤500,所以2≤2m≤1000,所以k=2,3,4,…,10,共9个数,即集合{k|b k=a m+a1,1≤m≤500}={2,3,4,…,10}中元素的个数为9.二、创新拓展练13.答案ABD解析对于A,∵a99·a100-1>0,∴a21·q197>1,∴(a1·q98)2·q>1.∵a1>1,∴q>0.又∵a99-1a100-1<0,∴a99>1,且a100<1,∴0<q<1,故A正确;对于B,∵a2100=a99·a101,a100<1,∴0<a99·a101<1,即a99·a101-1<0,故B正确;对于C,由于T100=T99·a100,而0<a100<1,故有T100<T99,故C错误;对于D,T198=a1·a2·…·a198=(a1·a198)(a2·a197)·…·(a99·a100)=(a99·a100)99>1,T199=a1·a2·…·a199=(a1·a199)·(a2·a198)…(a99·a101)·a100=(a100)100<1,故D正确.故选ABD.14.答案AC解析由a n+2-2a n+1+a n=0,可得a n+2-a n+1=a n+1-a n,所以数列{a n}是等差数列,设公差为d,因为a1=10,a5=2,所以d=a5-a15-1=-2,所以a n=10-2(n-1)=12-2n,故A正确;当n=6时,a n=0,所以当n≤5时,a n>0,当n>5时,a n≤0,所以当n≤5时,|a1|+|a2|+|a3|+…+|a n|=a1+a2+a3+…+a n=n(10+12-2n)2=11n-n2.当n>5时,|a1|+|a2|+|a3|+…+|a n|=a1+a2+…+a5-a6-…-a n=-(a1+a2+a3+…+a n)+2(a1+a2+…+a5)=-S n+2S5=-(11n-n2)+60=n2-11n+60,所以|a1|+|a2|+|a3|+…+|a n|n-n2,n≤5,2-11n+60,n>5,故B错误;|a n|=|12-2n|,当n=6时,|a n|取得最小值为0,故C正确;当n=5或n=6时,a1+a2+a3+…+a n取最大值30,故D错误.15.答案ABD解析因为a n=a n-1+2a n-2(n≥3),所以a n+a n-1=2a n-1+2a n-2=2(a n-1+a n-2),又a1+a2=2≠0,所以{a n+a n+1}是等比数列,A正确;同理a n-2a n-1=a n-1+2a n-2-2a n-1=-a n-1+2a n-2=-(a n-1-2a n-2),而a2-2a1=-1,所以{a n+1-2a n}是等比数列,B正确;若a n=2n+1+(-1)n3,则a2=23+(-1)23=3,但a2=1≠3,C错误;由A知{a n+a n+1}是等比数列,且公比为2,因此数列a1+a2,a3+a4,a5+a6,…仍然是等比数列,公比为4,其前10项和为T10,则S20=T10=2(1-410)1-4=23(410-1),故D正确.16.(1)证明1S 1-1=1a 1-1=-2.由S n +1·(2-S n )=1,得S n +1=12-S n.因为1S n +1-1-1S n -1=112-S n -1-1S n-1=2-S n S n -1-1S n -1=-1,2为首项,-1为公差的等差数列.(2)解由(1)得1S n -1=-2+(n -1)×(-1)=-(n +1),即S n =n n +1,则a n =S n -S n -1=n n +1-n -1n =1n (n +1)(n ≥2),当n =1时,a 1=12满足上式,所以a n =1n (n +1)(n ∈N *),则1a n =n (n +1).由f (x )=x (x +1)-14在(0,+∞)上单调递增,当n =44时,1a 44=44×45=1980;当n =45时,1a 45=45×46=2070.2023的数是1980.。
高考数学大二轮复习专题二数列第一讲等差数列等比数列限时规范训练理
第一讲 等差数列、等比数列1.(2019·宽城区校级期末)在等差数列{a n }中,已知a 2+a 5+a 12+a 15=36,则S 16=( ) A .288 B .144 C .572D .72解析:a 2+a 5+a 12+a 15=2(a 2+a 15)=36, ∴a 1+a 16=a 2+a 15=18, ∴S 16=16(a 1+a 16)2=8×18=144,故选B. 答案:B2.(2019·高考全国卷Ⅲ)已知各项均为正数的等比数列{a n }的前4项和为15,且a 5=3a 3+4a 1,则a 3=( )A .16B .8C .4D .2 解析:由题意知⎩⎪⎨⎪⎧a 1>0,q >0,a 1+a 1q +a 1q 2+a 1q 3=15,a 1q 4=3a 1q 2+4a 1,解得⎩⎪⎨⎪⎧a 1=1,q =2,∴a 3=a 1q 2=4.故选C.答案:C3.(2019·咸阳二模)《周髀算经》中一个问题:从冬至之日起,小寒、大寒、立春、雨水、惊蛰、春分、清明、谷雨、立夏、小满、芒种这十二个节气的日影子长依次成等差数列,若冬至、立春、春分的日影子长的和是37.5尺,芒种的日影子长为4.5尺,则冬至的日影子长为( )A .15.5尺B .12.5尺C .10.5尺D .9.5尺解析:设此等差数列{a n }的公差为d ,则a 1+a 4+a 7=3a 1+9d =37.5,a 1+11d =4.5, 解得:d =-1,a 1=15.5. 故选A. 答案:A4.(2019·德州一模)在等比数列{a n }中,a 1=1,a 5+a 7a 2+a 4=8,则a 6的值为( ) A .4 B .8 C .16D .32解析:设等比数列{a n }的公比为q , ∵a 1=1,a 5+a 7a 2+a 4=8, ∴a 1(q 4+q 6)a 1(q +q 3)=8,解得q =2. 则a 6=25=32. 故选D. 答案:D5.(2019·信州区校级月考)已知等差数列{a n }的首项a 1=2,前n 项和为S n ,若S 8=S 10,则a 18=( )A .-4B .-2C .0D .2解析:∵等差数列{a n }的首项a 1=2,前n 项和为S n ,S 8=S 10, ∴8a 1+7×82d =10a 1+10×92d ,即16+28d =20+45d ,解得d =-417,∴a 18=a 1+17d =2+17×⎝ ⎛⎭⎪⎫-417=-2.故选B. 答案:B6.(2019·南充模拟)已知等比数列{a n }中的各项都是正数,且a 1,12a 3,2a 2成等差数列,则a 10+a 11a 8+a 9=( ) A .1+ 2 B .1- 2 C .3+2 2D .3-2 2解析:等比数列{a n }中的各项都是正数, 公比设为q ,q >0,a 1,12a 3,2a 2成等差数列,可得a 3=a 1+2a 2, 即a 1q 2=a 1+2a 1q , 即q 2-2q -1=0,解得q =1+2(负的舍去),则a 10+a 11a 8+a 9=q 2(a 8+a 9)a 8+a 9=q 2=3+2 2. 故选C. 答案:C7.(2019·林州市校级月考)在正数x 、y 之间插入数a ,使x ,a ,y 成为等差数列,又在x ,y 之间插入数b 、c ,且x ,b ,c ,y 成等比数列,则有( )A .a 2≤bc B .a 2>bc C .a 2=bcD .a 2≥bc解析:在正数x 、y 之间插入数a ,使x ,a ,y 成为等差数列, 又在x ,y 之间插入数b 、c ,且x ,b ,c ,y 成等比数列,∴⎩⎨⎧2a =x +y ≥2xy ,xy =bc ,∴a 2≥bc . 故选D. 答案:D8.(2019·龙岩期末测试)等差数列{a n }中,若a 4+a 7=2,则2a 1·2a 2·2a 3·…·2a 10=( )A .256B .512C .1 024D .2 048解析:等差数列{a n }中,若a 4+a 7=2, 可得a 1+a 10=a 4+a 7=2, 则2a 1·2a 2·2a 3·…·2a 10=2a 1+a 2+…+a 10=212×10(a 1+a 10)=25×2=1 024.故选C. 答案:C9.(2019·长春模拟)等差数列{a n }中,已知|a 6|=|a 11|,且公差d >0,则其前n 项和取最小值时n 的值为( )A .6B .7C .8D .9 解析:由d >0可得等差数列{a n }是递增数列,又|a 6|=|a 11|,所以-a 6=a 11,即-a 1-5d =a 1+10d ,所以a 1=-15d 2,则a 8=-d 2<0,a 9=d2>0,所以前8项和为前n 项和的最小值,故选C.答案:C10.(2019·合肥质检)已知数列{a n }是首项为a ,公差为1的等差数列,数列{b n }满足b n=1+a n a n.若对任意的n ∈N *,都有b n ≥b 8成立,则实数a 的取值范围是( )A .(-8,-7)B .[-8,-7)C .(-8,-7]D .[-8,-7]解析:因为{a n }是首项为a ,公差为1的等差数列,所以a n =n +a -1, 因为b n =1+a n a n =1+1a n,又对任意的n ∈N *都有b n ≥b 8成立, 所以1+1a n ≥1+1a 8,即1a n ≥1a 8对任意的n ∈N *恒成立,因为数列{a n }是公差为1的等差数列,所以{a n }是单调递增的数列,所以⎩⎪⎨⎪⎧a 8<0,a 9>0,即⎩⎪⎨⎪⎧8+a -1<0,9+a -1>0,解得-8<a <-7. 答案:A11.已知首项为32的等比数列{a n }不是递减数列,其前n 项和为S n (n ∈N *),4a 5=a 3.设T n=S n -1S n,则数列{T n }中最大项的值为( )A.34B.45C.56D.78解析:设等比数列{a n }的公比为q ,则q 2=a 5a 3=14.又{a n }不是递减数列且a 1=32,所以q =-12,故等比数列{a n }的通项公式为a n =32×⎝ ⎛⎭⎪⎫-12n-1=(-1)n -1×32n,S n=1-⎝ ⎛⎭⎪⎫-12n=⎩⎪⎨⎪⎧1+12n,n 为奇数,1-12n,n 为偶数.当n 为奇数时,S n 随n 的增大而减小,所以1<S n ≤S 1=32,故0<S n -1S n ≤S 1-1S 1=32-23=56.当n 为偶数时,S n 随n 的增大而增大,所以34=S 2≤S n <1,故0>S n -1S n ≥S 2-1S 2=34-43=-712.综上,对任意的n ∈N *,总有-712≤S n -1S n <0或0<S n -1S n ≤56,即数列{T n }中最大项的值为56.故选C.答案:C12.(2019·合肥二模)“垛积术”(隙积术)是由北宋科学家沈括在《梦溪笔谈》中首创,南宋数学家杨辉、元代数学家朱世杰丰富和发展的一类数列求和方法,有茭草垛、方垛、刍童垛、三角垛等等.某仓库中部分货物堆放成如图所示的“茭草垛”:自上而下,第一层1件,以后每一层比上一层多1件,最后一层是n 件.已知第一层货物单价1万元,从第二层起,货物的单价是上一层单价的910.若这堆货物总价是100-200⎝ ⎛⎭⎪⎫910n万元,则n 的值为( )A .7B .8C .9D .10解析:由题意可得第n 层的货物的价格为a n =n ·⎝ ⎛⎭⎪⎫910n -1,设这堆货物总价是S n =1·⎝ ⎛⎭⎪⎫9100+2·⎝ ⎛⎭⎪⎫9101+3·⎝ ⎛⎭⎪⎫9102+…+n ·⎝ ⎛⎭⎪⎫910n -1,①由①×910可得910S n =1·⎝ ⎛⎭⎪⎫9101+2·⎝ ⎛⎭⎪⎫9102+3·⎝ ⎛⎭⎪⎫9103+…+n ·⎝ ⎛⎭⎪⎫910n,②由①-②可得110S n =1+⎝ ⎛⎭⎪⎫9101+⎝ ⎛⎭⎪⎫9102+⎝ ⎛⎭⎪⎫9103+…+⎝ ⎛⎭⎪⎫910n -1-n ·⎝ ⎛⎭⎪⎫910n =1-⎝ ⎛⎭⎪⎫910n1-910-n ·⎝ ⎛⎭⎪⎫910n=10-(10+n )·⎝ ⎛⎭⎪⎫910n,∴S n =100-10(10+n )·⎝ ⎛⎭⎪⎫910n,∵这堆货物总价是100-200⎝ ⎛⎭⎪⎫910n万元,∴n =10, 故选D. 答案:D13.(2019·高考全国卷Ⅲ)记S n 为等差数列{a n }的前n 项和.若a 3=5,a 7=13,则S 10=________.解析:∵{a n }为等差数列,a 3=5,a 7=13, ∴公差d =a 7-a 37-3=13-54=2,首项a 1=a 3-2d =5-2×2=1, ∴S 10=10a 1+10×92d =100.答案:10014.(2019·安徽合肥二模)已知各项均为正数的数列{a n }前n 项和为S n ,若S 1=2,3S 2n -2a n +1S n =a 2n +1,则a n =________.解析:由S 1=2,得a 1=S 1=2. 由3S 2n -2a n +1S n =a 2n +1, 得4S 2n =(S n +a n +1)2.又a n >0,∴2S n =S n +a n +1,即S n =a n +1. 当n ≥2时,S n -1=a n , 两式作差得a n =a n +1-a n ,即a n +1a n=2. 又由S 1=2,3S 21-2a 2S 1=a 22,求得a 2=2. ∴当n ≥2时,a n =2×2n -2=2n -1.验证当n =1时不成立,∴a n =⎩⎪⎨⎪⎧2,n =1,2n -1,n ≥2.答案:⎩⎪⎨⎪⎧2,n =1,2n -1,n ≥215.已知数列{a n }满足a n +2-2a n +1+a n =0,且a 4=π2,若函数f (x )=sin 2x +2cos 2x 2,记y n =f (a n ),则数列{y n }的前7项和为________.解析:根据题意,数列{a n }满足a n +2-2a n +1+a n =0,则数列{a n }是等差数列, 又由a 4=π2,则a 1+a 7=a 2+a 6=a 3+a 5=2a 4=π,函数f (x )=sin 2x +2cos 2x2=sin 2x +cos x +1,f (a 1)+f (a 7)=sin 2a 1+cos a 1+1+sin 2a 7+cos a 7+1=sin 2a 1+cos a 1+1+sin 2(π-a 1)+cos (π-a 1)+1=2,同理可得:f (a 2)+f (a 6)=f (a 3)+f (a 5)=2,f (a 4)=sin π+cos π2+1=1,则数列{y n }的前7项和f (a 1)+f (a 2)+f (a 3)+f (a 4)+f (a 5)+f (a 6)+f (a 7)=7; 故答案为7. 答案:716.如图,点D 为△ABC 的边BC 上一点,BD →=2DC →,E n (n ∈N )为AC 上一列点,且满足:E n A →=(4a n -1)E n D →+14a n +1-5E n B →,其中实数列{a n }满足4a n -1≠0,且a 1=2,则1a 1-1+1a 2-1+1a 3-1+…+1a n -1=________.解析:点D 为△ABC 的边BC 上一点, BD →=2DC →,E n D →-E n B →=2(E n C →-E n D →),∴E n C →=32E n D →-12E n B →又E n A →=λE n C →=3λ2E n D →-λ2E n B →,4a n -1=-3×14a n +1-5,∴4a n +1-5=-34a n -1,4a n +1-4=1-34a n -1=4a n -44a n -1,a n +1-1=a n -14a n -1, 1a n +1-1=4a n -1a n -1=4+3a n -1,∴1a n +1-1+2=3⎝ ⎛⎭⎪⎫1a n -1+2,∴1a n -1+2=3n, 1a n -1=3n-2. S n =3×(1-3n)1-3-2n =3n +1-3-4n2. 故答案为:3n +1-3-4n2. 答案:3n +1-3-4n2。
高三数学二轮复习-第1讲等差数列、等比数列专题攻略课件-理-新人教版
4.(2010年高考北京卷)已知{an}为等差数列,且a3 =-6,a6=0. (1)求{an}的通项公式; (2)若等比数列{bn}满足b1=-8,b2=a1+a2+a3, 求{bn}的前n项和公式. 解:(1)设等差数列{an}的公差为 d.
因为 a3=-6,a6=0,
所以aa11+ +25dd= =-0,6, 解得ad=1=2-. 10,
A.6
B.7
Hale Waihona Puke C.8D.9解析:选 A.∵{an}是等差数列, ∴a4+a6=2a5=-6, 即 a5=-3,d=a55- -a11=-34+11=2,得{an}是首 项为负数的递增数列,所有的非正项之和最 小.∵a6=-1,a7=1,∴当 n=6 时,Sn 取最小 值,故选 A.
3.(2010 年高考辽宁卷)设{an}是由正数组成的等
比数列,Sn 为其前 n 项和.已知 a2a4=1,S3=7,
则 S5=( )
15
31
A. 2
B. 4
33 C. 4
17 D. 2
解析:选 B.an>0,a2a4=a21q4=1①,S3=a1+a1q+ a1q2=7②. 解得 a1=4,q=12或-13(舍去), S5=a111--qq5=4×1-1-12312=341,故选 B.
(1)求通项an及Sn; (2)设{bn-an}是首项为1,公比为3的等比数 列,求数列{bn}的通项公式及前n项和Tn.
【解】 (1)∵{an}是首项为 a1=19,公差为 d =-2 的等差数列,
∴an=19-2(n-1)=21-2n, Sn=19n+12n(n-1)×(-2)=20n-n2. (2)由题意得 bn-an=3n-1,即 bn=an+3n-1,∴ bn=3n-1-2n+21,Tn=Sn+(1+3+…+3n-1)=- n2+20n+3n-2 1.
2025高考数学二轮复习数列解答题
解 (1)设数列{an}的公差为 d,数列{bn}的公比为 q(q>0).
1 + 2 = 21 ,
2 + 2 = 2,
= 2,
由题意得
5×4
3 即 10 + 10 = + 3 ,解得 = 3.
51 + 2 = 1 + 1 ,
∴an=2+2(n-1)=2n,bn=1×3n-1=3n-1.
,为偶数,
和.
2.错位相减法
一般地,数列{an}是等差数列,{bn}是等比数列,求数列{an·bn}的前n项和时,
可采用错位相减法,一般是和式两边同乘等比数列{bn}的公比,然后作差求
解.
3.裂项相消法
实质是将数列的通项分解为两项之差,求和时能消去中间的一些项,最终达
到求和的目的,其解题的关键是准确地裂项和消项.
3 + 2, = 2,∈N* ,
所以bn+1=a2n+1=3a2n+2=3(2a2n-1+1)+2=6a2n-1+5=6bn+5.
因为b1+1=a1+1=2≠0,且bn+1+1=6(bn+1),所以数列{bn+1}是首项为2,公比
为6的等比数列.
所以bn+1=2·
6n-1,则bn=2·
6n-1-1.
3
1
①Sn= +m(m∈R),②Sn= an+1+m(m∈R),且 a1=1.请在这两个条件中选一个
2
2
补充在下面的横线上并解答.
若
,
(1)求m的值及数列{an}的通项公式;
高考数学第二轮复习专题四数列第1讲等差数列、等比数列文试题
智才艺州攀枝花市创界学校专题四数列第1讲等差数列、等比数列真题试做1.(2021·高考,文4)在等差数列{a n}中,a4+a8=16,那么a2+a10=().A.12B.16C.20D.242.(2021·高考,文5)公比为2的等比数列{a n}的各项都是正数,且a3a11=16,那么a5=().A.1B.2C.4D.83.(2021·高考,文6){a n}为等比数列.下面结论中正确的选项是().A.a1+a3≥2a2B.a+a≥2aC.假设a1=a3,那么a1=a2D.假设a3>a1,那么a4>a24.(2021·高考,文14)等比数列{a n}为递增数列.假设a1>0,且2(a n+a n+2)=5a n+1,那么数列{a n}的公比q=__________.5.(2021·高考,文16)等比数列{a n}的公比q=-.(1)假设a3=,求数列{a n}的前n项和;(2)证明:对任意k∈N+,a k,a k+2,a k+1成等差数列.考向分析高考中对等差(等比)数列的考察主、客观题型均有所表达,一般以等差、等比数列的定义或者以通项公式、前nn项和公式建立方程组求解,属于低档题;(2)对于等差、等比数列性质的考察主要以客观题出现,具有“新、巧、活〞的特点,考察利用性质解决有关计算问题,属中低档题;(3)对于等差、等比数列的判断与证明,主要出如今解答题的第一问,是为求数列的通项公式而准备的,因此是解决问题的关键环节.热点例析热点一等差、等比数列的根本运算【例1】(2021·质检,20)设数列{a n}的前n项和为S n,a1=1,等式a n+a n+2=2a n+1对任意n∈N*均成立.(1)假设a4=10,求数列{a n}的通项公式;(2)假设a2=1+t,且存在m≥3(m∈N*),使得a m=S m成立,求t的最小值.规律方法此类问题应将重点放在通项公式与前n项和公式的直接应用上,注重五个根本量a1,a n,S n,n,d(q)之间的转化,会用方程(组)的思想解决“知三求二〞问题.我们重在认真观察条件,在选择a1,d(q)两个根本量解决问题的同时,看能否利用等差、等比数列的根本性质转化条件,否那么可能会导致列出的方程或者方程组较为复杂,无形中增大运算量.同时在运算过程中注意消元法及整体代换的应用,这样可减少计算量.特别提醒:(1)解决等差数列{a n}前n项和问题常用的有三个公式:S n=;S n=na1+d;S n=An2+Bn(A,B 为常数),灵敏地选用公式,解决问题更便捷;(2)利用等比数列前n项和公式求和时,不可无视对公比q是否为1的讨论.变式训练1(2021·质检,20)等差数列{a n}的公差大于零,且a2,a4是方程x2-18x+65=0的两个根;各项均为正数的等比数列{b n}的前n项和为S n,且满足b3=a3,S3=13.(1)求数列{a n},{b n}的通项公式;(2)假设数列{c n}满足c n=求数列{c n}的前n项和T n.热点二等差、等比数列的性质【例2】(1)在正项等比数列{a n}中,a2,a48是方程2x2-7x+6=0的两个根,那么a1·a2·a25·a48·a49的值是().A.B.93C.±9D.35(2)正项等比数列{a n}的公比q≠1,且a2,a3,a1成等差数列,那么的值是().A.或者B.C.D.规律方法(1)解决此类问题的关键是抓住项与项之间的关系及项的序号之间的关系,从这些特点入手选择恰当的性质进展求解;(2)应结实掌握等差、等比数列的性质,特别是等差数列中假设“m+n=p+q,那么a m+a n=a p+a q〞这一性质与求和公式S n=的综合应用.变式训练2(1)(2021·玉山期末,3)等差数列{a n}的前n项和为S n,且满足S15=25π,那么tan a8的值是().A.B.-C.±D.-(2)(2021·调研,7)数列{a n}是等比数列,其前n项和为S n,假设公比q=2,S4=1,那么S8=().A.17B.16 C.15D.256热点三等差、等比数列的断定与证明【例3】(2021·一模,20)在数列{a n}中,a1=5且a n=2a n-1+2n-1(n≥2,且n∈N*).(1)证明:数列为等差数列;(2)求数列{a n}的前n项和S n.规律方法证明数列{a n}为等差或者等比数列有两种根本方法:(1)定义法a n+1-a n=d(d为常数)⇔{a n}为等差数列;=q(q为常数)⇔{a n}为等比数列.(2)等差、等比中项法2a n=a n-1+a n+1(n≥2,n∈N*)⇔{a n}为等差数列;a=a n-1a n+1(a n≠0,n≥2,n∈N*)⇔{a n}为等比数列.我们要根据题目条件灵敏选择使用,一般首选定义法.利用定义法一种思路是直奔主题,例如此题方法;另一种思路是根据条件变换出要解决的目的,如此题还可这样去做:由a n=2a n-1+2n-1,得a n-1=2a n-1-2+2n,所以a n-1=2(a n-1-1)+2n,上式两边除以2n,从而可得=+1,由此证得结论.特别提醒:(1)判断一个数列是等差(等比)数列,还有通项公式法及前n项和公式法,但不作为证明方法;(2)假设要判断一个数列不是等差(等比)数列,只需判断存在连续三项不成等差(等比)即可;(3)a=a n-1a n+1(n≥2,n∈N*)是{a n}为等比数列的必要而不充分条件,也就是要注意判断一个数列是等比数列时,要注意各项不为0.变式训练3在数列{a n}中,a n+1+a n=2n-44(n∈N*),a1=-23,是否存在常数λ使数列{a n-n+λ}为等比数列,假设存在,求出λ的值及数列的通项公式;假设不存在,请说明理由.思想浸透1.函数方程思想——等差(比)数列通项与前n项和的计算问题:(1)等差(比)数列有关条件求数列的通项公式和前n项和公式,及由通项公式和前n项和公式求首项、公差(比)、项数及项,即主要指所谓的“知三求二〞问题;(2)由前n项和求通项;(3)解决与数列通项、前n项和有关的不等式最值问题.2.求解时主要思路方法为:(1)运用等差(比)数列的通项公式及前n项和公式中的5个根本量,建立方程(组),进展运算时要注意消元的方法及整体代换的运用;(2)数列的本质是定义域为正整数集或者其有限子集的函数,数列的通项公式即为相应的函数解析式,因此在解决数列问题时,应用函数的思想求解.在等比数列{a n}中,a n>0(n∈N*),公比q∈(0,1),且a1a5+2a3a5+a2a8=25,a3与a5的等比中项为2.(1)求数列{a n}的通项公式;(2)设b n=log2a n,数列{b n}的前n项和为S n,当++…+最大时,求n的值.解:(1)∵a1a5+2a3a5+a2a8=25,∴a+2a3a5+a=25.又a n>0,∴a3+a5=5.又a3与a5的等比中项为2,∴a3a5=4.而q∈(0,1),∴a3>a5.∴a3=4,a5=1,q=,a1=16.∴a n=16×n-1=25-n.(2)b n=log2a n=5-n,∴b n+1-b n=-1,∴{b n}是以4为首项,-1为公差的等差数列.∴S n=,=,∴当n≤8时,>0;当n=9时,=0;当n>9时,<0;∴n=8或者9时,++…+最大.1.(2021·一模,5)在等差数列{a n}中,a9=a12+6,那么数列{a n}前11项的和S11等于().A.24B.48 C.66D.1322.(2021·名校创新冲刺卷,4)设{a n}是等比数列,那么“a1<a2<a3”是“数列{a n}是递增数列〞的().A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件3.(2021·质检,2)等比数列{a n}的公比q为正数,且2a3+a4=a5,那么q的值是().A.B.2 C.D.34.(2021·调研,6)等差数列{a n}的前n项和为S n,满足S20=S40,那么以下结论中正确的选项是().A.S30是S n的最大值B.S30是S n的最小值C.S30=0D.S60=05.正项等比数列{a n}满足a7=a6+2a5,假设存在两项a m,a n,使得=4a1,那么+的最小值为________.6.(原创题)数列{a n}为等差数列,数列{b n}为等比数列,且满足a1000+a1013=π,b1b13=2,那么tan=__________.7.(2021·五校联考,20)数列{a n}的前n项和为S n,a1=,S n=n2a n-n(n-1),n=1,2,….(1)证明:数列是等差数列,并求S n;(2)设b n=,求证:b1+b2+…+b n<1.8.设{a n}是公比大于1的等比数列,S n为数列{a n}的前n项和.S3=7,且a1+3,3a2,a3+4构成等差数列.(1)求数列{a n}的通项公式;(2)令b n=ln a3n+1,n=1,2,…,求数列{b n}的前n项和T n.参考答案·明晰考向真题试做1.B解析:由等差数列的性质知,a2+a10=a4+a8=16,应选B.2.A解析:由题意可得,a3·a11=a=16,∴a7=4.∴a5===1.3.B解析:A中当a1,a3为负数,a2为正数时,a1+a3≥2a2不成立;B中根据等比数列的性质及均值不等式得,a+a≥2=2a;C中取a1=a3=1,a2=-1,显然a1≠a2;D中取a1=1,a2=-2,a3=4,a4=-8,可知a4>a2不成立.综上可知仅有B正确.4.2解析:∵等比数列{a n}为递增数列,且a1>0,∴公比q>1.又∵2(a n+a n+2)=5a n+1,∴2a n+2a n q2=5a n q.∵a n≠0,∴2q2-5q+2=0.∴q=2或者q=(舍去).∴公比q为2.5.(1)解:由a3=a1q2=及q=-,得a1=1,所以数列{a n}的前n项和S n==.(2)证明:对任意k∈N+,2a k+2-(a k+a k+1)=2a1q k+1-(a1q k-1+a1q k)=a1q k-1(2q2-q-1),由q=-得2q2-q-1=0,故2a k+2-(a k+a k+1)=0.所以,对任意k∈N+,a k,a k+2,a k+1成等差数列.精要例析·聚焦热点热点例析【例1】解:(1)∵a n+a n+2=2a n+1对n∈N*都成立,∴数列{a n}为等差数列.设数列{a n}的公差为d,∵a1=1,a4=10,且a4=a1+3d=10.∴d=3.∴a n=a1+(n-1)d=3n-2.∴数列{a n}的通项公式为a n=3n-2.(2)∵a2=1+t,∴公差d=a2-a1=t.∴a n=a1+(n-1)d=1+(n-1)t.S n=na1+d=n+t.由a m=S m得1+(m-1)t=m+t,∴(m-1)t=(m-1)+t.∴t=1+t.∴t=.∵m≥3,∴-2≤t<0.∴t的最小值为-2.【变式训练1】解:(1)设{a n}的公差为d(d>0),{b n}的公比为q(q>0),那么由x2-18x+65=0,解得x=5或者x=13.因为d>0,所以a2<a4,那么a2=5,a4=13.那么解得a1=1,d=4,所以a n=1+4(n-1)=4n-3.因为解得b1=1,q=3.所以b n=3n-1.(2)当n≤5时,T n=a1+a2+a3+…+a n=n+×4=2n2-n;当n>5时,T n=T5+(b6+b7+b8+…+b n)=(2×52-5)+=.所以T n=【例2】(1)B解析:依题意知a2·a48=3.又a1·a49=a2·a48=a=3,a25>0,∴a1·a2·a25·a48·a49=a=9.(2)C解析:因为a2,a3,a1成等差数列,所以a3=a1+a2.∴q2=1+q.又q>0,解得q=,故===.【变式训练2】(1)B解析:∵S15=15a8=25π,∴a8=.∴tan a8=tan=tan=-tan=-.(2)A解析:S8=S4+(a5+a6+a7+a8)=S4+q4S4=17.【例3】(1)证明:设b n=,b1==2,∴b n+1-b n=-=[(a n+1-2a n)+1]=[(2n+1-1)+1]=1,∴数列是首项为2,公差为1的等差数列.(2)解:由(1)知,=+(n-1)×1,∴a n=(n+1)·2n+1.∵S n=(2·21+1)+(3·22+1)+…+(n·2n-1+1)+[(n+1)·2n+1],∴S n=2·21+3·22+…+n·2n-1+(n+1)·2n+n.设T n=2·21+3·22+…+n·2n-1+(n+1)·2n,①那么2T n=2·22+3·23+…+n·2n+(n+1)·2n+1.②由②-①,得T n=-2·21-(22+23+…+2n)+(n+1)·2n+1=n·2n+1,∴S n=n·2n+1+n=n·(2n+1+1).【变式训练3】解:假设a n+1-(n+1)+λ=-(a n-n+λ)成立,整理得a n+1+a n=2n+1-2λ,与a n+1+a n=2n-44比较得λ=.∴数列是以-为首项,-1为公比的等比数列.故a n-n+=-(-1)n-1,即a n=n--(-1)n-1.创新模拟·预测演练1.D解析:设等差数列{a n}的公差为d,那么由a9=a12+6得a1+8d=(a1+11d)+6,整理得a1+5d=12,即a6=12,∴S11=11a6=132.2.C解析:由a1<a2<a3,得有或者那么数列{a n}是递增数列,反之显然成立,应选C.3.B解析:由2a3+a4=a5得2a3+a3q=a3q2,∴q2-q-2=0,解得q=2或者q=-1(舍去).4.D解析:由S20=S40得a21+a22+a23+…+a40=0,∴a21+a40=0.∴S60=(a1+a60)×60=(a21+a40)×60=0.5.解析:由a7=a6+2a5,得q2-q-2=0,解得q=2或者q=-1(舍去),∴a m a n=a1q m-1·a1q n-1=16a.∴q m+n-2=2m+n-2=24.∴m+n-2=4.∴m+n=6.∴+=··(m+n)=≥(5+4)=(当且仅当4m2=n2时,“=〞成立).6.-解析:因为数列{a n}为等差数列,数列{b n}为等比数列,所以由它们的性质可得a1000+a1013=a1+a2012=π,b1b13=b=2,那么tan=tan=-.7.证明:(1)由S n=n2a n-n(n-1)(n≥2),得S n=n2(S n-S n-1)-n(n-1),即(n2-1)S n-n2S n-1=n(n-1),所以S n-S n-1=1,对n≥2成立.S1=1,所以是首项为1,公差为1的等差数列,S1=a1=,所以S n=,当n=1时也成立.(2)b n===-,∴b1+b2+…+b n=1-+-+…+-=1-<1.8.解:(1)设数列{a n}的公比为q(q>1).由得即即解得a1=1,q=2或者a1=4,q=(舍去).∴a n=2n-1.(2)由(1)得a3n+1=23n,∴b n=ln a3n+1=ln23n=3n ln2,∴b n+1-b n=3ln2.∴{b n}是以b1=3ln2为首项,公差为3ln2的等差数列.∴T n=b1+b2+…+b n===,即T n=.。
高三数学二轮复习:专题二 数列
(2)若数列an+bn是首项为 1,公比为 2 的等比数列,求数列{bn}的前 n 项和. 解 因为数列{an+bn}是首项为1,公比为2的等比数列, 所以an+bn=2n-1, 因为an=2n-1,所以bn=2n-1-(2n-1). 设数列{bn}的前n项和为Sn, 则Sn=(1+2+4+…+2n-1)-[1+3+5+…+(2n-1)] =11--22n-n1+22n-1=2n-1-n2, 所以数列{bn}的前n项和为2n-1-n2(n∈N*).
热点一 等差数列、等比数列的运算
1.通项公式 等差数列:an=a1+(n-1)d; 等比数列:an=a1·qn-1. 2.求和公式 等差数列:Sn=na1+ 2 an=na1+nn2-1d; 等比数列:Sn=a111--qqn=a11--aqnq(q≠1).
3.性质 若m+n=p+q, 在等差数列中am+an=ap+aq; 在等比数列中am·an=ap·aq.
板块三 专题突破 核心考点
专题二 数 列
第1讲 等差数列与等比数列
[考情考向分析]
1.等差、等比数列基本量和性质的考查是高考热点,经常以小 题形式出现. 2.数列求和及数列与函数、不等式的综合问题是高考考查的重 点,考查分析问题、解决问题的综合能力.
内容索引
热点分类突破 真题押题精练
热点分类突破
押题依据 解析 答案
2.在等比数列{an}中,a3-3a2=2,且5a4为12a3和2a5的等差中项,则
{an}的公比等于
A.3
B.2或3
√C.2
D.6
押题依据 等差数列、等比数列的综合问题可反映知识运用的综合性和 灵活性,是高考出题的重点.
押题依据 解析 答案
3.已知各项都为正数的等比数列{an}满足 a7=a6+2a5,存在两项 am,an 使得 am·an=4a1,则m1 +4n的最小值为
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
等差、等比数列综合教学目标1.熟练运用等差、等比数列的概念、通项公式、前n 项和公式以及有关性质,分析和解决等差、等比数列的综合问题2.突出方程思想的应用,能选择简捷合理的运算途径,提高运算速度和能力3.用方程的观点认识等差、等比数列的基础知识,从本质上掌握公式4.解决应用问题时,分清是等差数列还是等比数列问题;分清a n 和S n 弄清项数n双基联系1.已知等差数列{a n }的前n 项和为S n ,若129752a a a a a ++++是一个确定的常数,则下列表达式也是一个确定的常数的是 ( ) A.S 5 B.S 7 C.S 9 D.S 132.已知等比数列{a n },若1612952=a a a a ,则=876a a a ( ) A .4 B .8 C .±4 D .±83.命题p :若2b=a +c ,则a ,b ,c 成等差数列;命题q :若ac b =2,则a ,b ,c 成等比数列。
下列判断中正确的是 ( ) A .p 或q 是假命题 B .p 且q 是真命题 C .p 且q 是假命题 D .以上都不对 4.在等差数列{a n }中,a 1,a 4,a 25依次成等比数列,且a 1+a 4+a 25=114,则成等比数列的这三个数依次为 . 5.设}{n a 为等差数列,n an b )21(=,已知821321=++b b b ,81321=b b b , 求等差数列的通项n a .典型例题【例1】 互不相等的三个数a 、b 、c 成等差数列,又a ,c ,b 恰成等比数列,求a :b :c 的值.【思路点拨】本题考查三个数成等差数列以及三个数成等比数列的相应等式,采用方法是,两个等式消去一个“元”,从而求得三个数的比. 【解】由题意得⎩⎨⎧=+=abc c a b 22消去a 可得0222=-+b bc c ,解之得c=b 或c=-2b 当c=b 时,a=b ,故a:b:c=1:1:1,此时不合题意,舍去; 当c=-2b 时,a=4b ,故a:b:c=4:1:(-2)[点评]这道题根据题意列出两个等式不难,主要是结合钥匙目标,求三个数的比,只有两个等式,不可能同时解出三个量的值,所以要用消元的方法。
还要注意题意“互不相等”,舍去一种情形。
【举一反三】 一个三角形的内角A ,B ,C 成等差数列,又A ,C ,B 恰成等比数列,试判断此三角形的形状。
【答案】 等边三角形【例2】 有四个数,前三个数成等比数列,它们的积为216,后三个数成等差数列,它们的和为12,求此四数.【思路点拨】如果设四个未知数虽然也能解决,但运算较繁复。
可借助于三个数成等比或者三个数成等差的的常见方法设未知数.【解法一】 依题意,设这四个数分别为q a ,a ,aq ,b ,则⎪⎩⎪⎨⎧=++=+=1222163b aq a aq b a a解得a=6,q=32,b=2,从而得,这四个数分别为9,6,4,2. 【解法二】 依题意,设这四个数分别为x ,d a -,a ,d a +,则⎪⎩⎪⎨⎧==-=-123)(216)(2a ax d a d a ax解得x=9,a=4,d=-2,从而得,这四个数分别为9,6,4,2.【点评】 由于未知数设的巧妙,从而减少了运算量.【例3】 某工厂三年的生产计划规定:从第二年起,每一年比上一年增长的产值相同,三年的总产值为300万元,如果第一年,第二年,第三年分别比原计划产值多10万元,10万元,11万元,那么每一年比上一年的产值增长的百分率相同,求原计划中每一年的产值。
【思路点拨】 原计划三年的产值成等差数列,由三年的总产值为300万元,可知此等差数列中S 3=300,又由产值增长的百分率相同,可以知道,实际三年的产值成等比数列,分别列出两个等式解决问题.【解】 设原计划三年的产值为x -d ,x ,x +d ,则实际三年产值为-d +10,x +10,x -d +11,由题意得,⎩⎨⎧+=+++-=+++-②x d x d x ①d x x d x 2)10()11)(10(,300 由①得,x=100,代入②得d=10,故x -d=90,x +d=110. 答:原计划三年的产值分别为90万元,100万元,110万元【点评】 等差、等比数列的知识,在实际生产和生活中有着广泛的应用,在解决这类应用问题时,关键是把实际问题转化成数列问题,分清是等差还是等比数列问题,分清a n 和S n ,抓住基本量a 1,d(q),再运用有关的概念和公式求解.失分诊断 主要失分在于从实际应用问题出发的题,没有直接告知相应数据构成的是等差还是等比数列,一旦搞错,那么整个题就无法正确解决(最容易混淆的是:每年比上一年增长101,常有同学将此等比数列错判成等差数列)。
其次,分清楚a n 和S n 。
最后一点,等比数列的前n 项和公式要分成q=1和q ≠1两种情况来表示,常有同学丢了q=1的特殊情形,从而可能导致漏解。
【例1】 设n S 是等比数列}{n a 的前n 项的和,693,,S S S 成等差数列,试求数列}{n a 的公式q 的值.【错解】 已知等式化为qq a q q a q q a --+--=--⋅1)1(1)1(1)1(2316191 化简整理得1236+=q q ,可解出213-=q 或q 3=1,从而243-=q 或q=1.(也有到最后根据一开始得出的分式方程把q=1简单舍去的)【错解分析】 本题考查等差数列(等差中项的应用及证明)和等比数列通项及求和公式的用法。
容易出错的就是公比为1的情形的考虑,故上述解答的第一步就错了。
请你在课时练中加以巩固和提高吧。
【正确答案】 已知条件化为等式6392S S S +=,当q=1时,已知等式化为1116392a a a +=⋅,解得01=a (不合题意)故q ≠1,已知等式化为qq a q q a q q a --+--=--⋅1)1(1)1(1)1(2316191 化简整理得1236+=q q可解出213-=q 或q 3=1(舍去),从而243-=q .探究拓展【例1】 这是一段程序伪代码:求程序运行后输入的结果.【思路点拨用所学数学知识解决实际问题的能力。
先要细读这段伪代码表达的算法要求,从众多变量的有规律变化中找出最后输出的两个值的真正内涵,再解决求值问题. 【解】 设n=i 时,x 、y 、z 的值分别为x i 、y i 、z i , 由题意得,x 0=1,x n =x n -1+2,所以{x n }是等差数列,且12+=n x n 又y 0=1,y n =2y n -1,所以{y n }是等比数列,且n n y 2=。
又z 0=0,∴n n n n n n y x y x y x y x z z +++=+=- 22111 即n z =nn 2)12(25232+++⨯+⨯ ① ∴2n z =1322)12(2)12(2523+++-++⨯+⨯n nn n ②由②-①得n z =-232)12(]222523[⨯-++⨯++⨯+⨯nnn =22)12(1+-+n n由已知得,程序终止时,n z >7000,1-n z ≤7000,即⎩⎨⎧≤+->+-+700022)32(700022)12(1nn n n ,可求得n=8,z=7682。
故最后输出的结果是:8 7682【点评】 这道题对阅读能力、用数学式子表达数学关系的能力、推理能力和建模能力都有较好的考查。
破题的金钥匙,就是分别观察循环过程中独个变量会晤的变化规律,进而得出输入时两个量满足的条件.(这也同初中物理实验研究中的控制变量原理是想通的,请你仔细体会)等差、等比数列综合 巩固练习一、 选择题…1、公差不为零的等差数列的第2,第3,第6项依次成等比数列,则公比是 ( ) A .1 B .2 C .3 D .42、若等差数列{a n }的首项为a 1=1,等比数列{b n },把这两个数列对应项相加所得的新数列{a n +b n }的前三项为3,12,23,则{a n }的公差与{b n }的公比之和为 ( ) A .-5 B .7 C .9 D .143、一个首项为正数的等差数列中,前3项的和等于前11项的和,当这个数列的前n 项和最大时,n 等于. ( ) A .5 B .6 C .7 D .84、已知-9,a 1,a 2,-1这4个数成等差数列,-9,b 1,b 2,b 3,-1 这5个数成等比数列,则b 2(a 2-a 1)等于 ( )A .8B .-8C .±8D .89二、填空题:5、已知等差数列{a n }的公差d ≠0,且1a ,3a ,9a 成等比数列,则1042931a a a a a a ++++的值为______6、若数列{}n a 中,13a =,且21n n a a += *()n N ∈,则数列的通项n a = .7、有四个数,其中前三个数成等差数列,后三个数成等比数列,并且第一个数与第四个数的和是16,第二个数与第三个数的和是12,则这四个数依次为______________________ 三、解答题:8、已知抛物线24x y =,过原点作斜率1的直线交抛物线于第一象限内一点1P ,又过点1P 作斜率为12的直线交抛物线于点2P ,再过2P 作斜率为14的直线交抛物线于点3P , ,如此继续,一般地,过点n P 作斜率为12n的直线交抛物线于点1n P +,设点(,)n n n P x y .令2121n n n b x x +-=-,求证:数列{}n b 是等比数列.9、已知数列{a n }是首项a 1>0,q >-1且q ≠0的等比数列,设数列{b n }的通项b n =a 1n +-ka 2n + (n ∈N),数列{a n }、{b n }的前n 项和分别为S n ,T n .如果T n >kS n 对一切自然数n 都成立,求实数k 的取值范围.10、已知数列{}n a 中,n S 是其前n 项和,并且1142(1,2,),1n n S a n a +=+== ,⑴设数列),2,1(21 =-=+n a a b n n n ,求证:数列{}n b 是等比数列; ⑵设数列),2,1(,2 ==n a c nnn ,求证:数列{}n c 是等差数列; ⑶求数列{}n a 的通项公式及前n 项和。
等差、等比数列综合练习答案双基答案 1、D 2、D 3、C 4、38,38,38或2,14,98 5、n a n 25-=或32-=n a n 巩固练习答案1、【答案】C【分析】 由题意,6223a a a =,即)5)(()2(112d a d a d a ++=+,∵d ≠0,∴解得d=)0(21≠-a ,故公比为331123=--=a a a a 2、【答案】C【分析】 设公差为d ,公比为q ,则⎪⎩⎪⎨⎧=++=++=+2321121312111q b d q b d b 解得q=2,d=73、【答案】C【分析】 依题意知,数列单调递减,公差d <0.因为S 3=S 11=S 3+a 4+a 5+…+a 10+a 11所以a 4+a 5+…+a 7+a 8+…+a 10+a 11=0 即a 4+a 11=…=a 7+a 8=0,故当n=7时,a 7>0,a 8<0.选择C . (说明)解选择题注意发挥合理推理和估值的作用. 4、【答案】B【分析】 由题意,a 2-a 1=d=383)9(1=---, 而9)1(922=-⨯-=b 且0922<-=q b ,故32-=b5、【答案】2923【分析】 由题意,9123a a a =,即)8()2(112d a a d a +=+,∵d ≠0,∴解得d=)0(21≠a ,故通项为1)12(a n a n -=,原式计算得结果 6、【答案】123-n【分析】 多次运用迭代,可得2112222221221()[()]()()3n n n n n n a a a a a -----======7、【答案】0,4,8,16或15,9,3,1.【分析】设四个数分别为x ,y ,12-y ,16-x ,则⎩⎨⎧-=-=-+)2()12()16()1(2)12(2y x y y y x 由(1)得:x=3y-12(3)代入(2)得:y 2-13y+36=0.解得y=4或y=9,分别代入(3)得:x=0或x=15.所以所求四个数分别为:0,4,8,16或15,9,3,1.三、解答题8、【解】因为(,)n n n P x y 、111(,)n n n P x y +++在抛物线上,故24,n n x y =①2114n n x y ++=②,又因为直线1n n P P +的斜率为12n,即1112n n n n y y x x ++-=-,①②代入可得221121111422n n n n n n n n x x x x x x ++-+-=⇒+=-2121212221()()n n n n n n n b x x x x x x +-+-∴=-=+-+222322111222n n n ---=-=-,故11{}4n n n b b b +=⇒是以14为公比的等比数列;9、【解】因为{a n }是首项a 1>0,公比q >-1且q ≠0的等比数列,故a 1n +=a n ·q , a 2n +=a n ·q 2. 所以b n =a 1n +-ka 2n +=a n (q -k ·q 2).T n =b 1+b 2+…+b n =(a 1+a 2+…+a n )(q -k ·q 2)=S n (q -kq 2). 由题意,由T n >kS n ,得S n (q -kq 2)>kS n , ①对一切正整数n 都成立. 当q >0时,由a 1>0,知a n >0,所以S n >0;当-1<q <0时,因为a1>0,1-q >0,1-q n>0,所以S n =01)1(1>--qq a n综合上述两种情况,当q >-1且q ≠0时,S n >0总成立.由①式可得q -kq 2>k ②, 即q q k <+)1(2,∴21212=≤+<q q q q k ,故k 的范围是)21,(-∞.10、【解】(1)由S 1n +=4a 2n +,S 2n +=4a 1n ++2,两式相减,得S 2n +-S 1n +=4(a 1n +-a n ),即a 2n +=4a 1n +-4a n .(根据b n 的构造,如何把该式表示成b 1n +与b n 的关系是证明的关键,注意加强恒等变形能力的训练)a 2n +-2a 1n +=2(a 1n +-2a n ),又b n =a 1n +-2a n ,所以b 1n +=2b n ①已知S 2=4a 1+2,a 1=1,a 1+a 2=4a 1+2,解得a 2=5,b 1=a 2-2a 1=3 ② 由①和②得,数列{b n }是首项为3,公比为2的等比数列,故b n =3·21n -.(2)∵n n n a c 2=,∴n n n n n n a a c c 22111-=-+++=1122++-n n n a a =12+n n b =11223+-∙n n =43又21211==a c ,故数列{c n }是首项为21,公差为43的等差数列,∴c n =4143-n(3) ∵n n n a c 2=,又c n =4143-n ,∴=n n a 24143-n ,故22)13(-∙-=n n n a 当n ≥2时,S n =4a 1n -+2=21n -(3n -4)+2;当n=1时,S 1=a 1=1也适合上式.综上可知,所求的求和公式为S n =21n -(3n -4)+2.注意:1.本例主要复习用等差、等比数列的定义证明一个数列为等差,等比数列,求数列通项与前n 项和。