Impedance Control with On-Line Neural Network Compensator for Dual-Arm Robots
计算机网络词汇
计算机网络词汇[38001-39000](整理)network timing 网络定时network topology 网络布局Network Troubleshooting 网络故障诊断与维修network 网络network 网路网络network 网络network(NET) 网络network, analog 模拟网络network, communications 通信网路network, computei 计算器网络network, distributed-processing 分布型处理网络network, electrical 电力网络network, star 星型网络NetWork-Coffee 网络咖啡networked computer 网络计算机Networking Blueprint 联网方案networking capabilities 连网能力networking cd rom technology 光盘网络技术networking components 网络组件Networking Hardware 网络硬件networking 连网networking 网络通信Networks 网络Network-to Network Interface, NNI 网络到网络间的接口NEUCC Northern European University Computing Center 北欧大学计算中心(丹麦)Neumann principle 诺埃曼原理NEUNS NEUrom Network System 北欧大学只读存储器网络系统neural information processing systems 神经信息处理系统Neural Network 类神经网络neural network 神经网络neurocomputer 神经计算机neuronic network 神经网络neutral atom laser 中性原子激光器neutral atom 中性原子neutral conductor 中线neutral conductor 中性导体neutral ground 中线接地neutral point 中性点neutral relay 无极继电器neutral relay 中和继电器neutral resistance 中性电阻neutral state 中性状态neutral temperature 中性温度neutral terminal 中性线端neutral transmission 中性传输neutral trapping center 中性俘获中心neutral zone 无控制酌的参数范围neutral zone 中性区neutral 中性neutral 中性的neutralization 中和;平衡neutralizing capacitor 中和电容器neutrodyne 有中和的高频党放大器neutron activation analysis 中子激活分析neutron doped semiconductor 中子掺入半导体neutron doped silicon 中子掺入硅neutron doping 中子掺入neutron irradiation 中子照射neutron pumping 中子激励neutron yield 中子产额neutron 中子neutrosphere 中性圈never 永远不NEV oDa NEtworked V oice Data 上网语音数据new detached Toolbar 新增超然的工具列new disk 新的磁盘New Economy 新经济new element 新增项目new folder 新资料夹new horizontal tab group 新增水平索引卷标群组new input queue 新输入队列new key 新增索引键new keyword New 关键词new line character 移行符号new macro Command 新增宏命令new mail 新信件new pack 新包装new password 新的密码new project 新增专案new search 重新搜寻new start 重新起动new sync 新同步new toolbar 新增工具列new vertical Tab Group 新增垂直索引卷标群组new window 开新窗口New World Semiconductor Conference (New WSC) 新世界半导体会议new 新的new 新信newbie 新手newdata argument NewData 自变量newline character 新行字符new-line character(NL) 新列字符newline 新行NEWS NetWare Early Warning System “网器” 预警系统NEWS Network Error Warning System 网络错误警告系统NEWS Network Extensible Window System 网络可扩充窗口系统news 新闻newsfeed 新聞供應Newsgroup 新闻组,网路新闻群组(台湾用语)〖因特网〗newsgroup 新闻组newsgroup 新聞討論組Newslink 新闻联线newton's method 牛顿法newtor 牛顿NEXT Near – End Cross – Talk loss 近端串线干扰,近端串音损耗next frame 下一帧Next Generation I/O (NGIO) 新一代输入/输出系统Next Generation Internet /Internet2 (NGI/I2) 下一代因特网/Internet2 Next Hop Resolution Protocol, NHRP 下一个网络节点解析协议neXT neXT(公司名称)next record 下一笔next state function 变换函数next statement Next 陈述式next track 下一个曲目next 下一步nexus 关结NF Noise Factor 噪音系数NF Noise Figure 噪音指数NF Nominal Frequency 标称频率nf Norfolk Island 诺福克岛(域名)NF Normal Form 正常形式,规格化形式,范式NFAP Network File Access Protocol 网络文件访问协议NFAS Non – Facilities Associated Signaling 与设备无关的信令NFAS Not Frame Alignment Signal 非帧对齐信号NFB Negative FeedBack 负反馈NFB Network Function Block 网络功能块NFB Non – Fuse Breaker 无保险丝断路器nfb 负反馈NFDC National Flight Data Center 全国飞行数据中心(美国)NFE Network Front End 网络前端NFE No First Error 非首次错误nfet n 沟道场效应晶体管NFI Noise Figure Indicator 噪音指数指示器NFP Not File Protect 无文件保护NFQ Night FreQuency 夜用频率NFS Need For Speed 《极品飞车》〖游戏名〗NFS Network File Server 网络文件服务器NFS Network File Share 网络文件共享NFS Network File System 网络文件系统NFS Network File System 网络文件系统NFS 网络文件系统NFSAIS National Federation of Science Abstracting and indexing Services 全国科学文摘与索引服务机构联合会(美国)NFSHS NFS: High Stakes 《极品飞车:孤注一掷》〖游戏名〗NFSMC NFS: MotorCity 《极品飞车:驰聘的都市》〖游戏名〗NFSP NFS: Porsche 《极品飞车:保时捷狂飙》〖游戏名〗NFSS News Feeder Screen Saver 新闻输送器屏幕保护ng Nigeria 尼日利亚(域名)NG Noise Generator 噪音发生器NGBT Negotiating Group on Basic Telecommunications 远程通信基本条件谈判组nGC net. Genesis Corp. “网源”公司(美国,出品企业内部网设备)NGC Network General Corp. 网络总公司(美国,出品网络分析器)NGCC National Guard Computer Center 国家防卫计算机中心(美国)NGCP Network General Control Protocol 网络通用控制协议NGE Not Greater or Equal 不大于或等于NGI Next Generation Internet 下一代因特网ngio(next generation input/output,新一代输入/输出标准)NGMF Netview Graphic Monitor Facility 软件Netview的图形监视器设备NGMHS NetWare Global Messaging Handling Service “网器”全球报文处理服务NGP Network Graphics Protocol 网络图形协议NH Network Handler 网络处理程序NH nonhygroscopic 防潮的NH Null Hypothesis 虚无假设,零假设NHK (Nippon Hoso Kyokai) 日本广播协会NHRP Next Hop Resolution Protocol 下一步跳跃传输的解析协议,下一个驿站解析协议〖因特网〗NHRP Next Hop Router Protocol 下一步跳跃传输的路由器协议〖因特网〗NHRP Next Hop Routing Procedure 下一次跳跃式传输的路由选择规程,下一段选路过程NHRR Next Hop Resolution Protocol 下一次跳跃式传输的分辨率协议NHS Next Hop Server 下一次跳跃式传输的服务器NI National Indicator 国家指示器,国别指示器NI Network Identifier 网络标识符NI Network Identify 网络识别NI Network Interconnect 网络互连NI Network Interface 网络接口ni Nicaragua 尼加拉瓜(域名)NI Nonforbid Interrupt 非禁止中断NI Northwest Industries 西北工业公司(美国)NI Novell Inc. 网威公司(美国,以开发网络产品和软件著称)NI(noninhibit)interrupts 非抑制岔断ni:non-intel,非英特尔NIA Network Interface Adapter 网络接口适配器NIA Networking Interoperability Alliance 网络协同操作联盟(由贝、IBM和3Com公司组成)NIA Next Interchange Address 下一次交换地址nia: networking interoperatility alliance(网络互操作联盟)NIB Node Initialization Block 节点初始化数据块nibble / nybble 半字节、四位nibble 半字节nibble 尼;半拜NIC National Information Center 全国信息中心(美国)NIC National ISDN Council 全国综合业务数字网委员会NIC Negative Impedance Converter 负阻抗转换器NIC Network Identification Code 网络标识码NIC Network Independent Clock 网络独立时钟NIC Network Information Center 网络信息中心〖因特网〗NIC Network Interface Card 网络接口卡,网卡(同网络适配器)NIC Network Interface Control(ler) 网络接口控制(器)NIC Normal Input Cause 正常输入原因NIC Network Information Center 网络信息中心NIC Network Interface Card 网络(接口)卡NIC 网络卡/网络信息中心NICC National Information Control Center 国家信息控制中心NiCd battery 镍镉电池NICE Network Information Control Exchange 网络信息控制交换NICE Normal Input / Output Control Executive 标准输入/ 输出控制的执行程序NICEP Network Information and Control Exchange Protocol 网络信息控制与交换协议nichrome 镍铬合金nickel delay lint 镍延迟线nickel 镍nickel-cadmium battery 镍镉电池nickel-iron(Ni Fe)secondary cell 铁镍二次电池(蓄电池)nickname 别名nickname 昵称NICNAME (WhoIs Protocol) 化名协议〖因特网〗NICNAME, WhoIs Protocol, (RFC-954) WhoIs协议NICO National Information Coordinating Organization 国家信息协调机构nico 镍钴合金NICOL New International Commercial Language 新国际商业语言NICONFIG Network Interconnect CONFIGurator 网络互连配置器NICS Network Integrated Control System 网络综合控制系统NID Network IDentifier 网络标识符NID Network Interface Device 网络接口设备NID Network Interface Device 网络接口服务NIDA Numerically Integrated Differential Analyzer 数字积分微分分析器NIDN Naval Intelligence Data Network 海军情报数据网NIDOC National Information and Documentation Center 全国信息与文献中心(阿拉伯联合共和国)NIF Noise Improvement Factor 噪音改善系数NIF Neighborhood Information Frame 邻近信息块nife 镍铁合金night airglow 夜天光night effect 夜间效应NIGP National Institute of Governmental Purchasing 政府采购全国讲习会NII National Information Infrastructure 国家信息基本设施(美国克林顿政府1993年9月提出的未来宽带广域网,亦称信息高速公路)NII, National Information Infrastructure 全国信息体系NIIT National Information Infrastructure Testbed 国家信息基础设施实验室(美国)nil 空指标nil 无niladic functions niladic 函数nill pointer 零指标NIM Network Information Management 网络信息管理系统(IBM的)NIM Network Instrument Manipulation 网络工具操作NIM Network Interface Machine 网络接口机NIM Network Interface Module 网络接口模块NIM Networked Interactive Multimedia 网络化交互式多媒体NIMF National Institute on Media and the Family 媒体与家庭全国调研会(美国)NIMH Nickel Metal Hydride 镍金属氢化物NI-MH Battery 镍氢电池NIN National Information Network 全国情报网络nine edge 九边nines complement 九补码nine's complement 九的补码ninety column card 九十行卡Nintendo 任天堂NIOS NetWare Input / Output Subsystem “网器” 输入/ 输出子系统NIOS Network Input / Output System 网络输入/ 输出系统NIP Non – Impact Printer 非撞击式打印机NIP Nucleus Initialization Program 核心程序初始化程序nip 核心初始化程序NIPO Negative Input, Positive Output 负输入,正输出NIPRNET Non – secure Internet Protocol Router NETwork 不安全的因特网协议路由器网络NIPRNET Nonclassified Internet Protocol Router NETwork 非机密因特网协议路由器网络NIPS National Information Processing System 全国信息处理系统NIPS Neural Information Processing System 神经中枢信息处理系统NIR Network Information Retrieval 网络信息检索NIRI National Information Research Institute 国家信息研究所(美国)NIS National Information System 国家信息系统(美国)NIS Network Information Service 网络信息服务NIS Network Interface System 网络接口系统N-ISDN Narrowband – Integrated Services Digital Network 窄带综合服务数字网络,“一线通”N-ISDN Narrowband ISDN 窄带ISDNNISO National Information Standards Organization 国家信息标准组织NISSAT National Information System for Science and Technology 国家科技信息系统(印度)NIST National Institute of Science and Technology 全国科学技术学会NIST National Institute of Standard and Technology 国家标准与技术研究所(美国,即早期的国家标准局NBS)NIT National Information application Technology certificate 全国信息应用技术证书(中国)NIT Non – Intelligent Terminal 非智能终端NITA National Industrial Television Association 全国工业电视协会(美国)NITC National Information Technology Center 国家信息技术中心(美国)nitridation 氮化nitride gate 氮化硅栅nitride masking 氮化硅掩蔽nitride oxide reactor 氮化物氧化物反应器nitride oxide structure 氮化物氧化物结构nitride passivation 氮化硅钝化nitride process 氮化硅工艺Nitro “硝基”系列显卡(生产商:STB)nitrogen dioxide 二氧化氮nitrogen dusting 氮气吹尘nitrogen purging 氮气吹尘nitrogen purifier 氮气提纯器nitrogen 氮nitrogenous hood 氮箱nitrox reactor 氮化物氧化物反应器nitrox 氮化物氧化物结构NIU Network Interface Unit 网络接口设备NIU Forum (North American ISDN User Group Forum) 北美综合业务数字网用户组论坛NIUF North American ISDN User''s Forum 北美ISDN用户论坛nixie tube 数字管NJ Network Job 网络作业NJCC National Joint Computers Committee 全国计算机联合委员会(美国)NJCL Network Job Control Language 网络作业控制语言NJP Network Job Processing 网络作业处理NJS Noise Jammer Simulator 噪音干扰模拟器NK Narinder Kapany 纳林德尔·卡帕尼(在1955年发明光纤)nl Netherlands 荷兰(域名)NL Network Layer 网络层NL New Line 换行〖字符〗NL No Label 无标号NL Noise Level 噪声度〖扫描仪〗NL Nominal Transmission Loss 名义传输损耗nl 移行符号NLA National Library of Australia 澳大利亚国家图书馆NLA Network Logical Address 网络逻辑地址NLA Non – Linear Amplifier 非线性放大器NLA Normalized Local Address 规格化局部地址NLC National Library of Canada 加拿大国家图书馆NLC Natural Language Computer 自然语言计算机NLC Network Language Center 网络语言中心NLC Network Level Control 网络级别控制NLC Non Linear Computation 非线性计算NLD Non Linear Distortion 非线性失真NLDM Network Logical Data Management 网络逻辑数据管理NLE NonLinear Element 非线性元件NLE Not Less or Equal 不小于或等于n-level address n阶地址n-level logic n阶逻辑NLF Non Linear Filtering 非线性过滤NLI Natural Language Interface 自然语言接口NLI Noise Limit Indicator 噪声极限指示器NLine, National Library Line 国家图书馆网络NLL National Lending Library for Science and Technology 全国科技出借图书馆(英国)NLL Negative Logic Level 负逻辑级NLM National Library of Medicine 国家医学图书馆(美国)NLM NetWare Loadable Module “网器”的可装载模块NLM Network Link Module 网络连接模块NLM Noise Level Monitor 噪声电平监视器NLO Non Linear Operation 非线性运算NLO Non Linear Optimization 非线性优化NLOS Natural Language Operating System 自然语言操作系统NLOS No Line Of Sight 无视线NLP Natural Language Processing 自然语言处理NLP Non Linear Programming 非线性规划NLPID Network Level Protocol ID (Identifying) 网络级别协议识别NL-Port Node Loop Port 节点循环端口,环接点通信口NLPT NoLooP Trouble 无环路故障NLQ Near – Letter – quality 近似信函体质量NLQ, near letter quality 近打字效果NLR Natural Language Representation 自然语言表示法指定NLR Network Layer Relay 网络层转接NLR No Load Ratio 空载比NLR Noise Load Ratio 噪音负载比NLRM Non – Linear Regression Model 非线性回归模型NLS National Language Support 国家语言支持系统(IBM的)NLS Natural Language Support 自然语言支持系统(多指语音识别系统)NLS Negative Lens System 负透镜系统NLS NetWare Licensing Services “网器”许可的服务NLS No – Load Speed 空载速度NLS Non – Linear System 非线性系统NLSI National Library of Science and Invention 全国科学发明图书馆(英国)NLSP NetWare Link –State Protocol “网器”的连接状态协议NLSP Novell(NetWare) Link Services Protocol 网威公司(“网器”)的链路服务协议NLST Name LiST 名单NLT Not Less Than 不少于NLTS Network Load Test System 网络负荷测试系统NM Nathan Myhrvold 纳森·米尔沃德(微软的“技术教父” )NM Net. Medic “网络侦探”麦迪克〖软件名〗NM Network Management 网络管理NMA National Microfilm Association 全国缩微胶片协会(美国)NMA NetWare Management Agent “网器”管理代理NMARS Network Management Access RoutineS 网络管理访问例程NMC National Meteorological Center 国家气象中心NMC Navigation Map Computer 导航地图计算机NMC Network Management Center 网络管理中心NMC Network Management Computer 网络管理计算机NMC Network Measurement Center 网络度量中心NMC Network Message Controller 网络消息控制器NMC Network Monitor Card 网络监视卡NMC Network Multimedia Connection 网络多媒体连接计划(有思科、英特尔和微软在1997年联合推出)NMC Network Management Card 网络管理卡NMC Network Management Center 网络管理中心NMCC Network Management Command and Control system 网络管理命令控制系统NME Noise Measuring Equipment 噪音测量设备NME network Management Entity 网络管理实体NMF Network Management Forum 网络管理论坛NMF New Master File 新的主文件NMI National Microcomputers Inc. 国家微电脑公司(美国,出品个人电脑)NMI NetManag e Inc. “网管”公司(美国,出品信息管理器)NMI Network Management Integration 网络管理集成化NMI Network Management Interface 网络管理接口NMI NonMaskable Interrupt 非闭频中断,不可屏蔽中断nmi 非屏蔽中断NML Neighborhood Matching Logic 邻域匹配逻辑电路NML Network Management Layer 网络管理层次NML Network Management Listener 网络管理监听员NMLIS Native Mode LAN Interconnect Service 本地模式局域网互连业务NMLSI Network Management Listener Sharable Image 网络管理监听员可共享图像NMM Network – Management and Maintenance signal 网络管理和维护信号NMM Network Management Module 网络管理模块NMOS N – Channel Metal Oxide Semiconductor N沟信道金属氧化物半导体(电路)N-MOS N – Metal Oxide Semiconductor N型金属氧化物半导体(电路)nmos n 沟道金属氧化物半导体NMOS N型金氧半导体nmos technology nmos 工艺nmos transistor nmos 晶体管NMP Name Management Protocol 名称管理协议NMP Network Management Plan 网络管理计划NMP Network Management Protocol 网络管理协议(AT&T开发)NMPF Network Management Productivity Facility 网络管理的劳动生产率设备NMR NetWare Multiprotocol Router “网器”的多协议路由器NMR Nuclear Magnetic Resonance 核磁共振NMRS NonMonotonic Reasoning System 非单调推理系统NMS NetWare Management System “网器” 管理系统NMS Network Management Signal 网络管理信号NMS Network Management Station 网络管理站(监视网上节点执行命令情况的计算机)NMS Network Management System 网络管理系统NMS New Management System 新型管理系统NMS Network Management System 网络管理系统NMSI National Mobile Station Identity 全国移动站标示NMSL Novell Mirror Server Link 网威公司镜像服务器链接NMT Network Management Terminal 网络管理终端NMT Nordic Mobile Telephone system 北欧移动电话系统NMTI NuMega Technologies Inc. 纽麦格技术公司(美国,出品开发工具)NMU Network Management Unit 网络管理器NMVT Network Management Vector Transport 网络管理矢量传送NMWG Network Management Working Group 网络管理工作组NN Narrow Network 窄带网络NN National Network 国家网络NN National Number 国家编号NN Network Neighborhood 网上邻居NN Network Node 网络节点NN Neural Network 神经网络NN Neverwinter Nights 《远离冬夜》〖游戏名〗n-n Junction n-n型接面NNA Neural – Net Algorithms 神经网络算法NNC National Network Congestion 全国网络拥塞NNC National Network Congestion signal 全国网络拥塞信号NNC Normal Network Cause 正常网络原因NNI Network Node Interface 网络节点接口〖A TM〗NNI Network to Network Interface 网络到网络接口,网间接口〖A TM〗NNI Network to Node Interface 网络到节点接口NNI Next Node Index 下一节点索引NNI Network-Network Interface 网间接口NNM Network Node Manager 网络节点管理器NNP National Numbering Plan 全国编号计划NNS NetWare Name Service “网器” 名称服务NNS Network Node Server 网络节点服务器NNS Network of NetworkS 网络的网络NNS Neutral Network Simulator 中性网络模拟器NNSC National Network Service Center 全国网络服务中心NNSC NSF Network Service Center 国家科学基金会网络服务中心(美国)NNSS Navy Navigation Satellite System 海军导航卫星系统NNTP Network News Transfer Protocol 网络新闻传送协议〖因特网〗NNTP (Network news transfer protocol) NNTP(网络新闻传输协议)NNTP Network News Transport Protocol 网络新闻传输协议NNTP NNTP协定NNTP, Network News Transfer Protocol, (RFC-977) 网络新闻传输协议nntp: network news transfer protocol,网络新闻传输协议NNVT Number Nine Visual Technologies Inc. “老九”可视技术公司(美国,出品高性能可视加速器)NO Normally Open 通常是打开的no Norway 挪威(域名)NO Not Operational 不可操作,不可运行NO – OP No – Operation instruction 空操作,无操作no address instruction 无地址指令no carrier 没有载波讯号no failure operation 无故障工作no load characteristic 无载特性no load current 无载电流no load losses 无载损耗no load test 无载式验no load voltage 无载电压no load 无载的no operation 空操作no operation, memory protect 记忆保护无作业No Operation, NOP 不运算no operatton 无作业no opinstruction 空指令No Parity 无同位no return point 无转回点no select 没有选择no signal 无信号no voltage relay 无压继电器no wait memory 无等待存储器立即存储器no 否no-access Bytes No-Access 字节no-address instruction 无址指令noble gas ion laser 惰性气体离子激光器noble gas 惰性气体noble metal cermet 贵金属陶瓷noble metal paste 贵金属膏NOC Negative Operation Concepts 负运算概念NOC Network Operation Center 网络操作中心,网络运行中心NOC NOt – Carry 不进位NOC Network Operations Center 网络操作中心NOC网络操作中心NOCC National Operators Control Center 全国操作员控制中心(美国)no-consoles condition 无控制台条件nocturnal radiation 夜间辐射Nocturne 《夜曲》〖游戏名〗NOD News On Demand 点播新闻〖游戏名〗NODAL Network – Oriented Data Acquisition Language 面向网络的数据采集语言NODC National Oceanographic Data Center 国家海洋资料中心(美国)Node (N) 节点node computer 节点计算机node computer 节点计算器Node Encryption 节点加密node processor 节点处理器node splitting 节点划分node 节点node 节点Node 节点,结点,网点node 节点、结点node(N) 节;节点nodes 节点NODSE NODe Serve Routine 节点访问例程NOF National Optical Font 国家光学识别字体(美国)NOF Network Operations Forum 网络操作论坛NOFCW Number OF Chargeable Word 计费字数noise analyzer 噪声分析器noise background 背景噪声noise channel 噪声信道noise characteristics 噪声特性noise current 噪声电流noise cutting off 噪声截止noise equivalent power 噪声等效功率noise factor meter 噪声系数测量计noise factor 噪声度;噪声因子noise factor 噪声系数noise factor 噪声因数noise figure 噪声指数noise filter 静噪滤波器noise filter 噪声虑波器noise generation 噪声发生noise generator diode 噪声发生掐极管noise generator 噪声发生器noise immHunity 噪声免除noise immunity 抗扰度noise killer 除噪声器noise level 噪声电平noise level 噪声位准noise limiter 噪声抑制器noise margin 噪声容限noise margin, voltage 电度噪声容限noise meter 噪声测试器噪声计noise modulation 噪声灯noise power 噪声功率noise ratio 噪声比noise source 噪声源noise spectral power density 噪声功率频谱密度noise spectrum 噪声频谱noise stability 噪声稳定度noise standard 噪声标准noise suppression 噪声抑制noise suppressor 噪声抑制器noise temperature 噪声温度noise unity 噪声单位noise voltage 噪声电压noise word 干扰词noise 干扰noise 干扰noise 杂乱信号noise, ambient 周围噪声noise, background 背景噪声noise, broadband(white) 宽带(素)噪声noise, carrier 载波噪声noise, common-mode 通用模态噪声noise, delta 三角噪声noise, diode 二极管噪声noise, electricaltype 电气型式噪声noise, Gaussian 高斯噪声noise, impulse 脉冲噪声noise, line 线路噪声noise, modulation 调变噪声noise, natural 自然噪声noise, random 随机噪声noise, reference 参考噪声noise, systematic 系统噪声noise, thermal 热离讯noiseless channel 无噪声信道noiseless tuning 无噪声党noisy channel 有噪声信道noisy channel 噪声信道noisy digit 噪声数字noisy modt 噪声模态noisy signal 噪声信号No-Job Definition Error 无工作定义误差Nokia 诺基亚〖手机〗NOL Normal OverLoad 正常过载NOLAS New On – Line Administrative Computer System 新式在线行政管理计算机系统nom 从事个人活动的个体(最高域名)NOMAAD langnage 诺麦语言NOMC Network Operators Maintenance Channel 网络操作员维护通道nominal frequency 额定频率nominal power 额定功率nominal speed 额定速度nominal transformation ratio 标称变换系数nominal transformation ratio 额定变换率nominal value 标称值nominal(rated)speed 标称(额定)速率NOMS Network Operations Management System 网络操作管理系统non addressable memory 不可编址存储器non directional current protection 非方向电粒护装置non directional 不定向的non directive 不定向的non homing 不归位的non inductive load 无感负载non inductive resistance 无感电阻Non- Interlaced Video 非交错屏幕non linear amplifier 非线性放大器non linear distortion 非直线失真non linear element 非线性元件non linear network 非线性网络non linear potentiometer 非线性电位计non linear scale 非线性标度non linear system 非线性系统non linear time base 非线性时基non linear 非直线性的non polarized relay 无极继电器non resonating aerial 非谐振天线non resonating antenna 非谐振天线non return to zero 不归零制non symmetrical adjustment 不对称蝶Non Uniform Memory Access (NUMA) 非一致性内存non von neumann architecture 非冯诺依曼计算机总体结构non von neumann computer 非冯诺依曼型计算机non-add 非加non-administrative system 非行政系统nonaggregated object 非汇总物件nonalbyed contact 无合金化接触nonarithmetic shift 非算术移位nonarithmeticshift 非算术移位nonassociated CCIS 非结合CCISnonburst device 非脉冲串装置noncavity laser 无谐振腔激光器nonclient area 非工作区non-Client 非用户区nonclustered index 非聚集索引noncoherent bundle 非相关捆扎noncoherent modulation system 非相关调变系统noncompat 非相容nonconductor 非导体nonconjunction 非共结nonconjunction 与非nonconnected storage 非连接储存noncontact measurement 非接触测量技术noncontact plunger 非接触式活塞noncontact printing 无接触投影曝光noncontact recording 非触式记录noncontact scribing 无接触划片noncontact welding 非接触焊接noncontiguous constant 非邻接常数noncontiguous item 非连续项noncontinguous 非连续项目nondedicated part 非专用元件nondefective zone 无缺陷区nondegenerate gas 非简并气体nondegenerate semiconductor 非简并半导体nondegenerate state 非简并态nondependent nameNondestructive Addition 破坏性加法nondestructive backspace 非破坏回退nondestructive check 非破坏性试验nondestructive cursor 非破坏性光标nondestructive evaluation 非破坏可靠性评价nondestructive memory 非破坏性存储器nondestructive monitoring 非破坏性试验nondestructive read 非破坏读出nondestructive read(NDR) 非破坏性阅读nondestructive readout(NDRO) 非破坏性读出nondestructive storage 非破坏性存储器nondestructive test 非破坏性试验nondestructive testing 非破坏性试验nondial trunks 非拨号干线nondirect transition 间接跃迁nondisjunction 非分离nondisjunction 或非non-disk file 非磁盘档案non-display-based word-processing equipment 非显示基字处理设备nondissipative network 无耗电网络none 无nonequilibrium carrier 非平衡载劣nonequilibrium density 非平衡浓度nonequilibrium state 非平衡态nonequivalence element 非对等组件nonequivalence element 异门nonequivalence operation 非对等运算nonequivalence 非等价Nonequivalent Element 非对等组件nonerasable medium 不可抹媒介nonerasable memory 只读存储器固定存储器nonerasable storage 只读存储器固定存储器non-escapling key 非退出键nonexcited state 非激励状态nonexcutable statement 不可执行叙述nonexecutable statement 非执行语句nonfile-structured device 非文件结构装置nonflame spot bonder 无火焰点焊机nonflatness 非平面度nonflexible coaxial line 刚性同轴线nonformatted data 非格式化数据Non-Functional requirement 非功能性需求nonidentity operation 非识别运算nonimpact printer 非或式印刷机nonimpact printer 非撞击式打印机non-impact printer 非撞击式打印机nonimpact printer(NIP) 非冲击印字机nonimpact printing 非或式印刷nonintegral expression 非整数类表达式nonintelligible cross talk 不可理解串音noninteractive 非交谈式noninterruption discipline 非中断规定non-intrinsic OLE 非内建OLEnon-intrinsic 非内建noninvasive probe 非侵袭探针nonleaf member 非叶成员nonleaf 非叶nonlinear control system 非线性控制系统nonlinear control theory 非线性控制理沦nonlinear coupling 非线性联结nonlinear distortion 非线性失真nonlinear multivariable control 非线性多变量控制nonlinear optics 非线性光学nonlinear potentiometer 非线性电位计nonlinear programming 非线性规划nonlinear resistor 非线性电阻器nonlinear response 非线性响应nonlinear scale 非线性标度nonlinearity 非直线性nonloadable character set 非可载字符集nonloaded lines 无载线Nonlocking Escape 不锁逸出nonlocking escape 非锁定换码nonlocking 不锁nonlocking 非锁定nonmapping mode 非映像模态nonmaskable interrupt 非屏蔽中断non-modal form 非强制响应窗体nonmonotonic reasoning 非单灯理nonmonotonic 非单调的nonnumeric character 非数字字符nonnumeric literal 非数值文字常数nonnumeric literal 非数字实字nonnumeric machine 非数值计算机nonnumeric 非数字nonnumerical data processing 非数值数据处理nonoperable instruction 不可操作指令nonpacked format 非包装格式nonpageable partition 非分页划分nonpageable region 不可分页区nonpaged Pool Bytes 未分页集区字节nonpersistent screen 无余辉屏幕nonplanarity 非平面度nonpolar crystal 无极性晶体nonpolarized light 非偏振光nonpolarized return to zero recording 非极性归零记录制nonpolarized return-to-zero recording(RZ(NP)) 非极化归零记录nonprimitive operation 非本元运算nonprint code 非打印码nonprint 免印nonprintable character 不可印字符nonpriority interrupt 非优先中断nonprivileged instruction 非特权指令nonprocedural language 非过程语言nonprocedural programming language 非程序化程序语言non-procedure-oriented language 非程序定向语言nonproductive operations 辅助操作nonproductive poll 非生产输询nonproductive task 非生产任务nonprogrammable action 不可编程序的动作nonprogrammed halt 非规划暂停nonprogrammer user 非程序员用户nonradiative jump 无辐射跃迁nonradiative recombination 无辐射复合nonradiative transition 无辐射跃迁nonradiatve transfer process 无辐射传输过程non-real-time processing 非实时处理nonrectifying junction 非整玲nonredundancy 非冗余性nonredundant integrated circuit 无冗余集成电路nonreflective coatings 非反射涂料non-reflective ink 非反射墨水nonrepeatable read 不可重复读取nonreproducing code 非复制代码non-repudiation 不可否认性nonreserved word 非预定字nonresident part 非常驻部分nonresident portion 非常驻部分nonresident portion(of a control program) (一个控制程序的)非驻存部分nonresident program 非常驻程序nonresident routine 非常驻程序nonresident simulator computer system 非驻存仿真器计算器系统nonreturn to zero change recording 异码变化不归零记录nonreturn to zero recording 不归零记录Non-Return to Zero, Inverted NRZInon-return-to-chang recording 不归变更记录non-return-to-reference recording 不归位记录non-return-to-zero change-on-ones recording(NRZI) 不归零变更为一记录non-return-to-zero(chang4e)recording(NRZ(C)) 不归零(变更)记录non-return-to-zero(NRZ) 不归零nonreusable 不可重用nonrusable routine 不可重用程序nonsaturated logic 非饱和逻辑nonsaturated mode 非饱和方式nonsaturation current voltage characteristic 非饱和电恋缪固匦憎nonscalar value 非数值类值Nonscheduled Down Time 非计划停机时间nonscheduled maintenance time 非预定维修时间nonselfmaintained discharge 非自持放电nonsensitivity 无灵敏度non-SGML character 非SGML字元non-SGML character 非SGML字符non-SGML data entity 非SGML资料实体non-SGML data entity 非SGML数据实体nonshared subchannel 非公用子通道nonsignificant digit 无效数字nonsignificant zero 无效零nonsimultaneous transmission 非同时传输nonsingular matrix 非奇异矩阵nonspecific volume request 非特定量申请nonstandard label 非标准标号nonstatic member function 非静态成员函式nonstatic variables 非静态变量nonstatic 非静态nonsteady state 不稳定状态NonStop Clusters 不停顿丛集nonstorage device 非储存装置nonstorage display 非存储显示nonstore through cache 经快取非储存non-String 非字符串nonswitched connection 非交换连接nonswitched line 非交换线路nonswitched lint 非交换录nonswitched point-to-point line 非交换点对点线nonsynchronous 异步nonsystem key 非系统键nontemporary dataset 永久数据集nonterminal symbol 非终结符号nonthreshold logic 无阈值逻辑nontransparent mode 非透通模态nonuniform field 不均匀场nonuniform network 不均匀网络nonuniformity 不均匀性non-variant content 无差异内容non-visual 隐藏式nonvolatile memory array 非易失性存储企列nonvolatile memory 不变性记忆器nonvolatile memory 非易失存储器nonvolatile memory 非易失性存储器nonvolatile RAM 不变性随机接达记忆器nonvolatile ram 非易失随机存取存储器Non-V olatile Random Access Memory (NVRAM) 非挥发性内存nonvolatile storage 不变性储存器nonvolatile storage 非易失存储器nonvolatile store 非易失存储器nonvolatility 非易失性nonzero digit 非零位nonzero 非零值NOOP NO OPeration 空操作no-op instruction 无作业指令No-Op 无作业no-operation instruction 无作业指令NOP Network and Operation Plan 网络和操作计划NOP Network Operation Procedure 网络操作程序NOP NO Operation 空操作(指令)nop 空操赘令NOR circuit 反或电路nor circuit 或非电路NOR Element NOR组件nor element 或非元件nor gate 或非门。
有关助力机械臂的参考文献
助力机械臂是一种具备力传感和力反馈功能的机械臂。
它通过感知外界环境的力信息,并根据力指令,实现对机械臂的辅助力控制和力反馈。
助力机械臂在工业制造、康复医疗、协作机器人等领域具有广泛的应用前景。
本文将介绍助力机械臂的相关参考文献,并对其研究内容和应用进行概述。
1.Dai J. et al., “Design and control of a lower limb exoskeleton for robot-assisted gait training,” IEEE Transactions on Mechatronics, vol. 23, no. 3,pp. 1259-1270, June 2018. 该文研究了一种用于机器人辅助步态训练的下肢外骨骼的设计和控制。
该外骨骼结合了助力机械臂的设计理念,可以对患者的下肢进行辅助力控制和力反馈,提高步态训练的效果。
2.Battaglia E. et al., “Design and control of a robotic exoskeleton forupper limb rehabilitation,” R obotics and Autonomous Systems, vol. 94, pp. 13-24, May 2017. 该文介绍了一种用于上肢康复的机器人外骨骼的设计和控制。
该外骨骼采用助力机械臂技术,通过力传感器感知患者的手臂力信息,并通过控制算法实现对手臂的辅助力控制,促进上肢康复训练。
3.Zhao G. et al., “Design and control of an upper limb exoskeleton forrehabilitation,” IEEE Transactions on Neural Systems and RehabilitationEngineering, vol. 27, no. 5, pp. 866-875, May 2019. 该文研究了一种用于上肢康复训练的上肢外骨骼的设计和控制。
计及健康特征信息量的锂离子电池健康状态与剩余寿命预测研究
第51卷第22期电力系统保护与控制Vol.51 No.22 2023年11月16日Power System Protection and Control Nov. 16, 2023 DOI: 10.19783/ki.pspc.230606计及健康特征信息量的锂离子电池健康状态与剩余寿命预测研究岳家辉1,夏向阳1,吕崇耿1,吴小忠2,孔 林3,张 媛1,陈来恩1(1.长沙理工大学电气与信息工程学院,湖南 长沙 410114;2.国网湖南省电力有限公司,湖南 长沙 410004;3.中国能源建设集团湖南省电力设计院有限公司,湖南 长沙 410004)摘要:电池状态有效评估过程中数据驱动法的模型输入虽与容量呈现相关性,但并没有考虑其信息量及信息质量,低质量的数据输入会造成一定程度的预测偏差。
针对上述问题,提出一种计及健康特征信息量的加权神经网络电池健康状态(state of health, SOH)预测与剩余寿命(remaining useful life, RUL)估计模型。
该模型在GA-BP神经网络的基础上,通过确定有效健康特征数据集,利用数据信息度构建动量因子来保证神经网络迭代收敛速度。
并基于熵权思想过滤出低信息量健康特征的预测结果,将过滤后的预测结果作为电池老化模型的输入,进一步实现剩余寿命的估计。
通过公开电池老化数据集与实验平台进行验证,得到该模型健康状态预测结果MAE、RMSE分别控制在0.63%、0.81%之下,剩余寿命估计结果MAE、RMSE分别控制在0.0031 mAꞏh、0.0042 mAꞏh之下,具有良好的可行性与有效性。
关键词:锂离子电池;数据驱动技术;健康状态;剩余使用寿命;神经网络;熵权法Research on the prediction of state of health and remaining useful life of lithium-ion batteriesconsidering the amount of health factors informationYUE Jiahui1, XIA Xiangyang1, LÜ Chonggeng1, WU Xiaozhong2, KONG Lin3, ZHANG Yuan1, CHEN Laien1(1. School of Electrical and Information Engineering, Changsha University of Science and Technology, Changsha 410114,China; 2. State Grid Hunan Electric Power Co., Ltd., Changsha 410004, China; 3. China Energy ConstructionGroup Hunan Electric Power Design Institute Co., Ltd., Changsha 410004, China) Abstract: The model input of the data-driven method in the effective evaluation process of battery state, although related to capacity, does not consider its information content and quality. Low-quality data input can cause a certain degree of prediction bias. To address this issue, this paper proposes a weighted neural network battery SOH prediction and RUL estimation model that takes into account the degree of health factor information. Based on the GA-BP neural network, this model identifies effective health feature data sets and uses data information to generate momentum factors to ensure neural network iteration convergence speed. And this paper filters out low information health feature prediction findings using the entropy weight concept and then uses the filtered prediction results as the input to the battery aging model to further achieve the RUL estimation. It is discovered through the publicly available battery aging datasets and experimental platforms that the model's SOH prediction results have a MAE and RMSE range controlled within 0.63% and 0.81%, and the remaining useful life estimation results have a MAE and RMSE range controlled within 0.0031 mAꞏh and 0.0042 mAꞏh, indicating good feasibility and effectiveness.This work is supported by the National Natural Science Foundation of China (No. 51977014).Key words: lithium-ion battery; data-driven technology; state of health; remaining useful life; neural network; entropy weight method0 引言2022年,国家发展改革委和国家能源局印发的基金项目:国家自然科学基金项目资助(51977014);湖南省研究生科研创新项目资助(CX20220917) 《“十四五”新型储能发展实施方案》中明确:在新型电力系统发展过程中,明细储能电池本质安全控制、电化学储能电站全面安全预警、实现储能电站安全体系跨越式发展,是储能发展的核心攻关方向;同年,《国家自然科学基金“十四五”发展规划》中将“实现可再生能源的规模化安全高效储能”作为工岳家辉,等计及健康特征信息量的锂离子电池健康状态与剩余寿命预测研究- 75 -程与材料学部重点发展目标[1]。
回转支承自适应负载的运动控制方法
回转支承自适应负载的运动控制方法谢冬华;洪荣晶;王华【摘要】建立回转支承运动系统的动力学模型,以传统阻抗控制为基础,分析由于动力学模型不确定造成的误差,用神经网络补偿这一误差,建立基于力矩型神经网络阻抗控制结构,并对控制系统进行仿真分析.结果表明:力矩型神经网络阻抗控制器具有良好的自适应性及鲁棒性,能实现回转支承系统的驱动力和位置的双重高精度控制,从而降低功率损耗,有效减少损伤的发生机率和减缓损伤发展速度,延长使用寿命.%A dynamics model of a slewing bearing motion control system was established.Based on impedance control method,the error caused by uncertainty of the dynamics model was analyzed.The error was compensated by using neural network algorithm.A torque-based neural network impedance controller was developed and simulation analysis was conducted.The results showed that the controller had good adaptability and robustness,and it could control both driving torque and position precisely.Therefore,power loss,probability of damage occurrence and damage development rate could be reduced,and the service life of the slewing bearing could be extended.【期刊名称】《南京工业大学学报(自然科学版)》【年(卷),期】2013(035)004【总页数】5页(P110-114)【关键词】回转支承;阻抗控制;神经网络;自适应【作者】谢冬华;洪荣晶;王华【作者单位】南京工业大学机械与动力工程学院,江苏南京210009;南京工业大学机械与动力工程学院,江苏南京210009;南京工业大学机械与动力工程学院,江苏南京210009【正文语种】中文【中图分类】TP273回转支承是广泛应用于工程机械、风力发电机、海洋平台、军用装备等大型机械结构中需要作相对回转运动的基础部件,它尺寸较大又类似于轴承,所以又称之为转盘轴承[1],它有着不同于普通轴承的特性:要求同时承受轴向力、倾覆力矩和径向力,低速重载,工作环境极其恶劣。
人工智能与医疗英语
02
The Importance and Needs Analysis of Medical English
The demand for medical English in the context of globalization
Increasing international cooperation and exchange in the medical field
Benefits of using standardized medical terminology and expressions in international communication
03
The application of artificial intelligence
in ed diagnosis and its association with
01
Challenges in understanding medical terminology and concepts across languages
02
Impact of language barriers on patient care and safety
Need for accurate translation and interpretation in
International application cases: Abroad, artistic intelligence technology has also been widely used in the medical field For example, in the United States, artistic intelligence has been used to predict the risk of diabetes and assist in the diagnosis and treatment of breast cancer In Europe, artistic intelligence has been used to monitor the health status of the elderly and provide timely warnings and interventions
DR内听道像及多层螺旋CT三维重建对人工耳蜗的监测
DR内听道像及多层螺旋CT三维重建对人工耳蜗的监测发表时间:2017-09-15T11:56:49.317Z 来源:《临床医学教育》2017年8月作者:黄柱飞商雪林黄玉莫春开卢翠王耀华[导读] 目前人工耳蜗植入术价格昂贵,患者及家属的期望值高,术后患者听力恢复效果存在一定的差异,单一的声学监测未能完全反映手术的效果。
解放军第303医院放射科广西南宁 530021【摘要】目的探讨DR内听道像及多层螺旋CT三维重建对人工耳蜗植入术后的效果评估,指导临床是否再手术及康复训练。
方法回顾性分析我院46例已行人工耳蜗植入术后的影像检查及相关的声学检测。
所有患者均行DR内听道像及耳镜检查,其中8例行CT三维重建。
结果 43例DR内听道像显示工作电极全部植入且沿耳蜗螺旋自然弯曲,无滑脱、扭曲,术中、术后的声学检测正常;2例DR內听道像显示工作电极未植入完全,术中检测声阻抗正常,术后恰当刺激神经反应遥测可引出;1例患者内耳先天发育为Mickel型,其多层螺旋CT三维重建显示蜗内电极位置过深,部分自鼓阶滑脱,部分在底圈与中间圈移行处扭曲,且电极不工作,声学检测不能引出,需行再植入术,另3例CT显示蜗内电极连续,最后一对电极位于圆窗开口处,形态、走行无异常。
结论 DR内听道像廉价、直观监测蜗内电极位置、形态,应作为人工耳蜗植入术后的常规检查;CT可以提供确切的异位信息及内耳、中耳畸形的情况,两者对人工耳蜗植入术后的效果评估和康复训练有重要的价值。
【关键词】人工耳蜗内听道像多层螺旋CT三维重建监测Abstract Objective: To evaluate the instructional effect of DR internal auditory canal(DR-IAC) and Multi-slice spiral CT(MSCT) three-dimensioned reconstruction in the cochlear implantation post-operatively, and to guide the clinical surgery and weather to conduct rehabilitation training. Methods: Forty-six cochlear implant recipients, in the People's Liberation Army Hospital NO.303, were involved in this study. All of them conducted imaging and acoustics examination and DR otoscopy. Among them, MSCT and three-dimensioned reconstruction was performed in 8 cases. Results: 43 cases of DR-IAC showed working electrodes were fully implanted and along the cochlea with spiral natural bent, no slippage or distortion. 2 cases of DR-IAC showed working electrodes were not fully implanted; acoustic impedance worked regularly inter-operatively; the appropriate impulsion of neural response telemetry could lead to oscillogram post-operatively. 1 case of re-implantation by MSCT belonged to type Mickel in congenital development, and showed the deep location and some slippage in the scala tympani, and some distortion in the bottom and migration part of the cochlear duct. Also the electrode did not work and failed to complete the acoustic detection in this case. 3 cases by CT showed continuous cochlear electrode with the last section located in round window, no abnormal morphology and orientation. Conclusion: DR-IAC is cheap and effective in monitoring location and morphology of electrode, and it should be the general examination of post-operatively. CT can provide exact information of ectopic. Both are of significance in performance evaluation and rehabilitation training.Key words cochlear implantation; Internal auditory canal; MSCT and three-dimensional reconstruction;Monitoring 目前人工耳蜗植入术价格昂贵,患者及家属的期望值高,术后患者听力恢复效果存在一定的差异,单一的声学监测未能完全反映手术的效果。
综述-神经网络在机械工程应用现状
综述-神经网络在机械工程应用现状神经网络在机械工程应用现状综述1、前言神经网络(Neural Networks,简写为ANNs)是一种模仿动物神经网络行为特征,进行分布式并行信息处理的算法数学模型。
这种网络依靠系统的复杂程度,通过调整内部大量节点之间相互连接的关系,从而达到处理信息的目的。
2、正文2.1、Adaptive neural network force tracking impedance control for uncertain robotic manipulator based on nonlinear velocity observer这篇文章提出了一种基于非线性观测器的自适应神经网络力跟踪阻抗控制方案,用于控制具有不确定性和外部扰动的机器人系统。
假设可以测量机器人系统的关节位置和相互作用力,而关节速度是未知的和未测量的。
然后,设计非线性速度观测器来估计机械手的关节速度,并利用Lyapunov稳定性理论分析观测器的稳定性。
基于估计的关节速度,开发了自适应径向基函数神经网络(RBFNN)阻抗控制器,以跟踪末端执行器的期望接触力和机械手的期望轨迹,其中自适应RBFNN用于补偿系统。
不确定性,以便可以提高关节位置和力跟踪的准确性。
基于Lyapunov稳定性定理,证明了所提出的自适应RBFNN 阻抗控制系统是稳定的,闭环系统中的信号都是有界的。
最后,给出了双连杆机器人的仿真实例,以说明该方法的有效性。
[1]在控制方案中,首先设计非线性速度观测器来估计机械手的关节速度,并用严格的Lyapunov稳定性理论分析观测器的稳定性。
接下来,根据估计的速度,开发自适应神经网络阻抗控制器以跟踪末端执行器的期望接触力和操纵器的期望轨迹,其中自适应神经网络用于补偿操纵器的系统不确定性,因此然后可以改善力和位置跟踪精度,并且使用鲁棒项来补偿神经网络的外部干扰和近似误差。
最后,通过双连杆机器人的计算机模拟显示了控制方案的有效性。
215501262_敲低ACC1对胶质瘤U251细胞迁移的作用及机制研究张 琳
敲低ACC1对胶质瘤U251细胞迁移的作用及机制研究张 琳1,2,钱 河3,赵宝生3,高曼棋1,2,刘玉珍1,2,3△(1.新乡医学院第一附属医院河南省神经修复重点实验室,河南卫辉453100;2.新乡医学院第一附属医院生命科学研究中心,河南卫辉453100;3.新乡医学院第一附属医院胸外科,河南卫辉453100)【摘要】 目的:探讨敲低ACC1对人胶质瘤U251细胞迁移的作用及机制。
方法:选用人胶质瘤U251细胞系。
实验分为三部分,实验一:通过慢病毒转染建立稳定低表达ACC1的U251细胞株(shACC1)及其对照(NC),Tran swell迁移及划痕实验检测细胞迁移,WB检测ACC1、Vimentin、Fibronectin、N cadherin、E cadherin、Slug蛋白表达;实验二:探索并验证敲低ACC1后下游关键分子PAI 1表达量升高。
应用其抑制剂PAI 039处理细胞,Transwell迁移及划痕实验检测细胞迁移,WB检测ACC1、PAI 1、Vimentin、Fibronectin、N cadherin、E cadherin、Slug蛋白表达;实验三:探索敲低ACC1调节PAI 1的分子机制,检测细胞乙酰辅酶A水平及组蛋白H3乙酰化。
使用乙酰基转移酶抑制剂C646处理细胞,Transwell迁移及划痕实验检测细胞迁移,WB检测ACC1、H3K9ac、PAI 1、Vimentin、Fibronec tin、N cadherin、E cadherin、Slug蛋白表达,RT qPCR检测PAI 1mRNA水平;每项实验重复三次。
结果:实验一:对胶质瘤U251细胞进行慢病毒转染,WB结果显示,与NC组相比,shACC1组ACC1表达水平显著降低,提示慢病毒转染成功(P<0.01),shACC1组迁移细胞数明显增多(P<0.01),迁移相关蛋白Vimentin、Fibronectin、N cadherin、Slug表达上调,E cadherin表达下调(P<0.01);实验二:与NC组相比,shACC1组PAI 1mRNA水平上调;进一步使用PAI 1的抑制剂PAI 039,与对照组相比,shACC1+PAI 039组细胞迁移数减少,且呈浓度依赖性(P<0.01),迁移相关蛋白Vimentin、Fibronectin、N cadherin、Slug表达上调,E cadherin表达下调(P<0.01);实验三:与NC组相比,shACC1组乙酰辅酶A浓度显著增加(P<0.01),H3K9ac表达水平明显升高(P<0.01);进一步使用组蛋白乙酰基转移酶抑制剂C646处理细胞后,PAI 1mRNA水平下降,与对照组相比,shACC1+C646组细胞迁移数减少,且呈浓度依赖性(P<0.01),H3K9ac表达水平降低,迁移相关蛋白Vimentin、Fibronectin、N cadherin、Slug表达上调,E cad herin表达下调(P<0.01);结论:敲低ACC1通过增加组蛋白乙酰化修饰水平上调PAI 1促进人胶质瘤U251细胞的迁移。
西门子PXCCompact系列控制器说明书
Technical Specification SheetDocument No. 149-454July 1, 2013 Siemens Industry, Inc. Page 1 of 8PXC Compact SeriesFigure 1. PXC Compact Series Controllers(PXC-24 and PXC-36 shown.)DescriptionThe PXC Compact Series (Programmable Controller–Compact) is a high-performance Direct Digital Control(DDC) supervisory equipment controller, which is anintegral part of the APOGEE® Automation System.The PXC Compact Series offers integrated I/O basedon state-of-the-art TX-I/O™ Technology, whichprovides superior flexibility of point and signal types,and makes it an optimal solution for Air Handling Unit(AHU) control. The PXC Compact operates stand-alone or networked to perform complex control,monitoring, and energy management functions withoutrelying on a higher-level processor.The PXC Compact Series communicates with otherfield panels or workstations on a peer-to-peerAutomation Level Network (ALN) and supports thefollowing communication options:∙ Ethernet TCP/IP∙P2 RS-485The PXC Compact is available with 16, 24, or 36 pointterminations. Selected models in the Compact Seriesprovide the following options:∙Support for FLN devices.∙An extended temperature range for the control ofrooftop devices.∙Support for Island Bus, which uses TX I/Omodules to expand the number of pointterminations.Features∙DIN rail mounted device with removable terminalblocks simplifies installation and servicing.∙Proven program sequences to match equipmentcontrol applications.∙Built-in energy management applications and DDCprograms for complete facility management.∙Comprehensive alarm management, historicaldata trend collection, operator control, andmonitoring functions.∙Sophisticated Adaptive Control, a closed loopcontrol algorithm that auto-adjusts to compensatefor load/seasonal changes.∙Message control for terminals, printers, pagers,and workstations.∙Highly configurable I/O using Siemens state-of-the-art TX-I/O™ Technology.∙HMI RS-232 port, which provides laptopconnectivity for local operation and engineering.∙Extended battery backup of Real Time Clock.∙Persistent database backup and restore within thecontroller.∙Optional HOA (Hand/Off/Auto) module forswappable and configurable HOA capability.∙Optional extended temperature range for rooftop installation.∙Optional peer-to-peer communications over industry-standard 10Base-T/100Base-TX Ethernet networks.∙Optional support for FLN devices.∙Optional support for P1 Wireless FLN.∙Optional operation as a P1 FLN device with default applications.∙Optional support for Virtual AEM.∙PXM10T and PXM10S support: Optional LCD Local user interface with HOA (Hand-off-auto)capability and point commanding and monitoringfeatures.The Compact SeriesIn addition to building and system management functions, the Compact Series includes several styles of controllers that flexibly meet application needs.PXC-16The PXC-16 provides control of 16 points, including 8 software-configurable universal points.Point count includes: 3 Universal Input (UI), 5 Universal I/O (U), 2 Digital Input (DI), 3 Analog Output (AOV), and 3 Digital Output (DO).PXC-24The PXC-24 provides control of 24 points, including 16 software-configurable universal points.Point count includes: 3 Universal Input (UI), 9 Universal I/O (U), 4 Super Universal I/O (X), 3 Analog Output (AOV), 5 Digital Output (DO).PXC-36The PXC-36 provides control of 36 local points, including 24 software-configurable universal points. Point count includes: 18 Universal I/O (U), 6 Super Universal I/O (X), 4 Digital Input (DI), and 8 Digital Output (DO).The PXC-36 offers the flexibility of expanding the total point count through a self-forming island bus. With the addition of a TX-I/O Power Supply, up to 4 TX-I/O modules can be supported. For more information, see the TX-I/O Product Range Technical Specification Sheet (149-476). Available OptionsThe following options are available to match the application:Ethernet or RS-485 ALNSupport for APOGEE P2 ALN through TCP/IP orRS-485 networks.FLN Support∙The PXC-24 “F32” models support up to 32 P1 FLN devices when the ALN is connected toTCP/IP.∙The PXC-24 “F” models with an FLN license support up to 32 P1 FLN devices when the ALN isconnected to TCP/IP.∙The PXC-36 with an FLN license supports up to 96 P1 FLN devices when the ALN is connected toRS-485 or TCP/IP.∙ A Wireless FLN may also be used to replace the traditional P1 FLN cabling with wirelesscommunication links that form a wireless meshnetwork. Additional hardware is required toimplement the Wireless FLN.For more information about FLN support, contact your local Siemens Industry representative.P1 FLN OperationThe PXC-16 and PXC-24 can be configured as a programmable P1 FLN device. In the P1 FLN mode, the PXC Compact functions as an equipment controller with customized programming and default applications.Virtual AEM SupportThe Virtual AEM license allows the PXC Compact to connect an RS-485 APOGEE Automation Level Network or individual field panels to a P2 Ethernet network without additional hardware.Extended Temperature OperationThe "R" models of the PXC Compact Series support extended temperature operation, allowing for rooftop installations.Field Panel GOThe PXC-36 supports Field Panel GO.The Field Panel GO license provides a Web-based user interface for your APOGEE® Building Automation System. It is an ideal solution for small or remote facilities with field panels on an Ethernet Automation Level Network (ALN).Page 2 of 8 Siemens Industry, Inc.HardwareThe PXC Compact Series consists of the following major components:∙ Input/Output Points∙ Power Supply∙ Controller ProcessorInput/Output Points∙The PXC Compact input/output points perform A/D or D/A conversion, signal processing, pointcommand output, and communication with thecontroller processor. The terminal blocks areremovable for easy termination of field wiring.∙The Universal and Super Universal points leverage TX-I/O™ Technology from SiemensIndustry to configure an extensive variety of pointtypes.∙Universal Input (UI) and Universal Input/Output (U) points are software-selectable to be:- 0-10V input-4-20 mA input- Digital Input-Pulse Accumulator inputs-1K Ni RTD @ 32°F (Siemens, JohnsonControls, DIN Standard)-1K Pt RTD (375 or 385 alpha) @ 32°F-10K NTC Thermistor (Type 2 and Type 3) @ 77°F-100K NTC Thermistor (Type 2) @ 77°F-0-10V Analog Output (Universal Input/Output (U) points only)∙Super Universal (X) points (PXC-24 and PXC-36 only) are software-selectable to be:- 0-10V input-4-20 mA input- Digital Input-Pulse Accumulator inputs-1K Ni RTD @ 32°F (Siemens, JohnsonControls, DIN Standard)-1K Pt RTD (375 or 385 alpha) @ 32°F-10K NTC Thermistor (Type 2 and Type 3) @ 77°F-100K NTC Thermistor (Type 2) @ 77°F- 0-10V Analog Output-4-20 mA Analog Output-Digital Output (using external relay)∙Dedicated Digital Input (DI) points (PXC-16 and PXC-36 only) are dry contact status sensing. ∙Digital Output (DO) points are 110/220V 4 Amp (resistive) Form C relays; LEDs indicate the status of each point.∙All PXC Compact Series models support 0-10 Vdc Voltage Analog Output circuits.∙On PXC-24 and PXC-36 models, the Super Universal circuits may be defined as 4-20 mAcurrent AO.Power Supply∙The 24 volt DC power supply provides regulated power to the input/output points and activesensors. The power supply is internal to the PXCCompact housing, eliminating the need forexternal power supply and simplifying installationand troubleshooting.∙The power supply works with the processor to ensure smooth power up and power downsequences for the equipment controlled by the I/O points, even through brownout conditions. Controller Processor∙The PXC Compact Series includes amicroprocessor-based multi-tasking platform forprogram execution and communications with theI/O points and with other PXC Compacts and field panels over the ALN.∙ A Human Machine Interface (HMI) port, with a quick-connect phone jack (RJ-45), uses RS-232protocol to support operator devices (such as alocal user interface or simple CRT terminal), and a phone modem for dial-in service capability.∙ A USB Device port supports a generic serial interface for an HMI or Tool connection.∙The program and database information stored in the PXC Compact RAM memory is battery-backed. This eliminates the need for time-consuming program and database re-entry in theevent of an extended power failure.∙The firmware, which includes the operating system, is stored in non-volatile flash ROMmemory; this enables firmware upgrades in thefield.∙Brownout protection and power recovery circuitry protect the controller board from powerfluctuations.∙LEDs provide instant visual indication of overall operation, network communication, and lowbattery warning.Siemens Industry, Inc. Page 3 of 8Programmable Control with Application FlexibilityThe PXC Compact Series of high performance controllers provides complete flexibility, which allows the owner to customize each controller with the exact program for the application.The control program for each PXC Compact is customized to exactly match the application. Proven Powers Process Control Language (PPCL), a text-based programming structure like BASIC, provides direct digital control and energy management sequences to precisely control equipment and optimize energy usage.Global Information AccessThe HMI port supports operator devices, such as a local user interface or simple CRT terminal, and a phone modem for dial-in service capability. Devices connected to the operator terminal port gain global information access.Multiple Operator AccessMultiple operators can access the network simultaneously. Multiple operator access ensures that alarms are reported to an alarm printer while an operator accesses information from a local terminal. When using the Ethernet TCP/IP ALN option, multiple operators may also access the controller through concurrent Telnet sessions and/or local operator terminal ports.Menu Prompted, English Language Operator InterfaceThe PXC Compact field panel includes a simple, yet powerful, menu-driven English Language Operator Interface that provides, among other things:∙Point monitoring and display∙ Point commanding∙Historical trend collection and display for multiple points∙ Event scheduling∙Program editing and modification via Powers Process Control Language (PPCL)∙Alarm reporting and acknowledgment∙Continual display of dynamic information Built-in Direct Digital Control RoutinesThe PXC Compact provides stand-alone Direct Digital Control (DDC) to deliver precise HVAC control and comprehensive information about system operation. The controller receives information from sensors in the building, processes the information, and directly controls the equipment. The following functions are available:∙Adaptive Control, an auto-adjusting closed loop control algorithm, which provides more efficient,adaptive, robust, fast, and stable control than thetraditional PID control algorithm. It is superior interms of response time and holding steady state,and at minimizing error, oscillations, and actuatorrepositioning.∙Closed Loop Proportional, Integral and Derivative (PID) control.∙ Logical sequencing.∙Alarm detection and reporting.∙ Reset schedules.Built-in Energy Management ApplicationsThe following applications are programmed in the PXC Compact Series and require simple parameter input for implementation:∙Automatic Daylight Saving Time switchover∙ Calendar-based scheduling∙ Duty cycling∙ Economizer control∙Equipment scheduling, optimization andsequencing∙ Event scheduling∙ Holiday scheduling∙Night setback control∙Peak Demand Limiting (PDL)∙Start-Stop Time Optimization (SSTO)∙ Temperature-compensated duty cycling∙Temporary schedule overridePage 4 of 8 Siemens Industry, Inc.SpecificationsDimensions (L × W × D)PXC-16 and PXC-2410.7 in. × 5.9 in. × 2.45 in. (272 mm × 150 mm × 62 mm)PXC-3611.5 in. × 5.9 in. × 3.0 in. (293 mm × 150 mm × 77 mm) Processor, Battery, and MemoryProcessor and Clock SpeedPXC-16 and PXC-24: Motorola MPC852T, 100 MHzPXC-36: Motorola MPC885, 133 MHz MemoryPXC-16 and PXC-24: 24 MB (16 MB SDRAM, 8 MB Flash ROM)PXC-36: 80 MB (64 MB SDRAM, 16 MB Flash ROM) Battery backup of Synchronous Dynamic (SD) RAM (field replaceable)Non-rooftop Models: 60 days (accumulated),AA (LR6) 1.5 Volt Alkaline (non-rechargeable)Rooftop (Extended Temperature) Models: 90 days (accumulated),AA (LR6) 3.6 Volt Lithium (non-rechargeable) Battery backup of Real Time ClockNon-rooftop Models: 10 yearsRooftop (Extended Temperature) Models: 18 months CommunicationA/D Resolution (analog in)16 bitsD/A Resolution (analog out)10 bitsEthernet/IP Automation Level Network (ALN)10Base-T or 100Base-TX compliant RS-485 Automation Level Network (ALN)1200 bps to 115.2 Kbps RS-485 P1 Field Level Network (FLN) on selected models, license required4800 bps to 38.4 Kbps Human-Machine Interface (HMI)RS-232 compliant, 1200 bps to 115.2 Kbps USB Device port (for non-smoke control applications only)Standard 1.1 and 2.0 USB device port, Type B female connector.USB Host port on selected models (for ancillary smoke control applications only)Standard 1.1 and 2.0 USB host port, Type A female connector. ElectricalPower Requirements24 Vac ±20% input @ 50/60 HzPower Consumption (Maximum)PXC-16: 18 VA @ 24 VacPXC-24: 20 VA @ 24 VacPXC-36: 35 VA @ 24 Vac Siemens Industry, Inc. Page 5 of 8AC Power and Digital OutputsNEC Class 1 Power Limited Communication and all other I/ONEC Class 2 Digital InputContact Closure SensingDry Contact/Potential Free inputs onlyDoes not support counter inputs Digital OutputClass 1 Relay Analog Output0 to 10 VdcUniversal Input (UI) and Universal Input/Output (U)Analog InputVoltage (0-10 Vdc)Current (4-20 mA)1K Ni RTD @ 32°F1K Pt RTD (375 or 385 alpha) @ 32°F10K NTC Type 2 or Type 3 Thermistor @ 77°F100K NTC Type 2 Thermistor @ 77°FDigital InputPulse AccumulatorContact Closure SensingDry Contact/Potential Free inputs onlySupports counter inputs up to 20 HzAnalog Output (Universal Input/Output (U) points only)Voltage (0-10 Vdc) Super Universal (X)Analog InputVoltage (0-10 Vdc)Current (4-20 mA)1K Ni RTD @ 32°F1K Pt RTD (375 or 385 alpha) @ 32°F10K NTC Type 2 or Type 3 Thermistor @ 77°F100K NTC Type 2 Thermistor @ 77°FDigital InputPulse AccumulatorContact Closure SensingDry Contact/Potential Free inputs onlySupports counter inputs up to 20 HzAnalog OutputVoltage (0-10 Vdc)Current (4-20 mA)Digital Output (requires an external relay)0 to 24 Vdc, 22 mA max. Operating EnvironmentAmbient operating temperature32°F to 122°F (0°C to 50°C) Ambient operating temperature with rooftop (extended temperature) option-40°F to 158°F (-40°C to 70°C) Relative HumidityPXC-16 and PXC-24: 5% to 95%, non-condensingPXC-36: 5% to 95%, non-condensing Page 6 of 8 Siemens Industry, Inc.Mounting SurfacePXC-16 and PXC-24: Direct equipment mount, building wall, or structural memberPXC-36: Building wall or a secure structure Agency ListingsULUL864 UUKL (except rooftop models)UL864 UUKL7 (except rooftop models)CAN/ULC-S527-M8 (except rooftop models)UL916 PAZX (all models)UL916 PAZX7 (all models) Agency ComplianceFCC ComplianceAustralian EMC FrameworkEuropean EMC Directive (CE)European Low Voltage Directive (LVD) OSHPD Seismic CertificationProduct meets OSHPD Special Seismic Preapproval certification(OSH-0217-10) under California Building Code 2010 (CBC2010) andInternational Building Code 2009 (IBC2009) when installed within thefollowing Siemens enclosure part numbers: PXA-ENC18, PXA-ENC19,or PXA-ENC34. Ordering InformationPXC Compact SeriesProduct Number DescriptionPXC16.2-P.A PXC Compact, 16 point, RS-485 ALNPXC16.2-PE.A PXC Compact, 16 point, Ethernet/IP ALNPXC24.2-P.A PXC Compact, 24 point, RS-485 ALNPXC24.2-PE.A PXC Compact, 24 point, Ethernet/IP ALNPXC24.2-PR.A PXC Compact, 24 point, RS-485 ALN, rooftop optionPXC24.2-PER.A PXC Compact, 24 point, Ethernet/IP ALN, rooftop optionPXC24.2-PEF.A PXC Compact, 24 point, Ethernet/IP or RS-485 ALN. P1 FLN or Remote Ethernet/IP(Virtual AEM) option.PXC24.2-PEF32.A PXC Compact, 24 point, Ethernet/IP or RS-485 ALN. P1 FLN enabledPXC24.2-PERF.A PXC Compact, 24 point, Ethernet/IP or RS-485 ALN, rooftop option. P1 FLN or RemoteEthernet/IP (Virtual AEM) option.PXC36-PE.A PXC Compact, 36 point, Ethernet/IP or RS-485 ALN.PXC36-PEF.A PXC Compact, 36 point, Ethernet/IP or RS-485 ALN, Island Bus, P1 FLN.Siemens Industry, Inc. Page 7 of 8Information in this document is based on specifications believed correct at the time of publication. The right is reserved to make changes as design improvements are introduced. APOGEE and Insight are registered trademarks of Siemens Industry, Inc. Other product or company names mentioned herein may be the trademarks of their respective owners. © 2013 Siemens Industry, Inc.Siemens Industry, Inc. Building Technologies Division 1000 Deerfield Parkway Buffalo Grove, IL 60089-4513 USA+ 1 847-215-1000Your feedback is important to us. If you havecomments about this document, please send them to***************************************.Document No. 149-454Printed in USAPage 8 of 8Optional LicensesProduct Number DescriptionLSM-FLN License to enable FLN support on PXC-16 or PXC-24 “F”modelsLSM-VAEM License to enable Virtual AEM support when the ALN is connected to RS-485LSM-FLN36.A License to enable FLN support on model PXC36-PE.ALSM-FPGO License to enable Field Panel GO on models PXC36-PE.A and PXC36-PEF.ALSM-IB36.A License to enable the Island Bus on model PXC36-PE.ALSM-36.A License to enable both FLN and Island Bus support on model PXC36-PE.AAccessoriesProduct Number DescriptionPXM10S Controller mounted Operator Display module with point monitor and optional blue backlight PXM10T Controller mounted Operator Display modulePXA8-M 8-switchHOA(UL864)PXA16-M 16-switchHOA(UL864)PXA16-MR 16-switch HOA (extended temp, UL 916) with HMI cablePXA-HMI.CABLEP5 Serial cable required for HOA or PXM10T/S connection to non-rooftop variants ofthe 16-point and 24-point Compact Series (pack of 5)TXA1.LLT-P100 Labels for HOA and TX-I/O Modules, pack of 100, letter formatService Boxes and EnclosuresProduct Number DescriptionPXA-SB115V192VA PX Series Service Box —115V, 24 Vac, 50/60 Hz, 192 VAPXA-SB115V384VA PX Series Service Box— 115V, 24 Vac, 50/60 Hz, 384 VAPXA-SB230V192VA PX Series Service Box— 230V, 24 Vac, 50/60 Hz, 192 VAPXA-SB230V384VA PX Series Service Box —230V, 24 Vac, 50/60 Hz, 384 VAPXA-ENC18 18" Enclosure (Utility Cabinet) (UL Listed NEMA Type 1 Enclosure)PXA-ENC19 19” Enclosure (UL Listed NEMA Type 1 Enclosure)PXA-ENC34 34” Enclosure (UL Listed NEMA Type 1 Enclosure)DocumentationProduct Number Description553-104 PXC Compact Series Owner’s Manual125-1896 Powers Process Control Language (PPCL) User’s Manual。
适应环境刚度、阻尼参数未知或变化的机器人阻抗控制方法
适应环境刚度㊁阻尼参数未知或变化的机器人阻抗控制方法李正义 曹汇敏中南民族大学,武汉,430074摘要:针对机器人阻抗控制在实际应用中其性能受环境的阻尼㊁刚度参数未知或变化影响的问题,提出了一种机器人自适应阻抗控制方法㊂在定义机器人阻抗控制性能指标的基础上结合阻抗模型刚度变化的几何表示,给出了阻抗模型刚度参数初值计算方法,提出了基于人工神经网络的环境等效刚度在线估计方法,并结合二阶系统临界阻尼条件计算阻抗模型阻尼参数初值㊂机器人力控制实验结果验证了该方法较已有的机器人阻抗控制方法在参考轨迹平滑性㊁力控制稳定性和易于工程实践方面有一定的优势㊂关键词:机器人阻抗控制;阻抗模型参数;神经网络;机器人力控制中图分类号:T P 242.6 D O I :10.3969/j.i s s n .1004-132X.2014.12.004R o b o t I m p e d a n c eC o n t r o lM e t h o dA d a p t i n g t oU n k n o w no rC h a n g i n gE n v i r o n m e n t S t i f f n e s s a n dD a m p i n g Pa r a m e t e r s L i Z h e n g yi C a oH u i m i n S o u t h ‐C e n t r a lU n i v e r s i t y Fo rN a t i o n a l i t i e s ,W u h a n ,430074A b s t r a c t :T h e r o b o t i m p e d a n c e c o n t r o l p e r f o r m a n c e d e c r e a s e sw i t h t h e e f f f e c t s o f c h a n g i n g o r u n -k n o w ne n v i r o n m e n t s t i f f n e s s a n dd a m p i n gp a r a m e t e r s i n p r a c t i c a l a p p l i c a t i o n s ,t h i s p a pe r p r e s e n t e da s e lf ‐a d a p t i v e r o b o t i m p e d a n c ec o n t r o lm e t h o dt or e s o l v e t h i s p r o b l e m.B a s e do nt h ed e f i n i t i o no f t h e r o b o t i m p e d a n c e c o n t r o l p e r f o r m a n c e i n d e x a n d t h eg e o m e t r i c r e p r e s e n t a t i o n f o r th ei m pe d a n c em o d e l s t if f n e s s v a r i a t i o n ,t h e c a l c u l a t i o nm e t h o dw a s i l l u s t r a t e d f o r i n t i t i a l v a l u e s o f t h e t h e i m p e d a n c em o d -e l s t if f n e s s .D e s ig n i n g a na r t i f i c i a ln e u r a ln e t w o r kt oe s t i m a t e th ee n vi r o n m e n t a l e q u i v a l e n t s t i f f n e s s o n l i n e a n d c o m b i n i n g w i t h c r i t i c a l d a m p i n g c o n d i t i o no f t h e s e c o n d ‐o r d e r s y s t e m ,a c a l c u l a t i o nm e t h o d w a s p r o v i d e d f o r t h e i m p e d a n c em o d e l d a m p i n g i n i t i a l v a l u e s .T h e r e s u l t s o f r o b o t f o r c e c o n t r o l e x p e r i -m e n t sd e m o n s t r a t e s m o o t h e r r e f e r e n c e t r a j e c t o r y ,i m p r o v e d r o b o t f o r c e c o n t r o l s t a b i l i t y a n d f e a s i b i l i t yi n p r a c t i c e s c o m p a r e d t o t h e e x i s t i n g r o b o t i m pe d a n c e c o n t r o lm e t h o d s .K e y wo r d s :r o b o t i m p e d a n c e c o n t r o l ;i m p e d a n c em o d e l p a r a m e t e r ;n e u r a l n e t w o r k ;r o b o t f o r c e c o n t o l 收稿日期:2013 01 12基金项目:国家自然科学基金资助项目(61178087);中南民族大学校基金资助项目(C Z Q 12012)0 引言机器人阻抗控制是间接地控制机器人末端与环境间的作用力㊁相对位移,其设计思想是建立机器人末端作用力与其位置偏差之间的动态关系 阻抗模型,通过控制机器人关节位移而达到控制机器人末端作用力的目的㊂目前机器人阻抗控制的实现多是根据反馈的位置偏差进行控制,为力前馈控制方式[1‐2],在机器人装配㊁加工以及服务机器人等对作用力㊁位置同时控制的场合应用较多[3‐5]㊂文献[6]指出,机器人阻抗控制应用于机器人与环境间力㊁位置控制时,若建立的系统阻抗模型参数能随环境的变化实时调整,则控制效果(力控制精度)明显好于阻抗模型参数固定的情况㊂在实际的机器人末端与环境(弹性环境,等效为弹簧阻尼系统)接触作用过程中,不同的环境下,其等效阻尼㊁刚度不同;即使在同一环境下,机器人与环境间作用力不同会导致环境的等效刚度㊁阻尼的变化,此外,串联关节机器人在不同姿态时其末端等效阻尼㊁刚度也不同,因此,在机器人阻抗控制实际应用中需实时调整阻抗模型参数以适应环境的变化㊂当前,机器人阻抗控制难点是在环境等效阻尼㊁刚度未知或变化条件下提高机器人与环境接触作用中接触力㊁位置跟踪控制的稳定性[7‐9]㊂已有学者研究应用模糊控制(F L C )㊁神经网络(N N )以及人工智能方法估计环境动力学模型参数和实时调整阻抗模型参数,从而提出适应环境变化的机器人自适应阻抗控制方法㊂当前,适应环境参数变化或未知的机器人阻抗控制方面的研究成果主要是仿真验证理论上性能优良的复杂算法,以及适应工程实践但性能有限的简化算法㊂能平衡好算法复杂度与力㊁位置跟踪控制性能的适应环境变化的机器人阻抗控制研究成果较少㊂本文采用神经网络离线学习㊁在线估计环境等效刚度㊁阻尼参数,以提高基于机器㊃1851㊃Copyright ©博看网. All Rights Reserved.人阻抗控制的力㊁位置控制对环境刚度㊁阻尼参数变化或未知的自适应能力㊂1 阻抗模型刚度参数变化的几何表示机器人阻抗控制应用于机器人与环境间力㊁位置控制时,控制系统的动静态性能受环境刚度㊁阻尼参数变化影响明显,阻抗控制的阻抗模型参数需根据环境变化作相应调整㊂设环境动力学模型为理想线性弹簧:f= k e x,k e为环境刚度,当机器人与此环境作用并处于稳定状态时,系统阻抗模型为f-f d=-k d(x-x d)(1)其中,k d为期望的阻抗模型刚度,定义机器人阻抗控制性能指标:m i n k d J=(f-f d)2+k2m(x-x d)2(2)其中,k m为归一化因子,在阻抗控制中起到平衡位置控制与力控制作用,J为对机器人末端的位置误差㊁力误差的不同容许程度㊂由式(2)得,当k d=k-1e k2m时,J取最小值,阻抗控制性能最好,其中,k m取定值,为中等刚度环境的弹性系数k e m,即k m=k e m㊂当机器人与中等刚度环境(k e=k e m)作用时,根据k d=k2m k-1e计算期望阻抗k d=k e= k e m;当机器人与相对较大或较小刚度环境接触(k e≠k e m)时,根据k d=k2m k-1e,期望阻抗k d对应取较小值和较大值㊂图1所示为k m=1时阻抗参数k d变化的几何表示,图中三条实线分别为环境动力学模型f= k e x㊁两个不同k d值的阻抗模型(式(1))㊂环境动力学模型与阻抗模型交点(x,f)为机器人与环境接触时的接触力和位置:f=k e(f d+k d x d)(k e+k d)-1x=(f d+k d x d)(k d+k e)-1随着k d从0变化到∞,环境动力学模型与阻图1阻抗模型刚度参数变化的几何表示(系统稳定状态)抗模型的交点沿环境动力学模型直线从(f d k-1e, f d)变化到(x d,k e x d),由式(2)知,当期望接触力㊁位置点(x d,f d)到环境动力学模型所代表的直线距离最短时,阻抗控制系统性能最优,在图1中表示斜率为k d=k-1e的直线与f=k e x垂直相交的点(x o p t,f o p t)到点(x d,f d)的距离最小,即系统稳态时阻抗模型参数k d最优值应为k d=k-1e, (x o p t,f o p t)对应k d最优时机器人末端的位置和接触力㊂当k m≠1时,取坐标系为(k m x,f),其分析类似k m=1㊂2 基于人工神经网络的环境等效刚度估计在机器人阻抗控制中,阻抗模型的刚度对机器人与环境间力㊁位置控制影响最为明显[7],阻抗模型的刚度参数包括环境等效刚度和机器人系统刚度(包括控制系统㊁机器人本体㊁力传感器㊁夹具以及工具的刚度)㊂当前在非柔性机器人的应用中,机器人系统的刚度一般比环境刚度大很多,可忽略,因此,在机器人阻抗控制设计中,为实现随环境变化调整阻抗模型刚度参数,仅需估计环境等效刚度㊂本文提出一种由神经网络估计环境等效刚度的方法㊂图2为串联关节机器人与固定木板平面接触作用实验示意图,在机器人手腕位置安装六维力/力矩传感器,在机器人末端安装有一铝制探针㊂图3所示为探针与木板接触作用过程中在单一方向上的接触力位移曲线,为简化分析,取图2 机器人与木板接触作用实验图3 接触作用过程的接触力位移曲线㊃2851㊃Copyright©博看网. All Rights Reserved.接触力作用方向为机器人基坐标系y方向㊂整个接触作用首先是探针与木板接触并缓慢前进挤压木板,机器人末端每移动0.03mm(测量关节角位移并由正运动学计算末端位移)记录一组探针上的接触力和位置值,直到接触力达到32N;然后是缓慢的回退过程,也是每移动0.03mm记录机器人末端的一组接触力和位置值;最后当接触力为零时停止运动㊂图4所示为根据图3计算出的压缩和释放过程中的环境等效刚度(仅考虑y 方向刚度)与接触力,环境等效刚度取图3中两组数据(f i,x i)和(f i+1,x i+1)计算,环境等效刚度k i=(f i+1-f i)(x i+1-x i)-1,i=1,2, ㊂图4 接触作用过程的环境等效刚度接触力曲线采用图5所示的神经网络拟合图4所示的环境等效刚度接触力曲线,神经网络输入为机器人末端接触力f,输出为环境等效刚度k,神经网络包括一个输入层㊁两个隐含层以及一个输出层㊂输入层仅包含一个神经元,隐含层包含30个神经元,y1㊁y i和y j分别对应各层输出,w1i㊁w i j和w j1为权重系数,输出层仅包含一个神经元,无激发函数,即以输出层的权重之和作为环境等效刚度输出,输出层中输入与输出的关系表示为k=∑15j=1w j1y j(3)隐含层2中输入与输出的关系表示为y j=f(n j)(4)n j=∑15i=1∑15j=1w i j y i隐含层1中输入与输出的关系表示为y i=f(n i)(5)n j=∑15i=1w1i y i图5 拟合环境等效刚度接触力的神经网络结构神经网络的隐含层激发函数f(x)= (1+e-x)-1,输入和输出层激发函数取线性函数,则神经网络训练过程中w j1㊁w i j和w1i参数的调整规则如下:输出层中Δw j1=-η∂E∂w j1=-η∂E∂k y j=η(k-k d)y j隐含层2中Δw i j=-η∂E∂w i j=-η∂E∂n j∂n j∂w i j=η(k d-k)w j1y i 隐含层1中Δw1i=-η∂E∂w1i=η(k d-k)w i j y1(1-y1)f其中,E(t)为神经网络B P(b a c k p r o p a g a t i o n)算法的误差函数,E(t)=[k d(t)-k(t)]2/2;k d(t)为图4中环境等效刚度值;k(t)为神经网络实际输出的环境等效刚度;t为采样值序号;神经网络学习率η取值范围为0~1㊂将神经网络应用于实时控制前,先采用图4中的环境等效刚度接触力数据通过B P算法训练神经网络,图6所示为经过训练后的神经网络在输入图4中接触力序列后,对应输出的环境等效刚度值,即随着神经网络训练次数的增加,环境等效刚度接触力曲线的拟合精度提高㊂(a)拟合压缩过程(b)拟合释放过程图6 拟合压缩和释放过程接触力刚度关系的神经网络训练由图4知,机器人在挤压环境和回退释放两个过程中,在相同接触力作用下环境等效刚度值不同,因此,根据机器人末端处于挤压环境或回退过程分别采用不同的神经网络估计环境等效刚度㊂如图7所示,两个神经网络结构上相同,只是㊃3851㊃Copyright©博看网. All Rights Reserved.训练用样本数据不同,s F(k)为k时刻机器人末端与环境间接触力,定义Δ‖s F(k)‖=‖s F(k)‖-‖s F(k-1)‖,当Δ‖s F(k)‖>0时,认为机器人处于挤压环境过程中,采用适应挤压过程的神经网络来估计环境等效刚度,环境等效刚度k e=k p r e s s;当Δ‖s F(k)‖<0时,采用适应回退过程的神经网络估计环境等效刚度,环境等效刚度k e=k u n p r e s s ㊂图7 神经网络估计挤压与回退过程环境等效刚度获得环境等效刚度k e后,利用第2节给出的机器人阻抗控制在稳定状态下最优刚度参数表达式(k d=k-1e k2m)得到阻抗模型刚度初值k d(0):k d(0)=k-1e k2m(6) 3 阻抗模型的刚度㊁阻尼参数计算为提高接触力控制的稳定性,在神经网络估计出环境等效刚度的基础上,由二阶系统动态性能分析计算出阻抗模型中的阻尼参数值,设在机器人阻抗控制中建立的阻抗模型为M d(X¨-X¨d)+B d(X㊃-X㊃d)+K d(X-X d)=F-F d(7)式中,M d㊁B d㊁K d分别为阻抗模型的惯性㊁阻尼和刚度矩阵;X¨㊁X㊃㊁X分别为机器人末端加速度㊁速度和位置;X¨d㊁X㊃d㊁X d分别为机器人末端期望的加速度㊁速度和位置;F㊁F d分别为机器人末端与环境间实际㊁期望接触力㊂F可用环境动力学模型表示:F=-B e X㊃-K e X(8)其中,B e㊁K e分别为环境等效阻尼和刚度,X为环境等效形变量㊂将式(8)代入式(7),设X¨d㊁X㊃d㊁X d和F d不随时间变化,则机器人末端与环境接触作用特征方程为s2+M-1d(B d+B e)s+M-1d(K d+K e)=0根据二阶系统在临界阻尼时系统动态性能较优(根据应用场合也可取过阻尼),二阶阻抗模型参数B d取:B d=2M d(K d+K e)-B e(9)其中,M d由用户设定,K e取神经网络输出的环境等效刚度(3个方向刚度的组合);K d由式(6)计算(3个方向刚度的组合);B e可以通过测量获得,也可由用户设定㊂式(9)为B d理论值计算式,作为阻抗模型阻尼参数B d(t),t=0,1, ,N,在实时控制时必须实时调整B d(t)以实现机器人末端力㊁位置跟踪控制㊂综上所述,计算阻抗模型刚度㊁阻尼参数初值K d(t)㊁B d(t)的流程如图8所示㊂图8 阻抗模型刚度、阻尼初值计算流程4 力控制实验利用实验室改造的工业机器人设计实验,控制系统硬件平台为基于现场总线的数控系统,软件平台为实验室开发的基于R T A I‐L i n u x的工业机器人控制系统,位置控制周期为4m s㊂在机器人手腕位置安装有A T I的力传感器和作为探针的铝制光滑圆棒,其中A T ID e l t a(S I‐165‐15)六维力/力矩传感器测量最大误差为测量值的1.25%,采样频率为7k H z,轴向刚度为60MN/m㊂实验装置如图9所示㊂图9 实验装置图将具有一定弹性㊁表面光滑的木板(表面为平面)以任意倾角(约90°)固定于墙壁,要求探针始终以期望压力与木板平面接触并沿接触面滑动,为便于接触力计算,取探针姿态始终与木板平面垂直,期望接触力方向为木板法向(机器人基坐标系y轴),大小为2N,沿木板平面运动则由控制面板上的方向键控制㊂具体实验时,先将探针移动到与木板平面接近的位置,并调整为与木板平面近似垂直;然后启动机器人力控制功能,由于当前接触力小于2N,探针朝向木板运动直到接触力稳定为2N,根据各个关节角位移计算出探针顶点在机器人基坐标系下的坐标;最后手动操作控制㊃4851㊃Copyright©博看网. All Rights Reserved.面板上的方向键控制探针沿木板平面滑动:相对基坐标系先沿-x 方向运动再沿x ㊁-z 两方向同时运动,即由用户实时给出参考轨迹,参考速度设定为20mm /s㊂本实验先要用神经网络估计环境等效刚度㊂在实时控制时,根据第4节在线计算机器人末端与木板间挤压和回退过程中阻抗模型的刚度㊁阻尼值㊂本实验中M d 和B e 均简化为对角矩阵,M d ㊁B e 矩阵中对角线上每个元素大小分别为0.2N ㊃s 2/mm ㊁0.01N ㊃s 2/mm ㊂实验过程中,力传感器采集的接触面法向方向接触力如图10所示(采样频率为1k H z),接触稳定后接触力的偏差在0.2N 范围内(运动方向突变会导致力波动)㊂根据机器人各个关节编码器角位移计算出探针在机器人基坐标系x ㊁y ㊁z 方向上的相对位移,如图11所示,各个方向位移变化平稳,即探针沿木板平面滑动过程中系统保持稳定状态;由于木板的阻尼㊁刚度参数未知且其安装是任意的,实验结果表明:在环境等效阻尼㊁刚度未知的条件下,本文提出的控制方法可实现机器人与环境间期望的接触力跟踪控制㊂图10接触面法向接触力图11 探针在机器人基坐标系下的位移5 结语本文提出了一种实时估计环境等效刚度㊁调整机器人阻抗模型参数的机器人阻抗控制方法,在定义机器人阻抗控制性能指标的基础上,给出了系统稳定状态下机器人阻抗模型刚度参数最优表达式,同时,实验分析了环境受到压缩和释放过程中接触力和位移的变化特点,设计神经网络估计环境等效刚度,将机器人阻抗控制模型等效为二阶系统,针对不同应用要求(动态稳定性要求),估计阻抗模型阻尼参数㊂本文方法具有算法简单㊁易于实现的优点㊂参考文献:[1] S e r a j i H ,C o l b a u g h R.F o r c e T r a c k i n g I m pe d a n c e C o n t r o l [C ]//I E E E I n t e r n a t i o n a l C o nf e r e n c e o n R o b o t i c s a n dA u t o m a t i o n .A t l a n t a ,1993:499‐506.[2] H u a n g L ,G eSS ,L e eT H.A nA d a p t i v e I m pe d a n c e C o n t r o l S c h e m ef o rC o n s t r a i n e dR o b o t s [J ].I n t e r -n a t i o n a l J o u r n a lo fC o m p u t e r s ,S y s t e m sa n d S i g -n a l s ,2004,9(9):17‐26.[3] O l s s o nT ,H a a geM ,K i h l m a nH ,e t a l .C o s t ‐e f f i c i e n t D r i l l i n g U s i n g I n d u s t r i a lR o b o t sw i t h H i g h ‐b a n d -w i d t hF o r c eF e e d b a c k [J ].R o b o t i c sa n dC o m pu t e r ‐I n t e g r a t i n g M a n u f a c t u r i n g,2010,26(1):24‐38.[4] A g h i l iF .R o b u s t I m p e d a n c eC o n t r o lo f M a n i p u l a -t o r sC a r r y i n g a H e a v y P a y l o a d [J ].J o u r n a l o fD y -n a m i cS ys t e m s M e a s u r e m e n ta n d C o n t r o l ,2010,132(5):1‐7.[5] R i c h a r d s o n ‐L i t t l eW ,D a m a r e nCJ .P o s i t i o nA c c o m -m o d a t i o n a n dC o m p l i a n c eC o n t r o l f o rR o b o t i cE x -c a v a t i o n [C ]//I E E E C o n f e r e n c eo nC o n t r o lA p p l i -c a t i o n s .T o r o n t o ,2005:28‐31.[6] A r i m o t oS ,H a nH Y ,C h e a hCC ,e t a l .E x t e n s i o no fI m p e d a n c eM a t c h i n g t oN o n l i n e a rD y n a m i c s o fR o -b o t i cT a s k s [J ].S y s t e m s &C o n t r o lL e t t e r s ,1999,36(2):109‐119.[7] L e eK.F o r c eT r a c k i n g I m p e d a n c eC o n t r o l w i t hV a r -i a b l eT a r g e tS t i f f n e s s [C ]//17t h W o r l dC o n gr e s s ,I n t e r n a t i o n a l F e d e r a t i o no fA u t o m a t i cC o n t r o l .S e -o u l ,2008:74‐81.[8] O w e n W ,C r o f tE ,B e n h a b i bB .S t i f f n e s sO p t i m i z a -t i o n f o rT w o ‐a r m e dR o b o t i c S c u l p t i n g [J ].I n d u s t r i -a lR o b o t ,2008,35(1):46‐57.[9] N a ga t aF ,M i z ob uc h iT ,H a s eT ,e t a l .C A D /C AM ‐b a s e dF o r c eC o n t r o l l e r U s i n g a N e u r a lN e t w o r k ‐b a s ed E f fe c t i v eS t if f n e s s E s t i m a t o r [J ].A r t i f i c i a lL i f e a n dR o b o t i c sA r c h i v e ,2010,15(1):101‐105.(编辑 陈 勇)作者简介:李正义,男,1980年生㊂中南民族大学生物医学工程学院讲师㊂主要研究方向为康复机器人控制㊂发表论文10余篇㊂曹汇敏,男,1972年生㊂中南民族大学生物医学工程学院副教授㊂㊃5851㊃Copyright ©博看网. All Rights Reserved.。
Adaptive tracking control of uncertain MIMO nonlinear systems with input constraints
article
info
abstract
In this paper, adaptive tracking control is proposed for a class of uncertain multi-input and multi-output nonlinear systems with non-symmetric input constraints. The auxiliary design system is introduced to analyze the effect of input constraints, and its states are used to adaptive tracking control design. The spectral radius of the control coefficient matrix is used to relax the nonsingular assumption of the control coefficient matrix. Subsequently, the constrained adaptive control is presented, where command filters are adopted to implement the emulate of actuator physical constraints on the control law and virtual control laws and avoid the tedious analytic computations of time derivatives of virtual control laws in the backstepping procedure. Under the proposed control techniques, the closed-loop semi-global uniformly ultimate bounded stability is achieved via Lyapunov synthesis. Finally, simulation studies are presented to illustrate the effectiveness of the proposed adaptive tracking control. © 2011 Elsevier Ltd. All rights reserved.
基于深度强化学习的Π型阻抗匹配网络多参数最优求解方法
第52卷第6期电力系统保护与控制Vol.52 No.6 2024年3月16日Power System Protection and Control Mar. 16, 2024 DOI: 10.19783/ki.pspc.230917基于深度强化学习的Π型阻抗匹配网络多参数最优求解方法胡正伟,夏思懿,王文彬,曹旺斌,谢志远(华北电力大学电子与通信工程系,河北 保定 071003)摘要:针对电力线信道阻抗变化复杂、负载阻抗不匹配造成通信质量差等问题,提出一种基于深度强化学习的Π型阻抗匹配网络多参数最优求解方法,并验证分析了深度强化学习对于寻找最优匹配参数的可行性。
首先,建立Π型网络结构,推导窄带匹配和宽带匹配场景下的最优匹配目标函数。
其次,采用深度强化学习,利用智能体的移动模拟实际匹配网络的元件参数变化,设置含有理论值与最优匹配值参数的公式作为奖励,构建寻优匹配模型。
然后,分别仿真验证了窄带匹配和宽带匹配两种应用场景并优化模型的网络参数。
最后,仿真结果证明,经过训练后的最优模型运行时间较短且准确度较高,能够较好地自动匹配电力线载波通信负载阻抗变化,改善和提高电力线载波通信质量。
关键词:深度强化学习;电力线通信;窄带匹配;宽带匹配Multi-parameter optimal solution method for Π-type impedance matching networksbased on deep reinforcement learningHU Zhengwei, XIA Siyi, WANG Wenbin, CAO Wangbin, XIE Zhiyuan(Department of Electrical & Electronic Engineering, North China Electric Power University, Baoding 071003, China)Abstract: There are problems of complex power line channel impedance variation and poor load impedance mismatch.Thus a multi-parameter optimal solution method for a Π-type impedance matching network based on deep reinforcement learning is proposed, and the feasibility of deep reinforcement learning for finding the optimal matching parameters is verified and analyzed. First, the Π-type network structure is established to derive the objective function for the optimal matching in the narrowband matching and broadband matching scenarios. Secondly, deep reinforcement learning is used to use the movement of the agent to simulate the component parameters of the actual matching network, and set the formula containing the theoretical value and the optimal matching value of the parameters as a reward to build the optimal matching model. Then, this paper separately verifies the network parameters of narrowband matching and broadband matching application scenarios and optimizes the network parameters of the model. Finally, the simulation results prove that the trained optimal model has short running time and high accuracy. It can better automatically match the load impedance change of power line carrier communication, and improve the quality of power line carrier communication.This work is supported by the General Program of National Natural Science Foundation of China (No. 52177083).Key words: deep reinforcement learning; power line communication; narrowband matching; broadband matching0 引言随着科技的进步,电力线通信技术飞速发展,对电力线载波通信质量也提出了更高的要求[1-3]。
Comparison of Recordings from Microelectrode Arrays and Single Electrodes in the Visual Cor
ToolboxEditor’s Note:Toolboxes are intended to briefly highlight a new method or a resource of general use in neuroscience or to critically analyze existing approaches or methods.For more information,see /misc/itoa.shtml. Comparison of Recordings from Microelectrode Arrays and Single Electrodes in the Visual CortexRyan C.Kelly,1,2*Matthew A.Smith,1*Jason M.Samonds,1Adam Kohn,3A.B.Bonds,4,5J.Anthony Movshon,3andTai Sing Lee1,21Center for the Neural Basis of Cognition and2Computer Science Department,Carnegie Mellon University,Pittsburgh,Pennsylvania15213,3Center for Neural Science,New York University,New York,New York10003,and Departments of4Electrical Engineering and Computer Science and5Biomedical Engineering,Vanderbilt University,Nashville,Tennessee37235Advances in microelectrode neural re-cording systems have made it possible to record extracellular activity from a large number of neurons simultaneously.A substantial body of work is associated with traditional single-electrode extracel-lular recording,and the robustness of the recording method has been proven exper-imentally.However,the recordings are limited to a small number of cells at a time,so much of the work has relied on compiling population statistics across many recording sessions.Multielectrode recording systems theoretically have some major advantages over this paradigm. They increase the yield of neurons per re-cording session,and analysis of pairwise correlation benefits greatly from simulta-neously recording from a large number of neurons(the number of pairs is propor-tional to the square of the number ofcells).The larger population also providesthe possibility of examining higher-order(non-pairwise)interactions among neu-rons(Schneidman et al.,2006;Shlens etal.,2006).Finally,multielectrode systemshave been developed that may be im-planted and used for several months,which permits the study of learning in cellpopulations.Here we assess this experi-mental approach for anesthetized acutepreparations and compare the quality ofrecordings to those provided by the tradi-tional single-electrode method.Here we focus on a specific microelec-trode device,the Cyberkinetics“Utah”Array(Cyberkinetics NeurotechnologySystems,Foxborough,MA)(Fig.1A).This device is a10ϫ10grid of siliconmicroelectrodes(1mm in length)spaced400m apart,covering12.96mm2.Weanalyzed recordings from single elec-trodes and the Utah array in macaquesand cats.Previous reports on the quality(Nordhausen et al.,1996)and long-termstability(Suner et al.,2005)of array re-cordings have not made a quantitative,di-rect comparison with established single-electrode recordings.In light of theincreasing popularity of the array,we ad-dressed this uncertainty by comparingwaveforms recorded with the array towaveforms recorded with accepted single-electrode techniques.We found that thearray yields good recordings on a largenumber of electrodes,with qualities com-parable to those from single-electrode re-cordings.On average,the recording qual-ity is somewhat lower than that of singleelectrodes but,nonetheless,is sufficientfor assessing tuning properties such as thespatiotemporal receptive field(STRF)andorientation tuning.Recording methodsTo assess the quality of microelectrode ar-ray recordings relative to standard single-electrode techniques,we analyzed wave-forms from single-electrode andmicroelectrode array recordings fromanesthetized,paralyzed macaque mon-keys(Macaca fascicularis)and cats(Felisdomesticus).Anesthesia was maintainedwith sufentanil and propofol with nitrousoxide,respectively.Monkeys were para-lyzed with vecuronium bromide,and catswere paralyzed with pancuronium bro-mide.The impedance of microelectrodesin the array ranged from200to800k⍀with an average of400k⍀.For the ma-caque single-electrode recordings,weused quartz–platinum/tungsten micro-electrodes(1.2–3M⍀)in a seven-channelEckhorn microdrive(Thomas Recording,Giessen,Germany).For the cat single-electrode recordings,we used tungsten inglass microelectrodes(0.5–2M⍀)madelocally(Levick,1972),in a Burleigh Inch-worm microdrive(Burleigh Instruments,Victor,NY),driven by piezoelectric ele-ments.All measures of impedance weremade with a1kHz sinusoidal current.Specific procedures for each of the follow-ing recording preparations have been re-Received Nov.10,2006;revised Nov.27,2006;accepted Nov.28,2006.This work was supported by a National Science Foundation(NSF)Inte-grative Graduate Education and Research Traineeship to R.C.K.(DGE-0549352),National Eye Institute(NEI)National Research Service Awardfellowship to M.A.S.(EY015958),National Institute of Mental Health GrantMH64445andNSFGrantCISEIIS0413211toT.S.L.,andNEIgrantstoA.B.B.(EY014680)andJ.A.M.(EY02017).Single-electrodecatdatawerecollectedby Ross Snider,cat array data were collected in part by Zhiyi Zhou andMelanieBernard,andmacaquesingle-electrodedatawerecollectedinpartby Yasmine El-Shamayleh.We thank David Linn for technical assistance.*R.C.K.and M.A.S.contributed equally to this work.Correspondence should be addressed to Ryan C.Kelly,Center for theNeural Basis of Cognition,Carnegie Mellon University,4400Fifth Avenue,Mellon Institute,Room115,Pittsburgh,PA15213.E-mail:rkelly@.A.Kohn’s present address:Department of Neuroscience,Albert EinsteinCollege of Medicine,1410Pelham Parkway South,Bronx,NY10461.DOI:10.1523/JNEUROSCI.4906-06.2007Copyright©2007SocietyforNeuroscience0270-6474/07/270261-04$15.00/0The Journal of Neuroscience,January10,2007•27(2):261–264•261ported previously:cat single electrode (Snider et al.,1998),cat array (Samonds et al.,2006),and monkey single electrode (Cavanaugh et al.,2002).We used the following method to isolate waveforms generated by individual cells.For each electrode,waveform segments that exceeded a threshold (periodically adjusted using a multiple of the rms noise on each channel)were stored and sorted off-line with principal components analysis by waveform shape (Shoham et al.,2003).Af-ter this preliminary sort,we refined the out-put by hand with off-line time–amplitude window discrimination software for each electrode.All waveforms were sorted in this manner except for the V2macaque data,which were sorted on-line with a dual time–amplitude window discriminator.Signal-to-noise ratioUsing this procedure,we analyzed 58V1cells from single electrodes in cats,38V2cells from single electrodes in macaques,269V1cells from three microelectrode ar-rays in cats,and 301V1cells from three microelectrode arrays in macaques.In Figure 1B ,we show waveforms from three neurons recorded with the microelec-trode array in macaque V1.These exam-ples span the quality range we typically observed with arrays.Given these isolated single units,we computed signal-to-noise ratios (SNRs)for collections of wave-forms recorded in 1h periods for each of the four preparations.The SNR is com-puted as the ratio of the amplitude of the average waveform to the SD of waveform noise (Nordhausen et al.,1996;Suner et al.,2005).That is,if each of k waveforms has n samples,then the collection of wave-forms is as follows:W ϭͫv 1͑t 1͒,v 1͑t 2͒,...v 1͑t n ͒···v k ͑t 1͒,v k ͑t 2͒,...v k͑t n ͒ͬ,with the mean waveform denoted as W.The matrix of noise values (deviations from the mean)is thus as follows:ϭW ϪͫW ···Wͬ,where the SD is the SD of the collection ofall entries in .The SNR is now as follows:SNR ϭmax ͑W͒Ϫmin ͑W ͒2ϫSD .Response propertiesWaveforms collected with the microelec-trode arrays were similar in shape to wave-forms collected using single electrodes,and neuronal response properties were similar as well.To demonstrate this point,we analyzed neural responses to a variety of stimuli collected with macaque V1ar-ray implants.Orientation tuning curves were derived from responses to drifting sinusoidal gratings (Fig.2A ).Most iso-lated cells showed clear orientation pref-erence,and orderly shifts in orientation preference could be seen across the elec-trode positions in the array.In addition,we computed STRFs for cells responding to white-noise stimuli using spike-triggered averaging (Fig.2B ).STRFs were found for cells when a contiguous 30pixel area of the spike-triggered average ex-ceeded 3SDs of the noise average.Of the cells isolated with this array,60–65%re-vealed STRFs.Overall,we found that tun-ing properties were similar to those re-ported previously for orientation tuning (Hubel and Wiesel,1968;Ringach et al.,2002)and STRFs (Jones and Palmer,1987).We compared the distribution of SNRs across the different animals and method-ologies (Fig.3).On a population level,SNR values for the arrays tended to be somewhat lower than those from single-electrode recordings in both macaques and cats (see Fig.3legend for statistics).One reason for this is that the electrode depth of the array is fixed after implan-tation and cannot be adjusted to better isolate a cell,as is typically done in single-electrode recordings.Another possibility is that our array recordings were confined mostly to layers 2–3with the rest in layer 4(Jermakowicz et al.,2006),whereas our single-electrode data included cells sampled throughout the cortical depth.A direct comparison of cells recorded in the same layer might have yielded slightly different results,al-though there is no reason to suspect it would systematically bias the SNR val-ues in either direction.The average SNRs from cat recordings were some-what higher than from macaque data.This may be attributable to a true differ-ence between species or merely related to variations in recording setups.De-spite the disparity in distribution means,the cells in the different condi-tions span the same SNR range.That is,cells with the lowest SNR from arrays were still within the distribution from accepted single-electrode recordings us-ing an on-line dual time–amplitude windowdiscriminator.Figure 1.Cyberkinetics microelectrode array and example waveforms.A ,The array,closeup,and perspective with a penny.B ,Examples of sorted waveforms and SNRs from three representative channels and one channel of noise.262•J.Neurosci.,January 10,2007•27(2):261–264Kelly et al.•ToolboxStability of recordingsOne advantage of the acute preparation is the ability to record for many hours con-secutively.We addressed the stability of recording across a 29h period from one of our macaque array implants.Our sorting method was applied across the entire re-cording duration,and thus the quality of recordings from individual cells was tracked over time.Figure 4shows the change in the SNR for all cells over the time period starting 2h after array im-plantation.Most SNR values tend to re-main relatively constant throughout re-cording,with a few fluctuating between high and low SNRs.One trend we ob-served was that cells had lower SNR values near implantation and improved over the course of recording (Pearson r ϭ0.27;p Ͻ0.0001).Of 127cells from this array,88(69%)had a significant (p Ͻ0.05)in-crease in SNR,whereas only 2cells showed a significant decrease in SNR.Evolution of the mean SNR over time is shown at the top of Figure 4.Review of microelectrode arrayUse of the Cyberkinetics microelectrode array has some considerations relative to single-electrode techniques.It is currently manufactured in two fixed electrode lengths (1or 1.5mm),andinsertionFigure 3.SNRs in the four preparations.A ,B ,Macaque array SNR (A )tended to be lower than single-electrode SNR (B ;two-sample Kolmogorov–Smirnov goodness-of-fit hypothesis test,p Ͻ0.0001).C ,D ,Similarly,cat array SNR (C )was lower than single-electrode SNR (D ;p ϭ0.046).Finally,there was a trend for recordings in cats to have higher SNRs than recordings in the macaquesforsingleelectrodes(p ϭ0.10)andarrays(p Ͻ0.0001).AllSNRvalueswerecomputedfromthewaveformsover ϳ1h of recordingtime.Figure 2.Response properties.A ,Orientation tuning curves for 16example neurons in response to a sinusoidal grating drifting in 12different directions.The grating was fixed at a spatial frequency of 1.3cycles/degree,temporal frequency of 6.25Hz,size of 8°,and duration of 1.28s with 1.5s between stimuli.B ,STRFs generated with reverse correlation of responses to white-noise stimuli for the same 16neurons.Kelly et al.•Toolbox J.Neurosci.,January 10,2007•27(2):261–264•263depth is not adjustable after implantation. For our array recordings,we used a1.0 mm array with a0.6mm pneumatic inser-tion(Rousche and Normann,1992).This partial insertion resulted in electrode tips positioned mostly in superficial layers.An additional consideration is that the size and shape of the array prevents implanta-tion in some locations accessible to single electrodes,such as within sulci.Also,be-cause the array is flat and the cortical sur-face is curved,there is some chance that electrodes record from different layers.Fi-nally,the implant procedure is somewhat more complicated than the preparation for single-electrode recordings(Rousche and Normann,1992).However,we ob-served no significant damage or edema af-ter implantation and even after removal of the array(potentially facilitated by partial insertion).We found that the array produced SNRs similar to those of single-electrode recordings,both when the same spike-sorting method was used and when spikes were sorted with standard on-line tech-niques.Although the ranges of SNR dis-tributions were similar,single-electrode recordings had higher SNR values on av-erage.This may be resulting from the higher impedances of single electrodes but is also likely to be strongly influenced by the fixed electrode depth of the array.The stability of recording may be influ-enced by the fact that single-electrode set-ups are mounted externally,whereas the array is allowed to float with the motions of the cortex resulting from heartbeat and respiration.Our recordings from arrays had orientation tuning and STRFs in most cells.These cells were relatively stable throughout the day after implantation, with no signs of degradation after30h (indeed,the signals tended to improve over time).A typical array implantation yielded100distinct candidate waveforms split approximately evenly between single-unit and multiunit activity.Aside from increasing the amount of single-unit data,arrays produce a high yield of neu-ronal pairs,providing a viable foundation for the study of higher-order correlation properties.ReferencesCavanaugh JR,Bair W,Movshon JA(2002)Na-ture and interaction of signals from the recep-tive field center and surround in macaque V1neurons.J Neurophysiol88:2530–2546.Hubel D,Wiesel T(1968)Receptive fields andfunctional architecture of monkey striate cor-tex.J Physiol(Lond)195:215–243.Jermakowicz WJ,Chen X,Khaytin I,Zhou Z,Ber-nard M,Bonds AB,Casagrande VA(2006)Does spike synchrony provide a better code ofstimulus angle than average firing rate?J Vis6:66a.Jones JP,Palmer LA(1987)The two-dimensionalspatial structure of simple receptive fields in catstriate cortex.J Neurophysiol58:1187–1211.Levick W(1972)Another tungsten microelec-trode.Med Biol Eng10:510–515.Nordhausen CT,Maynard EM,Normann RA(1996)Single unit recording capabilities ofa100microelectrode array.Brain Res726:129–140.Ringach DL,Shapley RM,Hawken MJ(2002)Orientation selectivity in macaque V1:diver-sity and laminar dependence.J Neurosci22:5639–5651.Rousche PJ,Normann RA(1992)A method forpneumatically inserting an array of penetrat-ing electrodes into cortical tissue.AnnBiomed Eng20:413–422.Samonds JM,Zhou Z,Bernard MR,Bonds AB(2006)Synchronous activity in cat visual cor-tex encodes collinear and cocircular contours.J Neurophysiol95:2602–2616.Schneidman E,Berry MJ,Segev R,Bialek W(2006)Weak pairwise correlations implystrongly correlated network states in a neuralpopulation.Nature440:1007–1012.Shlens J,Field GD,Gauthier JL,Grivich MI,Petrusca D,Sher A,Litke AM,Chichilnisky EJ(2006)The structure of multi-neuron firingpatterns in primate retina.J Neurosci26:8254–8266.Shoham S,Fellows MR,Normann RA(2003)Robust,automatic spike sorting using mix-tures of multivariate t-distributions.J Neuro-sci Methods127:111–122.Snider RK,Kabara JF,Roig BR,Bonds AB(1998)Burst firing and modulation of functionalconnectivity in cat striate cortex.J Neuro-physiol80:730–744.Suner S,Fellows MR,Vargas-Irwin C,Nakata GK,Donoghue JP(2005)Reliability of signalsfrom a chronically implanted,silicon-basedelectrode array in non-human primate pri-mary motor cortex.IEEE Trans Neural SystRehabil Eng13:524–541.Figure4.Stability of SNR.Here we show the log(SNR)values for a continuous29h recording session from one array implant. The cells here are sorted in decreasing order by average SNR value across time.The plot above shows the average SNR across all cells for each hour(error bars areϮ1SEM).264•J.Neurosci.,January10,2007•27(2):261–264Kelly et al.•Toolbox。
电力系统常用英文词汇
电力专业英语词汇(较全)1、元件设备三绕组变压器three—column transformer ThrClnTrans 双绕组变压器double-column transformer DblClmnTrans电容器Capacitor并联电容器shunt capacitor电抗器Reactor母线Busbar输电线TransmissionLine发电厂power plant断路器Breaker刀闸(隔离开关)Isolator分接头tap电动机motor2状态参数有功active power无功reactive power电流current容量capacity电压voltage档位tap position有功损耗reactive loss无功损耗active loss空载损耗no-load loss铁损iron loss铜损copper loss空载电流no-load current阻抗impedance正序阻抗positive sequence impedance负序阻抗negative sequence impedance零序阻抗zero sequence impedance无功负载reactive load 或者QLoad有功负载: active load PLoad遥测YC(telemetering)遥信YX 励磁电流(转子电流)magnetizing current定子stator功角power-angle 上限:upper limit下限lower limit并列的apposable高压: high voltage低压low voltage中压middle voltage电力系统power system发电机generator励磁excitation励磁器excitor电压voltage电流current母线bus变压器transformer升压变压器step-up transformer高压侧high side输电系统power transmission system输电线transmission line固定串联电容补偿fixed series capacitor compensation 稳定stability电压稳定voltage stability功角稳定angle stability暂态稳定transient stability电厂power plant能量输送power transfer交流AC装机容量installed capacity电网power system落点drop point开关站switch station双回同杆并架double-circuit lines on the same tower 变电站transformer substation补偿度degree of compensation高抗high voltage shunt reactor无功补偿reactive power compensation故障fault调节regulation裕度magin三相故障three phase fault故障切除时间fault clearing time极限切除时间critical clearing time切机generator triping 高顶值high limited value强行励磁reinforced excitation线路补偿器LDC(line drop compensation)机端generator terminal静态static (state)动态dynamic (state)单机无穷大系统one machine —infinity bus system 机端电压控制AVR 功角power angle有功功率active power无功功率reactive power功率因数power factor无功电流reactive current下降特性droop characteristics斜率slope额定rating变比ratio参考值reference value电压互感器PT分接头tap下降率droop rate仿真分析simulation analysis传递函数transfer function框图block diagram受端receive—side裕度margin同步synchronization失去同步loss of synchronization 阻尼damping摇摆swing保护断路器circuit breaker电阻resistance电抗reactance阻抗impedance电导conductance电纳susceptance导纳admittance电感inductance电容:capacitanceAGC Automatic Generation Control自动发电控制AMR Automatic Message Recording 自动抄表ASS Automatic Synchronized System 自动准同期装置ATS Automatic Transform System 厂用电源快速切换装置AVR Automatic Voltage Regulator 自动电压调节器BCS Burner Control System 燃烧器控制系统BMS Burner Management System 燃烧器管理系统CCS Coordinated Control System 协调控制系统CRMS Control Room Management System 控制室管理系统CRT Cathode Ray Tube 阴极射线管DAS Data Acquisition System 数据采集与处理系统DCS Distributed Control System 分散控制系统DDC Direct Digital Control 直接数字控制系统DEH Digital Electronic Hydraulic Control 数字电液(调节系统)DPU Distributed Processing Unit 分布式处理单元EMS Energy Management System 能量管理系统ETS Emergency Trip System 汽轮机紧急跳闸系统EWS Engineering Working Station 工程师工作站FA Feeder Automation 馈线自动化FCS Field bus Control System 现场总线控制系统FSS Fuel Safety System 燃料安全系统FSSS Furnace Safeguard Supervisory System 炉膛安全监控系统GIS Gas Insulated Switchgear 气体绝缘开关设备GPS Global Position System 全球定位系统HCS Hierarchical Control System 分级控制系统LCD Liquid Crystal Display 液晶显示屏LCP Local Control Panel 就地控制柜MCC Motor Control Center 电动机马达控制中心MCS Modulating Control System 模拟量控制系统MEH Micro Electro Hydraulic Control System 给水泵汽轮机电液控制系统MIS Management Information System 管理信息系统NCS Net Control System 网络监控系统OIS Operator Interface Station 操作员接口站OMS Outage Management System 停电管理系统PID Proportion Integration Differentiation 比例积分微分PIO Process Output 过程输入输出通道PLC Programmable Logical Controller 可编程逻辑控制器PSS Power System Stabilizator 电力系统稳定器SCADA Supervisory Control And Data Acquisition 数据采集与监控系统SCC Supervisory Computer Control 监督控制系统SCS Sequence Control System 顺序(程序)控制系统SIS Supervisory Information System 监控信息系统TDCS TDC Total Direct Digital Control 集散控制系统TSI Turbine Supervisory Instrumentation 汽轮机监测仪表UPS Uninterrupted Power Supply 不间断供电标准的机组数据显示(Standard Measurement And Display Data)负载电流百分比显示Percentage of Current load(%)单相/三相电压Voltage by One/Three Phase (Volt。
基于有限时间命令滤波机械臂的阻抗控制
控制系统与智能制造D0I:10.19557/ki.1001-9944.2020.10.008基于有限时间命令滤波机械臂的阻抗控制林高荣,刘加朋,于金鹏(青岛大学自动化学院,青岛266071)摘要:为了提高人与机械臂交互系统的安全性与柔顺性,提出了一种基于有限时间命令滤波机械臂的模糊自适应阻抗控制方法。
通过阻抗控制技术实现机械臂力/位控制;采用模糊自适应技术逼近机械臂系统中的未建模动态;利用有限时间命令滤波控制提高机械臂力/位控制的响应速度,减小了跟踪误差。
仿真结果表明,所提控制方法与现有控制方法相比,机械臂力/位跟踪曲线有着更快的响应速度、更小的跟踪误差遥关键词:机械臂系统;阻抗控制;模糊自适应控制;有限时间控制;命令滤波控制中图分类号:TP241文献标志码:A文章编号:1001一9944(2020)10-0035-08 Impedance Control of Robotic Manipulator Based on Finite-time Command FilteredLIN Gao-rong,LIU Jia-peng,YU Jin-peng(School of Automation,Qingdao University,Qingdao266071,China)Abstract:In order to improve the safety and compliance of the human and robotic arm interaction system,an fuzzy adaptive impedance control method of robotic manipulator based on finite-time command filtered is proposed.The manipulator force/position control is achieved by impedance control technology;the unmodeled dynamics in the robotic manipulator system is approximated by fuzzy adaptive technology;the finite-time command filtered control is used to improve the response speed of the manipulator force/position control,and to reduce the tracking error.The simulation results show that the proposed control method has a faster response speed and smaller tracking error than the existing control methods.Key words:robotic manipulator system;impedance control;fuzzy adaptive control;finite-time control;command filtered control随着机械臂在社会生活中的运用日益广泛,其工作环境也越来越复杂,仅依靠机械臂的位置控制已不能满足当今的工作需求。
基于树莓派的手势交互六足机器人
2021年第40卷第3期传感器与微系统(Transducer and MicrosystemTechnologies)87D O I:10. 13873/J.1000-9787(2021)03-0087-03基于树莓派的手势交互六足机器人$薛志峰、蒋刚留沧海、王一田1(1.西南科技大学制造科学与工程学院,四川绵阳621000;2.成都理工大学核技术与自动化工程学院,四川成都610039)摘要:将树莓派和Y0L0v3目标检测算法相结合,提出了一种新型的六足机器人人机交互模式,使六足机器人完成五种不同动作(前进、后退、左拐、右拐、步态切换)。
其中室内与室外的手势识别在测试集上的准确率分别可达95. 08 %与89 %。
相比基于人工提取特征的传统算法和其他基于卷积神经网络(C N N)的算法具有更高的识别准确率和更强的鲁棒性。
关键词:树莓派;S T M32单片机;Y0L0v3算法;手势识别;六足机器人中图分类号:T H39; T P212 文献标识码:A文章编号:1000-9787(2021)03-0087-03Hand gestures interactive hexapod robot based onRaspberry Pi**XUEZhifeng1,JIANGGang1’2, LIU Canghai1,WANGYitian1(1. School of M anufacturing Science and E ngineering, Soutliwest University^ of Science andTechnology’M ianyang 621000’C h in a;2. College of N uclear Technology and A utom ation E ngineering,C hengdu U niversity of Technology,C hengdu 610039’C hina)A bstract :Combines the Raspberry Pi withYOLO v3 target detection algorithm,and acomputer interaction mode i s proposed,which enables the hexapod robot t o complete five differe forward,backward,l e f t turn,right turn,gait switch.Among them,indoor and outdoor gesture recognition can reach95. 08 %and89 %’respectively on the t e s t pared with traditional a lgorithms b asedfeatures and other CNN-based algorithms,i t has higher recognition accuracy and stronger robustness.K eyw ords:Raspberry Pi;S T M32 M C U;Y O L O v3 algorithm;hand gesture recognition;hexapod robot0引言六足机器人自诞生以来,以其独特的高承载能力、地形 适应能力强、灵活性好等特性在多个领域得到了广泛的应 用,已经从传统的机器人延伸到智能机器人,并且在星球探 测、深海探索等新的领域不断的拓展[1]。
基于阻抗控制的机器人力控制算法性能分析
基于阻抗控制的机器人力控制算法性能分析王芳;杨振【摘要】Hogan提出的阻抗控制算法由于必须要求机器人准确的动力学方程,在实际工程背景中很难应用.本文针对其弊端,研究了自适应阻抗控制算法.以平面机械手为控制对象,使用以上两种控制方法对其加以控制,从而详细分析比较了两种算法的性能优劣.最后,针对阻抗控制算法在实际运用中阻抗参数的调整原则一直是比较困难的问题,本文通过仿真实验总结了调参规律.【期刊名称】《制造业自动化》【年(卷),期】2010(032)009【总页数】4页(P140-142,152)【关键词】阻抗控制;参数调整;机器人;阻抗参数【作者】王芳;杨振【作者单位】枣庄学院计算机科学系,枣庄,277160;枣庄学院计算机科学系,枣庄,277160【正文语种】中文【中图分类】TP242.2力控制在机器人控制中是目前为止一种复杂的控制算法。
特别是机器人与接触环境时,由于要跟踪期望的轨迹的同时还要保持期望的力,任务的难度可想而知。
阻抗控制算法[1]是近年来许多文献[2~4]中广为研究的算法。
通过设定阻抗函数,由力、速度、位置的误差来实现该函数。
但它必须要求建立机械手精确的动力学模型,然而这一点在实际工程中是很难做到的。
自适应阻抗控制算法[5]的主要思想是在跟踪环境位置时,通过自适应增益来减小力误差,该算法不需要获得环境刚度的知识,所以无论对机器人动力学模型,还是对未知的环境位置或刚度该算法都有一定鲁棒性。
自适应阻抗控制算法的结构图如图1所示。
根据机械手阻抗函数关系式为:其中当Xr=Xe时E=Xe-X,Xe是环境位置。
为讨论的减化起见,我们假设仅在一个方向上受力。
令fd,fe,m,b,k是矩阵Fd,Fe,M,B,K的对应元素,所以(1)式可写为:考虑到机器人实际的工作情况,我们只能得到环境位置的估计X'e,它是不精确的。
令δXe=X'e-Xe,以此来表示与精确环境信息Xe的误差,当设计控制器时,可以用确定的值来代替。
提高弱电网中光伏并网逆变器稳定性的控制方法
提高弱电网中光伏并网逆变器稳定性的控制方法孙如田;郑松【摘要】With the increasing of distributed energy,the grid becomes weak.Grid impedance leads to interaction between the inverter and grid,which will affect inverter stability and threaten the safety operation of the system.The influence of grid impedance on the system stability was analyzed from the view of phase margin.In order to enhance the stability of the system with grid impedance variation,a variable gain control strategy based on the neural network is proposed.After using the phase compensation network,in order to maximize the phase margin with grid impedance variation,a nonlinear model based on radial basis function neural network was built to regulate the cutoff frequency.The result of simulation validated the theoretical analysis in the paper.%随着电网中分布电源的增加,电网呈现出了弱电网特性.电网阻抗使得逆变器与电网之间存在相互作用,对逆变器的稳定性产生影响,威胁着系统的安全稳定运行.从相位角度分析了电网阻抗对系统稳定性的影响,电网阻抗的增加会导致系统相位降低,继而使系统进入不稳定状态.为增强系统在电网阻抗变化过程中的鲁棒性,提出一种基于神经网络的逆变器变增益控制方法.该方法采用一定的控制环节补偿系统相位,采用径向基函数神经网络建模的方法实时调整系统的开环截止频率,使相位裕度始终保持最大值.仿真结果验证了本文的理论分析.【期刊名称】《电测与仪表》【年(卷),期】2017(054)005【总页数】6页(P45-49,61)【关键词】光伏并网逆变器;神经网络;弱电网;变增益控制;稳定性【作者】孙如田;郑松【作者单位】克拉玛依职业技术学院,新疆独山子833600;杭州电子科技大学,杭州310018【正文语种】中文【中图分类】TM6150 引言随着传统化石能源的大量消耗以及环境问题的恶化,近年来以风光为代表的新能源倍受人们的青睐,大量的分布式电源接入电网之中[1-2]。
多关节机器人的自适应阻抗控制研究
多关节机器人的自适应阻抗控制研究孙晓;杨守平;王兴;夏运贵;刘方【摘要】为了对动车组侧窗玻璃安装机器人末端接触力进行控制研究,在阻抗控制的基础上,提出了一种多关节机器人自适应阻抗控制算法,该算法能实现机器人末端接触力准确跟踪期望力.以PUMA560机器人前三关节为对象在接触空间进行仿真研究,仿真结果表明,基于自适应阻抗控制方法能很好地对动车组侧窗玻璃安装机器人的位置和力进行跟踪.【期刊名称】《湖南工业大学学报》【年(卷),期】2017(031)006【总页数】5页(P49-53)【关键词】多关节机器人;自适应阻抗控制;位置跟踪;力跟踪【作者】孙晓;杨守平;王兴;夏运贵;刘方【作者单位】湖南工业大学机械工程学院,湖南株洲 412007;湖南工业大学电气与信息工程学院,湖南株洲 412007;湖南工业大学电气与信息工程学院,湖南株洲412007;湖南工业大学电气与信息工程学院,湖南株洲 412007;湖南工业大学机械工程学院,湖南株洲 412007【正文语种】中文【中图分类】TP241.31 研究背景动车组侧窗玻璃除了防止冲击,还要保证其密封性能与视觉效果,其材质和安装都非常重要。
目前侧窗安装主要由人工完成,人工在作业时效率比较低、劳动强度也比较大。
随着我国高铁事业的快速发展,对车辆的需求越来越大,人工安装动车组侧窗玻璃的效率问题越来越突出。
采用带力回馈的机器人进行侧窗安装,依托与侧窗玻璃接触的力回馈信息,合理调整安装角度、密封压力和涂胶轨迹,可很好地解决这些矛盾,提高安装效率,进一步提高安装质量,对动车的组装具有较好的研究意义。
阻抗控制作为其中的控制方法之一,在实现机器人在力和位置控制中得到了广泛的应用[1-6]。
阻抗控制通过使机器人末端的力和位置达到一种理想关系,将力控制和位置控制纳于一个框架之内,实现较小的工作量[7-8]。
当机器人和环境参数已知时,阻抗控制比较简单。
但在实际应用中,由于机器人系统本身是一个非线性、强耦合、易受干扰的复杂系统,且存在各种不确定因素,机器人本身和环境模型的不精确或无法获取相关参数,导致阻抗控制存在很大的力误差[9]。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
VTEX(za-al.kv) PIPS No.: 118796 MATHKAP JINT1359.tex; 6/12/1996; 12:46; v.5; p.1
88
SHIH-TIN LIN AND HUI-CHEN TSAI
the manipulated object and its environment. Jean and Fu [6] also proposed an adaptive scheme for coordinated multimanipulator systems. In this method, the measurement of contact force is not required. Backes [7] proposed a unified control method which decomposes forces sensed at the wrists of the two manipulators into forces in the move subspaces, which cause system motion, and forces in the squeeze subspaces, which cause internal forces. The controller proposed in this paper uses a central controller similar to the one proposed by Schneider to create the position and force command for each arm. An impedance controller is then applied to each arm to track the desired commands. A successful impedance controller requires precise characteristics of the environment. As a consequence, the performance of the controller may become unsatisfactory if the environmental characteristics, such as stiffness and geometry, are not known accurately. One way to overcome this difficulty is to make an on-line estimation of unknown parameters of the environment and adjust theቤተ መጻሕፍቲ ባይዱtarget impedance [8]. The disadvantage of this approach is that the identification equation is highly nonlinear in terms of the unknown parameters which make the identification difficult. Meanwhile, to derive the identification equation, we had to make assumptions about the dynamics and geometry of the environment which are not always true. In this paper, we proposed a feed-forward back propagation neural network compensator to overcome above-mentioned problems for dual-arm robots. The neural network was used to compensate the effects of unknown parameters of the manipulator and the environment. In order to have a better performance, the neural network is improved by adding a second momentum term in the generalized delta rule and by fuzzifying the inputs of the neural network. In the past, applications of neural networks to control problems such as position control and trajectory control of robotic manipulators have been reported [9]–[14], but few applications of neural networks to force control of robotic manipulators, [15]– [17]. One basic feature of neural networks is that they estimate functions from sample data without mathematical models. In other words, they are model-free estimators. The research described in this paper was motivated by this characteristic of neural networks. The organization of the paper is as follows. In Section 2, the impedance control law is discussed. In Section 3, a neural network compensator is developed to compensate the uncertainties of the parameters. Section 4 describes a central controller for dual-arm robots. Simulation examples and results are discussed in Section 5. The paper is concluded with comments and discussions in Section 6. 2. Impedance Control Law The control law development begins with the dynamic model of an n-link manipulator. The equations of robot contact motion are [18]
Journal of Intelligent and Robotic Systems 18: 87–104, 1997. c 1997 Kluwer Academic Publishers. Printed in the Netherlands.
87
Impedance Control with On-Line Neural Network Compensator for Dual-Arm Robots
1. Introduction Although control of robot manipulators has been studied extensively in recent years, this study has focused primarily on single-arm robots. As a result, most of the robots used in industry are only handicapped operators due to their singlearm structure. As the demand increases for robots to perform more dexterous manipulations, intensive research on dual-arm robot control has been undertaken. For dual-arm robots, undesired forces will be transmitted to the load by the arms if position control is used for both arms. Luh and Zheng [1] offered a control policy using the concept of master and slave. The trajectory planning is done only for the first arm as a leader, the second arm follows the motion of the first arm. The disadvantage of this method is that load balancing is hard to achieved. Dauchez [2] and Yoshikawa [3] applied the hybrid position/force control to dualarm and multi-arm robots. Seraji [4] adopted hybrid position/force control law to control each arm. An adaptive control law was used to adjust the control parameters in the presence of unknown object parameters. This paper, however, did not mention how to create position and force command for each arm. Schneider and Cannon [5] solved this problem by defining an object impedance between