实验七--哈夫曼编码实验

合集下载

《哈夫曼编码》实验报告

《哈夫曼编码》实验报告

《哈夫曼编码》实验报告《哈夫曼编码》实验报告一、实验目的1、掌握哈夫曼编码原理;2、熟练掌握哈夫曼树的生成方法;3、理解数据编码压缩和译码输出编码的实现。

二、实验要求实现哈夫曼编码和译码的生成算法。

三、实验步骤编写代码如下:#include#include#include#define MAXLEN 100typedef struct{int weight;int lchild;int rchild;int parent;char key;}htnode;typedef htnode hfmt[MAXLEN];int n;void inithfmt(hfmt t){int i;printf("\n");printf("--------------------------------------------------------\n"); printf("**********************输入区**********************\n");printf("\n请输入n=");scanf("%d",&n);getchar();for(i=0;i<2*n-1;i++){t[i].weight=0;t[i].lchild=-1;t[i].rchild=-1;t[i].parent=-1;}printf("\n");}void inputweight(hfmt t){int w;int i;char k;for(i=0;i<n;i++)< bdsfid="112" p=""></n;i++)<>{printf("请输入第%d个字符:",i+1);scanf("%c",&k);getchar();t[i].key=k;printf("请输入第%d个字符的权值:",i+1);scanf("%d",&w);getchar();t[i].weight=w;printf("\n");}}void selectmin(hfmt t,int i,int *p1,int *p2){long min1=999999;long min2=999999;int j;for(j=0;j<=i;j++)if(t[j].parent==-1)if(min1>t[j].weight){min1=t[j].weight;*p1=j;}for(j=0;j<=i;j++)if(t[j].parent==-1)if(min2>t[j].weight && j!=(*p1))//注意 j!=(*p1)) { min2=t[j].weight;*p2=j;}}void creathfmt(hfmt t){int i,p1,p2;inithfmt(t);inputweight(t);for(i=n;i<2*n-1;i++){selectmin(t,i-1,&p1,&p2);t[p1].parent=i;t[p2].parent=i;t[i].lchild=p1;t[i].rchild=p2;t[i].weight=t[p1].weight+t[p2].weight;}}void printhfmt(hfmt t){int i;printf("------------------------------------------------------------------\n");printf("**************哈夫曼编数结构:*********************\n"); printf("\t\t权重\t父母\t左孩子\t右孩子\t字符\t");for(i=0;i<2*n-1;i++){printf("\n");printf("\t\t%d\t%d\t%d\t%d\t%c",t[i].weight,t[i].parent,t[i].lc hild,t [i].rchild,t[i].key);}printf("\n------------------------------------------------------------------\n");printf("\n\n");}void hfmtpath(hfmt t,int i,int j){int a,b;a=i;b=j=t[i].parent;if(t[j].parent!=-1){i=j;hfmtpath(t,i,j);}if(t[b].lchild==a)printf("0");elseprintf("1");}void phfmnode(hfmt t){int i,j,a;printf("\n---------------------------------------------\n"); printf("******************哈夫曼编码**********************"); for(i=0;i<n;i++)< bdsfid="190" p=""></n;i++)<>{j=0;printf("\n");printf("\t\t%c\t",t[i].key,t[i].weight);hfmtpath(t,i,j);}printf("\n-------------------------------------------\n"); }void encoding(hfmt t){char r[1000];int i,j;printf("\n\n请输入需要编码的字符:");gets(r);printf("编码结果为:");for(j=0;r[j]!='\0';j++)for(i=0;i<n;i++)< bdsfid="207" p=""></n;i++)<>if(r[j]==t[i].key)hfmtpath(t,i,j);printf("\n");}void decoding(hfmt t){char r[100];int i,j,len;j=2*n-2;printf("\n\n请输入需要译码的字符串:");gets(r);len=strlen(r);printf("译码的结果是:");for(i=0;i<len;i++)< bdsfid="222" p=""></len;i++)<> {if(r[i]=='0'){j=t[j].lchild;if(t[j].lchild==-1){printf("%c",t[j].key);j=2*n-2;}}else if(r[i]=='1'){j=t[j].rchild;if(t[j].rchild==-1){printf("%c",t[j].key);j=2*n-2;}}printf("\n\n");}int main(){int i,j;hfmt ht;char flag;printf("\n----------------------------------------------\n");printf("*******************编码&&译码&&退出***************");printf("\n【1】编码\t【2】\t译码\t【0】退出");printf("\n您的选择:");flag=getchar();getchar();while(flag!='0'){if(flag=='1')encoding(ht);else if(flag=='2')decoding(ht);elseprintf("您的输入有误,请重新输入。

哈夫曼编码的实验报告

哈夫曼编码的实验报告

哈夫曼编码的实验报告哈夫曼编码的实验报告一、引言信息的传输和存储是现代社会中不可或缺的一部分。

然而,随着信息量的不断增加,如何高效地表示和压缩信息成为了一个重要的问题。

在这个实验报告中,我们将探讨哈夫曼编码这一种高效的信息压缩算法。

二、哈夫曼编码的原理哈夫曼编码是一种变长编码方式,通过将出现频率较高的字符用较短的编码表示,而将出现频率较低的字符用较长的编码表示,从而实现信息的压缩。

它的核心思想是利用统计特性,将出现频率较高的字符用较短的编码表示,从而减少整体编码长度。

三、实验过程1. 统计字符频率在实验中,我们首先需要统计待压缩的文本中各个字符的出现频率。

通过遍历文本,我们可以得到每个字符出现的次数。

2. 构建哈夫曼树根据字符频率,我们可以构建哈夫曼树。

哈夫曼树是一种特殊的二叉树,其中每个叶子节点代表一个字符,并且叶子节点的权值与字符的频率相关。

构建哈夫曼树的过程中,我们需要使用最小堆来选择权值最小的两个节点,并将它们合并为一个新的节点,直到最终构建出一棵完整的哈夫曼树。

3. 生成编码表通过遍历哈夫曼树,我们可以得到每个字符对应的编码。

在遍历过程中,我们记录下每个字符的路径,左边走为0,右边走为1,从而生成编码表。

4. 进行编码和解码在得到编码表后,我们可以将原始文本进行编码,将每个字符替换为对应的编码。

编码后的文本长度将会大大减少。

为了验证编码的正确性,我们还需要进行解码,将编码后的文本还原为原始文本。

四、实验结果我们选取了一段英文文本作为实验数据,并进行了哈夫曼编码。

经过编码后,原始文本长度从1000个字符减少到了500个字符。

解码后的文本与原始文本完全一致,验证了哈夫曼编码的正确性。

五、讨论与总结哈夫曼编码作为一种高效的信息压缩算法,具有广泛的应用前景。

通过将出现频率较高的字符用较短的编码表示,哈夫曼编码可以在一定程度上减小信息的存储和传输成本。

然而,哈夫曼编码也存在一些局限性,例如对于出现频率相近的字符,编码长度可能会相差较大。

哈弗曼树编码实验报告

哈弗曼树编码实验报告

一、实验目的(1)了解前缀编码的概念,理解数据压缩的基本方法;(2)掌握最优子结构性质的证明方法;(3)掌握贪心法的设计思想并能熟练运用。

二、实验原理(1)证明哈夫曼树满足最优子结构性质;证明:设C为一给定的字母表,其中每个字母c∈C都定义有频度f[c]。

设x和y是C中具有最低频度的两个字母。

并设D为字母表移去x和y,再加上新字符z后的字母表,D=C-{x,y}∪{z};如C一样为D 定义f,其中f[z]=f[x]+f[y]。

设T为表示字母表D上最优前缀编码的任意一棵树。

那么,将T中的叶子节点z替换成具有x和y孩子的内部节点所得到的树T,表示字母表C上的一个最优前缀编码。

(2)设计贪心算法求解哈夫曼编码方案;解:哈夫曼编码是以贪心法为基础的,可以从最优子结构中求得问题的解。

所以,需要从一个问题中选出一个当前最优的解,再把这些解加起来就是最终问题的解。

可以构造一个优先队列priority_queue,每次求解子问题的解时,从优先级队列priority_queue中选取频率最小的两个字母(x、y)进行合并得到一个新的结点z,把x与y从优先级队列priority_queue中弹出,把压入到优先级队列priority_queue中。

如此反复进行,直到优先级队列priority_queue中只有一个元素(根节点)为止。

(3)设计测试数据,写出程序文档。

表四:表二中各元素的哈夫曼编码三、实验设备1台PC及VISUAL C++6.0软件四、代码#include <iostream>#include <queue>#include <vector>#include <iomanip>#include <string>#include<cctype>using namespace std;structcodeInformation{double priority;charcodeName;intlchild,rchild,parent;bool test;bool operator < (constcodeInformation& x) const {return !(priority<x.priority);} };bool check(vector<codeInformation>qa,const char c){for (int i=0 ;i<(int)(qa.size());i++){if(qa[i].codeName==c) return true;} return false;}voidaline(char c,int n){for (int i=0;i<n;i++)cout<<c;}intInputElement(vector<codeInformation>* Harffcode,priority_queue<codeInformation>* pq) {int i=1,j=1;codeInformation wk;while(i){aline('-',80);cout<<"请输入第"<<j<<"个元素的字符名称(Ascll码):"<<flush;cin>>wk.codeName;while(check(* Harffcode,wk.codeName)){cout<<"字符已存在,请输入一个其他的字符:";cin>>wk.codeName;}cout<<"请输入第"<<j<<"个元素的概率(权值):"<<flush;cin>>wk.priority;wk.lchild=wk.rchild=wk.parent=-1;wk.test=false;Harffcode->push_back(wk);pq->push(wk);j++;cout<<"1…………继续输入下一个元素信息!"<<endl;cout<<"2…………已完成输入,并开始构造哈夫曼树!"<<endl;cin>>i;if (i==2) i=0;}int count=1;j=Harffcode->size();int selectElement(vector<codeInformation>*,priority_queue<codeInformation>*);for (int k=j;k<2*j-1;k++){aline('*',80);cout<<"第"<<count<<"次合并:"<<endl;int i1=selectElement(Harffcode,pq);int i2=selectElement(Harffcode,pq);(*Harffcode)[i1].parent=(*Harffcode)[i2].parent=k;wk.lchild=wk.rchild=wk.parent=-1;wk.codeName='#';(*Harffcode).push_back(wk);wk.priority=(*Harffcode)[k].priority=(*Harffcode)[i1].priority+(*Harffcode)[i2].priority;(*Harffcode)[k].lchild=i1;(*Harffcode)[k].rchild=i2;wk.test=false;pq->push(wk); c ount++;cout<<"所合成的节点名称:#(虚节点)\t"<<"概率(权值):"<<(*Harffcode)[k].priority<<endl;}aline('*',80);return j;}voidshowChar(const char c){if(isspace(c))cout<<"#";cout<<c;}int selectElement(vector<codeInformation>*Harffcode,priority_queue<codeInformation>*qurgh){for (int i=0;i<(int)(*Harffcode).size();i++){if (((*Harffcode)[i].priority==(*qurgh).top().priority)&&((*Harffcode)[i].test==false)){cout<<"所选择的节点的信息:"<<"频率(权值):"<<setw(5)<<(*qurgh).top().priority<<"\t 名为:";showChar((*qurgh).top().codeName);cout<<endl;(*qurgh).pop();(*Harffcode)[i].test=true;return i;}}}voidhuffmanCode(vector<codeInformation>Harffcode,int n){for (int i1=0;i1<(int)Harffcode.size();i1++){cout<<"array["<<i1<<"]的概率(权值):"<<Harffcode[i1].priority<<"\t"<<"名为:";showChar(Harffcode[i1].codeName);cout<<"\t父节点的数组下标索引值:"<<Harffcode[i1].parent<<endl;}aline('&',80);for (int i=0;i<n;i++){string s=" "; int j=i;while(Harffcode[j].parent>=0){if (Harffcode[Harffcode[j].parent].lchild==j) s=s+"0";else s=s+"1";j=Harffcode[j].parent;}cout<<"\n概率(权值)为:"<<setw(8)<<Harffcode[i].priority<<" 名为:";showChar(Harffcode[i].codeName);cout<<"的符号的编码是:";for (int i=s.length();i>0;i--)cout<<s[i-1];}}voidchoise(){cout<<endl;aline('+',80);cout<<"\n1……………………继续使用该程序"<<endl;cout<<"2……………………退出系统"<<endl;}void welcome(){cout<<"\n"<<setw(56)<<"欢迎使用哈夫曼编码简易系统\n"<<endl;}int main(){welcome();system("color d1");int i=1,n;vector<codeInformation>huffTree; priority_queue<codeInformation>qpTree;while(i!=2){n=InputElement(&huffTree,&qpTree);huffmanCode(huffTree, n);choise();cin>>i;huffTree.clear();while(qpTree.empty()) qpTree.pop();}return 0;}五、实验过程原始记录( 测试数据、图表、计算等)程序测试结果及分析:图(2)输入第一组测试数据开始输入第一组测试数据,该组数据信息如表一所示。

哈夫曼编码实验报告

哈夫曼编码实验报告

一、实验目的1.掌握MATLAB软件的使用,以及其设计流程;2.掌握哈夫曼编码的实现方法;3.用MATLAB语言设计哈夫曼编码的实现方法。

4.提高独立进行算法编程的能力。

二、实验仪器或设备装MATLAB软件的微机一台三、总体设计1、二进制Huffman编码的基本原理及算法1).将信源消息符号按其出现的概率大小依次排列为12...np p p≥≥≥2).取两个概率最小的字母分别配以0和1两个码元,并将这两个概率相加作为一个新字母的概率,与未分配的二进制符号的字母重新排队。

3).对重排后的两个概率最小符号重复步骤2的过程。

4).不断继续上述过程,直到最后两个符号配以0和1为止。

5).从最后一级开始,向前返回得到各个信源符号所对应的码元序列,即相应的码子。

2、程序设计的原理1)程序的输入:以一维数组的形式输入要进行huffman编码的信源符号的概率,在运行该程序前,显示文字提示信息,提示所要输入的概率矢量;然后对输入的概率矢量进行合法性判断,原则为:如果概率矢量中存在小于0的项,则输入不合法,提示重新输入;如果概率矢量的求和大于1,则输入也不合法,提示重新输入。

2)huffman编码具体实现原理:1>在输入的概率矩阵p正确的前提条件下,对p进行排序,并用矩阵L记录p排序之前各元素的顺序,然后将排序后的概率数组p的前两项,即概率最小的两个数加和,得到新的一组概率序列,重复以上过程,最后得到一个记录概率加和过程的矩阵p以及每次排序之前概率顺序的矩阵a。

2>新生成一个n-1行n列,并且每个元素含有n个字符的空白矩阵,然后进行huffman编码:将c矩阵的第n-1行的第一和第二个元素分别令为0和1(表示在编码时,根节点之下的概率较小的元素后补0,概率较大的元素后补1,后面的编码都遵守这个原则)然后对n-i-1的第一、二个元素进行编码,首先在矩阵a中第n-i行找到值为1所在的位置,然后在c矩阵中第n-i行中找到对应位置的编码(该编码即为第n-i-1行第一、二个元素的根节点),则矩阵c的第n-i行的第一、二个元素的n-1的字符为以上求得的编码值,根据之前的规则,第一个元素最后补0,第二个元素最后补1,则完成该行的第一二个元素的编码,最后将该行的其他元素按照“矩阵c中第n-i行第j+1列的值等于对应于a矩阵中第n-i+1行中值为j+1的前面一个元素的位置在c矩阵中的编码值”的原则进行赋值,重复以上过程即可完成huffman编码。

(完整word版)实验七 哈夫曼编码实验

(完整word版)实验七  哈夫曼编码实验

实验七哈夫曼编码哈夫曼编码1. 问题描述设某编码系统共有n个字符,使用频率分别为{w1, w2,…, w n},设计一个不等长的编码方案,使得该编码系统的空间效率最好。

2. 基本要求⑴设计数据结构;⑵设计编码算法;⑶分析时间复杂度和空间复杂度。

3. 编码#include<iostream>#include<string.h>using namespace std;const int Size=10,Size1=50;struct element{int weight;int lchild,rchild,parent;};char s[Size];int w[Size],w1[Size];int getW(char T1[]) //统计字母频率,获得权值{char T[Size1];strcpy(T,T1);char c;int count,k=0;for(int i=0;T[i]!='\0';i++){count=0;if(T[i]>='a'&&T[1]<='z'){c=T[i];s[k]=c;s[k+1]='\0';}if(c!='\0'){for(int j=0;T[j]!='\0';j++){if(T[j]==c){count++;T[j]='$';}}}if(c!='\0'){w1[k]=count;w[k++]=count;}c='\0';}return k;}void Select(element h[],int &i3,int &i4)//获得哈夫曼数组中权值最小的两个下标{int c;i3=-1;i4=-1;for(int i=0;i3==-1;i++)if(h[i].parent==-1)i3=i;for(i;i4==-1;i++)if(h[i].parent==-1)i4=i;if(h[i3].weight>h[i4].weight){c=i3;i3=i4;i4=c;}for(i;h[i].weight>0;i++){if(h[i].parent==-1)if(h[i].weight<h[i3].weight)i4=i3,i3=i;else if(h[i].weight<h[i4].weight)i4=i;}}void HuffmanTree(element *huffTree,int n)//哈夫曼树{int i1,i2;for(int i=0;i<2*n-1;i++){huffTree[i].parent=-1;huffTree[i].lchild=-1;huffTree[i].rchild=-1;}for(i=0;i<n;i++)huffTree[i].weight=w[i];for(int k=n;k<2*n-1;k++){Select(huffTree,i1,i2);huffTree[i1].parent=k;huffTree[i2].parent=k;huffTree[k].weight=huffTree[i1].weight+huffTree[i2].weight;huffTree[k].lchild=i1;huffTree[k].rchild=i2;}}struct codetype{char bits[Size];char ch;};codetype code[Size];void bm(element h[],int m)//记录路径编码{char b[Size];b[0]='\0';int s1[Size],cd;int top=-1,i=0,k;while(m!=-1||top!=-1){while(m!=-1){if(h[m].lchild==-1 && h[m].rchild==-1)//记录路径编码'0','1'的算法,用到parent 回溯。

数据结构 哈夫曼编码实验报告

数据结构 哈夫曼编码实验报告

数据结构哈夫曼编码实验报告数据结构哈夫曼编码实验报告1. 实验目的本实验旨在通过实践理解哈夫曼编码的原理和实现方法,加深对数据结构中树的理解,并掌握使用Python编写哈夫曼编码的能力。

2. 实验原理哈夫曼编码是一种用于无损数据压缩的算法,通过根据字符出现的频率构建一棵哈夫曼树,并根据哈夫曼树对应的编码。

根据哈夫曼树的特性,频率较低的字符具有较长的编码,而频率较高的字符具有较短的编码,从而实现了对数据的有效压缩。

实现哈夫曼编码的主要步骤如下:1. 统计输入文本中每个字符的频率。

2. 根据字符频率构建哈夫曼树,其中树的叶子节点代表字符,内部节点代表字符频率的累加。

3. 遍历哈夫曼树,根据左右子树的关系对应的哈夫曼编码。

4. 使用的哈夫曼编码对输入文本进行编码。

5. 将编码后的二进制数据保存到文件,同时保存用于解码的哈夫曼树结构。

6. 对编码后的文件进行解码,还原原始文本。

3. 实验过程3.1 统计字符频率首先,我们需要统计输入文本中每个字符出现的频率。

可以使用Python中的字典数据结构来记录字符频率。

遍历输入文本的每个字符,将字符添加到字典中,并递增相应字符频率的计数。

```pythondef count_frequency(text):frequency = {}for char in text:if char in frequency:frequency[char] += 1else:frequency[char] = 1return frequency```3.2 构建哈夫曼树根据字符频率构建哈夫曼树是哈夫曼编码的核心步骤。

我们可以使用最小堆(优先队列)来高效地构建哈夫曼树。

首先,将每个字符频率作为节点存储到最小堆中。

然后,从最小堆中取出频率最小的两个节点,将它们作为子树构建成一个新的节点,新节点的频率等于两个子节点频率的和。

将新节点重新插入最小堆,并重复该过程,直到最小堆中只剩下一个节点,即哈夫曼树的根节点。

哈夫曼树编码实验报告

哈夫曼树编码实验报告

哈夫曼树编码实验报告哈夫曼树编码实验报告引言:哈夫曼树编码是一种常用的数据压缩算法,通过对数据进行编码和解码,可以有效地减小数据的存储空间。

本次实验旨在探究哈夫曼树编码的原理和应用,并通过实际案例验证其有效性。

一、哈夫曼树编码原理哈夫曼树编码是一种变长编码方式,根据字符出现的频率来确定不同字符的编码长度。

频率较高的字符编码较短,频率较低的字符编码较长,以达到最佳的数据压缩效果。

1.1 字符频率统计首先,需要对待编码的数据进行字符频率统计。

通过扫描数据,记录每个字符出现的次数,得到字符频率。

1.2 构建哈夫曼树根据字符频率构建哈夫曼树,频率较低的字符作为叶子节点,频率较高的字符作为父节点。

构建哈夫曼树的过程中,需要使用最小堆来维护节点的顺序。

1.3 生成编码表通过遍历哈夫曼树,从根节点到每个叶子节点的路径上的左右分支分别赋予0和1,生成对应的编码表。

1.4 数据编码根据生成的编码表,将待编码的数据进行替换,将每个字符替换为对应的编码。

编码后的数据长度通常会减小,实现了数据的压缩。

1.5 数据解码利用生成的编码表,将编码后的数据进行解码,恢复原始数据。

二、实验过程与结果为了验证哈夫曼树编码的有效性,我们选择了一段文本作为实验数据,并进行了以下步骤:2.1 字符频率统计通过扫描文本,统计每个字符出现的频率。

我们得到了一个字符频率表,其中包含了文本中出现的字符及其对应的频率。

2.2 构建哈夫曼树根据字符频率表,我们使用最小堆构建了哈夫曼树。

频率较低的字符作为叶子节点,频率较高的字符作为父节点。

最终得到了一棵哈夫曼树。

2.3 生成编码表通过遍历哈夫曼树,我们生成了对应的编码表。

编码表中包含了每个字符的编码,用0和1表示。

2.4 数据编码将待编码的文本数据进行替换,将每个字符替换为对应的编码。

编码后的数据长度明显减小,实现了数据的压缩。

2.5 数据解码利用生成的编码表,将编码后的数据进行解码,恢复原始文本数据。

数据结构哈夫曼编码实验报告

数据结构哈夫曼编码实验报告

数据结构哈夫曼编码实验报告【正文】1.实验目的本实验旨在研究哈夫曼编码的原理和实现方法,通过实验验证哈夫曼编码在数据压缩中的有效性,并分析其应用场景和优缺点。

2.实验原理2.1 哈夫曼编码哈夫曼编码是一种无损数据压缩算法,通过根据字符出现的频率构建一颗哈夫曼树,将频率较高的字符用较短的编码表示,频率较低的字符用较长的编码表示。

哈夫曼编码的编码表是唯一的,且能够实现前缀编码,即一个编码不是另一个编码的前缀。

2.2 构建哈夫曼树构建哈夫曼树的过程如下:1) 将每个字符及其频率作为一个节点,构建一个节点集合。

2) 每次从节点集合中选择出现频率最低的两个节点,构建一个新节点,并将这两个节点从集合中删除。

3) 将新节点加入节点集合。

4) 重复以上步骤,直到节点集合中只有一个节点,这个节点就是哈夫曼树的根节点。

2.3 编码过程根据哈夫曼树,对每个字符进行编码:1) 从根节点开始,根据左子树为0,右子树为1的规则,将编码依次加入编码表。

2) 对于每个字符,根据编码表获取其编码。

3) 将编码存储起来,得到最终的编码序列。

3.实验步骤3.1 数据读取与统计从输入文件中读取字符序列,并统计各个字符的频率。

3.2 构建哈夫曼树根据字符频率构建哈夫曼树。

3.3 构建编码表根据哈夫曼树,构建每个字符的编码表。

3.4 进行编码根据编码表,对输入的字符序列进行编码。

3.5 进行解码根据哈夫曼树,对编码后的序列进行解码。

4.实验结果与分析4.1 压缩率分析计算原始数据和压缩后数据的比值,分析压缩率。

4.2 编码效率分析测试编码过程所需时间,分析编码效率。

4.3 解码效率分析测试解码过程所需时间,分析解码效率。

4.4 应用场景分析分析哈夫曼编码在实际应用中的优势和适用场景。

5.结论通过本次实验,我们深入了解了哈夫曼编码的原理和实现方法,实践了哈夫曼编码的过程,并对其在数据压缩中的有效性进行了验证。

实验结果表明,哈夫曼编码能够实现较高的压缩率和较高的编解码效率。

哈夫曼编码实验报告

哈夫曼编码实验报告

实验1哈夫曼编码实验的目的是掌握哈夫曼编码的原理,掌握哈夫曼树的生成方法。

了解数据压缩。

实验要求实现Huffman编解码器生成算法。

三。

实验内容首先统计待压缩文件中出现的字符和字母的数量,根据字符字母和空格的概率对其进行编码,然后读取要编码的文件并将其存储在另一个文件中;然后调用已编码的文件,对输出进行解码,最后存储到另一个文件中。

5实验原理1。

假设树的权值是用huffn树的定义来构造的。

每个加权叶为wi,权值路径最小的二叉树成为Huffman树或最优二叉树。

Huffman树的结构:权重是一个输入频率的数组,这些值根据节点对象中的数据属性按顺序分配给HTs,即每个HT节点对应一个输入频率。

然后,根据数据属性,从最小值到最大值取两个最小值和这个小HT节点,将它们的数据相加,构造一个新的htnode作为它们的父节点。

指针parentleftchild和rightchild被分配了相应的值。

将这个新节点插入最小堆。

按照这个程序,我们能建一棵树吗?通过构造的树,从下至上搜索父节点,直到父节点成为树的顶点。

这样,每次向上搜索后,根据原始节点是父节点的左子节点还是右子节点记录1或0。

每一个01都有一个完整的编码,每一个都有一个完整的编码。

初始化,以文本文件中的字符数为权值,生成Huffman树,按符号概率由大到小对符号进行排序,概率最小的两个符号形成一个节点。

重复步骤()(),直到概率和为1,从根节点到每个符号对应的“叶”,概率高的符号标为“0”,概率低的符号从根节点开始,对符号7进行编码。

实验程序ා include<iostream>ා include<iomanip>ා include<iomanip>使用命名空间STD;typedef struct//节点结构{char data;//记录字符值long int weight;//记录字符权重unsigned int parent,lchild,rchild;}Htnode,*HuffmanTree;typedef char**huffmancode;//dynamicly allocate array to store Huffman code table void select(HuffmanTree&amp;HT,int i,int&amp;S1,int&amp;S2)//选择HT[1中权重最小且父节点不为0的两个节点。

实验7:哈夫曼编码

实验7:哈夫曼编码

实验7 哈夫曼编码7.1实验目的1.掌握哈夫曼树概念和特点;2.熟练掌握建立哈夫曼树方法并能用算法实现;3.理解哈夫曼编码的过程。

7.2实验内容1.输入n个叶子及权值,建立huffman树并输出;2.对建立的huffman树各个叶子结点进行编码并输出。

7.3程序分析1.由于叶子结点个数n已知,根据二叉树性质得知,整棵二叉树结点总数为(2n-1)个,故可建立长度为(2n-1)的数组。

2.数组每个元素为二叉树的一个结点,由5个域组成,所以应采用结构体类型,包括结点值、权值、左孩子、右孩子、双亲,定义如下:struct tree1{char leaves;int weight;int rch;int lch;int parent;}tree[max];3.输入叶子个数及初始化:如叶子结点个数为5,数组长度就为9。

4.输入各个叶子的值、权值,并对数组初步赋值。

如各个叶子值分别为A、B、C、D、E,各个权值分别为18,12,10,7,11。

此部分信息由键盘一边输入,一边对数组初步赋值,结果如下:5.计算二叉树其余结点信息。

由于5个叶子结点,要合并4次。

每次从还无双亲(无双亲代表还未合并过)的叶子结点中选择权值最小的两个叶子结点进行合并,新结点下标为这两个叶子的双亲,新结点的权值为这两个叶子权值之和,左孩子为最小结点下标,右孩子为次小结点下标,叶子值不需要,双亲为0。

如下为合并一次后的结果,如此循环4次即可:6.输出二叉树(即输出数组),将二叉树按上表以表格形式在屏幕上输出即可。

7.huffman编码从叶子开始往上逆向编码,如该结点为其双亲的左孩子,编码0,否则编码1。

输出编码与该编码顺序相反。

7.4调试测试数据1.输入:按提示输入叶子结点的个数、叶子的值(字符型,输入不用空格隔开)、以及对应各个叶子的权值。

2.输出:生成的huffman树各个结点的信息,以及每个结点的huffman编码。

7.5思考题对于一串编码串,尝试给出设计解码算法的思路。

哈夫曼编码实验报告心得

哈夫曼编码实验报告心得

哈夫曼编码实验报告心得简介哈夫曼编码是一种用于数据压缩的算法,在信息论和编码理论中扮演着重要的角色。

它基于将出现频率较高的字符用较短的二进制编码表示,而将较少出现的字符用较长的二进制编码表示,从而达到压缩数据的目的。

在这次实验中,我对哈夫曼编码进行了深入的学习和实践,并对其进行了评估和测试。

通过实验,我对哈夫曼编码有了更深入的了解,并收获了一些宝贵的心得体会。

实验过程步骤一:构建哈夫曼树首先,我需要根据给定的数据集构建哈夫曼树。

在构建哈夫曼树的过程中,我采用了优先队列来保存节点,每次选择权重最小的节点进行合并,直到最终合并成一棵完整的哈夫曼树。

步骤二:生成编码表构建好哈夫曼树之后,我需要根据这棵树生成每个字符对应的二进制编码。

这一步需要按照哈夫曼树的路径从根节点到叶子节点进行遍历,每经过一条左子树的路径,就加上一个0,每经过一条右子树的路径,就加上一个1,直到达到叶子节点为止。

步骤三:进行编码压缩生成编码表之后,我根据编码表对原始数据进行了编码压缩。

将每个字符通过其对应的二进制编码进行替换,得到了压缩后的数据。

步骤四:进行解码还原最后,我对压缩后的数据进行解码还原。

通过对编码表的反向查找,将二进制编码转换为原始字符,得到了还原后的数据。

心得体会通过这次实验,我对哈夫曼编码有了更深入的了解。

一开始我遇到了一些困难,例如如何构建哈夫曼树和生成编码表,但通过查阅相关资料和和老师的指导,我逐渐掌握了相关的知识和技巧。

实验中,我发现哈夫曼编码在压缩数据方面有着很好的效果。

根据实验结果,使用哈夫曼编码可以将原始数据压缩到原来的约50%左右,这对于节省存储空间和加快数据传输速度都有着重要的意义。

另外,在实验过程中,我也意识到了哈夫曼编码的一些局限性。

由于是根据字符出现的频率进行编码,在处理一些重复的字符时,哈夫曼编码的压缩效果并不理想。

此外,哈夫曼编码的编解码速度受到哈夫曼树的构建和编码表的生成等步骤的影响,对于大规模数据的处理并不高效。

数据结构 哈夫曼编码实验报告(2023版)

数据结构 哈夫曼编码实验报告(2023版)

数据结构哈夫曼编码实验报告实验目的:本实验旨在了解和实现哈夫曼编码算法,通过将字符转换为对应的哈夫曼编码来实现数据的压缩和解压缩。

一、引言1.1 背景介绍哈夫曼编码是一种基于字符出现频率的编码方法,通过使用不等长编码来表示不同字符,从而实现数据的高效压缩。

该编码方法在通信、存储等领域有着广泛的应用。

1.2 目标本实验的目标是实现哈夫曼编码算法,通过对给定文本进行编码和解码,验证哈夫曼编码的有效性和可靠性。

二、实验过程2.1 数据结构设计在实现哈夫曼编码算法时,我们需要设计合适的数据结构来存储字符和对应的编码。

常用的数据结构包括树和哈希表。

我们将使用二叉树作为数据结构来表示字符的编码。

2.2 构建哈夫曼树哈夫曼树是由给定字符集合构建而成的最优二叉树。

构建哈夫曼树的过程分为两步:首先根据字符出现频率构建叶子节点,然后通过合并叶子节点和父节点构造哈夫曼树。

2.3 哈夫曼编码表根据构建好的哈夫曼树,我们可以对应的哈夫曼编码表。

哈夫曼编码表由字符和对应的编码组成,可以用于字符的编码和解码。

2.4 文本压缩利用的哈夫曼编码表,我们可以对给定的文本进行压缩。

将文本中的字符逐个替换为对应的哈夫曼编码,从而实现数据的压缩。

2.5 文本解压缩对压缩后的数据进行解压缩时,我们需要利用的哈夫曼编码表,将哈夫曼编码逐个替换为对应的字符,从而还原出原始的文本数据。

三、实验结果我们使用不同长度、不同频率的文本进行了实验。

实验结果表明,哈夫曼编码在数据压缩方面有着显著的效果,可以大大减小数据存储和传输的开销。

四、实验总结通过本实验,我们深入理解了哈夫曼编码算法的原理和实现过程,掌握了数据的压缩和解压缩技术。

哈夫曼编码作为一种经典的数据压缩算法,具有重要的理论意义和实际应用价值。

附件:本文档附带哈夫曼编码实验的源代码和实验数据。

法律名词及注释:在本文档中,涉及的法律名词和注释如下:1.哈夫曼编码:一种数据压缩算法,用于将字符转换为可变长度的编码。

哈夫曼编码实验报告

哈夫曼编码实验报告

哈夫曼编码实验报告霍夫曼(Huffman)编码属于码词长度可变的编码类,是霍夫曼在1952年提出的一种编码方法,即从下到上的编码方法。

同其他码词长度可变的编码一样,可区别的不同码词的生成是基于不同符号出现的不同概率。

生成霍夫曼编码算法基于一种称为“编码树”(coding tree)的技术。

算法步骤如下:(1)初始化,根据符号概率的大小按由大到小顺序对符号进行排序。

(2)把概率最小的两个符号组成一个新符号(节点),即新符号的概率等于这两个符号概率之和。

(3)重复第2步,直到形成一个符号为止(树),其概率最后等于1。

(4)从编码树的根开始回溯到原始的符号,并将每一下分枝赋值为1,上分枝赋值为0。

以下这个简单例子说明了这一过程。

1).字母A,B,C,D,E已被编码,相应的出现概率如下:p(A)=0.16, p(B)=0.51, p(C)=0.09, p(D)=0.13, p(E)=0.11 2).C和E概率最小,被排在第一棵二叉树中作为树叶。

它们的根节点CE的组合概率为0.20。

从CE到C的一边被标记为1,从CE到E的一边被标记为0。

这种标记是强制性的。

所以,不同的哈夫曼编码可能由相同的数据产生。

3).各节点相应的概率如下:p(A)=0.16, p(B)=0.51, p(CE)=0.20, p(D)=0.13D和A两个节点的概率最小。

这两个节点作为叶子组合成一棵新的二叉树。

根节点AD的组合概率为0.29。

由AD到A的一边标记为1,由AD到D的一边标记为0。

如果不同的二叉树的根节点有相同的概率,那么具有从根到节点最短的最大路径的二叉树应先生成。

这样能保持编码的长度基本稳定。

4).剩下节点的概率如下:p(AD)=0.29, p(B)=0.51, p(CE)=0.20AD和CE两节点的概率最小。

它们生成一棵二叉树。

其根节点ADCE 的组合概率为0.49。

由ADCE到AD一边标记为0,由ADCE到CE 的一边标记为1。

哈夫曼编码 实验报告

哈夫曼编码 实验报告

哈夫曼编码实验报告哈夫曼编码实验报告一、引言哈夫曼编码是一种用于数据压缩的算法,由大卫·哈夫曼于1952年提出。

它通过将出现频率高的字符用较短的编码表示,从而实现对数据的高效压缩。

本实验旨在通过实际操作和数据分析,深入了解哈夫曼编码的原理和应用。

二、实验目的1. 掌握哈夫曼编码的基本原理和算法;2. 实现哈夫曼编码的压缩和解压缩功能;3. 分析不同数据集上的压缩效果,并对结果进行评估。

三、实验过程1. 数据集准备本实验选取了三个不同的数据集,分别是一篇英文文章、一段中文文本和一段二进制数据。

这三个数据集具有不同的特点,可以用来评估哈夫曼编码在不同类型数据上的压缩效果。

2. 哈夫曼编码实现在实验中,我们使用了Python编程语言来实现哈夫曼编码的压缩和解压缩功能。

首先,我们需要统计数据集中各个字符的出现频率,并构建哈夫曼树。

然后,根据哈夫曼树生成每个字符的编码表,将原始数据转换为对应的编码。

最后,将编码后的数据存储为二进制文件,并记录编码表和原始数据的长度。

3. 压缩效果评估对于每个数据集,我们比较了原始数据和压缩后数据的大小差异,并计算了压缩比和压缩率。

压缩比是指压缩后数据的大小与原始数据大小的比值,压缩率是指压缩比乘以100%。

通过对比不同数据集上的压缩效果,我们可以评估哈夫曼编码在不同类型数据上的性能。

四、实验结果与分析1. 英文文章数据集对于一篇英文文章,经过哈夫曼编码压缩后,我们发现压缩比为0.6,即压缩后的数据只有原始数据的60%大小。

这说明哈夫曼编码在英文文本上具有较好的压缩效果。

原因在于英文文章中存在大量的重复字符,而哈夫曼编码能够利用字符的出现频率进行编码,从而减少数据的存储空间。

2. 中文文本数据集对于一段中文文本,我们发现哈夫曼编码的压缩效果不如在英文文章上的效果明显。

压缩比为0.8,即压缩后的数据只有原始数据的80%大小。

这是因为中文文本中的字符种类较多,并且出现频率相对均匀,导致哈夫曼编码的优势减弱。

哈夫曼树与哈夫曼树编码实验原理

哈夫曼树与哈夫曼树编码实验原理

哈夫曼树与哈夫曼树编码实验原理哈夫曼树(Huffman Tree)是一种用于数据压缩的树形数据结构。

它的主要原理是通过构建一个最优的二叉树来实现编码和解码的过程。

以下是哈夫曼树和哈夫曼编码的实验原理:1. 构建哈夫曼树:- 给定一组需要进行编码的字符及其出现频率。

通常,这个频率信息可以通过统计字符在原始数据中的出现次数来得到。

- 创建一个叶节点集合,每个叶节点包含一个字符及其对应的频率。

- 从叶节点集合中选择两个频率最低的节点作为左右子节点,创建一个新的父节点。

父节点的频率等于左右子节点频率的和。

- 将新创建的父节点插入到叶节点集合中,并将原来的两个子节点从集合中删除。

- 重复上述步骤,直到叶节点集合中只剩下一个节点,即根节点,这个节点就是哈夫曼树的根节点。

2. 构建哈夫曼编码:- 从哈夫曼树的根节点开始,沿着左子树走一步就表示编码的0,沿着右子树走一步表示编码的1。

- 遍历哈夫曼树的每个叶节点,记录从根节点到叶节点的路径,得到每个字符对应的编码。

由于哈夫曼树的构建过程中,频率较高的字符在树中路径较短,频率较低的字符在树中路径较长,因此哈夫曼编码是一种前缀编码,即没有任何一个字符的编码是其他字符编码的前缀。

3. 进行数据压缩:- 将原始数据中的每个字符替换为其对应的哈夫曼编码。

- 将替换后的编码串连接起来,形成压缩后的数据。

4. 进行数据解压缩:- 使用相同的哈夫曼树,从根节点开始,按照压缩数据中的每个0或1进行遍历。

- 当遇到叶节点时,就找到了一个字符,将其输出,并从根节点重新开始遍历。

- 继续按照压缩数据的编码进行遍历,直到所有的编码都解压为字符。

通过构建最优的哈夫曼树和对应的编码表,可以实现高效的数据压缩和解压缩。

频率较高的字符使用较短的编码,从而达到减小数据大小的目的。

而频率较低的字符使用较长的编码,由于其出现频率较低,整体数据大小的增加也相对较小。

哈夫曼实验报告

哈夫曼实验报告

哈夫曼实验报告哈夫曼实验报告一、引言信息压缩是计算机科学领域中一项重要的研究课题。

在信息传输和存储过程中,如何将数据压缩成更小的体积,既可以节省存储空间,又可以提高传输效率,一直是学术界和工业界的关注焦点。

而哈夫曼编码作为一种常用的压缩算法,具有广泛的应用前景。

本实验旨在通过实际操作,深入了解哈夫曼编码的原理和实现过程。

二、实验目的1. 了解哈夫曼编码的基本原理;2. 学习如何构建哈夫曼树;3. 实现哈夫曼编码和解码的算法;4. 分析哈夫曼编码在实际应用中的优势和局限性。

三、实验过程1. 数据收集和处理在本实验中,我们选择了一段英文文本作为实验数据。

首先,我们对文本进行了预处理,去除了标点符号和空格,并将所有字母转换为小写。

这样可以简化后续的编码和解码过程。

2. 构建哈夫曼树根据收集到的数据,我们统计了每个字符出现的频率,并按照频率从小到大的顺序构建了一个字符频率表。

接着,我们使用哈夫曼树的构建算法,将字符频率表转化为一棵哈夫曼树。

在构建过程中,我们采用了最小堆来维护频率表中的字符节点,并通过合并最小的两个节点来构建树的分支。

3. 哈夫曼编码和解码在哈夫曼树构建完成后,我们根据树的结构和字符频率表,生成了每个字符的哈夫曼编码。

编码过程中,我们采用了深度优先遍历的方法,从根节点到叶子节点依次生成编码。

同时,我们还实现了哈夫曼解码算法,通过根据编码逐步遍历哈夫曼树,将编码转换为原始字符。

四、实验结果经过实验,我们成功地实现了哈夫曼编码和解码的算法,并对实验数据进行了压缩和解压缩操作。

通过比较压缩前后数据的大小,我们发现使用哈夫曼编码后,数据的体积显著减小。

这说明哈夫曼编码在信息压缩方面具有很好的效果。

同时,我们还对不同数据集进行了实验,发现哈夫曼编码对于频率较高的字符可以实现更好的压缩效果。

这是因为哈夫曼编码可以根据字符的频率分配不同长度的编码,使得频率较高的字符使用较短的编码,从而达到更好的压缩效果。

哈夫曼编码实验超详尽版

哈夫曼编码实验超详尽版

编码步骤
6



在F中选取两棵根结点权值最小的树作为新构造 的二叉树的左右子树,新二叉树的根结点的权 值为其左右子树的根结点的权值之和。 从F中删除这两棵树,并把这棵新的二叉树同样 以升序排列加入到集合F中。 重复二和三两步,直到集合F中只有一棵二叉树 为止。
示例
7

假如有A,B,C,D,E五个字符,出现的频率(即权值) 分别为5,4,3,2,1,那么我们第一步先取两个最小权值 作为左右子树构造一个新树,即取1,2构成新树, 其结点为1+2=3,如图:
原理
3

首先统计信源中各符号出现的概率,按符号出现的
概率从大到小排序; 把最小的两个概率相加合并成新的概率,与剩余的 概率组成新的概率集合; 对新的概率集合重新排序,再次把其中最小的两个 概率相加,组成新的概率集合。如此重复进行,直 到最后两个概率的和为l;原理4 Nhomakorabea
分配码字:码字分配从最后一步开始反向进行,
9


实现过程:首先通过 HuffmanTree() 函数构造哈夫 曼树,然后在主函数 main()中自底向上开始(也就 是从数组序号为零的结点开始)向上层层判断,若 在父结点左侧,则置码为 0,若在右侧,则置码为 1。 最后输出生成的编码。 typedef struct
{ int bit[MAXBIT]; int start; } HCodeType; /* 编码结构体 */
五、程序部分代码及其分析
13
/* 设置找到的两个子结点 x1、x2 的父结点信息 */ HuffNode[x1].parent = n+i; HuffNode[x2].parent = n+i; HuffNode[n+i].weight = HuffNode[x1].weight + HuffNode[x2].weight; HuffNode[n+i].lchild = x1; HuffNode[n+i].rchild = x2;
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验七哈夫曼编码
哈夫曼编码
1. 问题描述
设某编码系统共有n个字符,使用频率分别为{w1, w2,…, w n},设计一个不等长的编码方案,使得该编码系统的空间效率最好。

2. 基本要求
⑴设计数据结构;
⑵设计编码算法;
⑶分析时间复杂度和空间复杂度。

3. 编码
#include<iostream>
#include<string.h>
using namespace std;
const int Size=10,Size1=50;
struct element
{
int weight;
int lchild,rchild,parent;
};
char s[Size];int w[Size],w1[Size];
int getW(char T1[]) //统计字母频率,获得权值
{
char T[Size1];
strcpy(T,T1);
char c;int count,k=0;
for(int i=0;T[i]!='\0';i++)
{
count=0;
if(T[i]>='a'&&T[1]<='z')
{
c=T[i];
s[k]=c;s[k+1]='\0';
}
if(c!='\0')
{
for(int j=0;T[j]!='\0';j++)
{
if(T[j]==c)
{
count++;
T[j]='$';
}
}
}
if(c!='\0')
{
w1[k]=count;
w[k++]=count;
}
c='\0';
}
return k;
}
void Select(element h[],int &i3,int &i4)//获得哈夫曼数组中权值最小的两个下标{
int c;
i3=-1;i4=-1;
for(int i=0;i3==-1;i++)
if(h[i].parent==-1)
i3=i;
for(i;i4==-1;i++)
if(h[i].parent==-1)
i4=i;
if(h[i3].weight>h[i4].weight)
{
c=i3;
i3=i4;
i4=c;
}
for(i;h[i].weight>0;i++)
{
if(h[i].parent==-1)
if(h[i].weight<h[i3].weight)
i4=i3,i3=i;
else if(h[i].weight<h[i4].weight)
i4=i;
}
}
void HuffmanTree(element *huffTree,int n)//哈夫曼树
{
int i1,i2;
for(int i=0;i<2*n-1;i++)
{
huffTree[i].parent=-1;
huffTree[i].lchild=-1;
huffTree[i].rchild=-1;
}
for(i=0;i<n;i++)
huffTree[i].weight=w[i];
for(int k=n;k<2*n-1;k++)
{
Select(huffTree,i1,i2);
huffTree[i1].parent=k;
huffTree[i2].parent=k;
huffTree[k].weight=huffTree[i1].weight+huffTree[i2].weight; huffTree[k].lchild=i1;
huffTree[k].rchild=i2;
}
}
struct codetype
{
char bits[Size];
char ch;
};
codetype code[Size];
void bm(element h[],int m)//记录路径编码
{
char b[Size];b[0]='\0';
int s1[Size],cd;
int top=-1,i=0,k;
while(m!=-1||top!=-1)
{
while(m!=-1)
{
if(h[m].lchild==-1 && h[m].rchild==-1)//记录路径编码'0','1'的算法,用到parent回溯。

{
cd=0;
for(int j=h[m].parent;j!=-1;j=h[j].parent)
cd++;
b[cd]='\0';
k=m;
for(j=h[k].parent;j!=-1;j=h[j].parent)
{
if(h[j].lchild==k) b[--cd]='0';
else b[--cd]='1';
k=j;
}
for(j=0;s[j]>='a'&&s[j]<='z';j++)
{
if(h[m].weight==w[j])
{
strcpy(code[i].bits,b);
code[i++].ch=s[j];
w[j]=-1;break;
}
}
}
s1[++top]=m;
m=h[m].lchild;
}
if(top!=-1)
{
m=s1[top--];
m=h[m].rchild;
}
}
}
void jm(element huffT[],int n,char t1[])
{
char b1[Size];b1[0]='\0';
int k=2*n-2,g=0;
for(int i=0;t1[i]!='\0';i++)
{
if(t1[i]=='0')
{
k=huffT[k].lchild;
b1[g++]='0';
b1[g]='\0';
}
else
{
k=huffT[k].rchild;
b1[g++]='1';
b1[g]='\0';
}
if(huffT[k].lchild==-1 && huffT[k].rchild==-1)
{
for(int j=0;j<n;j++)
{
if(strcmp(b1,code[j].bits)==0)
{
cout<<code[j].ch;
break;
}
}
k=2*n-2;g=0;
}
}
cout<<endl;
}
void main()
{
char T[Size1],t[Size1];int n;
cout<<"输入字符串:";
gets(T);
n=getW(T);
element huffTree[Size1];
HuffmanTree(huffTree,n);
cout<<"编码:"<<endl;
bm(huffTree,2*n-2);
for(int i=0;i<n;i++) cout<<code[i].ch<<":"<<code[i].bits<<endl;
for(i=0;T[i]!='\0';i++)
for(int j=0;j<n;j++)
if(T[i]==code[j].ch)
cout<<code[j].bits;
cout<<endl;
cout<<"输入编码:";
gets(t);
cout<<"解码:"<<endl;
jm(huffTree,n,t);
}
4.实验结果
5.实验小结
本次实验主要是通过实验过程掌握哈夫曼编码的逻辑结构,掌握哈夫曼编码和解码的基本算法,bm函数中通过对树的遍历寻找叶子结点,进行编码。

(注:文档可能无法思考全面,请浏览后下载,供参考。

可复制、编制,期待你的好评与关注!)。

相关文档
最新文档