分析高频开关型稳压电源的电路结构
常见几种开关电源工作原理及电路图
一、开关式稳压电源的基本工作原理开关式稳压电源接控制方式分为调宽式和调频式两种,在实际的应用中,调宽式使用得较多,在目前开发和使用的开关电源集成电路中,绝大多数也为脉宽调制型。
因此下面就主要介绍调宽式开关稳压电源。
调宽式开关稳压电源的基本原理可参见下图。
对于单极性矩形脉冲来说,其直流平均电压Uo取决于矩形脉冲的宽度,脉冲越宽,其直流平均电压值就越高。
直流平均电压U。
可由公式计算,即Uo=Um×T1/T式中Um为矩形脉冲最大电压值;T为矩形脉冲周期;T1为矩形脉冲宽度。
从上式可以看出,当Um 与T 不变时,直流平均电压Uo 将与脉冲宽度T1 成正比。
这样,只要我们设法使脉冲宽度随稳压电源输出电压的增高而变窄,就可以达到稳定电压的目的。
二、开关式稳压电源的原理电路1、基本电路图二开关电源基本电路框图开关式稳压电源的基本电路框图如图二所示。
交流电压经整流电路及滤波电路整流滤波后,变成含有一定脉动成份的直流电压,该电压进人高频变换器被转换成所需电压值的方波,最后再将这个方波电压经整流滤波变为所需要的直流电压。
控制电路为一脉冲宽度调制器,它主要由取样器、比较器、振荡器、脉宽调制及基准电压等电路构成。
这部分电路目前已集成化,制成了各种开关电源用集成电路。
控制电路用来调整高频开关元件的开关时间比例,以达到稳定输出电压的目的。
2.单端反激式开关电源单端反激式开关电源的典型电路如图三所示。
电路中所谓的单端是指高频变换器的磁芯仅工作在磁滞回线的一侧。
所谓的反激,是指当开关管VT1 导通时,高频变压器T初级绕组的感应电压为上正下负,整流二极管VD1处于截止状态,在初级绕组中储存能量。
当开关管VT1截止时,变压器T初级绕组中存储的能量,通过次级绕组及VD1 整流和电容C滤波后向负载输出。
单端反激式开关电源是一种成本最低的电源电路,输出功率为20-100W,可以同时输出不同的电压,且有较好的电压调整率。
唯一的缺点是输出的纹波电压较大,外特性差,适用于相对固定的负载。
开关型稳压电源的工作原理
开关型稳压电源的工作原理开关型稳压电源是一种通过开关元件进行高效能稳压的电源设备。
它采用开关元件( 通常为晶体管或MOSFET)以高频率开关的方式来调整输出电压,从而实现稳压。
以下是开关型稳压电源的主要工作原理:1.整流:首先,交流电源输入会经过整流电路,将交流电转换为直流电。
这通常使用整流桥等元件实现。
2.滤波:直流电经过整流后可能会包含一些脉动成分,为了去除这些脉动,通常使用滤波电容进行滤波处理,使输出电压更趋于稳定。
3.开关调节:开关型稳压电源的核心是开关调节部分。
这部分包括一个开关元件(通常为晶体管或MOSFET)、一个能够调整开关频率的控制电路和一个输出变压器。
4.开关频率调节:控制电路会根据输出电压的变化情况,调整开关频率。
通过高频率的开关操作,可以更精细地控制输出电压,实现稳压。
5.变压器工作:输出变压器是一个重要的组成部分,通过开关调节,可以改变变压器的工作状态,从而调整输出电压。
通过变压器的变压比例,可以实现输出电压的调节。
6.反馈控制:稳压电源通常采用反馈控制,通过比较输出电压与设定的目标电压,产生一个误差信号。
这个误差信号用于调整开关频率,使输出电压保持稳定。
7.过载和过压保护:开关型稳压电源通常配备有过载和过压保护机制,以防止电源或负载发生故障时损坏设备。
这些保护机制可以通过监测电流和电压进行触发。
8.输出滤波:最后,输出电压还可能通过输出滤波电路进行进一步的滤波,以确保输出信号的纯净性。
开关型稳压电源以其高效能和小体积的特点在电子设备、通信设备、计算机等领域得到广泛应用。
由于采用开关调节的方式,开关型稳压电源相比线性稳压电源能够更有效地调整电压,减少功耗和体积。
开关电源拓扑结构概述(降压,升压,反激、正激)
开关电源拓扑结构概述(降压,升压,反激、正激)主回路—开关电源中,功率电流流经的通路。
主回路一般包含了开关电源中的开关器件、储能器件、脉冲变压器、滤波器、输出整流器、等所有功率器件,以及供电输入端和负载端。
开关电源(直流变换器)的类型很多,在研究开发或者维修电源系统时,全面了解开关电源主回路的各种基本类型,以及工作原理,具有极其重要的意义。
开关电源主回路可以分为隔离式与非隔离式两大类型。
1. 非隔离式电路的类型:非隔离——输入端与输出端电气相通,没有隔离。
1.1. 串联式结构串联——在主回路中开关器件(下图中所示的开关三极管T)与输入端、输出端、电感器L、负载RL四者成串联连接的关系。
开关管T交替工作于通/断两种状态,当开关管T导通时,输入端电源通过开关管T及电感器L对负载供电,并同时对电感器L充电,当开关管T关断时,电感器L中的反向电动势使续流二极管D自动导通,电感器L中储存的能量通过续流二极管D形成的回路,对负载R继续供电,从而保证了负载端获得连续的电流。
串联式结构,只能获得低于输入电压的输出电压,因此为降压式变换。
例如buck拓扑型开关电源就是属于串联式的开关电源上图是在图1-1-a电路的基础上,增加了一个整流二极管和一个LC滤波电路。
其中L 是储能滤波电感,它的作用是在控制开关K接通期间Ton限制大电流通过,防止输入电压Ui直接加到负载R上,对负载R进行电压冲击,同时对流过电感的电流iL转化成磁能进行能量存储,然后在控制开关T关断期间Toff把磁能转化成电流iL继续向负载R提供能量输出;C是储能滤波电容,它的作用是在控制开关K接通期间Ton把流过储能电感L的部分电流转化成电荷进行存储,然后在控制开关K关断期间Toff把电荷转化成电流继续向负载R提供能量输出;D是整流二极管,主要功能是续流作用,故称它为续流二极管,其作用是在控制开关关断期间Toff,给储能滤波电感L释放能量提供电流通路。
在控制开关关断期间Toff,储能电感L将产生反电动势,流过储能电感L的电流iL由反电动势eL的正极流出,通过负载R,再经过续流二极管D的正极,然后从续流二极管D的负极流出,最后回到反电动势eL的负极。
开关电源高频变压器工作原理
开关电源高频变压器工作原理开关电源是一种常见的电源类型,它通过高频变压器来实现电能的转换和稳定输出。
本文将介绍开关电源高频变压器的工作原理。
开关电源的基本组成包括输入滤波电路、整流电路、功率变换电路和输出滤波电路。
其中,高频变压器是功率变换电路中的重要组成部分。
高频变压器由铁芯和绕组构成。
铁芯是由软磁材料制成的,能够有效地传导和集中磁场。
绕组则由导线绕制而成,通常分为输入绕组和输出绕组。
在工作时,开关电源的输入电压经过输入滤波电路进行滤波处理,然后进入整流电路。
整流电路将交流电转换为直流电,并通过功率变换电路进行变压和变换。
功率变换电路包括一个或多个功率开关器件,如晶体管或MOSFET。
当功率开关器件导通时,输入电压施加在输入绕组上,产生磁场。
磁场的变化会引起输出绕组中的电压变化,从而实现变压和变换。
当功率开关器件关断时,输入电压消失,磁场也消失。
这样,输出绕组中的电压也会发生变化。
高频变压器的工作原理主要依赖于电磁感应现象。
当输入绕组中的电流变化时,会产生变化的磁场。
根据法拉第电磁感应定律,变化的磁场会诱导出输出绕组中的电动势。
根据电磁感应定律,电动势的大小与磁场变化的速率成正比。
在开关电源中,频率较高的开关操作使得输入电流的变化速率很大,从而增大了磁场变化的速率。
这样,输出绕组中诱导出的电动势也会增大。
通过合理设计高频变压器的铁芯和绕组参数,可以实现电压的升降和输出功率的稳定。
高频变压器的设计需要考虑多个因素,如输入电压、输出电压、输出功率、工作频率等。
合理的设计可以提高开关电源的效率和稳定性。
高频变压器是开关电源中的关键组成部分,它利用电磁感应现象实现电能的转换和稳定输出。
通过合理设计和优化,可以提高开关电源的性能和可靠性,满足不同应用领域的需求。
开关电源工作频率的原理分析
6、结语
电流检测在电流控制中起着重要的作用,电流检测分为电阻检测和电流互感器检测。为了减少损耗,常采用电流互感器检测。在电流互感器检测电路的设计中,要充分考虑电路拓扑对检测效果的影响,综合考虑电流互感器的饱和问题和副边电流的下垂效应,以选择合适的磁芯复位电路、匝比和检测电阻。
(三)混合调制
导通脉冲宽度和开关工作频率均不固定,彼此都能改变的方式,它是以上二种方式的混合。
第三节开关电源的发展和趋势
1955年美国罗耶(GH.Roger)发明的自激振荡推挽晶体管单变压器直流变换器,是实现高频转换控制电路的开端,1957年美国查赛(Jen Sen)发明了自激式推挽双变压器,1964年美国科学家们提出取消工频变压器的串联开关电源的设想,这对电源向体积和重量的下降获得了一条根本的途径。到了1969年由于大功率硅晶体管的耐压提高,二极管反向恢复时间的缩短等元器件改善,终于做成了25千赫的开关电源。
3、逆变:将整流后的直流电变为高频交流电,这是高频开关电源的核心部分,频率越高,体积、重量与输出功率之比越小。
4、输出整流与滤波:根据负载需要,提供稳定可靠的直流电源。
(二)控制电路
一方面从输出端取样,经与设定标准进行比较,然后去控制逆变器,改变其频率或脉宽,达到输出稳定,另一方面,根据测试电路提供的数据,经保护电路鉴别,提供控制电路对整机进行各种保护措施。
2、电流检测电路的实现
在电流环的控制电路中,电流放大器通常选择较大的增益,其好处是可以选择一个较小的电阻来获得足够的检测电压,而检测电阻小损耗也小。
电流检测电路的实现方法主要有两类:电阻检测(resistivesensing)和电流互感器(currentsensetransformer)检测。
开关电源的结构和基本原理模板
3 90 6 S MD
?
D29
R114
1 .5K 1 20 6 F R1 04
C19 C18
2 2u ,50 V 2 2u ,50 V
0 .1u ,2 50 vA C
C4
C9 3 .3u 1 00 V
L8 5 *2 0
MYV1 0 72 71 0 72 71 MYV2
C3A
R1
1
C7
1 02 25 0V ac
Q5
R166
1 0 1 /8 W
R167
R121 1 0 0 80 5
1 00 1/8W
CAP
C 3 .3 VS
F R1 05
D2
1 5V 1 W
R115
1 K 1 2 06
D31
1 N4 14 8
2 ,12 0 6
1
8
F SD 5L01 6 5
C12
R42
2
7
D32
1 00 12 06
1 0u F/5 0V
输出电压的稳定则是依赖对脉冲宽度的改变来实现, 这就叫做脉宽调制PWM。
开关电源工作流程
当市电进入电源后,先经过扼流线圈和电容滤波去除 高频杂波和干扰信号,然后经过整流和滤波得到高压直流 电。
接着通过开关电路把直流电转为高频脉动直流电,再 送高频开关变压器降压。
然后滤除高频交流部分,这样最后输出供电脑使用相 对纯净的低压直流电。
有源PFC
输入电压可以从90V到270V; 高于0.99的线路功率因数,并具有低损耗和高可靠等优 点; 有源PFC电路可用作辅助电源,而不再需要辅助电源变 压器; 输出不随输入电压波动变化,因此可获得高度稳定的 输出电压; 有源PFC输出DC电压纹波很小,且呈100Hz/120Hz(工 频2倍)的正弦波,因此采用有源PFC的电源不需要采 用很大容量的滤波电容。
稳压电源原理图
稳压电源原理图稳压电源是电子设备中常见的一种电源类型,它能够提供稳定的电压输出,保障电子设备的正常运行。
稳压电源原理图是设计稳压电源时必不可少的参考资料,它展示了稳压电源的工作原理和电路连接方式。
本文将介绍稳压电源的原理图及其相关知识。
稳压电源的原理图通常包括输入端、变压器、整流电路、滤波电路、稳压电路和输出端等部分。
首先,交流电源通过输入端输入,经过变压器进行变压变流,然后经过整流电路将交流电转换为直流电。
接着,经过滤波电路对直流电进行滤波处理,去除电压波动和纹波,使输出电压更加稳定。
最后,稳压电路对电压进行稳定控制,确保输出电压稳定在设定的数值范围内,从而保障连接的电子设备正常工作。
稳压电源的原理图中,各个部分的连接方式和元器件的选择都对稳压电源的性能有着重要影响。
例如,变压器的选取会影响到输入端的电压大小和稳定性,整流电路的设计会影响到输出端的波动情况,稳压电路的选择和参数设置会影响到输出端的电压稳定度。
因此,在设计稳压电源原理图时,需要根据实际需求选择合适的元器件和连接方式,保证稳压电源的性能满足要求。
稳压电源原理图的设计需要考虑到电路的稳定性、效率、成本和体积等多个方面。
在实际设计中,需要综合考虑各个方面的因素,进行合理的权衡和取舍。
例如,为了提高稳压电源的稳定性,可以增加滤波电路的容量和质量,但这样会增加成本和体积;为了提高稳压电源的效率,可以选择高效率的整流电路和稳压电路,但这样可能会增加设计难度和成本。
因此,稳压电源原理图的设计需要在各个方面进行综合考虑,以达到最佳的性能和成本效益。
总的来说,稳压电源原理图是设计稳压电源的重要参考资料,它展示了稳压电源的工作原理和电路连接方式。
在设计稳压电源原理图时,需要考虑各个部分的连接方式和元器件的选择,以及稳定性、效率、成本和体积等多个方面的因素。
通过合理的设计和选择,可以设计出性能稳定、效率高、成本低、体积小的稳压电源,满足不同电子设备的需求。
开关式稳压电路
第七章 *输出电压Uo的确定 输出电压为:
Uo(1R7) 5.( 1 V) R8
分析时,注意的是R8上端接的是11脚,然后看原理 图,分析这是的压降。
第七章
7.5.3并联开关电源
一.基本构成
并联开关电源换能电路如图7.21, 储能电感,负载和输入电压是并联 的VT。饱和导通时,UI给电感L储能,同 时L自感电动势使VD截止。VT截止时, L自感使自感电动势极性立即改变, VD导通,L通过VD释放能量向C2充 电,并同时向负载供电。当VT再次饱 和导通时,L储能,VD反向截止,电 容C2向负载供电,负载上获得连续能 量。既VT导通期间,L储能,电容C2 向负载供电;VT截止时,L释放能量 对C2充电,同时向负载供电;L,C2 同时具备滤波作用,使得输出波形平 滑。
LC(C0 C) CC0 C
fp
C C1C2 C1 C2
由于
C C0C
f0 21LCfs
第六章
2.串联型石英晶体振荡电路
当振荡频率等于 fS 时, 晶体阻抗最小,且为纯电 阻,此时正反馈最强,相 移为零,电路满足自激振 荡条件。
振荡频率 f0 fs
图 6.1.30 串联型石英晶 体振荡电路
4.比较器是组成非正弦波发生电路的基本单元,在 测量、控制、D/A和A/D转换电路中应用广泛。
第六章 一、 电压比较器的传输特性
1.电压比较器的输出电压与输入端的电压之间函数关系
u f(u)
O
I
2.阈值电压: UT
当比较器的输出电压由一种状态跳变为另一种状态所 对应的输入电压。
3.电压传输特性的三要素 (1)输出电压的高电平UOH和低电平UOL的数值。 (2)阈值电压的数值UT。 (3)当uI变化且经过UT时, uO跃变的方向。
UC3846脉宽调制高频开关稳压资料
UC3846脉宽调制高频开关稳压资料题目 UC3846脉宽调制高频开关稳压(院)系电气与信息工程系专业自动化班级学号学生姓名指导老师姓名完成日期 2008 年 6 月 10 日至2008 年 6 月 20 日湖南工程学院课程设计任务书课程名称: 电力电子技术题目:UC3846脉宽调制高频开关稳压电源设计专业班级:学生姓名: 学号:指导老师:审批:任务书下达日期 2008 年 6 月 10 日设计完成日期 2008 年 6 月 20 日设计内容与设计要求一(设计内容:1( 电路功能:1) 电网工频交流先整流为固定直流,通过功率变换(高频逆变)得到20~50KHz的高频交流,再经高频整流与滤波,得到所需的直流;2) 电路由主电路与控制电路组成,主电路主要环节:工频整流滤波、功率变换(高频逆变)、高频整流滤波。
控制电路主要环节:脉冲发生电路、脉宽调制PWM、电压电流检测单元、驱动电路。
3) 功率变换电路中的高频开关器件采用IGBT或MOSFET。
4) 系统具有完善的保护2. 系统总体方案确定3. 主电路设计与分析1)确定主电路方案2)主电路元器件的计算及选型3)主电路保护环节设计4. 控制电路设计与分析1)检测电路设计2)功能单元电路设计3)触发电路设计4)控制电路参数确定二(设计要求:1( 用UC3875产生脉冲。
2( 设计思路清晰,给出整体设计框图;3( 单元电路设计,给出具体设计思路和电路;4( 分析所有单元电路与总电路的工作原理,并给出必要的波形分析。
5( 绘制总电路图6( 写出设计报告;主要设计条件1( 设计依据主要参数1) 输入输出电压:单相(AC)220(1+15%)、60V(DC) 2) 输出电流:8A3) 电压调整率:?1%4) 负载调整率:?1%5) 效率:?0.86)功率因数:?0.82. 可提供实验与仿真条件说明书格式1(课程设计封面;2(任务书;3(说明书目录;4(设计总体思路,基本原理和框图(总电路图);5(单元电路设计(各单元电路图); 6(故障分析与电路改进、实验及仿真等。
电源电路图详解
电源电路图详解!用电路元件符号表示电路连接的图,叫电路图。
电路图是人们为研究、工程规划的需要,用物理电学标准化的符号绘制的一种表示各元器件组成及器件关系的原理布局图,可以得知组件间的工作原理,为分析性能、安装电子、电器产品提供规划方案。
电路图是电子工程师必学的基本技能之一,本文集合了稳压电源、DCDC转换电源、开关电源、充电电路、恒流源相关的经典电路资料,为工程师提供最新鲜的电路图参考资料,超全超详细,只能帮你到这了!一、稳压电源1、3~25V电压可调稳压电路图此稳压电源可调范围在3.5V~25V之间任意调节,输出电流大,并采用可调稳压管式电路,从而得到满意平稳的输出电压。
工作原理:经整流滤波后直流电压由R1提供给调整管的基极,使调整管导通,在V1导通时电压经过RP、R2使V2导通,接着V3也导通,这时V1、V2、V3的发射极和集电极电压不再变化(其作用完全与稳压管一样)。
调节RP,可得到平稳的输出电压,R1、RP、R2与R3比值决定本电路输出的电压值。
元器件选择:变压器T选用80W~100W,输入AC220V,输出双绕组AC28V。
FU1选用1A,FU2选用3A~5A。
VD1、VD2选用6A02。
RP选用1W左右普通电位器,阻值为250K~330K,C1选用3300μF/35V电解电容,C2、C3选用0.1μF独石电容,C4选用470μF/35V电解电容。
R1选用180~220Ω/0.1W~1W,R2、R4、R5选用10KΩ、1/8W。
V1选用2N3055,V2选用3DG180或2SC3953,V3选用3CG12或3CG80。
2、10A3~15V稳压可调电源电路图无论检修电脑还是电子制作都离不开稳压电源,下面介绍一款直流电压从3V到15V连续可调的稳压电源,最大电流可达10A,该电路用了具有温度补偿特性的,高精度的标准电压源集成电路TL431,使稳压精度更高,如果没有特殊要求,基本能满足正常维修使用,电路见下图。
《开关稳压电源》课件
不断试验
持续学习
常见问题与解决方案
问题1
01
电源发热严重
原因
02
可能由于电路设计不合理或元件性能不佳。
解决方案
03
优化电路设计,更换性能更好的元件。
常见问题与解决方案
问题2
电源效率低下
原因
可能由于损耗过大或电路结构不合理。
解决方案
降低损耗,对电路结构进行优化。
常见问题与解决方案
问题3
输出电压不稳定
应用
广泛应用于各种电子设备中,如音频功率放大器、逆变器等。
升降压型开关稳压电源
• 总结词:同时具有升压和降压功能的开关稳压电源。
• 详细描述:升降压型开关稳压电源是一种较为特殊的开关稳压电源类型,其工作原理是通过控制开关管的导通和截止时 间,既可以降低输入电压来降低输出电压,也可以增加输入电压来提高输出电压,具有双重调节功能。
空调
在空调中,开关稳压电源 用于控制压缩机和风扇的 运行,保持室内温度的恒 定。
冰箱
冰箱的开关稳压电源确保 冷藏和冷冻系统的正常运 行,保持食品的新鲜。源自通信领域的应用手机
手机的开关稳压电源为通 话、数据传输和各种功能 提供稳定的电力。
路由器
在路由器中,开关稳压电 源为处理数据和信号传输 提供稳定的电力。
初步检查
检查电路中各元件是否正常,无损坏。
调试步骤与注意事项
通电测试
逐步通电,观察各部分工作是否正常 。
调整参数
根据需要调整相关参数,如电压、电 流等。
调试步骤与注意事项
安全第一
确保调试过程中人员和设备安全。
逐步进行
不要一次性将所有参数调整到位,应逐步调整。
UC3846脉宽调制高频开关稳压
课程设计说明书题目 UC3846脉宽调制高频开关稳压(院)系电气与信息工程系专业自动化班级学号学生姓名指导老师姓名完成日期 2008 年 6 月 10 日至2008 年 6 月 20 日湖南工程学院课程设计任务书课程名称:电力电子技术题目:UC3846脉宽调制高频开关稳压电源设计专业班级:学生姓名:学号:指导老师:审批:任务书下达日期2008 年6 月10 日设计完成日期2008 年6 月20 日目录第1章概述第2章系统总体方案确定2.1 电路的工作原理2.2 电路的组成第3章主电路设计与分析3.1 主电路的设计3.2 主电路元器件的计算及选型3.3 主电路保护环节的设计第4章控制电路设计与分析4.1 芯片详情4.2功能单元电路的设计4.3控制电路参数确定第5章总结与体会第6章附录总电路图参考文献课程设计评分表第1章概述在电力电子技术的应用及各种电源系统中,开关电源技术均处于核心地位。
对于大型电解电镀电源,传统的电路非常庞大而笨重,如果采用高顿开关电源技术,其体积和重量都会大幅度下降,而且可极大提高电源利用效率、节省材料、降低成本。
在电动汽车和变频传动中,更是离不开开关电源技术,通过开关电源改变用电频率,从而达到近于理想的负载匹配和驱动控制。
高频开关电源技术,更是各种大功率开关电源(逆变焊机、通讯电源、高频加热电源、激光器电源、电力操作电源等)的核心技术。
开关稳压电源(以下简称开关电源)问世后,在很多领域逐步取代了线性稳压电源和晶闸管相控电源。
早期出现的是串联型开关电源,其主电路拓扑与线性电源相仿,但功率晶体管工作于开关状态。
随着脉宽调制(PWM)技术的发展,PWM开关电源问世,它的特点是用20kHz的载波进行脉冲宽度调制,电源的效率可达65%~70%,而线性电源的效率只有30%~40%。
因此,用工作频率为20 kHz的PWM开关电源替代线性电源,可大幅度节约能源,从而引起了人们的广泛关注,在电源技术发展史上被誉为20kHz革命。
DSP系列高频开关电源工作原理
DSP系列高频开关电源工作原理■DSP系列工作原理电源主要由整流滤波电路,全桥变换电路,PWM控制电路,稳压、限压电路,稳流、限流电路,保护电路,以及辅助电源电路等组成。
三相电网(或单相)电压经电源开关后,进行整流滤波,得到的520VDC(单相为300VDC)的平滑直流电压供给逆变电路。
三相电压取一路380VAC(或单相220VAC)经变压器降压整流后,再通过三端稳压器稳压得到±15V电压供给各部分控制电路。
逆变电路主要由大功率IGBT模块(或场效应MOSFET模块)组成全桥变换电路。
当PWM输出控制信号通过隔离驱动器分别驱动功率模块,两组对角管分别交替导通,在高频变压器初级产生高频脉冲电压,次级电压由高频变压器变压后整流向负载提供能量。
输出端分别接有稳压、限流和稳流、限压等的反馈环路,当面板开关置于稳压状态时,稳压和限流电路起作用,当输出电压升高或下降时,取样电压通过稳压电路内部电压比较器跟基准电压比较,其误差信号电压加到PWM控制电路,使PWM输出脉宽作相应变化,从而稳定输出电压,如负载电流过高时,限流电路工作,使输出电流限制在限流设定值内。
同样,在稳流状态下,稳流电路作用,使输出电流稳定在设定值内,而当过压时,限压电路使输出电压钳压在限压值。
当有异常情况(如输入过压或欠压,过流或过热等)产生保护信号加到保护控制电路时,保护电路输出一个电压加到PWM电路,使PWM电路停止输出,从而达到保护目的。
■DSP系列工作原理框图三、简易故障维修故障现象检查排除1.开机电源指示灯不亮,风机不转电源是否接好,闸刀是否闭合,如果是三相电源是否有缺相.接好电源,闭合闸刀2.电源指示灯正常、风机正常,工作指示灯不亮启动开关是否在启动的位置如果启动开关在启动位置,整机不工作,则再拨动一次启动开关至启动位置3.工作指示灯正常,电流电压调不动检查稳压限流及稳流限压旋钮是否调至最小的位置把电压调节,电流调节旋钮按要求旋至合适位置4.工作当中,突然没有电流输出,工作指示灯正常检查从电源输出端至负载的连线是否断开更换或重新连接好连接线5.工作当中,突然没有电流输出,工作指示灯闪烁1.检查工作环境温度是否过高,风机是否正常工作。
开关电源电路
开关电源电路介绍开关电源是一种能够将输入电源高效转换为所需输出电压的电路。
它由开关元件、能量存储元件和控制元件组成。
开关电源电路的主要作用是将交流电源或直流电源转换为直流电源,以满足电子设备对不同电压和电流的需求。
开关电源原理开关电源的工作原理是通过开关元件的不断开关来调节输入电源的通断时间,从而控制输出电压和电流。
主要包含以下几个部分:•整流部分:将输入交流电源转换为直流电源。
常见的整流电路包括单相整流电路和三相整流电路。
•滤波部分:去除直流电源中的纹波,以获得更稳定的输出电压。
滤波电路通常使用电容器进行纹波滤波。
•逆变部分:将直流电源通过逆变器转换为交流电源。
逆变器通常采用高频开关元件,如MOSFET或IGBT。
•控制部分:通过对开关元件的开关频率和占空比进行调节,控制输出电压和电流的稳定性。
常见的开关电源拓扑结构1.单端降压开关电源:采用开关管形成稳压核心,变压器进行降压,通过整流、滤波电路得到所需电压。
2.双端降压开关电源:采用两个开关管进行占空比开关,变压器分别用于降压和升压,通过整流、滤波电路得到所需电压。
3.半桥开关电源:采用两个开关管形成半桥结构,通过变压器降压、整流、滤波电路得到所需电压。
4.全桥开关电源:采用四个开关管形成全桥结构,通过变压器降压、整流、滤波电路得到所需电压。
开关电源的优点1.高效率:开关电源采用高频开关元件进行电能转换,具有高效率和低损耗的特点。
相比传统线性电源,开关电源的效率更高。
2.稳定性好:开关电源通过控制元件的开关频率和占空比,可以精确控制输出电压和电流,并具有较好的稳定性。
3.体积小:由于开关电源采用高频开关元件,可以使用小型变压器和电感器,从而使整个电路的体积更小。
4.噪音低:开关电源通过滤波电路对输出电压进行滤波,减少纹波噪音的产生,从而输出电压更为稳定,噪音更低。
5.输出电压范围广:由于控制元件的灵活性,开关电源可以满足不同输出电压范围的需求,具有较好的适用性。
高频开关电源原理
高频开关电源(电源技术讲座四)1:高频开关电源的组成与分类开关电源具有体积小、效率高等一系列优点,在各类电子产品中得到广泛的应用。
但由于开关电源的控制电路比较复杂、输出纹波电压较高,所以开关电源的应用也受到一定的限制。
电子装置小型轻量化的关键是供电电源的小型化,因此需要尽可能地降低电源电路中的损耗。
开关电源中的调整管工作于开关状态,必然存在开关损耗,而且损耗的大小随开关频率的提高而增加。
另一方面,开关电源中的变压器、电抗器等磁性元件及电容元件的损耗,也随频率的提高而增加。
目前市场上开关电源中功率管多采用双极型晶体管,开关频率可达几十kHz;采用MOSFE的开关电源转换频率可达几百kHz。
为提高开关频率必须采用高速开关器件。
对于兆赫以上开关频率的电源可利用谐振电路,这种工作方式称为谐振开关方式。
它可以极大地提高开关速度,原理上开关损耗为零,噪声也很小,这是提高开关电源工作频率的一种方式。
采用谐振开关方式的兆赫级变换器已经实用化。
开关电源的集成化与小型化已成为现实。
然而,把功率开关管与控制电路都集成在同一芯片上,必须解决电隔离和热绝缘的问题。
1.1 开关电源的基本构成开关电源采用功率半导体器件作为开关器件,通过周期性间断工作,控制开关器件的占空比来调整输出电压。
开关电源的基本构成如图1所示,其中DC/DC变换器进行功率转换,它是开关电源的核心部分,此外还有起动、过流与过压保护、噪声滤波等电路。
输出采样电路(R1、R2)检测输出电压变化,与基准电压Ur比较,误差电压经过放大及脉宽调制(PWM电路,再经过驱动电路控制功率器件的占空比,从而达到调整输出电压大小的目的。
图2 是一种电路实现形式。
DC/DC变换器有多种电路形式,常用的有工作波形为方波的PWMS换器以及工作波形为准正弦波的谐振型变换器。
图1 开关电源的基本构成图2 开关型稳压电源的原理电路对于串联线性稳压电源,输出对输入的瞬态响应特性主要由调整管的频率特性决定。
常见几种开关电源工作原理及电路图
一、开关式稳压电源的大体工作原理开关式稳压电源接操纵方式分为调宽式和调频式两种,在实际的应用中,调宽式利用得较多,在目前开发和利用的开关电源集成电路中,绝大多数也为脉宽调制型。
因此下面就要紧介绍调宽式开关稳压电源。
调宽式开关稳压电源的大体原理可参见以下图。
关于单极性矩形脉冲来讲,其直流平均电压Uo取决于矩形脉冲的宽度,脉冲越宽,其直流平均电压值就越高。
直流平均电压U。
可由公式计算,即Uo=Um×T1/T式中Um为矩形脉冲最大电压值;T为矩形脉冲周期;T1为矩形脉冲宽度。
从上式能够看出,当Um 与T 不变时,直流平均电压Uo 将与脉冲宽度T1 成正比。
如此,只要咱们设法使脉冲宽度随稳压电源输出电压的增高而变窄,就能够够达到稳固电压的目的。
二、开关式稳压电源的原理电路一、大体电路图二开关电源大体电路框图开关式稳压电源的大体电路框图如图二所示。
交流电压经整流电路及滤波电路整流滤波后,变成含有必然脉动成份的直流电压,该电压进人高频变换器被转换成所需电压值的方波,最后再将那个方波电压经整流滤波变成所需要的直流电压。
操纵电路为一脉冲宽度调制器,它要紧由取样器、比较器、振荡器、脉宽调制及基准电压等电路组成。
这部份电路目前已集成化,制成了各类开关电源用集成电路。
操纵电路用来调整高频开关元件的开关时刻比例,以达到稳固输出电压的目的。
2.单端反激式开关电源单端反激式开关电源的典型电路如图三所示。
电路中所谓的单端是指高频变换器的磁芯仅工作在磁滞回线的一侧。
所谓的反激,是指当开关管VT1 导通时,高频变压器T低级绕组的感应电压为上正下负,整流二极管VD1处于截止状态,在低级绕组中贮存能量。
当开关管VT1截止时,变压器T低级绕组中存储的能量,通过次级绕组及VD1 整流和电容C滤波后向负载输出。
单端反激式开关电源是一种本钱最低的电源电路,输出功率为20-100W,能够同时输出不同的电压,且有较好的电压调整率。
唯一的缺点是输出的纹波电压较大,外特性差,适用于相对固定的负载。
电子变压器(开关稳压电源)工作原理图
电子变压器(开关稳压电源)工作原理图变压器就是开关稳压。
它实际上就是一种逆变器。
首先把交流电变为直流电,然后用电子元件组成一个振荡器直流电变为高频交流电。
通过开关变压器输出所需要的电压然后二次整流供用电器使用。
开关稳压电源具有体积小,重量轻,价格低等优点,所以被广泛用在各种电器中。
开关稳压电源的原理较复杂。
下面一种电子变压器的分析,输入为ac220v,输出为ac12v,功率可达50w。
它主要是在高频电子镇流器电路的基础上研制出来的一种变压器电路,其性能稳定,体积小,功率大,因而克服了传统的硅钢片变压器体大、笨重、价高等缺点。
电子变压器电路图:电子变压器工作原理电路如图所示。
电子变压器原理与工作原理相似,vd1~vd4构成整流桥把市电变成直流电,由振荡变压器t1,vt1、vt2组成的高频振荡电路,将脉动直流变成高频电流,然后由铁氧体输出变压器t2对高频高压脉冲降压,获得所需的电压和功率。
r1为限流电阻。
电阻r2、c1和双向触发二极管vd5构成启动触发电路。
三极管vt1、vt2选用s13005,其b为15~2 0倍。
也可用c3093等buceo>;=35ov的大功率三极管。
触发二极管vd5选用32v左右的db3或vr60。
振荡变压器可自制,用音频线绕制在h7 x 10 x 6的磁环上。
tia、t1b绕3匝,tc绕1匝。
铁氧体输出变压器t2也需自制,磁心选用边长27mm、宽20mm、厚10mm的ei型铁氧体。
t2a用直径为0.45mm高强度漆包线绕100匝,t2b用直径为1.25mm高强度漆包线绕8匝。
二极管vd1~vd4选用in4007型,双向触发二极管选用db3型,电容c1~c3选用聚丙聚酯涤纶电容,耐压250v。
此电子变压器电路工作时,a点工作电压约为12v;b点约为25v;c点约为105v;d点约为10v。
如果电压不满足上述数值,或电子变压器电路不振荡,则应检查电路有无错焊、漏焊或虚焊。
开关电源电路组成及常见各模块电路分析
开关电源电路组成及常见各模块电路分析2009-10-14 17:36一、开关电源的电路组成开关电源的主要电路是由输入电磁干扰滤波器(EMI)、整流滤波电路、功率变换电路、PWM控制器电路、输出整流滤波电路组成。
辅助电路有输入过欠压保护电路、输出过欠压保护电路、输出过流保护电路、输出短路保护电路等。
开关电源的电路组成方框图如下:二、输入电路的原理及常见电路1、AC 输入整流滤波电路原理:① 防雷电路:当有雷击,产生高压经电网导入电源时,由MOV1、MOV2、MOV3:F1、F2、F3、FDG1 组成的电路进行保护。
当加在压敏电阻两端的电压超过其工作电压时,其阻值降低,使高压能量消耗在压敏电阻上,若电流过大,F1、F2、F3 会烧毁保护后级电路。
② 输入滤波电路:C1、L1、C2、C3组成的双π型滤波网络主要是对输入电源的电磁噪声及杂波信号进行抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。
当电源开启瞬间,要对 C5充电,由于瞬间电流大,加RT1(热敏电阻)就能有效的防止浪涌电流。
因瞬时能量全消耗在RT1电阻上,一定时间后温度升高后RT1阻值减小(RT1是负温系数元件),这时它消耗的能量非常小,后级电路可正常工作。
③ 整流滤波电路:交流电压经BRG1整流后,经C5滤波后得到较为纯净的直流电压。
若C5容量变小,输出的交流纹波将增大。
2、 DC 输入滤波电路原理:① 输入滤波电路:C1、L1、C2组成的双π型滤波网络主要是对输入电源的电磁噪声及杂波信号进行抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。
C3、C4 为安规电容,L2、L3为差模电感。
② R1、R2、R3、Z1、C6、Q1、Z2、R4、R5、Q2、RT1、C7组成抗浪涌电路。
在起机的瞬间,由于 C6的存在Q2不导通,电流经RT1构成回路。
当C6上的电压充至Z1的稳压值时Q2导通。
如果C8漏电或后级电路短路现象,在起机的瞬间电流在RT1上产生的压降增大,Q1导通使 Q2没有栅极电压不导通,RT1将会在很短的时间烧毁,以保护后级电路。
开关稳压电源原理图
开关稳压电源原理图随着全球对能源问题的重视,电子产品的耗能问题将愈来愈突出,如何降低其待机功耗,提高供电效率成为一个急待解决的问题。
传统的线性稳压电源虽然电路结构简单、工作可靠,但它存在着效率低(只有40%-50%)、体积大、铜铁消耗量大,工作温度高及调整范围小等缺点。
为了提高效率,人们研制出了开关式稳压电源,它的效率可达85%以上,稳压范围宽,除此之外,还具有稳压精度高、不使用电源变压器等特点,是一种较理想的稳压电源。
正因为如此,开关式稳压电源已广泛应用于各种电子设备中,本文对各类开关电源的工作原理作一阐述。
一、开关式稳压电源的基本工作原理开关式稳压电源接控制方式分为调宽式和调频式两种,在实际的应用中,调宽式使用得较多,在目前开发和使用的开关电源集成电路中,绝大多数也为脉宽调制型。
因此下面就主要介绍调宽式开关稳压电源。
调宽式开关稳压电源的基本原理可参见下图。
对于单极性矩形脉冲来说,其直流平均电压Uo取决于矩形脉冲的宽度,脉冲越宽,其直流平均电压值就越高。
直流平均电压U。
可由公式计算,即Uo=Um×T1/T式中Um —矩形脉冲最大电压值;T—矩形脉冲周期;T1 —矩形脉冲宽度。
从上式可以看出,当Um与T不变时,直流平均电压Uo将与脉冲宽度T1成正比。
这样,只要我们设法使脉冲宽度随稳压电源输出电压的增高而变窄,就可以达到稳定电压的目的。
二、开关式稳压电源的原理电路1、基本电路图二开关电原基本电路框图开关式稳压电源的基本电路框图如图二所示。
交流电压经整流电路及滤波电路整流滤波后,变成含有一定脉动成份的直流电压,该电压进人高频变换器被转换成所需电压值的方波,最后再将这个方波电压经整流滤波变为所需要的直流电压。
控制电路为一脉冲宽度调制器,它主要由取样器、比较器、振荡器、脉宽调制及基准电压等电路构成。
这部分电路目前已集成化,制成了各种开关电源用集成电路。
控制电路用来调整高频开关元件的开关时间比例,以达到稳定输出电压的目的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
分析高频开关型稳压电源的电路结构
开关电源具有体积小、效率高等一系列优点,在各类电子产品中得到广泛的应用。
但由于开关电源的控制电路比较复杂、输出纹波电压较高,所以开关电源的应用也受到一定的限制。
电子装置小型轻量化的关键是供电电源的小型化,因此需要尽可能地降低电源电路中的损耗。
开关电源中的调整管工作于开关状态,必然存在开关损耗,而且损耗的大小随开关频率的提高而增加。
另一方面,开关电源中的变压器、电抗器等磁性元件及电容元件的损耗,也随频率的提高而增加。
目前市场上开关电源中功率管多采用双极型晶体管,开关频率可达几十kHz;采用MOSFET的开关电源转换频率可达几百kHz.为提高开关频率必须采用高速开关器件。
对于兆赫以上开关频率的电源可利用谐振电路,这种工作方式称为谐振开关方式。
它可以极大地提高开关速度,原理上开关损耗为零,噪声也很小,这是提高开关电源工作频率的一种方式。
采用谐振开关方式的兆赫级变换器已经实用化。
开关电源的集成化与小型化已成为现实。
然而,把功率开关管与控制电路都集成在同一芯片上,必须解决电隔离和热绝缘的问题。
开关电源的基本构成开关电源采用功率半导体器件作为开关器件,通过周期性间断工作,控制开关器件的占空比来调整输出电压。
开关电源的基本构成如图1所示,其中DC/DC变换器进行功率转换,它是开关电源的核心部分,此外还有起动、过流与过压保护、噪声滤波等电路。
输出采样电路(R1、R2)检测输出电压变化,与基准电压Ur比较,误差电压经过放大及脉宽调制(PWM) 电路,再经过驱动电路控制功率器件的占空比,从而达到调整输出电压大小的。